201
|
Morioka MS, Kawaji H, Nishiyori-Sueki H, Murata M, Kojima-Ishiyama M, Carninci P, Itoh M. Cap Analysis of Gene Expression (CAGE): A Quantitative and Genome-Wide Assay of Transcription Start Sites. Methods Mol Biol 2020; 2120:277-301. [PMID: 32124327 DOI: 10.1007/978-1-0716-0327-7_20] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cap analysis of gene expression (CAGE) is an approach to identify and monitor the activity (transcription initiation frequency) of transcription start sites (TSSs) at single base-pair resolution across the genome. It has been effectively used to identify active promoter and enhancer regions in cancer cells, with potential utility to identify key factors to immunotherapy. Here, we overview a series of CAGE protocols and describe detailed experimental steps of the latest protocol based on the Illumina sequencing platform; both experimental steps (see Subheadings 3.1-3.11) and computational processing steps (see Subheadings 3.12-3.20) are described.
Collapse
Affiliation(s)
- Masaki Suimye Morioka
- Preventive Medicine and Applied Genomics Unit, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Kanagawa, Japan
| | - Hideya Kawaji
- Preventive Medicine and Applied Genomics Unit, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Kanagawa, Japan.,RIKEN Preventive Medicine and Diagnosis Innovation Program (PMI), Yokohama, Kanagawa, Japan.,Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Hiromi Nishiyori-Sueki
- Laboratory for Transcriptome Technology, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Kanagawa, Japan
| | - Mitsuyoshi Murata
- Laboratory for Transcriptome Technology, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Kanagawa, Japan
| | - Miki Kojima-Ishiyama
- Laboratory for Transcriptome Technology, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Kanagawa, Japan
| | - Piero Carninci
- Laboratory for Transcriptome Technology, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Kanagawa, Japan
| | - Masayoshi Itoh
- RIKEN Preventive Medicine and Diagnosis Innovation Program (PMI), Yokohama, Kanagawa, Japan.
| |
Collapse
|
202
|
Cardiello JF, Sanchez GJ, Allen MA, Dowell RD. Lessons from eRNAs: understanding transcriptional regulation through the lens of nascent RNAs. Transcription 2019; 11:3-18. [PMID: 31856658 DOI: 10.1080/21541264.2019.1704128] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Nascent transcription assays, such as global run-on sequencing (GRO-seq) and precision run-on sequencing (PRO-seq), have uncovered a myriad of unstable RNAs being actively produced from numerous sites genome-wide. These transcripts provide a more complete and immediate picture of the impact of regulatory events. Transcription factors recruit RNA polymerase II, effectively initiating the process of transcription; repressors inhibit polymerase recruitment. Efficiency of recruitment is dictated by sequence elements in and around the RNA polymerase loading zone. A combination of sequence elements and RNA binding proteins subsequently influence the ultimate stability of the resulting transcript. Some of these transcripts are capable of providing feedback on the process, influencing subsequent transcription. By monitoring RNA polymerase activity, nascent assays provide insights into every step of the regulated process of transcription.
Collapse
Affiliation(s)
| | - Gilson J Sanchez
- BioFrontiers Institute, University of Colorado, Boulder, CO, USA
| | - Mary A Allen
- BioFrontiers Institute, University of Colorado, Boulder, CO, USA
| | - Robin D Dowell
- BioFrontiers Institute, University of Colorado, Boulder, CO, USA.,Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO, USA
| |
Collapse
|
203
|
Rahnamoun H, Orozco P, Lauberth SM. The role of enhancer RNAs in epigenetic regulation of gene expression. Transcription 2019; 11:19-25. [PMID: 31823686 DOI: 10.1080/21541264.2019.1698934] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Since the discovery that enhancers can support transcription, the roles of enhancer RNAs have remained largely elusive. We identified that enhancer RNAs interact with and augment bromodomain engagement with acetylated chromatin. Here, we discuss our recent findings and the potential mechanisms underlying the regulation and functions of enhancer RNA-bromodomain associations.
Collapse
Affiliation(s)
- Homa Rahnamoun
- Section of Molecular Biology, University of California, San Diego, La Jolla, CA, USA
| | - Paola Orozco
- Section of Molecular Biology, University of California, San Diego, La Jolla, CA, USA
| | - Shannon M Lauberth
- Section of Molecular Biology, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
204
|
Barry C, Schmitz MT, Argus C, Bolin JM, Probasco MD, Leng N, Duffin BM, Steill J, Swanson S, McIntosh BE, Stewart R, Kendziorski C, Thomson JA, Bacher R. Automated minute scale RNA-seq of pluripotent stem cell differentiation reveals early divergence of human and mouse gene expression kinetics. PLoS Comput Biol 2019; 15:e1007543. [PMID: 31815944 PMCID: PMC6922475 DOI: 10.1371/journal.pcbi.1007543] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 12/19/2019] [Accepted: 11/12/2019] [Indexed: 12/22/2022] Open
Abstract
Pluripotent stem cells retain the developmental timing of their species of origin in vitro, an observation that suggests the existence of a cell-intrinsic developmental clock, yet the nature and machinery of the clock remain a mystery. We hypothesize that one possible component may lie in species-specific differences in the kinetics of transcriptional responses to differentiation signals. Using a liquid-handling robot, mouse and human pluripotent stem cells were exposed to identical neural differentiation conditions and sampled for RNA-sequencing at high frequency, every 4 or 10 minutes, for the first 10 hours of differentiation to test for differences in transcriptomic response rates. The majority of initial transcriptional responses occurred within a rapid window in the first minutes of differentiation for both human and mouse stem cells. Despite similarly early onsets of gene expression changes, we observed shortened and condensed gene expression patterns in mouse pluripotent stem cells compared to protracted trends in human pluripotent stem cells. Moreover, the speed at which individual genes were upregulated, as measured by the slopes of gene expression changes over time, was significantly faster in mouse compared to human cells. These results suggest that downstream transcriptomic response kinetics to signaling cues are faster in mouse versus human cells, and may offer a partial account for the vast differences in developmental rates across species.
Collapse
Affiliation(s)
- Christopher Barry
- Morgridge Institute for Research, Madison, WI, United States of America
| | | | - Cara Argus
- Morgridge Institute for Research, Madison, WI, United States of America
| | - Jennifer M. Bolin
- Morgridge Institute for Research, Madison, WI, United States of America
| | | | - Ning Leng
- Morgridge Institute for Research, Madison, WI, United States of America
| | - Bret M. Duffin
- Morgridge Institute for Research, Madison, WI, United States of America
| | - John Steill
- Morgridge Institute for Research, Madison, WI, United States of America
| | - Scott Swanson
- Morgridge Institute for Research, Madison, WI, United States of America
| | - Brian E. McIntosh
- Morgridge Institute for Research, Madison, WI, United States of America
| | - Ron Stewart
- Morgridge Institute for Research, Madison, WI, United States of America
| | - Christina Kendziorski
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, United States of America
| | - James A. Thomson
- Morgridge Institute for Research, Madison, WI, United States of America
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, United States of America
| | - Rhonda Bacher
- Department of Biostatistics, University of Florida, Gainesville, FL, United States of America
| |
Collapse
|
205
|
Inoue F, Kreimer A, Ashuach T, Ahituv N, Yosef N. Identification and Massively Parallel Characterization of Regulatory Elements Driving Neural Induction. Cell Stem Cell 2019; 25:713-727.e10. [PMID: 31631012 PMCID: PMC6850896 DOI: 10.1016/j.stem.2019.09.010] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 07/15/2019] [Accepted: 09/26/2019] [Indexed: 12/16/2022]
Abstract
Epigenomic regulation and lineage-specific gene expression act in concert to drive cellular differentiation, but the temporal interplay between these processes is largely unknown. Using neural induction from human pluripotent stem cells (hPSCs) as a paradigm, we interrogated these dynamics by performing RNA sequencing (RNA-seq), chromatin immunoprecipitation sequencing (ChIP-seq), and assay for transposase accessible chromatin using sequencing (ATAC-seq) at seven time points during early neural differentiation. We found that changes in DNA accessibility precede H3K27ac, which is followed by gene expression changes. Using massively parallel reporter assays (MPRAs) to test the activity of 2,464 candidate regulatory sequences at all seven time points, we show that many of these sequences have temporal activity patterns that correlate with their respective cell-endogenous gene expression and chromatin changes. A prioritization method incorporating all genomic and MPRA data further identified key transcription factors involved in driving neural fate. These results provide a comprehensive resource of genes and regulatory elements that orchestrate neural induction and illuminate temporal frameworks during differentiation.
Collapse
Affiliation(s)
- Fumitaka Inoue
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA; Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Anat Kreimer
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA; Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Electrical Engineering and Computer Sciences and Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Tal Ashuach
- Department of Electrical Engineering and Computer Sciences and Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Nadav Ahituv
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA; Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Nir Yosef
- Department of Electrical Engineering and Computer Sciences and Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA; Chan-Zuckerberg Biohub, San Francisco, CA 94158, USA.
| |
Collapse
|
206
|
Steinparzer I, Sedlyarov V, Rubin JD, Eislmayr K, Galbraith MD, Levandowski CB, Vcelkova T, Sneezum L, Wascher F, Amman F, Kleinova R, Bender H, Andrysik Z, Espinosa JM, Superti-Furga G, Dowell RD, Taatjes DJ, Kovarik P. Transcriptional Responses to IFN-γ Require Mediator Kinase-Dependent Pause Release and Mechanistically Distinct CDK8 and CDK19 Functions. Mol Cell 2019; 76:485-499.e8. [PMID: 31495563 PMCID: PMC6842433 DOI: 10.1016/j.molcel.2019.07.034] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/03/2019] [Accepted: 07/25/2019] [Indexed: 01/12/2023]
Abstract
Transcriptional responses to external stimuli remain poorly understood. Using global nuclear run-on followed by sequencing (GRO-seq) and precision nuclear run-on sequencing (PRO-seq), we show that CDK8 kinase activity promotes RNA polymerase II pause release in response to interferon-γ (IFN-γ), a universal cytokine involved in immunity and tumor surveillance. The Mediator kinase module contains CDK8 or CDK19, which are presumed to be functionally redundant. We implemented cortistatin A, chemical genetics, transcriptomics, and other methods to decouple their function while assessing enzymatic versus structural roles. Unexpectedly, CDK8 and CDK19 regulated different gene sets via distinct mechanisms. CDK8-dependent regulation required its kinase activity, whereas CDK19 governed IFN-γ responses through its scaffolding function (i.e., it was kinase independent). Accordingly, CDK8, not CDK19, phosphorylates the STAT1 transcription factor (TF) during IFN-γ stimulation, and CDK8 kinase inhibition blocked activation of JAK-STAT pathway TFs. Cytokines such as IFN-γ rapidly mobilize TFs to "reprogram" cellular transcription; our results implicate CDK8 and CDK19 as essential for this transcriptional reprogramming.
Collapse
Affiliation(s)
- Iris Steinparzer
- Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9, Vienna, Austria
| | - Vitaly Sedlyarov
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Jonathan D Rubin
- Department of Biochemistry, University of Colorado, Boulder, CO 80303, USA
| | - Kevin Eislmayr
- Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9, Vienna, Austria
| | - Matthew D Galbraith
- Linda Crnic Institute for Down Syndrome, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Pharmacology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | | | - Terezia Vcelkova
- Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9, Vienna, Austria
| | - Lucy Sneezum
- Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9, Vienna, Austria
| | - Florian Wascher
- Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9, Vienna, Austria
| | - Fabian Amman
- Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9, Vienna, Austria; Department of Theoretical Chemistry of the University of Vienna, 1090 Vienna, Austria
| | - Renata Kleinova
- Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9, Vienna, Austria
| | - Heather Bender
- Department of Pharmacology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Zdenek Andrysik
- Department of Pharmacology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Joaquin M Espinosa
- Linda Crnic Institute for Down Syndrome, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Pharmacology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Giulio Superti-Furga
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria; Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Robin D Dowell
- BioFrontiers Institute, University of Colorado, Boulder, CO 80309, USA; Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Dylan J Taatjes
- Department of Biochemistry, University of Colorado, Boulder, CO 80303, USA.
| | - Pavel Kovarik
- Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9, Vienna, Austria.
| |
Collapse
|
207
|
Hauberg ME, Fullard JF, Zhu L, Cohain AT, Giambartolomei C, Misir R, Reach S, Johnson JS, Wang M, Mattheisen M, Børglum AD, Zhang B, Sieberts SK, Peters MA, Domenici E, Schadt EE, Devlin B, Sklar P, Roeder K, Roussos P. Differential activity of transcribed enhancers in the prefrontal cortex of 537 cases with schizophrenia and controls. Mol Psychiatry 2019; 24:1685-1695. [PMID: 29740122 PMCID: PMC6222027 DOI: 10.1038/s41380-018-0059-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 01/25/2018] [Accepted: 02/22/2018] [Indexed: 11/25/2022]
Abstract
Transcription at enhancers is a widespread phenomenon which produces so-called enhancer RNA (eRNA) and occurs in an activity-dependent manner. However, the role of eRNA and its utility in exploring disease-associated changes in enhancer function, and the downstream coding transcripts that they regulate, is not well established. We used transcriptomic and epigenomic data to interrogate the relationship of eRNA transcription to disease status and how genetic variants alter enhancer transcriptional activity in the human brain. We combined RNA-seq data from 537 postmortem brain samples from the CommonMind Consortium with cap analysis of gene expression and enhancer identification, using the assay for transposase-accessible chromatin followed by sequencing (ATACseq). We find 118 differentially transcribed eRNAs in schizophrenia and identify schizophrenia-associated gene/eRNA co-expression modules. Perturbations of a key module are associated with the polygenic risk scores. Furthermore, we identify genetic variants affecting expression of 927 enhancers, which we refer to as enhancer expression quantitative loci or eeQTLs. Enhancer expression patterns are consistent across studies, including differentially expressed eRNAs and eeQTLs. Combining eeQTLs with a genome-wide association study of schizophrenia identifies a genetic variant that alters enhancer function and expression of its target gene, GOLPH3L. Our novel approach to analyzing enhancer transcription is adaptable to other large-scale, non-poly-A depleted, RNA-seq studies.
