201
|
Post C, Clark JP, Sytnikova YA, Chirn GW, Lau NC. The capacity of target silencing by Drosophila PIWI and piRNAs. RNA (NEW YORK, N.Y.) 2014; 20:1977-86. [PMID: 25336588 PMCID: PMC4238361 DOI: 10.1261/rna.046300.114] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Although Piwi proteins and Piwi-interacting RNAs (piRNAs) genetically repress transposable elements (TEs), it is unclear how the highly diverse piRNA populations direct Piwi proteins to silence TE targets without silencing the entire transcriptome. To determine the capacity of piRNA-mediated silencing, we introduced reporter genes into Drosophila OSS cells, which express microRNAs (miRNAs) and piRNAs, and compared the Piwi pathway to the Argonaute pathway in gene regulation. Reporter constructs containing several target sites that were robustly silenced by miRNAs were not silenced to the same degrees by piRNAs. However, another set of reporters we designed to enable a large number of both TE-directed and genic piRNAs to bind were robustly silenced by the PIWI/piRNA complex in OSS cells. These reporters show that a bulk of piRNAs are required to pair to the reporter's transcripts and not the reporter's DNA sequence to engage PIWI-mediated silencing. Following our genome-wide study of PIWI-regulated targets in OSS cells, we assessed candidate gene elements with our reporter platform. These results suggest TE sequences are the most direct of PIWI regulatory targets while coding genes are less directly affected by PIWI targeting. Finally, our study suggests that the PIWI transcriptional silencing mechanism triggers robust chromatin changes on targets with sufficient piRNA binding, and preferentially regulates TE transcripts because protein-coding transcripts lack a threshold of targeting by piRNA populations. This reporter platform will facilitate future dissections of the PIWI-targeting mechanism.
Collapse
Affiliation(s)
- Christina Post
- Department of Biology and Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, Massachusetts 02453, USA
| | - Josef P Clark
- Department of Biology and Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, Massachusetts 02453, USA
| | - Yuliya A Sytnikova
- Department of Biology and Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, Massachusetts 02453, USA
| | - Gung-Wei Chirn
- Department of Biology and Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, Massachusetts 02453, USA
| | - Nelson C Lau
- Department of Biology and Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, Massachusetts 02453, USA
| |
Collapse
|
202
|
The long non-coding RNA PCAT-1 promotes prostate cancer cell proliferation through cMyc. Neoplasia 2014; 16:900-8. [PMID: 25425964 PMCID: PMC4240923 DOI: 10.1016/j.neo.2014.09.001] [Citation(s) in RCA: 213] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 08/16/2014] [Accepted: 09/04/2014] [Indexed: 01/25/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) represent an emerging layer of cancer biology, contributing to tumor proliferation, invasion, and metastasis. Here, we describe a role for the oncogenic lncRNA PCAT-1 in prostate cancer proliferation through cMyc. We find that PCAT-1–mediated proliferation is dependent on cMyc protein stabilization, and using expression profiling, we observed that cMyc is required for a subset of PCAT-1–induced expression changes. The PCAT-1–cMyc relationship is mediated through the post-transcriptional activity of the MYC 3′ untranslated region, and we characterize a role for PCAT-1 in the disruption of MYC-targeting microRNAs. To further elucidate a role for post-transcriptional regulation, we demonstrate that targeting PCAT-1 with miR-3667-3p, which does not target MYC, is able to reverse the stabilization of cMyc by PCAT-1. This work establishes a basis for the oncogenic role of PCAT-1 in cancer cell proliferation and is the first study to implicate lncRNAs in the regulation of cMyc in prostate cancer.
Collapse
|
203
|
Zhang W, Chen X, Qin Z. MicroRNA let-7a suppresses the growth and invasion of cholesteatoma keratinocytes. Mol Med Rep 2014; 11:2097-103. [PMID: 25405753 DOI: 10.3892/mmr.2014.2971] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 10/24/2014] [Indexed: 11/06/2022] Open
Abstract
Cholesteatomas are benign epidermally‑derived lesions of the temporal bone that are caused by migration of hyperproliferative keratinocytes into the middle ear and mastoid cavity. The molecular mechanisms that regulate the pathogenesis of cholesteatomas are currently not fully understood. The present study demonstrated the antigrowth and anti‑invasive effects of let‑7a microRNA (miRNA) on cholesteatoma keratinocytes. Let‑7a inhibited the growth of cholesteatoma keratinocytes through two different mechanisms: Restriction of the proliferation of keratinocytes by promoting cell cycle arrest in the G0/G1 phase, and the induction of apoptosis of the cells. In addition to its role in the inhibition of cell growth, let‑7a suppressed the migration and invasion of cholesteatoma keratinocytes. A mechanistic study showed that let‑7a downregulated the expression of miR‑21. Considering the function of miR‑21 in the regulation of proliferation and apoptosis, let‑7a may control cell proliferation and apoptosis by regulating miR‑21, and its targets, in cholesteatoma keratinocytes. In conclusion, the present study showed that let‑7a downregulates the expression of miR‑21, resulting in the suppression of proliferation and induction of apoptosis. The results of the present study reveal the crucial role of let‑7a miRNA in the inhibition of growth and invasion of cholesteatoma keratinocytes.
Collapse
Affiliation(s)
- Wenjing Zhang
- Department of Otology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450003, P.R. China
| | - Xiaohua Chen
- Department of Otology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450003, P.R. China
| | - Zhaobing Qin
- Department of Otology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450003, P.R. China
| |
Collapse
|
204
|
|
205
|
Liu D, Zhang XL, Yan CH, Li Y, Tian XX, Zhu N, Rong JJ, Peng CF, Han YL. MicroRNA-495 regulates the proliferation and apoptosis of human umbilical vein endothelial cells by targeting chemokine CCL2. Thromb Res 2014; 135:146-54. [PMID: 25466836 DOI: 10.1016/j.thromres.2014.10.027] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 10/10/2014] [Accepted: 10/29/2014] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Endothelium dysfunction plays a critical role in atherosclerosis. MicroRNAs are endogenous non-coding RNAs that suppress gene expression by binding to the 3' untranslated regions of target genes. MiR-495 can regulate the proliferation and apoptosis of cancer cells, however, the roles of miR-495 in endothelial cells (ECs) remain unclear. Therefore, this study aims to investigate the roles and mechanisms of miR-495 on ECs proliferation and apoptosis. MATERIALS AND METHODS MiR-495 and CCL2 expressions were examined using quantitative RT-PCR, ELISA assay and western blot. Bioinformatics analysis and luciferase reporter assay were used to examine the regulatory relationship between miR-495 and CCL2. CCK8 assay, BrdU incorporation assay and flow cytometry were used to analyze the roles of miR-495 and CCL2 on the proliferation of human umbilical vein endothelial cells (HUVECs). The effects of miR-495 and CCL2 on HUVECs apoptosis were examined by tunnel staining and western blot. RESULTS MiR-495 was down-regulated in patients with coronary artery disease compared with healthy controls. CCL2 was a novel target gene of miR-495. MiR-495 significantly promoted HUVECs proliferation by altering cell cycle distribution, and it also inhibited HUVECs apoptosis by affecting the expression of cleaved caspase 3. Effects of miR-495 on HUVECs proliferation and apoptosis were significantly reversed by overexpression of CCL2. CONCLUSIONS MiR-495 could affect HUVECs proliferation and apoptosis by directly targeting CCL2. This is the first report to disclose the roles and mechanisms of miR-495 on HUVECs proliferation and apoptosis, which may provide a theoretical basis for clarifying the mechanisms of atherosclerosis.
Collapse
Affiliation(s)
- Dan Liu
- Graduate School of Third Military Medical University, Chongqing 400038, China
| | - Xiao-Lin Zhang
- Cardiovascular Research Institute and Department of Cardiology, Shenyang Northern Hospital, Shenyang, Liaoning 110016, China
| | - Cheng-Hui Yan
- Cardiovascular Research Institute and Department of Cardiology, Shenyang Northern Hospital, Shenyang, Liaoning 110016, China
| | - Yi Li
- Cardiovascular Research Institute and Department of Cardiology, Shenyang Northern Hospital, Shenyang, Liaoning 110016, China
| | - Xiao-Xiang Tian
- Cardiovascular Research Institute and Department of Cardiology, Shenyang Northern Hospital, Shenyang, Liaoning 110016, China
| | - Nan Zhu
- Cardiovascular Research Institute and Department of Cardiology, Shenyang Northern Hospital, Shenyang, Liaoning 110016, China
| | - Jing-Jing Rong
- Graduate School of Third Military Medical University, Chongqing 400038, China
| | - Cheng-Fen Peng
- Cardiovascular Research Institute and Department of Cardiology, Shenyang Northern Hospital, Shenyang, Liaoning 110016, China
| | - Ya-Ling Han
- Cardiovascular Research Institute and Department of Cardiology, Shenyang Northern Hospital, Shenyang, Liaoning 110016, China.
| |
Collapse
|
206
|
Kumar S, Kim CW, Son DJ, Ni CW, Jo H. Flow-dependent regulation of genome-wide mRNA and microRNA expression in endothelial cells in vivo. Sci Data 2014; 1:140039. [PMID: 25977794 PMCID: PMC4411008 DOI: 10.1038/sdata.2014.39] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 09/15/2014] [Indexed: 12/17/2022] Open
Abstract
Atherosclerosis preferentially occurs in arterial regions exposed to disturbed blood flow (d-flow), in part, due to alterations in gene expression in the endothelium. While numerous in vitro studies have shown how anti-atherogenic flow and pro-atherogenic flow differently regulate gene expression of cultured endothelial cells, similar in vivo studies have been scarce. Recently, we developed a mouse model of atherosclerosis that rapidly develops robust atherosclerosis by partially ligating the left carotid artery (LCA) branches, while using the contralateral right carotid (RCA) as control. We also developed a novel method to collect endothelial-enriched RNAs from the carotids of these animals, which enabled us to perform genome-wide expression analyses of mRNAs and miRNAs in the arterial endothelium exposed to either d-flow or s-flow. These microarray results were used to identify novel mechanosensitive genes such as DNA methyltransferase-1 and miR-712 that play key roles in atherosclerosis. Here, we report these endothelial mRNA and miRNA expression profiles with in-depth information on experimental procedures along with an example of usage of these data.
