201
|
Razin SV, Gavrilov AA. Non-coding RNAs in chromatin folding and nuclear organization. Cell Mol Life Sci 2021; 78:5489-5504. [PMID: 34117518 PMCID: PMC11072467 DOI: 10.1007/s00018-021-03876-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/24/2021] [Accepted: 06/05/2021] [Indexed: 12/19/2022]
Abstract
One of the most intriguing questions facing modern biology concerns how the genome directs the construction of cells, tissues, and whole organisms. It is tempting to suggest that the part of the genome that does not encode proteins contains architectural plans. We are still far from understanding how these plans work at the level of building tissues and the body as a whole. However, the results of recent studies demonstrate that at the cellular level, special non-coding RNAs serve as scaffolds for the construction of various intracellular structures. The term "architectural RNAs" was proposed to designate this subset of non-coding RNAs. In this review, we discuss the role of architectural RNAs in the construction of the cell nucleus and maintenance of the three-dimensional organization of the genome.
Collapse
Affiliation(s)
- Sergey V Razin
- Institute of Gene Biology, Russian Academy of Sciences, 119334, Moscow, Russia.
- Faculty of Biology, M. V. Lomonosov Moscow State University, 119234, Moscow, Russia.
| | - Alexey A Gavrilov
- Institute of Gene Biology, Russian Academy of Sciences, 119334, Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334, Moscow, Russia
| |
Collapse
|
202
|
Nakasone Y, Terazima M. A Time-Resolved Diffusion Technique for Detection of the Conformational Changes and Molecular Assembly/Disassembly Processes of Biomolecules. Front Genet 2021; 12:691010. [PMID: 34276791 PMCID: PMC8278059 DOI: 10.3389/fgene.2021.691010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 05/31/2021] [Indexed: 12/20/2022] Open
Abstract
Biological liquid-liquid phase separation (LLPS) is driven by dynamic and multivalent interactions, which involves conformational changes and intermolecular assembly/disassembly processes of various biomolecules. To understand the molecular mechanisms of LLPS, kinetic measurements of the intra- and intermolecular reactions are essential. In this review, a time-resolved diffusion technique which has a potential to detect molecular events associated with LLPS is presented. This technique can detect changes in protein conformation and intermolecular interaction (oligomer formation, protein-DNA interaction, and protein-lipid interaction) in time domain, which are difficult to obtain by other methods. After the principle and methods for signal analyses are described in detail, studies on photoreactive molecules (intermolecular interaction between light sensor proteins and its target DNA) and a non-photoreactive molecule (binding and folding reaction of α-synuclein upon mixing with SDS micelle) are presented as typical examples of applications of this unique technique.
Collapse
Affiliation(s)
- Yusuke Nakasone
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Masahide Terazima
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, Japan
| |
Collapse
|
203
|
Wang XW, Liu CX, Chen LL, Zhang QC. RNA structure probing uncovers RNA structure-dependent biological functions. Nat Chem Biol 2021; 17:755-766. [PMID: 34172967 DOI: 10.1038/s41589-021-00805-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 04/23/2021] [Indexed: 01/22/2023]
Abstract
RNA molecules fold into complex structures that enable their diverse functions in cells. Recent revolutionary innovations in transcriptome-wide RNA structural probing of living cells have ushered in a new era in understanding RNA functions. Here, we summarize the latest technological advances for probing RNA secondary structures and discuss striking discoveries that have linked RNA regulation and biological processes through interrogation of RNA structures. In particular, we highlight how different long noncoding RNAs form into distinct secondary structures that determine their modes of interactions with protein partners to realize their unique functions. These dynamic structures mediate RNA regulatory functions through altering interactions with proteins and other RNAs. We also outline current methodological hurdles and speculate about future directions for development of the next generation of RNA structure-probing technologies of higher sensitivity and resolution, which could then be applied in increasingly physiologically relevant studies.
Collapse
Affiliation(s)
- Xi-Wen Wang
- MOE Key Laboratory of Bioinformatics, Beijing Advanced Innovation Center for Structural Biology and Frontier Research Center for Biological Structure, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China.,Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Chu-Xiao Liu
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ling-Ling Chen
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China. .,School of Life Science and Technology, ShanghaiTech University, Shanghai, China. .,School of Life Sciences, Hangzhou Institute for Advanced Study, University of the Chinese Academy of Sciences, Hangzhou, China.
| | - Qiangfeng Cliff Zhang
- MOE Key Laboratory of Bioinformatics, Beijing Advanced Innovation Center for Structural Biology and Frontier Research Center for Biological Structure, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China. .,Tsinghua-Peking Center for Life Sciences, Beijing, China.
| |
Collapse
|
204
|
Roden CA, Dai Y, Seim I, Lee M, Sealfon R, McLaughlin GA, Boerneke MA, Iserman C, Wey SA, Ekena JL, Troyanskaya OG, Weeks KM, You L, Chilkoti A, Gladfelter AS. Double-stranded RNA drives SARS-CoV-2 nucleocapsid protein to undergo phase separation at specific temperatures. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 34159327 DOI: 10.1101/2021.06.14.448452] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Betacoronavirus SARS-CoV-2 infections caused the global Covid-19 pandemic. The nucleocapsid protein (N-protein) is required for multiple steps in the betacoronavirus replication cycle. SARS-CoV-2-N-protein is known to undergo liquid-liquid phase separation (LLPS) with specific RNAs at particular temperatures to form condensates. We show that N-protein recognizes at least two separate and distinct RNA motifs, both of which require double-stranded RNA (dsRNA) for LLPS. These motifs are separately recognized by N-protein's two RNA binding domains (RBDs). Addition of dsRNA accelerates and modifies N-protein LLPS in vitro and in cells and controls the temperature condensates form. The abundance of dsRNA tunes N-protein-mediated translational repression and may confer a switch from translation to genome packaging. Thus, N-protein's two RBDs interact with separate dsRNA motifs, and these interactions impart distinct droplet properties that can support multiple viral functions. These experiments demonstrate a paradigm of how RNA structure can control the properties of biomolecular condensates.
Collapse
|
205
|
Portz B, Shorter J. Biochemical Timekeeping Via Reentrant Phase Transitions. J Mol Biol 2021; 433:166794. [PMID: 33387533 PMCID: PMC8154630 DOI: 10.1016/j.jmb.2020.166794] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 12/03/2020] [Accepted: 12/23/2020] [Indexed: 02/06/2023]
Abstract
Appreciation for the role of liquid-liquid phase separation in the functional organization of cellular matter has exploded in recent years. More recently there has been a growing effort to understand the principles of heterotypic phase separation, the demixing of multiple proteins and nucleic acids into a single functional condensate. A phase transition is termed reentrant if it involves the transformation of a system from one state into a macroscopically similar or identical state via at least two phase transitions elicited by variation of a single parameter. Reentrant liquid-liquid phase separation can occur when the condensation of one species is tuned by another. Reentrant phase transitions have been modeled in vitro using protein and RNA mixtures. These biochemical studies reveal two features of reentrant phase separation that are likely important to functional cellular condensates: (1) the ability to generate condensates with layered functional topologies, and (2) the ability to generate condensates whose composition and duration are self-limiting to enable a form of biochemical timekeeping. We relate these biochemical studies to potential cellular examples and discuss how layered topologies and self-regulation may impact key biological processes.
Collapse
Affiliation(s)
- Bede Portz
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - James Shorter
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
206
|
Posey AE, Ruff KM, Lalmansingh JM, Kandola TS, Lange JJ, Halfmann R, Pappu RV. Mechanistic Inferences From Analysis of Measurements of Protein Phase Transitions in Live Cells. J Mol Biol 2021; 433:166848. [PMID: 33539877 PMCID: PMC8561728 DOI: 10.1016/j.jmb.2021.166848] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/10/2021] [Accepted: 01/25/2021] [Indexed: 02/07/2023]
Abstract
The combination of phase separation and disorder-to-order transitions can give rise to ordered, semi-crystalline fibrillar assemblies that underlie prion phenomena namely, the non-Mendelian transfer of information across cells. Recently, a method known as Distributed Amphifluoric Förster Resonance Energy Transfer (DAmFRET) was developed to study the convolution of phase separation and disorder-to-order transitions in live cells. In this assay, a protein of interest is expressed to a broad range of concentrations and the acquisition of local density and order, measured by changes in FRET, is used to map phase transitions for different proteins. The high-throughput nature of this assay affords the promise of uncovering sequence-to-phase behavior relationships in live cells. Here, we report the development of a supervised method to obtain automated and accurate classifications of phase transitions quantified using the DAmFRET assay. Systems that we classify as undergoing two-state discontinuous transitions are consistent with prion-like behaviors, although the converse is not always true. We uncover well-established and surprising new sequence features that contribute to two-state phase behavior of prion-like domains. Additionally, our method enables quantitative, comparative assessments of sequence-specific driving forces for phase transitions in live cells. Finally, we demonstrate that a modest augmentation of DAmFRET measurements, specifically time-dependent protein expression profiles, can allow one to apply classical nucleation theory to extract sequence-specific lower bounds on the probability of nucleating ordered assemblies. Taken together, our approaches lead to a useful analysis pipeline that enables the extraction of mechanistic inferences regarding phase transitions in live cells.
Collapse
Affiliation(s)
- Ammon E Posey
- Department of Biomedical Engineering and Center for Science & Engineering of Living Systems, Washington University in St. Louis, St. Louis, MO 63130, USA.
| | - Kiersten M Ruff
- Department of Biomedical Engineering and Center for Science & Engineering of Living Systems, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Jared M Lalmansingh
- Department of Biomedical Engineering and Center for Science & Engineering of Living Systems, Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Physics, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Tejbir S Kandola
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA; The Open University, Milton Keynes MK7 6AA, United Kingdom
| | - Jeffrey J Lange
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Randal Halfmann
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA; Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Rohit V Pappu
- Department of Biomedical Engineering and Center for Science & Engineering of Living Systems, Washington University in St. Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
207
|
Courchaine EM, Barentine AES, Straube K, Lee DR, Bewersdorf J, Neugebauer KM. DMA-tudor interaction modules control the specificity of in vivo condensates. Cell 2021; 184:3612-3625.e17. [PMID: 34115980 DOI: 10.1016/j.cell.2021.05.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 12/21/2020] [Accepted: 05/07/2021] [Indexed: 12/31/2022]
Abstract
Biomolecular condensation is a widespread mechanism of cellular compartmentalization. Because the "survival of motor neuron protein" (SMN) is implicated in the formation of three different membraneless organelles (MLOs), we hypothesized that SMN promotes condensation. Unexpectedly, we found that SMN's globular tudor domain was sufficient for dimerization-induced condensation in vivo, whereas its two intrinsically disordered regions (IDRs) were not. Binding to dimethylarginine (DMA) modified protein ligands was required for condensate formation by the tudor domains in SMN and at least seven other fly and human proteins. Remarkably, asymmetric versus symmetric DMA determined whether two distinct nuclear MLOs-gems and Cajal bodies-were separate or "docked" to one another. This substructure depended on the presence of either asymmetric or symmetric DMA as visualized with sub-diffraction microscopy. Thus, DMA-tudor interaction modules-combinations of tudor domains bound to their DMA ligand(s)-represent versatile yet specific regulators of MLO assembly, composition, and morphology.