Collapse
Affiliation(s)
- Mads E Hauberg
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Genetics and Genomic Science and Institute for Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Centre for Integrative Sequencing (iSEQ), Aarhus University, Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Aarhus, Denmark
| | - John F Fullard
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Genetics and Genomic Science and Institute for Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Lingxue Zhu
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
- Department of Statistics and Data Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Ariella T Cohain
- Department of Genetics and Genomic Science and Institute for Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Claudia Giambartolomei
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Ruth Misir
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Genetics and Genomic Science and Institute for Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Sarah Reach
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Genetics and Genomic Science and Institute for Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jessica S Johnson
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Genetics and Genomic Science and Institute for Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Minghui Wang
- Department of Genetics and Genomic Science and Institute for Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Manuel Mattheisen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Centre for Integrative Sequencing (iSEQ), Aarhus University, Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Aarhus, Denmark
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital Würzburg, Würzburg, Germany
| | - Anders Dupont Børglum
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Centre for Integrative Sequencing (iSEQ), Aarhus University, Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Aarhus, Denmark
| | - Bin Zhang
- Department of Genetics and Genomic Science and Institute for Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | | | | | - Enrico Domenici
- Centre for Integrative Biology (CIBIO), University of Trento, Trento, Italy
- Centre for Computational and Systems Biology (COSBI), The Microsoft Research - University of Trento, Rovereto, Italy
| | - Eric E Schadt
- Department of Genetics and Genomic Science and Institute for Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Bernie Devlin
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Pamela Sklar
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Genetics and Genomic Science and Institute for Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Kathryn Roeder
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
- Department of Statistics and Data Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Panos Roussos
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Genetics and Genomic Science and Institute for Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Mental Illness Research, Education, and Clinical Center (VISN 2 South), James J. Peters VA Medical Center, Bronx, NY, USA.
| |
Collapse
|
208
|
Liu X, Li W, Jiang L, Lü Z, Liu M, Gong L, Liu B, Liu L, Yin X. Immunity-associated long non-coding RNA and expression in response to bacterial infection in large yellow croaker (Larimichthys crocea). FISH & SHELLFISH IMMUNOLOGY 2019; 94:634-642. [PMID: 31533082 DOI: 10.1016/j.fsi.2019.09.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 09/02/2019] [Accepted: 09/05/2019] [Indexed: 06/10/2023]
Abstract
Long non-coding RNA refers to an RNA transcript of a non-coding protein with a sequence length greater than 200 bp. More and more reports indicated that lncRNA was involved in the regulation of gene expression as a signalling molecule, an inducing molecule, a leader molecule and a scaffold molecule. Previous studies have sequenced the draft genome and several transcriptome data sets for protein-coding genes of the large yellow croaker (Larimichthys crocea), but little is known about the expression and function of lncRNAs in this species. In order to obtain a catalogue of lncRNAs for this croaker, Vibrio parahaemolyticus infection challenge experiment was conducted and long non-coding RNA sequences were obtained. Using high-throughput sequencing of lncRNA, a total of 73,233 high-confidence transcripts were reconstructed in 32,726 loci, recovering most of the expressed reference transcripts, and 6473 novel expressed loci were identified. The tissue expression profile revealed that most lacunas were specifically enriched in distinct tissues. A set of 163 lncRNAs were identified as being specifically expressed in the spleen and may be involved in the immune response. It is the first time to identify specific lncRNAs in the L. crocea systematically in this croaker, aiming to benefit the future genomic study of this species.
Collapse
Affiliation(s)
- Xiaoxu Liu
- National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Science, Zhejiang Ocean University, No. 1 Haida South Road, Dinghai District, Zhoushan, Zhejiang Province, 316022, China
| | - Weiye Li
- Administration of Ocean and Fisheries of Zhoushan, No 21,Chenghe xi Road, Dinghai District, Zhoushan, Zhejiang Province, 316021, China; School of Marine Sciences Ningbo University, No 818 Fenghua Road, Jiangbai District, Ningbo City, Zhejiang Province, 315211, China
| | - Lihua Jiang
- National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Science, Zhejiang Ocean University, No. 1 Haida South Road, Dinghai District, Zhoushan, Zhejiang Province, 316022, China.
| | - Zhenming Lü
- National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Science, Zhejiang Ocean University, No. 1 Haida South Road, Dinghai District, Zhoushan, Zhejiang Province, 316022, China.
| | - Minhai Liu
- Administration of Ocean and Fisheries of Zhoushan, No 21,Chenghe xi Road, Dinghai District, Zhoushan, Zhejiang Province, 316021, China
| | - Li Gong
- National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Science, Zhejiang Ocean University, No. 1 Haida South Road, Dinghai District, Zhoushan, Zhejiang Province, 316022, China
| | - Bingjian Liu
- National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Science, Zhejiang Ocean University, No. 1 Haida South Road, Dinghai District, Zhoushan, Zhejiang Province, 316022, China
| | - Liqin Liu
- National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Science, Zhejiang Ocean University, No. 1 Haida South Road, Dinghai District, Zhoushan, Zhejiang Province, 316022, China
| | - Xiaolong Yin
- Administration of Ocean and Fisheries of Zhoushan, No 21,Chenghe xi Road, Dinghai District, Zhoushan, Zhejiang Province, 316021, China
| |
Collapse
|
209
|
Castillejo-Lopez C, Pjanic M, Pirona AC, Hetty S, Wabitsch M, Wadelius C, Quertermous T, Arner E, Ingelsson E. Detailed Functional Characterization of a Waist-Hip Ratio Locus in 7p15.2 Defines an Enhancer Controlling Adipocyte Differentiation. iScience 2019; 20:42-59. [PMID: 31557715 PMCID: PMC6817687 DOI: 10.1016/j.isci.2019.09.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 07/10/2019] [Accepted: 09/05/2019] [Indexed: 12/22/2022] Open
Abstract
We combined CAGE sequencing in human adipocytes during differentiation with data from genome-wide association studies to identify an enhancer in the SNX10 locus on chromosome 7, presumably involved in body fat distribution. Using reporter assays and CRISPR-Cas9 gene editing in human cell lines, we characterized the role of the enhancer in adipogenesis. The enhancer was active during adipogenesis and responded strongly to insulin and isoprenaline. The allele associated with increased waist-hip ratio in human genetic studies was associated with higher enhancer activity. Mutations of the enhancer resulted in less adipocyte differentiation. RNA sequencing of cells with disrupted enhancer showed reduced expression of established adipocyte markers, such as ADIPOQ and LPL, and identified CHI3L1 on chromosome 1 as a potential gene involved in adipocyte differentiation. In conclusion, we identified and characterized an enhancer in the SNX10 locus and outlined its plausible mechanisms of action and downstream targets.
Collapse
Affiliation(s)
- Casimiro Castillejo-Lopez
- Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Milos Pjanic
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Anna Chiara Pirona
- Department of Medical Sciences and Science for Life Laboratory, Uppsala University, Uppsala, Sweden; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Susanne Hetty
- Department of Medical Sciences and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Martin Wabitsch
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Endocrinology and Diabetes, University of Ulm, Ulm, Germany
| | - Claes Wadelius
- Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Thomas Quertermous
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA
| | - Erik Arner
- Laboratory for Applied Regulatory Genomics Network Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045 Japan
| | - Erik Ingelsson
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medical Sciences and Science for Life Laboratory, Uppsala University, Uppsala, Sweden; Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA; Stanford Diabetes Research Center, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
210
|
Determinants of enhancer and promoter activities of regulatory elements. Nat Rev Genet 2019; 21:71-87. [DOI: 10.1038/s41576-019-0173-8] [Citation(s) in RCA: 284] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2019] [Indexed: 12/13/2022]
|
211
|
Zhang X, Xue C, Lin J, Ferguson JF, Weiner A, Liu W, Han Y, Hinkle C, Li W, Jiang H, Gosai S, Hachet M, Garcia BA, Gregory BD, Soccio RE, Hogenesch JB, Seale P, Li M, Reilly MP. Interrogation of nonconserved human adipose lincRNAs identifies a regulatory role of linc-ADAL in adipocyte metabolism. Sci Transl Med 2019; 10:10/446/eaar5987. [PMID: 29925637 DOI: 10.1126/scitranslmed.aar5987] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 11/27/2017] [Accepted: 05/04/2018] [Indexed: 12/16/2022]
Abstract
Long intergenic noncoding RNAs (lincRNAs) have emerged as important modulators of cellular functions. Most lincRNAs are not conserved among mammals, raising the fundamental question of whether nonconserved adipose-expressed lincRNAs are functional. To address this, we performed deep RNA sequencing of gluteal subcutaneous adipose tissue from 25 healthy humans. We identified 1001 putative lincRNAs expressed in all samples through de novo reconstruction of noncoding transcriptomes and integration with existing lincRNA annotations. One hundred twenty lincRNAs had adipose-enriched expression, and 54 of these exhibited peroxisome proliferator-activated receptor γ (PPARγ) or CCAAT/enhancer binding protein α (C/EBPα) binding at their loci. Most of these adipose-enriched lincRNAs (~85%) were not conserved in mice, yet on average, they showed degrees of expression and binding of PPARγ and C/EBPα similar to those displayed by conserved lincRNAs. Most adipose lincRNAs differentially expressed (n = 53) in patients after bariatric surgery were nonconserved. The most abundant adipose-enriched lincRNA in our subcutaneous adipose data set, linc-ADAL, was nonconserved, up-regulated in adipose depots of obese individuals, and markedly induced during in vitro human adipocyte differentiation. We demonstrated that linc-ADAL interacts with heterogeneous nuclear ribonucleoprotein U (hnRNPU) and insulin-like growth factor 2 mRNA binding protein 2 (IGF2BP2) at distinct subcellular locations to regulate adipocyte differentiation and lipogenesis.
Collapse
Affiliation(s)
- Xuan Zhang
- Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Chenyi Xue
- Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Jennie Lin
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Jane F Ferguson
- Division of Cardiovascular Medicine, School of Medicine, Vanderbilt University, Nashville, TN 37232, USA
| | - Amber Weiner
- Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wen Liu
- Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Yumiao Han
- Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christine Hinkle
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wenjun Li
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hongfeng Jiang
- Key Laboratory of Remodeling-Related Cardiovascular Diseases, Beijing Collaborative Innovation Center for Cardiovascular Disorders, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China.,Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing 100029, China
| | - Sager Gosai
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Melanie Hachet
- Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Benjamin A Garcia
- Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Brian D Gregory
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Raymond E Soccio
- The Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John B Hogenesch
- Divisions of Human Genetics and Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45267, USA
| | - Patrick Seale
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mingyao Li
- Department of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Muredach P Reilly
- Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA. .,Irving Institute for Clinical and Translational Research, Columbia University, New York, NY 10032, USA
| |
Collapse
|
212
|
Kulyté A, Kwok KHM, de Hoon M, Carninci P, Hayashizaki Y, Arner P, Arner E. MicroRNA-27a/b-3p and PPARG regulate SCAMP3 through a feed-forward loop during adipogenesis. Sci Rep 2019; 9:13891. [PMID: 31554889 PMCID: PMC6761119 DOI: 10.1038/s41598-019-50210-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 09/06/2019] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNA) modulate gene expression through feed-back and forward loops. Previous studies identified miRNAs that regulate transcription factors, including Peroxisome Proliferator Activated Receptor Gamma (PPARG), in adipocytes, but whether they influence adipogenesis via such regulatory loops remain elusive. Here we predicted and validated a novel feed-forward loop regulating adipogenesis and involved miR-27a/b-3p, PPARG and Secretory Carrier Membrane Protein 3 (SCAMP3). In this loop, expression of both PPARG and SCAMP3 was independently suppressed by miR-27a/b-3p overexpression. Knockdown of PPARG downregulated SCAMP3 expression at the late phase of adipogenesis, whereas reduction of SCAMP3 mRNA levels increased PPARG expression at early phase in differentiation. The latter was accompanied with upregulation of adipocyte-enriched genes, including ADIPOQ and FABP4, suggesting an anti-adipogenic role for SCAMP3. PPARG and SCAMP3 exhibited opposite behaviors regarding correlations with clinical phenotypes, including body mass index, body fat mass, adipocyte size, lipolytic and lipogenic capacity, and secretion of pro-inflammatory cytokines. While adipose PPARG expression was associated with more favorable metabolic phenotypes, SCAMP3 expression was linked to increased fat mass and insulin resistance. Together, we identified a feed-forward loop through which miR-27a/b-3p, PPARG and SCAMP3 cooperatively fine tune the regulation of adipogenesis, which potentially may impact whole body metabolism.
Collapse
Affiliation(s)
- Agné Kulyté
- Lipid laboratory, Department of Medicine H7, Karolinska Institutet, Huddinge, Sweden.
| | - Kelvin Ho Man Kwok
- Lipid laboratory, Department of Medicine H7, Karolinska Institutet, Huddinge, Sweden.,Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Michiel de Hoon
- RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Kanagawa, 230-0045, Japan
| | - Piero Carninci
- RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Kanagawa, 230-0045, Japan
| | - Yoshihide Hayashizaki
- RIKEN Preventive Medicine and Diagnosis Innovation Program, Yokohama, Kanagawa, 230-0045, Japan
| | - Peter Arner
- Lipid laboratory, Department of Medicine H7, Karolinska Institutet, Huddinge, Sweden
| | - Erik Arner
- RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Kanagawa, 230-0045, Japan.