Collapse
Affiliation(s)
- Sandeep Kumar
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 1760 Haygood Drive, HSRB E170 , Atlanta, Georgia 30322, USA
| | - Chan Woo Kim
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 1760 Haygood Drive, HSRB E170 , Atlanta, Georgia 30322, USA
| | - Dong Ju Son
- School of Applied Biosciences, Kyungpook National University , Daegu 702-701, South Korea
| | - Chih Wen Ni
- Department of Biomedical Engineering, Khalifa University of Science, Technology and Research , Abu Dhabi, UAE
| | - Hanjoong Jo
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 1760 Haygood Drive, HSRB E170 , Atlanta, Georgia 30322, USA ; Division of Cardiology, Emory University , Atlanta, Georgia 30322, USA
| |
Collapse
|
207
|
Xing Y, Liu Z, Yang G, Gao D, Niu X. MicroRNA expression profiles in rats with selenium deficiency and the possible role of the Wnt/β-catenin signaling pathway in cardiac dysfunction. Int J Mol Med 2014; 35:143-52. [PMID: 25339460 DOI: 10.3892/ijmm.2014.1976] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 10/07/2014] [Indexed: 11/06/2022] Open
Abstract
Selenium deficiency is a causative factor in heart failure and microRNAs (known as miRNAs or miRs) play an important role in numerous cardiovascular diseases. However, the changes of miRNA expression during selenium deficiency and whether selenium deficiency is involved in cardiac dysfunction remain unclear. In the present study, miRNA expression profiling was carried out in normal rats, selenium-deficient rats and selenium-supplemented rats by miRNA microarray. Cardiac function was evaluated by analyzing the plasma brain natriuretic peptide level, echocardiographic parameters and hemodynamic parameters. Cardiac glutathione peroxidase activity was assessed by spectrophotometry. The histological changes were examined by hematoxylin and eosin staining. Electrocardiograph was used to test the arrhythmia. The differentially expressed miRNAs were verified by reverse transcription-polymerase chain reaction. Additionally, the underlying mechanism associated with the Wnt/β-catenin signaling pathway was further explored. The cardiac dysfunction of the rat with selenium deficiency was mainly associated with five upregulated miRNAs, which were miR-374, miR-16, miR-199a-5p, miR-195 and miR-30e*, and three downregulated miRNAs, which were miR-3571, miR-675 and miR-450a*. Among these, the expression of miR-374 was the highest, which may be of vital importance in rats with selenium deficiency. In conclusion, the possible mechanism of selenium deficiency-induced cardiac dysfunction was associated with the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Yujie Xing
- Department of Cardiology, The Second Affiliated Hospital, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710004, P.R. China
| | - Zhongwei Liu
- Department of Cardiology, The Second Affiliated Hospital, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710004, P.R. China
| | - Guang Yang
- Department of Cardiology, The Second Affiliated Hospital, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710004, P.R. China
| | - Dengfeng Gao
- Department of Cardiology, The Second Affiliated Hospital, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710004, P.R. China
| | - Xiaolin Niu
- Department of Cardiology, The Second Affiliated Hospital, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710004, P.R. China
| |
Collapse
|
208
|
Chuang TD, Ho M, Khorram O. The regulatory function of miR-200c on inflammatory and cell-cycle associated genes in SK-LMS-1, a leiomyosarcoma cell line. Reprod Sci 2014; 22:563-71. [PMID: 25305131 DOI: 10.1177/1933719114553450] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Uterine leiomyosarcoma is a relatively rare malignancy with high mortality due to metastasis and chemoresistance. Leiomyosarcomas share similar morphological characteristics with leiomyomas which are considered to have the potential of transformation into leiomyosarcoma. Accumulated evidence suggests that microRNAs acting as regulators of gene expression at the posttranscriptional level play key roles in diverse biological processes including cellular transformation and tumorigenesis. We hypothesized that miR-200c, whose expression is altered in leiomyomas, equally plays a key role in pathogenesis of leiomyosarcoma. Using SK-LMS-1 leiomyosarcoma cell line as an in vitro model here, we found that the level of expression of miR-200c was significantly lower as compared to isolated leiomyoma smooth muscle cells. Overexpression (gain-of-function) of miR-200c in SK-LMS-1 through direct interaction with 3'-untranslated region of IKBKB, IL8, CDK2, and CCNE2, respectively, resulted in suppression of their expression as determined by quantitative polymerase chain reaction and Western blot analysis. Additionally, gain-of-function of miR-200c through inhibition of IKBKB expression resulted in decreased p65 transcriptional activity in IL8 promoter. Gain-of-function of miR-200c also increased SK-LMS-1 caspase 3/7 activity and inhibited their proliferation and migration. In summary, the results suggest that a progressive decline in miR-200c expression which alters transcriptional regulation of specific target genes that control nuclear factor-κB signaling pathway, inflammation, cell cycle, and migration, in part may promote development and progression of leiomyosarcomas, including their transformation from leiomyomas.
Collapse
Affiliation(s)
- Tsai-Der Chuang
- Department of Obstetrics and Gynecology, Harbor-UCLA Medical Center and LA Biomed, Torrance, CA, USA
| | - Matthew Ho
- Department of Internal Medicine, Charles Drew University, Los Angeles, CA, USA
| | - Omid Khorram
- Department of Obstetrics and Gynecology, Harbor-UCLA Medical Center and LA Biomed, Torrance, CA, USA
| |
Collapse
|
209
|
Liu X, Mourelatos Z. Native gel analysis for mammalian microRNPs assembled from pre-microRNAs. Methods Mol Biol 2014; 1206:39-51. [PMID: 25240885 DOI: 10.1007/978-1-4939-1369-5_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
MicroRNAs (miRNAs) are an important class of small RNAs that regulate gene expression posttranscriptionally through the microRNP (miRNP)/RNA-induced silencing complex (RISC). The core component of miRNPs is an Argonuate protein that directly binds to a miRNA. In mammals, most miRNPs are assembled through the miRNA loading complex (miRLC), which is composed of Dicer, Ago, and TRBP. miRLC processes miRNA precursors (pre-miRNAs) into miRNA duplexes and loads miRNA duplexes to Ago. Here, we describe a native gel analysis system for detecting miRNPs assembled with pre-miRNAs from mammalian lysates that ectopically express Ago2. The methods presented here provide a powerful tool for further dissecting miRNP assembly pathways in mammals.
Collapse
Affiliation(s)
- Xuhang Liu
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104-6100, USA
| | | |
Collapse
|
210
|
A quantitative framework for the forward design of synthetic miRNA circuits. Nat Methods 2014; 11:1147-53. [PMID: 25218181 DOI: 10.1038/nmeth.3100] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 07/30/2014] [Indexed: 11/08/2022]
Abstract
Synthetic genetic circuits incorporating regulatory components based on RNA interference (RNAi) have been used in a variety of systems. A comprehensive understanding of the parameters that determine the relationship between microRNA (miRNA) and target expression levels is lacking. We describe a quantitative framework supporting the forward engineering of gene circuits that incorporate RNAi-based regulatory components in mammalian cells. We developed a model that captures the quantitative relationship between miRNA and target gene expression levels as a function of parameters, including mRNA half-life and miRNA target-site number. We extended the model to synthetic circuits that incorporate protein-responsive miRNA switches and designed an optimized miRNA-based protein concentration detector circuit that noninvasively measures small changes in the nuclear concentration of β-catenin owing to induction of the Wnt signaling pathway. Our results highlight the importance of methods for guiding the quantitative design of genetic circuits to achieve robust, reliable and predictable behaviors in mammalian cells.
Collapse
|
211
|
Abstract
SIGNIFICANCE Hypoxia is a hallmark of the tumor microenvironment and represents a major source of failure in cancer therapy. RECENT ADVANCES Recent work has generated extensive evidence that microRNAs (miRNAs) are significant components of the adaptive response to low oxygen in tumors. Induction of specific miRNAs, collectively termed hypoxamiRs, has become an accepted feature of the hypoxic response in normal and transformed cells. CRITICAL ISSUES Overexpression of miR-210, the prototypical hypoxamiR, is detected in most solid tumors, and it has been linked to adverse prognosis in many tumor types. Several miR-210 target genes, including iron-sulfur (Fe-S) cluster scaffold protein (ISCU) and glycerol-3-phosphate dehydrogenase 1-like (GPD1L), have been correlated with prognosis in an inverse fashion to miR-210, suggesting that their down- regulation by miR-210 occurs in vivo and contributes to tumor growth. Additional miRNAs are modulated by decreased oxygen tension in a more tissue-specific fashion, adding another level of complexity over the classic hypoxia-regulated gene network. FUTURE DIRECTIONS From a biological standpoint, hypoxamiRs are emerging modifiers of cancer cell response to the adaptive challenges of the microenvironment. From a clinical perspective, assessing the status of these miRNAs may contribute to a detailed understanding of hypoxia-induced mechanisms of resistance and/or to the fine-tuning of future hypoxia-modifying therapies.
Collapse
Affiliation(s)
- Harriet E Gee
- 1 Department of Radiation Oncology, Sydney Cancer Centre, Royal Prince Alfred Hospital , Camperdown, Australia
| | | | | | | |
Collapse
|
212
|
Abstract
According to the World Health Organization, cardiovascular disease accounts for approximately 30% of all deaths in the United States, and is the worldwide leading cause of morbidity and mortality. Over the last several years, microRNAs have emerged as critical regulators of physiological homeostasis in multiple organ systems, including the cardiovascular system. The focus of this review is to provide an overview of the current state of knowledge of the molecular mechanisms contributing to the multiple causes of cardiovascular disease with respect to regulation by microRNAs. A major challenge in understanding the roles of microRNAs in the pathophysiology of cardiovascular disease is that cardiovascular disease may arise from perturbations in intracellular signaling in multiple cell types including vascular smooth muscle and endothelial cells, cardiac myocytes and fibroblasts, as well as hepatocytes, pancreatic β-cells, and others. Additionally, perturbations in intracellular signaling cascades may also have profound effects on heterocellular communication via secreted cytokines and growth factors. There has been much progress in recent years to identify the microRNAs that are both dysregulated under pathological conditions, as well as the signaling pathway(s) regulated by an individual microRNA. The goal of this review is to summarize what is currently known about the mechanisms whereby microRNAs maintain cardiovascular homeostasis and to attempt to identify some key unresolved questions that require further study.
Collapse
Affiliation(s)
- Ronald L Neppl
- Boston Children's Hospital, Department of Cardiology ; Harvard Medical School, Department of Pediatrics Boston MA, 02115
| | - Da-Zhi Wang
- Boston Children's Hospital, Department of Cardiology ; Harvard Medical School, Department of Pediatrics Boston MA, 02115
| |
Collapse
|
213
|
Hébrant A, Floor S, Saiselet M, Antoniou A, Desbuleux A, Snyers B, La C, de Saint Aubain N, Leteurtre E, Andry G, Maenhaut C. miRNA expression in anaplastic thyroid carcinomas. PLoS One 2014; 9:e103871. [PMID: 25153510 PMCID: PMC4143225 DOI: 10.1371/journal.pone.0103871] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 07/08/2014] [Indexed: 12/13/2022] Open
Abstract
Anaplastic thyroid carcinoma (ATC) is the most lethal form of thyroid neoplasia and represents an end stage of thyroid tumor progression. No effective treatment exists so far. In this study, we analyzed the miRNA expression profiles of 11 ATC by microarrays and their relationship with the mRNA expression profiles of the same 11 ATC samples. ATC show distinct miRNA expression profiles compared to other less aggressive thyroid tumor types. ATC show 18 commonly deregulated miRNA compared to normal thyroid tissue (17 downregulated and 1 upregulated miRNA). First, the analysis of a combined approach of the mRNA gene expression and of the bioinformatically predicted mRNA targets of the deregulated miRNA suggested a role for these regulations in the epithelial to mesenchymal transition (EMT) process in ATC. Second, the direct interaction between one of the upregulated mRNA target, the LOX gene which is an EMT key player, and a downregulated miRNA, the miR-29a, was experimentally validated by a luciferase assay in HEK cell. Third, we confirmed that the ATC tissue is composed of about 50% of tumor associated macrophages (TAM) and suggested, by taking into account our data and published data, their most likely direct or paracrine intercommunication between them and the thyroid tumor cells, amplifying the tumor aggressiveness. Finally, we demonstrated by in situ hybridization a specific thyrocyte localization of 3 of the deregulated miRNA: let-7g, miR-29a and miR-30e and we pointed out the importance of identifying the cell type localization before drawing any conclusion on the physiopathological role of a given gene.
