201
|
Parreira P, Shi Q, Magalhaes A, Reis CA, Bugaytsova J, Borén T, Leckband D, Martins MCL. Atomic force microscopy measurements reveal multiple bonds between Helicobacter pylori blood group antigen binding adhesin and Lewis b ligand. J R Soc Interface 2015; 11:20141040. [PMID: 25320070 DOI: 10.1098/rsif.2014.1040] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The strength of binding between the Helicobacter pylori blood group antigen-binding adhesin (BabA) and its cognate glycan receptor, the Lewis b blood group antigen (Le(b)), was measured by means of atomic force microscopy. High-resolution measurements of rupture forces between single receptor-ligand pairs were performed between the purified BabA and immobilized Le(b) structures on self-assembled monolayers. Dynamic force spectroscopy revealed two similar but statistically different bond populations. These findings suggest that the BabA may form different adhesive attachments to the gastric mucosa in ways that enhance the efficiency and stability of bacterial adhesion.
Collapse
Affiliation(s)
- P Parreira
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Q Shi
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - A Magalhaes
- IPATIMUP-Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal
| | - C A Reis
- IPATIMUP-Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal Faculdade de Medicina, Universidade do Porto, Porto, Portugal Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - J Bugaytsova
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - T Borén
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - D Leckband
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - M C L Martins
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| |
Collapse
|
202
|
Azevedo L, Serrano C, Amorim A, Cooper DN. Trans-species polymorphism in humans and the great apes is generally maintained by balancing selection that modulates the host immune response. Hum Genomics 2015; 9:21. [PMID: 26337052 PMCID: PMC4559023 DOI: 10.1186/s40246-015-0043-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 08/20/2015] [Indexed: 12/20/2022] Open
Abstract
Known examples of ancient identical-by-descent genetic variants being shared between evolutionarily related species, known as trans-species polymorphisms (TSPs), result from counterbalancing selective forces acting on target genes to confer resistance against infectious agents. To date, putative TSPs between humans and other primate species have been identified for the highly polymorphic major histocompatibility complex (MHC), the histo-blood ABO group, two antiviral genes (ZC3HAV1 and TRIM5), an autoimmunity-related gene LAD1 and several non-coding genomic segments with a putative regulatory role. Although the number of well-characterized TSPs under long-term balancing selection is still very small, these examples are connected by a common thread, namely that they involve genes with key roles in the immune system and, in heterozygosity, appear to confer genetic resistance to pathogens. Here, we review known cases of shared polymorphism that appear to be under long-term balancing selection in humans and the great apes. Although the specific selective agent(s) responsible are still unknown, these TSPs may nevertheless be seen as constituting important adaptive events that have occurred during the evolution of the primate immune system.
Collapse
Affiliation(s)
- Luisa Azevedo
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
- IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Rua Dr. Roberto Frias s/n, 4200-465, Porto, Portugal.
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007, Porto, Portugal.
| | - Catarina Serrano
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
- IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Rua Dr. Roberto Frias s/n, 4200-465, Porto, Portugal.
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007, Porto, Portugal.
| | - Antonio Amorim
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
- IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Rua Dr. Roberto Frias s/n, 4200-465, Porto, Portugal.
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007, Porto, Portugal.
| | - David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK.
| |
Collapse
|
203
|
Kim A, Servetas SL, Kang J, Kim J, Jang S, Cha HJ, Lee WJ, Kim J, Romero-Gallo J, Peek RM, Merrell DS, Cha JH. Helicobacter pylori bab Paralog Distribution and Association with cagA, vacA, and homA/B Genotypes in American and South Korean Clinical Isolates. PLoS One 2015; 10:e0137078. [PMID: 26317221 PMCID: PMC4552749 DOI: 10.1371/journal.pone.0137078] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 08/13/2015] [Indexed: 12/19/2022] Open
Abstract
Helicobacter pylori genetic variation is a crucial component of colonization and persistence within the inhospitable niche of the gastric mucosa. As such, numerous H. pylori genes have been shown to vary in terms of presence and genomic location within this pathogen. Among the variable factors, the Bab family of outer membrane proteins (OMPs) has been shown to differ within subsets of strains. To better understand genetic variation among the bab genes and to determine whether this variation differed among isolates obtained from different geographic locations, we characterized the distribution of the Bab family members in 80 American H. pylori clinical isolates (AH) and 80 South Korean H. pylori clinical isolates (KH). Overall, we identified 23 different bab genotypes (19 in AH and 11 in KH), but only 5 occurred in greater than 5 isolates. Regardless of strain origin, a strain in which locus A and locus B were both occupied by a bab gene was the most common (85%); locus C was only occupied in those isolates that carried bab paralog at locus A and B. While the babA/babB/- genotype predominated in the KH (78.8%), no single genotype could account for greater than 40% in the AH collection. In addition to basic genotyping, we also identified associations between bab genotype and well known virulence factors cagA and vacA. Specifically, significant associations between babA at locus A and the cagA EPIYA-ABD motif (P<0.0001) and the vacA s1/i1/m1 allele (P<0.0001) were identified. Log-linear modeling further revealed a three-way association between bab carried at locus A, vacA, and number of OMPs from the HOM family (P<0.002). En masse this study provides a detailed characterization of the bab genotypes from two distinct populations. Our analysis suggests greater variability in the AH, perhaps due to adaptation to a more diverse host population. Furthermore, when considering the presence or absence of both the bab and homA/B paralogs at their given loci and the vacA genotype, an association was observed. Our results highlight the multifactorial nature of H. pylori mediated disease and the importance of considering how the specific combinations of H. pylori virulence genes and their multiple interactions with the host will collectively impact disease progression.
Collapse
Affiliation(s)
- Aeryun Kim
- Department of Oral Biology, Oral Science Research Center, Yonsei University College of Dentistry, Seoul, South Korea
- Department of Applied Life Science, BK21 Plus Project, Yonsei University College of Dentistry, Seoul, South Korea
| | - Stephanie L. Servetas
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd., Bethesda, Maryland, 20814, United States of America
| | - Jieun Kang
- Department of Oral Biology, Oral Science Research Center, Yonsei University College of Dentistry, Seoul, South Korea
- Department of Applied Life Science, BK21 Plus Project, Yonsei University College of Dentistry, Seoul, South Korea
| | - Jinmoon Kim
- Department of Oral Biology, Oral Science Research Center, Yonsei University College of Dentistry, Seoul, South Korea
- Department of Applied Life Science, BK21 Plus Project, Yonsei University College of Dentistry, Seoul, South Korea
| | - Sungil Jang
- Department of Oral Biology, Oral Science Research Center, Yonsei University College of Dentistry, Seoul, South Korea
| | - Ho Jin Cha
- Department of Oral Biology, Oral Science Research Center, Yonsei University College of Dentistry, Seoul, South Korea
| | - Wan Jin Lee
- Department of Oral Biology, Oral Science Research Center, Yonsei University College of Dentistry, Seoul, South Korea
| | - June Kim
- Department of Oral Biology, Oral Science Research Center, Yonsei University College of Dentistry, Seoul, South Korea
| | - Judith Romero-Gallo
- Departments of Cancer Biology and Medicine, Vanderbilt University, Nashville, Tennessee, 37240, United States of America
| | - Richard M. Peek
- Departments of Cancer Biology and Medicine, Vanderbilt University, Nashville, Tennessee, 37240, United States of America
| | - D. Scott Merrell
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd., Bethesda, Maryland, 20814, United States of America
- * E-mail: (DSM); (JHC)
| | - Jeong-Heon Cha
- Department of Oral Biology, Oral Science Research Center, Yonsei University College of Dentistry, Seoul, South Korea
- Department of Applied Life Science, BK21 Plus Project, Yonsei University College of Dentistry, Seoul, South Korea
- * E-mail: (DSM); (JHC)
| |
Collapse
|
204
|
Pickard JM, Chervonsky AV. Intestinal fucose as a mediator of host-microbe symbiosis. THE JOURNAL OF IMMUNOLOGY 2015; 194:5588-93. [PMID: 26048966 DOI: 10.4049/jimmunol.1500395] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Fucose is an L-configuration sugar found abundantly in the mammalian gut. It has long been known to be induced there by the presence of bacteria, but only recently have some of the molecular mechanisms behind this process been uncovered. New work suggests that fucose can have a protective role in both gut-centered and systemic infection and inflammation. This review highlights recent studies showing that, in addition to acting as a food source for beneficial gut symbionts, host fucose can suppress the virulence of pathogens and pathobionts. The relevance of gut fucosylation to human diseases also is discussed.
Collapse
Affiliation(s)
- Joseph M Pickard
- Department of Pathology and Committee on Immunology, The University of Chicago, Chicago, IL 60637
| | - Alexander V Chervonsky
- Department of Pathology and Committee on Immunology, The University of Chicago, Chicago, IL 60637
| |
Collapse
|
205
|
Hage N, Howard T, Phillips C, Brassington C, Overman R, Debreczeni J, Gellert P, Stolnik S, Winkler GS, Falcone FH. Structural basis of Lewis(b) antigen binding by the Helicobacter pylori adhesin BabA. SCIENCE ADVANCES 2015; 1:e1500315. [PMID: 26601230 PMCID: PMC4643811 DOI: 10.1126/sciadv.1500315] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 05/03/2015] [Indexed: 05/09/2023]
Abstract
Helicobacter pylori is a leading cause of peptic ulceration and gastric cancer worldwide. To achieve colonization of the stomach, this Gram-negative bacterium adheres to Lewis(b) (Le(b)) antigens in the gastric mucosa using its outer membrane protein BabA. Structural information for BabA has been elusive, and thus, its molecular mechanism for recognizing Le(b) antigens remains unknown. We present the crystal structure of the extracellular domain of BabA, from H. pylori strain J99, in the absence and presence of Le(b) at 2.0- and 2.1-Å resolutions, respectively. BabA is a predominantly α-helical molecule with a markedly kinked tertiary structure containing a single, shallow Le(b) binding site at its tip within a β-strand motif. No conformational change occurs in BabA upon binding of Le(b), which is characterized by low affinity under acidic [K D (dissociation constant) of ~227 μM] and neutral (K D of ~252 μM) conditions. Binding is mediated by a network of hydrogen bonds between Le(b) Fuc1, GlcNAc3, Fuc4, and Gal5 residues and a total of eight BabA amino acids (C189, G191, N194, N206, D233, S234, S244, and T246) through both carbonyl backbone and side-chain interactions. The structural model was validated through the generation of two BabA variants containing N206A and combined D233A/S244A substitutions, which result in a reduction and complete loss of binding affinity to Le(b), respectively. Knowledge of the molecular basis of Le(b) recognition by BabA provides a platform for the development of therapeutics targeted at inhibiting H. pylori adherence to the gastric mucosa.