| |
Collapse
|
213
|
Ha TJ, Zhang PGY, Robert R, Yeung J, Swanson DJ, Mathelier A, Wasserman WW, Im S, Itoh M, Kawaji H, Lassmann T, Daub CO, Arner E, Carninci P, Hayashizaki Y, Forrest ARR, Goldowitz D. Identification of novel cerebellar developmental transcriptional regulators with motif activity analysis. BMC Genomics 2019; 20:718. [PMID: 31533632 PMCID: PMC6751898 DOI: 10.1186/s12864-019-6063-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 08/26/2019] [Indexed: 12/11/2022] Open
Abstract
Background The work of the FANTOM5 Consortium has brought forth a new level of understanding of the regulation of gene transcription and the cellular processes involved in creating diversity of cell types. In this study, we extended the analysis of the FANTOM5 Cap Analysis of Gene Expression (CAGE) transcriptome data to focus on understanding the genetic regulators involved in mouse cerebellar development. Results We used the HeliScopeCAGE library sequencing on cerebellar samples over 8 embryonic and 4 early postnatal times. This study showcases temporal expression pattern changes during cerebellar development. Through a bioinformatics analysis that focused on transcription factors, their promoters and binding sites, we identified genes that appear as strong candidates for involvement in cerebellar development. We selected several candidate transcriptional regulators for validation experiments including qRT-PCR and shRNA transcript knockdown. We observed marked and reproducible developmental defects in Atf4, Rfx3, and Scrt2 knockdown embryos, which support the role of these genes in cerebellar development. Conclusions The successful identification of these novel gene regulators in cerebellar development demonstrates that the FANTOM5 cerebellum time series is a high-quality transcriptome database for functional investigation of gene regulatory networks in cerebellar development. Electronic supplementary material The online version of this article (10.1186/s12864-019-6063-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Thomas J Ha
- Centre for Molecular Medicine and Therapeutics at the BC Children's Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada.,Division of Neurology, Department of Pediatrics, University of British Columbia and BC Children's Hospital, Vancouver, BC, Canada
| | - Peter G Y Zhang
- Centre for Molecular Medicine and Therapeutics at the BC Children's Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Remi Robert
- Centre for Molecular Medicine and Therapeutics at the BC Children's Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Joanna Yeung
- Centre for Molecular Medicine and Therapeutics at the BC Children's Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Douglas J Swanson
- Centre for Molecular Medicine and Therapeutics at the BC Children's Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Anthony Mathelier
- Centre for Molecular Medicine and Therapeutics at the BC Children's Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada.,Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo, 0318, Oslo, Norway.,Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Radiumhospitalet, 0372, Oslo, Norway
| | - Wyeth W Wasserman
- Centre for Molecular Medicine and Therapeutics at the BC Children's Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Sujin Im
- Centre for Molecular Medicine and Therapeutics at the BC Children's Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Masayoshi Itoh
- RIKEN Omics Science Center (OSC), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan.,RIKEN Center for Life Science Technologies, Yokohama, Japan
| | - Hideya Kawaji
- RIKEN Omics Science Center (OSC), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan.,RIKEN Center for Life Science Technologies, Yokohama, Japan
| | - Timo Lassmann
- RIKEN Omics Science Center (OSC), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan.,RIKEN Center for Life Science Technologies, Yokohama, Japan.,Telethon Kids Institute, The University of Western Australia, 100 Roberts Road, Subiaco, Subiaco, Western Australia, 6008, Australia
| | - Carsten O Daub
- RIKEN Omics Science Center (OSC), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan.,RIKEN Center for Life Science Technologies, Yokohama, Japan
| | - Erik Arner
- RIKEN Omics Science Center (OSC), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan.,RIKEN Center for Life Science Technologies, Yokohama, Japan
| | | | - Piero Carninci
- RIKEN Omics Science Center (OSC), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan.,RIKEN Center for Life Science Technologies, Yokohama, Japan
| | - Yoshihide Hayashizaki
- RIKEN Omics Science Center (OSC), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan.,RIKEN Preventive Medicine and Diagnosis Innovation Program, Wako, Japan
| | - Alistair R R Forrest
- RIKEN Omics Science Center (OSC), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan.,RIKEN Center for Life Science Technologies, Yokohama, Japan
| | - Daniel Goldowitz
- Centre for Molecular Medicine and Therapeutics at the BC Children's Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
214
|
NET-CAGE characterizes the dynamics and topology of human transcribed cis-regulatory elements. Nat Genet 2019; 51:1369-1379. [PMID: 31477927 DOI: 10.1038/s41588-019-0485-9] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 07/16/2019] [Indexed: 01/03/2023]
Abstract
Promoters and enhancers are key cis-regulatory elements, but how they operate to generate cell type-specific transcriptomes is not fully understood. We developed a simple and robust method, native elongating transcript-cap analysis of gene expression (NET-CAGE), to sensitively detect 5' ends of nascent RNAs in diverse cells and tissues, including unstable transcripts such as enhancer-derived RNAs. We studied RNA synthesis and degradation at the transcription start site level, characterizing the impact of differential promoter usage on transcript stability. We quantified transcription from cis-regulatory elements without the influence of RNA turnover, and show that enhancer-promoter pairs are generally activated simultaneously on stimulation. By integrating NET-CAGE data with chromatin interaction maps, we show that cis-regulatory elements are topologically connected according to their cell type specificity. We identified new enhancers with high sensitivity, and delineated primary locations of transcription within super-enhancers. Our NET-CAGE dataset derived from human and mouse cells expands the FANTOM5 atlas of transcribed enhancers, with broad applicability to biomedical research.
Collapse
|
215
|
Racko D, Benedetti F, Dorier J, Stasiak A. Are TADs supercoiled? Nucleic Acids Res 2019; 47:521-532. [PMID: 30395328 PMCID: PMC6344874 DOI: 10.1093/nar/gky1091] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 10/22/2018] [Indexed: 12/13/2022] Open
Abstract
Topologically associating domains (TADs) are megabase-sized building blocks of interphase chromosomes in higher eukaryotes. TADs are chromosomal regions with increased frequency of internal interactions. On average a pair of loci separated by a given genomic distance contact each other 2–3 times more frequently when they are in the same TAD as compared to a pair of loci located in two neighbouring TADs. TADs are also functional blocks of chromosomes as enhancers and their cognate promoters are normally located in the same TAD, even if their genomic distance from each other can be as large as a megabase. The internal structure of TADs, causing their increased frequency of internal interactions, is not established yet. We survey here experimental studies investigating presence of supercoiling in interphase chromosomes. We also review numerical simulation studies testing whether transcription-induced supercoiling of chromatin fibres can explain how TADs are formed and how they can assure very efficient interactions between enhancers and their cognate promoters located in the same TAD.
Collapse
Affiliation(s)
- Dusan Racko
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland.,SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland.,Polymer Institute of the Slovak Academy of Sciences, 842 36 Bratislava, Slovakia
| | - Fabrizio Benedetti
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland.,Vital-IT, SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Julien Dorier
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland.,Vital-IT, SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Andrzej Stasiak
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland.,SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| |
Collapse
|
216
|
Khan A, Fornes O, Stigliani A, Gheorghe M, Castro-Mondragon JA, van der Lee R, Bessy A, Chèneby J, Kulkarni SR, Tan G, Baranasic D, Arenillas DJ, Sandelin A, Vandepoele K, Lenhard B, Ballester B, Wasserman WW, Parcy F, Mathelier A. JASPAR 2018: update of the open-access database of transcription factor binding profiles and its web framework. Nucleic Acids Res 2019; 46:D260-D266. [PMID: 29140473 PMCID: PMC5753243 DOI: 10.1093/nar/gkx1126] [Citation(s) in RCA: 904] [Impact Index Per Article: 150.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 10/27/2017] [Indexed: 12/31/2022] Open
Abstract
JASPAR (http://jaspar.genereg.net) is an open-access database of curated, non-redundant transcription factor (TF)-binding profiles stored as position frequency matrices (PFMs) and TF flexible models (TFFMs) for TFs across multiple species in six taxonomic groups. In the 2018 release of JASPAR, the CORE collection has been expanded with 322 new PFMs (60 for vertebrates and 262 for plants) and 33 PFMs were updated (24 for vertebrates, 8 for plants and 1 for insects). These new profiles represent a 30% expansion compared to the 2016 release. In addition, we have introduced 316 TFFMs (95 for vertebrates, 218 for plants and 3 for insects). This release incorporates clusters of similar PFMs in each taxon and each TF class per taxon. The JASPAR 2018 CORE vertebrate collection of PFMs was used to predict TF-binding sites in the human genome. The predictions are made available to the scientific community through a UCSC Genome Browser track data hub. Finally, this update comes with a new web framework with an interactive and responsive user-interface, along with new features. All the underlying data can be retrieved programmatically using a RESTful API and through the JASPAR 2018 R/Bioconductor package.
Collapse
Affiliation(s)
- Aziz Khan
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo, 0318 Oslo, Norway
| | - Oriol Fornes
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, BC Children's Hospital Research Institute, University of British Columbia, 950 28th Ave W, Vancouver, BC V5Z 4H4, Canada
| | - Arnaud Stigliani
- University of Grenoble Alpes, CNRS, CEA, INRA, BIG-LPCV, 38000 Grenoble, France
| | - Marius Gheorghe
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo, 0318 Oslo, Norway
| | - Jaime A Castro-Mondragon
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo, 0318 Oslo, Norway
| | - Robin van der Lee
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, BC Children's Hospital Research Institute, University of British Columbia, 950 28th Ave W, Vancouver, BC V5Z 4H4, Canada
| | - Adrien Bessy
- University of Grenoble Alpes, CNRS, CEA, INRA, BIG-LPCV, 38000 Grenoble, France
| | - Jeanne Chèneby
- INSERM, UMR1090 TAGC, Marseille, F-13288, France.,Aix-Marseille Université, UMR1090 TAGC, Marseille, F-13288, France
| | - Shubhada R Kulkarni
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 927, 9052 Ghent, Belgium.,VIB Center for Plant Systems Biology, Technologiepark 927, 9052 Ghent, Belgium.,Bioinformatics Institute Ghent, Ghent University, Technologiepark 927, 9052 Ghent, Belgium
| | - Ge Tan
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London W12 0NN, UK.,Computational Regulatory Genomics, MRC London Institute of Medical Sciences, London W12 0NN, UK
| | - Damir Baranasic
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London W12 0NN, UK.,Computational Regulatory Genomics, MRC London Institute of Medical Sciences, London W12 0NN, UK
| | - David J Arenillas
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, BC Children's Hospital Research Institute, University of British Columbia, 950 28th Ave W, Vancouver, BC V5Z 4H4, Canada
| | - Albin Sandelin
- The Bioinformatics Centre, Department of Biology and Biotech Research & Innovation Centre, University of Copenhagen, DK2200 Copenhagen N, Denmark
| | - Klaas Vandepoele
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 927, 9052 Ghent, Belgium.,VIB Center for Plant Systems Biology, Technologiepark 927, 9052 Ghent, Belgium.,Bioinformatics Institute Ghent, Ghent University, Technologiepark 927, 9052 Ghent, Belgium
| | - Boris Lenhard
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London W12 0NN, UK.,Computational Regulatory Genomics, MRC London Institute of Medical Sciences, London W12 0NN, UK.,Sars International Centre for Marine Molecular Biology, University of Bergen, N-5008 Bergen, Norway
| | - Benoît Ballester
- INSERM, UMR1090 TAGC, Marseille, F-13288, France.,Aix-Marseille Université, UMR1090 TAGC, Marseille, F-13288, France
| | - Wyeth W Wasserman
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, BC Children's Hospital Research Institute, University of British Columbia, 950 28th Ave W, Vancouver, BC V5Z 4H4, Canada
| | - François Parcy
- University of Grenoble Alpes, CNRS, CEA, INRA, BIG-LPCV, 38000 Grenoble, France
| | - Anthony Mathelier
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo, 0318 Oslo, Norway.,Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, 0310 Oslo, Norway
| |
Collapse
|
217
|
Lewis MW, Li S, Franco HL. Transcriptional control by enhancers and enhancer RNAs. Transcription 2019; 10:171-186. [PMID: 31791217 PMCID: PMC6948965 DOI: 10.1080/21541264.2019.1695492] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 11/02/2022] Open
Abstract
The regulation of gene expression is a fundamental cellular process and its misregulation is a key component of disease. Enhancers are one of the most salient regulatory elements in the genome and help orchestrate proper spatiotemporal gene expression during development, in homeostasis, and in response to signaling. Notably, molecular aberrations at enhancers, such as translocations and single nucleotide polymorphisms, are emerging as an important source of human variation and susceptibility to disease. Herein we discuss emerging paradigms addressing how genes are regulated by enhancers, common features of active enhancers, and how non-coding enhancer RNAs (eRNAs) can direct gene expression programs that underlie cellular phenotypes. We survey the current evidence, which suggests that eRNAs can bind to transcription factors, mediate enhancer-promoter interactions, influence RNA Pol II elongation, and act as decoys for repressive cofactors. Furthermore, we discuss current methodologies for the identification of eRNAs and novel approaches to elucidate their functions.
Collapse
Affiliation(s)
- Michael W. Lewis
- The Lineberger Comprehensive Cancer Center, Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Shen Li
- The Lineberger Comprehensive Cancer Center, Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Hector L. Franco
- The Lineberger Comprehensive Cancer Center, Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
218
|
Hume DA, Caruso M, Ferrari-Cestari M, Summers KM, Pridans C, Irvine KM. Phenotypic impacts of CSF1R deficiencies in humans and model organisms. J Leukoc Biol 2019; 107:205-219. [PMID: 31330095 DOI: 10.1002/jlb.mr0519-143r] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/20/2019] [Accepted: 07/01/2019] [Indexed: 12/12/2022] Open
Abstract
Mϕ proliferation, differentiation, and survival are controlled by signals from the Mϕ CSF receptor (CSF1R). Mono-allelic gain-of-function mutations in CSF1R in humans are associated with an autosomal-dominant leukodystrophy and bi-allelic loss-of-function mutations with recessive skeletal dysplasia, brain disorders, and developmental anomalies. Most of the phenotypes observed in these human disease states are also observed in mice and rats with loss-of-function mutations in Csf1r or in Csf1 encoding one of its two ligands. Studies in rodent models also highlight the importance of genetic background and likely epistatic interactions between Csf1r and other loci. The impacts of Csf1r mutations on the brain are usually attributed solely to direct impacts on microglial number and function. However, analysis of hypomorphic Csf1r mutants in mice and several other lines of evidence suggest that primary hydrocephalus and loss of the physiological functions of Mϕs in the periphery contribute to the development of brain pathology. In this review, we outline the evidence that CSF1R is expressed exclusively in mononuclear phagocytes and explore the mechanisms linking CSF1R mutations to pleiotropic impacts on postnatal growth and development.
Collapse
Affiliation(s)
- David A Hume
- Mater Research Institute, University of Queensland, Woolloongabba, Queensland, Australia
| | - Melanie Caruso
- Mater Research Institute, University of Queensland, Woolloongabba, Queensland, Australia
| | | | - Kim M Summers
- Mater Research Institute, University of Queensland, Woolloongabba, Queensland, Australia
| | - Clare Pridans
- Centre for Inflammation Research, The University of Edinburgh, Edinburgh, United Kingdom
| | - Katharine M Irvine
- Mater Research Institute, University of Queensland, Woolloongabba, Queensland, Australia
| |
Collapse
|
219
|
Sheikh BN, Akhtar A. The many lives of KATs - detectors, integrators and modulators of the cellular environment. Nat Rev Genet 2019; 20:7-23. [PMID: 30390049 DOI: 10.1038/s41576-018-0072-4] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Research over the past three decades has firmly established lysine acetyltransferases (KATs) as central players in regulating transcription. Recent advances in genomic sequencing, metabolomics, animal models and mass spectrometry technologies have uncovered unexpected new roles for KATs at the nexus between the environment and transcriptional regulation. Thousands of reversible acetylation sites have been mapped in the proteome that respond dynamically to the cellular milieu and maintain major processes such as metabolism, autophagy and stress response. Concurrently, researchers are continuously uncovering how deregulation of KAT activity drives disease, including cancer and developmental syndromes characterized by severe intellectual disability. These novel findings are reshaping our view of KATs away from mere modulators of chromatin to detectors of the cellular environment and integrators of diverse signalling pathways with the ability to modify cellular phenotype.