Collapse
Affiliation(s)
- Aline Hébrant
- Institute of Interdisciplinary Research (IRIBHM), School of Medicine, Université libre de Bruxelles, Campus Erasme, Brussels, Belgium
| | - Sébastien Floor
- Institute of Interdisciplinary Research (IRIBHM), School of Medicine, Université libre de Bruxelles, Campus Erasme, Brussels, Belgium
| | - Manuel Saiselet
- Institute of Interdisciplinary Research (IRIBHM), School of Medicine, Université libre de Bruxelles, Campus Erasme, Brussels, Belgium
| | - Aline Antoniou
- Institute of Interdisciplinary Research (IRIBHM), School of Medicine, Université libre de Bruxelles, Campus Erasme, Brussels, Belgium
| | - Alice Desbuleux
- Institute of Interdisciplinary Research (IRIBHM), School of Medicine, Université libre de Bruxelles, Campus Erasme, Brussels, Belgium
| | - Bérengère Snyers
- Institute of Interdisciplinary Research (IRIBHM), School of Medicine, Université libre de Bruxelles, Campus Erasme, Brussels, Belgium
| | - Caroline La
- Institute of Interdisciplinary Research (IRIBHM), School of Medicine, Université libre de Bruxelles, Campus Erasme, Brussels, Belgium
| | | | - Emmanuelle Leteurtre
- Université de Lille 2, Faculté de Médecine, Lille, France
- CHRU de Lille, Institut de Pathologie, Lille, France
| | - Guy Andry
- Institut Jules Bordet, Bruxelles, Belgium
| | - Carine Maenhaut
- Institute of Interdisciplinary Research (IRIBHM), School of Medicine, Université libre de Bruxelles, Campus Erasme, Brussels, Belgium
- WELBIO, School of Medicine, Université libre de Bruxelles, Campus Erasme, Brussels, Belgium
- * E-mail:
| |
Collapse
|
214
|
Belew AT, Meskauskas A, Musalgaonkar S, Advani VM, Sulima SO, Kasprzak WK, Shapiro BA, Dinman JD. Ribosomal frameshifting in the CCR5 mRNA is regulated by miRNAs and the NMD pathway. Nature 2014; 512:265-9. [PMID: 25043019 PMCID: PMC4369343 DOI: 10.1038/nature13429] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 04/29/2014] [Indexed: 12/17/2022]
Abstract
Programmed -1 ribosomal frameshift (-1 PRF) signals redirect translating ribosomes to slip back one base on messenger RNAs. Although well characterized in viruses, how these elements may regulate cellular gene expression is not understood. Here we describe a -1 PRF signal in the human mRNA encoding CCR5, the HIV-1 co-receptor. CCR5 mRNA-mediated -1 PRF is directed by an mRNA pseudoknot, and is stimulated by at least two microRNAs. Mapping the mRNA-miRNA interaction suggests that formation of a triplex RNA structure stimulates -1 PRF. A -1 PRF event on the CCR5 mRNA directs translating ribosomes to a premature termination codon, destabilizing it through the nonsense-mediated mRNA decay pathway. At least one additional mRNA decay pathway is also involved. Functional -1 PRF signals that seem to be regulated by miRNAs are also demonstrated in mRNAs encoding six other cytokine receptors, suggesting a novel mode through which immune responses may be fine-tuned in mammalian cells.
Collapse
Affiliation(s)
- Ashton Trey Belew
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, 20742 Maryland USA
| | - Arturas Meskauskas
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, 20742 Maryland USA
- Department of Biotechnology and Microbiology, Vilnius University, Vilnius, LT 03101 Lithuania
| | - Sharmishtha Musalgaonkar
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, 20742 Maryland USA
| | - Vivek M. Advani
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, 20742 Maryland USA
| | - Sergey O. Sulima
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, 20742 Maryland USA
- Present Address: Present address: VIB Center for the Biology of Disease, KU Leuven, Campus Gasthuisberg, Herestraat 49, bus 602, 3000 Leuven, Belgium.,
| | - Wojciech K. Kasprzak
- Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, 21702 Maryland USA
| | - Bruce A. Shapiro
- Basic Research Laboratory, National Cancer Institute, Frederick, 21702 Maryland USA
| | - Jonathan D. Dinman
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, 20742 Maryland USA
| |
Collapse
|
215
|
Chen X, Ruan A, Wang X, Han W, Wang R, Lou N, Ruan H, Qiu B, Yang H, Zhang X. miR-129-3p, as a diagnostic and prognostic biomarker for renal cell carcinoma, attenuates cell migration and invasion via downregulating multiple metastasis-related genes. J Cancer Res Clin Oncol 2014; 140:1295-304. [PMID: 24802708 DOI: 10.1007/s00432-014-1690-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Accepted: 04/19/2014] [Indexed: 12/23/2022]
Abstract
PURPOSE Downregulation of miRNA expression has been identified as a novel feature of renal cell carcinoma (RCC). Recently, miR-129-2 is well known to be frequently reduced by DNA methylation and has anti-tumor effects in various tumors but so far not in RCC. The aim of this study was to investigate the clinical significance and the role of it in RCC. METHODS The expression levels of miR-129-3p and miR-129-5p, two mature products of miR-129-2, were determined by real-time quantitative reverse transcription PCR in 69 cases of paired different kidney tumors and normal tissues and clear cell RCC (ccRCC) cell lines. The roles of them in RCC cells were assessed by functional analyses. Protein expression was detected by Western blot. RESULTS miR-129-3p, but not miR-129-5p, was widely attenuated in human ccRCC, and chromophobe RCC. miR-129-3p could yield 73.5 % accuracy in discriminating ccRCCs from normal tissues. The relative miR-129-3p expression significantly differed between malignant and benign kidney tumors. Importantly, low miR-129-3p levels were associated with short disease-free and overall survival. Ectopic expression of miR-129-3p robustly impaired RCC cell migratory and invasive properties, but had no impact on cell viability and cell cycle distribution. Finally, miR-129-3p decreased multiple metastasis-related genes in RCC cells, including SOX4, phosphorylation of focal adhesion kinase and MMP-2/9 expression. CONCLUSIONS miR-129-3p may act as a promising diagnostic biomarker for discriminating ccRCC from benign tumors and normal tissues and an independent prognostic biomarker in ccRCC. miR-129-3p may exert its anti-metastatic function through modulating multiple targets.
Collapse
Affiliation(s)
- Xuanyu Chen
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
216
|
Ruda VM, Chandwani R, Sehgal A, Bogorad RL, Akinc A, Charisse K, Tarakhovsky A, Novobrantseva TI, Koteliansky V. The roles of individual mammalian argonautes in RNA interference in vivo. PLoS One 2014; 9:e101749. [PMID: 24992693 PMCID: PMC4081796 DOI: 10.1371/journal.pone.0101749] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 05/28/2014] [Indexed: 11/26/2022] Open
Abstract
Argonaute 2 (Ago2) is the only mammalian Ago protein capable of mRNA cleavage. It has been reported that the activity of the short interfering RNA targeting coding sequence (CDS), but not 3′ untranslated region (3′UTR) of an mRNA, is solely dependent on Ago2 in vitro. These studies utilized extremely high doses of siRNAs and overexpressed Ago proteins, as well as were directed at various highly expressed reporter transgenes. Here we report the effect of Ago2 in vivo on targeted knockdown of several endogenous genes by siRNAs, targeting both CDS and 3′UTR. We show that siRNAs targeting CDS lose their activity in the absence of Ago2, whereas both Ago1 and Ago3 proteins contribute to residual 3′UTR-targeted siRNA-mediated knockdown observed in the absence of Ago2 in mouse liver. Our results provide mechanistic insight into two components mediating RNAi under physiological conditions: mRNA cleavage dependent and independent. In addition our results contribute a novel consideration for designing most efficacious siRNA molecules with the preference given to 3′UTR targeting as to harness the activity of several Ago proteins.
Collapse
Affiliation(s)
- Vera M. Ruda
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- * E-mail: (VMR); (VK)
| | - Rohit Chandwani
- Laboratory of Immune Cell Epigenetics and Signaling, Rockefeller University, New York, New York, United States of America
| | - Alfica Sehgal
- Alnylam Pharmaceuticals, Cambridge, Massachusetts, United States of America
| | - Roman L. Bogorad
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Akin Akinc
- Alnylam Pharmaceuticals, Cambridge, Massachusetts, United States of America
| | - Klaus Charisse
- Alnylam Pharmaceuticals, Cambridge, Massachusetts, United States of America
| | - Alexander Tarakhovsky
- Laboratory of Immune Cell Epigenetics and Signaling, Rockefeller University, New York, New York, United States of America
| | | | - Victor Koteliansky
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- * E-mail: (VMR); (VK)
| |
Collapse
|
217
|
Ell B, Kang Y. MicroRNAs as regulators of bone homeostasis and bone metastasis. BONEKEY REPORTS 2014; 3:549. [PMID: 25120906 PMCID: PMC4119205 DOI: 10.1038/bonekey.2014.44] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 04/29/2014] [Indexed: 12/21/2022]
Abstract
MicroRNAs (miRNAs) are short, endogenous RNAs that have essential roles in regulating gene expression through the disruption of target genes. The miRNA-induced suppression can occur through Argonaute-mediated cleavage of target mRNAs or by translational inhibition. System-wide studies have underscored the integral role that miRNAs play in regulating the expression of essential genes within bone marrow stromal cells. The miRNA expression has been shown to enhance or inhibit cell differentiation and activity, and elucidating miRNA targets within bone marrow cells has revealed novel regulations during normal bone development. Importantly, multiple studies have shown that miRNA misexpression mediates the progression of bone-related pathologies, including osteopetrosis and osteoporosis, as well as the development and progression of osteosarcoma. Furthermore, recent studies have detailed the capacity for miRNAs to influence bone metastasis from a number of primary carcinomas. Taken together, these findings reveal the significant clinical potential for miRNAs to regulate bone homeostasis, as well as to mediate bone-related pathologies.
Collapse
Affiliation(s)
- Brian Ell
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| |
Collapse
|
218
|
Rebane A, Runnel T, Aab A, Maslovskaja J, Rückert B, Zimmermann M, Plaas M, Kärner J, Treis A, Pihlap M, Haljasorg U, Hermann H, Nagy N, Kemeny L, Erm T, Kingo K, Li M, Boldin MP, Akdis CA. MicroRNA-146a alleviates chronic skin inflammation in atopic dermatitis through suppression of innate immune responses in keratinocytes. J Allergy Clin Immunol 2014; 134:836-847.e11. [PMID: 24996260 DOI: 10.1016/j.jaci.2014.05.022] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 04/24/2014] [Accepted: 05/06/2014] [Indexed: 12/16/2022]
Abstract
BACKGROUND Chronic skin inflammation in atopic dermatitis (AD) is associated with elevated expression of proinflammatory genes and activation of innate immune responses in keratinocytes. microRNAs (miRNAs) are short, single-stranded RNA molecules that silence genes via the degradation of target mRNAs or inhibition of translation. OBJECTIVE The aim of this study was to investigate the role of miR-146a in skin inflammation in AD. METHODS RNA and protein expression was analyzed using miRNA and mRNA arrays, RT-quantitative PCR, Western blotting, and immunonohistochemistry. Transfection of miR-146a precursors and inhibitors into human primary keratinocytes, luciferase assays, and MC903-dependent mouse model of AD were used to study miR-146a function. RESULTS We show that miR-146a expression is increased in keratinocytes and chronic lesional skin of patients with AD. miR-146a inhibited the expression of numerous proinflammatory factors, including IFN-γ-inducible and AD-associated genes CCL5, CCL8, and ubiquitin D (UBD) in human primary keratinocytes stimulated with IFN-γ, TNF-α, or IL-1β. In a mouse model of AD, miR-146a-deficient mice developed stronger inflammation characterized by increased accumulation of infiltrating cells in the dermis, elevated expression of IFN-γ, CCL5, CCL8, and UBD in the skin, and IFN-γ, IL-1β, and UBD in draining lymph nodes. Both tissue culture and in vivo experiments in mice demonstrated that miR-146a-mediated suppression in allergic skin inflammation partially occurs through direct targeting of upstream nuclear factor kappa B signal transducers caspase recruitment domain-containing protein 10 and IL-1 receptor-associated kinase 1. In addition, human CCL5 was determined as a novel, direct target of miR-146a. CONCLUSION Our data demonstrate that miR-146a controls nuclear factor kappa B-dependent inflammatory responses in keratinocytes and chronic skin inflammation in AD.
