201
|
Luo K. Signaling Cross Talk between TGF-β/Smad and Other Signaling Pathways. Cold Spring Harb Perspect Biol 2017. [PMID: 27836834 DOI: 10.1101/cshperspect] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cytokines of the transforming growth factor β (TGF-β) family, including TGF-βs, bone morphogenic proteins (BMPs), activins, and Nodal, play crucial roles in embryonic development and adult tissue homeostasis by regulating cell proliferation, survival, and differentiation, as well as stem-cell self-renewal and lineage-specific differentiation. Smad proteins are critical downstream mediators of these signaling activities. In addition to regulating the transcription of direct target genes of TGF-β, BMP, activin, or Nodal, Smad proteins also participate in extensive cross talk with other signaling pathways, often in a cell-type- or developmental stage-specific manner. These combinatorial signals often produce context-, time-, and location-dependent biological outcomes that are critical for development. This review discusses recent progress in our understanding of the cross talk between Smad proteins and signaling pathways of Wnt, Notch, Hippo, Hedgehog (Hh), mitogen-activated protein (MAP), kinase, phosphoinositide 3-kinase (PI3K)-Akt, nuclear factor κB (NF-κB), and Janus kinase/signal transducers and activators of transcription (JAK/STAT) pathways.
Collapse
Affiliation(s)
- Kunxin Luo
- Department of Molecular and Cell Biology, University of California, Berkeley, and Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| |
Collapse
|
202
|
Lozhkin A, Vendrov AE, Pan H, Wickline SA, Madamanchi NR, Runge MS. NADPH oxidase 4 regulates vascular inflammation in aging and atherosclerosis. J Mol Cell Cardiol 2017; 102:10-21. [PMID: 27986445 PMCID: PMC5625334 DOI: 10.1016/j.yjmcc.2016.12.004] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 12/08/2016] [Accepted: 12/12/2016] [Indexed: 01/10/2023]
Abstract
We recently reported that increased NADPH oxidase 4 (NOX4) expression and activity during aging results in enhanced cellular and mitochondrial oxidative stress, vascular inflammation, dysfunction, and atherosclerosis. The goal of the present study was to elucidate the molecular mechanism(s) for these effects and determine the importance of NOX4 modulation of proinflammatory gene expression in mouse vascular smooth muscle cells (VSMCs). A novel peptide-mediated siRNA transfection approach was used to inhibit Nox4 expression with minimal cellular toxicity. Using melittin-derived peptide p5RHH, we achieved significantly higher transfection efficiency (92% vs. 85% with Lipofectamine) and decreased toxicity (p<0.001 vs. Lipofectamine in MTT and p<0.0001 vs. Lipofectamine in LDH assays) in VSMCs. TGFβ1 significantly upregulates Nox4 mRNA (p<0.01) and protein (p<0.01) expression in VSMCs. p5RHH-mediated Nox4 siRNA transfection greatly attenuated TGFβ1-induced upregulation of Nox4 mRNA (p<0.01) and protein (p<0.0001) levels and decreased hydrogen peroxide production (p<0.0001). Expression of pro-inflammatory genes Ccl2, Ccl5, Il6, and Vcam1 was significantly upregulated in VSMCs in several settings cells isolated from aged vs. young wild-type mice, in atherosclerotic arteries of Apoe-/- mice, and atherosclerotic human carotid arteries and correlated with NOX4 expression. p5RHH-mediated Nox4 siRNA transfection significantly attenuated the expression of these pro-inflammatory genes in TGFβ1-treated mouse VSMCs, with the highest degree of inhibition in the expression of Il6. p5RHH peptide-mediated knockdown of TGFβ-activated kinase 1 (TAK1, also known as Map3k7), Jun, and Rela, but not Nfkb2, downregulated TGFβ1-induced Nox4 expression in VSMCs. Together, these data demonstrate that increased expression and activation of NOX4, which might result from increased TGFβ1 levels seen during aging, induces a proinflammatory phenotype in VSMCs, enhancing atherosclerosis.
Collapse
Affiliation(s)
- Andrey Lozhkin
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan, Ann Arbor 48109, MI, USA
| | - Aleksandr E Vendrov
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan, Ann Arbor 48109, MI, USA
| | - Hua Pan
- Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis 63110, MO, USA
| | - Samuel A Wickline
- Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis 63110, MO, USA
| | - Nageswara R Madamanchi
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan, Ann Arbor 48109, MI, USA
| | - Marschall S Runge
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan, Ann Arbor 48109, MI, USA.
| |
Collapse
|
203
|
Ren K, Mo ZC, Liu X, Tang ZL, Jiang Y, Peng XS, Zhang QH, Shi JF, Yi GH. TGF-β Down-regulates Apolipoprotein M Expression through the TAK-1-JNK-c-Jun Pathway in HepG2 Cells. Lipids 2016; 52:109-117. [PMID: 28039587 DOI: 10.1007/s11745-016-4227-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 12/14/2016] [Indexed: 12/22/2022]
Abstract
Apolipoprotein M (apoM) is a relatively novel apolipoprotein that plays pivotal roles in many dyslipidemia-associated diseases; however, its regulatory mechanisms are poorly understood. Many cytokines have been identified that down-regulate apoM expression in HepG2 cells, among which transforming growth factor-β (TGF-β) exerts the most potent effects. In addition, c-Jun, a member of the activated protein 1 (AP-1) family whose activity is modulated by c-Jun N-terminal kinase (JNK), decreases apoM expression at the transcriptional level by binding to the regulatory element in the proximal apoM promoter. In this study, we investigated the molecular mechanisms through which TGF-β decreases the apoM level in HepG2 cells. The results revealed that TGF-β inhibited apoM expression at both the mRNA and protein levels in a dose- and time-dependent manner and that it suppressed apoM secretion. These effects were attenuated by treatment of cells with either SP600125 (JNK inhibitor) or c-Jun siRNA. 5Z-7-oxozeaenol [(a TGF-β-activated kinase 1 (TAK-1) inhibitor)] also attenuated the TGF-β-mediated inhibition of apoM expression and suppressed the activation of JNK and c-Jun. These results have demonstrated that TGF-β suppresses apoM expression through the TAK-1-JNK-c-Jun pathway in HepG2 cells.
Collapse
Affiliation(s)
- Kun Ren
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, 28 W Changsheng Road, Hengyang, 421001, Hunan, China
| | - Zhong-Cheng Mo
- Department of Histology and Embryology, University of South China, Hengyang, 421001, Hunan, China
| | - Xing Liu
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Zhen-Li Tang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, 28 W Changsheng Road, Hengyang, 421001, Hunan, China
| | - Yue Jiang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, 28 W Changsheng Road, Hengyang, 421001, Hunan, China
| | - Xiao-Shan Peng
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, 28 W Changsheng Road, Hengyang, 421001, Hunan, China
| | - Qing-Hai Zhang
- Clinical Research Institution, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China
| | - Jin-Feng Shi
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, 28 W Changsheng Road, Hengyang, 421001, Hunan, China.,Department of Histology and Embryology, University of South China, Hengyang, 421001, Hunan, China
| | - Guang-Hui Yi
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, 28 W Changsheng Road, Hengyang, 421001, Hunan, China.
| |
Collapse
|
204
|
Interplay between Inflammation and Stemness in Cancer Cells: The Role of Toll-Like Receptor Signaling. J Immunol Res 2016; 2016:4368101. [PMID: 28116318 PMCID: PMC5223024 DOI: 10.1155/2016/4368101] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 11/22/2016] [Accepted: 12/05/2016] [Indexed: 02/08/2023] Open
Abstract
Cancer stem cells (CSCs) are a small population of cancer cells that exhibit stemness. These cells contribute to cancer metastasis, treatment resistance, and relapse following therapy; therefore, they may cause malignancy and reduce the success of cancer treatment. Nuclear factor kappa B- (NF-κB-) mediated inflammatory responses increase stemness in cancer cells, and CSCs constitutively exhibit higher NF-κB activation, which in turn increases their stemness. These opposite effects form a positive feedback loop that further amplifies inflammation and stemness in cancer cells, thereby expanding CSC populations in the tumor. Toll-like receptors (TLRs) activate NF-κB-mediated inflammatory responses when stimulated by carcinogenic microbes and endogenous molecules released from cells killed during cancer treatment. NF-κB activation by extrinsic TLR ligands increases stemness in cancer cells. Moreover, it was recently shown that increased NF-κB activity and inflammatory responses in CSCs may be caused by altered TLR signaling during the enrichment of stemness in cancer cells. Thus, the activation of TLR signaling by extrinsic and intrinsic factors drives a positive interplay between inflammation and stemness in cancer cells.
Collapse
|
205
|
Tan L, Gurbani D, Weisberg EL, Hunter JC, Li L, Jones DS, Ficarro SB, Mowafy S, Tam CP, Rao S, Du G, Griffin JD, Sorger PK, Marto JA, Westover KD, Gray NS. Structure-guided development of covalent TAK1 inhibitors. Bioorg Med Chem 2016; 25:838-846. [PMID: 28011204 DOI: 10.1016/j.bmc.2016.11.035] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 11/14/2016] [Accepted: 11/18/2016] [Indexed: 02/06/2023]
Abstract
TAK1 (transforming growth factor-β-activated kinase 1) is an essential intracellular mediator of cytokine and growth factor signaling and a potential therapeutic target for the treatment of immune diseases and cancer. Herein we report development of a series of 2,4-disubstituted pyrimidine covalent TAK1 inhibitors that target Cys174, a residue immediately adjacent to the 'DFG-motif' of the kinase activation loop. Co-crystal structures of TAK1 with candidate compounds enabled iterative rounds of structure-based design and biological testing to arrive at optimized compounds. Lead compounds such as 2 and 10 showed greater than 10-fold biochemical selectivity for TAK1 over the closely related kinases MEK1 and ERK1 which possess an equivalently positioned cysteine residue. These compounds are smaller, more easily synthesized, and exhibit a different spectrum of kinase selectivity relative to previously reported macrocyclic natural product TAK1 inhibitors such as 5Z-7-oxozeanol.
Collapse
Affiliation(s)
- Li Tan
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02215, USA
| | - Deepak Gurbani
- Department of Biochemistry, The University of Texas, Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA; Department of Radiation Oncology, The University of Texas, Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA
| | - Ellen L Weisberg
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - John C Hunter
- Department of Biochemistry, The University of Texas, Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA; Department of Radiation Oncology, The University of Texas, Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA
| | - Lianbo Li
- Department of Biochemistry, The University of Texas, Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA; Department of Radiation Oncology, The University of Texas, Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA
| | - Douglas S Jones
- HMS LINCS Center and Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02215, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Scott B Ficarro
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02215, USA
| | - Samar Mowafy
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02215, USA; Misr International University, Km 28 Cairo, Ismailia Rd., Ahmed Orabi Dist., Cairo, Egypt
| | - Chun-Pong Tam
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02215, USA
| | - Suman Rao
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02215, USA; HMS LINCS Center and Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02215, USA
| | - Guangyan Du
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02215, USA
| | - James D Griffin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Peter K Sorger
- HMS LINCS Center and Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02215, USA
| | - Jarrod A Marto
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02215, USA
| | - Kenneth D Westover
- Department of Biochemistry, The University of Texas, Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA; Department of Radiation Oncology, The University of Texas, Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA.
| | - Nathanael S Gray
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
206
|
Prime S, Pring M, Davies M, Paterson I. TGF-β Signal Transduction in Oro-facial Health and Non-malignant Disease (Part I). ACTA ACUST UNITED AC 2016; 15:324-36. [DOI: 10.1177/154411130401500602] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The transforming growth factor-beta (TGF-β) family of cytokines consists of multi-functional polypeptides that regulate a variety of cell processes, including proliferation, differentiation, apoptosis, extracellular matrix elaboration, angiogenesis, and immune suppression, among others. In so doing, TGF-β plays a key role in the control of cell behavior in both health and disease. In this report, we review what is known about the mechanisms of activation of the peptide, together with details of TGF-β signal transduction pathways. This review summarizes the evidence implicating TGF-β in normal physiological processes of the craniofacial complex—such as palatogenesis, tooth formation, wound healing, and scarring—and then evaluates its role in non-malignant disease processes such as scleroderma, submucous fibrosis, periodontal disease, and lichen planus.
Collapse
Affiliation(s)
- S.S. Prime
- Department of Oral and Dental Science, Division of Oral Medicine, Pathology and Microbiology, Bristol Dental Hospital and School, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, UK
| | - M. Pring
- Department of Oral and Dental Science, Division of Oral Medicine, Pathology and Microbiology, Bristol Dental Hospital and School, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, UK
| | - M. Davies
- Department of Oral and Dental Science, Division of Oral Medicine, Pathology and Microbiology, Bristol Dental Hospital and School, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, UK
| | - I.C. Paterson
- Department of Oral and Dental Science, Division of Oral Medicine, Pathology and Microbiology, Bristol Dental Hospital and School, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, UK
| |
Collapse
|
207
|
Zhou JM, Gu SS, Mei WH, Zhou J, Wang ZZ, Xiao W. Ginkgolides and bilobalide protect BV2 microglia cells against OGD/reoxygenation injury by inhibiting TLR2/4 signaling pathways. Cell Stress Chaperones 2016; 21:1037-1053. [PMID: 27562518 PMCID: PMC5083673 DOI: 10.1007/s12192-016-0728-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 07/06/2016] [Accepted: 07/25/2016] [Indexed: 02/07/2023] Open
Abstract
Ginkgolide and bilobalide are major trilactone constituent of Ginkgo biloba leaves and have been shown to exert powerful neuroprotective properties. The aims of this study were to observe the inhibitory effects of ginkgolide and bilobalide on the activation of microglial cells induced by oxygen-glucose deprivation and reoxygenation (OGD/R) and the specific mechanisms by which these effects are mediated. For detecting whether ginkgolide and bilobalide increased cell viability in a dose-dependent manner, BV2 cells were subjected to oxygen-glucose deprivation for 4 h followed by 3 h reoxygenation with various concentrations of drugs (6.25, 12.5, 25, 50, and 100 μg/ml). The extent of apoptosis effect of OGD/R with or without ginkgolide and bilobalide treatment were also measured by Annexin V-FITC/PI staining. Similarly, the levels of pro-inflammatory cytokines TNF-α, IL-1β, IL-6, IL-8, and IL-10 were detected using a specific Bio-Plex Pro™ Reagent Kit. The effects of ginkgolide and bilobalide on protein levels of TLR2/4, MyD88, p-TAK1, p-IKKβ, p-IkBα, NF-κB p65, Bcl-2, Bax, Bak, RIP3, cleaved-Caspase-3, cleaved PARP-1 and cellular localization of NF-κB p65 were evaluated by Western blot and double-labeled immunofluorescence staining, respectively. OGD/R significantly decreased the cell viability and increased the release of IL-1β, IL-6, IL-8, IL-10, TNF-α in BV2 microglia cells; these effects were suppressed by ginkgolide and bilobalide. Meanwhile, ginkgolide and bilobalide also attenuated the OGD/R-induced increases in TLR2, TLR4, MyD88, Bak, RIP3 levels and reversed cleaved caspase-3/caspase-3, Bax/Bcl-2 and cleaved PARP-1/PARP-1 ratio. Furthermore, ginkgolide and bilobalide also downregulated p-TAK1, p-IkBα, and p-IKKβ and inhibited the OGD/R-induced transfer of NF-κB p65 from cytoplasm to nucleus in BV2 microglia cells. The results showed that ginkgolide and bilobalide can inhibit OGD/R-induced production of inflammatory factors in BV2 microglia cells by regulating the TLRs/MyD88/NF-κB signaling pathways and attenuating inflammatory response. The possible mechanism of anti-inflammatory and neuroprotective effects of ginkgolides results from the synergistic reaction among each monomer constituents.