Collapse
Affiliation(s)
- Bilal N Sheikh
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | - Asifa Akhtar
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany.
| |
Collapse
|
220
|
Lynch CJ, Bernad R, Calvo I, Nóbrega-Pereira S, Ruiz S, Ibarz N, Martinez-Val A, Graña-Castro O, Gómez-López G, Andrés-León E, Espinosa Angarica V, Del Sol A, Ortega S, Fernandez-Capetillo O, Rojo E, Munoz J, Serrano M. The RNA Polymerase II Factor RPAP1 Is Critical for Mediator-Driven Transcription and Cell Identity. Cell Rep 2019; 22:396-410. [PMID: 29320736 PMCID: PMC5775503 DOI: 10.1016/j.celrep.2017.12.062] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 11/03/2017] [Accepted: 12/18/2017] [Indexed: 01/22/2023] Open
Abstract
The RNA polymerase II-associated protein 1 (RPAP1) is conserved across metazoa and required for stem cell differentiation in plants; however, very little is known about its mechanism of action or its role in mammalian cells. Here, we report that RPAP1 is essential for the expression of cell identity genes and for cell viability. Depletion of RPAP1 triggers cell de-differentiation, facilitates reprogramming toward pluripotency, and impairs differentiation. Mechanistically, we show that RPAP1 is essential for the interaction between RNA polymerase II (RNA Pol II) and Mediator, as well as for the recruitment of important regulators, such as the Mediator-specific RNA Pol II factor Gdown1 and the C-terminal domain (CTD) phosphatase RPAP2. In agreement, depletion of RPAP1 diminishes the loading of total and Ser5-phosphorylated RNA Pol II on many genes, with super-enhancer-driven genes among the most significantly downregulated. We conclude that Mediator/RPAP1/RNA Pol II is an ancient module, conserved from plants to mammals, critical for establishing and maintaining cell identity. RPAP1 is an RNA Pol II regulator, conserved from plants to mammals RPAP1 depletion erases cell identity gene expression, triggering de-differentiation Mechanistically, RPAP1 is critical for the Mediator-RNA Pol II interaction RPAP1 preferentially contributes to enhancer-driven gene transcription
Collapse
Affiliation(s)
- Cian J Lynch
- Tumour Suppression Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain; Cellular Plasticity and Disease Group, Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Spain
| | - Raquel Bernad
- Tumour Suppression Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain; Cellular Plasticity and Disease Group, Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Spain
| | - Isabel Calvo
- Tumour Suppression Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Sandrina Nóbrega-Pereira
- Tumour Suppression Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain; Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa 1649-028, Portugal
| | - Sergio Ruiz
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Nuria Ibarz
- ProteoRed-ISCIII Proteomics Unit, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Ana Martinez-Val
- ProteoRed-ISCIII Proteomics Unit, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Osvaldo Graña-Castro
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Gonzalo Gómez-López
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Eduardo Andrés-León
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain; Bioinformatics Unit, Institute of Parasitology and Biomedicine Lopez-Neyra, Granada 18016, Spain
| | - Vladimir Espinosa Angarica
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, Luxembourg; Cancer Science Institute, National University of Singapore, Singapore 117599, Singapore
| | - Antonio Del Sol
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, Luxembourg
| | - Sagrario Ortega
- Transgenic Mouse Unit, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Oscar Fernandez-Capetillo
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain; Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm 171 21, Sweden
| | - Enrique Rojo
- Department of Plant Molecular Genetics, National Center of Biotechnology (CNB-CSIC), Madrid 280049, Spain
| | - Javier Munoz
- ProteoRed-ISCIII Proteomics Unit, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Manuel Serrano
- Tumour Suppression Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain; Cellular Plasticity and Disease Group, Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Barcelona 08010, Spain.
| |
Collapse
|
221
|
Benton ML, Talipineni SC, Kostka D, Capra JA. Genome-wide enhancer annotations differ significantly in genomic distribution, evolution, and function. BMC Genomics 2019; 20:511. [PMID: 31221079 PMCID: PMC6585034 DOI: 10.1186/s12864-019-5779-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 05/07/2019] [Indexed: 12/28/2022] Open
Abstract
Background Non-coding gene regulatory enhancers are essential to transcription in mammalian cells. As a result, a large variety of experimental and computational strategies have been developed to identify cis-regulatory enhancer sequences. Given the differences in the biological signals assayed, some variation in the enhancers identified by different methods is expected; however, the concordance of enhancers identified by different methods has not been comprehensively evaluated. This is critically needed, since in practice, most studies consider enhancers identified by only a single method. Here, we compare enhancer sets from eleven representative strategies in four biological contexts. Results All sets we evaluated overlap significantly more than expected by chance; however, there is significant dissimilarity in their genomic, evolutionary, and functional characteristics, both at the element and base-pair level, within each context. The disagreement is sufficient to influence interpretation of candidate SNPs from GWAS studies, and to lead to disparate conclusions about enhancer and disease mechanisms. Most regions identified as enhancers are supported by only one method, and we find limited evidence that regions identified by multiple methods are better candidates than those identified by a single method. As a result, we cannot recommend the use of any single enhancer identification strategy in all settings. Conclusions Our results highlight the inherent complexity of enhancer biology and identify an important challenge to mapping the genetic architecture of complex disease. Greater appreciation of how the diverse enhancer identification strategies in use today relate to the dynamic activity of gene regulatory regions is needed to enable robust and reproducible results. Electronic supplementary material The online version of this article (10.1186/s12864-019-5779-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mary Lauren Benton
- Department of Biomedical Informatics, Vanderbilt University, Nashville, TN, 37235, USA
| | - Sai Charan Talipineni
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15201, USA
| | - Dennis Kostka
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15201, USA. .,Department of Computational & Systems Biology, Pittsburgh Center for Evolutionary Biology and Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15201, USA.
| | - John A Capra
- Department of Biomedical Informatics, Vanderbilt University, Nashville, TN, 37235, USA. .,Departments of Biological Sciences and Computer Science, Vanderbilt Genetics Institute, Center for Structural Biology, Vanderbilt University, Nashville, TN, 37235, USA.
| |
Collapse
|
222
|
Rotival M. Characterising the genetic basis of immune response variation to identify causal mechanisms underlying disease susceptibility. HLA 2019; 94:275-284. [PMID: 31115186 DOI: 10.1111/tan.13598] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 05/15/2019] [Indexed: 12/12/2022]
Abstract
Over the last 10 years, genome-wide association studies (GWAS) have identified hundreds of susceptibility loci for autoimmune diseases. However, despite increasing power for the detection of both common and rare coding variants affecting disease susceptibility, a large fraction of disease heritability has remained unexplained. In addition, a majority of the identified loci are located in noncoding regions, and translation of disease-associated loci into new biological insights on the etiology of immune disorders has been lagging. This highlights the need for a better understanding of noncoding variation and new strategies to identify causal genes at disease loci. In this review, I will first detail the molecular basis of gene expression and review the various mechanisms that contribute to alter gene activity at the transcriptional and post-transcriptional level. I will then review the findings from 10 years of functional genomics studies regarding the genetics on gene expression, in particular in the context of infection. Finally, I will discuss the extent to which genetic variants that modulate gene expression at transcriptional and post-transcriptional level contribute to disease susceptibility and present strategies to leverage this information for the identification of causal mechanisms at disease loci in the era of whole genome sequencing.
Collapse
Affiliation(s)
- Maxime Rotival
- Unit of Human Evolutionary Genetics, CNRS UMR2000, Institut Pasteur, Paris, France
| |
Collapse
|
223
|
Guffanti G, Bartlett A, Klengel T, Klengel C, Hunter R, Glinsky G, Macciardi F. Novel Bioinformatics Approach Identifies Transcriptional Profiles of Lineage-Specific Transposable Elements at Distinct Loci in the Human Dorsolateral Prefrontal Cortex. Mol Biol Evol 2019; 35:2435-2453. [PMID: 30053206 PMCID: PMC6188555 DOI: 10.1093/molbev/msy143] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Expression of transposable elements (TE) is transiently activated during human preimplantation embryogenesis in a developmental stage- and cell type-specific manner and TE-mediated epigenetic regulation is intrinsically wired in developmental genetic networks in human embryos and embryonic stem cells. However, there are no systematic studies devoted to a comprehensive analysis of the TE transcriptome in human adult organs and tissues, including human neural tissues. To investigate TE expression in the human Dorsolateral Prefrontal Cortex (DLPFC), we developed and validated a straightforward analytical approach to chart quantitative genome-wide expression profiles of all annotated TE loci based on unambiguous mapping of discrete TE-encoded transcripts using a de novo assembly strategy. To initially evaluate the potential regulatory impact of DLPFC-expressed TE, we adopted a comparative evolutionary genomics approach across humans, primates, and rodents to document conservation patterns, lineage-specificity, and colocalizations with transcription factor binding sites mapped within primate- and human-specific TE. We identified 654,665 transcripts expressed from 477,507 distinct loci of different TE classes and families, the majority of which appear to have originated from primate-specific sequences. We discovered 4,687 human-specific and transcriptionally active TEs in DLPFC, of which the prominent majority (80.2%) appears spliced. Our analyses revealed significant associations of DLPFC-expressed TE with primate- and human-specific transcription factor binding sites, suggesting potential cross-talks of concordant regulatory functions. We identified 1,689 TEs differentially expressed in the DLPFC of Schizophrenia patients, a majority of which is located within introns of 1,137 protein-coding genes. Our findings imply that identified DLPFC-expressed TEs may affect human brain structures and functions following different evolutionary trajectories. On one side, hundreds of thousands of TEs maintained a remarkably high conservation for ∼8 My of primates’ evolution, suggesting that they are likely conveying evolutionary-constrained primate-specific regulatory functions. In parallel, thousands of transcriptionally active human-specific TE loci emerged more recently, suggesting that they could be relevant for human-specific behavioral or cognitive functions.
Collapse
Affiliation(s)
- Guia Guffanti
- Department of Psychiatry, Harvard Medical School, Cambridge, MA.,Division of Depression and Anxiety, McLean Hospital, Belmont, MA
| | - Andrew Bartlett
- Department of Psychology, University of Massachusetts, Boston, MA
| | - Torsten Klengel
- Department of Psychiatry, Harvard Medical School, Cambridge, MA.,Division of Depression and Anxiety, McLean Hospital, Belmont, MA.,Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Georg-August-University, Goettingen, Germany
| | - Claudia Klengel
- Department of Psychiatry, Harvard Medical School, Cambridge, MA.,Division of Depression and Anxiety, McLean Hospital, Belmont, MA
| | - Richard Hunter
- Department of Psychology, University of Massachusetts, Boston, MA
| | - Gennadi Glinsky
- Translational & Functional Genomics, Institute of Engineering in Medicine, University of California San Diego, La Jolla, CA
| | - Fabio Macciardi
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, CA
| |
Collapse
|
224
|
Hariprakash JM, Ferrari F. Computational Biology Solutions to Identify Enhancers-target Gene Pairs. Comput Struct Biotechnol J 2019; 17:821-831. [PMID: 31316726 PMCID: PMC6611831 DOI: 10.1016/j.csbj.2019.06.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/04/2019] [Accepted: 06/11/2019] [Indexed: 12/12/2022] Open
Abstract
Enhancers are non-coding regulatory elements that are distant from their target gene. Their characterization still remains elusive especially due to challenges in achieving a comprehensive pairing of enhancers and target genes. A number of computational biology solutions have been proposed to address this problem leveraging the increasing availability of functional genomics data and the improved mechanistic understanding of enhancer action. In this review we focus on computational methods for genome-wide definition of enhancer-target gene pairs. We outline the different classes of methods, as well as their main advantages and limitations. The types of information integrated by each method, along with details on their applicability are presented and discussed. We especially highlight the technical challenges that are still unresolved and hamper the effective achievement of a satisfactory and comprehensive solution. We expect this field will keep evolving in the coming years due to the ever-growing availability of data and increasing insights into enhancers crucial role in regulating genome functionality.
Collapse
Affiliation(s)
| | - Francesco Ferrari
- IFOM, The FIRC Institute of Molecular Oncology, Milan, Italy
- Institute of Molecular Genetics, National Research Council, Pavia, Italy
| |
Collapse
|
225
|
Abugessaisa I, Noguchi S, Hasegawa A, Kondo A, Kawaji H, Carninci P, Kasukawa T. refTSS: A Reference Data Set for Human and Mouse Transcription Start Sites. J Mol Biol 2019; 431:2407-2422. [DOI: 10.1016/j.jmb.2019.04.045] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 04/25/2019] [Accepted: 04/29/2019] [Indexed: 01/22/2023]
|
226
|
Boutwell BB, White MA. Gene regulation and the architecture of complex human traits in the genomics era. Curr Opin Psychol 2019; 27:93-97. [PMID: 30933894 PMCID: PMC10868639 DOI: 10.1016/j.copsyc.2019.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 02/27/2019] [Indexed: 10/27/2022]
Abstract
Virtually all human psychological and behavioral traits are at least partially heritable. For nearly a century, classical genetic studies have sought to understand how genetic variation contributes to human variation in these traits. More recently, genome-wide association studies have identified large numbers of specific genetic variants linked with complex traits. Many of these variants fall outside of protein-coding genes, in putative gene regulatory elements. This suggests that some fraction of causal human genetic variation acts through gene regulation. New developments in the field of regulatory genomics offer resources and methods to understand how genetic variants that alter gene expression contribute to human psychology and risk for psychiatric disease.
Collapse
Affiliation(s)
- Brian B Boutwell
- Criminology and Criminal Justice, Saint Louis University, 3550 Lindell Blvd., St. Louis, MO 63013, United States.
| | - Michael A White
- Department of Genetics and Edison Family Center for Genome Sciences and Systems Biology, Washington University in St. Louis School of Medicine, Couch Biomedical Research Building, St. Louis, MO 63110, United States
| |
Collapse
|
227
|
Imoto H, Okada M. Signal-dependent regulation of early-response genes and cell cycle: a quantitative view. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.coisb.2019.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
228
|
Roca-Ayats N, Martínez-Gil N, Cozar M, Gerousi M, Garcia-Giralt N, Ovejero D, Mellibovsky L, Nogués X, Díez-Pérez A, Grinberg D, Balcells S. Functional characterization of the C7ORF76 genomic region, a prominent GWAS signal for osteoporosis in 7q21.3. Bone 2019; 123:39-47. [PMID: 30878523 DOI: 10.1016/j.bone.2019.03.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/04/2019] [Accepted: 03/12/2019] [Indexed: 12/21/2022]
Abstract
Genome-wide association studies (GWAS) have repeatedly identified genetic variants associated with bone mineral density (BMD) and osteoporotic fracture in non-coding regions of C7ORF76, a poorly studied gene of unknown function. The aim of the present study was to elucidate the causality and molecular mechanisms underlying the association. We re-sequenced the genomic region in two extreme BMD groups from the BARCOS cohort of postmenopausal women to search for functionally relevant variants. Eight selected variants were tested for association in the complete cohort and 2 of them (rs4342521 and rs10085588) were found significantly associated with lumbar spine BMD and nominally associated with osteoporotic fracture. cis-eQTL analyses of these 2 SNPs, together with SNP rs4727338 (GWAS lead SNP in Estrada et al., Nat Genet. 44:491-501, 2012), performed in human primary osteoblasts, disclosed a statistically significant influence on the expression of the proximal neighbouring gene SLC25A13 and a tendency on the distal SHFM1. We then studied the functionality of a putative upstream regulatory element (UPE), containing rs10085588. Luciferase reporter assays showed transactivation capability with a strong allele-dependent effect. Finally, 4C-seq experiments in osteoblastic cell lines showed that the UPE interacted with different tissue-specific enhancers and a lncRNA (LOC100506136) in the region. In summary, this study is the first one to analyse in depth the functionality of C7ORF76 genomic region. We provide functional regulatory evidence for the rs10085588, which may be a causal SNP within the 7q21.3 GWAS signal for osteoporosis.