Collapse
Affiliation(s)
- Ana Rebane
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland; Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia.
| | - Toomas Runnel
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland; Institute of Molecular and Cellular Biology, University of Tartu, Tartu, Estonia
| | - Alar Aab
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland; Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Julia Maslovskaja
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland; Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Beate Rückert
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland
| | - Maya Zimmermann
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland
| | - Mario Plaas
- Transgenic Technology Core Laboratory, University of Tartu, Tartu, Estonia
| | - Jaanika Kärner
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland; Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Angela Treis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland
| | - Maire Pihlap
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Uku Haljasorg
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Helen Hermann
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Nikoletta Nagy
- Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary; Dermatological Research Group of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Lajos Kemeny
- Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary; Dermatological Research Group of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Triin Erm
- Department of Pathology, Tartu University Hospital, Tartu, Estonia
| | - Külli Kingo
- Department of Dermatology and Venereology, University of Tartu, Tartu, Estonia; Dermatology Clinic, Tartu University Hospital, Tartu, Estonia
| | - Mei Li
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique/Institut National de la Santé et de la Recherche Médicale/Université de Strasbourg, Illkirch, France
| | - Mark P Boldin
- Department of Molecular and Cellular Biology, Beckman Research Institute, City of Hope, Duarte, Calif
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland
| |
Collapse
|
219
|
Rukov JL, Wilentzik R, Jaffe I, Vinther J, Shomron N. Pharmaco-miR: linking microRNAs and drug effects. Brief Bioinform 2014; 15:648-59. [PMID: 23376192 PMCID: PMC4103536 DOI: 10.1093/bib/bbs082] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 11/19/2012] [Indexed: 12/22/2022] Open
Abstract
MicroRNAs (miRNAs) are short regulatory RNAs that down-regulate gene expression. They are essential for cell homeostasis and active in many disease states. A major discovery is the ability of miRNAs to determine the efficacy of drugs, which has given rise to the field of 'miRNA pharmacogenomics' through 'Pharmaco-miRs'. miRNAs play a significant role in pharmacogenomics by down-regulating genes that are important for drug function. These interactions can be described as triplet sets consisting of a miRNA, a target gene and a drug associated with the gene. We have developed a web server which links miRNA expression and drug function by combining data on miRNA targeting and protein-drug interactions. miRNA targeting information derive from both experimental data and computational predictions, and protein-drug interactions are annotated by the Pharmacogenomics Knowledge base (PharmGKB). Pharmaco-miR's input consists of miRNAs, genes and/or drug names and the output consists of miRNA pharmacogenomic sets or a list of unique associated miRNAs, genes and drugs. We have furthermore built a database, named Pharmaco-miR Verified Sets (VerSe), which contains miRNA pharmacogenomic data manually curated from the literature, can be searched and downloaded via Pharmaco-miR and informs on trends and generalities published in the field. Overall, we present examples of how Pharmaco-miR provides possible explanations for previously published observations, including how the cisplatin and 5-fluorouracil resistance induced by miR-148a may be caused by miR-148a targeting of the gene KIT. The information is available at www.Pharmaco-miR.org.
Collapse
|
220
|
Identification of endogenous reference genes for the analysis of microRNA expression in the hippocampus of the pilocarpine-induced model of mesial temporal lobe epilepsy. PLoS One 2014; 9:e100529. [PMID: 24964029 PMCID: PMC4070922 DOI: 10.1371/journal.pone.0100529] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 05/28/2014] [Indexed: 12/14/2022] Open
Abstract
Real-time quantitative RT-PCR (qPCR) is one of the most powerful techniques for analyzing miRNA expression because of its sensitivity and specificity. However, in this type of analysis, a suitable normalizer is required to ensure that gene expression is unaffected by the experimental condition. To the best of our knowledge, there are no reported studies that performed a detailed identification and validation of suitable reference genes for miRNA qPCR during the epileptogenic process. Here, using a pilocarpine (PILO) model of mesial temporal lobe epilepsy (MTLE), we investigated five potential reference genes, performing a stability expression analysis using geNorm and NormFinder softwares. As a validation strategy, we used each one of the candidate reference genes to measure PILO-induced changes in microRNA-146a levels, a gene whose expression pattern variation in the PILO injected model is known. Our results indicated U6SnRNA and SnoRNA as the most stable candidate reference genes. By geNorm analysis, the normalization factor should preferably contain at least two of the best candidate reference genes (snoRNA and U6SnRNA). In fact, when normalized using the best combination of reference genes, microRNA-146a transcripts were found to be significantly increased in chronic stage, which is consistent with the pattern reported in different models. Conversely, when reference genes were individually employed for normalization, we failed to detect up-regulation of the microRNA-146a gene in the hippocampus of epileptic rats. The data presented here support that the combination of snoRNA and U6SnRNA was the minimum necessary for an accurate normalization of gene expression at the different stages of epileptogenesis that we tested.
Collapse
|
221
|
Harraz MM, Xu JC, Guiberson N, Dawson TM, Dawson VL. MiR-223 regulates the differentiation of immature neurons. MOLECULAR AND CELLULAR THERAPIES 2014; 2:18. [PMID: 25400937 PMCID: PMC4229944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 05/28/2014] [Indexed: 11/21/2023]
Abstract
BACKGROUND Small non-coding microRNA RNA molecules can regulate stem cell function. The role of microRNAs in neural stem/progenitor cells (NS/PCs) differentiation is not entirely clear. METHODS MiRNA profiling, loss and gain of function studies coupled with dendritic tree development morphometric analysis and calcium influx imaging were utilized to investigate the role of micoRNA-223 in differentiating NS/PCs. RESULTS MiRNA profiling in human NS/PCs before and after differentiation in vitro reveals modulation of miRNAs following differentiation of NS/PCs. MiR-223, a microRNA well characterized as a hematopoietic-specific miRNA was identified. Cell-autonomous inhibition of miR-223 in the adult mouse dentate gyrus NS/PCs led to a significant increase in immature neurons soma size, dendritic tree total length, branch number per neuron and complexity, while neuronal migration in the dentate gyrus remained unaffected. Overexpression of miR-223 decreased dendritic tree total length, branch number and complexity in neurons differentiated from human embryonic stem cells (hESCs). Inhibition of miR-223 enhanced N-methyl-D-aspartate (NMDA) induced calcium influx in human neurons differentiated from NS/PCs. CONCLUSIONS Taken together, these findings indicate that miR-223 regulates the differentiation of neurons derived from NS/PCs.
Collapse
Affiliation(s)
- Maged M Harraz
- />Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
- />Department of Histology and Genetics, Suez Canal University School of Medicine, Ismailia, Egypt
| | - Jin-Chong Xu
- />Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, 733 North Broadway, BRB 731 21205 Baltimore, MD USA
- />Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Noah Guiberson
- />Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, 733 North Broadway, BRB 731 21205 Baltimore, MD USA
| | - Ted M Dawson
- />Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
- />Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, 733 North Broadway, BRB 731 21205 Baltimore, MD USA
- />Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
- />Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Valina L Dawson
- />Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
- />Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, 733 North Broadway, BRB 731 21205 Baltimore, MD USA
- />Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
- />Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| |
Collapse
|
222
|
Abstract
microRNAs (miRNAs) are short, single-stranded RNA molecules that function together with the partner proteins and cause degradation of target mRNAs or inhibit their translation. A particular miRNA can have hundreds of targets; therefore, miRNAs cumulatively influence the expression of a large proportion of genes. The functions of miRNAs in human diseases have been studied since their discovery in mammalian cells approximately 12 years ago. However, the role of miRNAs in allergic disease has only very recently begun to be uncovered. The purpose of this review is to provide an overview of the functions of miRNAs involved in the development of allergic diseases. We describe here the functions of miRNAs that regulate Th2 polarization and influence general inflammatory and tissue responses. In addition, we will highlight findings about the functions of extracellular miRNAs as possible noninvasive biomarkers of diseases with heterogeneous phenotypes and complex mechanisms and briefly discuss advances in the development of miRNA-based therapeutics.
Collapse
Affiliation(s)
- Ana Rebane
- Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 19, 50411, Tartu, Estonia,
| | | |
Collapse
|
223
|
Malbert-Colas L, Ponnuswamy A, Olivares-Illana V, Tournillon AS, Naski N, Fåhraeus R. HDMX Folds the Nascent p53 mRNA following Activation by the ATM Kinase. Mol Cell 2014; 54:500-11. [DOI: 10.1016/j.molcel.2014.02.035] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 10/21/2013] [Accepted: 02/26/2014] [Indexed: 10/25/2022]
|
224
|
Neppl RL, Kataoka M, Wang DZ. Crystallin-αB regulates skeletal muscle homeostasis via modulation of argonaute2 activity. J Biol Chem 2014; 289:17240-8. [PMID: 24782307 DOI: 10.1074/jbc.m114.549584] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The core functional machinery of the RNAi pathway is the RNA-induced silencing complex (RISC), wherein Argonaute2 (Ago2) is essential for siRNA-directed endonuclease activity and RNAi/microRNA-mediated gene silencing. Crystallin-αB (CryAB) is a small heat shock protein involved in preventing protein aggregation. We demonstrate that CryAB interacts with the N and C termini of Ago2, not the catalytic site defined by the convergence of the PAZ, MID, and PIWI domains. We further demonstrate significantly reduced Ago2 activity in the absence of CryAB, highlighting a novel role of CryAB in the mammalian RNAi/microRNA pathway. In skeletal muscle of CryAB null mice, we observe a shift in the hypertrophy-atrophy signaling axis toward atrophy under basal conditions. Moreover, loss of CryAB altered the capability of satellite cells to regenerate skeletal muscle. These studies establish that CryAB is necessary for normal Ago2/RISC activity and cellular homeostasis in skeletal muscle.
Collapse
Affiliation(s)
- Ronald L Neppl
- From the Department of Cardiology, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115 and
| | - Masaharu Kataoka
- From the Department of Cardiology, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115 and
| | - Da-Zhi Wang
- From the Department of Cardiology, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115 and the Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts 02138
| |
Collapse
|
225
|
Shi L, Lin YH, Sierant MC, Zhu F, Cui S, Guan Y, Sartor MA, Tanabe O, Lim KC, Engel JD. Developmental transcriptome analysis of human erythropoiesis. Hum Mol Genet 2014; 23:4528-42. [PMID: 24781209 DOI: 10.1093/hmg/ddu167] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
To globally survey the changes in transcriptional landscape during terminal erythroid differentiation, we performed RNA sequencing (RNA-seq) on primary human CD34(+) cells after ex vivo differentiation from the earliest into the most mature erythroid cell stages. This analysis identified thousands of novel intergenic and intronic transcripts as well as novel alternative transcript isoforms. After rigorous data filtering, 51 (presumptive) novel protein-coding transcripts, 5326 long and 679 small non-coding RNA candidates remained. The analysis also revealed two clear transcriptional trends during terminal erythroid differentiation: first, the complexity of transcript diversity was predominantly achieved by alternative splicing, and second, splicing junctional diversity diminished during erythroid differentiation. Finally, 404 genes that were not known previously to be differentially expressed in erythroid cells were annotated. Analysis of the most extremely differentially expressed transcripts revealed that these gene products were all closely associated with hematopoietic lineage differentiation. Taken together, this study will serve as a comprehensive platform for future in-depth investigation of human erythroid development that, in turn, may reveal new insights into multiple layers of the transcriptional regulatory hierarchy that controls erythropoiesis.