Collapse
Affiliation(s)
- Jian-Ming Zhou
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Modern TCM Research Institute, Lianyungang, 222001, China.
| | - Sha-Sha Gu
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Modern TCM Research Institute, Lianyungang, 222001, China
| | - Wang Hong Mei
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Modern TCM Research Institute, Lianyungang, 222001, China
| | - Jun Zhou
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Modern TCM Research Institute, Lianyungang, 222001, China
| | - Zhen Zhong Wang
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Modern TCM Research Institute, Lianyungang, 222001, China
| | - Wei Xiao
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Modern TCM Research Institute, Lianyungang, 222001, China
| |
Collapse
|
208
|
Hinge A, Filippi MD. Deconstructing the Complexity of TGFβ Signaling in Hematopoietic Stem Cells: Quiescence and Beyond. CURRENT STEM CELL REPORTS 2016; 2:388-397. [PMID: 28529843 DOI: 10.1007/s40778-016-0069-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The hematopoietic system is highly dynamic and must constantly produce new blood cells every day. Mature blood cells all derive from a pool of rare long-lived hematopoietic stem cells (HSCs) that are mostly quiescent but occasionally divide and self-renew in order to maintain the stem cell pool and continuous replenishment of mature blood cells throughout life. A tight control of HSC self-renewal, commitment to differentiation and maintenance of quiescence states is necessary for lifelong blood supply. Transforming growth factor-β (TGF-β) is a critical regulator hematopoietic cell functions. It is a potent inhibitor of hematopoietic cell growth. However, TGFβ functions are more complex and largely context-dependent. Emerging evidence suggests a role in aging, cell identity and cell fate decisions. Here, we will review the role of TGF-β and downstream signaling in normal HSC functions, in HSC quiescence and beyond.
Collapse
Affiliation(s)
- Ashwini Hinge
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Research Foundation, Cincinnati, OH 45229, USA; University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Marie-Dominique Filippi
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Research Foundation, Cincinnati, OH 45229, USA; University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| |
Collapse
|
209
|
Chang HM, Qiao J, Leung PCK. Oocyte-somatic cell interactions in the human ovary-novel role of bone morphogenetic proteins and growth differentiation factors. Hum Reprod Update 2016; 23:1-18. [PMID: 27797914 PMCID: PMC5155571 DOI: 10.1093/humupd/dmw039] [Citation(s) in RCA: 187] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 09/29/2016] [Accepted: 10/11/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Initially identified for their capability to induce heterotopic bone formation,
bone morphogenetic proteins (BMPs) are multifunctional growth factors that belong
to the transforming growth factor β superfamily. Using cellular and
molecular genetic approaches, recent studies have implicated intra-ovarian BMPs as
potent regulators of ovarian follicular function. The bi-directional communication
of oocytes and the surrounding somatic cells is mandatory for normal follicle
development and oocyte maturation. This review summarizes the current knowledge on
the physiological role and molecular determinants of these ovarian regulatory
factors within the human germline-somatic regulatory loop. OBJECTIVE AND RATIONALE The regulation of ovarian function remains poorly characterized in humans because,
while the fundamental process of follicular development and oocyte maturation is
highly similar across species, most information on the regulation of ovarian
function is obtained from studies using rodent models. Thus, this review focuses
on the studies that used human biological materials to gain knowledge about human
ovarian biology and disorders and to develop strategies for preventing, diagnosing
and treating these abnormalities. SEARCH METHODS Relevant English-language publications describing the roles of BMPs or growth
differentiation factors (GDFs) in human ovarian biology and phenotypes were
comprehensively searched using PubMed and the Google Scholar database. The
publications included those published since the initial identification of BMPs in
the mammalian ovary in 1999 through July 2016. OUTCOMES Studies using human biological materials have revealed the expression of BMPs,
GDFs and their putative receptors as well as their molecular signaling in the
fundamental cells (oocyte, cumulus/granulosa cells (GCs) and theca/stroma cells)
of the ovarian follicles throughout follicle development. With the availability of
recombinant human BMPs/GDFs and the development of immortalized human cell lines,
functional studies have demonstrated the physiological role of intra-ovarian
BMPs/GDFs in all aspects of ovarian functions, from follicle development to
steroidogenesis, cell–cell communication, oocyte maturation, ovulation and
luteal function. Furthermore, there is crosstalk between these potent ovarian
regulators and the endocrine signaling system. Dysregulation or naturally
occurring mutations within the BMP system may lead to several female reproductive
diseases. The latest development of recombinant BMPs, synthetic BMP inhibitors,
gene therapy and tools for BMP-ligand sequestration has made the BMP pathway a
potential therapeutic target in certain human fertility disorders; however,
further clinical trials are needed. Recent studies have indicated that GDF8 is an
intra-ovarian factor that may play a novel role in regulating ovarian functions in
the human ovary. WIDER IMPLICATIONS Intra-ovarian BMPs/GDFs are critical regulators of folliculogenesis and human
ovarian functions. Any dysregulation or variations in these ligands or their
receptors may affect the related intracellular signaling and influence ovarian
functions, which accounts for several reproductive pathologies and infertility.
Understanding the normal and pathological roles of intra-ovarian BMPs/GDFs,
especially as related to GC functions and follicular fluid levels, will inform
innovative approaches to fertility regulation and improve the diagnosis and
treatment of ovarian disorders.
Collapse
Affiliation(s)
- Hsun-Ming Chang
- Department of Obstetrics and Gynaecology, Center for Reproductive Medicine, Peking University Third Hospital, 49 North Garden Rd., Haidian District, Beijing 100191, P.R. China.,Department of Obstetrics and Gynaecology, Child and Family Research Institute, University of British Columbia, Room 317, 950 West 28 Avenue, Vancouver, British Columbia, Canada V5Z 4H4
| | - Jie Qiao
- Department of Obstetrics and Gynaecology, Center for Reproductive Medicine, Peking University Third Hospital, 49 North Garden Rd., Haidian District, Beijing 100191, P.R. China
| | - Peter C K Leung
- Department of Obstetrics and Gynaecology, Child and Family Research Institute, University of British Columbia, Room 317, 950 West 28 Avenue, Vancouver, British Columbia, Canada V5Z 4H4
| |
Collapse
|
210
|
Zhang F, Song J, Zhang H, Huang E, Song D, Tollemar V, Wang J, Wang J, Mohammed M, Wei Q, Fan J, Liao J, Zou Y, Liu F, Hu X, Qu X, Chen L, Yu X, Luu HH, Lee MJ, He TC, Ji P. Wnt and BMP Signaling Crosstalk in Regulating Dental Stem Cells: Implications in Dental Tissue Engineering. Genes Dis 2016; 3:263-276. [PMID: 28491933 PMCID: PMC5421560 DOI: 10.1016/j.gendis.2016.09.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Tooth is a complex hard tissue organ and consists of multiple cell types that are regulated by important signaling pathways such as Wnt and BMP signaling. Serious injuries and/or loss of tooth or periodontal tissues may significantly impact aesthetic appearance, essential oral functions and the quality of life. Regenerative dentistry holds great promise in treating oral/dental disorders. The past decade has witnessed a rapid expansion of our understanding of the biological features of dental stem cells, along with the signaling mechanisms governing stem cell self-renewal and differentiation. In this review, we first summarize the biological characteristics of seven types of dental stem cells, including dental pulp stem cells, stem cells from apical papilla, stem cells from human exfoliated deciduous teeth, dental follicle precursor cells, periodontal ligament stem cells, alveolar bone-derived mesenchymal stem cells (MSCs), and MSCs from gingiva. We then focus on how these stem cells are regulated by bone morphogenetic protein (BMP) and/or Wnt signaling by examining the interplays between these pathways. Lastly, we analyze the current status of dental tissue engineering strategies that utilize oral/dental stem cells by harnessing the interplays between BMP and Wnt pathways. We also highlight the challenges that must be addressed before the dental stem cells may reach any clinical applications. Thus, we can expect to witness significant progresses to be made in regenerative dentistry in the coming decade.
Collapse
Affiliation(s)
- Fugui Zhang
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, and the Affiliated Hospital of Stomatology of Chongqing Medical University, Chongqing 401147, China.,Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jinglin Song
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, and the Affiliated Hospital of Stomatology of Chongqing Medical University, Chongqing 401147, China
| | - Hongmei Zhang
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, and the Affiliated Hospital of Stomatology of Chongqing Medical University, Chongqing 401147, China.,Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Enyi Huang
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, and the Affiliated Hospital of Stomatology of Chongqing Medical University, Chongqing 401147, China.,Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Dongzhe Song
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Department of Conservative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Viktor Tollemar
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jing Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Jinhua Wang
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, and the Affiliated Hospital of Stomatology of Chongqing Medical University, Chongqing 401147, China.,Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Maryam Mohammed
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Qiang Wei
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Jiaming Fan
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Junyi Liao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Yulong Zou
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Feng Liu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Xue Hu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Xiangyang Qu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Liqun Chen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Xinyi Yu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Hue H Luu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Michael J Lee
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Tong-Chuan He
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, and the Affiliated Hospital of Stomatology of Chongqing Medical University, Chongqing 401147, China.,Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Ping Ji
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, and the Affiliated Hospital of Stomatology of Chongqing Medical University, Chongqing 401147, China
| |
Collapse
|
211
|
Cheng J, Hu X, Dai L, Zhang X, Ren B, Shi W, Liu Z, Duan X, Zhang J, Fu X, Chen W, Ao Y. Inhibition of transforming growth factor β-activated kinase 1 prevents inflammation-related cartilage degradation in osteoarthritis. Sci Rep 2016; 6:34497. [PMID: 27682596 PMCID: PMC5041103 DOI: 10.1038/srep34497] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 09/14/2016] [Indexed: 12/13/2022] Open
Abstract
Osteoarthritis (OA) is a common debilitating joint disorder, there’s still no available disease-modifying drug for OA currently. This study aims to explore the role of TAK1 in OA pathogenesis and therapeutic efficiency of TAK1 inhibition for OA. The contribution of TAK1 to OA pathogenesis was investigated by intra-articular injection of TAK1-encoding adenovirus in rats. TAK1 inhibitor 5Z-7-induced expression changes of extracellular matrix (ECM)-related genes were detected by real-time PCR. The protective effect of 5Z-7 against OA progression was evaluated in a post-traumatic OA rat model. Our results showed that intra-articular injection of Ad-Tak1 induced cartilage destruction and OA-related cytokine secretion in rat joints. TAK1 inhibition by 5Z-7 efficiently blocked NF-κB, JNK and p38 pathways activation in OA chondrocytes and synoviocytes, Meanwhile, 5Z-7 significantly decreased the expression of matrix-degrading enzymes and pro-inflammatory cytokine, while increased ECM protein expression, which are all crucial components in OA. 5Z-7 also ameliorated ECM loss in OA cartilage explants. More importantly, 5Z-7 significantly protected against cartilage destruction in a rat model of OA. In conclusion, our findings provide the first in vivo evidence that TAK1 contributes to OA by disrupting cartilage homeostasis, thus represents an ideal target for OA treatment, with 5Z-7 as a candidate therapeutic.
Collapse
Affiliation(s)
- Jin Cheng
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing 100191, China
| | - Xiaoqing Hu
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing 100191, China
| | - Linghui Dai
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing 100191, China
| | - Xin Zhang
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing 100191, China
| | - Bo Ren
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing 100191, China
| | - Weili Shi
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing 100191, China
| | - Zhenlong Liu
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing 100191, China
| | - Xiaoning Duan
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing 100191, China
| | - Jiying Zhang
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing 100191, China
| | - Xin Fu
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing 100191, China
| | - Wenqing Chen
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing 100191, China
| | - Yingfang Ao
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
212
|
Guo X, Yin H, Chen Y, Li L, Li J, Liu Q. TAK1 regulates caspase 8 activation and necroptotic signaling via multiple cell death checkpoints. Cell Death Dis 2016; 7:e2381. [PMID: 27685625 PMCID: PMC5059887 DOI: 10.1038/cddis.2016.294] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 08/18/2016] [Accepted: 08/23/2016] [Indexed: 11/21/2022]
Abstract
Necroptosis has emerged as a new form of programmed cell death implicated in a number of pathological conditions such as ischemic injury, neurodegenerative disease, and viral infection. Recent studies indicate that TGFβ-activated kinase 1 (TAK1) is nodal regulator of necroptotic cell death, although the underlying molecular regulatory mechanisms are not well defined. Here we reported that TAK1 regulates necroptotic signaling as well as caspase 8-mediated apoptotic signaling through both NFκB-dependent and -independent mechanisms. Inhibition of TAK1 promoted TNFα-induced cell death through the induction of RIP1 phosphorylation/activation and necrosome formation. Further, inhibition of TAK1 triggered two caspase 8 activation pathways through the induction of RIP1-FADD-caspase 8 complex as well as FLIP cleavage/degradation. Mechanistically, our data uncovered an essential role for the adaptor protein TNF receptor-associated protein with death domain (TRADD) in caspase 8 activation and necrosome formation triggered by TAK1 inhibition. Moreover, ablation of the deubiqutinase CYLD prevented both apoptotic and necroptotic signaling induced by TAK1 inhibition. Finally, blocking the ubiquitin-proteasome pathway prevented the degradation of key pro-survival signaling proteins and necrosome formation. Thus, we identified new regulatory mechanisms underlying the critical role of TAK1 in cell survival through regulation of multiple cell death checkpoints. Targeting key components of the necroptotic pathway (e.g., TRADD and CYLD) and the ubiquitin-proteasome pathway may represent novel therapeutic strategies for pathological conditions driven by necroptosis.