Collapse
Affiliation(s)
- Neus Roca-Ayats
- Department of Genetics, Microbiology and Statistics, Facultat de Biologia, Universitat de Barcelona, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, IBUB, IRSJD, Barcelona, Catalonia, Spain
| | - Núria Martínez-Gil
- Department of Genetics, Microbiology and Statistics, Facultat de Biologia, Universitat de Barcelona, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, IBUB, IRSJD, Barcelona, Catalonia, Spain
| | - Mónica Cozar
- Department of Genetics, Microbiology and Statistics, Facultat de Biologia, Universitat de Barcelona, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, IBUB, IRSJD, Barcelona, Catalonia, Spain
| | - Marina Gerousi
- Department of Genetics, Microbiology and Statistics, Facultat de Biologia, Universitat de Barcelona, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, IBUB, IRSJD, Barcelona, Catalonia, Spain
| | - Natàlia Garcia-Giralt
- Musculoskeletal Research Group, IMIM (Hospital del Mar Medical Research Institute), Centro de Investigación Biomédica en Red en Fragilidad y Envejecimiento Saludable (CIBERFES), ISCIII, Barcelona, Catalonia, Spain
| | - Diana Ovejero
- National Research Council, Institute of Clinical Physiology, Lecce, Italy
| | - Leonardo Mellibovsky
- Musculoskeletal Research Group, IMIM (Hospital del Mar Medical Research Institute), Centro de Investigación Biomédica en Red en Fragilidad y Envejecimiento Saludable (CIBERFES), ISCIII, Barcelona, Catalonia, Spain
| | - Xavier Nogués
- Musculoskeletal Research Group, IMIM (Hospital del Mar Medical Research Institute), Centro de Investigación Biomédica en Red en Fragilidad y Envejecimiento Saludable (CIBERFES), ISCIII, Barcelona, Catalonia, Spain
| | - Adolfo Díez-Pérez
- Musculoskeletal Research Group, IMIM (Hospital del Mar Medical Research Institute), Centro de Investigación Biomédica en Red en Fragilidad y Envejecimiento Saludable (CIBERFES), ISCIII, Barcelona, Catalonia, Spain
| | - Daniel Grinberg
- Department of Genetics, Microbiology and Statistics, Facultat de Biologia, Universitat de Barcelona, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, IBUB, IRSJD, Barcelona, Catalonia, Spain
| | - Susanna Balcells
- Department of Genetics, Microbiology and Statistics, Facultat de Biologia, Universitat de Barcelona, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, IBUB, IRSJD, Barcelona, Catalonia, Spain.
| |
Collapse
|
229
|
El Amrani K, Alanis-Lobato G, Mah N, Kurtz A, Andrade-Navarro MA. Detection of condition-specific marker genes from RNA-seq data with MGFR. PeerJ 2019; 7:e6970. [PMID: 31179178 PMCID: PMC6542349 DOI: 10.7717/peerj.6970] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 04/07/2019] [Indexed: 12/19/2022] Open
Abstract
The identification of condition-specific genes is key to advancing our understanding of cell fate decisions and disease development. Differential gene expression analysis (DGEA) has been the standard tool for this task. However, the amount of samples that modern transcriptomic technologies allow us to study, makes DGEA a daunting task. On the other hand, experiments with low numbers of replicates lack the statistical power to detect differentially expressed genes. We have previously developed MGFM, a tool for marker gene detection from microarrays, that is particularly useful in the latter case. Here, we have adapted the algorithm behind MGFM to detect markers in RNA-seq data. MGFR groups samples with similar gene expression levels and flags potential markers of a sample type if their highest expression values represent all replicates of this type. We have benchmarked MGFR against other methods and found that its proposed markers accurately characterize the functional identity of different tissues and cell types in standard and single cell RNA-seq datasets. Then, we performed a more detailed analysis for three of these datasets, which profile the transcriptomes of different human tissues, immune and human blastocyst cell types, respectively. MGFR’s predicted markers were compared to gold-standard lists for these datasets and outperformed the other marker detectors. Finally, we suggest novel candidate marker genes for the examined tissues and cell types. MGFR is implemented as a freely available Bioconductor package (https://doi.org/doi:10.18129/B9.bioc.MGFR), which facilitates its use and integration with bioinformatics pipelines.
Collapse
Affiliation(s)
- Khadija El Amrani
- Berlin Brandenburg Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | - Nancy Mah
- Berlin Brandenburg Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Andreas Kurtz
- Berlin Brandenburg Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | |
Collapse
|
230
|
de Lara JCF, Arzate-Mejía RG, Recillas-Targa F. Enhancer RNAs: Insights Into Their Biological Role. Epigenet Insights 2019; 12:2516865719846093. [PMID: 31106290 PMCID: PMC6505235 DOI: 10.1177/2516865719846093] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 04/04/2019] [Indexed: 12/15/2022] Open
Abstract
Enhancers play a central role in the transcriptional regulation of metazoans. Almost a decade ago, the discovery of their pervasive transcription into noncoding RNAs, termed enhancer RNAs (eRNAs), opened a whole new field of study. The presence of eRNAs correlates with enhancer activity; however, whether they act as functional molecules remains controversial. Here we review direct experimental evidence supporting a functional role of eRNAs in transcription and provide a general pipeline that could help in the design of experimental approaches to investigate the function of eRNAs. We propose that induction of transcriptional activity at enhancers promotes an increase in its activity by an RNA-mediated titration of regulatory proteins that can impact different processes like chromatin accessibility or chromatin looping. In a few cases, transcripts originating from enhancers have acquired specific molecular functions to regulate gene expression. We speculate that these transcripts are either nonannotated long noncoding RNAs (lncRNAs) or are evolving toward functional lncRNAs. Further work will be needed to comprehend better the biological activity of these transcripts.
Collapse
Affiliation(s)
- Josué Cortés-Fernández de Lara
- Departamento de Genética Molecular, Instituto de
Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México,
México
| | - Rodrigo G Arzate-Mejía
- Departamento de Genética Molecular, Instituto de
Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México,
México
| | - Félix Recillas-Targa
- Departamento de Genética Molecular, Instituto de
Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México,
México
| |
Collapse
|
231
|
Melia T, Waxman DJ. Sex-Biased lncRNAs Inversely Correlate With Sex-Opposite Gene Coexpression Networks in Diversity Outbred Mouse Liver. Endocrinology 2019; 160:989-1007. [PMID: 30840070 PMCID: PMC6449536 DOI: 10.1210/en.2018-00949] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 02/27/2019] [Indexed: 01/05/2023]
Abstract
Sex differences in liver gene expression are determined by pituitary growth hormone secretion patterns, which regulate sex-dependent liver transcription factors and establish sex-specific chromatin states. Hypophysectomy (hypox) identifies two major classes of liver sex-biased genes, defined by their sex-dependent positive or negative responses to pituitary hormone ablation. However, the mechanisms that underlie each hypox-response class are unknown. We sought to discover candidate, regulatory, long noncoding RNAs (lncRNAs) controlling responsiveness to hypox. We characterized gene structures and expression patterns for 15,558 mouse liver-expressed lncRNAs, including many sex-specific lncRNAs regulated during postnatal development or subject to circadian regulation. Using the high natural allelic variance of Diversity Outbred (DO) mice, we discovered tightly coexpressed clusters of sex-specific protein-coding genes (gene modules) in male and female DO liver. Remarkably, many gene modules were strongly enriched for sex-specific genes within a single hypox-response class, indicating that the genetic heterogeneity of DO mice encompasses responsiveness to hypox. Moreover, several distant gene modules were enriched for gene subsets of the same hypox-response class, highlighting the complex regulation of hypox-responsiveness. Finally, we identified eight sex-specific lncRNAs with strong negative regulatory potential, as indicated by their strong negative correlation of expression across DO mouse livers with that of protein-coding gene modules enriched for genes of the opposite sex bias and inverse hypox-response class. These findings reveal an important role for genetic factors in regulating responsiveness to hypox, and present testable hypotheses for the roles of sex-biased liver lncRNAs in controlling the sex-bias of liver gene expression.
Collapse
Affiliation(s)
- Tisha Melia
- Department of Biology and Bioinformatics Program, Boston University, Boston, Massachusetts
| | - David J Waxman
- Department of Biology and Bioinformatics Program, Boston University, Boston, Massachusetts
- Correspondence: David J. Waxman, PhD, Department of Biology, Boston University, 5 Cummington Mall, Boston, Massachusetts 02215. E-mail:
| |
Collapse
|
232
|
Bott CJ, Johnson CG, Yap CC, Dwyer ND, Litwa KA, Winckler B. Nestin in immature embryonic neurons affects axon growth cone morphology and Semaphorin3a sensitivity. Mol Biol Cell 2019; 30:1214-1229. [PMID: 30840538 PMCID: PMC6724523 DOI: 10.1091/mbc.e18-06-0361] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 02/21/2019] [Accepted: 02/26/2019] [Indexed: 12/14/2022] Open
Abstract
Correct wiring in the neocortex requires that responses to an individual guidance cue vary among neurons in the same location, and within the same neuron over time. Nestin is an atypical intermediate filament expressed strongly in neural progenitors and is thus used widely as a progenitor marker. Here we show a subpopulation of embryonic cortical neurons that transiently express nestin in their axons. Nestin expression is thus not restricted to neural progenitors, but persists for 2-3 d at lower levels in newborn neurons. We found that nestin-expressing neurons have smaller growth cones, suggesting that nestin affects cytoskeletal dynamics. Nestin, unlike other intermediate filament subtypes, regulates cdk5 kinase by binding the cdk5 activator p35. Cdk5 activity is induced by the repulsive guidance cue Semaphorin3a (Sema3a), leading to axonal growth cone collapse in vitro. Therefore, we tested whether nestin-expressing neurons showed altered responses to Sema3a. We find that nestin-expressing newborn neurons are more sensitive to Sema3a in a roscovitine-sensitive manner, whereas nestin knockdown results in lowered sensitivity to Sema3a. We propose that nestin functions in immature neurons to modulate cdk5 downstream of the Sema3a response. Thus, the transient expression of nestin could allow temporal and/or spatial modulation of a neuron's response to Sema3a, particularly during early axon guidance.
Collapse
Affiliation(s)
- C. J. Bott
- Department of Cell Biology, University of Virginia, Charlottesville, VA 22908
| | - C. G. Johnson
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27834
| | - C. C. Yap
- Department of Cell Biology, University of Virginia, Charlottesville, VA 22908
| | - N. D. Dwyer
- Department of Cell Biology, University of Virginia, Charlottesville, VA 22908
| | - K. A. Litwa
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27834
| | - B. Winckler
- Department of Cell Biology, University of Virginia, Charlottesville, VA 22908
| |
Collapse
|
233
|
Competitive endogenous RNA is an intrinsic component of EMT regulatory circuits and modulates EMT. Nat Commun 2019; 10:1637. [PMID: 30967542 PMCID: PMC6456586 DOI: 10.1038/s41467-019-09649-1] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 03/15/2019] [Indexed: 12/26/2022] Open
Abstract
The competitive endogenous RNA (ceRNA) hypothesis suggests an intrinsic mechanism to regulate biological processes. However, whether the dynamic changes of ceRNAs can modulate miRNA activities remains controversial. Here, we examine the dynamics of ceRNAs during TGF-β-induced epithelial-to-mesenchymal transition (EMT). We observe that TGFBI, a transcript highly induced during EMT in A549 cells, acts as the ceRNA for miR-21 to modulate EMT. We further identify FN1 as the ceRNA for miR-200c in the canonical SNAIL-ZEB-miR200 circuit in MCF10A cells. Experimental assays and computational simulations demonstrate that the dynamically induced ceRNAs are directly coupled with the canonical double negative feedback loops and are critical to the induction of EMT. These results help to establish the relevance of ceRNA in cancer EMT and suggest that ceRNA is an intrinsic component of the EMT regulatory circuit and may represent a potential target to disrupt EMT during tumorigenesis. Competitive endogenous RNAs help to regulate biological processes by regulating miRNA activity levels. Here the author show TGFBI acts as a ceRNA for miR-21 in the epithelial-to-mesenchymal transition.
Collapse
|
234
|
Göschl L, Scheinecker C, Bonelli M. Treg cells in autoimmunity: from identification to Treg-based therapies. Semin Immunopathol 2019; 41:301-314. [PMID: 30953162 DOI: 10.1007/s00281-019-00741-8] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 03/22/2019] [Indexed: 12/27/2022]
Abstract
Regulatory (Treg) cells are key regulators of inflammation and important for immune tolerance and homeostasis. A major progress has been made in the identification and classification of Treg cells. Due to technological advances, we have gained deep insights in the epigenetic regulation of Treg cells. The use of fate reporter mice allowed addressing the functional consequences of loss of Foxp3 expression. Depending on the environment Treg cells gain effector functions upon loss of Foxp3 expression. However, the traditional view that Treg cells become necessarily pathogenic by gaining effector functions was challenged by recent findings and supports the notion of Treg cell lineage plasticity. Treg cell stability is also a major issue for Treg cell therapies. Clinical trials are designed to use polyclonal Treg cells as therapeutic tools. Here, we summarize the role of Treg cells in selected autoimmune diseases and recent advances in the field of Treg targeted therapies.