Collapse
Affiliation(s)
- Naim Hage
- School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Tina Howard
- Discovery Sciences, Innovative Medicines and Early Development, AstraZeneca R&D, Alderley Park, Cheshire SK10 4TG, UK
- Corresponding author. E-mail: (T.H.); (F.H.F.)
| | - Chris Phillips
- Discovery Sciences, Innovative Medicines and Early Development, AstraZeneca R&D, Darwin Building, 310 Cambridge Science Park, Milton Road, Cambridge CB4 0WG, UK
| | - Claire Brassington
- Discovery Sciences, Innovative Medicines and Early Development, AstraZeneca R&D, Alderley Park, Cheshire SK10 4TG, UK
| | - Ross Overman
- Discovery Sciences, Innovative Medicines and Early Development, AstraZeneca R&D, Alderley Park, Cheshire SK10 4TG, UK
| | - Judit Debreczeni
- Discovery Sciences, Innovative Medicines and Early Development, AstraZeneca R&D, Darwin Building, 310 Cambridge Science Park, Milton Road, Cambridge CB4 0WG, UK
| | - Paul Gellert
- Pharmaceutical Development, AstraZeneca R&D, Charter Way, Macclesfield, Cheshire SK10 2NA, UK
| | - Snow Stolnik
- School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - G. Sebastiaan Winkler
- School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Franco H. Falcone
- School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
- Corresponding author. E-mail: (T.H.); (F.H.F.)
| |
Collapse
|
206
|
Abstract
Blood group antigens represent polymorphic traits inherited among individuals and populations. At present, there are 34 recognized human blood groups and hundreds of individual blood group antigens and alleles. Differences in blood group antigen expression can increase or decrease host susceptibility to many infections. Blood groups can play a direct role in infection by serving as receptors and/or coreceptors for microorganisms, parasites, and viruses. In addition, many blood group antigens facilitate intracellular uptake, signal transduction, or adhesion through the organization of membrane microdomains. Several blood groups can modify the innate immune response to infection. Several distinct phenotypes associated with increased host resistance to malaria are overrepresented in populations living in areas where malaria is endemic, as a result of evolutionary pressures. Microorganisms can also stimulate antibodies against blood group antigens, including ABO, T, and Kell. Finally, there is a symbiotic relationship between blood group expression and maturation of the gastrointestinal microbiome.
Collapse
Affiliation(s)
- Laura Cooling
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
207
|
Skindersoe ME, Rasmussen L, Andersen LP, Krogfelt KA. A Novel Assay for Easy and Rapid Quantification of Helicobacter pylori Adhesion. Helicobacter 2015; 20:199-205. [PMID: 25603836 DOI: 10.1111/hel.12191] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Reducing adhesion of Helicobacter pylori to gastric epithelial cells could be a new way to counteract infections with this organism. We here present a novel method for quantification of Helicobacter pylori adhesion to cells. METHODS Helicobacter pylori is allowed to adhere to AGS or MKN45g cells in a 96-well microtiter plate. Then wells are added saponin, which lyses the cells without affecting the bacteria. After addition of alamarBlue(®) (resazurin) and 1- to 2-hour incubation, fluorescence measurements can be used to quantify the number of adherent bacteria. RESULTS By use of the method, we demonstrate that adhesion of both a sabA and babA deletion mutant of H. pylori is significantly reduced compared to the wild type. CONCLUSION The method offers a number of applications and may be used to compare the adherence potential of different strains of H. pylori to either cells or different materials or to screen for potential anti-adhesive compounds. The results presented here suggest that this easy and reproducible assay is well suited for quantitative investigation of H. pylori adhesion.
Collapse
Affiliation(s)
- Mette E Skindersoe
- Microbiology and Infection Control, Statens Serum Institute, Artillerivej 5, DK-2300, Copenhagen S, Denmark
| | - Lone Rasmussen
- Department of Clinical Microbiology 9321, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, DK-2100, Copenhagen, Denmark.,Department of Infection Control 9101, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, DK-2100, Copenhagen, Denmark
| | - Leif P Andersen
- Department of Clinical Microbiology 9321, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, DK-2100, Copenhagen, Denmark.,Department of Infection Control 9101, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, DK-2100, Copenhagen, Denmark
| | - Karen A Krogfelt
- Microbiology and Infection Control, Statens Serum Institute, Artillerivej 5, DK-2300, Copenhagen S, Denmark
| |
Collapse
|
208
|
Maroni L, van de Graaf SFJ, Hohenester SD, Oude Elferink RPJ, Beuers U. Fucosyltransferase 2: a genetic risk factor for primary sclerosing cholangitis and Crohn's disease--a comprehensive review. Clin Rev Allergy Immunol 2015; 48:182-91. [PMID: 24828903 DOI: 10.1007/s12016-014-8423-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Fucosyltransferase 2 (FUT2) mediates the inclusion of fucose in sugar moieties of glycoproteins and glycolipids. ABO blood group antigens and host-microbe interactions are influenced by FUT2 activity. About 20 % of the population has a "non-secretor" status caused by inactivating variants of FUT2 on both alleles. The non-sense mutation G428A and the missense mutation A385T are responsible for the vast majority of the non-secretor status in Caucasians, Africans, and Asians, respectively. Non-secretor individuals do not secrete fucose-positive antigens and lack fucosylation in epithelia. They also appear to be protected against a number of infectious diseases, such as Norovirus and Rotavirus infections. In recent years, genome-wide association studies (GWAS) identified inactivating variants at the FUT2 locus to be associated with primary sclerosing cholangitis (PSC), Crohn's disease (CD), and biochemical markers of biliary damage. These associations are intriguing given the important roles of fucosylated glycans in host-microbe interactions and membrane stability. Non-secretors have a reduced fecal content of Bifidobacteria. The intestinal bacterial composition of CD patients resembles the one of non-secretors, with an increase in Firmicutes and decreases in Proteobacteria and Actinobacteria. Non-secretor individuals lack fucosylated glycans at the surface of biliary epithelium and display a different bacterial composition of bile compared to secretors. Notably, an intact biliary epithelial glycocalix is relevant for a stable 'biliary HCO3 (-) umbrella' to protect against toxic effects of hydrophobic bile salt monomers. Here, the biology of FUT2 will be discussed as well as hypotheses to explain the role of FUT2 in the pathophysiology of PSC and Crohn's disease.
Collapse
Affiliation(s)
- Luca Maroni
- Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1100 DD, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
209
|
Hesselager MO, Codrea MC, Bendixen E. Evaluation of preparation methods for MS-based analysis of intestinal epithelial cell proteomes. Proteomics 2015; 15:2350-7. [DOI: 10.1002/pmic.201500024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 02/06/2015] [Accepted: 03/10/2015] [Indexed: 12/12/2022]
Affiliation(s)
| | - Marius Cosmin Codrea
- Quantitative Biology Center (QBiC); Eberhard Karls Universität Tübingen; Tübingen Germany
| | - Emøke Bendixen
- Department of Molecular Biology and Genetics; Faculty of Science and Technology, Aarhus University; Aarhus Denmark
| |
Collapse
|
210
|
Lahner E, Gentile G, Purchiaroni F, Mora B, Simmaco M, Annibale B. Single nucleotide polymorphisms related to vitamin B12 serum levels in autoimmune gastritis patients with or without pernicious anaemia. Dig Liver Dis 2015; 47:285-290. [PMID: 25681243 DOI: 10.1016/j.dld.2015.01.147] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Revised: 01/10/2015] [Accepted: 01/15/2015] [Indexed: 02/05/2023]
Abstract
BACKGROUND Autoimmune gastritis may present as pernicious anaemia arising from vitamin B12 malabsorption, but also with iron deficiency anaemia due to iron malabsorption. These different clinical presentations might have a genetic basis. Single nucleotide polymorphisms associated with vitamin B12 levels have not been investigated in autoimmune gastritis. AIMS To determine the frequency of single nucleotide polymorphisms related to vitamin B12 levels in autoimmune gastritis patients, with or without pernicious anaemia, compared to healthy controls. METHODS 14 single nucleotide polymorphisms associated with vitamin B12 levels were selected from literature. 83 autoimmune gastritis patients (43 with and 40 without pernicious anaemia) and 173 controls were enrolled. Genomic DNA was extracted from peripheral blood leukocytes. Genotyping was performed using Sequenom MALDI-TOF mass spectrometry iPLEX platform. RESULTS TCN2 (rs9606756) GG genotype, related with lower vitamin B12 levels, was found in 3 (3.6%) autoimmune gastritis patients (2 with pernicious anaemia), but in none of controls (p = 0.02). FUT6 (rs3760776) AA genotype was present in four (4.8%) autoimmune gastritis patients (all pernicious anaemia) and three (1.7%) controls (p = 0.007). CONCLUSION A genetic variant of TCN2 (rs9606756) related to lower vitamin B12 levels was more frequent in pernicious anaemia patients compared to controls, showing the plausibility of genetic factors determining the possible clinical manifestation of autoimmune gastritis.
Collapse
Affiliation(s)
- Edith Lahner
- Digestive and Liver Disease Unit, Department of Medical and Surgery Sciences and Translational Medicine, Sant'Andrea Hospital, Sapienza University Rome, Rome, Italy
| | - Giovanna Gentile
- Advanced Molecular Diagnostics Unit, Sant'Andrea Hospital, Rome, Italy
| | - Flaminia Purchiaroni
- Digestive and Liver Disease Unit, Department of Medical and Surgery Sciences and Translational Medicine, Sant'Andrea Hospital, Sapienza University Rome, Rome, Italy
| | - Barbara Mora
- Department of Pathology, Policlinico Umberto I, Medical School, Sapienza University Rome, Rome, Italy
| | - Maurizio Simmaco
- Advanced Molecular Diagnostics Unit, Sant'Andrea Hospital, Rome, Italy; Department of Neuroscience, Mental Health and Sense Organs, Faculty of Medicine and Psychology, Sapienza University Rome, Rome, Italy
| | - Bruno Annibale
- Digestive and Liver Disease Unit, Department of Medical and Surgery Sciences and Translational Medicine, Sant'Andrea Hospital, Sapienza University Rome, Rome, Italy.
| |
Collapse
|
211
|
Analysis of a single Helicobacter pylori strain over a 10-year period in a primate model. Int J Med Microbiol 2015; 305:392-403. [PMID: 25804332 DOI: 10.1016/j.ijmm.2015.03.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 01/30/2015] [Accepted: 03/01/2015] [Indexed: 12/18/2022] Open
Abstract
Helicobacter pylori from different individuals exhibits substantial genetic diversity. However, the kinetics of bacterial diversification after infection with a single strain is poorly understood. We investigated evolution of H. pylori following long-term infection in the primate stomach; Rhesus macaques were infected with H. pylori strain USU101 and then followed for 10 years. H. pylori was regularly cultured from biopsies, and single colony isolates were analyzed. At 1-year, DNA fingerprinting showed that all output isolates were identical to the input strain; however, at 5-years, different H. pylori fingerprints were observed. Microarray-based comparative genomic hybridization revealed that long term persistence of USU101 in the macaque stomach was associated with specific whole gene changes. Further detailed investigation showed that levels of the BabA protein were dramatically reduced within weeks of infection. The molecular mechanisms behind this reduction were shown to include phase variation and gene loss via intragenomic rearrangement, suggesting strong selective pressure against BabA expression in the macaque model. Notably, although there is apparently strong selective pressure against babA, babA is required for establishment of infection in this model as a strain in which babA was deleted was unable to colonize experimentally infected macaques.