Collapse
Affiliation(s)
- Xiaoyun Guo
- Department of Physiology and Biophysics, University of Washington, Seattle 98195, WA, USA
| | - Haifeng Yin
- Department of Physiology and Biophysics, University of Washington, Seattle 98195, WA, USA
| | - Yi Chen
- Department of Physiology and Biophysics, University of Washington, Seattle 98195, WA, USA
| | - Lei Li
- Department of Physiology and Biophysics, University of Washington, Seattle 98195, WA, USA
| | - Jing Li
- Department of Physiology and Biophysics, University of Washington, Seattle 98195, WA, USA
| | - Qinghang Liu
- Department of Physiology and Biophysics, University of Washington, Seattle 98195, WA, USA
| |
Collapse
|
213
|
Wang Z, Zhang H, Shi M, Yu Y, Wang H, Cao WM, Zhao Y, Zhang H. TAK1 inhibitor NG25 enhances doxorubicin-mediated apoptosis in breast cancer cells. Sci Rep 2016; 6:32737. [PMID: 27599572 PMCID: PMC5013439 DOI: 10.1038/srep32737] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 08/15/2016] [Indexed: 01/08/2023] Open
Abstract
Doxorubicin (Dox, Adriamycin) has been widely used in breast cancer treatment. But its severe cardio-toxic side effects limited the clinical use. Dox treatment can induce DNA damage and other accompanying effects in cancer cells, and subsequently activates nuclear factor κB (NF-κB) pathway which has a strong pro-survival role in different types of malignancy. We hypothesize that blocking NF-κB pathway may sensitize breast cancer cells to Dox chemotherapy. TGFβ-activated kinase-1 (TAK1) is a key intracellular molecule participating in genotoxic stresses-induced NF-κB activation. Targeting TAK1 as a strategy to enhance cancer treatment efficacy has been studied in several malignancies. We showed that NG25, a synthesized TAK1 inhibitor, greatly enhanced Dox treatment efficacy in a panel of breast cancer cell lines. In this pre-clinical study, we found that NG25 partially blocked Dox-induced p38 phosphorylation and IκBα degradation and enhanced Dox-induced cytotoxic effects and apoptosis in all breast cancer cell lines tested. Taken together, we provided clear evidence that NG25 sensitizes the breast cancer cells to Dox treatment in vitro. This combination may be an effective and feasible therapeutic option maximizing Dox efficacy and meanwhile minimizing Dox side effects in treating breast cancer.
Collapse
Affiliation(s)
- Zhenyu Wang
- Department of Breast Surgery, the Second Hospital of Jilin University, Changchun, Jilin 130041, China.,Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,Department of Translational and Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Huiyuan Zhang
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Minghao Shi
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,Department of Blood Transfusion, the Second Hospital of Jilin University, Changchun, Jilin 130041, China
| | - Yang Yu
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Hao Wang
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,Department of Hepatopancreatobiliary Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Wen-Ming Cao
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,Department of Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China
| | - Yanling Zhao
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Hong Zhang
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,Department of Translational and Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
214
|
Discovery of a potent and highly selective transforming growth factor β receptor-associated kinase 1 (TAK1) inhibitor by structure based drug design (SBDD). Bioorg Med Chem 2016; 24:4206-4217. [DOI: 10.1016/j.bmc.2016.07.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 07/04/2016] [Accepted: 07/05/2016] [Indexed: 11/23/2022]
|
215
|
Li P, Zhao QL, Jawaid P, Rehman MU, Sakurai H, Kondo T. Enhancement of hyperthermia-induced apoptosis by 5Z-7-oxozeaenol, a TAK1 inhibitor, in A549 cells. Cell Stress Chaperones 2016; 21:873-81. [PMID: 27448221 PMCID: PMC5003804 DOI: 10.1007/s12192-016-0712-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 06/06/2016] [Accepted: 06/11/2016] [Indexed: 01/08/2023] Open
Abstract
KRAS mutant lung cancers have long been considered as untreatable with drugs. Transforming growth factor-β-activated kinase 1 (TAK1) appears to play an anti-apoptotic role in response to multiple stresses and has been reported to be a responsive kinase that regulates cell survival in KRAS-dependent cells. In this study, in order to find a useful approach to treat KRAS mutant lung cancer, we focused on the combined effects of 5Z-7-oxozeaenol, a TAK1 inhibitor, with hyperthermia (HT) in KRAS mutant lung cancer cell line A549. Annexin V-FITC/PI assay, cell cycle analysis, and colony formation assay revealed a significant enhancement in apoptosis induced by HT treatment, when the cells were pre-incubated with 5Z-7-oxozeaenol in a dose-dependent manner. The enhanced apoptosis by 5Z-7-oxozeaenol was accompanied by a significant increase in reactive oxygen species (ROS) generation and loss of mitochondrial membrane potential (MMP). In addition, western blot showed that 5Z-7-oxozeaenol enhanced HT-induced expressions of cleaved caspase-3, cleaved caspase-8, and HSP70 and decreased HT-induced expressions of Bcl-2, p-p38, p-JNK, and LC3. Moreover, 5Z-7-oxozeaenol pre-treatment resulted in a marked elevation of intracellular calcium level which might be associated with endoplasmic reticulum (ER) stress-related pathway. Taken together, our data provides further insights of the mechanism of action of 5Z-7-oxozeaenol and HT treatment, and their potential application as a novel approache to treat patients with KRAS mutant lung cancer.
Collapse
Affiliation(s)
- Peng Li
- Department of Radiological Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani 2630, Toyama, 930-0194, Japan
| | - Qing-Li Zhao
- Department of Radiological Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani 2630, Toyama, 930-0194, Japan.
| | - Paras Jawaid
- Department of Radiological Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani 2630, Toyama, 930-0194, Japan
| | - Mati Ur Rehman
- Department of Radiological Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani 2630, Toyama, 930-0194, Japan
| | - Hiroaki Sakurai
- Department of Cancer Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani 2630, Toyama, 930-0194, Japan
| | - Takashi Kondo
- Department of Radiological Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani 2630, Toyama, 930-0194, Japan
| |
Collapse
|
216
|
Zhang D, Xu Z, Tao T, Liu X, Sun X, Ji Y, Han L, Qiu H, Zhu G, Shen Y, Zhu L, Shen A. Modification of TAK1 by O-linked N-acetylglucosamine facilitates TAK1 activation and promotes M1 macrophage polarization. Cell Signal 2016; 28:1742-52. [PMID: 27542620 DOI: 10.1016/j.cellsig.2016.08.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 08/03/2016] [Accepted: 08/14/2016] [Indexed: 01/20/2023]
Abstract
Macrophages play many different roles in tissue inflammation and immunity, and the plasticity of macrophage polarization is closely associated with acute inflammatory responses. O-GlcNAcylation is an important type of post-translational modification, which subtly modulates inflammation responses. Transforming growth factor (TGF)-β-activated kinase 1 (TAK1) is a key serine/threonine protein kinase that mediates signals transduced by pro-inflammatory cytokines such as TGF-β, tumor necrosis factor (TNF), and interleukin-1 (IL-1). It is here reported that TGFβ-activated kinase (TAK1) is modified with N-acetylglucosamine (O-GlcNAc) on S427. Both IL-1 and osmotic stress, which are known as the TAK1-signaling inducers, significantly trigger the O-GlcNAcylation of TAK1 in macrophages. By overexpressing wild-type (WT) or S427A TAK1 mutant into macrophages, it was determined that O-GlcNAcylation of TAK1 on S427 is required for T187/S192 phosphorylation and full activation of TAK1 upon stimulation with IL-1α and NaCl. Aborting O-GlcNAcylation of TAK1 on S427 was found to inhibit the downstream JNK and nuclear factor-κB activation and reduce the final amount of cytokines produced in activated macrophages to a great extent. Results also showed that overexpression of the O-GlcNAcylation-deficient mutant of TAK1 promotes LPS-mediated apoptosis in macrophages. Importantly, TAK1 O-GlcNAcylation was found to promote M1 macrophage polarization in activated macrophages. Taken together, these data demonstrate that O-GlcNAcylation of TAK1 on S427 critically regulates the pro-inflammatory activation and M1 polarization of macrophages via modulation of the TAK1/JNK/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Dongmei Zhang
- Department of Pathogen Biology, Medical College, Nantong University, Nantong 226001, Jiangsu Province, China; Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, Jiangsu Province, China
| | - Zhiwei Xu
- Department of Immunology, Medical College, Nantong University, Nantong 226001, Jiangsu Province, China; Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, Jiangsu Province, China
| | - Tao Tao
- Department of Immunology, Medical College, Nantong University, Nantong 226001, Jiangsu Province, China; Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, Jiangsu Province, China
| | - Xiaojuan Liu
- Department of Pathogen Biology, Medical College, Nantong University, Nantong 226001, Jiangsu Province, China; Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, Jiangsu Province, China
| | - Xiaolei Sun
- Department of Pathogen Biology, Medical College, Nantong University, Nantong 226001, Jiangsu Province, China; Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, Jiangsu Province, China
| | - Yuhong Ji
- Department of Immunology, Medical College, Nantong University, Nantong 226001, Jiangsu Province, China
| | - Lijian Han
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, Jiangsu Province, China
| | - Huiyuan Qiu
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, Jiangsu Province, China
| | - Guizhou Zhu
- Department of Immunology, Medical College, Nantong University, Nantong 226001, Jiangsu Province, China
| | - Yifen Shen
- Department of Immunology, Medical College, Nantong University, Nantong 226001, Jiangsu Province, China
| | - Liang Zhu
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, Jiangsu Province, China
| | - Aiguo Shen
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, Jiangsu Province, China; Coinnovation Center of Neuroregeneration, Nantong University, Nantong 226001, Jiangsu Province, China.
| |
Collapse
|
217
|
Zhang Q, Sun X, Xiao X, Zheng J, Li M, Yu M, Ping F, Wang Z, Qi C, Wang T, Wang X. Effects of Maternal Chromium Restriction on the Long-Term Programming in MAPK Signaling Pathway of Lipid Metabolism in Mice. Nutrients 2016; 8:nu8080488. [PMID: 27517955 PMCID: PMC4997401 DOI: 10.3390/nu8080488] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 08/02/2016] [Accepted: 08/03/2016] [Indexed: 12/24/2022] Open
Abstract
It is now broadly accepted that the nutritional environment in early life is a key factor in susceptibility to metabolic diseases. In this study, we evaluated the effects of maternal chromium restriction in vivo on the modulation of lipid metabolism and the mechanisms involved in this process. Sixteen pregnant C57BL mice were randomly divided into two dietary treatments: a control (C) diet group and a low chromium (L) diet group. The diet treatment was maintained through gestation and lactation period. After weaning, some of the pups continued with either the control diet or low chromium diet (CC or LL), whereas other pups switched to another diet (CL or LC). At 32 weeks of age, serum lipid metabolism, proinflammatory indexes, oxidative stress and anti-oxidant markers, and DNA methylation status in adipose tissue were measured. The results indicated that the maternal low chromium diet increased body weight, fat pad weight, serum triglyceride (TG), low-density lipoprotein cholesterol (LDL), tumor necrosis factor-α (TNF-α), malondialdehyde (MDA), and oxidized glutathione (GSSG). There was a decrease in serum reduced/oxidized glutathione (GSH/GSSG) ratio at 32 weeks of age in female offspring. From adipose tissue, we identified 1214 individual hypomethylated CpG sites and 411 individual hypermethylated CpG sites in the LC group when compared to the CC group. Pathway analysis of the differential methylation genes revealed a significant increase in hypomethylated genes in the mitogen-activated protein kinase (MAPK) signaling pathway in the LC group. Our study highlights the importance of the MAPK signaling pathway in epigenetic changes involved in the lipid metabolism of the offspring from chromium-restricted dams.
Collapse
Affiliation(s)
- Qian Zhang
- Key Laboratory of Endocrinology, Ministry of Health, Translational Medical Center, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China.
| | - Xiaofang Sun
- Department of Endocrinology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China.
| | - Xinhua Xiao
- Key Laboratory of Endocrinology, Ministry of Health, Translational Medical Center, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China.
| | - Jia Zheng
- Key Laboratory of Endocrinology, Ministry of Health, Translational Medical Center, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China.
| | - Ming Li
- Key Laboratory of Endocrinology, Ministry of Health, Translational Medical Center, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China.
| | - Miao Yu
- Key Laboratory of Endocrinology, Ministry of Health, Translational Medical Center, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China.
| | - Fan Ping
- Key Laboratory of Endocrinology, Ministry of Health, Translational Medical Center, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China.
| | - Zhixin Wang
- Key Laboratory of Endocrinology, Ministry of Health, Translational Medical Center, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China.
| | - Cuijuan Qi
- Key Laboratory of Endocrinology, Ministry of Health, Translational Medical Center, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China.
| | - Tong Wang
- Key Laboratory of Endocrinology, Ministry of Health, Translational Medical Center, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China.
| | - Xiaojing Wang
- Key Laboratory of Endocrinology, Ministry of Health, Translational Medical Center, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China.
| |
Collapse
|
218
|
Le Goff C, Rogers C, Le Goff W, Pinto G, Bonnet D, Chrabieh M, Alibeu O, Nistchke P, Munnich A, Picard C, Cormier-Daire V. Heterozygous Mutations in MAP3K7, Encoding TGF-β-Activated Kinase 1, Cause Cardiospondylocarpofacial Syndrome. Am J Hum Genet 2016; 99:407-13. [PMID: 27426734 DOI: 10.1016/j.ajhg.2016.06.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 06/01/2016] [Indexed: 11/17/2022] Open
Abstract
Cardiospondylocarpofacial (CSCF) syndrome is characterized by growth retardation, dysmorphic facial features, brachydactyly with carpal-tarsal fusion and extensive posterior cervical vertebral synostosis, cardiac septal defects with valve dysplasia, and deafness with inner ear malformations. Whole-exome sequencing identified heterozygous MAP3K7 mutations in six distinct CSCF-affected individuals from four families and ranging in age from 5 to 37 years. MAP3K7 encodes transforming growth factor β (TGF-β)-activated kinase 1 (TAK1), which is involved in the mitogen-activated protein kinase (MAPK)-p38 signaling pathway. MAPK-p38 signaling was markedly altered when expression of non-canonical TGF-β-driven target genes was impaired. These findings support the loss of transcriptional control of the TGF-β-MAPK-p38 pathway in fibroblasts obtained from affected individuals. Surprisingly, although TAK1 is located at the crossroad of inflammation, immunity, and cancer, this study reports MAP3K7 mutations in a developmental disorder affecting mainly cartilage, bone, and heart.