Collapse
Affiliation(s)
- Lihong Shi
- Department of Cell and Developmental Biology and
| | - Yu-Hsuan Lin
- Department of Cell and Developmental Biology and Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - M C Sierant
- Department of Cell and Developmental Biology and
| | - Fan Zhu
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | | - Yuanfang Guan
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Maureen A Sartor
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Osamu Tanabe
- Department of Cell and Developmental Biology and Department of Integrative Genomics, Tohoku Medical Megabank, Tohoku University, 2-1 Seiryo-machi, Sendai 980-8573, Japan
| | - Kim-Chew Lim
- Department of Cell and Developmental Biology and
| | | |
Collapse
|
226
|
Ho VM, Dallalzadeh LO, Karathanasis N, Keles MF, Vangala S, Grogan T, Poirazi P, Martin KC. GluA2 mRNA distribution and regulation by miR-124 in hippocampal neurons. Mol Cell Neurosci 2014; 61:1-12. [PMID: 24784359 DOI: 10.1016/j.mcn.2014.04.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 03/17/2014] [Accepted: 04/12/2014] [Indexed: 11/19/2022] Open
Abstract
AMPA-type glutamate receptors mediate fast, excitatory neurotransmission in the brain, and their concentrations at synapses are important determinants of synaptic strength. We investigated the post-transcriptional regulation of GluA2, the calcium-impermeable AMPA receptor subunit, by examining the subcellular distribution of its mRNA and evaluating its translational regulation by microRNA in cultured mouse hippocampal neurons. Using computational approaches, we identified a conserved microRNA-124 (miR-124) binding site in the 3'UTR of GluA2 and demonstrated that miR-124 regulated the translation of GluA2 mRNA reporters in a sequence-specific manner in luciferase assays. While we hypothesized that this regulation might occur in dendrites, our biochemical and fluorescent in situ hybridization (FISH) data indicate that GluA2 mRNA does not localize to dendrites or synapses of mouse hippocampal neurons. In contrast, we detected significant concentrations of miR-124 in dendrites. Overexpression of miR-124 in dissociated neurons results in a 30% knockdown of GluA2 protein, as measured by immunoblot and quantitative immunocytochemistry, without producing any changes in GluA2 mRNA concentrations. While total GluA2 concentrations are reduced, we did not detect any changes in the concentration of synaptic GluA2. We conclude from these results that miR-124 interacts with GluA2 mRNA in the cell body to downregulate translation. Our data support a model in which GluA2 is translated in the cell body and subsequently transported to neuronal dendrites and synapses, and suggest that synaptic GluA2 concentrations are modified primarily by regulated protein trafficking rather than by regulated local translation.
Collapse
Affiliation(s)
- Victoria M Ho
- Interdepartmental Program for Neuroscience, University of California, Los Angeles, Los Angeles, CA 90095-1737, USA
| | - Liane O Dallalzadeh
- Interdepartmental Program for Neuroscience, University of California, Los Angeles, Los Angeles, CA 90095-1737, USA
| | - Nestoras Karathanasis
- Department of Biology, University of Crete, Heraklion, Crete, Greece; Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece
| | - Mehmet F Keles
- Interdepartmental Program for Molecular, Cellular and Integrative Physiology, University of California, Los Angeles, Los Angeles, CA 90095-1737, USA
| | - Sitaram Vangala
- Department of Medicine Statistics Core, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Tristan Grogan
- Department of Medicine Statistics Core, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Panayiota Poirazi
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece
| | - Kelsey C Martin
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095-1737, USA; Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA 90095-1737, USA; Integrated Center for Learning and Memory, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1737, USA.
| |
Collapse
|
227
|
Antoniou A, Baptista M, Carney N, Hanley JG. PICK1 links Argonaute 2 to endosomes in neuronal dendrites and regulates miRNA activity. EMBO Rep 2014; 15:548-56. [PMID: 24723684 PMCID: PMC4210090 DOI: 10.1002/embr.201337631] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
MicroRNAs fine-tune gene expression by inhibiting the translation of mRNA targets. Argonaute (Ago) proteins are critical mediators of microRNA-induced post-transcriptional silencing and have been shown to associate with endosomal compartments, but the molecular mechanisms that underlie this process are unclear, especially in neurons. Here, we report a novel interaction between Ago2 and the BAR-domain protein, PICK1. We show that PICK1 promotes Ago2 localization at endosomal compartments in neuronal dendrites and inhibits Ago2 function in translational repression following neuronal stimulation. We propose that PICK1 provides a link between activity-dependent endosomal trafficking and local regulation of translation in neurons.
Collapse
Affiliation(s)
- Anna Antoniou
- School of Biochemistry, University of Bristol, Bristol, UK
| | | | | | | |
Collapse
|
228
|
Berardi E, Annibali D, Cassano M, Crippa S, Sampaolesi M. Molecular and cell-based therapies for muscle degenerations: a road under construction. Front Physiol 2014; 5:119. [PMID: 24782779 PMCID: PMC3986550 DOI: 10.3389/fphys.2014.00119] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 03/12/2014] [Indexed: 12/25/2022] Open
Abstract
Despite the advances achieved in understanding the molecular biology of muscle cells in the past decades, there is still need for effective treatments of muscular degeneration caused by muscular dystrophies and for counteracting the muscle wasting caused by cachexia or sarcopenia. The corticosteroid medications currently in use for dystrophic patients merely help to control the inflammatory state and only slightly delay the progression of the disease. Unfortunately, walkers and wheel chairs are the only options for such patients to maintain independence and walking capabilities until the respiratory muscles become weak and the mechanical ventilation is needed. On the other hand, myostatin inhibition, IL-6 antagonism and synthetic ghrelin administration are examples of promising treatments in cachexia animal models. In both dystrophies and cachectic syndrome the muscular degeneration is extremely relevant and the translational therapeutic attempts to find a possible cure are well defined. In particular, molecular-based therapies are common options to be explored in order to exploit beneficial treatments for cachexia, while gene/cell therapies are mostly used in the attempt to induce a substantial improvement of the dystrophic muscular phenotype. This review focuses on the description of the use of molecular administrations and gene/stem cell therapy to treat muscular degenerations. It reviews previous trials using cell delivery protocols in mice and patients starting with the use of donor myoblasts, outlining the likely causes for their poor results and briefly focusing on satellite cell studies that raise new hope. Then it proceeds to describe recently identified stem/progenitor cells, including pluripotent stem cells and in relationship to their ability to home within a dystrophic muscle and to differentiate into skeletal muscle cells. Different known features of various stem cells are compared in this perspective, and the few available examples of their use in animal models of muscular degeneration are reported. Since non coding RNAs, including microRNAs (miRNAs), are emerging as prominent players in the regulation of stem cell fates we also provides an outline of the role of microRNAs in the control of myogenic commitment. Finally, based on our current knowledge and the rapid advance in stem cell biology, a prediction of clinical translation for cell therapy protocols combined with molecular treatments is discussed.
Collapse
Affiliation(s)
- Emanuele Berardi
- Translational Cardiomyology Laboratory, Department of Development and Reproduction, KUL University of Leuven Leuven, Belgium ; Interuniversity Institute of Myology Italy
| | - Daniela Annibali
- Laboratory of Cell Metabolism and Proliferation, Vesalius Research Center, Vlaamse Institute voor Biotechnologie Leuven, Belgium
| | - Marco Cassano
- Interuniversity Institute of Myology Italy ; School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne Lausanne, Switzerland
| | - Stefania Crippa
- Interuniversity Institute of Myology Italy ; Department of Medicine, University of Lausanne Medical School Lausanne, Switzerland
| | - Maurilio Sampaolesi
- Translational Cardiomyology Laboratory, Department of Development and Reproduction, KUL University of Leuven Leuven, Belgium ; Interuniversity Institute of Myology Italy ; Division of Human Anatomy, Department of Public Health, Experimental and Forensic Medicine, University of Pavia Pavia, Italy
| |
Collapse
|
229
|
Inefficient SRP interaction with a nascent chain triggers a mRNA quality control pathway. Cell 2014; 156:146-57. [PMID: 24439374 DOI: 10.1016/j.cell.2013.12.017] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 08/01/2013] [Accepted: 12/18/2013] [Indexed: 11/22/2022]
Abstract
Misfolded proteins are often cytotoxic, unless cellular systems prevent their accumulation. Data presented here uncover a mechanism by which defects in secretory proteins lead to a dramatic reduction in their mRNAs and protein expression. When mutant signal sequences fail to bind to the signal recognition particle (SRP) at the ribosome exit site, the nascent chain instead contacts Argonaute2 (Ago2), and the mutant mRNAs are specifically degraded. Severity of signal sequence mutations correlated with increased proximity of Ago2 to nascent chain and mRNA degradation. Ago2 knockdown inhibited degradation of the mutant mRNA, while overexpression of Ago2 or knockdown of SRP54 promoted degradation of secretory protein mRNA. The results reveal a previously unappreciated general mechanism of translational quality control, in which specific mRNA degradation preemptively regulates aberrant protein production (RAPP).
Collapse
|
230
|
Longpre KM, Kinstlinger NS, Mead EA, Wang Y, Thekkumthala AP, Carreno KA, Hot A, Keefer JM, Tully L, Katz LS, Pietrzykowski AZ. Seasonal variation of urinary microRNA expression in male goats (Capra hircus) as assessed by next generation sequencing. Gen Comp Endocrinol 2014; 199:1-15. [PMID: 24457251 DOI: 10.1016/j.ygcen.2014.01.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 12/03/2013] [Accepted: 01/08/2014] [Indexed: 01/09/2023]
Abstract
Testosterone plays a key role in preparation of a male domesticated goat (Capra hircus) to breeding season including changes in the urogenital tract of a male goat (buck). microRNAs are important regulators of cellular metabolism, differentiation and function. They are powerful intermediaries of hormonal activity in the body, including the urogenital tract. We investigated seasonal changes in expression of microRNAs in goat buck urine and their potential consequences using next generation sequencing (microRNA-Seq). We determined the location of each microRNA gene in the goat genome. Testosterone was measured by radioimmunoassay and the androgen receptor binding sites (ARBS) in the promoters of the microRNA genes were determined by MatInspector. The overall impact of regulated microRNAs on cellular physiology was assessed by mirPath. We observed high testosterone levels during the breeding season and changes in the expression of forty microRNAs. Nineteen microRNAs were upregulated, while twenty-one were downregulated. We identified several ARBS in the promoters of regulated microRNAs. Notably, the mostly inhibited microRNA, miR-1246, has a unique set of several gene copy variants associated with a cluster of androgen receptor binding sites. Concomitant changes in regulated microRNA expression could promote transcription, proliferation and differentiation of urogenital tract cells. Together, these findings indicate that in a domesticated goat (Capra hircus), there are specific changes in the microRNA expression profile in buck urine during breeding season, which could be attributable to high testosterone levels during breeding, and could help in preparation of the urogenital tract for high metabolic demands of that season.
Collapse
Affiliation(s)
- Kristy M Longpre
- Rutgers University, Department of Animal Sciences, 67 Poultry Farm Lane, New Brunswick, NJ 08901, USA
| | - Noah S Kinstlinger
- Rutgers University, Department of Animal Sciences, 67 Poultry Farm Lane, New Brunswick, NJ 08901, USA
| | - Edward A Mead
- Rutgers University, Department of Animal Sciences, 67 Poultry Farm Lane, New Brunswick, NJ 08901, USA
| | - Yongping Wang
- Rutgers University, Department of Animal Sciences, 67 Poultry Farm Lane, New Brunswick, NJ 08901, USA
| | - Austin P Thekkumthala
- Rutgers University, Department of Animal Sciences, 67 Poultry Farm Lane, New Brunswick, NJ 08901, USA
| | - Katherine A Carreno
- Rutgers University, Department of Animal Sciences, 67 Poultry Farm Lane, New Brunswick, NJ 08901, USA
| | - Azra Hot
- Rutgers University, Department of Animal Sciences, 67 Poultry Farm Lane, New Brunswick, NJ 08901, USA
| | - Jennifer M Keefer
- Rutgers University, Department of Animal Sciences, 67 Poultry Farm Lane, New Brunswick, NJ 08901, USA
| | - Luke Tully
- Rutgers University, Department of Animal Sciences, 67 Poultry Farm Lane, New Brunswick, NJ 08901, USA
| | - Larry S Katz
- Rutgers University, Department of Animal Sciences, 67 Poultry Farm Lane, New Brunswick, NJ 08901, USA
| | - Andrzej Z Pietrzykowski
- Rutgers University, Department of Animal Sciences, 67 Poultry Farm Lane, New Brunswick, NJ 08901, USA.
| |
Collapse
|
231
|
Erhard F, Haas J, Lieber D, Malterer G, Jaskiewicz L, Zavolan M, Dölken L, Zimmer R. Widespread context dependency of microRNA-mediated regulation. Genome Res 2014; 24:906-19. [PMID: 24668909 PMCID: PMC4032855 DOI: 10.1101/gr.166702.113] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Gene expression is regulated in a context-dependent, cell-type-specific manner. Condition-specific transcription is dependent on the presence of transcription factors (TFs) that can activate or inhibit its target genes (global context). Additional factors, such as chromatin structure, histone, or DNA modifications, also influence the activity of individual target genes (individual context). The role of the global and individual context for post-transcriptional regulation has not systematically been investigated on a large scale and is poorly understood. Here we show that global and individual context dependency is a pervasive feature of microRNA-mediated regulation. Our comprehensive and highly consistent data set from several high-throughput technologies (PAR-CLIP, RIP-chip, 4sU-tagging, and SILAC) provides strong evidence that context-dependent microRNA target sites (CDTS) are as frequent and functionally relevant as constitutive target sites (CTS). Furthermore, we found the global context to be insufficient to explain the CDTS, and that flanking sequence motifs provide individual context that is an equally important factor. Our results demonstrate that, similar to TF-mediated regulation, global and individual context dependency are prevalent in microRNA-mediated gene regulation, implying a much more complex post-transcriptional regulatory network than is currently known. The necessary tools to unravel post-transcriptional regulations and mechanisms need to be much more involved, and much more data will be needed for particular cell types and cellular conditions in order to understand microRNA-mediated regulation and the context-dependent post-transcriptional regulatory network.