Collapse
|
212
|
Duell EJ, Bonet C, Muñoz X, Lujan-Barroso L, Weiderpass E, Boutron-Ruault MC, Racine A, Severi G, Canzian F, Rizzato C, Boeing H, Overvad K, Tjønneland A, Argüelles M, Sánchez-Cantalejo E, Chamosa S, Huerta JM, Barricarte A, Khaw KT, Wareham N, Travis RC, Trichopoulou A, Trichopoulos D, Yiannakouris N, Palli D, Agnoli C, Tumino R, Naccarati A, Panico S, Bueno-de-Mesquita HB, Siersema PD, Peeters PHM, Ohlsson B, Lindkvist B, Johansson I, Ye W, Johansson M, Fenger C, Riboli E, Sala N, González CA. Variation at ABO histo-blood group and FUT loci and diffuse and intestinal gastric cancer risk in a European population. Int J Cancer 2015; 136:880-93. [PMID: 24947433 DOI: 10.1002/ijc.29034] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 05/16/2014] [Indexed: 12/12/2022]
Abstract
ABO blood serotype A is known to be associated with risk of gastric cancer (GC), but little is known how ABO alleles and the fucosyltransferase (FUT) enzymes and genes which are involved in Lewis antigen formation [and in Helicobacter pylori (H. pylori) binding and pathogenicity] may be related to GC risk in a European population. The authors conducted an investigation of 32 variants at ABO and FUT1-7 loci and GC risk in a case-control study of 365 cases and 1,284 controls nested within the EPIC cohort (the EPIC-Eurgast study). Four variants (including rs505922) in ABO, and allelic blood group A (AO+AA, odds ratio=1.84, 95%CI=1.20-2.80) were associated with diffuse-type GC; however, conditional models with other ABO variants indicated that the associations were largely due to allelic blood group A. One variant in FUT5 was also associated with diffuse-type GC, and four variants (and haplotypes) in FUT2 (Se), FUT3 (Le) and FUT6 with intestinal-type GC. Further, one variant in ABO, two in FUT3 and two in FUT6 were associated with H. pylori infection status in controls, and two of these (in FUT3 and FUT6) were weakly associated with intestinal-type GC risk. None of the individual variants surpassed a Bonferroni corrected p-value cutoff of 0.0016; however, after a gene-based permutation test, two loci [FUT3(Le)/FUT5/FUT6 and FUT2(Se)] were significantly associated with diffuse- and intestinal-type GC, respectively. Replication and functional studies are therefore recommended to clarify the role of ABO and FUT alleles in H. pylori infection and subtype-specific gastric carcinogenesis.
Collapse
Affiliation(s)
- Eric J Duell
- Unit of Nutrition, Environment and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology (ICO-IDIBELL), Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
213
|
Franchini M, Bonfanti C. Evolutionary aspects of ABO blood group in humans. Clin Chim Acta 2015; 444:66-71. [PMID: 25689219 DOI: 10.1016/j.cca.2015.02.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 02/04/2015] [Accepted: 02/05/2015] [Indexed: 02/03/2023]
Abstract
The antigens of the ABO blood group system (A, B and H determinants) are complex carbohydrate molecules expressed on red blood cells and on a variety of other cell lines and tissues. Growing evidence is accumulating that ABO antigens, beyond their key role in transfusion medicine, may interplay with the pathogenesis of many human disorders, including infectious, cardiovascular and neoplastic diseases. In this narrative review, after succinct description of the current knowledge on the association between ABO blood groups and the most severe diseases, we aim to elucidate the particularly intriguing issue of the possible role of ABO system in successful aging. In particular, focus will be placed on studies evaluating the ABO phenotype in centenarians, the best human model of longevity.
Collapse
Affiliation(s)
- Massimo Franchini
- Department of Hematology and Transfusion Medicine, Azienda Ospedaliera Carlo Poma, Mantova, Italy.
| | - Carlo Bonfanti
- Department of Hematology and Transfusion Medicine, Azienda Ospedaliera Carlo Poma, Mantova, Italy
| |
Collapse
|
214
|
Huang J, Guerrero A, Parker E, Strum JS, Smilowitz JT, German JB, Lebrilla CB. Site-specific glycosylation of secretory immunoglobulin A from human colostrum. J Proteome Res 2015; 14:1335-49. [PMID: 25629924 DOI: 10.1021/pr500826q] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Secretory immunoglobulin A (sIgA) is a major glycoprotein in milk and plays a key role in mediating immune protection of the gut mucosa. Although it is a highly glycosylated protein, its site-specific glycosylation and associated glycan micro-heterogeneity have still not been fully elucidated. In this study, the site-specific glycosylation of sIgA isolated from human colostrum (n = 3) was analyzed using a combination of LC-MS and LC-MS/MS and in-house software (Glycopeptide Finder). The majority of the glycans found are biantennary structures with one or more acidic Neu5Ac residues; however, a large fraction belonged to truncated complex structures with terminal GlcNAc. Multiple glycosites were identified with nearly 30 glycan compositions located at seven sites on the secretory component, six compositions at a single site on the J chain, and 16 compositions at five sites on the IgA heavy (H) chain. Site-specific heterogeneity and relative quantitation of each composition and the extent of occupation at each site were determined using nonspecific proteases. Additionally, 54 O-linked glycan compositions located at the IgA1 hinge region (HR) were identified by comparison against a theoretical O-glycopeptide library. This represents the most comprehensive report to date detailing the complexity of glycan micro-heterogeneity with relative quantitation of glycoforms for each glycosylation site on milk sIgA. This strategy further provides a general method for determining site-specific glycosylation in large protein complexes.
Collapse
Affiliation(s)
- Jincui Huang
- Department of Chemistry, ‡Foods for Health Institute, §Department of Food Science and Technology, and ∥Department of Biochemistry and Molecular Medicine, University of California , Davis, California 95616, United States
| | | | | | | | | | | | | |
Collapse
|
215
|
Joncquel Chevalier Curt M, Lecointe K, Mihalache A, Rossez Y, Gosset P, Léonard R, Robbe-Masselot C. Alteration or adaptation, the two roads for human gastric mucin glycosylation infected by Helicobacter pylori. Glycobiology 2015; 25:617-31. [DOI: 10.1093/glycob/cwv004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 01/06/2015] [Indexed: 12/24/2022] Open
|
216
|
|
217
|
|
218
|
Dynamics of Lewis b binding and sequence variation of the babA adhesin gene during chronic Helicobacter pylori infection in humans. mBio 2014; 5:mBio.02281-14. [PMID: 25516619 PMCID: PMC4271554 DOI: 10.1128/mbio.02281-14] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Helicobacter pylori undergoes rapid microevolution during chronic infection, but very little is known about how this affects host interaction factors. The best-studied adhesin of H. pylori is BabA, which mediates binding to the blood group antigen Lewis b [Le(b)]. To study the dynamics of Le(b) adherence during human infection, we analyzed paired H. pylori isolates obtained sequentially from chronically infected individuals. A complete loss or significant reduction of Le(b) binding was observed in strains from 5 out of 23 individuals, indicating that the Le(b) binding phenotype is quite stable during chronic human infection. Sequence comparisons of babA identified differences due to mutation and/or recombination in 12 out of 16 strain pairs analyzed. Most amino acid changes were found in the putative N-terminal extracellular adhesion domain. One strain pair that had changed from a Le(b) binding to a nonbinding phenotype was used to study the role of distinct sequence changes in Le(b) binding. By transformations of the nonbinding strain with a babA gene amplified from the binding strain, H. pylori strains with mosaic babA genes were generated. Recombinants were enriched for a gain of Le(b) binding by biopanning or for BabA expression on the bacterial surface by pulldown assay. With this approach, we identified several amino acid residues affecting the strength of Le(b) binding. Additionally, the data showed that the C terminus of BabA, which is predicted to encode an outer membrane β-barrel domain, plays an essential role in the biogenesis of this protein. Helicobacter pylori causes a chronic infection of the human stomach that can lead to ulcers and cancer. The bacterium can bind to gastric epithelial cells with specialized outer membrane proteins. The best-studied protein is the BabA adhesin which binds to the Lewis b blood group antigen. Since H. pylori is a bacterium with very high genetic variability, we asked whether babA evolves during chronic infection and how mutations or recombination in babA affect binding. We found that BabA-mediated adherence was stable in most individuals but observed a complete loss of binding or reduced binding in 22% of individuals. One strain pair in which binding was lost was used to generate babA sequences that were mosaics of a functional allele and a nonfunctional allele, and the mosaic sequences were used to identify amino acids critically involved in binding of BabA to Lewis b.
Collapse
|
219
|
Helicobacter pylori vacA i region polymorphism but not babA2 status associated to gastric cancer risk in northwestern Iran. Clin Exp Med 2014; 16:57-63. [PMID: 25472424 DOI: 10.1007/s10238-014-0327-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 11/22/2014] [Indexed: 12/13/2022]
Abstract
Helicobacter pylori-specific genotypes have been strongly associated with an increased risk of gastric cancer (GC). The aim of the present work was to study the associations of H. pylori virulence factors, vacA i region polymorphisms and babA2 status with GC risk in Azerbaijan patients. The DNA extracted from gastric biopsy specimens was used to access the babA2 and vacA genotypes. Overall, babA2 was present in 85.39 % (76/89) of H. pylori strains: 19 out of 24 (79.16 %) strains from GC, 16 out of 17 (94.14 %) strains from peptic ulcer disease (PUD) and 41 out of 48 (85.14 %) strains from chronic gastritis. No significant association was found between babA2 genotype and clinical outcomes (P > 0.05). i1 vacA polymorphism was detected in 46/89 (51.68 %) strains: in 21/24 (87.5 %), 6/17 (35.29 %) and 19/48 (39.58 %) patients with GC, PUD and chronic gastritis, respectively. i2 allele was detected in 43 (48.31 %) out of all 89 strains examined: 3 (14.28 %) of 24 strains from GC, 11 (64.71 %) of 17 from PUD, and 29 (60.42 %) of 48 strains from chronic gastritis. In this study, multiple linear regression analysis confirmed the strong association of i1 allele with GC (partial regression correlation 0.455 ± 0.101; P = 0). Results of multiple logistic regression analysis showed that vacA i1 genotype was significantly associated with GC compared with a control group (gastritis) (odds ratio 13.142, 95 % CI 3.116-55.430; P = 0). Findings from the measurement of H. pylori babA2 and vacA genotypes indicate a strong correlation between the vacA i1 allele and GC risk in the Azerbaijan area of Iran.