Collapse
Affiliation(s)
- Carine Le Goff
- Department of Medical Genetics, Reference Center for Skeletal Dysplasia, INSERM UMR 1163, Laboratory of Molecular and Physiopathological Bases of Osteochondrodysplasia, Paris Descartes-Sorbonne Paris Cité University, AP-HP, Institut Imagine, and Hôpital Universitaire Necker-Enfants Malades, 75015 Paris, France
| | - Curtis Rogers
- Greenwood Genetic Center Greenville Office, 14 Edgewood Drive, Greenville, SC 29605, USA
| | - Wilfried Le Goff
- Sorbonne Universités, UPMC Univ. Paris 06, INSERM, ICAN, Institute of Cardiometabolism and Nutrition (UMR_S1166), Integrative Biology of Atherosclerosis Team, 91 Boulevard de l'Hôpital, 75013 Paris, France
| | - Graziella Pinto
- Pediatric Endocrinology, Gynecology and Diabetes, Centre des Maladies Endocriniennes Rares de la Croissance, Hôpital Universitaire Necker-Enfants Malades, 75015 Paris, France
| | - Damien Bonnet
- Centre de Référence Malformations Cardiaques Congénitales Complexes-M3C, Hôpital Universitaire Necker-Enfants Malades, Université Paris Descartes, 75015 Paris, France
| | - Maya Chrabieh
- Necker Branch, Laboratory of Human Genetics of Infectious Diseases, UMR 1163, Université Paris Descartes, Sorbonne Paris Cité, Institut Imagine, Hôpital Necker-Enfants Malades, 75015 Paris, France
| | - Olivier Alibeu
- Genomic Platform, INSERM UMR 1163, Paris Descartes-Sorbonne Paris Cité University, Institut Imagine, 75015 Paris, France
| | - Patrick Nistchke
- Bioinformatic Platform, INSERM UMR 1163, Paris Descartes-Sorbonne Paris Cité University, Institut Imagine, 75015 Paris, France
| | - Arnold Munnich
- Department of Medical Genetics, Reference Center for Skeletal Dysplasia, INSERM UMR 1163, Laboratory of Molecular and Physiopathological Bases of Osteochondrodysplasia, Paris Descartes-Sorbonne Paris Cité University, AP-HP, Institut Imagine, and Hôpital Universitaire Necker-Enfants Malades, 75015 Paris, France
| | - Capucine Picard
- Necker Branch, Laboratory of Human Genetics of Infectious Diseases, UMR 1163, Université Paris Descartes, Sorbonne Paris Cité, Institut Imagine, Hôpital Necker-Enfants Malades, 75015 Paris, France; Pediatric Hematology-Immunology-Rheumatology Unit, AP-HP, Hôpital Universitaire Necker-Enfants Malades, 75015 Paris, France; Study Center of Immunodeficiencies, Hôpital Universitaire Necker-Enfants Malades, AP-HP, 75015 Paris, France
| | - Valérie Cormier-Daire
- Department of Medical Genetics, Reference Center for Skeletal Dysplasia, INSERM UMR 1163, Laboratory of Molecular and Physiopathological Bases of Osteochondrodysplasia, Paris Descartes-Sorbonne Paris Cité University, AP-HP, Institut Imagine, and Hôpital Universitaire Necker-Enfants Malades, 75015 Paris, France.
| |
Collapse
|
219
|
Wade E, Daniel P, Jenkins Z, McInerney-Leo A, Leo P, Morgan T, Addor M, Adès L, Bertola D, Bohring A, Carter E, Cho TJ, Duba HC, Fletcher E, Kim C, Krakow D, Morava E, Neuhann T, Superti-Furga A, Veenstra-Knol I, Wieczorek D, Wilson L, Hennekam R, Sutherland-Smith A, Strom T, Wilkie A, Brown M, Duncan E, Markie D, Robertson S. Mutations in MAP3K7 that Alter the Activity of the TAK1 Signaling Complex Cause Frontometaphyseal Dysplasia. Am J Hum Genet 2016; 99:392-406. [PMID: 27426733 DOI: 10.1016/j.ajhg.2016.05.024] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 05/22/2016] [Indexed: 12/29/2022] Open
Abstract
Frontometaphyseal dysplasia (FMD) is a progressive sclerosing skeletal dysplasia affecting the long bones and skull. The cause of FMD in some individuals is gain-of-function mutations in FLNA, although how these mutations result in a hyperostotic phenotype remains unknown. Approximately one half of individuals with FMD have no identified mutation in FLNA and are phenotypically very similar to individuals with FLNA mutations, except for an increased tendency to form keloid scars. Using whole-exome sequencing and targeted Sanger sequencing in 19 FMD-affected individuals with no identifiable FLNA mutation, we identified mutations in two genes-MAP3K7, encoding transforming growth factor β (TGF-β)-activated kinase (TAK1), and TAB2, encoding TAK1-associated binding protein 2 (TAB2). Four mutations were found in MAP3K7, including one highly recurrent (n = 15) de novo mutation (c.1454C>T [ p.Pro485Leu]) proximal to the coiled-coil domain of TAK1 and three missense mutations affecting the kinase domain (c.208G>C [p.Glu70Gln], c.299T>A [p.Val100Glu], and c.502G>C [p.Gly168Arg]). Notably, the subjects with the latter three mutations had a milder FMD phenotype. An additional de novo mutation was found in TAB2 (c.1705G>A, p.Glu569Lys). The recurrent mutation does not destabilize TAK1, or impair its ability to homodimerize or bind TAB2, but it does increase TAK1 autophosphorylation and alter the activity of more than one signaling pathway regulated by the TAK1 kinase complex. These findings show that dysregulation of the TAK1 complex produces a close phenocopy of FMD caused by FLNA mutations. Furthermore, they suggest that the pathogenesis of some of the filaminopathies caused by FLNA mutations might be mediated by misregulation of signaling coordinated through the TAK1 signaling complex.
Collapse
|
220
|
Rewiring of the apoptotic TGF-β-SMAD/NFκB pathway through an oncogenic function of p27 in human papillary thyroid cancer. Oncogene 2016; 36:652-666. [PMID: 27452523 DOI: 10.1038/onc.2016.233] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 03/29/2016] [Accepted: 05/24/2016] [Indexed: 12/25/2022]
Abstract
Papillary thyroid carcinoma (PTC), the most frequent thyroid cancer, is characterized by low proliferation but no apoptosis, presenting frequent lymph-node metastasis. Papillary thyroid carcinoma overexpress transforming growth factor-beta (TGF-β). In human cells, TGF-β has two opposing actions: antitumoral through pro-apoptotic and cytostatic activities, and pro-tumoral promoting growth and metastasis. The switch converting TGF-β from a tumor-suppressor to tumor-promoter has not been identified. In the current study, we have quantified a parallel upregulation of TGF-β and nuclear p27, a CDK2 inhibitor, in samples from PTC. We established primary cultures from follicular epithelium in human homeostatic conditions (h7H medium). TGF-β-dependent cytostasis occurred in normal and cancer cells through p15/CDKN2B induction. However, TGF-β induced apoptosis in normal and benign but not in carcinoma cultures. In normal thyroid cells, TGF-β/SMAD repressed the p27/CDKN1B gene, activating CDK2-dependent SMAD3 phosphorylation to induce p50 NFκB-dependent BAX upregulation and apoptosis. In thyroid cancer cells, oncogene activation prevented TGF-β/SMAD-dependent p27 repression, and CDK2/SMAD3 phosphorylation, leading to p65 NFκB upregulation which repressed BAX, induced cyclin D1 and promoted TGF-β-dependent growth. In PTC samples from patients, upregulation of TGF-β, p27, p65 and cyclin D1 mRNA were significantly correlated, while the expression of the isoform BAX-β, exclusively transcribed in apoptotic cells, was negatively correlated. Additionally, combined ERK and p65 NFκB inhibitors reduced p27 expression and potentiated apoptosis in thyroid cancer cells while not affecting survival in normal thyroid cells. Our results therefore suggest that the oncoprotein p27 reorganizes the effects of TGF-β in thyroid cancer, explaining the slow proliferation but lack of apoptosis and metastatic behavior of PTC.
Collapse
|
221
|
Alemán OR, Mora N, Cortes-Vieyra R, Uribe-Querol E, Rosales C. Transforming Growth Factor-β-Activated Kinase 1 Is Required for Human FcγRIIIb-Induced Neutrophil Extracellular Trap Formation. Front Immunol 2016; 7:277. [PMID: 27486461 PMCID: PMC4947870 DOI: 10.3389/fimmu.2016.00277] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 07/04/2016] [Indexed: 01/24/2023] Open
Abstract
Neutrophils (PMNs) are the most abundant leukocytes in the blood. PMN migrates from the circulation to sites of infection where they are responsible for antimicrobial functions. PMN uses phagocytosis, degranulation, and formation of neutrophil extracellular traps (NETs) to kill microbes. Several stimuli, including bacteria, fungi, and parasites, and some pharmacological compounds, such as Phorbol 12-myristate 13-acetate (PMA), are efficient inducers of NETs. Antigen-antibody complexes are also capable of inducing NET formation. Recently, it was reported that FcγRIIIb cross-linking induced NET formation similarly to PMA stimulation. Direct cross-linking of FcγRIIA or integrins did not promote NET formation. FcγRIIIb-induced NET formation presented different kinetics from PMA-induced NET formation, suggesting differences in signaling. Because FcγRIIIb also induces a strong activation of extracellular signal-regulated kinase (ERK) and nuclear factor Elk-1, and the transforming growth factor-β-activated kinase 1 (TAK1) has recently been implicated in ERK signaling, in the present report, we explored the role of TAK1 in the signaling pathway activated by FcγRIIIb leading to NET formation. FcγRIIIb was stimulated by specific monoclonal antibodies, and NET formation was evaluated in the presence or absence of pharmacological inhibitors. The antibiotic LL Z1640-2, a selective inhibitor of TAK1 prevented FcγRIIIb-induced, but not PMA-induced NET formation. Both PMA and FcγRIIIb cross-linking induced phosphorylation of ERK. But, LL Z1640-2 only inhibited the FcγRIIIb-mediated activation of ERK. Also, only FcγRIIIb, similarly to transforming growth factor-β-induced TAK1 phosphorylation. A MEK (ERK kinase)-specific inhibitor was able to prevent ERK phosphorylation induced by both PMA and FcγRIIIb. These data show for the first time that FcγRIIIb cross-linking activates TAK1, and that this kinase is required for triggering the MEK/ERK signaling pathway to NETosis.
Collapse
Affiliation(s)
- Omar Rafael Alemán
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Nancy Mora
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Ricarda Cortes-Vieyra
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Eileen Uribe-Querol
- División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Carlos Rosales
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
222
|
The Discovery and Early Days of TGF-β: A Historical Perspective. Cold Spring Harb Perspect Biol 2016; 8:cshperspect.a021865. [PMID: 27328871 DOI: 10.1101/cshperspect.a021865] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Transforming growth factors (TGFs) were discovered as activities that were secreted by cancer cells, and later by normal cells, and had the ability to phenotypically and reversibly transform immortalized fibroblasts. TGF-β distinguished itself from TGF-α because it did not bind to the same epidermal growth factor (EGF) receptor as TGF-α and, therefore, acted through different cell-surface receptors and signaling mediators. This review summarizes the discovery of TGF-β, the early developments in its molecular and biological characterization with its many biological activities in different cell and tissue contexts and its roles in disease, the realization that there is a family of secreted TGF-β-related proteins with many differentiation functions in development and activities in normal cell and tissue physiology, and the subsequent identification and characterization of the receptors and effectors that mediate TGF-β family signaling responses.
Collapse
|
223
|
Zhang Y, O'Keefe RJ, Jonason JH. BMP-TAK1 (MAP3K7) Induces Adipocyte Differentiation Through PPARγ Signaling. J Cell Biochem 2016; 118:204-210. [PMID: 27293199 DOI: 10.1002/jcb.25626] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 06/10/2016] [Indexed: 02/05/2023]
Abstract
BMPs have been shown to promote adipocyte differentiation through SMAD-dependent signaling. However, the role of TGF-β-activated kinase 1 (TAK1) in non-canonical BMP signaling in adipocyte differentiation remains unclear. Here, we show that TAK1 inhibition decreases lipid accumulation in C3H10T1/2 mesenchymal stem cells (MSCs) induced to differentiate into adipocytes. TAK1 knockdown by siRNA further confirms that TAK1 is required for adipocyte commitment of MSCs. Additionally, TAK1 knockdown inhibits adipogenesis of 3T3-L1 preadipocytes, indicating that TAK1 is not only needed for adipocyte commitment, but also required for adipocyte terminal differentiation. Furthermore, TAK1 ablation specifically in adipocytes reduced high fat diet-induced weight gain and improved glucose tolerance. Mechanistically, we demonstrate that TAK1 is required for PPARγ transactivation and promotes PPARγ transcriptional activity synergistically with TAK1 binding protein 1 (TAB1). Collectively, our results demonstrate that TAK1 plays a critical role in BMP-mediated adipocyte differentiation. J. Cell. Biochem. 118: 204-210, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yongchun Zhang
- Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, New York 14642.,Department of Biochemistry and Biophysics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, New York 14642.,Center for Human Development and Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Medical Center, New York, New York 10032
| | - Regis J O'Keefe
- Department of Orthopaedic Surgery, Washington University School of Medicine, 660 Euclid Avenue, St. Louis, Missouri 63110
| | - Jennifer H Jonason
- Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, New York 14642.,Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, New York 14642
| |
Collapse
|
224
|
Madej W, Buma P, van der Kraan P. Inflammatory conditions partly impair the mechanically mediated activation of Smad2/3 signaling in articular cartilage. Arthritis Res Ther 2016; 18:146. [PMID: 27334538 PMCID: PMC4918093 DOI: 10.1186/s13075-016-1038-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 05/31/2016] [Indexed: 01/14/2023] Open
Abstract
Background Joint trauma, which is frequently related with mechanical overloading of articular cartilage, is a well-established risk for osteoarthritis (OA) development. Additionally, reports show that trauma leads to synovial joint inflammation. In consequence, after joint trauma, cartilage is influenced by deleterious excessive loading combined with the catabolic activity of proinflammatory mediators. Since the activation of TGF-β signaling by loading is considered to be a key regulatory pathway for maintaining cartilage homeostasis, we tested the effect of proinflammatory conditions on mechanically mediated activation of TGF-β/Smad2/3P signaling in cartilage. Methods Cartilage explants were subjected to dynamic mechanical compression in the presence of interleukin-1 beta (IL-1β) or osteoarthritic synovium-conditioned medium (OAS-CM). Subsequently, the activation of the Smad2/3P pathway was monitored with QPCR analysis of reporter genes and additionally the expression of receptors activating the Smad2/3P pathway was analyzed. Finally, the ability for mechanically mediated activation of Smad2/3P was tested in human OA cartilage. Results IL-1β presence during compression did not impair the upregulation of Smad2/3P reporter genes, however the results were affected by IL-1β-mediated upregulations in unloaded controls. OAS-CM significantly impaired the compression-mediated upregulation of bSmad7 and Tgbfb1. IL-1β suppressed the compression-mediated bAlk5 upregulation where 12 MPa compression applied in the presence of OAS-CM downregulated the bTgfbr2. Mechanically driven upregulation of Smad2/3P reporter genes was present in OA cartilage. Conclusions Proinflammatory conditions partly impair the mechanically mediated activation of the protective TGF-β/Smad2/3P pathway. Additionally, the excessive mechanical compression, applied in the presence of proinflammatory conditions diminishes the expression of the type II TGF-β receptor, a receptor critical for maintenance of articular cartilage.