Collapse
Affiliation(s)
- Edward M Courchaine
- Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Andrew E S Barentine
- Cell Biology, Yale University, New Haven, CT 06520, USA; Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Korinna Straube
- Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | | | - Joerg Bewersdorf
- Cell Biology, Yale University, New Haven, CT 06520, USA; Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Karla M Neugebauer
- Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA; Cell Biology, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
208
|
Abstract
The regulatory circuits that define developmental decisions of thymocytes are still incompletely resolved. SATB1 protein is predominantly expressed at the CD4+CD8+cell stage exerting its broad transcription regulation potential with both activatory and repressive roles. A series of post-translational modifications and the presence of potential SATB1 protein isoforms indicate the complexity of its regulatory potential. The most apparent mechanism of its involvement in gene expression regulation is via the orchestration of long-range chromatin loops between genes and their regulatory elements. Multiple SATB1 perturbations in mice uncovered a link to autoimmune diseases while clinical investigations on cancer research uncovered that SATB1 has a promoting role in several types of cancer and can be used as a prognostic biomarker. SATB1 is a multivalent tissue-specific factor with a broad and yet undetermined regulatory potential. Future investigations on this protein could further uncover T cell-specific regulatory pathways and link them to (patho)physiology.
Collapse
Affiliation(s)
- Tomas Zelenka
- Department of Biology, University of Crete , Heraklion, Crete, Greece.,Gene Regulation & Genomics, Institute of Molecular Biology and Biotechnology-Foundation for Research and Technology Hellas , Heraklion, Crete, Greece
| | - Charalampos Spilianakis
- Department of Biology, University of Crete , Heraklion, Crete, Greece.,Gene Regulation & Genomics, Institute of Molecular Biology and Biotechnology-Foundation for Research and Technology Hellas , Heraklion, Crete, Greece
| |
Collapse
|
209
|
ArcRNAs and the formation of nuclear bodies. Mamm Genome 2021; 33:382-401. [PMID: 34085114 DOI: 10.1007/s00335-021-09881-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/25/2021] [Indexed: 01/13/2023]
Abstract
Long noncoding RNAs (lncRNAs) have long been collectively and passively defined as transcripts that do not encode proteins. However, extensive functional studies performed over the last decade have enabled the classification of lncRNAs into multiple categories according to their functions and/or molecular properties. Architectual RNAs (arcRNAs) are a group of lncRNAs that serve as architectural components of submicron-scale cellular bodies or nonmembranous organelles, which are composed of specific sets of proteins and nucleic acids involved in particular molecular processes. In this review, we focus on arcRNAs that function in the nucleus, which provide a structural basis for the formation of nuclear bodies, nonmembranous organelles in the cell nucleus. We will summarize the current list of arcRNAs and proteins associated with classic and more recently discovered nuclear bodies and discuss general rules that govern the formation of nuclear bodies, emphasizing weak multivalent interactions mediated by innately flexible biomolecules.
Collapse
|
210
|
Peeples W, Rosen MK. Mechanistic dissection of increased enzymatic rate in a phase-separated compartment. Nat Chem Biol 2021; 17:693-702. [PMID: 34035521 PMCID: PMC8635274 DOI: 10.1038/s41589-021-00801-x] [Citation(s) in RCA: 174] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 04/18/2021] [Indexed: 02/08/2023]
Abstract
Biomolecular condensates concentrate macromolecules into discrete cellular foci without an encapsulating membrane. Condensates are often presumed to increase enzymatic reaction rates through increased concentrations of enzymes and substrates (mass action), although this idea has not been widely tested and other mechanisms of modulation are possible. Here we describe a synthetic system where the SUMOylation enzyme cascade is recruited into engineered condensates generated by liquid-liquid phase separation of multidomain scaffolding proteins. SUMOylation rates can be increased up to 36-fold in these droplets compared to the surrounding bulk, depending on substrate KM. This dependency produces substantial specificity among different substrates. Analyses of reactions above and below the phase-separation threshold lead to a quantitative model in which reactions in condensates are accelerated by mass action and changes in substrate KM, probaby due to scaffold-induced molecular organization. Thus, condensates can modulate reaction rates both by concentrating molecules and physically organizing them.
Collapse
Affiliation(s)
- William Peeples
- Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Michael K Rosen
- Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
211
|
Wiedner HJ, Giudice J. It's not just a phase: function and characteristics of RNA-binding proteins in phase separation. Nat Struct Mol Biol 2021; 28:465-473. [PMID: 34099940 PMCID: PMC8787349 DOI: 10.1038/s41594-021-00601-w] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 04/30/2021] [Indexed: 12/31/2022]
Abstract
Biomolecular condensates that form via phase separation are increasingly regarded as coordinators of cellular reactions that regulate a wide variety of biological phenomena. Mounting evidence suggests that multiple steps of the RNA life cycle are organized within RNA-binding protein-rich condensates. In this Review, we discuss recent insights into the influence of phase separation on RNA biology, which has implications for basic cell biology, the pathogenesis of human diseases and the development of novel therapies.
Collapse
Affiliation(s)
- Hannah J Wiedner
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jimena Giudice
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- McAllister Heart Institute, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
212
|
Baisden JT, Childs-Disney JL, Ryan LS, Disney MD. Affecting RNA biology genome-wide by binding small molecules and chemically induced proximity. Curr Opin Chem Biol 2021; 62:119-129. [PMID: 34118759 PMCID: PMC9264282 DOI: 10.1016/j.cbpa.2021.03.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 01/08/2023]
Abstract
The ENCODE and genome-wide association projects have shown that much of the genome is transcribed into RNA and much less is translated into protein. These and other functional studies suggest that the druggable transcriptome is much larger than the druggable proteome. This review highlights approaches to define druggable RNA targets and structure-activity relationships across genomic RNA. Binding compounds can be identified and optimized into structure-specific ligands by using sequence-based design with various modes of action, for example, inhibiting translation or directing pre-mRNA splicing outcomes. In addition, strategies to direct protein activity against an RNA of interest via chemically induced proximity is a burgeoning area that has been validated both in cells and in preclinical animal models, and we describe that it may allow rapid access to new avenues to affect RNA biology. These approaches and the unique modes of action suggest that more RNAs are potentially amenable to targeting than proteins.
Collapse
Affiliation(s)
- Jared T Baisden
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458 USA
| | - Jessica L Childs-Disney
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458 USA
| | - Lucas S Ryan
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458 USA
| | - Matthew D Disney
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458 USA.
| |
Collapse
|
213
|
Lashkevich KA, Dmitriev SE. mRNA Targeting, Transport and Local Translation in Eukaryotic Cells: From the Classical View to a Diversity of New Concepts. Mol Biol 2021; 55:507-537. [PMID: 34092811 PMCID: PMC8164833 DOI: 10.1134/s0026893321030080] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 02/26/2021] [Accepted: 03/12/2021] [Indexed: 12/28/2022]
Abstract
Spatial organization of protein biosynthesis in the eukaryotic cell has been studied for more than fifty years, thus many facts have already been included in textbooks. According to the classical view, mRNA transcripts encoding secreted and transmembrane proteins are translated by ribosomes associated with endoplasmic reticulum membranes, while soluble cytoplasmic proteins are synthesized on free polysomes. However, in the last few years, new data has emerged, revealing selective translation of mRNA on mitochondria and plastids, in proximity to peroxisomes and endosomes, in various granules and at the cytoskeleton (actin network, vimentin intermediate filaments, microtubules and centrosomes). There are also long-standing debates about the possibility of protein synthesis in the nucleus. Localized translation can be determined by targeting signals in the synthesized protein, nucleotide sequences in the mRNA itself, or both. With RNA-binding proteins, many transcripts can be assembled into specific RNA condensates and form RNP particles, which may be transported by molecular motors to the sites of active translation, form granules and provoke liquid-liquid phase separation in the cytoplasm, both under normal conditions and during cell stress. The translation of some mRNAs occurs in specialized "translation factories," assemblysomes, transperons and other structures necessary for the correct folding of proteins, interaction with functional partners and formation of oligomeric complexes. Intracellular localization of mRNA has a significant impact on the efficiency of its translation and presumably determines its response to cellular stress. Compartmentalization of mRNAs and the translation machinery also plays an important role in viral infections. Many viruses provoke the formation of specific intracellular structures, virus factories, for the production of their proteins. Here we review the current concepts of the molecular mechanisms of transport, selective localization and local translation of cellular and viral mRNAs, their effects on protein targeting and topogenesis, and on the regulation of protein biosynthesis in different compartments of the eukaryotic cell. Special attention is paid to new systems biology approaches, providing new cues to the study of localized translation.
Collapse
Affiliation(s)
- Kseniya A Lashkevich
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119234 Moscow, Russia.,Faculty of Bioengineering and Bioinformatics, Moscow State University, 119234 Moscow, Russia
| | - Sergey E Dmitriev
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119234 Moscow, Russia.,Faculty of Bioengineering and Bioinformatics, Moscow State University, 119234 Moscow, Russia.,Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
214
|
Sahadevan S, Hembach KM, Tantardini E, Pérez-Berlanga M, Hruska-Plochan M, Megat S, Weber J, Schwarz P, Dupuis L, Robinson MD, De Rossi P, Polymenidou M. Synaptic FUS accumulation triggers early misregulation of synaptic RNAs in a mouse model of ALS. Nat Commun 2021; 12:3027. [PMID: 34021139 PMCID: PMC8140117 DOI: 10.1038/s41467-021-23188-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 04/13/2021] [Indexed: 12/12/2022] Open
Abstract
Mutations disrupting the nuclear localization of the RNA-binding protein FUS characterize a subset of amyotrophic lateral sclerosis patients (ALS-FUS). FUS regulates nuclear RNAs, but its role at the synapse is poorly understood. Using super-resolution imaging we determined that the localization of FUS within synapses occurs predominantly near the vesicle reserve pool of presynaptic sites. Using CLIP-seq on synaptoneurosomes, we identified synaptic FUS RNA targets, encoding proteins associated with synapse organization and plasticity. Significant increase of synaptic FUS during early disease in a mouse model of ALS was accompanied by alterations in density and size of GABAergic synapses. mRNAs abnormally accumulated at the synapses of 6-month-old ALS-FUS mice were enriched for FUS targets and correlated with those depicting increased short-term mRNA stability via binding primarily on multiple exonic sites. Our study indicates that synaptic FUS accumulation in early disease leads to synaptic impairment, potentially representing an initial trigger of neurodegeneration.