Collapse
|
220
|
Subedi S, Moonens K, Romão E, Lo A, Vandenbussche G, Bugaytsova J, Muyldermans S, Borén T, Remaut H. Expression, purification and X-ray crystallographic analysis of the Helicobacter pylori blood group antigen-binding adhesin BabA. Acta Crystallogr F Struct Biol Commun 2014; 70:1631-5. [PMID: 25484214 PMCID: PMC4259228 DOI: 10.1107/s2053230x14023188] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 10/21/2014] [Indexed: 12/20/2022] Open
Abstract
Helicobacter pylori is a human pathogen that colonizes about 50% of the world's population, causing chronic gastritis, duodenal ulcers and even gastric cancer. A steady emergence of multiple antibiotic resistant strains poses an important public health threat and there is an urgent requirement for alternative therapeutics. The blood group antigen-binding adhesin BabA mediates the intimate attachment to the host mucosa and forms a major candidate for novel vaccine and drug development. Here, the recombinant expression and crystallization of a soluble BabA truncation (BabA(25-460)) corresponding to the predicted extracellular adhesin domain of the protein are reported. X-ray diffraction data for nanobody-stabilized BabA(25-460) were collected to 2.25 Å resolution from a crystal that belonged to space group P21, with unit-cell parameters a = 50.96, b = 131.41, c = 123.40 Å, α = 90.0, β = 94.8, γ = 90.0°, and which was predicted to contain two BabA(25-460)-nanobody complexes per asymmetric unit.
Collapse
Affiliation(s)
- Suresh Subedi
- Structural and Molecular Microbiology, VIB Department of Structural Biology, VIB, Pleinlaan 2, 1050 Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Kristof Moonens
- Structural and Molecular Microbiology, VIB Department of Structural Biology, VIB, Pleinlaan 2, 1050 Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Ema Romão
- Research Group Cellular and Molecular Immunology, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
- Structural Biology Research Center, VIB, Vrije Universiteit Brussels, Pleinlaan 2, 1050 Brussels, Belgium
| | - Alvin Lo
- Structural and Molecular Microbiology, VIB Department of Structural Biology, VIB, Pleinlaan 2, 1050 Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Guy Vandenbussche
- Structure and Function of Biological Membranes, Université Libre de Bruxelles, Boulevard du Triomphe, 1050 Brussels, Belgium
| | - Jeanna Bugaytsova
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87 Umeå, Sweden
| | - Serge Muyldermans
- Research Group Cellular and Molecular Immunology, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
- Structural Biology Research Center, VIB, Vrije Universiteit Brussels, Pleinlaan 2, 1050 Brussels, Belgium
| | - Thomas Borén
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87 Umeå, Sweden
| | - Han Remaut
- Structural and Molecular Microbiology, VIB Department of Structural Biology, VIB, Pleinlaan 2, 1050 Brussels, Belgium
| |
Collapse
|
221
|
Tadesse E, Daka D, Yemane D, Shimelis T. Seroprevalence of Helicobacter pylori infection and its related risk factors in symptomatic patients in southern Ethiopia. BMC Res Notes 2014; 7:834. [PMID: 25421746 PMCID: PMC4255656 DOI: 10.1186/1756-0500-7-834] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 11/18/2014] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Helicobacter pylori is the main etiology of peptic ulcers and chronic gastritis. Various studies showed that blood type 'O' is more common among patients with peptic ulcer. The aim of this study was to determine the seroprevalence of H. pylori antibodies and its relationship with ABO/Rhesus blood groups, age, sex and residence of symptomatic patients in southern Ethiopia. METHODS A cross-sectional study was conducted in a total of 408 consecutive patients with upper abdominal complaints at Hawassa University Hospital from October 2012 to January 2013. Data on demographic factors was collected from all participants using questionnaires. Blood samples were also collected and tested for ABO and Rh blood group phenotype using hemagglutination test and for anti-H. pylori antibody (IgG) using two different ELISAs.. RESULTS The overall seroprevalence of H. pylori infection was 83.3% (340/408), and it was significantly higher in rural (71.2%) compared to urban residents (28.8%) (p=0.008). Participants with blood group AB, A, O, B, and Rh positive had H. pylori prevalence of 88.9, 84.2, 83.7, 80.9, and 83.5%, respectively. H. pylori infection was not significantly influenced by age, sex, occupation, educational status and ABO/ Rh status (p>0.05). CONCLUSION The high seroprevalence of H. pylori infection especially among rural residents calls for immediate intervention measures so that its clinical consequences could be minimized. ABO/Rh blood group was not found to be associated with H. pylori infection.
Collapse
Affiliation(s)
- Endale Tadesse
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Hawassa University, P.O. Box 1560, Hawassa, Ethiopia
| | - Deresse Daka
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Hawassa University, P.O. Box 1560, Hawassa, Ethiopia
| | - Demo Yemane
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Hawassa University, P.O. Box 1560, Hawassa, Ethiopia
| | - Techalew Shimelis
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Hawassa University, P.O. Box 1560, Hawassa, Ethiopia
| |
Collapse
|
222
|
Improved expression and purification of the Helicobacter pylori adhesin BabA through the incorporation of a hexa-lysine tag. Protein Expr Purif 2014; 106:25-30. [PMID: 25448827 DOI: 10.1016/j.pep.2014.10.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 10/14/2014] [Accepted: 10/18/2014] [Indexed: 01/27/2023]
Abstract
Helicobacter pylori is a pathogenic bacterium that has the remarkable ability to withstand the harsh conditions of the stomach for decades. This is achieved through unique evolutionary adaptations, which include binding Lewis(b) antigens found on the gastric epithelium using the outer membrane protein BabA. We show here the yield of a recombinant form of BabA, comprising its putative extracellular binding domain, can be significantly increased through the addition of a hexa-lysine tag to the C-terminus of the protein. BabA was expressed in the periplasmic space of Escherichia coli and purified using immobilised metal ion affinity and size exclusion chromatography - yielding approximately 1.8 mg of protein per litre of culture. The hexa-lysine tag does not inhibit the binding activity of BabA as the recombinant protein was found to possess affinity towards HSA-Lewis(b) glycoconjugates.
Collapse
|
223
|
Yamamoto F, Cid E, Yamamoto M, Saitou N, Bertranpetit J, Blancher A. An integrative evolution theory of histo-blood group ABO and related genes. Sci Rep 2014; 4:6601. [PMID: 25307962 PMCID: PMC5377540 DOI: 10.1038/srep06601] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 09/19/2014] [Indexed: 11/09/2022] Open
Abstract
The ABO system is one of the most important blood group systems in transfusion/transplantation medicine. However, the evolutionary significance of the ABO gene and its polymorphism remained unknown. We took an integrative approach to gain insights into the significance of the evolutionary process of ABO genes, including those related not only phylogenetically but also functionally. We experimentally created a code table correlating amino acid sequence motifs of the ABO gene-encoded glycosyltransferases with GalNAc (A)/galactose (B) specificity, and assigned A/B specificity to individual ABO genes from various species thus going beyond the simple sequence comparison. Together with genome information and phylogenetic analyses, this assignment revealed early appearance of A and B gene sequences in evolution and potentially non-allelic presence of both gene sequences in some animal species. We argue: Evolution may have suppressed the establishment of two independent, functional A and B genes in most vertebrates and promoted A/B conversion through amino acid substitutions and/or recombination; A/B allelism should have existed in common ancestors of primates; and bacterial ABO genes evolved through horizontal and vertical gene transmission into 2 separate groups encoding glycosyltransferases with distinct sugar specificities.
Collapse
Affiliation(s)
- Fumiichiro Yamamoto
- ABO Histo-blood Groups and Cancer Laboratory, Cancer Genetics and Epigenetics Program, Institut de Medicina Predictiva i Personalitzada del Càncer (IMPPC), Campus Can Ruti, Badalona, Catalonia, Spain
| | - Emili Cid
- ABO Histo-blood Groups and Cancer Laboratory, Cancer Genetics and Epigenetics Program, Institut de Medicina Predictiva i Personalitzada del Càncer (IMPPC), Campus Can Ruti, Badalona, Catalonia, Spain
| | - Miyako Yamamoto
- ABO Histo-blood Groups and Cancer Laboratory, Cancer Genetics and Epigenetics Program, Institut de Medicina Predictiva i Personalitzada del Càncer (IMPPC), Campus Can Ruti, Badalona, Catalonia, Spain
| | - Naruya Saitou
- Division of Population Genetics, National Institute of Genetics, Mishima, Japan
| | - Jaume Bertranpetit
- IBE - Institute of Evolutionary Biology (UPF-CSIC), Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| | - Antoine Blancher
- Laboratoire d'Immunogénétique Moléculaire (LIMT, EA3034), Faculté de Médecine Purpan, Université Paul Sabatier, (Université de Toulouse III), Toulouse, France
| |
Collapse
|
224
|
Otto M. Physical stress and bacterial colonization. FEMS Microbiol Rev 2014; 38:1250-70. [PMID: 25212723 DOI: 10.1111/1574-6976.12088] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 09/01/2014] [Accepted: 09/05/2014] [Indexed: 02/07/2023] Open
Abstract
Bacterial surface colonizers are subject to a variety of physical stresses. During the colonization of human epithelia such as on the skin or the intestinal mucosa, bacteria mainly have to withstand the mechanical stress of being removed by fluid flow, scraping, or epithelial turnover. To that end, they express a series of molecules to establish firm attachment to the epithelial surface, such as fibrillar protrusions (pili) and surface-anchored proteins that bind to human matrix proteins. In addition, some bacteria--in particular gut and urinary tract pathogens--use internalization by epithelial cells and other methods such as directed inhibition of epithelial turnover to ascertain continued association with the epithelial layer. Furthermore, many bacteria produce multilayered agglomerations called biofilms with a sticky extracellular matrix, providing additional protection from removal. This review will give an overview over the mechanisms human bacterial colonizers have to withstand physical stresses with a focus on bacterial adhesion.
Collapse
Affiliation(s)
- Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Human Bacterial Pathogenesis, National Institute of Allergy and Infectious Diseases, The National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
225
|
Testerman TL, Morris J. Beyond the stomach: An updated view of Helicobacter pylori pathogenesis, diagnosis, and treatment. World J Gastroenterol 2014; 20:12781-12808. [PMID: 25278678 PMCID: PMC4177463 DOI: 10.3748/wjg.v20.i36.12781] [Citation(s) in RCA: 210] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 04/17/2014] [Accepted: 06/23/2014] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori (H. pylori) is an extremely common, yet underappreciated, pathogen that is able to alter host physiology and subvert the host immune response, allowing it to persist for the life of the host. H. pylori is the primary cause of peptic ulcers and gastric cancer. In the United States, the annual cost associated with peptic ulcer disease is estimated to be $6 billion and gastric cancer kills over 700000 people per year globally. The prevalence of H. pylori infection remains high (> 50%) in much of the world, although the infection rates are dropping in some developed nations. The drop in H. pylori prevalence could be a double-edged sword, reducing the incidence of gastric diseases while increasing the risk of allergies and esophageal diseases. The list of diseases potentially caused by H. pylori continues to grow; however, mechanistic explanations of how H. pylori could contribute to extragastric diseases lag far behind clinical studies. A number of host factors and H. pylori virulence factors act in concert to determine which individuals are at the highest risk of disease. These include bacterial cytotoxins and polymorphisms in host genes responsible for directing the immune response. This review discusses the latest advances in H. pylori pathogenesis, diagnosis, and treatment. Up-to-date information on correlations between H. pylori and extragastric diseases is also provided.