Collapse
Affiliation(s)
- Wojciech Madej
- Orthopedic Research Laboratory, Radboud University Medical Center, Geert Grooteplein-Zuid 10, route 547, 6525, GA, Nijmegen, The Netherlands.,Experimental Rheumatology, Radboud University Medical Center, Geert Grooteplein 26-28, route 272, 6525, GA, Nijmegen, The Netherlands
| | - Pieter Buma
- Orthopedic Research Laboratory, Radboud University Medical Center, Geert Grooteplein-Zuid 10, route 547, 6525, GA, Nijmegen, The Netherlands
| | - Peter van der Kraan
- Experimental Rheumatology, Radboud University Medical Center, Geert Grooteplein 26-28, route 272, 6525, GA, Nijmegen, The Netherlands.
| |
Collapse
|
225
|
Singh AK, Umar S, Riegsecker S, Chourasia M, Ahmed S. Regulation of Transforming Growth Factor β-Activated Kinase Activation by Epigallocatechin-3-Gallate in Rheumatoid Arthritis Synovial Fibroblasts: Suppression of K(63) -Linked Autoubiquitination of Tumor Necrosis Factor Receptor-Associated Factor 6. Arthritis Rheumatol 2016; 68:347-58. [PMID: 26473505 DOI: 10.1002/art.39447] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 09/17/2015] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Transforming growth factor β-activated kinase 1 (TAK1) is a key MAPKKK family protein in interleukin-1β (IL-1β), tumor necrosis factor (TNF), and Toll-like receptor signaling. This study was undertaken to examine the posttranslational modification of TAK1 and its therapeutic regulation in rheumatoid arthritis (RA). METHODS The effect of TAK1, IL-1 receptor-associated kinase 1 (IRAK-1), and TNF receptor-associated factor 6 (TRAF6) inhibition was evaluated in IL-1β-stimulated human RA synovial fibroblasts (RASFs). Western blotting, immunoprecipitation, and 20S proteasome assay were used to study the ubiquitination process in RASFs. The efficacy of epigallocatechin-3-gallate (EGCG), a potent antiinflammatory molecule, in regulating these processes in RASFs was evaluated. Molecular docking was performed to examine the interaction of EGCG with human TAK1, IRAK-1, and TRAF6. These findings were confirmed using a rat model of adjuvant-induced arthritis (AIA). RESULTS Inhibition of TAK1, but not IRAK-1 or TRAF6, completely abrogated IL-1β-induced IL-6 and IL-8 synthesis in RASFs. EGCG inhibited TAK1 phosphorylation at Thr(184/187) and occupied the C(174) position, an ATP-binding site, to inhibit its kinase activity. EGCG pretreatment also inhibited K(63) -linked autoubiquitination of TRAF6, a posttranslational modification essential for TAK1 autophosphorylation, by forming a stable H bond at the K(124) position on TRAF6. Furthermore, EGCG enhanced proteasome-associated deubiquitinase expression to rescue proteins from proteasomal degradation. Western blot analyses of joint homogenates from rats with AIA showed a significant increase in K(48) -linked polyubiquitination, TAK1 phosphorylation, and TRAF6 expression when compared to naive rats. Administration of EGCG (50 mg/kg/day) for 10 days ameliorated AIA in rats by reducing TAK1 phosphorylation and K(48) -linked polyubiquitination. CONCLUSION Our findings provide a rationale for targeting TAK1 for the treatment of RA with EGCG.
Collapse
Affiliation(s)
- Anil K Singh
- Washington State University College of Pharmacy, Spokane
| | - Sadiq Umar
- Washington State University College of Pharmacy, Spokane
| | - Sharayah Riegsecker
- University of Toledo College of Pharmacy and Pharmaceutical Sciences, Toledo, Ohio
| | - Mukesh Chourasia
- National Institute of Pharmaceutical Education and Research, Hajipur, India
| | | |
Collapse
|
226
|
Tian Q, Xiao Q, Yu W, Gu M, Zhao N, Lü Y. The inhibition of transforming growth factor beta-activated kinase 1 contributed to neuroprotection via inflammatory reaction in pilocarpine-induced rats with epilepsy. Neuroscience 2016; 325:111-23. [DOI: 10.1016/j.neuroscience.2016.03.045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 02/22/2016] [Accepted: 03/16/2016] [Indexed: 11/26/2022]
|
227
|
Chung SS, Oliva B, Dwabe S, Vadgama JV. Combination treatment with flavonoid morin and telomerase inhibitor MST‑312 reduces cancer stem cell traits by targeting STAT3 and telomerase. Int J Oncol 2016; 49:487-98. [PMID: 27279256 PMCID: PMC4922839 DOI: 10.3892/ijo.2016.3546] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 04/26/2016] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most commonly diagnosed cancers worldwide. The malignant CRC that undergoes metastasis in the advanced stage is usually refractory to existing chemotherapy and shows a poor prognosis. However, to date, efficient targeted-therapy for metastatic CRC is ill-defined. We tested the hypothesis that combined treatment of flavonoid morin and telomerase inhibitor MST‑312 may reduce the cancer stem cell (CSC) traits. To characterize CSC phenotype, we performed the CD133/CD44 subpopulation profiling, tumorsphere formation assay, cell invasion assay and wound healing assay. We have examined the augmenting effects of the combined treatment of morin and MST‑312 for 5-FU (5-fluorouracil) efficacy in human colorectal cancer. Morin and MST‑312 combined treatment reduced CD133 (+) and CD44 (+) subpopulations in human colorectal and breast cancer cells, respectively. Tumorsphere formation and cell invasiveness were decreased with the morin and MST‑312 combination treatment. Consistent with these data, morin and MST‑312 treatment decreased the wound healing capacity of human breast cancer cells. Stress and apoptosis antibody arrays revealed that there were specific upregulated and downregulated proteins resulting from different treatments. Phosphorylation levels of BAD, p53 and Chk1 were enhanced upon morin/MST‑312 treatments in HT-29 cells, whereas caspase-3 cleavage level and expression of IκBα were downregulated by combined morin/MST‑312 treatment in SW620 cells. Finally, morin and MST‑312 co-treatment further augmented the 5-FU efficacy, chemosensitizing the 5-FU resistant human colorectal cancer cells. Taken together, our study suggests that novel targeted-therapy can be implemented by using flavonoid morin and telomerase inhibitor MST‑312 for improved cancer prognosis.
Collapse
Affiliation(s)
- Seyung S Chung
- Division of Cancer Research and Training, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA
| | - Bryant Oliva
- Division of Cancer Research and Training, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA
| | - Sami Dwabe
- Division of Cancer Research and Training, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA
| | - Jaydutt V Vadgama
- Division of Cancer Research and Training, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA
| |
Collapse
|
228
|
Zhang Q, Matsui H, Horiuchi H, Liang X, Sasaki K. A-Raf and C-Raf differentially regulate mechanobiological response of osteoblasts to guide mechanical stress-induced differentiation. Biochem Biophys Res Commun 2016; 476:438-444. [PMID: 27240957 DOI: 10.1016/j.bbrc.2016.05.141] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 05/26/2016] [Indexed: 11/26/2022]
Abstract
Regulation of osteoblast activity by mechanical stress is important for bone remodeling. However, the precise mechanotransduction mechanism that triggers the anabolic reaction of osteoblasts is largely unknown. In this study, we performed RNA interference (RNAi) screening to identify the signaling molecules upstream of ERK, which was responsible for osteogenesis. Of twenty-two mitogen-activated protein kinase (MAPK) kinase kinases (MAP3Ks), we identified A-Raf and C-Raf as upstream MAP3Ks of the mechanical stretch-activated ERK pathway. Subsequently we screened the mechanosensitive cation channel, and identified P2X7 as an upstream molecule of the ERK pathway. Intriguingly, P2X7 functioned as an upstream activator of A-Raf but not of C-Raf. Furthermore, A-Raf contributed to mechanical stretch-induced osteoblast differentiation. In contrast, C-Raf but not A-Raf protected osteoblasts from mechanical stretch-induced apoptosis. These results suggested that A-Raf and C-Raf were involved in mechanobiological osteogenesis in a distinct way: A-Raf was responsible for osteogenesis while C-Raf for anti-apoptotic protection and promotion.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Oral Implantology, State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, Sichuan, China; Department of Advanced Prosthetic Dentistry, Graduate School of Dentistry, Tohoku University, Sendai, Miyagi, Japan
| | - Hiroyuki Matsui
- Department of Advanced Prosthetic Dentistry, Graduate School of Dentistry, Tohoku University, Sendai, Miyagi, Japan; Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi, Japan.
| | - Hisanori Horiuchi
- Department of Molecular and Cellular Biology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan; Department of Oral Cancer Therapeutics, Graduate School of Dentistry, Tohoku University, Sendai, Miyagi, Japan
| | - Xing Liang
- Department of Oral Implantology, State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Keiichi Sasaki
- Department of Advanced Prosthetic Dentistry, Graduate School of Dentistry, Tohoku University, Sendai, Miyagi, Japan
| |
Collapse
|
229
|
Whatcott CJ, Han H, Von Hoff DD. Orchestrating the Tumor Microenvironment to Improve Survival for Patients With Pancreatic Cancer: Normalization, Not Destruction. Cancer J 2016. [PMID: 26222082 DOI: 10.1097/ppo.0000000000000140] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Pancreatic cancer is the fourth leading cause of cancer death in the United States. The microenvironment of pancreatic cancer could be one of the "perfect storms" that support the growth of a cancer. Indeed, pancreatic cancer may be the poster child of a problem with the microenvironment. In this article, we review the rationale and attempts to date on modifying or targeting structural proteins in the microenvironment including hyaluronan (HA) (in primary and metastases), collagen, and SPARC (secreted protein, acidic, and rich in cysteine). Indeed, working in this area has produced a regimen that improves survival for patients with advanced pancreatic cancer (nab-paclitaxel + gemcitabine). In addition, in initial clinical trials, PEGylated hyaluronidase appears promising. We also review a new approach that is different than targeting/destroying the microenvironment and that is orchestrating, reengineering, reprogramming, or normalizing the microenvironment (including normalizing structural proteins, normalizing an immunologically tumor-friendly environment to a less friendly environment, reversing epithelial-to-mesenchymal transition, and so on). We believe this will be most effectively done by agents that have global effects on transcription. There is initial evidence that this can be done by agents such as vitamin D derivatives and other new agents. There is no doubt these opportunities can now be tried in the clinic with hopefully beneficial effects.
Collapse
Affiliation(s)
- Clifford J Whatcott
- From the Clinical Translational Research Division, The Translational Genomics Research Institute (TGen), Phoenix, AZ
| | | | | |
Collapse
|
230
|
Abstract
Forty years ago Marshal R. Urist discovered a substance in bone matrix that had inductive properties for the development of bone and cartilage, until date, at least 20 bone morphogenetic proteins (BMPs) have been identified, some of which have been shown in vitro to stimulate the process of stem cell differentiation into osteoblasts in human and animal models. The purpose of this paper is to give a brief overview of BMPs and to review critically the clinical data currently available on the use of BMPs in various periodontal applications. The literature on BMPs was reviewed. A comprehensive search was designed. The articles were independently screened for eligibility. Articles with authentic controls and proper randomization and pertaining specifically to their role in periodontal applications were included. The available literature was analyzed and compiled. The analysis indicates BMPs to be a promising, as well as an effective novel approach to reconstruct and engineer the periodontal apparatus. Here, we represent several articles, as well as recent texts that make up a special and an in-depth review on the subject. On the basis of the data provided in the studies that were reviewed BMPs provide revolutionary therapies in periodontal practice.
Collapse
Affiliation(s)
- Supreet Kaur
- Department of Periodontics, Sri Guru Ram Das Institute of Dental Sciences and Research, Amritsar, Punjab, India
| | - Vishakha Grover
- Department of Periodontics, National Dental College and Hospital, Dera Bassi, Punjab, India
| | - Harkiran Kaur
- Department of Periodontics, Sri Guru Ram Das Institute of Dental Sciences and Research, Amritsar, Punjab, India
| | - Ranjan Malhotra
- Department of Periodontics, National Dental College and Hospital, Dera Bassi, Punjab, India
| |
Collapse
|
231
|
Wang S, Li H, Lǚ K, Qian Z, Weng S, He J, Li C. Identification and characterization of transforming growth factor β-activated kinase 1 from Litopenaeus vannamei involved in anti-bacterial host defense. FISH & SHELLFISH IMMUNOLOGY 2016; 52:278-288. [PMID: 27033469 DOI: 10.1016/j.fsi.2016.03.149] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 03/22/2016] [Indexed: 06/05/2023]
Abstract
LvTAK1, a member of transforming growth factor β-activated kinase 1 (TAK1) families, has been identified from Litopenaeus vannamei in this study. The full length of LvTAK1 is 2670 bp, including a 2277 bp open reading frame (ORF) that encoded a putative protein of 758 amino acids with a calculated molecular weight of ∼83.4 kDa LvTAK1 expression was most abundant in muscles and was up-regulated in gills after LPS, Vibrio parahaemolyticus, Staphylococcus aureus, Poly (I:C) and WSSV challenge. Both in vivo and in vitro experiments indicated that LvTAK1 could activate the expression of several antimicrobial peptide genes (AMPs). In addition, the dsRNA-mediated knockdown of LvTAK1 enhanced the susceptibility of shrimps to Vibrio parahaemolyticus, a kind of Gram-negative bacteria. These results suggested LvTAK1 played important roles in anti-bacterial infection. CoIP and subcellular localization assay demonstrated that LvTAK1 could interact with its binding protein LvTAB2, a key component of IMD pathway. Moreover, over-expression of LvTAK1 in Drosophila S2 cell could strongly induce the promoter activity of Diptericin (Dpt), a typical AMP which is used to read out of the activation of IMD pathway. These findings suggested that LvTAK1 could function as a component of IMD pathway. Interestingly, with the over-expression of LvTAK1 in S2 cell, the promoter activity of Metchnikowin (Mtk), a main target gene of Toll/Dif pathway, was up-regulated over 30 times, suggesting that LvTAK1 may also take part in signal transduction of the Toll pathway. In conclusion, we provided some evidences that the involvement of LvTAK1 in the regulation of both Toll and IMD pathways, as well as innate immune against bacterial infection in shrimp.