Collapse
Affiliation(s)
- Florian Erhard
- Institut für Informatik, Ludwig-Maximilians-Universität München, 80333 München, Germany
| | - Jürgen Haas
- Max-von-Pettenkofer Institut, Virologie, Ludwig-Maximilians-Universität München, 80336 München, Germany; Division of Pathway Medicine, University of Edinburgh, Edinburgh EH17 8TR, United Kingdom
| | - Diana Lieber
- Max-von-Pettenkofer Institut, Virologie, Ludwig-Maximilians-Universität München, 80336 München, Germany; Institut für Virologie, Universitätsklinikum Ulm, 89081 Ulm, Germany
| | - Georg Malterer
- Max-von-Pettenkofer Institut, Virologie, Ludwig-Maximilians-Universität München, 80336 München, Germany
| | - Lukasz Jaskiewicz
- Biozentrum, University of Basel and Swiss Institute of Bioinformatics, CH-4056 Basel, Switzerland
| | - Mihaela Zavolan
- Biozentrum, University of Basel and Swiss Institute of Bioinformatics, CH-4056 Basel, Switzerland
| | - Lars Dölken
- Department of Medicine, University of Cambridge, Addenbrookes Hospital, CB20QQ Cambridge, United Kingdom
| | - Ralf Zimmer
- Institut für Informatik, Ludwig-Maximilians-Universität München, 80333 München, Germany
| |
Collapse
|
232
|
Li J, Kim T, Nutiu R, Ray D, Hughes TR, Zhang Z. Identifying mRNA sequence elements for target recognition by human Argonaute proteins. Genome Res 2014; 24:775-85. [PMID: 24663241 PMCID: PMC4009607 DOI: 10.1101/gr.162230.113] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
It is commonly known that mammalian microRNAs (miRNAs) guide the RNA-induced silencing complex (RISC) to target mRNAs through the seed-pairing rule. However, recent experiments that coimmunoprecipitate the Argonaute proteins (AGOs), the central catalytic component of RISC, have consistently revealed extensive AGO-associated mRNAs that lack seed complementarity with miRNAs. We herein test the hypothesis that AGO has its own binding preference within target mRNAs, independent of guide miRNAs. By systematically analyzing the data from in vivo cross-linking experiments with human AGOs, we have identified a structurally accessible and evolutionarily conserved region (∼10 nucleotides in length) that alone can accurately predict AGO–mRNA associations, independent of the presence of miRNA binding sites. Within this region, we further identified an enriched motif that was replicable on independent AGO-immunoprecipitation data sets. We used RNAcompete to enumerate the RNA-binding preference of human AGO2 to all possible 7-mer RNA sequences and validated the AGO motif in vitro. These findings reveal a novel function of AGOs as sequence-specific RNA-binding proteins, which may aid miRNAs in recognizing their targets with high specificity.
Collapse
Affiliation(s)
- Jingjing Li
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | | | | | | | | |
Collapse
|
233
|
Pérez-Rivas LG, Jerez JM, Carmona R, de Luque V, Vicioso L, Claros MG, Viguera E, Pajares B, Sánchez A, Ribelles N, Alba E, Lozano J. A microRNA signature associated with early recurrence in breast cancer. PLoS One 2014; 9:e91884. [PMID: 24632820 PMCID: PMC3954835 DOI: 10.1371/journal.pone.0091884] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 02/14/2014] [Indexed: 12/20/2022] Open
Abstract
Recurrent breast cancer occurring after the initial treatment is associated with poor outcome. A bimodal relapse pattern after surgery for primary tumor has been described with peaks of early and late recurrence occurring at about 2 and 5 years, respectively. Although several clinical and pathological features have been used to discriminate between low- and high-risk patients, the identification of molecular biomarkers with prognostic value remains an unmet need in the current management of breast cancer. Using microarray-based technology, we have performed a microRNA expression analysis in 71 primary breast tumors from patients that either remained disease-free at 5 years post-surgery (group A) or developed early (group B) or late (group C) recurrence. Unsupervised hierarchical clustering of microRNA expression data segregated tumors in two groups, mainly corresponding to patients with early recurrence and those with no recurrence. Microarray data analysis and RT-qPCR validation led to the identification of a set of 5 microRNAs (the 5-miRNA signature) differentially expressed between these two groups: miR-149, miR-10a, miR-20b, miR-30a-3p and miR-342-5p. All five microRNAs were down-regulated in tumors from patients with early recurrence. We show here that the 5-miRNA signature defines a high-risk group of patients with shorter relapse-free survival and has predictive value to discriminate non-relapsing versus early-relapsing patients (AUC = 0.993, p-value<0.05). Network analysis based on miRNA-target interactions curated by public databases suggests that down-regulation of the 5-miRNA signature in the subset of early-relapsing tumors would result in an overall increased proliferative and angiogenic capacity. In summary, we have identified a set of recurrence-related microRNAs with potential prognostic value to identify patients who will likely develop metastasis early after primary breast surgery.
Collapse
Affiliation(s)
- Luis G Pérez-Rivas
- Laboratorio de Oncología Molecular, Servicio de Oncología Médica, Instituto de Biomedicina de Málaga (IBIMA), Hospital Universitario Virgen de la Victoria, Málaga, Spain
| | - José M Jerez
- Departamento de Lenguajes y Ciencias de la Computación, Universidad de Málaga, Málaga, Spain
| | - Rosario Carmona
- Plataforma Andaluza de Bioinformática, Universidad de Málaga, Málaga, Spain
| | - Vanessa de Luque
- Laboratorio de Oncología Molecular, Servicio de Oncología Médica, Instituto de Biomedicina de Málaga (IBIMA), Hospital Universitario Virgen de la Victoria, Málaga, Spain
| | - Luis Vicioso
- Servicio de Anatomía Patológica, Instituto de Biomedicina de Málaga (IBIMA), Hospital Universitario Virgen de la Victoria, Málaga, Spain
| | - M Gonzalo Claros
- Plataforma Andaluza de Bioinformática, Universidad de Málaga, Málaga, Spain; Departmento de Biología Molecular y Bioquímica, Universidad de Málaga, Málaga, Spain
| | - Enrique Viguera
- Departmento of Biología Celular, Genética y Fisiología Animal, Universidad de Málaga, Málaga, Spain
| | - Bella Pajares
- Laboratorio de Oncología Molecular, Servicio de Oncología Médica, Instituto de Biomedicina de Málaga (IBIMA), Hospital Universitario Virgen de la Victoria, Málaga, Spain
| | - Alfonso Sánchez
- Laboratorio de Oncología Molecular, Servicio de Oncología Médica, Instituto de Biomedicina de Málaga (IBIMA), Hospital Universitario Virgen de la Victoria, Málaga, Spain
| | - Nuria Ribelles
- Laboratorio de Oncología Molecular, Servicio de Oncología Médica, Instituto de Biomedicina de Málaga (IBIMA), Hospital Universitario Virgen de la Victoria, Málaga, Spain
| | - Emilio Alba
- Laboratorio de Oncología Molecular, Servicio de Oncología Médica, Instituto de Biomedicina de Málaga (IBIMA), Hospital Universitario Virgen de la Victoria, Málaga, Spain
| | - José Lozano
- Laboratorio de Oncología Molecular, Servicio de Oncología Médica, Instituto de Biomedicina de Málaga (IBIMA), Hospital Universitario Virgen de la Victoria, Málaga, Spain; Departmento de Biología Molecular y Bioquímica, Universidad de Málaga, Málaga, Spain
| |
Collapse
|
234
|
Huang X, Zuo J. Emerging roles of miR-210 and other non-coding RNAs in the hypoxic response. Acta Biochim Biophys Sin (Shanghai) 2014; 46:220-32. [PMID: 24395300 DOI: 10.1093/abbs/gmt141] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Hypoxia is a key component of the tumor microenvironment and represents a well-documented source of therapeutic failure in clinical oncology. Recent work has provided support for the idea that non-coding RNAs, and in particular, microRNAs, may play important roles in the adaptive response to low oxygen in tumors. Specifically, all published studies agree that the induction of microRNA-210 (miR-210) is a consistent feature of the hypoxic response in both normal and malignant cells. miR-210 is a robust target of hypoxia-inducible factors, and its overexpression has been detected in a variety of diseases with a hypoxic component, including most solid tumors. High levels of miR-210 have been linked to an in vivo hypoxic signature and to adverse prognosis in breast and pancreatic cancer patients. A wide variety of miR-210 targets have been identified, pointing to roles in mitochondrial metabolism, angiogenesis, DNA damage response, apoptosis, and cell survival. Such targets are suspected to affect the development of tumors in multiple ways; therefore, an increased knowledge about miR-210's functions may lead to novel diagnostic and therapeutic approaches in cancer.
Collapse
Affiliation(s)
- Xin Huang
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | | |
Collapse
|
235
|
Chen X, Shen L, Chou HH. MicroRNA-target binding structures mimic microRNA duplex structures in humans. PLoS One 2014; 9:e88806. [PMID: 24551166 PMCID: PMC3923817 DOI: 10.1371/journal.pone.0088806] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 01/15/2014] [Indexed: 11/18/2022] Open
Abstract
Traditionally, researchers match a microRNA guide strand to mRNA sequences using sequence comparisons to predict its potential target genes. However, many of the predictions can be false positives due to limitations in sequence comparison alone. In this work, we consider the association of two related RNA structures that share a common guide strand: the microRNA duplex and the microRNA-target binding structure. We have analyzed thousands of such structure pairs and found many of them share high structural similarity. Therefore, we conclude that when predicting microRNA target genes, considering just the microRNA guide strand matches to gene sequences may not be sufficient--the microRNA duplex structure formed by the guide strand and its companion passenger strand must also be considered. We have developed software to translate RNA binding structure into encoded representations, and we have also created novel automatic comparison methods utilizing such encoded representations to determine RNA structure similarity. Our software and methods can be utilized in the other RNA secondary structure comparisons as well.