Collapse
|
226
|
Menchicchi B, Fuenzalida JP, Bobbili KB, Hensel A, Swamy MJ, Goycoolea FM. Structure of chitosan determines its interactions with mucin. Biomacromolecules 2014; 15:3550-8. [PMID: 25122160 DOI: 10.1021/bm5007954] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Synthetic and natural mucoadhesive biomaterials in optimized galenical formulations are potentially useful for the transmucosal delivery of active ingredients to improve their localized and prolonged effects. Chitosans (CS) have potent mucoadhesive characteristics, but the exact mechanisms underpinning such interactions at the molecular level and the role of the specific structural properties of CS remain elusive. In the present study we used a combination of microviscosimetry, zeta potential analysis, isothermal titration calorimetry (ITC) and fluorescence quenching to confirm that the soluble fraction of porcine stomach mucin interacts with CS in water or 0.1 M NaCl (at c < c*; relative viscosity, η(rel), ∼ 2.0 at pH 4.5 and 37 °C) via a heterotypic stoichiometric process significantly influenced by the degree of CS acetylation (DA). We propose that CS-mucin interactions are driven predominantly by electrostatic binding, supported by other forces (e.g., hydrogen bonds and hydrophobic association) and that the DA influences the overall conformation of CS and thus the nature of the resulting complexes. Although the conditions used in this model system are simpler than the typical in vivo environment, the resulting knowledge will enable the rational design of CS-based nanostructured materials for specific transmucosal drug delivery (e.g., for Helicobacter pylori stomach therapy).
Collapse
Affiliation(s)
- B Menchicchi
- Institute of Plant Biology and Biotechnology (IBBP), University of Münster , Schlossgarten 3, D-48149 Münster, Germany
| | | | | | | | | | | |
Collapse
|
227
|
Nordgren J, Sharma S, Bucardo F, Nasir W, Günaydın G, Ouermi D, Nitiema LW, Becker-Dreps S, Simpore J, Hammarström L, Larson G, Svensson L. Both Lewis and secretor status mediate susceptibility to rotavirus infections in a rotavirus genotype-dependent manner. Clin Infect Dis 2014; 59:1567-73. [PMID: 25097083 DOI: 10.1093/cid/ciu633] [Citation(s) in RCA: 186] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The live oral rotavirus (RV) vaccines have shown a reduced efficacy in Africa. Recent in vitro studies have shown binding of the RV surface protein (VP4) to histo-blood group antigens (HBGAs) in an RV genotype-dependent manner, suggesting them to be putative receptors for RV. The diversity of HBGA phenotypes in different ethnic populations, combined with prevalence/absence of specific RV genotypes, led us to hypothesize whether the genetic variations in HBGAs in a population limit susceptibility to certain RV genotypes, plausibly leading to reduced vaccine efficacy. METHODS Association between HBGAs status and susceptibility to RV P genotypes was investigated in children in Burkina Faso and Nicaragua. In total, 242 children with diarrhea in Burkina Faso and Nicaragua were investigated, 93 of whom were RV positive. RESULTS In Burkina Faso, the P[8] RV strains (n = 27) infected only Lewis- and secretor-positive children (27/27; P < .0001), but no Lewis-negative children. In contrast, the P[6] strains (n = 27) infected predominantly Lewis-negative children (n = 18; P < .0001) but also Lewis-positive children, irrespective of their secretor status. The results from Nicaragua confirmed that all P[8]-infected children (n = 22) were secretor Lewis positive. CONCLUSIONS As VP4 of genotype P[8] is a component of current RV vaccines, our finding that Lewis-negative children are resistant to P[8] strains provides a plausible explanation for the reduced vaccine efficacy in populations with a high percentage of Lewis-negative individuals, such as in Africa. Furthermore, our findings provide a plausible explanation as to why P[6] RV strains are more common in Africa.
Collapse
Affiliation(s)
- Johan Nordgren
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Medical Faculty, Linköping University, Sweden
| | - Sumit Sharma
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Medical Faculty, Linköping University, Sweden
| | | | - Waqas Nasir
- Department of Clinical Chemistry and Transfusion Medicine, Sahlgrenska Academy at the University of Gothenburg
| | - Gökçe Günaydın
- Department of Laboratory Medicine, Division of Clinical Immunology and Transfusion Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Djeneba Ouermi
- Centre de Recherche Biomoléculaire Pietro Annigoni Saint Camille CERBA/LABIOGENE, Université de Ouagadougou, Burkina Faso
| | - Leon W Nitiema
- Centre de Recherche Biomoléculaire Pietro Annigoni Saint Camille CERBA/LABIOGENE, Université de Ouagadougou, Burkina Faso
| | - Sylvia Becker-Dreps
- Department of Family Medicine, School of Medicine, University of North Carolina at Chapel Hill
| | - Jacques Simpore
- Centre de Recherche Biomoléculaire Pietro Annigoni Saint Camille CERBA/LABIOGENE, Université de Ouagadougou, Burkina Faso
| | - Lennart Hammarström
- Department of Laboratory Medicine, Division of Clinical Immunology and Transfusion Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Göran Larson
- Department of Clinical Chemistry and Transfusion Medicine, Sahlgrenska Academy at the University of Gothenburg
| | - Lennart Svensson
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Medical Faculty, Linköping University, Sweden
| |
Collapse
|
228
|
Host–pathogen co-evolution and glycan interactions. Curr Opin Virol 2014; 7:88-94. [PMID: 25000207 DOI: 10.1016/j.coviro.2014.06.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 06/02/2014] [Indexed: 01/22/2023]
|
229
|
Yu Y, Lasanajak Y, Song X, Hu L, Ramani S, Mickum ML, Ashline DJ, Prasad BVV, Estes MK, Reinhold VN, Cummings RD, Smith DF. Human milk contains novel glycans that are potential decoy receptors for neonatal rotaviruses. Mol Cell Proteomics 2014; 13:2944-60. [PMID: 25048705 DOI: 10.1074/mcp.m114.039875] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Human milk contains a rich set of soluble, reducing glycans whose functions and bioactivities are not well understood. Because human milk glycans (HMGs) have been implicated as receptors for various pathogens, we explored the functional glycome of human milk using shotgun glycomics. The free glycans from pooled milk samples of donors with mixed Lewis and Secretor phenotypes were labeled with a fluorescent tag and separated via multidimensional HPLC to generate a tagged glycan library containing 247 HMG targets that were printed to generate the HMG shotgun glycan microarray (SGM). To investigate the potential role of HMGs as decoy receptors for rotavirus (RV), a leading cause of severe gastroenteritis in children, we interrogated the HMG SGM with recombinant forms of VP8* domains of the RV outer capsid spike protein VP4 from human neonatal strains N155(G10P[11]) and RV3(G3P[6]) and a bovine strain, B223(G10P[11]). Glycans that were bound by RV attachment proteins were selected for detailed structural analyses using metadata-assisted glycan sequencing, which compiles data on each glycan based on its binding by antibodies and lectins before and after exo- and endo-glycosidase digestion of the SGM, coupled with independent MS(n) analyses. These complementary structural approaches resulted in the identification of 32 glycans based on RV VP8* binding, many of which are novel HMGs, whose detailed structural assignments by MS(n) are described in a companion report. Although sialic acid has been thought to be important as a surface receptor for RVs, our studies indicated that sialic acid is not required for binding of glycans to individual VP8* domains. Remarkably, each VP8* recognized specific glycan determinants within a unique subset of related glycan structures where specificity differences arise from subtle differences in glycan structures.
Collapse
Affiliation(s)
- Ying Yu
- From the ‡Department of Biochemistry and the National Center for Functional Glycomics, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Yi Lasanajak
- From the ‡Department of Biochemistry and the National Center for Functional Glycomics, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Xuezheng Song
- From the ‡Department of Biochemistry and the National Center for Functional Glycomics, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Liya Hu
- §Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Sasirekha Ramani
- ¶Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030
| | - Megan L Mickum
- From the ‡Department of Biochemistry and the National Center for Functional Glycomics, Emory University School of Medicine, Atlanta, Georgia 30322
| | - David J Ashline
- ‖Glycomics Center, University of New Hampshire, Durham, New Hampshire 03824
| | - B V Venkataram Prasad
- §Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030; ¶Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030
| | - Mary K Estes
- ¶Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030
| | - Vernon N Reinhold
- ‖Glycomics Center, University of New Hampshire, Durham, New Hampshire 03824
| | - Richard D Cummings
- From the ‡Department of Biochemistry and the National Center for Functional Glycomics, Emory University School of Medicine, Atlanta, Georgia 30322;
| | - David F Smith
- From the ‡Department of Biochemistry and the National Center for Functional Glycomics, Emory University School of Medicine, Atlanta, Georgia 30322;
| |
Collapse
|
230
|
A repetitive DNA element regulates expression of the Helicobacter pylori sialic acid binding adhesin by a rheostat-like mechanism. PLoS Pathog 2014; 10:e1004234. [PMID: 24991812 PMCID: PMC4081817 DOI: 10.1371/journal.ppat.1004234] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 05/21/2014] [Indexed: 12/12/2022] Open
Abstract
During persistent infection, optimal expression of bacterial factors is required to match the ever-changing host environment. The gastric pathogen Helicobacter pylori has a large set of simple sequence repeats (SSR), which constitute contingency loci. Through a slipped strand mispairing mechanism, the SSRs generate heterogeneous populations that facilitate adaptation. Here, we present a model that explains, in molecular terms, how an intergenically located T-tract, via slipped strand mispairing, operates with a rheostat-like function, to fine-tune activity of the promoter that drives expression of the sialic acid binding adhesin, SabA. Using T-tract variants, in an isogenic strain background, we show that the length of the T-tract generates multiphasic output from the sabA promoter. Consequently, this alters the H. pylori binding to sialyl-Lewis x receptors on gastric mucosa. Fragment length analysis of post-infection isolated clones shows that the T-tract length is a highly variable feature in H. pylori. This mirrors the host-pathogen interplay, where the bacterium generates a set of clones from which the best-fit phenotypes are selected in the host. In silico and functional in vitro analyzes revealed that the length of the T-tract affects the local DNA structure and thereby binding of the RNA polymerase, through shifting of the axial alignment between the core promoter and UP-like elements. We identified additional genes in H. pylori, with T- or A-tracts positioned similar to that of sabA, and show that variations in the tract length likewise acted as rheostats to modulate cognate promoter output. Thus, we propose that this generally applicable mechanism, mediated by promoter-proximal SSRs, provides an alternative mechanism for transcriptional regulation in bacteria, such as H. pylori, which possesses a limited repertoire of classical trans-acting regulatory factors.