Collapse
Affiliation(s)
- Sheng Wang
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, PR China
| | - Haoyang Li
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, PR China
| | - Kai Lǚ
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, PR China
| | - Zhe Qian
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Shaoping Weng
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, PR China
| | - Jianguo He
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, PR China; School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China; South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), PR China.
| | - Chaozheng Li
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, PR China; School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China; South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), PR China.
| |
Collapse
|
232
|
Takaoka S, Kamioka Y, Takakura K, Baba A, Shime H, Seya T, Matsuda M. Live imaging of transforming growth factor-β activated kinase 1 activation in Lewis lung carcinoma 3LL cells implanted into syngeneic mice and treated with polyinosinic:polycytidylic acid. Cancer Sci 2016; 107:644-52. [PMID: 26931406 PMCID: PMC4970831 DOI: 10.1111/cas.12923] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 02/01/2016] [Accepted: 02/28/2016] [Indexed: 12/15/2022] Open
Abstract
Transforming growth factor‐β activated kinase 1 (TAK1) has been shown to play a crucial role in cell death, differentiation, and inflammation. Here, we live‐imaged robust TAK1 activation in Lewis lung carcinoma 3LL cells implanted into the s.c. tissue of syngeneic C57BL/6 mice and treated with polyinosinic:polycytidylic acid (PolyI:C). First, we developed and characterized a Förster resonance energy transfer‐based biosensor for TAK1 activity. The TAK1 biosensor, named Eevee‐TAK1, responded to stress‐inducing reagents such as anisomycin, tumor necrosis factor‐α, and interleukin1‐β. The anisomycin‐induced increase in Förster resonance energy transfer was abolished by the TAK1 inhibitor (5z)‐7‐oxozeaenol. Activity of TAK1 in 3LL cells was markedly increased by PolyI:C in the presence of macrophages. 3LL cells expressing Eevee‐TAK1 were implanted into mice and observed through imaging window by two‐photon excitation microscopy. During the growth of tumor, the 3LL cells at the periphery of the tumor showed higher TAK1 activity than the 3LL cells located at the center of the tumor, suggesting that cells at the periphery of the tumor mass were under stronger stress. Injection of PolyI:C, which is known to induce regression of the implanted tumors, induced marked and homogenous TAK1 activation within the tumor tissues. The effect of PolyI:C faded within 4 days. These observations suggest that Eevee‐TAK1 is a versatile tool to monitor cellular stress in cancer tissues.
Collapse
Affiliation(s)
- Saori Takaoka
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yuji Kamioka
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Innovative Techno-Hub for Integrated Medical Bio-Imaging, Kyoto University, Kyoto, Japan
| | - Kanako Takakura
- Imaging Platform for Spatio-Temporal Regulation, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ai Baba
- Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Hiroaki Shime
- Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Tsukasa Seya
- Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Michiyuki Matsuda
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| |
Collapse
|
233
|
Qi X, Li C, Wu C, Yu C, Liu M, Gao M, Li C, Yan H, Ren J. Dephosphorylation of Tak1 at Ser412 greatly contributes to the spermatocyte-specific testis toxicity induced by (5R)-5-hydroxytriptolide in C57BL/6 mice. Toxicol Res (Camb) 2016; 5:594-601. [PMID: 30090373 PMCID: PMC6062262 DOI: 10.1039/c5tx00409h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 12/30/2015] [Indexed: 11/21/2022] Open
Abstract
(5R)-5-Hydroxytriptolide (LLDT-8), a novel triptolide derivative, will proceed to phase II clinical trials for the treatment of rheumatoid arthritis and cancer. However, the selection of disease and patients is largely limited by the testis toxicity, yet toxicity mechanisms are still poorly understood. In this study, LLDT-8 dose and time-dependently decreased the testes weight, germinal cell layers and induced abnormal spermatid development. Analysis of the germ cell-specific marker showed that spermatocytes were more sensitive to LLDT-8, which was confirmed by the in vitro sensitivity assay with spermatocyte-like GC-2spd and sertoli-like TM4 cells. In GC-2spd, LLDT-8 induced G1/S arrest and apoptosis. MAPK activity screening identified that TGF-β activated kinase 1 (Tak1) is critical in LLDT-8 induced apoptosis. LLDT-8 reduced the Tak1 protein and dephosphorylated Tak1 at Ser412 in GC-2spd and the testes, but not in TM4. RNAi mediated depletion or pharmacologic inhibition of Tak1 induced apoptosis in GC-2spd. Meanwhile, activating Tak1 rescued up to 50% of the GC-2spd cells from the apoptosis induced by LLDT-8. Altogether, our study firstly revealed the important role of Tak1 in the survival of spermatocytes, and dephosphorylation of Tak1 at Ser412 may contribute to the spermatocyte-specific testis toxicity induced by LLDT-8.
Collapse
Affiliation(s)
- Xinming Qi
- Center for Drug Safety Evaluation and Research , State Key Laboratory of New Drug Research , Shanghai Institute of Materia Medica , Chinese Academy of Sciences , 501 Haike Road , Shanghai 201203 , China . ; #1303 ; Tel: +86-21-20231000#1303
| | - Chunzhu Li
- Center for Drug Safety Evaluation and Research , State Key Laboratory of New Drug Research , Shanghai Institute of Materia Medica , Chinese Academy of Sciences , 501 Haike Road , Shanghai 201203 , China . ; #1303 ; Tel: +86-21-20231000#1303
| | - Chunyong Wu
- Department of Pharmaceutical Analysis , School of Pharmacy , China Pharmaceutical University , China
| | - Cunzhi Yu
- Center for Drug Safety Evaluation and Research , State Key Laboratory of New Drug Research , Shanghai Institute of Materia Medica , Chinese Academy of Sciences , 501 Haike Road , Shanghai 201203 , China . ; #1303 ; Tel: +86-21-20231000#1303
| | - Mingxia Liu
- Center for Drug Safety Evaluation and Research , State Key Laboratory of New Drug Research , Shanghai Institute of Materia Medica , Chinese Academy of Sciences , 501 Haike Road , Shanghai 201203 , China . ; #1303 ; Tel: +86-21-20231000#1303
| | - Man Gao
- Center for Drug Safety Evaluation and Research , State Key Laboratory of New Drug Research , Shanghai Institute of Materia Medica , Chinese Academy of Sciences , 501 Haike Road , Shanghai 201203 , China . ; #1303 ; Tel: +86-21-20231000#1303
| | - Chenggang Li
- Center for Drug Safety Evaluation and Research , State Key Laboratory of New Drug Research , Shanghai Institute of Materia Medica , Chinese Academy of Sciences , 501 Haike Road , Shanghai 201203 , China . ; #1303 ; Tel: +86-21-20231000#1303
| | - Hong Yan
- Center for Drug Safety Evaluation and Research , State Key Laboratory of New Drug Research , Shanghai Institute of Materia Medica , Chinese Academy of Sciences , 501 Haike Road , Shanghai 201203 , China . ; #1303 ; Tel: +86-21-20231000#1303
| | - Jin Ren
- Center for Drug Safety Evaluation and Research , State Key Laboratory of New Drug Research , Shanghai Institute of Materia Medica , Chinese Academy of Sciences , 501 Haike Road , Shanghai 201203 , China . ; #1303 ; Tel: +86-21-20231000#1303
| |
Collapse
|
234
|
TGF-beta-induced early gene-1 overexpression promotes oxidative stress protection and actin cytoskeleton rearrangement in human skin fibroblasts. Biochim Biophys Acta Gen Subj 2016; 1860:1071-8. [PMID: 26922828 DOI: 10.1016/j.bbagen.2016.02.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 01/31/2016] [Accepted: 02/21/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND Transforming growth factor beta inducible early gene-1 (TIEG-1), a member of the Krüppel-like factor, was identified as a primary response gene for TGF-β. The role of TIEG-1 in skin repair has been mainly addressed in vivo on TIEG-1 null mice model and the mechanism remains unexplored. METHODS We investigated the modulation of TIEG-1 expression in normal human skin fibroblasts by either down-expressing or overexpressing the gene. We evaluated reactive oxygen species production and the cell viability of treated cells. The effect of TIEG-1 overexpression was monitored by wound healing assay and immunofluorescence staining of actin fibers organization and alpha-smooth muscle actin (α-SMA). Western blots were carried out to identify the level of expression or phosphorylation of key proteins such as cofilin, Rho GTPases, and p38 mitogen-activated protein kinase (p38 MAPK). RESULTS TIEG-1 down-regulation had a deleterious effect on the cell viability. It was significantly reduced (65±5%) and exposure to ultraviolet further increased this effect (47±3%). By contrast, cells overexpressing TIEG-1 had a reduced reactive oxygen species production (75%) compared to control and mock-transfected cells. This overexpression also resulted in formation of actin stress fibers and increased α-SMA expression and an enhanced wound healing feature. RhoB GTPase was upregulated and phosphorylation of cofilin and p38 MAPK was observed. CONCLUSION TIEG-1 overexpression in normal human skin fibroblasts results in improved resistance to oxidative stress, myofibroblast-like conversion that involved RhoB signaling pathway with cofilin and p38 MAPK proteins activation. GENERAL SIGNIFICANCE This study enlightens the role of TIEG-1 role in skin biology.
Collapse
|
235
|
Dual-specificity phosphatase 14 protects the heart from aortic banding-induced cardiac hypertrophy and dysfunction through inactivation of TAK1-P38MAPK/-JNK1/2 signaling pathway. Basic Res Cardiol 2016; 111:19. [PMID: 26891723 DOI: 10.1007/s00395-016-0536-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 02/02/2016] [Indexed: 10/22/2022]
Abstract
Dual-specificity phosphatase 14 (Dusp14), an important negative modulator of mitogen-activated protein kinase (MAPK) signaling pathways, has been implicated in inflammatory immune response, cancers, cell differentiation and proliferation. The role of Dusp14 in chronic pressure overload-induced cardiac hypertrophy has not been explored. Here we have shown that Dusp14-/- knockout mice and cardiac-specific Dusp14 transgenic mice were generated and subjected to aortic banding (AB) for 4 weeks. Our results demonstrated that genetic loss of Dusp14 significantly aggravated cardiac hypertrophy, fibrosis, ventricular dilation and dysfunction, whereas transgenic cardiac-specific Dusp14 overexpression significantly attenuated AB-induced cardiac dysfunction and remodeling. In vitro, adenoviral overexpression of constitutive Dusp14 blocked angiotensin II-induced hypertrophic growth of cardiomyocytes, while Dusp14 knockdown led to opposite effects. Mechanistically, excessive phosphorylation of TAK1, P38MAPK and JNK1/2 was evidenced in Dusp14-/- knockout mice post-AB and inactivation of TAK1-P38MAPK and -JNK1/2 signaling using TAK1 inhibitor 5Z-7-ox shares similar antihypertrophic effect as Dusp14 overexpression. Moreover, we show that Dusp14 directly interacted with TAK1. Results from present experiments indicate that Dusp14 protects the heart from AB-induced cardiac hypertrophy and dysfunction possibly through inactivation of TAK1-P38MAPK/-JNK1/2 signaling pathway. Future studies are warranted to test the feasibility of overexpressing Dusp14 as a therapeutic strategy to attenuate cardiac hypertrophy and failure.
Collapse
|
236
|
Kurundkar AR, Kurundkar D, Rangarajan S, Locy ML, Zhou Y, Liu RM, Zmijewski J, Thannickal VJ. The matricellular protein CCN1 enhances TGF-β1/SMAD3-dependent profibrotic signaling in fibroblasts and contributes to fibrogenic responses to lung injury. FASEB J 2016; 30:2135-50. [PMID: 26884454 DOI: 10.1096/fj.201500173] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 02/01/2016] [Indexed: 11/11/2022]
Abstract
Matricellular proteins mediate pleiotropic effects during tissue injury and repair. CCN1 is a matricellular protein that has been implicated in angiogenesis, inflammation, and wound repair. In this study, we identified CCN1 as a gene that is differentially up-regulated in alveolar mesenchymal cells of human subjects with rapidly progressive idiopathic pulmonary fibrosis (IPF). Elevated levels of CCN1 mRNA were confirmed in lung tissues of IPF subjects undergoing lung transplantation, and CCN1 protein was predominantly localized to fibroblastic foci. CCN1 expression in ex vivo IPF lung fibroblasts correlated with gene expression of the extracellular matrix proteins, collagen (Col)1a1, Col1a2, and fibronectin as well as the myofibroblast marker, α-smooth muscle actin. RNA interference (RNAi)-mediated knockdown of CCN1 down-regulated the constitutive expression of these profibrotic genes in IPF fibroblasts. TGF-β1, a known mediator of tissue fibrogenesis, induces gene and protein expression of CCN1 via a mothers against decapentaplegic homolog 3 (SMAD3)-dependent mechanism. Importantly, endogenous CCN1 potentiates TGF-β1-induced SMAD3 activation and induction of profibrotic genes, supporting a positive feedback loop leading to myofibroblast activation. In vivo RNAi-mediated silencing of CCN1 attenuates fibrogenic responses to bleomycin-induced lung injury. These studies support previously unrecognized, cooperative interaction between the CCN1 matricellular protein and canonical TGF-β1/SMAD3 signaling that promotes lung fibrosis.-Kurundkar, A. R., Kurundkar, D., Rangarajan, S., Locy, M. L., Zhou, Y., Liu, R.-M., Zmijewski, J., Thannickal, V. J. The matricellular protein CCN1 enhances TGF-β1/SMAD3-dependent profibrotic signaling in fibroblasts and contributes to fibrogenic responses to lung injury.
Collapse
Affiliation(s)
- Ashish R Kurundkar
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Deepali Kurundkar
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Sunad Rangarajan
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Morgan L Locy
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Yong Zhou
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Rui-Ming Liu
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jaroslaw Zmijewski
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Victor J Thannickal
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
237
|
Cen H, Tan X, Guo B. A20 Mutation Is Not a Prognostic Marker for Activated B-Cell-Like Diffuse Large B-Cell Lymphoma. PLoS One 2015; 10:e0145037. [PMID: 26716984 PMCID: PMC4696786 DOI: 10.1371/journal.pone.0145037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 11/30/2015] [Indexed: 11/25/2022] Open
Abstract
Background Constitutive activation of nuclear factor κB (NF-κB) is a hallmark of activated B-cell-like diffuse large B-cell lymphoma (ABC-DLBCL). Mutations in the A20 gene activate NF-κB, but the prognostic value of A20 mutations in ABC-DLBLC is unclear. Purpose To investigate the prognostic value of A20 mutation in ABC-DLBCL patients. Methods The somatic mutation of A20 was investigated in 68 de novo ABC-DLBCLs by PCR/sequencing. The Kaplan-Meier method was used to estimate median overall survival (OS) and progression-free survival (PFS). Results The A20 mutation rate in ABC-DLBCL patients was 29.4%. Complete remission rates were 35% and 45.8% in patients with and without A20 mutations, respectively (P = 0.410). In patients with and without A20 mutations, the median OS was 24.0 and 30.6 months, respectively (P = 0.58), and the median PFS was 15 and 17.4 months, respectively (P = 0.52). None of the differences between the patient groups were significant. Conclusions Our findings suggested that the A20 mutation is a frequent event in ABC-DLBCLs. However, there was no significant difference in PFS and OS in patients with or without A20 mutations. Further study is required to completely exclude A20 somatic mutation as a prognostic marker in the ABC subtype of DLBLC.