Collapse
Affiliation(s)
- Xi Chen
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, United States of America
| | - Lu Shen
- Department of Biostatistics, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Hui-Hsien Chou
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, United States of America
- Department of Computer Science, Iowa State University, Ames, Iowa, United States of America
- * E-mail:
| |
Collapse
|
236
|
Bo L, Su-Ling D, Fang L, Lu-Yu Z, Tao A, Stefan D, Kun W, Pei-Feng L. Autophagic program is regulated by miR-325. Cell Death Differ 2014; 21:967-77. [PMID: 24531537 DOI: 10.1038/cdd.2014.18] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 12/31/2013] [Accepted: 01/14/2014] [Indexed: 12/31/2022] Open
Abstract
Autophagy is required for the maintenance of cardiomyocytes homeostasis. However, the abnormal autophagy could lead to the development of heart failure. Autophagy is enhanced during myocardial ischemia/reperfusion; it remains to elucidate the molecular regulation of autophagy. We report here that miR-325, ARC and E2F1 constitute an axis that regulates autophagy. Our results showed that miR-325 expression is upregulated upon anoxia/reoxygenation and ischemia/reperfusion. Cardiomyocyte-specific overexpression of the miR-325 potentiates autophagic responses and myocardial infarct sizes, whereas knockdown of miR-325 inhibited autophagy and cell death. We searched for the downstream mediator of miR-325 and identified that ARC is a target of miR-325. ARC transgenic mice could attenuate autophagy and myocardial infarction sizes upon pressure-overload-induced heart failure, whereas ARC null mice exhibited an increased autophagic accumulation in the heart. The suppression of ARC by miR-325 led to its inability to repress autophagic program. In exploring the molecular mechanism by which miR-325 expression is regulated, our results revealed that the transcription factor E2F1 contributed to promote miR-325 expression. E2F1 null mice demonstrated reduced autophagy and myocardial infarction sizes upon ischemia/reperfusion. Our present study reveals a novel autophagic regulating model that is composed of E2F1, miR-325 and ARC. Modulation of their levels may provide a new approach for tackling cardiac failure.
Collapse
Affiliation(s)
- L Bo
- Division of Cardiovascular Research, State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - D Su-Ling
- Division of Cardiovascular Research, State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - L Fang
- Division of Cardiovascular Research, State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Z Lu-Yu
- Division of Cardiovascular Research, State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - A Tao
- FU WAI Hospital CAMS&PUMC, National Center for Cardiovascular Diseases, Beijing 10037, China
| | - D Stefan
- Franz-Volhard-Clinic, Humboldt University of Berlin, Berlin 13125, Germany
| | - W Kun
- Division of Cardiovascular Research, State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - L Pei-Feng
- Division of Cardiovascular Research, State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
237
|
Pai B, Siripornmongcolchai T, Berentsen B, Pakzad A, Vieuille C, Pallesen S, Pajak M, Simpson TI, Armstrong JD, Wibrand K, Bramham CR. NMDA receptor-dependent regulation of miRNA expression and association with Argonaute during LTP in vivo. Front Cell Neurosci 2014; 7:285. [PMID: 24454279 PMCID: PMC3888942 DOI: 10.3389/fncel.2013.00285] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 12/19/2013] [Indexed: 01/02/2023] Open
Abstract
microRNAs (miRNAs) are major regulators of protein synthesis in the brain. A major goal is to identify changes in miRNA expression underlying protein synthesis-dependent forms of synaptic plasticity such as long-term potentiation (LTP). Previous analyses focused on changes in miRNA levels in total lysate samples. Here, we asked whether changes in total miRNA accurately reflect changes in the amount of miRNA bound to Argonaute protein within the miRNA-induced silencing complex (miRISC). Ago2 immunoprecipitation was used to isolate RISC-associated miRNAs following high-frequency stimulation (HFS)-induced LTP in the dentate gyrus of anesthetized rats. Using locked-nucleic acid-based PCR cards for high-throughput screening and independent validation by quantitative TaqMan RT-PCR, we identified differential regulation of Ago2-associated and total miRNA expression. The ratio of Ago2/total miRNA expression was regulated bidirectionally in a miRNA-specific manner and was largely dependent on N-methyl-D-aspartate receptor (NMDA) activation during LTP induction. The present results identify miRNA association with Ago2 as a potential control point in activity-dependent synaptic plasticity in the adult brain. Finally, novel computational analysis for targets of the Ago2-associated miRNAs identifies 21 pathways that are enriched and differentially targeted by the miRNAs including axon guidance, mTOR, MAPK, Ras, and LTP.
Collapse
Affiliation(s)
- Balagopal Pai
- Department of Biomedicine and K.G. Jebsen Centre for Research on Neuropsychiatric Disorders, University of Bergen Bergen, Norway
| | - Taweeporn Siripornmongcolchai
- Department of Biomedicine and K.G. Jebsen Centre for Research on Neuropsychiatric Disorders, University of Bergen Bergen, Norway
| | - Birgitte Berentsen
- Department of Biomedicine and K.G. Jebsen Centre for Research on Neuropsychiatric Disorders, University of Bergen Bergen, Norway
| | - Ashraf Pakzad
- Department of Biomedicine and K.G. Jebsen Centre for Research on Neuropsychiatric Disorders, University of Bergen Bergen, Norway
| | - Christel Vieuille
- Department of Biomedicine and K.G. Jebsen Centre for Research on Neuropsychiatric Disorders, University of Bergen Bergen, Norway
| | - Ståle Pallesen
- Department of Psychosocial Science, University of Bergen Bergen, Norway
| | - Maciej Pajak
- Institute for Adaptive and Neural Computation, School of Informatics, University of Edinburgh Edinburgh, UK
| | - T Ian Simpson
- Institute for Adaptive and Neural Computation, School of Informatics, University of Edinburgh Edinburgh, UK ; Biomathematics and Statistics Scotland JCMB, Edinburgh, UK
| | - J Douglas Armstrong
- Institute for Adaptive and Neural Computation, School of Informatics, University of Edinburgh Edinburgh, UK
| | - Karin Wibrand
- Department of Biomedicine and K.G. Jebsen Centre for Research on Neuropsychiatric Disorders, University of Bergen Bergen, Norway
| | - Clive R Bramham
- Department of Biomedicine and K.G. Jebsen Centre for Research on Neuropsychiatric Disorders, University of Bergen Bergen, Norway
| |
Collapse
|
238
|
The miRNA-mediated cross-talk between transcripts provides a novel layer of posttranscriptional regulation. ADVANCES IN GENETICS 2014; 85:149-99. [PMID: 24880735 DOI: 10.1016/b978-0-12-800271-1.00003-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Endogenously expressed transcripts that are posttranscriptionally regulated by the same microRNAs (miRNAs) will, in principle, compete for the binding of their shared small noncoding RNA regulators and modulate each other's abundance. Recently, the levels of some coding as well as noncoding transcripts have indeed been found to be regulated in this way. Transcripts that engage in such regulatory interactions are referred to as competitive endogenous RNAs (ceRNAs). This novel layer of posttranscriptional regulation has been shown to contribute to diverse aspects of organismal and cellular biology, despite the number of functionally characterized ceRNAs being as yet relatively low. Importantly, increasing evidence suggests that the dysregulation of some ceRNA interactions is associated with disease etiology, most preeminently with cancer. Here we review how posttranscriptional regulation by miRNAs contributes to the cross-talk between transcripts and review examples of known ceRNAs by highlighting the features underlying their interactions and what might be their biological relevance.
Collapse
|
239
|
Ivan M, Huang X. miR-210: fine-tuning the hypoxic response. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 772:205-27. [PMID: 24272361 DOI: 10.1007/978-1-4614-5915-6_10] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hypoxia is a central component of the tumor microenvironment and represents a major source of therapeutic failure in cancer therapy. Recent work has provided a wealth of evidence that noncoding RNAs and, in particular, microRNAs, are significant members of the adaptive response to low oxygen in tumors. All published studies agree that miR-210 specifically is a robust target of hypoxia-inducible factors, and the induction of miR-210 is a consistent characteristic of the hypoxic response in normal and transformed cells. Overexpression of miR-210 is detected in most solid tumors and has been linked to adverse prognosis in patients with soft-tissue sarcoma, breast, head and neck, and pancreatic cancer. A wide variety of miR-210 targets have been identified, pointing to roles in the cell cycle, mitochondrial oxidative metabolism, angiogenesis, DNA damage response, and cell survival. Additional microRNAs seem to be modulated by low oxygen in a more tissue-specific fashion, adding another layer of complexity to the vast array of protein-coding genes regulated by hypoxia.
Collapse
Affiliation(s)
- Mircea Ivan
- Department of Medicine, Indiana University, 980 W. Walnut Street Walther Hall, Room C225, Indianapolis, IN, 46202, USA,
| | | |
Collapse
|
240
|
Harraz MM, Xu JC, Guiberson N, Dawson TM, Dawson VL. MiR-223 regulates the differentiation of immature neurons. MOLECULAR AND CELLULAR THERAPIES 2014; 2. [PMID: 25400937 PMCID: PMC4229944 DOI: 10.1186/2052-8426-2-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Background Small non-coding microRNA RNA molecules can regulate stem cell function. The role of microRNAs in neural stem/progenitor cells (NS/PCs) differentiation is not entirely clear. Methods MiRNA profiling, loss and gain of function studies coupled with dendritic tree development morphometric analysis and calcium influx imaging were utilized to investigate the role of micoRNA-223 in differentiating NS/PCs. Results MiRNA profiling in human NS/PCs before and after differentiation in vitro reveals modulation of miRNAs following differentiation of NS/PCs. MiR-223, a microRNA well characterized as a hematopoietic-specific miRNA was identified. Cell-autonomous inhibition of miR-223 in the adult mouse dentate gyrus NS/PCs led to a significant increase in immature neurons soma size, dendritic tree total length, branch number per neuron and complexity, while neuronal migration in the dentate gyrus remained unaffected. Overexpression of miR-223 decreased dendritic tree total length, branch number and complexity in neurons differentiated from human embryonic stem cells (hESCs). Inhibition of miR-223 enhanced N-methyl-D-aspartate (NMDA) induced calcium influx in human neurons differentiated from NS/PCs. Conclusions Taken together, these findings indicate that miR-223 regulates the differentiation of neurons derived from NS/PCs. Electronic supplementary material The online version of this article (doi:10.1186/2052-8426-2-18) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maged M Harraz
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA ; Department of Histology and Genetics, Suez Canal University School of Medicine, Ismailia, Egypt
| | - Jin-Chong Xu
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, 733 North Broadway, BRB 731 21205 Baltimore, MD, USA ; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Noah Guiberson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, 733 North Broadway, BRB 731 21205 Baltimore, MD, USA
| | - Ted M Dawson
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA ; Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, 733 North Broadway, BRB 731 21205 Baltimore, MD, USA ; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA ; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Valina L Dawson
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA ; Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, 733 North Broadway, BRB 731 21205 Baltimore, MD, USA ; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA ; Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
241
|
Abstract
Pulsed stable isotope labeling by amino acids in cell culture (pulsed SILAC or pSILAC) allows to monitor and quantify the de novo synthesis of proteins in an unbiased fashion on a proteome-wide scale. The high applicability of this metabolic labeling technique has been demonstrated for the identification of posttranscriptional changes in gene expression on the proteome level, in particular those caused by microRNAs. The application of pSILAC allows the selective quantification of newly synthesized proteins and thus the detection of differences in protein translation. This is of particular interest in the case of microRNA-mediated regulations, which characteristically cause rather modest decreases in protein amounts that may be difficult to detect by other proteomic methods. Here, we describe a detailed protocol for using pSILAC to track miRNA-mediated changes in protein expression, using the p53-induced miR-34a microRNA as a prototypic example of microRNA-mediated regulations.
Collapse
|
242
|
Sturrock A, Mir-Kasimov M, Baker J, Rowley J, Paine R. Key role of microRNA in the regulation of granulocyte macrophage colony-stimulating factor expression in murine alveolar epithelial cells during oxidative stress. J Biol Chem 2013; 289:4095-105. [PMID: 24371146 DOI: 10.1074/jbc.m113.535922] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
GM-CSF is an endogenous pulmonary cytokine produced by normal alveolar epithelial cells (AEC) that is a key defender of the alveolar space. AEC GM-CSF expression is suppressed by oxidative stress through alternations in mRNA turnover, an effect that is reversed by treatment with recombinant GM-CSF. We hypothesized that specific microRNA (miRNA) would play a key role in AEC GM-CSF regulation. A genome-wide miRNA microarray identified 19 candidate miRNA altered in primary AEC during oxidative stress with reversal by treatment with GM-CSF. Three of these miRNA (miR 133a, miR 133a*, and miR 133b) are also predicted to bind the GM-CSF 3'-untranslated region (UTR). PCR for the mature miRNA confirmed induction during oxidative stress that was reversed by treatment with GM-CSF. Experiments using a GM-CSF 3'-UTR reporter construct demonstrated that miR133a and miR133b effects on GM-CSF expression are through interactions with the GM-CSF 3'-UTR. Using lentiviral transduction of specific mimics and inhibitors in primary murine AEC, we determined that miR133a and miR133b suppress GM-CSF expression and that their inhibition both reverses oxidant-induced suppression of GM-CSF expression and increases basal expression of GM-CSF in cells in normoxia. In contrast, these miRNAs are not active in regulation of GM-CSF expression in murine EL4 T cells. Thus, members of the miR133 family play key roles in regulation of GM-CSF expression through effects on mRNA turnover in AEC during oxidative stress. Increased understanding of GM-CSF gene regulation may provide novel miRNA-based interventions to augment pulmonary innate immune defense in lung injury.