Collapse
Affiliation(s)
- Sonu Sahadevan
- Department of Quantitative Biomedicine, University of Zurich, Zürich, Switzerland
| | - Katharina M Hembach
- Department of Quantitative Biomedicine, University of Zurich, Zürich, Switzerland
- Department of Molecular Life Sciences and SIB Swiss Institute of Bioinformatics, University of Zurich, Zürich, Switzerland
| | - Elena Tantardini
- Department of Quantitative Biomedicine, University of Zurich, Zürich, Switzerland
| | | | | | - Salim Megat
- Inserm, University of Strasbourg, Strasbourg, France
| | - Julien Weber
- Department of Quantitative Biomedicine, University of Zurich, Zürich, Switzerland
| | - Petra Schwarz
- Institute of Neuropathology, University Hospital Zurich, Zürich, Switzerland
| | - Luc Dupuis
- Inserm, University of Strasbourg, Strasbourg, France
| | - Mark D Robinson
- Department of Molecular Life Sciences and SIB Swiss Institute of Bioinformatics, University of Zurich, Zürich, Switzerland
| | - Pierre De Rossi
- Department of Quantitative Biomedicine, University of Zurich, Zürich, Switzerland
| | | |
Collapse
|
215
|
Campos-Melo D, Hawley ZCE, Droppelmann CA, Strong MJ. The Integral Role of RNA in Stress Granule Formation and Function. Front Cell Dev Biol 2021; 9:621779. [PMID: 34095105 PMCID: PMC8173143 DOI: 10.3389/fcell.2021.621779] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 03/16/2021] [Indexed: 12/12/2022] Open
Abstract
Stress granules (SGs) are phase-separated, membraneless, cytoplasmic ribonucleoprotein (RNP) assemblies whose primary function is to promote cell survival by condensing translationally stalled mRNAs, ribosomal components, translation initiation factors, and RNA-binding proteins (RBPs). While the protein composition and the function of proteins in the compartmentalization and the dynamics of assembly and disassembly of SGs has been a matter of study for several years, the role of RNA in these structures had remained largely unknown. RNA species are, however, not passive members of RNA granules in that RNA by itself can form homo and heterotypic interactions with other RNA molecules leading to phase separation and nucleation of RNA granules. RNA can also function as molecular scaffolds recruiting multivalent RBPs and their interactors to form higher-order structures. With the development of SG purification techniques coupled to RNA-seq, the transcriptomic landscape of SGs is becoming increasingly understood, revealing the enormous potential of RNA to guide the assembly and disassembly of these transient organelles. SGs are not only formed under acute stress conditions but also in response to different diseases such as viral infections, cancer, and neurodegeneration. Importantly, these granules are increasingly being recognized as potential precursors of pathological aggregates in neurodegenerative diseases. In this review, we examine the current evidence in support of RNA playing a significant role in the formation of SGs and explore the concept of SGs as therapeutic targets.
Collapse
Affiliation(s)
- Danae Campos-Melo
- Molecular Medicine Group, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Zachary C E Hawley
- Molecular Medicine Group, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Cristian A Droppelmann
- Molecular Medicine Group, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Michael J Strong
- Molecular Medicine Group, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.,Department of Pathology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.,Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| |
Collapse
|
216
|
Zhu J, Li C, Peng X, Zhang X. RNA architecture influences plant biology. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4144-4160. [PMID: 33484251 PMCID: PMC8130982 DOI: 10.1093/jxb/erab030] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 01/18/2021] [Indexed: 05/13/2023]
Abstract
The majority of the genome is transcribed to RNA in living organisms. RNA transcripts can form astonishing arrays of secondary and tertiary structures via Watson-Crick, Hoogsteen, or wobble base pairing. In vivo, RNA folding is not a simple thermodynamic event of minimizing free energy. Instead, the process is constrained by transcription, RNA-binding proteins, steric factors, and the microenvironment. RNA secondary structure (RSS) plays myriad roles in numerous biological processes, such as RNA processing, stability, transportation, and translation in prokaryotes and eukaryotes. Emerging evidence has also implicated RSS in RNA trafficking, liquid-liquid phase separation, and plant responses to environmental variations such as temperature and salinity. At molecular level, RSS is correlated with splicing, polyadenylation, protein synthesis, and miRNA biogenesis and functions. In this review, we summarize newly reported methods for probing RSS in vivo and functions and mechanisms of RSS in plant physiology.
Collapse
Affiliation(s)
- Jiaying Zhu
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Changhao Li
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Xu Peng
- Department of Medical Physiology, College of Medicine, Texas A&M University, College Station, TX 77843, USA
| | - Xiuren Zhang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
- Correspondence:
| |
Collapse
|
217
|
Tibble RW, Depaix A, Kowalska J, Jemielity J, Gross JD. Biomolecular condensates amplify mRNA decapping by biasing enzyme conformation. Nat Chem Biol 2021; 17:615-623. [PMID: 33767388 PMCID: PMC8476181 DOI: 10.1038/s41589-021-00774-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 02/16/2021] [Indexed: 02/07/2023]
Abstract
Cells organize biochemical processes into biological condensates. P-bodies are cytoplasmic condensates that are enriched in enzymes important for mRNA degradation and have been identified as sites of both storage and decay. How these opposing outcomes can be achieved in condensates remains unresolved. mRNA decapping immediately precedes degradation, and the Dcp1/Dcp2 decapping complex is enriched in P-bodies. Here, we show that Dcp1/Dcp2 activity is modulated in condensates and depends on the interactions promoting phase separation. We find that Dcp1/Dcp2 phase separation stabilizes an inactive conformation in Dcp2 to inhibit decapping. The activator Edc3 causes a conformational change in Dcp2 and rewires the protein-protein interactions to stimulate decapping in condensates. Disruption of the inactive conformation dysregulates decapping in condensates. Our results indicate that the regulation of enzymatic activity in condensates relies on a coupling across length scales ranging from microns to ångstroms. We propose that this regulatory mechanism may control the functional state of P-bodies and related phase-separated compartments.
Collapse
Affiliation(s)
- Ryan W Tibble
- Program in Chemistry and Chemical Biology, University of California, San Francisco, San Francisco, CA, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Anaïs Depaix
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
| | - Joanna Kowalska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
| | - Jacek Jemielity
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - John D Gross
- Program in Chemistry and Chemical Biology, University of California, San Francisco, San Francisco, CA, USA.
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
218
|
Escalante LE, Gasch AP. The role of stress-activated RNA-protein granules in surviving adversity. RNA (NEW YORK, N.Y.) 2021; 27:rna.078738.121. [PMID: 33931500 PMCID: PMC8208049 DOI: 10.1261/rna.078738.121] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 04/28/2021] [Indexed: 05/17/2023]
Abstract
Severe environmental stress can trigger a plethora of physiological changes and, in the process, significant cytoplasmic reorganization. Stress-activated RNA-protein granules have been implicated in this cellular overhaul by sequestering pre-existing mRNAs and influencing their fates during and after stress acclimation. While the composition and dynamics of stress-activated granule formation has been well studied, their function and impact on RNA-cargo has remained murky. Several recent studies challenge the view that these granules degrade and silence mRNAs present at the onset of stress and instead suggest new roles for these structures in mRNA storage, transit, and inheritance. Here we discuss recent evidence for revised models of stress-activated granule functions and the role of these granules in stress survival and recovery.
Collapse
|
219
|
Guo Q, Shi X, Wang X. RNA and liquid-liquid phase separation. Noncoding RNA Res 2021; 6:92-99. [PMID: 33997539 PMCID: PMC8111091 DOI: 10.1016/j.ncrna.2021.04.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 02/09/2023] Open
Abstract
Liquid-Liquid Phase Separation (LLPS) is a biological phenomenon that refers to the components of similar properties form droplets condensate in cells. These droplets play an important role in maintaining the stability of order in cells. In the studies of phase separation, weak multivalent interactions between proteins have always been the focus of attentions. With the deepening research of phase separation, more and more evidences show that RNA, especially long noncoding RNA (lncRNA), also plays an important regulatory role in the phase separation. We summarized recent researches between phase separation and RNA, and focused on the function of non-coding RNA (ncRNA) in the process of phase separation. In fact, phase separation and RNA have a two-way regulation relationship. Noncoding RNA usually recruits proteins as molecular scaffolds to drive phase separation. On the other hand, phase separation is also involved in RNA transcription, transport, metabolism and other processes.
Collapse
Affiliation(s)
- Qi Guo
- Department of Geriatrics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Xiangmin Shi
- Department of Geriatrics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Xiangting Wang
- Department of Geriatrics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
220
|
Lenne PF, Munro E, Heemskerk I, Warmflash A, Bocanegra-Moreno L, Kishi K, Kicheva A, Long Y, Fruleux A, Boudaoud A, Saunders TE, Caldarelli P, Michaut A, Gros J, Maroudas-Sacks Y, Keren K, Hannezo E, Gartner ZJ, Stormo B, Gladfelter A, Rodrigues A, Shyer A, Minc N, Maître JL, Di Talia S, Khamaisi B, Sprinzak D, Tlili S. Roadmap for the multiscale coupling of biochemical and mechanical signals during development. Phys Biol 2021; 18. [PMID: 33276350 PMCID: PMC8380410 DOI: 10.1088/1478-3975/abd0db] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 12/04/2020] [Indexed: 12/12/2022]
Abstract
The way in which interactions between mechanics and biochemistry lead to the emergence of complex cell and tissue organization is an old question that has recently attracted renewed interest from biologists, physicists, mathematicians and computer scientists. Rapid advances in optical physics, microscopy and computational image analysis have greatly enhanced our ability to observe and quantify spatiotemporal patterns of signalling, force generation, deformation, and flow in living cells and tissues. Powerful new tools for genetic, biophysical and optogenetic manipulation are allowing us to perturb the underlying machinery that generates these patterns in increasingly sophisticated ways. Rapid advances in theory and computing have made it possible to construct predictive models that describe how cell and tissue organization and dynamics emerge from the local coupling of biochemistry and mechanics. Together, these advances have opened up a wealth of new opportunities to explore how mechanochemical patterning shapes organismal development. In this roadmap, we present a series of forward-looking case studies on mechanochemical patterning in development, written by scientists working at the interface between the physical and biological sciences, and covering a wide range of spatial and temporal scales, organisms, and modes of development. Together, these contributions highlight the many ways in which the dynamic coupling of mechanics and biochemistry shapes biological dynamics: from mechanoenzymes that sense force to tune their activity and motor output, to collectives of cells in tissues that flow and redistribute biochemical signals during development.