Collapse
|
231
|
Dunne C, Dolan B, Clyne M. Factors that mediate colonization of the human stomach by Helicobacter pylori. World J Gastroenterol 2014; 20:5610-24. [PMID: 24914320 PMCID: PMC4024769 DOI: 10.3748/wjg.v20.i19.5610] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 12/04/2013] [Accepted: 01/19/2014] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori (H. pylori) colonizes the stomach of humans and causes chronic infection. The majority of bacteria live in the mucus layer overlying the gastric epithelial cells and only a small proportion of bacteria are found interacting with the epithelial cells. The bacteria living in the gastric mucus may act as a reservoir of infection for the underlying cells which is essential for the development of disease. Colonization of gastric mucus is likely to be key to the establishment of chronic infection. How H. pylori manages to colonise and survive in the hostile environment of the human stomach and avoid removal by mucus flow and killing by gastric acid is the subject of this review. We also discuss how bacterial and host factors may together go some way to explaining the susceptibility to colonization and the outcome of infection in different individuals. H. pylori infection of the gastric mucosa has become a paradigm for chronic infection. Understanding of why H. pylori is such a successful pathogen may help us understand how other bacterial species colonise mucosal surfaces and cause disease.
Collapse
|
232
|
Smilowitz JT, Lebrilla CB, Mills DA, German JB, Freeman SL. Breast milk oligosaccharides: structure-function relationships in the neonate. Annu Rev Nutr 2014; 34:143-69. [PMID: 24850388 DOI: 10.1146/annurev-nutr-071813-105721] [Citation(s) in RCA: 291] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In addition to providing complete postnatal nutrition, breast milk is a complex biofluid that delivers bioactive components for the growth and development of the intestinal and immune systems. Lactation is a unique opportunity to understand the role of diet in shaping the intestinal environment including the infant microbiome. Of considerable interest is the diversity and abundance of milk glycans that are energetically costly for the mammary gland to produce yet indigestible by infants. Milk glycans comprise free oligosaccharides, glycoproteins, glycopeptides, and glycolipids. Emerging technological advances are enabling more comprehensive, sensitive, and rapid analyses of these different classes of milk glycans. Understanding the impact of inter- and intraindividual glycan diversity on function is an important step toward interventions aimed at improving health and preventing disease. This review discusses the state of technology for glycan analysis and how specific structure-function knowledge is enhancing our understanding of early nutrition in the neonate.
Collapse
|
233
|
Wada Y, Lönnerdal B. Bioactive peptides derived from human milk proteins — mechanisms of action. J Nutr Biochem 2014; 25:503-14. [DOI: 10.1016/j.jnutbio.2013.10.012] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 10/03/2013] [Accepted: 10/23/2013] [Indexed: 01/14/2023]
|
234
|
Rossez Y, Gosset P, Boneca IG, Magalhães A, Ecobichon C, Reis CA, Cieniewski-Bernard C, Joncquel Chevalier Curt M, Léonard R, Maes E, Sperandio B, Slomianny C, Sansonetti PJ, Michalski JC, Robbe-Masselot C. The lacdiNAc-specific adhesin LabA mediates adhesion of Helicobacter pylori to human gastric mucosa. J Infect Dis 2014; 210:1286-95. [PMID: 24755437 DOI: 10.1093/infdis/jiu239] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Adhesion of Helicobacter pylori to the gastric mucosa is a necessary prerequisite for the pathogenesis of H. pylori-related diseases. In this study, we investigated the GalNAcβ1-4GlcNAc motif (also known as N,N'-diacetyllactosediamine [lacdiNAc]) carried by MUC5AC gastric mucins as the target for bacterial binding to the human gastric mucosa. The expression of LacdiNAc carried by gastric mucins was correlated with H. pylori localization, and all strains tested adhered significantly to this motif. Proteomic analysis and mutant construction allowed the identification of a yet uncharacterized bacterial adhesin, LabA, which specifically recognizes lacdiNAc. These findings unravel a target of adhesion for H. pylori in addition to moieties recognized by the well-characterized adhesins BabA and SabA. Localization of the LabA target, restricted to the gastric mucosa, suggests a plausible explanation for the tissue tropism of these bacteria. These results pave the way for the development of alternative strategies against H. pylori infection, using adherence inhibitors.
Collapse
Affiliation(s)
- Yannick Rossez
- Univ Lille Nord de France USTL, UGSF, IFR 147 CNRS, UMR 8576
| | - Pierre Gosset
- Univ Lille Nord de France UCLille Groupe Hospitalier de l'Institut Catholique Lillois/Faculté Libre de Médecine, Lille Service d'Anatomie Pathologie
| | - Ivo G Boneca
- Institut Pasteur INSERM, Equipe Avenir, Groupe Biologie et génétique de la paroi bactérienne
| | - Ana Magalhães
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto
| | - Chantal Ecobichon
- Institut Pasteur INSERM, Equipe Avenir, Groupe Biologie et génétique de la paroi bactérienne
| | - Celso A Reis
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto Institute of Biomedical Sciences Abel Salazar and Medical Faculty of the University of Porto, Portugal
| | | | | | - Renaud Léonard
- Univ Lille Nord de France USTL, UGSF, IFR 147 CNRS, UMR 8576
| | - Emmanuel Maes
- Univ Lille Nord de France USTL, UGSF, IFR 147 CNRS, UMR 8576
| | - Brice Sperandio
- Unité de Pathogénie Microbienne Moléculaire et Unité INSERM 786, Institut Pasteur
| | - Christian Slomianny
- Univ Lille Nord de France Laboratoire de Physiologie Cellulaire, INSERM U 1003, Université des Sciences et Technologies de Lille, Villeneuve d'Ascq
| | - Philippe J Sansonetti
- Unité de Pathogénie Microbienne Moléculaire et Unité INSERM 786, Institut Pasteur Chaire de Microbiologie et Maladies Infectieuses, Collège de France
| | | | | |
Collapse
|
235
|
Wacklin P, Tuimala J, Nikkilä J, Sebastian Tims, Mäkivuokko H, Alakulppi N, Laine P, Rajilic-Stojanovic M, Paulin L, de Vos WM, Mättö J. Faecal microbiota composition in adults is associated with the FUT2 gene determining the secretor status. PLoS One 2014; 9:e94863. [PMID: 24733310 PMCID: PMC3986271 DOI: 10.1371/journal.pone.0094863] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 03/20/2014] [Indexed: 12/21/2022] Open
Abstract
The human intestine is colonised with highly diverse and individually defined microbiota, which likely has an impact on the host well-being. Drivers of the individual variation in the microbiota compositions are multifactorial and include environmental, host and dietary factors. We studied the impact of the host secretor status, encoded by fucosyltransferase 2 (FUT2) -gene, on the intestinal microbiota composition. Secretor status determines the expression of the ABH and Lewis histo-blood group antigens in the intestinal mucosa. The study population was comprised of 14 non-secretor (FUT2 rs601338 genotype AA) and 57 secretor (genotypes GG and AG) adult individuals of western European descent. Intestinal microbiota was analyzed by PCR-DGGE and for a subset of 12 non-secretor subjects and 12 secretor subjects additionally by the 16S rRNA gene pyrosequencing and the HITChip phylogenetic microarray analysis. All three methods showed distinct clustering of the intestinal microbiota and significant differences in abundances of several taxa representing dominant microbiota between the non-secretors and the secretors as well as between the FUT2 genotypes. In addition, the non-secretors had lower species richness than the secretors. The soft clustering of microbiota into enterotypes (ET) 1 and 3 showed that the non-secretors had a higher probability of belonging to ET1 and the secretors to ET3. Our study shows that secretor status and FUT2 polymorphism are associated with the composition of human intestinal microbiota, and appears thus to be one of the key drivers affecting the individual variation of human intestinal microbiota.
Collapse
Affiliation(s)
| | | | | | - Sebastian Tims
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | | | | | - Pia Laine
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | | | - Lars Paulin
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Willem M. de Vos
- Department of Veterinary Biosciences and Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Jaana Mättö
- Finnish Red Cross Blood Service, Helsinki, Finland
| |
Collapse
|
236
|
Reilly JP, Meyer NJ, Shashaty MGS, Feng R, Lanken PN, Gallop R, Kaplan S, Herlim M, Oz NL, Hiciano I, Campbell A, Holena DN, Reilly MP, Christie JD. ABO blood type A is associated with increased risk of ARDS in whites following both major trauma and severe sepsis. Chest 2014; 145:753-761. [PMID: 24385226 PMCID: PMC3971970 DOI: 10.1378/chest.13-1962] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 11/27/2013] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND ABO glycosyltransferases catalyze antigen modifications on various glycans and glycoproteins and determine the ABO blood types. Blood type A has been associated with increased risk of vascular diseases and differential circulating levels of proteins related to inflammation and endothelial function. The objective of this study was to determine the association of ABO blood types with ARDS risk in patients with major trauma and severe sepsis. METHODS We conducted prospective cohort studies in two populations at an urban tertiary referral, level I trauma center. Critically ill patients (n 5 732) presenting after major trauma were followed for 5 days for ARDS development. Additionally, 976 medical patients with severe sepsis were followed for 5 days for ARDS. Multivariable logistic regression was used to adjust for confounders. RESULTS ARDS developed in 197 of the 732 trauma patients (27%). Blood type A was associated with increased ARDS risk among whites (37% vs 24%; adjusted OR, 1.88; 95% CI, 1.14-3.12; P 5 .014), but not blacks (adjusted OR, 0.61; 95% CI, 0.33-1.13; P=.114). ARDS developed in 222 of the 976 patients with severe sepsis (23%). Blood type A was also associated with an increased ARDS risk among whites (31% vs 21%; adjusted OR, 1.67; 95% CI, 1.08-2.59; P=.021) but, again, not among blacks (adjusted OR, 1.17; 95% CI, 0.59-2.33; P=.652). CONCLUSIONS Blood type A is associated with an increased risk of ARDS in white patients with major trauma and severe sepsis. These results suggest a role for ABO glycans and glycosyltransferases in ARDS susceptibility.
Collapse
Affiliation(s)
- John P Reilly
- Division of Pulmonary, Allergy, and Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA.
| | - Nuala J Meyer
- Division of Pulmonary, Allergy, and Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Michael G S Shashaty
- Division of Pulmonary, Allergy, and Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA; Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Rui Feng
- Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Paul N Lanken
- Division of Pulmonary, Allergy, and Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Robert Gallop
- Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Sandra Kaplan
- Division of Pulmonary, Allergy, and Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Maximilian Herlim
- Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Nathaniel L Oz
- Division of Pulmonary, Allergy, and Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Isabel Hiciano
- Division of Pulmonary, Allergy, and Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Ana Campbell
- Division of Pulmonary, Allergy, and Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Daniel N Holena
- Division of Traumatology, Surgical Critical Care, and Emergency Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Muredach P Reilly
- Division of Pulmonary, Allergy, and Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA; Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA; Penn Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Jason D Christie
- Division of Pulmonary, Allergy, and Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA; Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
237
|
Franchini M, Liumbruno GM. ABO blood group: old dogma, new perspectives. Clin Chem Lab Med 2014; 51:1545-53. [PMID: 23648637 DOI: 10.1515/cclm-2013-0168] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 04/08/2013] [Indexed: 12/20/2022]
Abstract
Human blood group antigens are glycoproteins and glycolipids expressed on the surface of red blood cells and a variety of human tissues, including the epithelium, sensory neurons, platelets and the vascular endothelium. Accumulating evidence indicate that ABO blood type is implicated in the development of a number of human diseases, including cardiovascular and neoplastic disorders. In this review, beside its physiologic role in immunohematology and transfusion medicine, we summarize the current knowledge on the association between the ABO blood group and the risk of developing thrombotic events and cancers.