Collapse
Affiliation(s)
- Lisa Göschl
- Internal Medicine III, Division of Rheumatology, Medical University of Vienna, Vienna, Austria
| | - Clemens Scheinecker
- Internal Medicine III, Division of Rheumatology, Medical University of Vienna, Vienna, Austria
| | - Michael Bonelli
- Internal Medicine III, Division of Rheumatology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
235
|
Tamgue O, Gcanga L, Ozturk M, Whitehead L, Pillay S, Jacobs R, Roy S, Schmeier S, Davids M, Medvedeva YA, Dheda K, Suzuki H, Brombacher F, Guler R. Differential Targeting of c-Maf, Bach-1, and Elmo-1 by microRNA-143 and microRNA-365 Promotes the Intracellular Growth of Mycobacterium tuberculosis in Alternatively IL-4/IL-13 Activated Macrophages. Front Immunol 2019; 10:421. [PMID: 30941122 PMCID: PMC6433885 DOI: 10.3389/fimmu.2019.00421] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 02/18/2019] [Indexed: 12/17/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) can subvert the host defense by skewing macrophage activation toward a less microbicidal alternative activated state to avoid classical effector killing functions. Investigating the molecular basis of this evasion mechanism could uncover potential candidates for host directed therapy against tuberculosis (TB). A limited number of miRNAs have recently been shown to regulate host-mycobacterial interactions. Here, we performed time course kinetics experiments on bone marrow-derived macrophages (BMDMs) and human monocyte-derived macrophages (MDMs) alternatively activated with IL-4, IL-13, or a combination of IL-4/IL-13, followed by infection with Mtb clinical Beijing strain HN878. MiR-143 and miR-365 were highly induced in Mtb-infected M(IL-4/IL-13) BMDMs and MDMs. Knockdown of miR-143 and miR-365 using antagomiRs decreased the intracellular growth of Mtb HN878, reduced the production of IL-6 and CCL5 and promoted the apoptotic death of Mtb HN878-infected M(IL-4/IL-13) BMDMs. Computational target prediction identified c-Maf, Bach-1 and Elmo-1 as potential targets for both miR-143 and miR-365. Functional validation using luciferase assay, RNA-pulldown assay and Western blotting revealed that c-Maf and Bach-1 are directly targeted by miR-143 while c-Maf, Bach-1, and Elmo-1 are direct targets of miR-365. Knockdown of c-Maf using GapmeRs promoted intracellular Mtb growth when compared to control treated M(IL-4/IL-13) macrophages. Meanwhile, the blocking of Bach-1 had no effect and blocking Elmo-1 resulted in decreased Mtb growth. Combination treatment of M(IL-4/IL-13) macrophages with miR-143 mimics or miR-365 mimics and c-Maf, Bach-1, or Elmo-1 gene-specific GapmeRs restored Mtb growth in miR-143 mimic-treated groups and enhanced Mtb growth in miR-365 mimics-treated groups, thus suggesting the Mtb growth-promoting activities of miR-143 and miR-365 are mediated at least partially through interaction with c-Maf, Bach-1, and Elmo-1. We further show that knockdown of miR-143 and miR-365 in M(IL-4/IL-13) BMDMs decreased the expression of HO-1 and IL-10 which are known targets of Bach-1 and c-Maf, respectively, with Mtb growth-promoting activities in macrophages. Altogether, our work reports a host detrimental role of miR-143 and miR-365 during Mtb infection and highlights for the first time the role and miRNA-mediated regulation of c-Maf, Bach-1, and Elmo-1 in Mtb-infected M(IL-4/IL-13) macrophages.
Collapse
Affiliation(s)
- Ousman Tamgue
- International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Cape Town, South Africa
- Division of Immunology and South African Medical Research Council Immunology of Infectious Diseases, Department of Pathology, Faculty of Health Sciences, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Department of Biochemistry, Faculty of Sciences, University of Douala, Douala, Cameroon
| | - Lorna Gcanga
- International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Cape Town, South Africa
- Division of Immunology and South African Medical Research Council Immunology of Infectious Diseases, Department of Pathology, Faculty of Health Sciences, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Mumin Ozturk
- International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Cape Town, South Africa
- Division of Immunology and South African Medical Research Council Immunology of Infectious Diseases, Department of Pathology, Faculty of Health Sciences, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Lauren Whitehead
- International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Cape Town, South Africa
- Division of Immunology and South African Medical Research Council Immunology of Infectious Diseases, Department of Pathology, Faculty of Health Sciences, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Shandre Pillay
- International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Cape Town, South Africa
- Division of Immunology and South African Medical Research Council Immunology of Infectious Diseases, Department of Pathology, Faculty of Health Sciences, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Raygaana Jacobs
- International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Cape Town, South Africa
- Division of Immunology and South African Medical Research Council Immunology of Infectious Diseases, Department of Pathology, Faculty of Health Sciences, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Sugata Roy
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Sebastian Schmeier
- Institute of Natural and Mathematical Sciences, Massey University, Auckland, New Zealand
| | - Malika Davids
- Centre for Lung Infection and Immunity, Department of Medicine and UCT Lung Institute, Division of Pulmonology, University of Cape Town, Cape Town, South Africa
| | - Yulia A. Medvedeva
- Research Center of Biotechnology, Institute of Bioengineering, Russian Academy of Science, Moscow, Russia
- Department of Computational Biology, Vavilov Institute of General Genetics, Russian Academy of Science, Moscow, Russia
- Department of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Keertan Dheda
- Centre for Lung Infection and Immunity, Department of Medicine and UCT Lung Institute, Division of Pulmonology, University of Cape Town, Cape Town, South Africa
- Faculty of Infectious and Tropical Diseases, Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Harukazu Suzuki
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Frank Brombacher
- International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Cape Town, South Africa
- Division of Immunology and South African Medical Research Council Immunology of Infectious Diseases, Department of Pathology, Faculty of Health Sciences, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Faculty of Health Sciences, Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Reto Guler
- International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Cape Town, South Africa
- Division of Immunology and South African Medical Research Council Immunology of Infectious Diseases, Department of Pathology, Faculty of Health Sciences, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Faculty of Health Sciences, Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
236
|
Tan Y, Jin C, Ma W, Hu Y, Tanasa B, Oh S, Gamliel A, Ma Q, Yao L, Zhang J, Ohgi K, Liu W, Aggarwal AK, Rosenfeld MG. Dismissal of RNA Polymerase II Underlies a Large Ligand-Induced Enhancer Decommissioning Program. Mol Cell 2019; 71:526-539.e8. [PMID: 30118678 PMCID: PMC6149533 DOI: 10.1016/j.molcel.2018.07.039] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 05/10/2018] [Accepted: 07/26/2018] [Indexed: 12/20/2022]
Abstract
Nuclear receptors induce both transcriptional activation and repression programs responsible for development, homeostasis, and disease. Here, we report a previously overlooked enhancer decommissioning strategy underlying a large estrogen receptor alpha (ERα)-dependent transcriptional repression program. The unexpected signature for this E2-induced program resides in indirect recruitment of ERα to a large cohort of pioneer factor basally active FOXA1-bound enhancers that lack cognate ERα DNA-binding elements. Surprisingly, these basally active estrogen-repressed (BAER) enhancers are decommissioned by ERα-dependent recruitment of the histone demethylase KDM2A, functioning independently of its demethylase activity. Rather, KDM2A tethers the E3 ubiquitin-protein ligase NEDD4 to ubiquitylate/dismiss Pol II to abrogate eRNA transcription, with consequent target gene downregulation. Thus, our data reveal that Pol II ubiquitylation/dismissal may serve as a potentially broad strategy utilized by indirectly bound nuclear receptors to abrogate large programs of pioneer factor-mediated, eRNA-producing enhancers.
Collapse
Affiliation(s)
- Yuliang Tan
- Howard Hughes Medical Institute, Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Chunyu Jin
- Howard Hughes Medical Institute, Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Wubin Ma
- Howard Hughes Medical Institute, Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Yiren Hu
- Howard Hughes Medical Institute, Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Bogdan Tanasa
- Stanford University School of Medicine, 265 Campus Drive, LLSCR Building, Stanford, CA 94305, USA
| | - Soohwan Oh
- Howard Hughes Medical Institute, Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Biological Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Amir Gamliel
- Howard Hughes Medical Institute, Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Qi Ma
- Howard Hughes Medical Institute, Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Lu Yao
- Howard Hughes Medical Institute, Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Breast Center, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Jie Zhang
- Howard Hughes Medical Institute, Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Kenny Ohgi
- Howard Hughes Medical Institute, Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Wen Liu
- Howard Hughes Medical Institute, Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Aneel K Aggarwal
- Department of Structural and Chemical Biology, Mount Sinai School of Medicine, Box 1677, 1425 Madison Avenue, New York, NY 10029, USA
| | - Michael G Rosenfeld
- Howard Hughes Medical Institute, Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| |
Collapse
|
237
|
Pugh CA, Farrell LL, Carlisle AJ, Bush SJ, Ewing A, Trejo-Reveles V, Matika O, de Kloet A, Walsh C, Bishop SC, Prendergast JGD, Rainger J, Schoenebeck JJ, Summers KM. Arginine to Glutamine Variant in Olfactomedin Like 3 ( OLFML3) Is a Candidate for Severe Goniodysgenesis and Glaucoma in the Border Collie Dog Breed. G3 (BETHESDA, MD.) 2019; 9:943-954. [PMID: 30696701 PMCID: PMC6404605 DOI: 10.1534/g3.118.200944] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 01/19/2019] [Indexed: 12/23/2022]
Abstract
Goniodysgenesis is a developmental abnormality of the anterior chamber of the eye. It is generally considered to be congenital in dogs (Canis lupus familiaris), and has been associated with glaucoma and blindness. Goniodysgenesis and early-onset glaucoma initially emerged in Border Collies in Australia in the late 1990s and have subsequently been found in this breed in Europe and the USA. The objective of the present study was to determine the genetic basis of goniodysgenesis in Border Collies. Clinical diagnosis was based on results of examinations by veterinary ophthalmologists of affected and unaffected dogs from eleven different countries. Genotyping using the Illumina high density canine single nucleotide variant genotyping chip was used to identify a candidate genetic region. There was a highly significant peak of association over chromosome 17, with a p-value of 2 × 10-13 Expression profiles and evolutionary conservation of candidate genes were assessed using public databases. Whole genome sequences of three dogs with glaucoma, three severely affected by goniodysgenesis and three unaffected dogs identified a missense variant in the olfactomedin like 3 (OLFML3) gene in all six affected animals. This was homozygous for the risk allele in all nine cases with glaucoma and 12 of 14 other severely affected animals. Of 67 reportedly unaffected animals, only one was homozygous for this variant (offspring of parents both with goniodysgenesis who were also homozygous for the variant). Analysis of pedigree information was consistent with an autosomal recessive mode of inheritance for severe goniodysgenesis (potentially leading to glaucoma) in this breed. The identification of a candidate genetic region and putative causative variant will aid breeders to reduce the frequency of goniodysgenesis and the risk of glaucoma in the Border Collie population.
Collapse
Affiliation(s)
- Carys A Pugh
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, Easter Bush, EH25 9RG, United Kingdom
| | - Lindsay L Farrell
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, Easter Bush, EH25 9RG, United Kingdom
| | - Ailsa J Carlisle
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, Easter Bush, EH25 9RG, United Kingdom
| | - Stephen J Bush
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, Easter Bush, EH25 9RG, United Kingdom
- Nuffield Department of Clinical Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, United Kingdom
| | - Adam Ewing
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, Qld 4102, Australia
| | - Violeta Trejo-Reveles
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, Easter Bush, EH25 9RG, United Kingdom
| | - Oswald Matika
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, Easter Bush, EH25 9RG, United Kingdom
| | - Arne de Kloet
- Animal Genetics, 1336 Timberlane Rd, Tallahassee, FL 32312
| | - Caitlin Walsh
- Animal Genetics, 1336 Timberlane Rd, Tallahassee, FL 32312
| | - Stephen C Bishop
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, Easter Bush, EH25 9RG, United Kingdom
| | - James G D Prendergast
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, Easter Bush, EH25 9RG, United Kingdom
| | - Joe Rainger
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, Easter Bush, EH25 9RG, United Kingdom
| | - Jeffrey J Schoenebeck
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, Easter Bush, EH25 9RG, United Kingdom
| | - Kim M Summers
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, Easter Bush, EH25 9RG, United Kingdom
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, Qld 4102, Australia
| |
Collapse
|
238
|
Wang H, Wu P. Prediction of RNA-protein interactions using conjoint triad feature and chaos game representation. Bioengineered 2019; 9:242-251. [PMID: 30117758 PMCID: PMC6984769 DOI: 10.1080/21655979.2018.1470721] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
RNA-protein interactions (RPIs) play a very important role in a wide range of post-transcriptional regulations, and identifying whether a given RNA-protein pair can form interactions or not is a vital prerequisite for dissecting the regulatory mechanisms of functional RNAs. Currently, expensive and time-consuming biological assays can only determine a very small portion of all RPIs, which calls for computational approaches to help biologists efficiently and correctly find candidate RPIs. Here, we integrated a successful computing algorithm, conjoint triad feature (CTF), and another method, chaos game representation (CGR), for representing RNA-protein pairs and by doing so developed a prediction model based on these representations and random forest (RF) classifiers. When testing two benchmark datasets, RPI369 and RPI2241, the combined method (CTF+CGR) showed some superiority compared with four existing tools. Especially on RPI2241, the CTF+CGR method improved prediction accuracy (ACC) from 0.91 (the best record of all published works) to 0.95. When independently testing a newly constructed dataset, RPI1449, which only contained experimentally validated RPIs released between 2014 and 2016, our method still showed some generalization capability with an ACC of 0.75. Accordingly, we believe that our hybrid CTF+CGR method will be an important tool for predicting RPIs in the future.
Collapse
Affiliation(s)
- Hongchu Wang
- a Department of Mathematics , South China Normal University , Guangzhou P.R. of China
| | - Pengfei Wu
- b College of Informatics , Huazhong Agricultural University , Wuhan P.R. of China
| |
Collapse
|
239
|
Thodberg M, Thieffry A, Bornholdt J, Boyd M, Holmberg C, Azad A, Workman CT, Chen Y, Ekwall K, Nielsen O, Sandelin A. Comprehensive profiling of the fission yeast transcription start site activity during stress and media response. Nucleic Acids Res 2019; 47:1671-1691. [PMID: 30566651 PMCID: PMC6393241 DOI: 10.1093/nar/gky1227] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 11/09/2018] [Accepted: 11/26/2018] [Indexed: 12/11/2022] Open
Abstract
Fission yeast, Schizosaccharomyces pombe, is an attractive model organism for transcriptional and chromatin biology research. Such research is contingent on accurate annotation of transcription start sites (TSSs). However, comprehensive genome-wide maps of TSSs and their usage across commonly applied laboratory conditions and treatments for S. pombe are lacking. To this end, we profiled TSS activity genome-wide in S. pombe cultures exposed to heat shock, nitrogen starvation, hydrogen peroxide and two commonly applied media, YES and EMM2, using Cap Analysis of Gene Expression (CAGE). CAGE-based annotation of TSSs is substantially more accurate than existing PomBase annotation; on average, CAGE TSSs fall 50-75 bp downstream of PomBase TSSs and co-localize with nucleosome boundaries. In contrast to higher eukaryotes, dispersed TSS distributions are not common in S. pombe. Our data recapitulate known S. pombe stress expression response patterns and identify stress- and media-responsive alternative TSSs. Notably, alteration of growth medium induces changes of similar magnitude as some stressors. We show a link between nucleosome occupancy and genetic variation, and that the proximal promoter region is genetically diverse between S. pombe strains. Our detailed TSS map constitutes a central resource for S. pombe gene regulation research.
