201
|
Wang Z, Moresco P, Yan R, Li J, Gao Y, Biasci D, Yao M, Pearson J, Hechtman JF, Janowitz T, Zaidi RM, Weiss MJ, Fearon DT. Carcinomas assemble a filamentous CXCL12-keratin-19 coating that suppresses T cell-mediated immune attack. Proc Natl Acad Sci U S A 2022; 119:e2119463119. [PMID: 35046049 PMCID: PMC8794816 DOI: 10.1073/pnas.2119463119] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 12/13/2021] [Indexed: 12/26/2022] Open
Abstract
Cancer immunotherapy frequently fails because most carcinomas have few T cells, suggesting that cancers can suppress T cell infiltration. Here, we show that cancer cells of human pancreatic ductal adenocarcinoma (PDA), colorectal cancer, and breast cancer are coated with transglutaminase-2 (TGM2)-dependent covalent CXCL12-keratin-19 (KRT19) heterodimers that are organized as filamentous networks. Since a dimeric form of CXCL12 suppresses the motility of human T cells, we determined whether this polymeric CXCL12-KRT19 coating mediated T cell exclusion. Mouse tumors containing control PDA cells exhibited the CXCL12-KRT19 coating, excluded T cells, and did not respond to treatment with anti-PD-1 antibody. Tumors containing PDA cells not expressing either KRT19 or TGM2 lacked the CXCL12-KRT19 coating, were infiltrated with activated CD8+ T cells, and growth was suppressed with anti-PD-1 antibody treatment. Thus, carcinomas assemble a CXCL12-KRT19 coating to evade cancer immune attack.
Collapse
Affiliation(s)
- Zhikai Wang
- Cancer Center, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Philip Moresco
- Cancer Center, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
- Graduate Program in Genetics, Stony Brook University, Stony Brook, NY 11794
- Medical Scientist Training Program, Stony Brook University Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794
| | - Ran Yan
- Cancer Center, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
- School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Jiayun Li
- Cancer Center, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Ya Gao
- Cancer Center, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Daniele Biasci
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Min Yao
- Cancer Center, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Jordan Pearson
- Cancer Center, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
- Graduate Program in Genetics, Stony Brook University, Stony Brook, NY 11794
- Medical Scientist Training Program, Stony Brook University Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794
| | - Jaclyn F Hechtman
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Tobias Janowitz
- Cancer Center, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
- Northwell Health Cancer Institute, Northwell Health, Lake Success, NY 11042
| | - Raza M Zaidi
- Northwell Health Cancer Institute, Northwell Health, Lake Success, NY 11042
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health, Hempstead, NY 11549
| | - Matthew J Weiss
- Northwell Health Cancer Institute, Northwell Health, Lake Success, NY 11042
| | - Douglas T Fearon
- Cancer Center, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724;
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065
| |
Collapse
|
202
|
Hao P, Song KY, Wang SQ, Huang XJ, Yao DW, Yang DJ. ABCC9 Is Downregulated and Prone to Microsatellite Instability on ABCC9tetra in Canine Breast Cancer. Front Vet Sci 2022; 8:819293. [PMID: 35071399 PMCID: PMC8777218 DOI: 10.3389/fvets.2021.819293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 12/06/2021] [Indexed: 11/13/2022] Open
Abstract
Tumorigenesis is associated with metabolic abnormalities and genomic instability. Microsatellite mutations, including microsatellite instability (MSI) and loss of heterozygosity (LOH), are associated with the functional impairment of some tumor-related genes. To investigate the role of MSI and LOH in sporadic breast tumors in canines, 22 tumors DNA samples and their adjacent normal tissues were evaluated using polyacrylamide gel electrophoresis and silver staining for 58 microsatellites. Quantitative real-time polymerase chain reaction, promoter methylation analysis and immunohistochemical staining were used to quantify gene expression. The results revealed that a total of 14 tumors (6 benign tumors and 8 breast cancers) exhibited instability as MSI-Low tumors. Most of the microsatellite loci possessed a single occurrence of mutations. The maximum number of MSI mutations on loci was observed in tumors with a lower degree of differentiation. Among the unstable markers, FH2060 (4/22), ABCC9tetra (4/22) and SCN11A (6/22) were high-frequency mutation sites, whereas FH2060 was a high-frequency LOH site (4/22). The ABCC9tetra locus was mutated only in cancerous tissue, although it was excluded by transcription. The corresponding genes and proteins were significantly downregulated in malignant tissues, particularly in tumors with MSI. Furthermore, the promoter methylation results of the adenosine triphosphate binding cassette subfamily C member 9 (ABCC9) showed that there was a high level of methylation in breast tissues, but only one case showed a significant elevation compared with the control. In conclusion, MSI-Low or MSI-Stable is characteristic of most sporadic mammary tumors. Genes associated with tumorigenesis are more likely to develop MSI. ABCC9 protein and transcription abnormalities may be associated with ABCC9tetra instability.