Collapse
Affiliation(s)
- Pierre-François Lenne
- Aix-Marseille University, CNRS, IBDM, Turing Center for Living Systems, Marseille, France
| | - Edwin Munro
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, United States of America
| | - Idse Heemskerk
- Department of Cell & Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, United States of America
| | - Aryeh Warmflash
- Department of Biosciences and Bioengineering, Rice University, Houston, TX, 77005, United States of America
| | | | - Kasumi Kishi
- IST Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Anna Kicheva
- IST Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Yuchen Long
- Reproduction et Dévelopement des Plantes, Université de Lyon, École normale supérieure de Lyon, Université Claude Bernard Lyon 1, INRAe, CNRS, 69364 Lyon Cedex 07, France
| | - Antoine Fruleux
- Reproduction et Dévelopement des Plantes, Université de Lyon, École normale supérieure de Lyon, Université Claude Bernard Lyon 1, INRAe, CNRS, 69364 Lyon Cedex 07, France.,LadHyX, CNRS, Ecole polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau Cedex, France
| | - Arezki Boudaoud
- Reproduction et Dévelopement des Plantes, Université de Lyon, École normale supérieure de Lyon, Université Claude Bernard Lyon 1, INRAe, CNRS, 69364 Lyon Cedex 07, France.,LadHyX, CNRS, Ecole polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau Cedex, France
| | - Timothy E Saunders
- Mechanobiology Institute, National University of Singapore, 117411, Singapore
| | - Paolo Caldarelli
- Cellule Pasteur UPMC, Sorbonne Université, rue du Dr Roux, 75015 Paris, France.,Department of Developmental and Stem Cell Biology Institut Pasteur, 75724 Paris, Cedex 15, France.,CNRS UMR3738, 75015 Paris, France
| | - Arthur Michaut
- Department of Developmental and Stem Cell Biology Institut Pasteur, 75724 Paris, Cedex 15, France.,CNRS UMR3738, 75015 Paris, France
| | - Jerome Gros
- Department of Developmental and Stem Cell Biology Institut Pasteur, 75724 Paris, Cedex 15, France.,CNRS UMR3738, 75015 Paris, France
| | - Yonit Maroudas-Sacks
- Department of Physics, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Kinneret Keren
- Department of Physics, Technion-Israel Institute of Technology, Haifa 32000, Israel.,Network Biology Research Laboratories and The Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Edouard Hannezo
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Zev J Gartner
- Department of Pharmaceutical Chemistry, University of California, San Francisco, 600 16th St. Box 2280, San Francisco, CA 94158, United States of America
| | - Benjamin Stormo
- Department of Biology, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599 United States of America
| | - Amy Gladfelter
- Department of Biology, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599 United States of America
| | - Alan Rodrigues
- Laboratory of Morphogenesis, The Rockefeller University, 1230 York Avenue, New York, NY 10065, United States of America
| | - Amy Shyer
- Laboratory of Morphogenesis, The Rockefeller University, 1230 York Avenue, New York, NY 10065, United States of America
| | - Nicolas Minc
- Institut Jacques Monod, Université de Paris, CNRS UMR7592, 15 rue Hélène Brion, 75205 Paris Cedex 13, France
| | - Jean-Léon Maître
- Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR3215, INSERM U934, Paris, France
| | - Stefano Di Talia
- Department of Cell Biology, Duke University Medical Center, Durham NC 27710, United States of America
| | - Bassma Khamaisi
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - David Sprinzak
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Sham Tlili
- Aix-Marseille University, CNRS, IBDM, Turing Center for Living Systems, Marseille, France
| |
Collapse
|
221
|
Pakravan D, Michiels E, Bratek-Skicki A, De Decker M, Van Lindt J, Alsteens D, Derclaye S, Van Damme P, Schymkowitz J, Rousseau F, Tompa P, Van Den Bosch L. Liquid-Liquid Phase Separation Enhances TDP-43 LCD Aggregation but Delays Seeded Aggregation. Biomolecules 2021; 11:548. [PMID: 33917983 PMCID: PMC8068378 DOI: 10.3390/biom11040548] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/19/2021] [Accepted: 03/31/2021] [Indexed: 12/12/2022] Open
Abstract
Aggregates of TAR DNA-binding protein (TDP-43) are a hallmark of several neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS). Although TDP-43 aggregates are an undisputed pathological species at the end stage of these diseases, the molecular changes underlying the initiation of aggregation are not fully understood. The aim of this study was to investigate how phase separation affects self-aggregation and aggregation seeded by pre-formed aggregates of either the low-complexity domain (LCD) or its short aggregation-promoting regions (APRs). By systematically varying the physicochemical conditions, we observed that liquid-liquid phase separation (LLPS) promotes spontaneous aggregation. However, we noticed less efficient seeded aggregation in phase separating conditions. By analyzing a broad range of conditions using the Hofmeister series of buffers, we confirmed that stabilizing hydrophobic interactions prevail over destabilizing electrostatic forces. RNA affected the cooperativity between LLPS and aggregation in a "reentrant" fashion, having the strongest positive effect at intermediate concentrations. Altogether, we conclude that conditions which favor LLPS enhance the subsequent aggregation of the TDP-43 LCD with complex dependence, but also negatively affect seeding kinetics.
Collapse
Affiliation(s)
- Donya Pakravan
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, 3000 Leuven, Belgium; (D.P.); (M.D.D.); (P.V.D.)
- VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, 3000 Leuven, Belgium
| | - Emiel Michiels
- Switch Laboratory, VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; (E.M.); (J.S.); (F.R.)
| | - Anna Bratek-Skicki
- VIB-VUB Center for Structural Biology, 1050 Brussels, Belgium; (A.B.-S.); (J.V.L.); (P.T.)
| | - Mathias De Decker
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, 3000 Leuven, Belgium; (D.P.); (M.D.D.); (P.V.D.)
- VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, 3000 Leuven, Belgium
| | - Joris Van Lindt
- VIB-VUB Center for Structural Biology, 1050 Brussels, Belgium; (A.B.-S.); (J.V.L.); (P.T.)
| | - David Alsteens
- Institute of Life Sciences, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium; (D.A.); (S.D.)
| | - Sylvie Derclaye
- Institute of Life Sciences, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium; (D.A.); (S.D.)
| | - Philip Van Damme
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, 3000 Leuven, Belgium; (D.P.); (M.D.D.); (P.V.D.)
- VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, 3000 Leuven, Belgium
- Department of Neurology, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Joost Schymkowitz
- Switch Laboratory, VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; (E.M.); (J.S.); (F.R.)
| | - Frederic Rousseau
- Switch Laboratory, VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; (E.M.); (J.S.); (F.R.)
| | - Peter Tompa
- VIB-VUB Center for Structural Biology, 1050 Brussels, Belgium; (A.B.-S.); (J.V.L.); (P.T.)
| | - Ludo Van Den Bosch
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, 3000 Leuven, Belgium; (D.P.); (M.D.D.); (P.V.D.)
- VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, 3000 Leuven, Belgium
| |
Collapse
|
222
|
England WE, Garfio CM, Spitale RC. Chemical Approaches To Analyzing RNA Structure Transcriptome-Wide. Chembiochem 2021; 22:1114-1121. [PMID: 32737940 PMCID: PMC8769560 DOI: 10.1002/cbic.202000340] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/27/2020] [Indexed: 11/09/2022]
Abstract
RNA molecules can fold into complex two- and three-dimensional shapes that are critical for their function. Chemical probes have long been utilized to interrogate RNA structure and are now considered invaluable resources in the goal of relating structure to function. Recently, the power of deep sequencing and careful chemical probe design have merged, permitting researchers to obtain a holistic understanding of how RNA structure can be utilized to control RNA biology transcriptome-wide. Within this review, we outline the recent advancements in chemical probe design for interrogating RNA structures inside cells and discuss the recent advances in our understanding of RNA biology through the lens of chemical probing.
Collapse
Affiliation(s)
- Whitney E England
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, USA
| | - Chely M Garfio
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, USA
| | - Robert C Spitale
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, USA
- Department of Developmental and Cellular Biology, University of California, Irvine, Irvine, CA 92697, USA
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| |
Collapse
|
223
|
Jang S, Xuan Z, Lagoy RC, Jawerth LM, Gonzalez IJ, Singh M, Prashad S, Kim HS, Patel A, Albrecht DR, Hyman AA, Colón-Ramos DA. Phosphofructokinase relocalizes into subcellular compartments with liquid-like properties in vivo. Biophys J 2021; 120:1170-1186. [PMID: 32853565 PMCID: PMC8059094 DOI: 10.1016/j.bpj.2020.08.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/31/2020] [Accepted: 08/05/2020] [Indexed: 02/08/2023] Open
Abstract
Although much is known about the biochemical regulation of glycolytic enzymes, less is understood about how they are organized inside cells. We systematically examine the dynamic subcellular localization of glycolytic protein phosphofructokinase-1/PFK-1.1 in Caenorhabditis elegans. We determine that endogenous PFK-1.1 localizes to subcellular compartments in vivo. In neurons, PFK-1.1 forms phase-separated condensates near synapses in response to energy stress from transient hypoxia. Restoring animals to normoxic conditions results in cytosolic dispersion of PFK-1.1. PFK-1.1 condensates exhibit liquid-like properties, including spheroid shapes due to surface tension, fluidity due to deformations, and fast internal molecular rearrangements. Heterologous self-association domain cryptochrome 2 promotes formation of PFK-1.1 condensates and recruitment of aldolase/ALDO-1. PFK-1.1 condensates do not correspond to stress granules and might represent novel metabolic subcompartments. Our studies indicate that glycolytic protein PFK-1.1 can dynamically form condensates in vivo.
Collapse
Affiliation(s)
- SoRi Jang
- Department of Neuroscience and Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut
| | - Zhao Xuan
- Department of Neuroscience and Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut
| | - Ross C Lagoy
- Department of Biomedical Engineering and Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, Massachusetts
| | - Louise M Jawerth
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Ian J Gonzalez
- Department of Neuroscience and Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut
| | - Milind Singh
- Department of Neuroscience and Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut
| | - Shavanie Prashad
- Department of Neuroscience and Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut
| | - Hee Soo Kim
- Department of Neuroscience and Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut
| | - Avinash Patel
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Dirk R Albrecht
- Department of Biomedical Engineering and Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, Massachusetts
| | - Anthony A Hyman
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Daniel A Colón-Ramos
- Department of Neuroscience and Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut; Instituto de Neurobiología, Universidad de Puerto Rico, San Juan, Puerto Rico.
| |
Collapse
|
224
|
King JT, Shakya A. Phase separation of DNA: From past to present. Biophys J 2021; 120:1139-1149. [PMID: 33582138 PMCID: PMC8059212 DOI: 10.1016/j.bpj.2021.01.033] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/11/2021] [Accepted: 01/22/2021] [Indexed: 02/08/2023] Open
Abstract
Phase separation of biological molecules, such as nucleic acids and proteins, has garnered widespread attention across many fields in recent years. For instance, liquid-liquid phase separation has been implicated not only in membraneless intracellular organization but also in many biochemical processes, including transcription, translation, and cellular signaling. Here, we present a historical background of biological phase separation and survey current work on nuclear organization and its connection to DNA phase separation from the perspective of DNA sequence, structure, and genomic context.
Collapse
Affiliation(s)
- John T King
- Center for Soft and Living Matter, Institute for Basic Science, Ulsan, Republic of Korea.
| | - Anisha Shakya
- Center for Soft and Living Matter, Institute for Basic Science, Ulsan, Republic of Korea.
| |
Collapse
|
225
|
Kapelner RA, Yeong V, Obermeyer AC. Molecular determinants of protein-based coacervates. Curr Opin Colloid Interface Sci 2021. [DOI: 10.1016/j.cocis.2020.101407] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
226
|
Garcia-Cabau C, Salvatella X. Regulation of biomolecular condensate dynamics by signaling. Curr Opin Cell Biol 2021; 69:111-119. [PMID: 33578289 PMCID: PMC7616884 DOI: 10.1016/j.ceb.2021.01.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/24/2020] [Accepted: 01/04/2021] [Indexed: 12/16/2022]
Abstract
Biomolecular condensates are mesoscopic biomolecular assemblies devoid of long range order that contribute to important cellular functions. They form reversibly, are stabilized by numerous but relatively weak intermolecular interactions, and their formation can be regulated by various cellular signals including changes in local concentration, post-translational modifications, energy-consuming processes, and biomolecular interactions. Condensates formed by liquid-liquid phase separation are initially liquid but are metastable relative to hydrogels or irreversible solids that have been associated with protein aggregation diseases and are stabilized by stronger, more permanent interactions. As a consequence of this, a series of cellular mechanisms are available to regulate not only biomolecular condensation but also the physical properties of the condensates.