Collapse
Affiliation(s)
- Malte Thodberg
- Department of Biology and Biotech Research and Innovation Centre, The Bioinformatics Centre, University of Copenhagen, DK2100 Copenhagen N, Denmark
| | - Axel Thieffry
- Department of Biology and Biotech Research and Innovation Centre, The Bioinformatics Centre, University of Copenhagen, DK2100 Copenhagen N, Denmark
| | - Jette Bornholdt
- Department of Biology and Biotech Research and Innovation Centre, The Bioinformatics Centre, University of Copenhagen, DK2100 Copenhagen N, Denmark
| | - Mette Boyd
- Department of Biology and Biotech Research and Innovation Centre, The Bioinformatics Centre, University of Copenhagen, DK2100 Copenhagen N, Denmark
| | - Christian Holmberg
- Department of Biology, Cell cycle and genome stability Group, University of Copenhagen, DK2100 Copenhagen N, Denmark
| | - Ajuna Azad
- Department of Biology and Biotech Research and Innovation Centre, The Bioinformatics Centre, University of Copenhagen, DK2100 Copenhagen N, Denmark
| | - Christopher T Workman
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK2800 Kongens Lyngby, Denmark
| | - Yun Chen
- Department of Biology and Biotech Research and Innovation Centre, The Bioinformatics Centre, University of Copenhagen, DK2100 Copenhagen N, Denmark
| | - Karl Ekwall
- Department of Biosciences and Nutrition, Karolinska Institute, SE14183 Huddinge, Sweden
| | - Olaf Nielsen
- Department of Biology, Cell cycle and genome stability Group, University of Copenhagen, DK2100 Copenhagen N, Denmark
| | - Albin Sandelin
- Department of Biology and Biotech Research and Innovation Centre, The Bioinformatics Centre, University of Copenhagen, DK2100 Copenhagen N, Denmark
| |
Collapse
|
240
|
Epigenetic control of early dendritic cell lineage specification by the transcription factor IRF8 in mice. Blood 2019; 133:1803-1813. [PMID: 30796024 DOI: 10.1182/blood-2018-06-857789] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 02/13/2019] [Indexed: 01/04/2023] Open
Abstract
Dendritic cells (DCs), which are vital for immune responses, are derived from bone marrow hematopoietic stem cells via common DC progenitors (CDPs). DC lineage fate decisions occurring at stages much earlier than CDPs have recently been recognized, yet the mechanism remains elusive. By single-cell RNA-sequencing, in vivo cell transfer experiments, and an assay for transposase-accessible chromatin sequencing using wild-type, IRF8-GFP chimera knock-in or IRF8-knockout mice, we demonstrate that IRF8 regulates chromatin at the lymphoid-primed multipotent progenitor (LMPP) stage to induce early commitment toward DCs. A low but significant expression of IRF8, a transcription factor essential for DC and monocyte development, was initiated in a subpopulation within LMPPs. These IRF8+ LMPPs were derived from IRF8- LMPPs and predominantly produced DCs, especially classical DC1s, potentially via known progenitors, such as monocyte-DC progenitors, CDPs, and preclassical DCs. IRF8+ LMPPs did not generate significant numbers of monocytes, neutrophils, or lymphocytes. Although IRF8- and IRF8+ LMPPs displayed very similar global gene expression patterns, the chromatin of enhancers near DC lineage genes was more accessible in IRF8+ LMPPs than in IRF8- LMPPs, an epigenetic change dependent on IRF8. The majority of the genes epigenetically primed by IRF8 were still transcriptionally inactive at the LMPP stage, but were highly expressed in the downstream DC lineage populations such as CDPs. Therefore, early expression of the key transcription factor IRF8 changes chromatin states in otherwise multipotent progenitors, biasing their fate decision toward DCs.
Collapse
|
241
|
Twenty-Seven Tamoxifen-Inducible iCre-Driver Mouse Strains for Eye and Brain, Including Seventeen Carrying a New Inducible-First Constitutive-Ready Allele. Genetics 2019; 211:1155-1177. [PMID: 30765420 PMCID: PMC6456315 DOI: 10.1534/genetics.119.301984] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 02/11/2019] [Indexed: 12/25/2022] Open
Abstract
To understand gene function, the cre/loxP conditional system is the most powerful available for temporal and spatial control of expression in mouse. However, the research community requires more cre recombinase expressing transgenic mouse strains (cre-drivers) that restrict expression to specific cell types. To address these problems, a high-throughput method for large-scale production that produces high-quality results is necessary. Further, endogenous promoters need to be chosen that drive cell type specific expression, or we need to further focus the expression by manipulating the promoter. Here we test the suitability of using knock-ins at the docking site 5′ of Hprt for rapid development of numerous cre-driver strains focused on expression in adulthood, using an improved cre tamoxifen inducible allele (icre/ERT2), and testing a novel inducible-first, constitutive-ready allele (icre/f3/ERT2/f3). In addition, we test two types of promoters either to capture an endogenous expression pattern (MaxiPromoters), or to restrict expression further using minimal promoter element(s) designed for expression in restricted cell types (MiniPromoters). We provide new cre-driver mouse strains with applicability for brain and eye research. In addition, we demonstrate the feasibility and applicability of using the locus 5′ of Hprt for the rapid generation of substantial numbers of cre-driver strains. We also provide a new inducible-first constitutive-ready allele to further speed cre-driver generation. Finally, all these strains are available to the research community through The Jackson Laboratory.
Collapse
|
242
|
Sima J, Chakraborty A, Dileep V, Michalski M, Klein KN, Holcomb NP, Turner JL, Paulsen MT, Rivera-Mulia JC, Trevilla-Garcia C, Bartlett DA, Zhao PA, Washburn BK, Nora EP, Kraft K, Mundlos S, Bruneau BG, Ljungman M, Fraser P, Ay F, Gilbert DM. Identifying cis Elements for Spatiotemporal Control of Mammalian DNA Replication. Cell 2019; 176:816-830.e18. [PMID: 30595451 PMCID: PMC6546437 DOI: 10.1016/j.cell.2018.11.036] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 10/01/2018] [Accepted: 11/21/2018] [Indexed: 01/09/2023]
Abstract
The temporal order of DNA replication (replication timing [RT]) is highly coupled with genome architecture, but cis-elements regulating either remain elusive. We created a series of CRISPR-mediated deletions and inversions of a pluripotency-associated topologically associating domain (TAD) in mouse ESCs. CTCF-associated domain boundaries were dispensable for RT. CTCF protein depletion weakened most TAD boundaries but had no effect on RT or A/B compartmentalization genome-wide. By contrast, deletion of three intra-TAD CTCF-independent 3D contact sites caused a domain-wide early-to-late RT shift, an A-to-B compartment switch, weakening of TAD architecture, and loss of transcription. The dispensability of TAD boundaries and the necessity of these "early replication control elements" (ERCEs) was validated by deletions and inversions at additional domains. Our results demonstrate that discrete cis-regulatory elements orchestrate domain-wide RT, A/B compartmentalization, TAD architecture, and transcription, revealing fundamental principles linking genome structure and function.
Collapse
Affiliation(s)
- Jiao Sima
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | | | - Vishnu Dileep
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Marco Michalski
- Nuclear Dynamics Program, The Babraham Institute, Cambridge CB22 3AT, UK
| | - Kyle N Klein
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Nicolas P Holcomb
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Jesse L Turner
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Michelle T Paulsen
- Departments of Radiation Oncology and Environmental Health Sciences, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | | | | - Daniel A Bartlett
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Peiyao A Zhao
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Brian K Washburn
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Elphège P Nora
- Gladstone Institute of Cardiovascular Disease and Roddenberry Center for Stem Cell Biology and Medicine, San Francisco, CA 94158, USA
| | - Katerina Kraft
- Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany; Institute for Medical and Human Genetics, Charité Universitäts Medizin Berlin, 13353 Berlin, Germany
| | - Stefan Mundlos
- Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany; Institute for Medical and Human Genetics, Charité Universitäts Medizin Berlin, 13353 Berlin, Germany
| | - Benoit G Bruneau
- Gladstone Institute of Cardiovascular Disease and Roddenberry Center for Stem Cell Biology and Medicine, San Francisco, CA 94158, USA; Department of Pediatrics, Cardiovascular Research Institute, University of California at San Francisco, San Francisco, CA 94158, USA; Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Mats Ljungman
- Departments of Radiation Oncology and Environmental Health Sciences, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Peter Fraser
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA; Nuclear Dynamics Program, The Babraham Institute, Cambridge CB22 3AT, UK
| | - Ferhat Ay
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA; UC San Diego, School of Medicine, La Jolla, CA 92037, USA
| | - David M Gilbert
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA.
| |
Collapse
|
243
|
Transcription-driven chromatin repression of Intragenic transcription start sites. PLoS Genet 2019; 15:e1007969. [PMID: 30707695 PMCID: PMC6373976 DOI: 10.1371/journal.pgen.1007969] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 02/13/2019] [Accepted: 01/16/2019] [Indexed: 12/31/2022] Open
Abstract
Progression of RNA polymerase II (RNAPII) transcription relies on the appropriately positioned activities of elongation factors. The resulting profile of factors and chromatin signatures along transcription units provides a “positional information system” for transcribing RNAPII. Here, we investigate a chromatin-based mechanism that suppresses intragenic initiation of RNAPII transcription. We demonstrate that RNAPII transcription across gene promoters represses their function in plants. This repression is characterized by reduced promoter-specific molecular signatures and increased molecular signatures associated with RNAPII elongation. The conserved FACT histone chaperone complex is required for this repression mechanism. Genome-wide Transcription Start Site (TSS) mapping reveals thousands of discrete intragenic TSS positions in fact mutants, including downstream promoters that initiate alternative transcript isoforms. We find that histone H3 lysine 4 mono-methylation (H3K4me1), an Arabidopsis RNAPII elongation signature, is enriched at FACT-repressed intragenic TSSs. Our analyses suggest that FACT is required to repress intragenic TSSs at positions that are in part characterized by elevated H3K4me1 levels. In sum, conserved and plant-specific chromatin features correlate with the co-transcriptional repression of intragenic TSSs. Our insights into TSS repression by RNAPII transcription promise to inform the regulation of alternative transcript isoforms and the characterization of gene regulation through the act of pervasive transcription across eukaryotic genomes. Genes represent DNA elements that are transcribed into mRNA. However, the position where transcription actually starts can be dynamically regulated to expand the diversity of RNA isoforms produced from a single gene. Functionally, alternative Transcription Start Sites (TSSs) may generate protein isoforms with differing N-terminal regions and distinct cellular functions. In plants, light signaling regulates protein isoforms largely through regulated TSS selection, emphasizing the biological significance of this mechanism. Despite the importance of alternative TSS selection, little is known about the underlying molecular mechanisms. Here, we characterize for the first time how transcription initiation from an upstream promoter represses alternative downstream promoter activity in plants. This repression mechanism is associated with chromatin changes that are required to maintain precise gene expression control. Specific chromatin signatures are established during transcription via dynamic interactions between the transcription machinery and associated factors. The conserved histone chaperone complex FACT is one such factor involved in regulating the chromatin environment along genes during transcription. We find that mutant plants with reduced FACT activity specifically initiate transcription from thousands of intragenic positions, thus expanding RNA isoform diversity. Overall, our study reveals conserved and plant-specific chromatin features associated with the co-transcriptional repression of downstream intragenic TSSs. These findings promise to help inform the molecular mechanism underlying environmentally-triggered TSS regulation in plants.
Collapse
|
244
|
Santiago FS, Sanchez-Guerrero E, Zhang G, Zhong L, Raftery MJ, Khachigian LM. Extracellular signal-regulated kinase-1 phosphorylates early growth response-1 at serine 26. Biochem Biophys Res Commun 2019; 510:345-351. [PMID: 30711252 DOI: 10.1016/j.bbrc.2019.01.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 01/04/2019] [Indexed: 11/30/2022]
Abstract
Egr-1, an immediate-early gene product and master regulator was originally described as a phosphoprotein following its discovery in the 1980s. However specific residue(s) phosphorylated in Egr-1 remain elusive. Here we phosphorylated recombinant Egr-1 in vitro with ERK1 prior to mass spectrometry, which identified phosphorylation of Ser12 and Ser26 with the latter ∼12 times more abundant than Ser12. Phosphorylation of wild-type recombinant Egr-1 (as compared with Ser26>Ala26 mutant Egr-1) revealed that Ser26 accounts for the majority of phosphorylation of Egr-1 by ERK1. N-FGSFPH(pS)PTMDNYC-C was used as an antigen to generate mouse monoclonal antibodies (pS26 MAb). pS26 MAb recognised ERK1-phosphorylated Egr-1 but not Egr-1 bearing a point mutation at Ser26. pS26 MAb recognised inducible ∼75 kDa and 100 kDa species in nuclear extracts of cells exposed to FGF-2. Peptide blocking revealed both inducible species were phosphosite-specific. Immunoprecipitation of nuclear extracts of cells exposed to FGF-2 with pS26 MAb followed by SDS-PAGE and mass spectrometry identified Egr-1 sequences corresponding to the ∼75 kDa species but not ∼100 kDa species. This study identifies a specific amino acid phosphorylated in endogenous Egr-1.