Collapse
Affiliation(s)
- Massimo Franchini
- Department of Transfusion Medicine and Hematology, Azienda Ospedaliera Carlo Poma, Mantova, Italy.
| | | |
Collapse
|
238
|
Hong YJ, Hwang SM, Kim TS, Song EY, Park KU, Song J, Han KS. Significance of Lewis phenotyping using saliva and gastric tissue: comparison with the Lewis phenotype inferred from Lewis and secretor genotypes. BIOMED RESEARCH INTERNATIONAL 2014; 2014:573652. [PMID: 24783214 PMCID: PMC3982271 DOI: 10.1155/2014/573652] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 02/09/2014] [Accepted: 03/03/2014] [Indexed: 12/13/2022]
Abstract
Lewis phenotypes using various types of specimen were compared with the Lewis phenotype predicted from Lewis and Secretor genotypes. This is the first logical step in explaining the association between the Lewis expression and Helicobacter pylori. We performed a study of the followings on 209 patients who underwent routine gastroscopy: erythrocyte and saliva Lewis phenotyping, gastric Lewis phenotyping by the tissue array, and the Lewis and Secretor genes genotyping. The results of phenotyping were as follows [Le(a-b-), Le(a+b-), Le(a-b+), and Le(a+b+), respectively, in order]: erythrocyte (12.4%, 25.8%, 61.2%, and 0.5%); saliva (2.4%, 27.3%, 70.3%, and 0.0%); gastric mucosa (8.1%, 6.7%, 45.5%, and 39.7%). The frequency of Le, le (59/508) , le (59/1067) , and le (59) alleles was 74.6%, 21.3%, 3.1%, and 1.0%, respectively, among 418 alleles. The saliva Lewis phenotype was completely consistent with the Lewis phenotype inferred from Lewis and Secretor genotypes, but that of gastric mucosa could not be predicted from genotypes. Lewis phenotyping using erythrocytes is only adequate for transfusion needs. Saliva testing for the Lewis phenotype is a more reliable method for determining the peripheral Lewis phenotype of an individual and the gastric Lewis phenotype must be used for the study on the association between Helicobacter pylori and the Lewis phenotype.
Collapse
Affiliation(s)
- Yun Ji Hong
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul 110-744, Republic of Korea
- Department of Laboratory Medicine, Seoul National University Bundang Hospital, 173-82 Gumiro, Bundanggu, Seongnam, Gyeonggido 463-707, Republic of Korea
| | - Sang Mee Hwang
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul 110-744, Republic of Korea
- Department of Laboratory Medicine, Seoul National University Bundang Hospital, 173-82 Gumiro, Bundanggu, Seongnam, Gyeonggido 463-707, Republic of Korea
| | - Taek Soo Kim
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul 110-744, Republic of Korea
- Department of Laboratory Medicine, Seoul National University Bundang Hospital, 173-82 Gumiro, Bundanggu, Seongnam, Gyeonggido 463-707, Republic of Korea
| | - Eun Young Song
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul 110-744, Republic of Korea
| | - Kyoung Un Park
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul 110-744, Republic of Korea
- Department of Laboratory Medicine, Seoul National University Bundang Hospital, 173-82 Gumiro, Bundanggu, Seongnam, Gyeonggido 463-707, Republic of Korea
| | - Junghan Song
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul 110-744, Republic of Korea
- Department of Laboratory Medicine, Seoul National University Bundang Hospital, 173-82 Gumiro, Bundanggu, Seongnam, Gyeonggido 463-707, Republic of Korea
| | - Kyou-Sup Han
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul 110-744, Republic of Korea
| |
Collapse
|
239
|
Sakarya S, Gunay N. Saccharomyces boulardii expresses neuraminidase activity selective for α2,3-linked sialic acid that decreases Helicobacter pylori adhesion to host cells. APMIS 2014; 122:941-50. [PMID: 24628732 DOI: 10.1111/apm.12237] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 11/26/2013] [Indexed: 12/13/2022]
Abstract
Helicobacter pylori is a major causative agent of gastritis and peptic ulcer disease and is an established risk factor for gastric malignancy. Antibiotic combination therapy can eradicate H. pylori. As these same regimens can evoke adverse effects and resistance, new alternative therapies or adjunctive treatments are needed. A probiotic approach may provide a novel strategy for H. pylori treatment. In the current study, two probiotic bacteria, Lactobacillus acidophilus and Lactobacillus reuteri, and a probiotic yeast, Saccharomyces boulardii, were evaluated for their ability to influence H. pylori viability, adherence to gastric and duodenal cells, as well as the effect of S. boulardii on cell surface expression of sialic acid. Our results indicate that S. boulardii contains neuraminidase activity selective for α(2-3)-linked sialic acid. This neuraminidase activity removes surface α(2-3)-linked sialic acid, the ligand for the sialic acid-binding H. pylori adhesin, which in turn, inhibits H. pylori adherence to duodenal epithelial cells.
Collapse
Affiliation(s)
- Serhan Sakarya
- Department of Infectious Diseases and Clinical Microbiology, School of Medicine, Adnan Menderes University, Aydin
| | | |
Collapse
|
240
|
Mahdavi J, Pirinccioglu N, Oldfield NJ, Carlsohn E, Stoof J, Aslam A, Self T, Cawthraw SA, Petrovska L, Colborne N, Sihlbom C, Borén T, Wooldridge KG, Ala'Aldeen DAA. A novel O-linked glycan modulates Campylobacter jejuni major outer membrane protein-mediated adhesion to human histo-blood group antigens and chicken colonization. Open Biol 2014; 4:130202. [PMID: 24451549 PMCID: PMC3909276 DOI: 10.1098/rsob.130202] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Campylobacter jejuni is an important cause of human foodborne gastroenteritis; strategies to prevent infection are hampered by a poor understanding of the complex interactions between host and pathogen. Previous work showed that C. jejuni could bind human histo-blood group antigens (BgAgs) in vitro and that BgAgs could inhibit the binding of C. jejuni to human intestinal mucosa ex vivo. Here, the major flagella subunit protein (FlaA) and the major outer membrane protein (MOMP) were identified as BgAg-binding adhesins in C. jejuni NCTC11168. Significantly, the MOMP was shown to be O-glycosylated at Thr268; previously only flagellin proteins were known to be O-glycosylated in C. jejuni. Substitution of MOMP Thr268 led to significantly reduced binding to BgAgs. The O-glycan moiety was characterized as Gal(β1–3)-GalNAc(β1–4)-GalNAc(β1–4)-GalNAcα1-Thr268; modelling suggested that O-glycosylation has a notable effect on the conformation of MOMP and this modulates BgAg-binding capacity. Glycosylation of MOMP at Thr268 promoted cell-to-cell binding, biofilm formation and adhesion to Caco-2 cells, and was required for the optimal colonization of chickens by C. jejuni, confirming the significance of this O-glycosylation in pathogenesis.
Collapse
Affiliation(s)
- Jafar Mahdavi
- School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
241
|
H. pylori virulence factors: influence on immune system and pathology. Mediators Inflamm 2014; 2014:426309. [PMID: 24587595 PMCID: PMC3918698 DOI: 10.1155/2014/426309] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 12/19/2013] [Indexed: 02/07/2023] Open
Abstract
Helicobacter pylori is the most widespread chronic bacterial agent in humans and is well recognized for its association with ulcer disease and gastric cancer, with both representing major global health and socioeconomic issues. Given the high level of adaptation and the coevolution of this bacterium with its human host, a thorough and multidirectional view of the specific microbiological characteristics of this infection as well as the host physiology is needed in order to develop novel means of prevention of therapy. This review aims to pinpoint some of these potentially important angles, which have to be considered mutually when studying H. pylori's pathogenicity. The host's biological changes due to the virulence factors are a valuable pillar of H. pylori research as are the mechanisms by which bacteria provoke these changes. In this context, necessary adhesion molecules and significant virulence factors of H. pylori are discussed. Moreover, metabolism of the bacteria, one of the most important aspects for a better understanding of bacterial physiology and consequently possible therapeutic and prophylactic strategies, is addressed. On the other hand, we discuss the recent experimental proofs of the "hygiene hypothesis" in correlation with Helicobacter's infection, which adds another aspect of complexity to this infection.
Collapse
|
242
|
Demirel BB, Akkas BE, Vural GU. Clinical factors related with helicobacter pylori infection--is there an association with gastric cancer history in first-degree family members? Asian Pac J Cancer Prev 2014; 14:1797-802. [PMID: 23679276 DOI: 10.7314/apjcp.2013.14.3.1797] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The aim of this study was to assess clinical factors associated with Helicobacter pylori positivity and to evaluate the incidence of gastric carcinoma in first-degree family members of infected patients. A total of 580 patients (mean age:38±17) with gastrointestinal complaints underwent C-14 urea breath test (UBT). Patients were grouped as: Group-1, untreated patients (n:384); and Group-2, patients who previously treated with eradication triple therapy (n:196). C-14 UBT was performed 1-2 months after the completion of eradication therapy. Associations of H pylori positivity with age, gender, ABO and Rhesus groups, smoking, dietary habits, and history of gastric cancer in first-degree family members were evaluated. The frequency of H pylori positivity was significantly higher in group-1 (58%) compared to group-2 (20%), p=0.001. There were no correlations between H pylori positivity and age, gender, ABO groups, Rhesus subgroups, smoking and dietary habits in both patient groups. The frequency of gastric cancer in family members was significantly higher in patients with H pylori infection among group-1, compared to infected patients among group-2 (56% vs. 28.6% respectively, p=0.03). We observed a significant association between H pylori positivity and the presence of gastric cancer in first-degree relatives of group-1 patients. Our results provide some confirmation of the presence of a link between gastric cancer development and H pylori. C-14 UBT is a sensitive, reliable and a widely recommended test for the detection of H pylori infection and recurrence. We suggest that detection and eradication of H pylori may contribute to a reduced risk of gastric cancer in the family members of infected patients.
Collapse
Affiliation(s)
- Busra B Demirel
- Department of Nuclear Medicine, Ankara Oncology Research and Training Hospital, Ankara, Turkey.
| | | | | |
Collapse
|
243
|
Naughton J, Duggan G, Bourke B, Clyne M. Interaction of microbes with mucus and mucins: recent developments. Gut Microbes 2014; 5:48-52. [PMID: 24149677 PMCID: PMC4049936 DOI: 10.4161/gmic.26680] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Due to the recent rapid expansion in our understanding of the composition of the gut microflora and the consequences of altering that composition the question of how bacteria colonise mucus layers and interact with components of mucus, such as mucin, is now receiving widespread attention. Using a combination of mucus secreting cells, and a novel mucin microarray platform containing purified native mucins from different sources we recently demonstrated that two gastrointestinal pathogens, Helicobacter pylori and Campylobacter jejuni, colonise mucus by different mechanisms. This result emphasizes the potential for even closely related bacteria to interact with mucus in divergent ways to establish successful infection. Expanding the use of the mucin arrays described in the study to other microorganisms, both pathogenic and commensal, should lead to the discovery of biologically important motifs in bacterial-host interactions and complement the use of novel in vitro cell models, such as mucus secreting cell lines.