Collapse
Affiliation(s)
- Carla Garcia-Cabau
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028, Barcelona, Spain; Joint BSC-IRB Research Programme in Computational Biology, Baldiri Reixac 10, 08028, Barcelona, Spain
| | - Xavier Salvatella
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028, Barcelona, Spain; Joint BSC-IRB Research Programme in Computational Biology, Baldiri Reixac 10, 08028, Barcelona, Spain; ICREA, Passeig Lluís Companys 23, 08010, Barcelona, Spain.
| |
Collapse
|
227
|
Jack A, Ferro LS, Trnka MJ, Wehri E, Nadgir A, Nguyenla X, Costa K, Stanley S, Schaletzky J, Yildiz A. SARS-CoV-2 nucleocapsid protein forms condensates with viral genomic RNA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2020.09.14.295824. [PMID: 32995779 PMCID: PMC7523105 DOI: 10.1101/2020.09.14.295824] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection causes COVID-19, a pandemic that seriously threatens global health. SARS-CoV-2 propagates by packaging its RNA genome into membrane enclosures in host cells. The packaging of the viral genome into the nascent virion is mediated by the nucleocapsid (N) protein, but the underlying mechanism remains unclear. Here, we show that the N protein forms biomolecular condensates with viral genomic RNA both in vitro and in mammalian cells. Phase separation is driven, in part, by hydrophobic and electrostatic interactions. While the N protein forms spherical assemblies with unstructured RNA, it forms asymmetric condensates with viral RNA strands that contain secondary structure elements. Cross-linking mass spectrometry identified a region that forms interactions between N proteins in condensates, and truncation of this region disrupts phase separation. We also identified small molecules that alter the formation of N protein condensates. These results suggest that the N protein may utilize biomolecular condensation to package the SARS-CoV-2 RNA genome into a viral particle.
Collapse
Affiliation(s)
- Amanda Jack
- Biophysics Graduate Group, University of California, Berkeley CA
| | - Luke S. Ferro
- Department of Molecular and Cellular Biology, University of California, Berkeley CA
| | - Michael J. Trnka
- Department of Pharmaceutical Chemistry, University of California, San Francisco CA
| | - Eddie Wehri
- Center for Emerging and Neglected Diseases, University of California, Berkeley CA
| | - Amrut Nadgir
- Physics Department, University of California, Berkeley CA
| | - Xammy Nguyenla
- School of Public Health, Division of Infectious Diseases and Vaccinology, University of California, Berkeley, CA
| | | | - Sarah Stanley
- Department of Molecular and Cellular Biology, University of California, Berkeley CA
- School of Public Health, Division of Infectious Diseases and Vaccinology, University of California, Berkeley, CA
| | - Julia Schaletzky
- Center for Emerging and Neglected Diseases, University of California, Berkeley CA
| | - Ahmet Yildiz
- Biophysics Graduate Group, University of California, Berkeley CA
- Department of Molecular and Cellular Biology, University of California, Berkeley CA
- Physics Department, University of California, Berkeley CA
| |
Collapse
|
228
|
Loughlin FE, West DL, Gunzburg MJ, Waris S, Crawford SA, Wilce MCJ, Wilce JA. Tandem RNA binding sites induce self-association of the stress granule marker protein TIA-1. Nucleic Acids Res 2021; 49:2403-2417. [PMID: 33621982 PMCID: PMC7969032 DOI: 10.1093/nar/gkab080] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 01/01/2021] [Accepted: 01/30/2021] [Indexed: 12/14/2022] Open
Abstract
TIA-1 is an RNA-binding protein that sequesters target RNA into stress granules under conditions of cellular stress. Promotion of stress granule formation by TIA-1 depends upon self-association of its prion-like domain that facilitates liquid-liquid phase separation and is thought to be enhanced via RNA binding. However, the mechanisms underlying the influence of RNA on TIA-1 self-association have not been previously demonstrated. Here we have investigated the self-associating properties of full-length TIA-1 in the presence of designed and native TIA-1 nucleic acid binding sites in vitro, monitoring phase separation, fibril formation and shape. We show that single stranded RNA and DNA induce liquid-liquid phase separation of TIA-1 in a multisite, sequence-specific manner and also efficiently promote formation of amyloid-like fibrils. Although RNA binding to a single site induces a small conformational change in TIA-1, this alone does not enhance phase separation of TIA-1. Tandem binding sites are required to enhance phase separation of TIA-1 and this is finely tuned by the protein:binding site stoichiometry rather than nucleic acid length. Native tandem TIA-1 binding sites within the 3′ UTR of p53 mRNA also efficiently enhance phase separation of TIA-1 and thus may potentially act as potent nucleation sites for stress granule assembly.
Collapse
Affiliation(s)
- Fionna E Loughlin
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Victoria 3800, Australia
| | - Danella L West
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Victoria 3800, Australia
| | - Menachem J Gunzburg
- Monash Institute of Pharmaceutical Sciences, Monash University, Victoria 3052, Australia
| | - Saboora Waris
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Victoria 3800, Australia
| | - Simon A Crawford
- Ramaciotti Centre For Cryo Electron Microscopy, Monash University, Victoria 3800, Australia
| | - Matthew C J Wilce
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Victoria 3800, Australia
| | - Jacqueline A Wilce
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Victoria 3800, Australia
| |
Collapse
|
229
|
R-loop resolution promotes co-transcriptional chromatin silencing. Nat Commun 2021; 12:1790. [PMID: 33741984 PMCID: PMC7979926 DOI: 10.1038/s41467-021-22083-6] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 02/15/2021] [Indexed: 11/09/2022] Open
Abstract
RNA-mediated chromatin silencing is central to genome regulation in many organisms. However, how nascent non-coding transcripts regulate chromatin is poorly understood. Here, through analysis of Arabidopsis FLC, we show that resolution of a nascent-transcript-induced R-loop promotes chromatin silencing. Stabilization of an antisense-induced R-loop at the 3' end of FLC enables an RNA binding protein FCA, with its direct partner FY/WDR33 and other 3'-end processing factors, to polyadenylate the nascent antisense transcript. This clears the R-loop and recruits the chromatin modifiers demethylating H3K4me1. FCA immunoprecipitates with components of the m6A writer complex, and m6A modification affects dynamics of FCA nuclear condensates, and promotes FLC chromatin silencing. This mechanism also targets other loci in the Arabidopsis genome, and consistent with this fca and fy are hypersensitive to a DNA damage-inducing drug. These results show how modulation of R-loop stability by co-transcriptional RNA processing can trigger chromatin silencing.
Collapse
|
230
|
Gerbich TM, McLaughlin GA, Cassidy K, Gerber S, Adalsteinsson D, Gladfelter AS. Phosphoregulation provides specificity to biomolecular condensates in the cell cycle and cell polarity. J Cell Biol 2021; 219:151764. [PMID: 32399546 PMCID: PMC7337510 DOI: 10.1083/jcb.201910021] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 02/28/2020] [Accepted: 04/15/2020] [Indexed: 02/07/2023] Open
Abstract
Biomolecular condensation is a way of organizing cytosol in which proteins and nucleic acids coassemble into compartments. In the multinucleate filamentous fungus Ashbya gossypii, the RNA-binding protein Whi3 regulates the cell cycle and cell polarity through forming macromolecular structures that behave like condensates. Whi3 has distinct spatial localizations and mRNA targets, making it a powerful model for how, when, and where specific identities are established for condensates. We identified residues on Whi3 that are differentially phosphorylated under specific conditions and generated mutants that ablate this regulation. This yielded separation of function alleles that were functional for either cell polarity or nuclear cycling but not both. This study shows that phosphorylation of individual residues on molecules in biomolecular condensates can provide specificity that gives rise to distinct functional identities in the same cell.
Collapse
Affiliation(s)
- Therese M Gerbich
- Department of Biological Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Grace A McLaughlin
- Department of Biological Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Katelyn Cassidy
- Department of Biochemistry, Geisel School of Medicine, Hanover, NH
| | - Scott Gerber
- Department of Biochemistry, Geisel School of Medicine, Hanover, NH
| | - David Adalsteinsson
- Department of Mathematics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Amy S Gladfelter
- Department of Biological Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC.,Marine Biological Laboratory, Woods Hole, MA
| |
Collapse
|
231
|
Farahi N, Lazar T, Wodak SJ, Tompa P, Pancsa R. Integration of Data from Liquid-Liquid Phase Separation Databases Highlights Concentration and Dosage Sensitivity of LLPS Drivers. Int J Mol Sci 2021; 22:ijms22063017. [PMID: 33809541 PMCID: PMC8002189 DOI: 10.3390/ijms22063017] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/12/2021] [Accepted: 03/13/2021] [Indexed: 12/13/2022] Open
Abstract
Liquid–liquid phase separation (LLPS) is a molecular process that leads to the formation of membraneless organelles, representing functionally specialized liquid-like cellular condensates formed by proteins and nucleic acids. Integrating the data on LLPS-associated proteins from dedicated databases revealed only modest agreement between them and yielded a high-confidence dataset of 89 human LLPS drivers. Analysis of the supporting evidence for our dataset uncovered a systematic and potentially concerning difference between protein concentrations used in a good fraction of the in vitro LLPS experiments, a key parameter that governs the phase behavior, and the proteomics-derived cellular abundance levels of the corresponding proteins. Closer scrutiny of the underlying experimental data enabled us to offer a sound rationale for this systematic difference, which draws on our current understanding of the cellular organization of the proteome and the LLPS process. In support of this rationale, we find that genes coding for our human LLPS drivers tend to be dosage-sensitive, suggesting that their cellular availability is tightly regulated to preserve their functional role in direct or indirect relation to condensate formation. Our analysis offers guideposts for increasing agreement between in vitro and in vivo studies, probing the roles of proteins in LLPS.
Collapse
Affiliation(s)
- Nazanin Farahi
- VIB-VUB Center for Structural Biology, Flemish Institute for Biotechnology, 1050 Brussels, Belgium; (N.F.); (T.L.); (S.J.W.)
- Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
- Department of Biology, Technical University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Tamas Lazar
- VIB-VUB Center for Structural Biology, Flemish Institute for Biotechnology, 1050 Brussels, Belgium; (N.F.); (T.L.); (S.J.W.)
- Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Shoshana J. Wodak
- VIB-VUB Center for Structural Biology, Flemish Institute for Biotechnology, 1050 Brussels, Belgium; (N.F.); (T.L.); (S.J.W.)
- Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Peter Tompa
- VIB-VUB Center for Structural Biology, Flemish Institute for Biotechnology, 1050 Brussels, Belgium; (N.F.); (T.L.); (S.J.W.)
- Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
- Institute of Enzymology, Research Centre for Natural Sciences, 1117 Budapest, Hungary
- Correspondence: (P.T.); (R.P.)
| | - Rita Pancsa
- Institute of Enzymology, Research Centre for Natural Sciences, 1117 Budapest, Hungary
- Correspondence: (P.T.); (R.P.)
| |
Collapse
|
232
|
Zbinden A, Pérez-Berlanga M, De Rossi P, Polymenidou M. Phase Separation and Neurodegenerative Diseases: A Disturbance in the Force. Dev Cell 2021; 55:45-68. [PMID: 33049211 DOI: 10.1016/j.devcel.2020.09.014] [Citation(s) in RCA: 293] [Impact Index Per Article: 73.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 09/09/2020] [Accepted: 09/13/2020] [Indexed: 12/12/2022]
Abstract
Protein aggregation is the main hallmark of neurodegenerative diseases. Many proteins found in pathological inclusions are known to undergo liquid-liquid phase separation, a reversible process of molecular self-assembly. Emerging evidence supports the hypothesis that aberrant phase separation behavior may serve as a trigger of protein aggregation in neurodegeneration, and efforts to understand and control the underlying mechanisms are underway. Here, we review similarities and differences among four main proteins, α-synuclein, FUS, tau, and TDP-43, which are found aggregated in different diseases and were independently shown to phase separate. We discuss future directions in the field that will help shed light on the molecular mechanisms of aggregation and neurodegeneration.
Collapse
Affiliation(s)
- Aurélie Zbinden
- Department of Quantitative Biomedicine, University of Zürich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Manuela Pérez-Berlanga
- Department of Quantitative Biomedicine, University of Zürich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Pierre De Rossi
- Department of Quantitative Biomedicine, University of Zürich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Magdalini Polymenidou
- Department of Quantitative Biomedicine, University of Zürich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| |
Collapse
|
233
|
Roden C, Gladfelter AS. RNA contributions to the form and function of biomolecular condensates. Nat Rev Mol Cell Biol 2021; 22:183-195. [PMID: 32632317 PMCID: PMC7785677 DOI: 10.1038/s41580-020-0264-6] [Citation(s) in RCA: 399] [Impact Index Per Article: 99.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2020] [Indexed: 01/08/2023]
Abstract
Biomolecular condensation partitions cellular contents and has important roles in stress responses, maintaining homeostasis, development and disease. Many nuclear and cytoplasmic condensates are rich in RNA and RNA-binding proteins (RBPs), which undergo liquid-liquid phase separation (LLPS). Whereas the role of RBPs in condensates has been well studied, less attention has been paid to the contribution of RNA to LLPS. In this Review, we discuss the role of RNA in biomolecular condensation and highlight considerations for designing condensate reconstitution experiments. We focus on RNA properties such as composition, length, structure, modifications and expression level. These properties can modulate the biophysical features of native condensates, including their size, shape, viscosity, liquidity, surface tension and composition. We also discuss the role of RNA-protein condensates in development, disease and homeostasis, emphasizing how their properties and function can be determined by RNA. Finally, we discuss the multifaceted cellular functions of biomolecular condensates, including cell compartmentalization through RNA transport and localization, supporting catalytic processes, storage and inheritance of specific molecules, and buffering noise and responding to stress.
Collapse
Affiliation(s)
- Christine Roden
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- The Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Amy S Gladfelter
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- The Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA.
- Whitman Center, Marine Biology Laboratory, Woods Hole, MA, USA.
| |
Collapse
|
234
|
Mussel M, Basser PJ, Horkay F. Ion-Induced Volume Transition in Gels and Its Role in Biology. Gels 2021; 7:20. [PMID: 33670826 PMCID: PMC8005988 DOI: 10.3390/gels7010020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 12/12/2022] Open
Abstract
Incremental changes in ionic composition, solvent quality, and temperature can lead to reversible and abrupt structural changes in many synthetic and biopolymer systems. In the biological milieu, this nonlinear response is believed to play an important functional role in various biological systems, including DNA condensation, cell secretion, water flow in xylem of plants, cell resting potential, and formation of membraneless organelles. While these systems are markedly different from one another, a physicochemical framework that treats them as polyelectrolytes, provides a means to interpret experimental results and make in silico predictions. This article summarizes experimental results made on ion-induced volume phase transition in a polyelectrolyte model gel (sodium polyacrylate) and observations on the above-mentioned biological systems indicating the existence of a steep response.
Collapse
Affiliation(s)
- Matan Mussel
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA;
| | | | - Ferenc Horkay
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA;
| |
Collapse
|
235
|
Moving beyond disease to function: Physiological roles for polyglutamine-rich sequences in cell decisions. Curr Opin Cell Biol 2021; 69:120-126. [PMID: 33610098 DOI: 10.1016/j.ceb.2021.01.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/18/2020] [Accepted: 01/12/2021] [Indexed: 12/17/2022]
Abstract
Glutamine-rich tracts, also known as polyQ domains, have received a great deal of attention for their role in multiple neurodegenerative diseases, including Huntington's disease (HD), spinocerebellar ataxia (SCA), and others [22], [27]. Expansions in the normal polyQ tracts are thus commonly linked to disease, but polyQ domains themselves play multiple important functional roles in cells that are being increasingly appreciated. The biochemical nature of these domains allows them to adopt a number of different structures and form large assemblies that enable environmental responsiveness, localized signaling, and cellular memory. In many cases, these involve the formation of condensates that have varied material states. In this review, we highlight known and emerging functional roles for polyQ tracts in normal cell physiology.
Collapse
|
236
|
Alriquet M, Calloni G, Martínez-Limón A, Delli Ponti R, Hanspach G, Hengesbach M, Tartaglia GG, Vabulas RM. The protective role of m1A during stress-induced granulation. J Mol Cell Biol 2021; 12:870-880. [PMID: 32462207 PMCID: PMC7883823 DOI: 10.1093/jmcb/mjaa023] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 05/21/2020] [Indexed: 12/13/2022] Open
Abstract
Post-transcriptional methylation of N6-adenine and N1-adenine can affect transcriptome turnover and translation. Furthermore, the regulatory function of N6-methyladenine (m6A) during heat shock has been uncovered, including the enhancement of the phase separation potential of RNAs. In response to acute stress, e.g. heat shock, the orderly sequestration of mRNAs in stress granules (SGs) is considered important to protect transcripts from the irreversible aggregation. Until recently, the role of N1-methyladenine (m1A) on mRNAs during acute stress response remains largely unknown. Here we show that the methyltransferase complex TRMT6/61A, which generates the m1A tag, is involved in transcriptome protection during heat shock. Our bioinformatics analysis indicates that occurrence of the m1A motif is increased in mRNAs known to be enriched in SGs. Accordingly, the m1A-generating methyltransferase TRMT6/61A accumulated in SGs and mass spectrometry confirmed enrichment of m1A in the SG RNAs. The insertion of a single methylation motif in the untranslated region of a reporter RNA leads to more efficient recovery of protein synthesis from that transcript after the return to normal temperature. Our results demonstrate far-reaching functional consequences of a minimal RNA modification on N1-adenine during acute proteostasis stress.
Collapse
Affiliation(s)
- Marion Alriquet
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
- Institute of Biophysical Chemistry, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Giulia Calloni
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
- Institute of Biophysical Chemistry, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Adrían Martínez-Limón
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
- Institute of Biophysical Chemistry, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Riccardo Delli Ponti
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
- Institucio Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| | - Gerd Hanspach
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Martin Hengesbach
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Gian G. Tartaglia
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
- Institucio Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
- Department of Biology ‘Charles Darwin’, Sapienza University of Rome, 00185 Rome, Italy
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| | - R. Martin Vabulas
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
- Institute of Biophysical Chemistry, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| |
Collapse
|
237
|
Joseph JA, Espinosa JR, Sanchez-Burgos I, Garaizar A, Frenkel D, Collepardo-Guevara R. Thermodynamics and kinetics of phase separation of protein-RNA mixtures by a minimal model. Biophys J 2021; 120:1219-1230. [PMID: 33571491 DOI: 10.1016/j.bpj.2021.01.031] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 11/11/2020] [Accepted: 01/20/2021] [Indexed: 12/20/2022] Open
Abstract
Intracellular liquid-liquid phase separation enables the formation of biomolecular condensates, such as ribonucleoprotein granules, which play a crucial role in the spatiotemporal organization of biomolecules (e.g., proteins and RNAs). Here, we introduce a patchy-particle polymer model to investigate liquid-liquid phase separation of protein-RNA mixtures. We demonstrate that at low to moderate concentrations, RNA enhances the stability of RNA-binding protein condensates because it increases the molecular connectivity of the condensed-liquid phase. Importantly, we find that RNA can also accelerate the nucleation stage of phase separation. Additionally, we assess how the capacity of RNA to increase the stability of condensates is modulated by the relative protein-protein/protein-RNA binding strengths. We find that phase separation and multiphase organization of multicomponent condensates is favored when the RNA binds with higher affinity to the lower-valency proteins in the mixture than to the cognate higher-valency proteins. Collectively, our results shed light on the roles of RNA in ribonucleoprotein granule formation and the internal structuring of stress granules.
Collapse
Affiliation(s)
- Jerelle A Joseph
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, United Kingdom; Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom; Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Jorge R Espinosa
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, United Kingdom; Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom; Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Ignacio Sanchez-Burgos
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, United Kingdom; Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom; Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Adiran Garaizar
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, United Kingdom; Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom; Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Daan Frenkel
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Rosana Collepardo-Guevara
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, United Kingdom; Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom; Department of Genetics, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
238
|
Liao SE, Regev O. Splicing at the phase-separated nuclear speckle interface: a model. Nucleic Acids Res 2021; 49:636-645. [PMID: 33337476 PMCID: PMC7826271 DOI: 10.1093/nar/gkaa1209] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/24/2020] [Accepted: 12/03/2020] [Indexed: 02/07/2023] Open
Abstract
Phase-separated membraneless bodies play important roles in nucleic acid biology. While current models for the roles of phase separation largely focus on the compartmentalization of constituent proteins, we reason that other properties of phase separation may play functional roles. Specifically, we propose that interfaces of phase-separated membraneless bodies could have functional roles in spatially organizing biochemical reactions. Here we propose such a model for the nuclear speckle, a membraneless body implicated in RNA splicing. In our model, sequence-dependent RNA positioning along the nuclear speckle interface coordinates RNA splicing. Our model asserts that exons are preferentially sequestered into nuclear speckles through binding by SR proteins, while introns are excluded through binding by nucleoplasmic hnRNP proteins. As a result, splice sites at exon-intron boundaries are preferentially positioned at nuclear speckle interfaces. This positioning exposes splice sites to interface-localized spliceosomes, enabling the subsequent splicing reaction. Our model provides a simple mechanism that seamlessly explains much of the complex logic of splicing. This logic includes experimental results such as the antagonistic duality between splicing factors, the position dependence of splicing sequence motifs, and the collective contribution of many motifs to splicing decisions. Similar functional roles for phase-separated interfaces may exist for other membraneless bodies.