Collapse
Affiliation(s)
- Pan Hao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Kai-Yue Song
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Si-Qi Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xiao-Jun Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Da-Wei Yao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - De-Ji Yang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
203
|
Wu D, Feng M, Shen H, Shen X, Hu J, Liu J, Yang Y, Li Y, Yang M, Wang W, Zhang Q, Song F, Liu B, Chen K, Li X. Prediction of Two Molecular Subtypes of Gastric Cancer Based on Immune Signature. Front Genet 2022; 12:793494. [PMID: 35111202 PMCID: PMC8802764 DOI: 10.3389/fgene.2021.793494] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/16/2021] [Indexed: 11/22/2022] Open
Abstract
Gastric cancer is the fifth most common type of human cancer and the third leading cause of cancer-related death. The purpose of this study is to investigate the immune infiltration signatures of gastric cancer and their relation to prognosis. We identified two distinct subtypes of gastric cancer (C1/C2) characterized by different immune infiltration signatures. C1 is featured by immune resting, epithelial–mesenchymal transition, and angiogenesis pathways, while C2 is featured by enrichment of the MYC target, oxidative phosphorylation, and E2F target pathways. The C2 subtype has a better prognosis than the C1 subtype (HR = 0.61, 95% CI: 0.44–0.85; log-rank test, p = 0.0029). The association of C1/C2 with prognosis remained statistically significant (HR = 0.62, 95% CI: 0.44–0.87; p = 0.006) after controlling for age, gender, and stage. The prognosis prediction of C1/C2 was verified in four independent cohorts (including an internal cohort). In summary, our study is helpful for better understanding of the association between immune infiltration and the prognosis of gastric cancer.
Collapse
Affiliation(s)
- Dan Wu
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Mengyao Feng
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Hongru Shen
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Xilin Shen
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Jiani Hu
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Jilei Liu
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Yichen Yang
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Yang Li
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Meng Yang
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Wei Wang
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology of Tianjin, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Qiang Zhang
- Department of Maxillofacial and Otorhinolaryngology Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Fangfang Song
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology of Tianjin, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Ben Liu
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology of Tianjin, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Kexin Chen
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology of Tianjin, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
- *Correspondence: Xiangchun Li, ; Kexin Chen,
| | - Xiangchun Li
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
- *Correspondence: Xiangchun Li, ; Kexin Chen,
| |
Collapse
|
204
|
Das A, Sudhaman S, Morgenstern D, Coblentz A, Chung J, Stone SC, Alsafwani N, Liu ZA, Karsaneh OAA, Soleimani S, Ladany H, Chen D, Zatzman M, Cabric V, Nobre L, Bianchi V, Edwards M, Sambira Nahum LC, Ercan AB, Nabbi A, Constantini S, Dvir R, Yalon-Oren M, Campino GA, Caspi S, Larouche V, Reddy A, Osborn M, Mason G, Lindhorst S, Bronsema A, Magimairajan V, Opocher E, De Mola RL, Sabel M, Frojd C, Sumerauer D, Samuel D, Cole K, Chiaravalli S, Massimino M, Tomboc P, Ziegler DS, George B, Van Damme A, Hijiya N, Gass D, McGee RB, Mordechai O, Bowers DC, Laetsch TW, Lossos A, Blumenthal DT, Sarosiek T, Yen LY, Knipstein J, Bendel A, Hoffman LM, Luna-Fineman S, Zimmermann S, Scheers I, Nichols KE, Zapotocky M, Hansford JR, Maris JM, Dirks P, Taylor MD, Kulkarni AV, Shroff M, Tsang DS, Villani A, Xu W, Aronson M, Durno C, Shlien A, Malkin D, Getz G, Maruvka YE, Ohashi PS, Hawkins C, Pugh TJ, Bouffet E, Tabori U. Genomic predictors of response to PD-1 inhibition in children with germline DNA replication repair deficiency. Nat Med 2022; 28:125-135. [PMID: 34992263 PMCID: PMC8799468 DOI: 10.1038/s41591-021-01581-6] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 10/15/2021] [Indexed: 02/08/2023]
Abstract