Collapse
Affiliation(s)
- Hong Cen
- Department of Chemotherapy, Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
- * E-mail:
| | - Xiaohong Tan
- Department of Chemotherapy, Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Baoping Guo
- Department of Chemotherapy, Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| |
Collapse
|
238
|
Ogura Y, Hindi SM, Sato S, Xiong G, Akira S, Kumar A. TAK1 modulates satellite stem cell homeostasis and skeletal muscle repair. Nat Commun 2015; 6:10123. [PMID: 26648529 PMCID: PMC4682113 DOI: 10.1038/ncomms10123] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 11/04/2015] [Indexed: 01/07/2023] Open
Abstract
Satellite cells are resident adult stem cells that are required for regeneration of skeletal muscle. However, signalling mechanisms that regulate satellite cell function are less understood. Here we demonstrate that transforming growth factor-β-activated kinase 1 (TAK1) is important in satellite stem cell homeostasis and function. Inactivation of TAK1 in satellite cells inhibits muscle regeneration in adult mice. TAK1 is essential for satellite cell proliferation and its inactivation causes precocious differentiation. Moreover, TAK1-deficient satellite cells exhibit increased oxidative stress and undergo spontaneous cell death, primarily through necroptosis. TAK1 is required for the activation of NF-κB and JNK in satellite cells. Forced activation of NF-κB improves survival and proliferation of TAK1-deficient satellite cells. Furthermore, TAK1-mediated activation of JNK is essential to prevent oxidative stress and precocious differentiation of satellite cells. Collectively, our study suggests that TAK1 is required for maintaining the pool of satellite stem cells and for regenerative myogenesis.
Collapse
Affiliation(s)
- Yuji Ogura
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA
| | - Sajedah M Hindi
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA
| | - Shuichi Sato
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA
| | - Guangyan Xiong
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA
| | - Shizuo Akira
- Laboratory of Host Defense, WPI Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
| | - Ashok Kumar
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA
| |
Collapse
|
239
|
Liu KL, Yang YC, Yao HT, Chia TW, Lu CY, Li CC, Tsai HJ, Lii CK, Chen HW. Docosahexaenoic acid inhibits inflammation via free fatty acid receptor FFA4, disruption of TAB2 interaction with TAK1/TAB1 and downregulation of ERK-dependent Egr-1 expression in EA.hy926 cells. Mol Nutr Food Res 2015; 60:430-43. [PMID: 26577385 DOI: 10.1002/mnfr.201500178] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 10/23/2015] [Accepted: 11/03/2015] [Indexed: 12/18/2022]
Abstract
SCOPE Inflammation is intimately associated with many cardiovascular events and docosahexaenoic acid (DHA) has been shown to protect against CVD. Egr-1 has emerged as a key regulator in the development of atherosclerosis. Free fatty acid receptor 4 (FFA4) is an n-3 FA membrane receptor. Tumor necrosis factor alpha (TNF-α) is an inflammatory mediator and transforming growth factor-β-activated kinase 1 (TAK1) is essential in the TNF-α-mediated activation of NF-κB. We examined the mechanisms underlying DHA inhibition of inflammation in human EA.hy926 cells. METHODS AND RESULTS TNF-α markedly induced the interaction between TAK1 binding protein (TAB) 2 and TAK1/TAB1, the phosphorylation of ERK, p38 MAPK and Akt, the expression of Egr-1 and ICAM-1, and HL-60 (monocyte-like) cell adhesion. Pretreatment with DHA attenuated TNF-α-induced phosphorylation of ERK, expression of Egr-1 and ICAM-1 and HL-60 cell adhesion. Transfection with siFFA4 reversed the DHA-mediated inhibition of TNF-α-induced Egr-1 and ICAM-1 expression, HL-60 cell adhesion and NF-κB and DNA-binding activity. CONCLUSION Our results suggest that the anti-inflammatory effect of DHA on the endothelium is at least partially linked to FFA4, disruption of TAB2 interaction with TAK1/TAB1 and downregulation of ERK-dependent Egr-1 and ICAM-1 expression, which leads to less HL-60 cell adhesion to TNF-α-stimulated EA.hy926 cells.
Collapse
Affiliation(s)
- Kai-Li Liu
- School of Nutrition, Chung Shan Medical University, Taichung, Taiwan.,Department of Nutrition, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Ya-Chen Yang
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| | - Hsien-Tsung Yao
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Ting-Wen Chia
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Chia-Yang Lu
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Chien-Chun Li
- School of Nutrition, Chung Shan Medical University, Taichung, Taiwan.,Department of Nutrition, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Henry J Tsai
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| | - Chong-Kuei Lii
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan.,Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Haw-Wen Chen
- Department of Nutrition, China Medical University, Taichung, Taiwan
| |
Collapse
|
240
|
Muthukrishnan SD, Yang X, Friesel R, Oxburgh L. Concurrent BMP7 and FGF9 signalling governs AP-1 function to promote self-renewal of nephron progenitor cells. Nat Commun 2015; 6:10027. [PMID: 26634297 PMCID: PMC4686668 DOI: 10.1038/ncomms10027] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 10/28/2015] [Indexed: 01/10/2023] Open
Abstract
Self-renewal of nephron progenitor cells (NPCs) is governed by BMP, FGF and WNT signalling. Mechanisms underlying cross-talk between these pathways at the molecular level are largely unknown. Here we delineate the pathway through which the proliferative BMP7 signal is transduced in NPCs in the mouse. BMP7 activates the MAPKs TAK1 and JNK to phosphorylate the transcription factor JUN, which in turn governs transcription of AP-1-element containing G1-phase cell cycle regulators such as Myc and Ccnd1 to promote NPC proliferation. Conditional inactivation of Tak1 or Jun in cap mesenchyme causes identical phenotypes characterized by premature depletion of NPCs. While JUN is regulated by BMP7, we find that its partner FOS is regulated by FGF9. We demonstrate that BMP7 and FGF9 coordinately regulate AP-1 transcription to promote G1-S cell cycle progression and NPC proliferation. Our findings identify a molecular mechanism explaining the important cooperation between two major NPC self-renewal pathways. The growth factors BMP and FGF both stimulate the self-renewal of nephron progenitor cells (NPCs), but how these signals overlap is unclear. Here in the mouse, Muthukrishnan et al. find BMP7 and FGF9 coordinately regulate AP-1 transcriptional activity, promoting G1-S cell cycle progression and NPC proliferation.
Collapse
Affiliation(s)
- Sree Deepthi Muthukrishnan
- Center for Molecular Medicine, Maine Medical Center Research Institute, 81 Research Drive, Scarborough, Maine 04074, USA.,Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, Maine 04469, USA
| | - Xuehui Yang
- Center for Molecular Medicine, Maine Medical Center Research Institute, 81 Research Drive, Scarborough, Maine 04074, USA
| | - Robert Friesel
- Center for Molecular Medicine, Maine Medical Center Research Institute, 81 Research Drive, Scarborough, Maine 04074, USA
| | - Leif Oxburgh
- Center for Molecular Medicine, Maine Medical Center Research Institute, 81 Research Drive, Scarborough, Maine 04074, USA
| |
Collapse
|
241
|
Huang HL, Chiang CH, Hung WC, Hou MF. Targeting of TGF-β-activated protein kinase 1 inhibits chemokine (C-C motif) receptor 7 expression, tumor growth and metastasis in breast cancer. Oncotarget 2015; 6:995-1007. [PMID: 25557171 PMCID: PMC4359270 DOI: 10.18632/oncotarget.2739] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 11/11/2014] [Indexed: 01/08/2023] Open
Abstract
TGF-β-activated protein kinase 1 (TAK1) is a critical mediator in inflammation, immune response and cancer development. Our previous study demonstrated that activation of TAK1 increases the expression of chemokine (C-C motif) receptor 7 (CCR7) and promotes lymphatic invasion ability of breast cancer cells. However, the expression and association of activated TAK1 and CCR7 in breast tumor tissues is unknown and the therapeutic effect by targeting TAK1 is also unclear. We showed that activated TAK1 (as indicated by phospho-TAK1) and its binding protein TAB1 are strongly expressed in breast tumor tissues (77% and 74% respectively). In addition, increase of phospho-TAK1 or TAB1 is strongly associated with over-expression of CCR7. TAK1 inhibitor 5Z-7-Oxozeaenol (5Z-O) inhibited TAK1 activity, suppressed downstream signaling pathways including p38, IκB kinase (IKK) and c-Jun N-terminal kinase (JNK) and reduced CCR7 expression in metastatic MDA-MB-231 cells. In addition, 5Z-O repressed NF-κB- and c-JUN-mediated transcription of CCR7 gene. Knockdown of TAB1 attenuated CCR7 expression and tumor growth in an orthotopic animal study. More importantly, lymphatic invasion and lung metastasis were suppressed. Collectively, our results demonstrate that constitutive activation of TAK1 is frequently found in human breast cancer and this kinase is a potential therapeutic target for this cancer.
Collapse
Affiliation(s)
- Hui-Ling Huang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan, Republic of China
| | - Chi-Hsiang Chiang
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan, Republic of China
| | - Wen-Chun Hung
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan, Republic of China.,National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan, Republic of China.,Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan, Republic of China
| | - Ming-Feng Hou
- Department of Surgery, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan, Republic of China.Department of Surgery, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 801, Taiwan, Republic of China.Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan, Republic of China.,Department of Surgery, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan, Republic of China.Department of Surgery, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 801, Taiwan, Republic of China.Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan, Republic of China.,Department of Surgery, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan, Republic of China.Department of Surgery, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 801, Taiwan, Republic of China.Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan, Republic of China
| |
Collapse
|
242
|
Ye L, Jiang WG. Bone morphogenetic proteins in tumour associated angiogenesis and implication in cancer therapies. Cancer Lett 2015; 380:586-597. [PMID: 26639195 DOI: 10.1016/j.canlet.2015.10.036] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 09/17/2015] [Accepted: 10/12/2015] [Indexed: 02/09/2023]
Abstract
Bone morphogenetic protein (BMP) belongs to transforming growth factor-β superfamily. To date, more than 20 BMPs have been identified in humans. BMPs play a critical role in embryonic and postnatal development, and also in maintaining homeostasis in different organs and tissues by regulating cell differentiation, proliferation, survival and motility. They play important roles in the development and progression of certain malignancies, including prostate cancer, breast cancer, lung cancer, etc. Recently, more evidence shows that BMPs are also involved in tumour associated angiogenesis. For example BMP can either directly regulate the functions of vascular endothelial cells or indirectly influence the angiogenesis via regulation of angiogenic factors, such as vascular endothelial growth factor (VEGF). Such crosstalk can also be reflected in the interaction with other angiogenic factors, like hepatocyte growth factor (HGF) and basic fibroblast growth factor (bFGF). All these factors are involved in the orchestration of the angiogenic process during tumour development and progression. Review of the relevant studies will provide a comprehensive prospective on current understanding and shed light on the corresponding therapeutic opportunity.
Collapse
Affiliation(s)
- Lin Ye
- Metastasis & Angiogenesis Research Group, Cardiff University-Peking University Cancer Institute, Institute of Cancer and Genetics, Cardiff University School of Medicine, Cardiff CF14 4XN, UK.
| | - Wen G Jiang
- Metastasis & Angiogenesis Research Group, Cardiff University-Peking University Cancer Institute, Institute of Cancer and Genetics, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| |
Collapse
|
243
|
TAK1 Regulates Myocardial Response to Pathological Stress via NFAT, NFκB, and Bnip3 Pathways. Sci Rep 2015; 5:16626. [PMID: 26564789 PMCID: PMC4643217 DOI: 10.1038/srep16626] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 10/16/2015] [Indexed: 01/19/2023] Open
Abstract
TAK1 (TGFβ-activated kinase-1) signaling is essential in regulating a number of important biological functions, including innate immunity, inflammatory response, cell growth and differentiation, and myocardial homeostasis. The precise role of TAK1 in the adult heart under pathological conditions remains largely unknown. Importantly, we observed that TAK1 is upregulated during compensatory hypertrophy but downregulated in end-stage heart failure. Here we generated transgenic mice with inducible expression of an active TAK1 mutant (TAK1ΔN) in the adult heart. TAK1ΔN transgenic mice developed greater cardiac hypertrophy compared with control mice after transverse aortic constriction (TAC), which was largely blocked by ablation of calcineurin Aβ. Expression of TAK1ΔN also promoted NFAT (nuclear factor of activated T-cells) transcriptional activity in luciferase reporter mice at baseline, which was further enhanced after TAC. Our results revealed that activation of TAK1 promoted adaptive cardiac hypertrophy through a cross-talk between calcineurin-NFAT and IKK-NFκB pathways. More significantly, adult-onset inducible expression of TAK1ΔN protected the myocardium from adverse remodeling and heart failure after myocardial infarction or long-term pressure overload, by preventing cardiac cell death and fibrosis. Mechanistically, TAK1 exerts its cardioprotective effect through activation of NFAT/NFκB, downregulation of Bnip3, and inhibition of cardiac cell death.
Collapse
|
244
|
Fakhouri L, El-Elimat T, Hurst DP, Reggio PH, Pearce CJ, Oberlies NH, Croatt MP. Isolation, semisynthesis, covalent docking and transforming growth factor beta-activated kinase 1 (TAK1)-inhibitory activities of (5Z)-7-oxozeaenol analogues. Bioorg Med Chem 2015; 23:6993-9. [PMID: 26481152 DOI: 10.1016/j.bmc.2015.09.037] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Revised: 09/14/2015] [Accepted: 09/22/2015] [Indexed: 12/22/2022]
Abstract
(5Z)-7-Oxozeanol and related analogues were isolated and screened to explore their activity as TAK1 inhibitors. Seven analogues were synthesized and more than a score of natural products isolated that examined the role that different areas of the molecule contribute to TAK1 inhibition. A novel nonaromatic difluoro-derivative was synthesized that had similar potency compared to the lead. This is the first example of a nonaromatic compound in this class to have TAK1 inhibition. Covalent docking for the isolated and synthesized analogues was carried out and found a strong correlation between the observed activities and the calculated binding.