Collapse
Affiliation(s)
- Susan E Liao
- Computer Science Department, Courant Institute of Mathematical Sciences, New York University, New York, NY, USA
| | - Oded Regev
- Computer Science Department, Courant Institute of Mathematical Sciences, New York University, New York, NY, USA
| |
Collapse
|
239
|
Kaur T, Raju M, Alshareedah I, Davis RB, Potoyan DA, Banerjee PR. Sequence-encoded and composition-dependent protein-RNA interactions control multiphasic condensate morphologies. Nat Commun 2021; 12:872. [PMID: 33558506 PMCID: PMC7870978 DOI: 10.1038/s41467-021-21089-4] [Citation(s) in RCA: 147] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 01/11/2021] [Indexed: 01/30/2023] Open
Abstract
Multivalent protein-protein and protein-RNA interactions are the drivers of biological phase separation. Biomolecular condensates typically contain a dense network of multiple proteins and RNAs, and their competing molecular interactions play key roles in regulating the condensate composition and structure. Employing a ternary system comprising of a prion-like polypeptide (PLP), arginine-rich polypeptide (RRP), and RNA, we show that competition between the PLP and RNA for a single shared partner, the RRP, leads to RNA-induced demixing of PLP-RRP condensates into stable coexisting phases-homotypic PLP condensates and heterotypic RRP-RNA condensates. The morphology of these biphasic condensates (non-engulfing/ partial engulfing/ complete engulfing) is determined by the RNA-to-RRP stoichiometry and the hierarchy of intermolecular interactions, providing a glimpse of the broad range of multiphasic patterns that are accessible to these condensates. Our findings provide a minimal set of physical rules that govern the composition and spatial organization of multicomponent and multiphasic biomolecular condensates.
Collapse
Affiliation(s)
- Taranpreet Kaur
- Department of Physics, University at Buffalo, Buffalo, NY, USA
| | | | | | - Richoo B Davis
- Department of Physics, University at Buffalo, Buffalo, NY, USA
| | - Davit A Potoyan
- Department of Chemistry, Iowa State University, Ames, IA, USA.
| | | |
Collapse
|
240
|
Hastings RL, Boeynaems S. Designer Condensates: A Toolkit for the Biomolecular Architect. J Mol Biol 2021; 433:166837. [PMID: 33539874 DOI: 10.1016/j.jmb.2021.166837] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 01/06/2021] [Accepted: 01/16/2021] [Indexed: 12/19/2022]
Abstract
Protein phase separation has emerged as a novel paradigm to explain the biogenesis of membraneless organelles and other so-called biomolecular condensates. While the implication of this physical phenomenon within cell biology is providing us with novel ways for understanding how cells compartmentalize biochemical reactions and encode function in such liquid-like assemblies, the newfound appreciation of this process also provides immense opportunities for designing and sculpting biological matter. Here, we propose that understanding the cell's instruction manual of phase separation will enable bioengineers to begin creating novel functionalized biological materials and unprecedented tools for synthetic biology. We present FASE as the synthesis of the existing sticker-spacer framework, which explains the physical driving forces underlying phase separation, with quintessential principles of Scandinavian design. FASE serves both as a designer condensates catalogue and construction manual for the aspiring (membraneless) biomolecular architect. Our approach aims to inspire a new generation of bioengineers to rethink phase separation as an opportunity for creating reactive biomaterials with unconventional properties and to encode novel biological function in living systems. Although still in its infancy, several studies highlight how designer condensates have immediate and widespread potential applications in industry and medicine.
Collapse
Affiliation(s)
- Renee L Hastings
- Program in Biophysics, Stanford University, Stanford, CA 94305, USA
| | - Steven Boeynaems
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
241
|
Enukashvily NI, Dobrynin MA, Chubar AV. RNA-seeded membraneless bodies: Role of tandemly repeated RNA. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 126:151-193. [PMID: 34090614 DOI: 10.1016/bs.apcsb.2020.12.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
Abstract
Membraneless organelles (bodies, granules, etc.) are spatially distinct sub-nuclear and cytoplasmic foci involved in all the processes in a living cell, such as development, cell death, carcinogenesis, proliferation, and differentiation. Today the list of the membraneless organelles includes a wide spectrum of intranuclear and cytoplasmic bodies. Proteins with intrinsically disordered regions are the key players in the membraneless body assembly. However, recent data assume an important role of RNA molecules in the process of the liquid-liquid phase separation. High-level expression of RNA above a critical concentration threshold is mandatory to nucleate interactions with specific proteins and for seeding membraneless organelles. RNA components are considered by many authors as the principal determinants of organelle identity. Tandemly repeated (TR) DNA of big satellites (a TR family that includes centromeric and pericentromeric DNA sequences) was believed to be transcriptionally silent for a long period. Now we know about the TR transcription upregulation during gameto- and embryogenesis, carcinogenesis, stress response. In the review, we summarize the recent data about the involvement of TR RNA in the formation of nuclear membraneless granules, bodies, etc., with different functions being in some cases an initiator of the structures assembly. These RNP structures sequestrate and inactivate different proteins and transcripts. The TR induced sequestration is one of the key principles of nuclear architecture and genome functioning. Studying the role of the TR-based membraneless organelles in stress and disease will bring some new ideas for translational medicine.
Collapse
Affiliation(s)
- Natella I Enukashvily
- Institute of Cytology RAS, St. Petersburg, Russia; North-Western Medical State University named after I.I. Mechnikov, St. Petersburg, Russia.
| | | | | |
Collapse
|
242
|
Levkovich SA, Rencus-Lazar S, Gazit E, Laor Bar-Yosef D. Microbial Prions: Dawn of a New Era. Trends Biochem Sci 2021; 46:391-405. [PMID: 33423939 DOI: 10.1016/j.tibs.2020.12.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/22/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022]
Abstract
Protein misfolding and aggregation are associated with human diseases and aging. However, microorganisms widely exploit the self-propagating properties of misfolded infectious protein particles, prions, as epigenetic information carriers that drive various phenotypic adaptations and encode molecular information. Microbial prion research has faced a paradigm shift in recent years, with breakthroughs that demonstrate the great functional and structural diversity of these agents. Here, we outline unorthodox examples of microbial prions in yeast and other microorganisms, focusing on their noncanonical functions. We discuss novel molecular mechanisms for the inheritance of conformationally-encoded epigenetic information and the evolutionary advantages they confer. Lastly, in light of recent advancements in the field of molecular self-assembly, we present a hypothesis regarding the existence of non-proteinaceous prion-like entities.
Collapse
Affiliation(s)
- Shon A Levkovich
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Sigal Rencus-Lazar
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ehud Gazit
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel; BLAVATNIK CENTER for Drug Discovery, Tel Aviv University, Tel Aviv 69978, Israel; Department of Materials Science and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel; Sagol Interdisciplinary School of Neurosciences, Tel Aviv University, Tel Aviv, Israel.
| | - Dana Laor Bar-Yosef
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
243
|
Ma W, Zhen G, Xie W, Mayr C. In vivo reconstitution finds multivalent RNA-RNA interactions as drivers of mesh-like condensates. eLife 2021; 10:64252. [PMID: 33650968 PMCID: PMC7968931 DOI: 10.7554/elife.64252] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 03/01/2021] [Indexed: 02/04/2023] Open
Abstract
Liquid-like condensates have been thought to be sphere-like. Recently, various condensates with filamentous morphology have been observed in cells. One such condensate is the TIS granule network that shares a large surface area with the rough endoplasmic reticulum and is important for membrane protein trafficking. It has been unclear how condensates with mesh-like shapes but dynamic protein components are formed. In vitro and in vivo reconstitution experiments revealed that the minimal components are a multivalent RNA-binding protein that concentrates RNAs that are able to form extensive intermolecular mRNA-mRNA interactions. mRNAs with large unstructured regions have a high propensity to form a pervasive intermolecular interaction network that acts as condensate skeleton. The underlying RNA matrix prevents full fusion of spherical liquid-like condensates, thus driving the formation of irregularly shaped membraneless organelles. The resulting large surface area may promote interactions at the condensate surface and at the interface with other organelles.
Collapse
Affiliation(s)
- Weirui Ma
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Gang Zhen
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Wei Xie
- Structural Biology Program, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Christine Mayr
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| |
Collapse
|
244
|
Smith JA, Curry EG, Blue RE, Roden C, Dundon SER, Rodríguez-Vargas A, Jordan DC, Chen X, Lyons SM, Crutchley J, Anderson P, Horb ME, Gladfelter AS, Giudice J. FXR1 splicing is important for muscle development and biomolecular condensates in muscle cells. J Cell Biol 2020; 219:133869. [PMID: 32328638 PMCID: PMC7147106 DOI: 10.1083/jcb.201911129] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 02/06/2023] Open
Abstract
Fragile-X mental retardation autosomal homologue-1 (FXR1) is a muscle-enriched RNA-binding protein. FXR1 depletion is perinatally lethal in mice, Xenopus, and zebrafish; however, the mechanisms driving these phenotypes remain unclear. The FXR1 gene undergoes alternative splicing, producing multiple protein isoforms and mis-splicing has been implicated in disease. Furthermore, mutations that cause frameshifts in muscle-specific isoforms result in congenital multi-minicore myopathy. We observed that FXR1 alternative splicing is pronounced in the serine- and arginine-rich intrinsically disordered domain; these domains are known to promote biomolecular condensation. Here, we show that tissue-specific splicing of fxr1 is required for Xenopus development and alters the disordered domain of FXR1. FXR1 isoforms vary in the formation of RNA-dependent biomolecular condensates in cells and in vitro. This work shows that regulation of tissue-specific splicing can influence FXR1 condensates in muscle development and how mis-splicing promotes disease.
Collapse
Affiliation(s)
- Jean A Smith
- Department of Biology, Stetson University, DeLand, FL.,Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Ennessa G Curry
- Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC.,Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - R Eric Blue
- Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Christine Roden
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Samantha E R Dundon
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT
| | - Anthony Rodríguez-Vargas
- Eugene Bell Center for Regenerative Biology and Tissue Engineering and National Xenopus Resource, Marine Biology Laboratory, Woods Hole, MA
| | - Danielle C Jordan
- Eugene Bell Center for Regenerative Biology and Tissue Engineering and National Xenopus Resource, Marine Biology Laboratory, Woods Hole, MA
| | - Xiaomin Chen
- Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Shawn M Lyons
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA.,Department of Medicine, Harvard Medical School, Boston, MA
| | - John Crutchley
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Paul Anderson
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA.,Department of Medicine, Harvard Medical School, Boston, MA
| | - Marko E Horb
- Eugene Bell Center for Regenerative Biology and Tissue Engineering and National Xenopus Resource, Marine Biology Laboratory, Woods Hole, MA
| | - Amy S Gladfelter
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC.,Eugene Bell Center for Regenerative Biology and Tissue Engineering and National Xenopus Resource, Marine Biology Laboratory, Woods Hole, MA.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Jimena Giudice
- Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC.,Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC.,McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC
| |
Collapse
|
245
|
Abstract
Most RNA-binding modules are small and bind few nucleotides. RNA-binding proteins typically attain the physiological specificity and affinity for their RNA targets by combining several RNA-binding modules. Here, we review how disordered linkers connecting RNA-binding modules govern the specificity and affinity of RNA-protein interactions by regulating the effective concentration of these modules and their relative orientation. RNA-binding proteins also often contain extended intrinsically disordered regions that mediate protein-protein and RNA-protein interactions with multiple partners. We discuss how these regions can connect proteins and RNA resulting in heterogeneous higher-order assemblies such as membrane-less compartments and amyloid-like structures that have the characteristics of multi-modular entities. The assembled state generates additional RNA-binding specificity and affinity properties that contribute to further the function of RNA-binding proteins within the cellular environment.