Collapse
Affiliation(s)
- Anne Sturrock
- From the Department of Veterans Affairs Medical Center, Salt Lake City, Utah 84148 and
| | | | | | | | | |
Collapse
|
243
|
Wylie AD, Fleming JAGW, Whitener AE, Lekven AC. Post-transcriptional regulation of wnt8a is essential to zebrafish axis development. Dev Biol 2013; 386:53-63. [PMID: 24333179 DOI: 10.1016/j.ydbio.2013.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Revised: 11/11/2013] [Accepted: 12/03/2013] [Indexed: 12/15/2022]
Abstract
wnt8a Is essential for normal patterning during vertebrate embryonic development, and either gain or loss-of-function gene dysregulation results in severe axis malformations. The zebrafish wnt8a locus is structured such that transcripts may possess two regulatory 3' untranslated regions (UTRs), raising the possibility of post-transcriptional regulation as an important mode of wnt8a signaling control. To determine whether both UTRs contribute to post-transcriptional wnt8a gene regulation, each UTR (UTR1 and UTR2) was tested in transient and transgenic reporter assays. Both UTRs suppress EGFP reporter expression in cis, with UTR2 exhibiting a more pronounced effect. UTR2 contains a 6 base sequence necessary for UTR2 regulatory function that is complementary to the seed of the microRNA, miR-430. A target protector morpholino that overlaps the seed complement stabilizes both reporter mRNAs and wnt8a mRNAs, and produces phenotypic abnormalities consistent with wnt8a gain-of-function. In rescue assays, specific functions can be attributed to each of the two wnt8a proteins encoded by the locus. An interplay of wnt8a.1 and wnt8a.2 regulates neural and mesodermal patterning and morphogenesis as well as patterning between brain subdivisions. Thus, post-transcriptional control of wnt8a is essential to fine tune the balance of the signaling outputs of the complex wnt8a locus.
Collapse
Affiliation(s)
- Annika D Wylie
- Department of Biology, Texas A&M University, 3258 TAMU, College Station, TX 77843-3258, United States
| | - Jo-Ann G W Fleming
- Department of Biology, Texas A&M University, 3258 TAMU, College Station, TX 77843-3258, United States
| | - Amy E Whitener
- Department of Biology, Texas A&M University, 3258 TAMU, College Station, TX 77843-3258, United States
| | - Arne C Lekven
- Department of Biology, Texas A&M University, 3258 TAMU, College Station, TX 77843-3258, United States.
| |
Collapse
|
244
|
Zhang H, Wang Q, Zhao Q, Di W. MiR-124 inhibits the migration and invasion of ovarian cancer cells by targeting SphK1. J Ovarian Res 2013; 6:84. [PMID: 24279510 PMCID: PMC3879084 DOI: 10.1186/1757-2215-6-84] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 11/18/2013] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Epithelial ovarian cancer (EOC) is still a major gynecologic problem with poor 5 year survival rate due to distance metastases, despite routine surgery and chemotherapy. The precise underlying molecular mechanisms that trigger EOC migration and invasion are unclear. Recent studies suggest that the expression of microRNAs is widely dysregulated in ovarian cancer; and that they have evolved into tumorigenic processes, including cell proliferation, apoptosis and motility. METHODS The expression of miR-124 was assessed in clinical ovarian cancer specimens and cell lines using miRNA qRTPCR. The function of miR-124 on cell migration and invasion was confirmed in vitro through wound healing assay and transwell assay. Luciferase reporter assay was used to confirm target associations. RESULTS We showed that miR-124 is down-regulated in ovarian cancer specimens as well as in cell lines; and that low-level expression of miR-124 is much lower in highly metastatic ovarian cancer cells and tissues. Meantime, overexpression of miR-124 dramatically inhibits the motility of ovarian cancer cells in vitro and substantially suppresses the protein expression of SphK1, reported as an invasion and metastasis-related gene in human cancers, whose expression is markedly increased in both ovarian cancer cell lines and clinical samples, particularly in two highly metastasis cells, SKOV3-ip and HO8910pm as well as metastatic ovarian tumor tissues. Furthermore, SphK1 is identified as a direct target of miR-124, and knock-down of SphK1 in ovarian cancer cells, SKOV3-ip and HO8910pm, could mimic the inhibition of migration and invasion by miR-124, while re-introduction of SphK1 abrogates the suppression of motility and invasiveness induced by miR-124 in both cell lines. CONCLUSIONS Our studies suggest a protective role of miR-124 in inhibition of migration and invasion in the molecular etiology of ovarian cancer, and a potentially novel application of miR-124 in the regulation of migration and invasion in EOC.
Collapse
Affiliation(s)
| | | | - Qian Zhao
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | | |
Collapse
|
245
|
Lin CY, Lee HC, Fu CY, Ding YY, Chen JS, Lee MH, Huang WJ, Tsai HJ. miR-1 and miR-206 target different genes to have opposing roles during angiogenesis in zebrafish embryos. Nat Commun 2013; 4:2829. [DOI: 10.1038/ncomms3829] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 10/28/2013] [Indexed: 02/07/2023] Open
|
246
|
Papp G, Krausz T, Stricker TP, Szendrői M, Sápi Z. SMARCB1 expression in epithelioid sarcoma is regulated by miR-206, miR-381, and miR-671-5p on Both mRNA and protein levels. Genes Chromosomes Cancer 2013; 53:168-76. [PMID: 24327545 DOI: 10.1002/gcc.22128] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 10/16/2013] [Indexed: 12/17/2022] Open
Abstract
Proximal type epithelioid sarcoma shares similarities with malignant rhabdoid tumor, including the lack of nuclear immunoreactivity of SMARCB1. Biallelic mutation of SMARCB1 has been convincingly established as the cause of loss of protein expression in rhabdoid tumor, but the cause in epithelioid sarcoma remains unknown. In our previous work, we demonstrated that DNA hypermethylation and post-translational modification mechanisms were not involved. In this current work, we explored the hypothesis that miRNAs regulate SMARCB1 gene expression in epithelioid sarcomas. In silico target prediction analysis revealed eight candidate miRNAs, and quantitative PCR-in 32 formalin-fixed, paraffin-embedded tumor samples comprising 30 epithelioid sarcomas and two malignant rhabdoid tumors-demonstrated significant (P < 0.001) overexpression of four miRNAs in epithelioid sarcomas: miR-206, miR-381, miR-671-5p, and miR-765. Two human tumors (fibrosarcoma and colon adenocarcinoma) and a normal cell line (human dermal fibroblast) with retained SMARCB1 expression were cultured for miRNA transient transfection (electroporation) experiments. SMARCB1 mRNA expression was analyzed by quantitative real-time PCR and immunostaining of SMARCB1 was performed to examine the effect of miRNAs transfections on both RNA and protein levels. Only three of the overexpressed miRNAs (miR-206, miR-381, and miR-671-5p) could silence the SMARCB1 mRNA expression in cell cultures; most effectively miR-206. Transfection of miR-206, miR-381, miR-671-5p, and some combination of them also eliminated SMARCB1 nuclear staining, demonstrating a strong effect on not only mRNA but also protein levels. Our results suggest loss of SMARCB1 protein expression in epithelioid sarcoma is due to the epigenetic mechanism of gene silencing by oncomiRs.
Collapse
Affiliation(s)
- Gergő Papp
- First Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | | | | | | | | |
Collapse
|
247
|
Li Z, Zhou X. Small RNA biology: from fundamental studies to applications. SCIENCE CHINA. LIFE SCIENCES 2013; 56:1059-1062. [PMID: 23943246 DOI: 10.1007/s11427-013-4535-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 07/22/2013] [Indexed: 06/02/2023]
Affiliation(s)
- Zhenghe Li
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | | |
Collapse
|
248
|
Ruiz-Mirazo K, Briones C, de la Escosura A. Prebiotic Systems Chemistry: New Perspectives for the Origins of Life. Chem Rev 2013; 114:285-366. [DOI: 10.1021/cr2004844] [Citation(s) in RCA: 606] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Kepa Ruiz-Mirazo
- Biophysics
Unit (CSIC-UPV/EHU), Leioa, and Department of Logic and Philosophy
of Science, University of the Basque Country, Avenida de Tolosa 70, 20080 Donostia−San Sebastián, Spain
| | - Carlos Briones
- Department
of Molecular Evolution, Centro de Astrobiología (CSIC−INTA, associated to the NASA Astrobiology Institute), Carretera de Ajalvir, Km 4, 28850 Torrejón de Ardoz, Madrid, Spain
| | - Andrés de la Escosura
- Organic
Chemistry Department, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
249
|
Chen X, Huang Z, Chen D, Yang T, Liu G. Role of microRNA-27a in myoblast differentiation. Cell Biol Int 2013; 38:266-71. [PMID: 24123794 DOI: 10.1002/cbin.10192] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 09/02/2013] [Indexed: 11/08/2022]
Abstract
MicroRNAs (miRNAs) are a class of endogenous non-coding RNAs that are critically involved in roles in various aspects of skeletal myogenesis. microRNA miR-27a promotes myoblast proliferation by targeting myostatin, a critical inhibitor of skeletal muscle development, but its mode of action in myoblast differentiation remains unclear. We have found that expression of miR-27a and myostatin were upregulated and downregulated, respectively, during myoblast differentiation. Overexpression of miR-27a increased the number of myosin heavy chain (MHC)-positive cells and upregulated mRNA and protein of MyoD and myogenin. These findings indicate that miR-27a plays a role in enhancing myoblast differentiation.
Collapse
Affiliation(s)
- Xiaoling Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P. R. China
| | | | | | | | | |
Collapse
|
250
|
Li WY, Jin J, Chen J, Guo Y, Tang J, Tan S. Circulating microRNAs as potential non-invasive biomarkers for the early detection of hypertension-related stroke. J Hum Hypertens 2013; 28:288-91. [PMID: 24132136 DOI: 10.1038/jhh.2013.94] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 08/15/2013] [Accepted: 08/20/2013] [Indexed: 12/19/2022]
Abstract
Hypertension is one of the most important risk and modifiable factors for stroke. Crucial in managing the cerebrovascular damage caused by long-lasting and inadequately treated hypertension is not only lowering arterial blood pressure but also early predicting subtypes of hypertension-related stroke and applying more effective interventions. Accumulating evidence suggested that circulating microRNAs (miRNAs) could be developed as biomarkers for early recognition of the onset of a variety of diseases. The role of miRNAs has been extensively reviewed, involving cardiac hypertrophy, hypertensive heart failure, kidney failure and renal fibrosis. miRNA research in stroke is still in its infancy, although there are few literatures reviewing the role of miRNAs in the processes of hypertension-related stroke. This review summarizes current advances in miRNAs regulation of critical pathogenic process underlying hypertension, ischemic stroke and hemorrhagic stroke, and highlights the potential of using circulating miRNAs as noninvasive biomarkers for the early detection of hypertension-related stroke.
Collapse
Affiliation(s)
- W Y Li
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - J Jin
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - J Chen
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Y Guo
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - J Tang
- KingMed Diagnostics Group, KingMed College of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China
| | - S Tan
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|