Collapse
Affiliation(s)
- Julie Naughton
- School of Medicine and Medical Science; University College Dublin; Dublin, Ireland,Conway Institute of Biomolecular and Biomedical Science; University College Dublin; Dublin, Ireland
| | - Gina Duggan
- School of Medicine and Medical Science; University College Dublin; Dublin, Ireland,Conway Institute of Biomolecular and Biomedical Science; University College Dublin; Dublin, Ireland
| | - Billy Bourke
- School of Medicine and Medical Science; University College Dublin; Dublin, Ireland,Conway Institute of Biomolecular and Biomedical Science; University College Dublin; Dublin, Ireland,National Children’s Research Centre; Our Lady’s Children’s Hospital; Dublin, Ireland
| | - Marguerite Clyne
- School of Medicine and Medical Science; University College Dublin; Dublin, Ireland,Conway Institute of Biomolecular and Biomedical Science; University College Dublin; Dublin, Ireland,Correspondence to: Marguerite Clyne,
| |
Collapse
|
244
|
Patra A, Bera M. Spectroscopic investigation of new water soluble and complexes for the substrate binding models of xylose/glucose isomerases. Carbohydr Res 2014; 384:87-98. [DOI: 10.1016/j.carres.2013.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 11/30/2013] [Accepted: 12/03/2013] [Indexed: 11/24/2022]
|
245
|
Paul M, Reljic R, Klein K, Drake PMW, van Dolleweerd C, Pabst M, Windwarder M, Arcalis E, Stoger E, Altmann F, Cosgrove C, Bartolf A, Baden S, Ma JKC. Characterization of a plant-produced recombinant human secretory IgA with broad neutralizing activity against HIV. MAbs 2014; 6:1585-97. [PMID: 25484063 PMCID: PMC4622858 DOI: 10.4161/mabs.36336] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 08/15/2014] [Accepted: 09/03/2014] [Indexed: 12/16/2022] Open
Abstract
Recombinant Secretory IgA (SIgA) complexes have the potential to improve antibody-based passive immunotherapeutic approaches to combat many mucosal pathogens. In this report, we describe the expression, purification and characterization of a human SIgA format of the broadly neutralizing anti-HIV monoclonal antibody (mAb) 2G12, using both transgenic tobacco plants and transient expression in Nicotiana benthamiana as expression hosts (P2G12 SIgA). The resulting heterodecameric complexes accumulated in intracellular compartments in leaf tissue, including the vacuole. SIgA complexes could not be detected in the apoplast. Maximum yields of antibody were 15.2 μg/g leaf fresh mass (LFM) in transgenic tobacco and 25 μg/g LFM after transient expression, and assembly of SIgA complexes was superior in transgenic tobacco. Protein L purified antibody specifically bound HIV gp140 and neutralised tier 2 and tier 3 HIV isolates. Glycoanalysis revealed predominantly high mannose structures present on most N-glycosylation sites, with limited evidence for complex glycosylation or processing to paucimannosidic forms. O-glycan structures were not identified. Functionally, P2G12 SIgA, but not IgG, effectively aggregated HIV virions. Binding of P2G12 SIgA was observed to CD209 / DC-SIGN, but not to CD89 / FcalphaR on a monocyte cell line. Furthermore, P2G12 SIgA demonstrated enhanced stability in mucosal secretions in comparison to P2G12 IgG mAb.
Collapse
MESH Headings
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/metabolism
- Antibodies, Neutralizing/pharmacology
- Binding Sites/immunology
- Body Fluids/immunology
- Body Fluids/metabolism
- Female
- Glycosylation
- HIV/drug effects
- HIV/immunology
- HIV/metabolism
- Humans
- Immunoblotting
- Immunoglobulin A, Secretory/genetics
- Immunoglobulin A, Secretory/immunology
- Immunoglobulin A, Secretory/metabolism
- Microscopy, Electron
- Microscopy, Fluorescence
- Plant Leaves/genetics
- Plant Leaves/metabolism
- Plant Leaves/ultrastructure
- Plants, Genetically Modified
- Polysaccharides/analysis
- Polysaccharides/immunology
- Protein Binding/immunology
- Recombinant Proteins/immunology
- Recombinant Proteins/metabolism
- Recombinant Proteins/pharmacology
- Nicotiana/genetics
- Nicotiana/metabolism
- Vagina/immunology
- Vagina/metabolism
- Virion/drug effects
- Virion/immunology
- Virion/metabolism
- env Gene Products, Human Immunodeficiency Virus/immunology
- env Gene Products, Human Immunodeficiency Virus/metabolism
Collapse
Affiliation(s)
- Matthew Paul
- The Hotung Molecular Immunology Group; Institute for Infection & Immunity; St George's; University of London; London, UK
| | - Rajko Reljic
- The Hotung Molecular Immunology Group; Institute for Infection & Immunity; St George's; University of London; London, UK
| | - Katja Klein
- Faculty of Medicine; Department of Medicine; Imperial College; London, UK
| | - Pascal MW Drake
- The Hotung Molecular Immunology Group; Institute for Infection & Immunity; St George's; University of London; London, UK
| | - Craig van Dolleweerd
- The Hotung Molecular Immunology Group; Institute for Infection & Immunity; St George's; University of London; London, UK
| | - Martin Pabst
- Division of Biochemistry; Universität für Bodenkultur; Vienna, Austria
| | - Markus Windwarder
- Division of Biochemistry; Universität für Bodenkultur; Vienna, Austria
| | - Elsa Arcalis
- Institute of Applied Genetics and Cell Biology (IAGZ); Universität für Bodenkultur; Vienna, Austria
| | - Eva Stoger
- Institute of Applied Genetics and Cell Biology (IAGZ); Universität für Bodenkultur; Vienna, Austria
| | - Friedrich Altmann
- Division of Biochemistry; Universität für Bodenkultur; Vienna, Austria
| | - Catherine Cosgrove
- St. George's Vaccine Institute, St. George's, University of London, London, UK
| | - Angela Bartolf
- St. George's Vaccine Institute, St. George's, University of London, London, UK
| | - Susan Baden
- St. George's Vaccine Institute, St. George's, University of London, London, UK
| | - Julian K-C Ma
- The Hotung Molecular Immunology Group; Institute for Infection & Immunity; St George's; University of London; London, UK
| |
Collapse
|
246
|
Mitchell HM, Rocha GA, Kaakoush NO, O’Rourke JL, Queiroz DMM. The Family Helicobacteraceae. THE PROKARYOTES 2014:337-392. [DOI: 10.1007/978-3-642-39044-9_275] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
247
|
Pinho SS, Carvalho S, Marcos-Pinto R, Magalhães A, Oliveira C, Gu J, Dinis-Ribeiro M, Carneiro F, Seruca R, Reis CA. Gastric cancer: adding glycosylation to the equation. Trends Mol Med 2013; 19:664-76. [DOI: 10.1016/j.molmed.2013.07.003] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 07/02/2013] [Accepted: 07/05/2013] [Indexed: 12/17/2022]
|
248
|
Harris PR, Smythies LE, Smith PD, Perez-Perez GI. Role of childhood infection in the sequelae of H. pylori disease. Gut Microbes 2013; 4:426-38. [PMID: 24275060 PMCID: PMC3928156 DOI: 10.4161/gmic.26943] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The persistence of Helicobacter pylori infection plays a fundamental role in the development of H. pylori-associated complications. Since the majority of infected persons acquire the bacteria during early childhood, an examination of the immunobiology of H. pylori infection in children compared with that of adults may help identify host factors that contribute to persistent infection. Therefore, we begin our review of the role of persistence in H. pylori disease with an assessment of the clinical features of H. pylori infection in children. We next review the bacterial factors that promote colonization and evasion of host defense mechanisms. We then focus our attention on the early host immunological factors that promote persistence of the infection and its complications in humans and mouse models. We also highlight topics in which further research is needed. An examination of how immunological factors cause divergent manifestations of H. pylori infection in children compared with adults may provide new insight for therapeutic modification or prevention of persistent H. pylori infection and its complications.
Collapse
Affiliation(s)
- Paul R Harris
- Division of Pediatrics; Unit of Gastroenterology and Nutrition; School of Medicine; Pontificia Universidad Catolica de Chile; Santiago, Chile
| | - Lesley E Smythies
- Departments of Medicine and Microbiology; University of Alabama at Birmingham; Birmingham, AL USA
| | - Phillip D Smith
- Departments of Medicine and Microbiology; University of Alabama at Birmingham; Birmingham, AL USA,VA Medical Center; Birmingham, AL USA
| | - Guillermo I Perez-Perez
- Departments of Medicine and Microbiology; Langone Medical Center; New York University School of Medicine; New York, NY USA,Correspondence to: Guillermo I Perez-Perez,
| |
Collapse
|
249
|
Posselt G, Backert S, Wessler S. The functional interplay of Helicobacter pylori factors with gastric epithelial cells induces a multi-step process in pathogenesis. Cell Commun Signal 2013; 11:77. [PMID: 24099599 PMCID: PMC3851490 DOI: 10.1186/1478-811x-11-77] [Citation(s) in RCA: 151] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 10/01/2013] [Indexed: 12/16/2022] Open
Abstract
Infections with the human pathogen Helicobacter pylori (H. pylori) can lead to severe gastric diseases ranging from chronic gastritis and ulceration to neoplastic changes in the stomach. Development and progress of H. pylori-associated disorders are determined by multifarious bacterial factors. Many of them interact directly with host cells or require specific receptors, while others enter the host cytoplasm to derail cellular functions. Several adhesins (e.g. BabA, SabA, AlpA/B, or OipA) establish close contact with the gastric epithelium as an important first step in persistent colonization. Soluble H. pylori factors (e.g. urease, VacA, or HtrA) have been suggested to alter cell survival and intercellular adhesions. Via a type IV secretion system (T4SS), H. pylori also translocates the effector cytotoxin-associated gene A (CagA) and peptidoglycan directly into the host cytoplasm, where cancer- and inflammation-associated signal transduction pathways can be deregulated. Through these manifold possibilities of interaction with host cells, H. pylori interferes with the complex signal transduction networks in its host and mediates a multi-step pathogenesis.
Collapse
Affiliation(s)
- Gernot Posselt
- Division of Molecular Biology, Department of Microbiology, Paris-Lodron University, Salzburg, Austria.
| | | | | |
Collapse
|
250
|
Beyond immunohaematology: the role of the ABO blood group in human diseases. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2013; 11:491-9. [PMID: 24120598 DOI: 10.2450/2013.0152-13] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 09/09/2013] [Indexed: 01/26/2023]
|