Collapse
Affiliation(s)
- Diana S M Ottoz
- Department of Genetics and Development, Columbia University Irving Medical Center New York, NY 10032, USA
| | - Luke E Berchowitz
- Department of Genetics and Development, Columbia University Irving Medical Center New York, NY 10032, USA.,Taub Institute for Research on Alzheimer's and the Aging Brain, Columbia University Irving Medical Center New York, NY 10032, USA
| |
Collapse
|
246
|
Iserman C, Roden CA, Boerneke MA, Sealfon RSG, McLaughlin GA, Jungreis I, Fritch EJ, Hou YJ, Ekena J, Weidmann CA, Theesfeld CL, Kellis M, Troyanskaya OG, Baric RS, Sheahan TP, Weeks KM, Gladfelter AS. Genomic RNA Elements Drive Phase Separation of the SARS-CoV-2 Nucleocapsid. Mol Cell 2020; 80:1078-1091.e6. [PMID: 33290746 PMCID: PMC7691212 DOI: 10.1016/j.molcel.2020.11.041] [Citation(s) in RCA: 255] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/28/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023]
Abstract
We report that the SARS-CoV-2 nucleocapsid protein (N-protein) undergoes liquid-liquid phase separation (LLPS) with viral RNA. N-protein condenses with specific RNA genomic elements under physiological buffer conditions and condensation is enhanced at human body temperatures (33°C and 37°C) and reduced at room temperature (22°C). RNA sequence and structure in specific genomic regions regulate N-protein condensation while other genomic regions promote condensate dissolution, potentially preventing aggregation of the large genome. At low concentrations, N-protein preferentially crosslinks to specific regions characterized by single-stranded RNA flanked by structured elements and these features specify the location, number, and strength of N-protein binding sites (valency). Liquid-like N-protein condensates form in mammalian cells in a concentration-dependent manner and can be altered by small molecules. Condensation of N-protein is RNA sequence and structure specific, sensitive to human body temperature, and manipulatable with small molecules, and therefore presents a screenable process for identifying antiviral compounds effective against SARS-CoV-2.
Collapse
Affiliation(s)
- Christiane Iserman
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Christine A Roden
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Mark A Boerneke
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Grace A McLaughlin
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Irwin Jungreis
- MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ethan J Fritch
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yixuan J Hou
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Joanne Ekena
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Chase A Weidmann
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Chandra L Theesfeld
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Manolis Kellis
- MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Olga G Troyanskaya
- Center for Computational Biology, Flatiron Institute, New York, NY, USA; Department of Computer Science, Princeton University, Princeton, NJ, USA; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Timothy P Sheahan
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kevin M Weeks
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Amy S Gladfelter
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
247
|
Regy RM, Dignon GL, Zheng W, Kim YC, Mittal J. Sequence dependent phase separation of protein-polynucleotide mixtures elucidated using molecular simulations. Nucleic Acids Res 2020; 48:12593-12603. [PMID: 33264400 PMCID: PMC7736803 DOI: 10.1093/nar/gkaa1099] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/21/2020] [Accepted: 10/27/2020] [Indexed: 12/22/2022] Open
Abstract
Ribonucleoprotein (RNP) granules are membraneless organelles (MLOs), which majorly consist of RNA and RNA-binding proteins and are formed via liquid-liquid phase separation (LLPS). Experimental studies investigating the drivers of LLPS have shown that intrinsically disordered proteins (IDPs) and nucleic acids like RNA and other polynucleotides play a key role in modulating protein phase separation. There is currently a dearth of modelling techniques which allow one to delve deeper into how polynucleotides play the role of a modulator/promoter of LLPS in cells using computational methods. Here, we present a coarse-grained polynucleotide model developed to fill this gap, which together with our recently developed HPS model for protein LLPS, allows us to capture the factors driving protein-polynucleotide phase separation. We explore the capabilities of the modelling framework with the LAF-1 RGG system which has been well studied in experiments and also with the HPS model previously. Further taking advantage of the fact that the HPS model maintains sequence specificity we explore the role of charge patterning on controlling polynucleotide incorporation into condensates. With increased charge patterning we observe formation of structured or patterned condensates which suggests the possible roles of polynucleotides in not only shifting the phase boundaries but also introducing microscopic organization in MLOs.
Collapse
Affiliation(s)
- Roshan Mammen Regy
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA 18015, USA
| | - Gregory L Dignon
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA 18015, USA
| | - Wenwei Zheng
- College of Integrative Sciences and Arts, Arizona State University, Mesa, AZ 85212, USA
| | - Young C Kim
- Center for Materials Physics and Technology, Naval Research Laboratory, Washington, DC 20375, USA
| | - Jeetain Mittal
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA 18015, USA
| |
Collapse
|
248
|
Haify SN, Mankoe RSD, Boumeester V, van der Toorn EC, Verhagen RFM, Willemsen R, Hukema RK, Bosman LWJ. Lack of a Clear Behavioral Phenotype in an Inducible FXTAS Mouse Model Despite the Presence of Neuronal FMRpolyG-Positive Aggregates. Front Mol Biosci 2020; 7:599101. [PMID: 33381520 PMCID: PMC7768028 DOI: 10.3389/fmolb.2020.599101] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 11/23/2020] [Indexed: 11/25/2022] Open
Abstract
Fragile X-associated tremor/ataxia syndrome (FXTAS) is a rare neurodegenerative disorder caused by a 55–200 CGG repeat expansion in the 5′ untranslated region of the Fragile X Mental Retardation 1 (FMR1) gene. FXTAS is characterized by progressive cerebellar ataxia, Parkinsonism, intention tremors and cognitive decline. The main neuropathological hallmark of FXTAS is the presence of ubiquitin-positive intranuclear inclusions in neurons and astrocytes throughout the brain. The molecular pathology of FXTAS involves the presence of 2 to 8-fold elevated levels of FMR1 mRNA, and of a repeat-associated non-AUG (RAN) translated polyglycine peptide (FMRpolyG). Increased levels of FMR1 mRNA containing an expanded CGG repeat can result in cellular toxicity by an RNA gain-of-function mechanism. The increased levels of CGG repeat-expanded FMR1 transcripts may create RNA foci that sequester important cellular proteins, including RNA-binding proteins and FMRpolyG, in intranuclear inclusions. To date, it is unclear whether the FMRpolyG-positive intranuclear inclusions are a cause or a consequence of FXTAS disease pathology. In this report we studied the relation between the presence of neuronal intranuclear inclusions and behavioral deficits using an inducible mouse model for FXTAS. Neuronal intranuclear inclusions were observed 4 weeks after dox-induction. After 12 weeks, high numbers of FMRpolyG-positive intranuclear inclusions could be detected in the hippocampus and striatum, but no clear signs of behavioral deficits related to these specific brain regions were found. In conclusion, the observations in our inducible mouse model for FXTAS suggest a lack of correlation between the presence of intranuclear FMRpolyG-positive aggregates in brain regions and specific behavioral phenotypes.
Collapse
Affiliation(s)
- Saif N Haify
- Department of Clinical Genetics, Erasmus MC, Rotterdam, Netherlands
| | - Ruchira S D Mankoe
- Department of Clinical Genetics, Erasmus MC, Rotterdam, Netherlands.,Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | | | | | - Rob F M Verhagen
- Department of Clinical Genetics, Erasmus MC, Rotterdam, Netherlands
| | - Rob Willemsen
- Department of Clinical Genetics, Erasmus MC, Rotterdam, Netherlands
| | - Renate K Hukema
- Department of Clinical Genetics, Erasmus MC, Rotterdam, Netherlands.,Department of Health Care Studies, Rotterdam University of Applied Sciences, Rotterdam, Netherlands
| | | |
Collapse
|
249
|
Armaos A, Zacco E, Sanchez de Groot N, Tartaglia GG. RNA-protein interactions: Central players in coordination of regulatory networks. Bioessays 2020; 43:e2000118. [PMID: 33284474 DOI: 10.1002/bies.202000118] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 12/12/2022]
Abstract
Changes in the abundance of protein and RNA molecules can impair the formation of complexes in the cell leading to toxicity and death. Here we exploit the information contained in protein, RNA and DNA interaction networks to provide a comprehensive view of the regulation layers controlling the concentration-dependent formation of assemblies in the cell. We present the emerging concept that RNAs can act as scaffolds to promote the formation ribonucleoprotein complexes and coordinate the post-transcriptional layer of gene regulation. We describe the structural and interaction network properties that characterize the ability of protein and RNA molecules to interact and phase separate in liquid-like compartments. Finally, we show that presence of structurally disordered regions in proteins correlate with the propensity to undergo liquid-to-solid phase transitions and cause human diseases. Also see the video abstract here https://youtu.be/kfpqibsNfS0.
Collapse
Affiliation(s)
- Alexandros Armaos
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Center for Human Technologies, Istituto Italiano di Tecnologia, Genova, Italy
| | - Elsa Zacco
- Center for Human Technologies, Istituto Italiano di Tecnologia, Genova, Italy
| | - Natalia Sanchez de Groot
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Gian Gaetano Tartaglia
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Center for Human Technologies, Istituto Italiano di Tecnologia, Genova, Italy.,Department of Biology 'Charles Darwin', Sapienza University of Rome, Rome, Italy.,Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
250
|
Dumas L, Herviou P, Dassi E, Cammas A, Millevoi S. G-Quadruplexes in RNA Biology: Recent Advances and Future Directions. Trends Biochem Sci 2020; 46:270-283. [PMID: 33303320 DOI: 10.1016/j.tibs.2020.11.001] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/30/2020] [Accepted: 11/02/2020] [Indexed: 12/12/2022]
Abstract
RNA G-quadruplexes (RG4s) are four-stranded structures known to control gene expression mechanisms, from transcription to protein synthesis, and DNA-related processes. Their potential impact on RNA biology allows these structures to shape cellular processes relevant to disease development, making their targeting for therapeutic purposes an attractive option. We review here the current knowledge on RG4s, focusing on the latest breakthroughs supporting the notion of transient structures that fluctuate dynamically in cellulo, their interplay with RNA modifications, their role in cell compartmentalization, and their deregulation impacting the host immune response. We emphasize RG4-binding proteins as determinants of their transient conformation and effectors of their biological functions.
Collapse
Affiliation(s)
- Leïla Dumas
- Cancer Research Centre of Toulouse, INSERM UMR 1037, 31037 Toulouse, France; Université Toulouse III - Paul Sabatier, 31330 Toulouse, France
| | - Pauline Herviou
- Cancer Research Centre of Toulouse, INSERM UMR 1037, 31037 Toulouse, France; Université Toulouse III - Paul Sabatier, 31330 Toulouse, France
| | - Erik Dassi
- Laboratory of RNA Regulatory Networks, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123 Trento, (TN), Italy
| | - Anne Cammas
- Cancer Research Centre of Toulouse, INSERM UMR 1037, 31037 Toulouse, France; Université Toulouse III - Paul Sabatier, 31330 Toulouse, France
| | - Stefania Millevoi
- Cancer Research Centre of Toulouse, INSERM UMR 1037, 31037 Toulouse, France; Université Toulouse III - Paul Sabatier, 31330 Toulouse, France.
| |
Collapse
|