Collapse
Affiliation(s)
- Fernando S Santiago
- Vascular Biology and Translational Research Laboratory, School of Medical Sciences, University of New South Wales, Sydney, Australia
| | | | - Guishui Zhang
- UNSW Medicine, University of New South Wales, Sydney, Australia
| | - Ling Zhong
- Bioanalytical Mass Spectrometry Facility, University of New South Wales, Sydney, Australia
| | - Mark J Raftery
- Bioanalytical Mass Spectrometry Facility, University of New South Wales, Sydney, Australia
| | - Levon M Khachigian
- Vascular Biology and Translational Research Laboratory, School of Medical Sciences, University of New South Wales, Sydney, Australia; UNSW Medicine, University of New South Wales, Sydney, Australia.
| |
Collapse
|
245
|
Kouno T, Moody J, Kwon ATJ, Shibayama Y, Kato S, Huang Y, Böttcher M, Motakis E, Mendez M, Severin J, Luginbühl J, Abugessaisa I, Hasegawa A, Takizawa S, Arakawa T, Furuno M, Ramalingam N, West J, Suzuki H, Kasukawa T, Lassmann T, Hon CC, Arner E, Carninci P, Plessy C, Shin JW. C1 CAGE detects transcription start sites and enhancer activity at single-cell resolution. Nat Commun 2019; 10:360. [PMID: 30664627 PMCID: PMC6341120 DOI: 10.1038/s41467-018-08126-5] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 12/19/2018] [Indexed: 01/06/2023] Open
Abstract
Single-cell transcriptomic profiling is a powerful tool to explore cellular heterogeneity. However, most of these methods focus on the 3′-end of polyadenylated transcripts and provide only a partial view of the transcriptome. We introduce C1 CAGE, a method for the detection of transcript 5′-ends with an original sample multiplexing strategy in the C1TM microfluidic system. We first quantifiy the performance of C1 CAGE and find it as accurate and sensitive as other methods in the C1 system. We then use it to profile promoter and enhancer activities in the cellular response to TGF-β of lung cancer cells and discover subpopulations of cells differing in their response. We also describe enhancer RNA dynamics revealing transcriptional bursts in subsets of cells with transcripts arising from either strand in a mutually exclusive manner, validated using single molecule fluorescence in situ hybridization. Single-cell transcriptomic profiling allows the exploration of cellular heterogeneity but commonly focuses on the 3′-end of the transcript. Here the authors introduce C1 CAGE, which detects the 5′ transcript end in a multiplexed microfluidic system.
Collapse
Affiliation(s)
- Tsukasa Kouno
- RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Jonathan Moody
- RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Andrew Tae-Jun Kwon
- RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Youtaro Shibayama
- RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Sachi Kato
- RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Yi Huang
- RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan.,ACT Genomics Co. Ltd., 3F., No. 345, Xinhu 2nd Rd, Neihu Dist., Taipei City, 114, Taiwan
| | - Michael Böttcher
- RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Efthymios Motakis
- RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan.,Yong Loo Lin School of Medicine MD6, #08-01, 14 Medical Drive, National University of Singapore, Singapore, 117599, Singapore
| | - Mickaël Mendez
- RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan.,Princess Margaret Cancer Research Tower 11-401, 101 College Street, Toronto, ON, M5G 1L7, Canada
| | - Jessica Severin
- RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Joachim Luginbühl
- RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Imad Abugessaisa
- RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Akira Hasegawa
- RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Satoshi Takizawa
- RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Takahiro Arakawa
- RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Masaaki Furuno
- RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Naveen Ramalingam
- Single-Cell Research and Development, Fluidigm Corporation, 7000 Shoreline Court, Suite 100, South San Francisco, 94080, CA, USA
| | - Jay West
- Single-Cell Research and Development, Fluidigm Corporation, 7000 Shoreline Court, Suite 100, South San Francisco, 94080, CA, USA
| | - Harukazu Suzuki
- RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Takeya Kasukawa
- RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Timo Lassmann
- RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan.,Telethon Kids Institute, The University of Western Australia, Perth Children's Hospital, 15 Hospital Ave, Nedlands, 6009, WA, Australia
| | - Chung-Chau Hon
- RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Erik Arner
- RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Piero Carninci
- RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Charles Plessy
- RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan. .,Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan.
| | - Jay W Shin
- RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan.
| |
Collapse
|
246
|
Zucchelli S, Fedele S, Vatta P, Calligaris R, Heutink P, Rizzu P, Itoh M, Persichetti F, Santoro C, Kawaji H, Lassmann T, Hayashizaki Y, Carninci P, Forrest ARR, FANTOM Consortium, Gustincich S. Antisense Transcription in Loci Associated to Hereditary Neurodegenerative Diseases. Mol Neurobiol 2019; 56:5392-5415. [PMID: 30610612 PMCID: PMC6614138 DOI: 10.1007/s12035-018-1465-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 12/19/2018] [Indexed: 12/12/2022]
Abstract
Natural antisense transcripts are common features of mammalian genes providing additional regulatory layers of gene expression. A comprehensive description of antisense transcription in loci associated to familial neurodegenerative diseases may identify key players in gene regulation and provide tools for manipulating gene expression. We take advantage of the FANTOM5 sequencing datasets that represent the largest collection to date of genome-wide promoter usage in almost 2000 human samples. Transcription start sites (TSSs) are mapped at high resolution by the use of a modified protocol of cap analysis of gene expression (CAGE) for high-throughput single molecule next-generation sequencing with Helicos (hCAGE). Here we present the analysis of antisense transcription at 17 loci associated to hereditary Alzheimer’s disease, Frontotemporal Dementia, Parkinson’s disease, Amyotrophic Lateral Sclerosis, and Huntington’s disease. We focused our analysis on libraries derived from brain tissues and primary cells. We also screened libraries from total blood and blood cell populations in the quest for peripheral biomarkers of neurodegenerative diseases. We identified 63 robust promoters in antisense orientation to genes associated to familial neurodegeneration. When applying a less stringent cutoff, this number increases to over 400. A subset of these promoters represents alternative TSSs for 24 FANTOM5 annotated long noncoding RNA (lncRNA) genes, in antisense orientation to 13 of the loci analyzed here, while the remaining contribute to the expression of additional transcript variants. Intersection with GWAS studies, sample ontology, and dynamic expression reveals association to specific genetic traits as well as cell and tissue types, not limited to neurodegenerative diseases. Antisense transcription was validated for a subset of genes, including those encoding for Microtubule-Associated Protein Tau, α-synuclein, Parkinsonism-associated deglycase DJ-1, and Leucin-Rich Repeat Kinase 2. This work provides evidence for the existence of additional regulatory mechanisms of the expression of neurodegenerative disease-causing genes by previously not-annotated and/or not-validated antisense long noncoding RNAs.
Collapse
Affiliation(s)
- Silvia Zucchelli
- Area of Neuroscience, SISSA, Trieste, Italy
- Department of Health Sciences and Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), University of Piemonte Orientale (UPO), Novara, Italy
| | | | - Paolo Vatta
- Area of Neuroscience, SISSA, Trieste, Italy
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Raffaella Calligaris
- Area of Neuroscience, SISSA, Trieste, Italy
- Department of Medical, Surgical and Health Sciences, Clinical Neurology Unit, Cattinara University Hospital, Trieste, Italy
| | - Peter Heutink
- Section Medical Genomics, Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands
- Genome Biology of Neurodegenerative Diseases, Deutsches Zentrum fur Neurodegenerative Erkrankungen (DZNE), Standort, Tübingen, Germany
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Japan
- RIKEN Omics Science Center, Yokohama, Japan
| | - Patrizia Rizzu
- Section Medical Genomics, Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands
- Applied Genomics for Neurodegenerative Diseases, Deutsches Zentrum fur Neurodegenerative Erkrankungen (DZNE), Standort, Tübingen, Germany
| | - Masayoshi Itoh
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Japan
- RIKEN Omics Science Center, Yokohama, Japan
- RIKEN Preventive Medicine and Diagnosis Innovation Program, Wakō, Japan
| | - Francesca Persichetti
- Department of Health Sciences and Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), University of Piemonte Orientale (UPO), Novara, Italy
| | - Claudio Santoro
- Department of Health Sciences and Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), University of Piemonte Orientale (UPO), Novara, Italy
| | - Hideya Kawaji
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Japan
- RIKEN Omics Science Center, Yokohama, Japan
- RIKEN Preventive Medicine and Diagnosis Innovation Program, Wakō, Japan
- Preventive Medicine and Applied Genomics Unit, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Timo Lassmann
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Japan
- RIKEN Omics Science Center, Yokohama, Japan
- Telethon Kids Institute, The University of Western Australia, 100 Roberts Road, Subiaco, WA 6008 Australia
- Laboratory for Applied Computational Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Yoshihide Hayashizaki
- RIKEN Omics Science Center, Yokohama, Japan
- RIKEN Preventive Medicine and Diagnosis Innovation Program, Wakō, Japan
| | - Piero Carninci
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Japan
- RIKEN Omics Science Center, Yokohama, Japan
- Laboratory for Transcriptome Technology, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Alistair R. R. Forrest
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Japan
- RIKEN Omics Science Center, Yokohama, Japan
- Laboratory for Genome Information Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | | | - Stefano Gustincich
- Area of Neuroscience, SISSA, Trieste, Italy
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| |
Collapse
|
247
|
Abstract
The Mediator-associated kinases CDK8 and CDK19 function in the context of three additional proteins: CCNC and MED12, which activate CDK8/CDK19 kinase function, and MED13, which enables their association with the Mediator complex. The Mediator kinases affect RNA polymerase II (pol II) transcription indirectly, through phosphorylation of transcription factors and by controlling Mediator structure and function. In this review, we discuss cellular roles of the Mediator kinases and mechanisms that enable their biological functions. We focus on sequence-specific, DNA-binding transcription factors and other Mediator kinase substrates, and how CDK8 or CDK19 may enable metabolic and transcriptional reprogramming through enhancers and chromatin looping. We also summarize Mediator kinase inhibitors and their therapeutic potential. Throughout, we note conserved and divergent functions between yeast and mammalian CDK8, and highlight many aspects of kinase module function that remain enigmatic, ranging from potential roles in pol II promoter-proximal pausing to liquid-liquid phase separation.
Collapse
Affiliation(s)
- Charli B Fant
- a Department of Biochemistry , University of Colorado , Boulder , CO , USA
| | - Dylan J Taatjes
- a Department of Biochemistry , University of Colorado , Boulder , CO , USA
| |
Collapse
|
248
|
Mao R, Wu Y, Ming Y, Xu Y, Wang S, Chen X, Wang X, Fan Y. Enhancer RNAs: a missing regulatory layer in gene transcription. SCIENCE CHINA-LIFE SCIENCES 2018; 62:905-912. [PMID: 30593613 DOI: 10.1007/s11427-017-9370-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 09/01/2018] [Indexed: 01/12/2023]
Abstract
Enhancers and super-enhancers exert indispensable roles in maintaining cell identity through spatiotemporally regulating gene transcription. Meanwhile, active enhancers and super-enhancers also produce transcripts termed enhancer RNAs (eRNAs) from their DNA elements. Although enhancers have been identified for more than 30 years, widespread transcription from enhancers are just discovered by genome-wide sequencing and considered as the key to understand longstanding questions in gene transcription. RNA-transcribed enhancers are marked by histone modifications such as H3K4m1/2 and H3K27Ac, and enriched with transcription regulatory factors such as LDTFs, P300, CBP, BRD4 and MED1. Those regulatory factors might constitute a Mega-Trans-like complex to potently activate enhancers. Compared to mRNAs, eRNAs are quite unstable and play roles at local. Functionally, it has been shown that eRNAs promote formation of enhancer-promoter loops. Several studies also demonstrated that eRNAs help the binding of RNA polymerase II (RNAPII) or transition of paused RNAPII by de-association of the negative elongation factor (NELF) complex. Nevertheless, these proposed mechanisms are not universally accepted and still under controversy. Here, we comprehensively summarize the reported findings and make perspectives for future exploration. We also believe that super-enhancer derived RNAs (seRNAs) might be informative to understand the nature of super-enhancers.
Collapse
Affiliation(s)
- Renfang Mao
- Department of Pathophysiology, School of Medicine, Nantong University, Nantong, 226019, China
| | - Yuanyuan Wu
- Basic Medical Research Center, School of Medicine, Nantong University, Nantong, 226019, China
| | - Yue Ming
- Department of Immunology, School of Medicine, Nantong University, Nantong, 226019, China
| | - Yuanpei Xu
- Department of Immunology, School of Medicine, Nantong University, Nantong, 226019, China
| | - Shouyan Wang
- Basic Medical Research Center, School of Medicine, Nantong University, Nantong, 226019, China
| | - Xia Chen
- Basic Medical Research Center, School of Medicine, Nantong University, Nantong, 226019, China
| | - Xiaoying Wang
- Department of Immunology, School of Medicine, Nantong University, Nantong, 226019, China
| | - Yihui Fan
- Basic Medical Research Center, School of Medicine, Nantong University, Nantong, 226019, China.
- Department of Immunology, School of Medicine, Nantong University, Nantong, 226019, China.
| |
Collapse
|
249
|
TELS: A Novel Computational Framework for Identifying Motif Signatures of Transcribed Enhancers. GENOMICS PROTEOMICS & BIOINFORMATICS 2018; 16:332-341. [PMID: 30578915 PMCID: PMC6364045 DOI: 10.1016/j.gpb.2018.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 04/23/2018] [Accepted: 05/15/2018] [Indexed: 12/31/2022]
Abstract
In mammalian cells, transcribed enhancers (TrEns) play important roles in the initiation of gene expression and maintenance of gene expression levels in a spatiotemporal manner. One of the most challenging questions is how the genomic characteristics of enhancers relate to enhancer activities. To date, only a limited number of enhancer sequence characteristics have been investigated, leaving space for exploring the enhancers’ DNA code in a more systematic way. To address this problem, we developed a novel computational framework, Transcribed Enhancer Landscape Search (TELS), aimed at identifying predictive cell type/tissue-specific motif signatures of TrEns. As a case study, we used TELS to compile a comprehensive catalog of motif signatures for all known TrEns identified by the FANTOM5 consortium across 112 human primary cells and tissues. Our results confirm that combinations of different short motifs characterize in an optimized manner cell type/tissue-specific TrEns. Our study is the first to report combinations of motifs that maximize classification performance of TrEns exclusively transcribed in one cell type/tissue from TrEns exclusively transcribed in different cell types/tissues. Moreover, we also report 31 motif signatures predictive of enhancers’ broad activity. TELS codes and material are publicly available at http://www.cbrc.kaust.edu.sa/TELS.
Collapse
|
250
|
Gulko B, Siepel A. An evolutionary framework for measuring epigenomic information and estimating cell-type-specific fitness consequences. Nat Genet 2018; 51:335-342. [PMID: 30559490 DOI: 10.1038/s41588-018-0300-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 10/30/2018] [Indexed: 01/22/2023]
Abstract
Here we ask the question "How much information do epigenomic datasets provide about human genomic function?" We consider nine epigenomic features across 115 cell types and measure information about function as a reduction in entropy under a probabilistic evolutionary model fitted to human and nonhuman primate genomes. Several epigenomic features yield more information in combination than they do individually. We find that the entropy in human genetic variation predominantly reflects a balance between mutation and neutral drift. Our cell-type-specific FitCons scores reveal relationships among cell types and suggest that around 8% of nucleotide sites are constrained by natural selection.
Collapse
Affiliation(s)
- Brad Gulko
- Graduate Field of Computer Science, Cornell University, Ithaca, NY, USA.,Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Adam Siepel
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
| |
Collapse
|