Collapse
Affiliation(s)
- Lara Fakhouri
- Department of Chemistry and Biochemistry, Natural Products and Drug Discovery Center, University of North Carolina at Greensboro, Greensboro, NC 27402, USA
| | - Tamam El-Elimat
- Department of Chemistry and Biochemistry, Natural Products and Drug Discovery Center, University of North Carolina at Greensboro, Greensboro, NC 27402, USA
| | - Dow P Hurst
- Department of Chemistry and Biochemistry, Natural Products and Drug Discovery Center, University of North Carolina at Greensboro, Greensboro, NC 27402, USA
| | - Patricia H Reggio
- Department of Chemistry and Biochemistry, Natural Products and Drug Discovery Center, University of North Carolina at Greensboro, Greensboro, NC 27402, USA
| | - Cedric J Pearce
- Mycosynthetix, Inc., 505 Meadowlands Drive, Suite 103, Hillsborough, USA
| | - Nicholas H Oberlies
- Department of Chemistry and Biochemistry, Natural Products and Drug Discovery Center, University of North Carolina at Greensboro, Greensboro, NC 27402, USA
| | - Mitchell P Croatt
- Department of Chemistry and Biochemistry, Natural Products and Drug Discovery Center, University of North Carolina at Greensboro, Greensboro, NC 27402, USA
| |
Collapse
|
245
|
Wang JS, Wu D, Huang DY, Lin WW. TAK1 inhibition-induced RIP1-dependent apoptosis in murine macrophages relies on constitutive TNF-α signaling and ROS production. J Biomed Sci 2015; 22:76. [PMID: 26381601 PMCID: PMC4574455 DOI: 10.1186/s12929-015-0182-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 09/05/2015] [Indexed: 12/29/2022] Open
Abstract
Background Transforming growth factor-β (TGF-β)-activated kinase 1 (TAK1) is a key regulator of signal cascades of TNF-α receptor and TLR4, and can induce NF-κB activation for preventing cell apoptosis and eliciting inflammation response. Results TAK1 inhibitor (TAKI) can decrease the cell viability of murine bone marrow-derived macrophages (BMDM), RAW264.7 and BV-2 cells, but not dermal microvascular endothelial cells, normal human epidermal keratinocytes, THP-1 monocytes, human retinal pigment epithelial cells, microglia CHME3 cells, and some cancer cell lines (CL1.0, HeLa and HCT116). In BMDM, TAKI-induced caspase activation and cell apoptosis were enhanced by lipopolysaccharide (LPS). Moreover, TAKI treatment increased the cytosolic and mitochondrial reactive oxygen species (ROS) production, and ROS scavengers NAC and BHA can inhibit cell death caused by TAKI. In addition, RIP1 inhibitor (necrostatin-1) can protect cells against TAKI-induced mitochondrial ROS production and cell apoptosis. We also observed the mitochondrial membrane potential loss after TAKI treatment and deterioration of oxygen consumption upon combination with LPS. Notably TNF-α neutralization antibody and inhibitor enbrel can decrease the cell death caused by TAKI. Conclusions TAKI-induced cytotoxicity is cell context specific, and apoptosis observed in macrophages is dependent on the constitutive autocrine action of TNF-α for RIP1 activation and ROS production.
Collapse
Affiliation(s)
- Jang-Shiun Wang
- Department of Pharmacology, College of Medicine, National Taiwan University, No 1, Sec 1, Jen-Ai Road, Taipei, Taiwan.,Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan
| | - Dean Wu
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Duen-Yi Huang
- Department of Pharmacology, College of Medicine, National Taiwan University, No 1, Sec 1, Jen-Ai Road, Taipei, Taiwan
| | - Wan-Wan Lin
- Department of Pharmacology, College of Medicine, National Taiwan University, No 1, Sec 1, Jen-Ai Road, Taipei, Taiwan. .,Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
246
|
Grillo AR, Scarpa M, D'Incà R, Brun P, Scarpa M, Porzionato A, De Caro R, Martines D, Buda A, Angriman I, Palù G, Sturniolo GC, Castagliuolo I. TAK1 is a key modulator of the profibrogenic phenotype of human ileal myofibroblasts in Crohn's disease. Am J Physiol Gastrointest Liver Physiol 2015; 309:G443-54. [PMID: 26185333 DOI: 10.1152/ajpgi.00400.2014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 07/06/2015] [Indexed: 01/31/2023]
Abstract
Transforming growth factor (TGF)-β-activated kinase 1 (TAK1) signaling can mediate inflammatory responses as well as tissue remodeling. Intestinal mucosal myofibroblast (IMF) activation drives gut fibrosis in Crohn's disease (CD); however, the molecular pathways involved are largely unknown. Thus we investigated the yet-unknown expression and function of TAK1 in human CD-associated fibrosis. Ileal surgical specimens, ileal biopsies, and IMF isolated from controls and CD patients were analyzed for TAK1 and its active phosphorylated form (pTAK1) by Western blotting, immunohistochemistry, and real-time quantitative PCR. TAK1 pharmacological inhibition and silencing were used to assess its role in collagen and inflammatory cytokine synthesis in IMF. TAK1 and pTAK1 levels increased in ileum specimens from CD patients compared with controls and correlated to tissue fibrosis. Similarly, TAK1 mRNA in ileal biopsies of CD patients correlated with fibrogenic marker expression but not inflammatory cytokines. CD-derived IMF showed higher TAK1 and pTAK1 expression associated with increased collagen1(α)1 mRNA levels compared with control IMF. TGF-β1 promoted pTAK1 nuclear translocation and collagen synthesis. TAK1 inhibition or silencing significantly reduced TGF-β1-stimulated collagen production and normalized the profibrogenic phenotype of CD-derived IMF. Taken together, these data suggest that TAK1 activation and nuclear translocation induce and maintain a fibrogenic phenotype in the IMF. Thus the TAK1 signaling pathway may represent a suitable target to design new, antifibrotic therapies.
Collapse
Affiliation(s)
- Alessia Rosaria Grillo
- Department of Molecular Medicine, University of Padova, Padova, Italy; Department of Surgery Oncology and Gastroenterology, University of Padova, Padova, Italy; and
| | - Melania Scarpa
- Oncological Surgery Unit, Veneto Institute of Oncology IOV - IRCCS, Padova, Italy
| | - Renata D'Incà
- Department of Surgery Oncology and Gastroenterology, University of Padova, Padova, Italy; and
| | - Paola Brun
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Marco Scarpa
- Oncological Surgery Unit, Veneto Institute of Oncology IOV - IRCCS, Padova, Italy
| | - Andrea Porzionato
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Raffaele De Caro
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Diego Martines
- Department of Surgery Oncology and Gastroenterology, University of Padova, Padova, Italy; and
| | - Andrea Buda
- Department of Surgery Oncology and Gastroenterology, University of Padova, Padova, Italy; and
| | - Imerio Angriman
- Department of Surgery Oncology and Gastroenterology, University of Padova, Padova, Italy; and
| | - Giorgio Palù
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Giacomo Carlo Sturniolo
- Department of Surgery Oncology and Gastroenterology, University of Padova, Padova, Italy; and
| | | |
Collapse
|
247
|
Cheruku HR, Mohamedali A, Cantor DI, Tan SH, Nice EC, Baker MS. Transforming growth factor-β, MAPK and Wnt signaling interactions in colorectal cancer. EUPA OPEN PROTEOMICS 2015. [DOI: 10.1016/j.euprot.2015.06.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
248
|
Park JK, Yang W, Katsnelson J, Lavker RM, Peng H. MicroRNAs Enhance Keratinocyte Proliferative Capacity in a Stem Cell-Enriched Epithelium. PLoS One 2015; 10:e0134853. [PMID: 26248284 PMCID: PMC4527697 DOI: 10.1371/journal.pone.0134853] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 07/14/2015] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs are critical regulators of stem cell behavior. The miR-103/107 family is preferentially expressed in the stem cell-enriched corneal limbal epithelium and plays an important role in coordinating several intrinsic characteristics of limbal epithelial stem cells. To elucidate further the mechanisms by which miRs-103/107 function in regulating limbal epithelial stem cells, we investigate the global effects of miRs-103/107 on gene expression in an unbiased manner. Using antagomirs-103/107, we knocked down endogenous miRs-103/107 in keratinocytes and conducted an mRNA profiling study. We show that miRs-103/107 target mitogen-activated protein kinase kinase kinase 7 (MAP3K7) and thereby negatively regulate the p38/AP-1 pathway, which directs epithelial cells towards a differentiated state. Pharmacological inhibition of p38 increases holoclone colony formation, a measure of proliferative capacity. This suggests that the negative regulation of p38 by miRs-103/107 contributes to enhanced proliferative capacity, which is a hallmark of stem cells. Since miRs-103/107 also promote increased holoclone colony formation by regulating JNK activation through non-canonical Wnt signaling, we believe that this microRNA family preserves “stemness” by mediating the crosstalk between the Wnt/JNK and MAP3K7/p38/AP-1 pathways.
Collapse
Affiliation(s)
- Jong Kook Park
- Department of Dermatology, Northwestern University, Chicago, Illinois, United States of America
| | - Wending Yang
- Department of Dermatology, Northwestern University, Chicago, Illinois, United States of America
| | - Julia Katsnelson
- Rush University Medical Center, Chicago, Illinois, United States of America
| | - Robert M. Lavker
- Department of Dermatology, Northwestern University, Chicago, Illinois, United States of America
| | - Han Peng
- Department of Dermatology, Northwestern University, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
249
|
Zhang J, Li B, Wu H, Ou J, Wei R, Liu J, Cai W, Liu X, Zhao S, Yang J, Zhou L, Liu S, Liang A. Synergistic action of 5Z-7-oxozeaenol and bortezomib in inducing apoptosis of Burkitt lymphoma cell line Daudi. Tumour Biol 2015; 37:531-9. [PMID: 26227222 DOI: 10.1007/s13277-015-3832-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Accepted: 07/21/2015] [Indexed: 01/30/2023] Open
Abstract
Treatment failure in cancer chemotherapy is largely due to the toxic effects of chemotherapeutic agents on normal cells/tissues. The proteasome inhibitor bortezomib has been successfully applied to treat multiple myeloma (MM), but there are some common adverse reactions in the clinic including peripheral neuropathy (PN). The TAK1 selective inhibitor 5Z-7-oxozeaenol has been widely studied in cancer therapy. Here, we investigated the potential synergy of bortezomib and 5Z-7-oxozeaenol in Burkitt's lymphoma (BL) cell lines. Cell viability assay showed that co-treatment of bortezomib at 8 nM, representing a one-eighth concentration for growth arrest, and 5Z-7-oxozeaenol at 2 μM, a dose that exhibited insignificant cytotoxic effects, synergistically induced apoptosis in the cell line Daudi. In parallel with the increasing dose of the bortezomib, and 5Z-7-oxozeaenol at 0.5 μM, lower colony formation efficiencies were seen in the cell line Daudi. Western blotting analysis verified that TAK1 inhibition by 5Z-7-oxozeaenol completely blocked JNK, p38, Erk, IKK, and IκB phosphorylation, which was almost instantly activated by TAK1 both directly or indirectly. Both agents synergistically prevented nuclear translocation of NF-κB, a characteristic of NF-κB inactivation. Moreover, a synergistic effect of bortezomib and 5Z-7-oxozeaenol on Western blotting analysis and flow cytometry was disclosed. Collectively, our results indicated that the proteasome inhibitor bortezomib and the TAK1 inhibitor 5Z-7-oxozeaenol displayed synergy on inhibiting BL cell apoptosis by inhibiting NF-κB activity.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China.,College of life sciences, Guizhou University, Guiyang, 550025, China.,Department of Stomatology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Bing Li
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Haixia Wu
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Jiayao Ou
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Rongbin Wei
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Junjun Liu
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Wenping Cai
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Xiaodong Liu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Shouliang Zhao
- Department of Stomatology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Jianhua Yang
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Lili Zhou
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Shangfeng Liu
- Department of Stomatology, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| | - Aibin Liang
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China.
| |
Collapse
|
250
|
Rodrigues LU, Rider L, Nieto C, Romero L, Karimpour-Fard A, Loda M, Lucia MS, Wu M, Shi L, Cimic A, Sirintrapun SJ, Nolley R, Pac C, Chen H, Peehl DM, Xu J, Liu W, Costello JC, Cramer SD. Coordinate loss of MAP3K7 and CHD1 promotes aggressive prostate cancer. Cancer Res 2015; 75:1021-34. [PMID: 25770290 DOI: 10.1158/0008-5472.can-14-1596] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Prostate cancer subtypes are poorly defined and functional validation of drivers of ETS rearrangement-negative prostate cancer has not been conducted. Here, we identified an ETS(-) subtype of aggressive prostate cancer (ERG(-)MAP3K7(del)CHD1(del)) and used a novel developmental model and a cell line xenograft model to show that cosuppression of MAP3K7 and CHD1 expression promotes aggressive disease. Analyses of publicly available prostate cancer datasets revealed that MAP3K7 and CHD1 were significantly codeleted in 10% to 20% of localized tumors and combined loss correlated with poor disease-free survival. To evaluate the functional impact of dual MAP3K7-CHD1 loss, we suppressed Map3k7 and/or Chd1 expression in mouse prostate epithelial progenitor/stem cells (PrP/SC) and performed tissue recombination experiments in vivo. Dual shMap3k7-shChd1 PrP/SC recombinants displayed massive glandular atypia with regions of prostatic intraepithelial neoplasia and carcinoma apparent. Combined Map3k7-Chd1 suppression greatly disrupted normal prostatic lineage differentiation; dual recombinants displayed significant androgen receptor loss, increased neuroendocrine differentiation, and increased neural differentiation. Clinical samples with dual MAP3K7-CHD1 loss also displayed neuroendocrine and neural characteristics. In addition, dual Map3k7-Chd1 suppression promoted E-cadherin loss and mucin production in recombinants. MAP3K7 and CHD1 protein loss also correlated with Gleason grade and E-cadherin loss in clinical samples. To further validate the phenotype observed in the PrP/SC model, we suppressed MAP3K7 and/or CHD1 expression in LNCaP prostate cancer cells. Dual shMAP3K7-shCHD1 LNCaP xenografts displayed increased tumor growth and decreased survival compared with shControl, shMAP3K7, and shCHD1 xenografts. Collectively, these data identify coordinate loss of MAP3K7 and CHD1 as a unique driver of aggressive prostate cancer development.
Collapse
Affiliation(s)
- Lindsey Ulkus Rodrigues
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado. Department of Cancer Biology, Wake Forest University, Winston-Salem, North Carolina
| | - Leah Rider
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Cera Nieto
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Lina Romero
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Anis Karimpour-Fard
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Massimo Loda
- Department of Pathology, Dana Farber Cancer Institute, Boston, Massachusetts
| | - M Scott Lucia
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Min Wu
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Lihong Shi
- Department of Cancer Biology, Wake Forest University, Winston-Salem, North Carolina
| | - Adela Cimic
- Department of Pathology, Wake Forest University, Winston-Salem, North Carolina
| | | | - Rosalie Nolley
- Department of Urology, Stanford University School of Medicine, Stanford, California
| | - Colton Pac
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Haitao Chen
- Center for Genetic Epidemiology, Fudan University, Shanghai, China
| | - Donna M Peehl
- Department of Urology, Stanford University School of Medicine, Stanford, California
| | - Jianfeng Xu
- Center for Cancer Genomics, Wake Forest University, Winston-Salem, North Carolina. Center for Genomics and Personalized Medicine Research, Wake Forest University, Winston-Salem, North Carolina
| | - Wennuan Liu
- Center for Cancer Genomics, Wake Forest University, Winston-Salem, North Carolina. Center for Genomics and Personalized Medicine Research, Wake Forest University, Winston-Salem, North Carolina
| | - James C Costello
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Scott D Cramer
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
| |
Collapse
|