Cancers arising from germline DNA mismatch repair deficiency or polymerase proofreading deficiency (MMRD and PPD) in children harbour the highest mutational and microsatellite insertion–deletion (MS-indel) burden in humans. MMRD and PPD cancers are commonly lethal due to the inherent resistance to chemo-irradiation. Although immune checkpoint inhibitors (ICIs) have failed to benefit children in previous studies, we hypothesized that hypermutation caused by MMRD and PPD will improve outcomes following ICI treatment in these patients. Using an international consortium registry study, we report on the ICI treatment of 45 progressive or recurrent tumors from 38 patients. Durable objective responses were observed in most patients, culminating in a 3 year survival of 41.4%. High mutation burden predicted response for ultra-hypermutant cancers (>100 mutations per Mb) enriched for combined MMRD + PPD, while MS-indels predicted response in MMRD tumors with lower mutation burden (10–100 mutations per Mb). Furthermore, both mechanisms were associated with increased immune infiltration even in ‘immunologically cold’ tumors such as gliomas, contributing to the favorable response. Pseudo-progression (flare) was common and was associated with immune activation in the tumor microenvironment and systemically. Furthermore, patients with flare who continued ICI treatment achieved durable responses. This study demonstrates improved survival for patients with tumors not previously known to respond to ICI treatment, including central nervous system and synchronous cancers, and identifies the dual roles of mutation burden and MS-indels in predicting sustained response to immunotherapy. Hypermutation and microsatellite burden determine responses and long-term survival following PD-1 blockade in children and young adults with refractory cancers resulting from germline DNA replication repair deficiency.
Collapse
Affiliation(s)
- Anirban Das
- Division of Haematology Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Paediatric Haematology/ Oncology, Tata Medical Centre, Kolkata, India
| | - Sumedha Sudhaman
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Daniel Morgenstern
- Division of Haematology Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Ailish Coblentz
- Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jiil Chung
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada.,Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Simone C Stone
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Noor Alsafwani
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.,Department of Pathology, College of Medicine, Imam Abdulrahman Bin Faisal University (IAU), Dammam, Saudi Arabia
| | - Zhihui Amy Liu
- Department of Biostatistics, Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada.,Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Ola Abu Al Karsaneh
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.,Department of Basic Medical Sciences, Faculty of Medicine, The Hashemite University, Zarqa, Jordan
| | - Shirin Soleimani
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Hagay Ladany
- Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Tel-Aviv, Israel
| | - David Chen
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Matthew Zatzman
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Vanja Cabric
- Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Liana Nobre
- Division of Haematology Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Vanessa Bianchi
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Melissa Edwards
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Lauren C Sambira Nahum
- Division of Haematology Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Ayse B Ercan
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada.,Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Arash Nabbi
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Shlomi Constantini
- Department of Pediatric Neurosurgery, Dana Children's Hospital, Tel-Aviv, Israel
| | - Rina Dvir
- Department of Pediatric Hematology-Oncology, Tel-Aviv Sourasky Medical Centre, Tel-Aviv, Israel
| | - Michal Yalon-Oren
- Department of Pediatric Hematology-Oncology, Sheba Medical Centre, Ramat Gan, Israel
| | - Gadi Abebe Campino
- Department of Pediatric Hematology-Oncology, Sheba Medical Centre, Ramat Gan, Israel
| | - Shani Caspi
- Department of Pediatric Hematology-Oncology, Sheba Medical Centre, Ramat Gan, Israel
| | - Valerie Larouche
- Department of Paediatric Haematology/Oncology, Centre Hospitalier de Quebec-Universite Laval, Quebec City, Quebec, Canada
| | - Alyssa Reddy
- Departments of Neurology and Pediatrics, University of California, San Francisco, CA, USA
| | - Michael Osborn
- Women's and Children's Hospital, North Adelaide, South Australia, Australia
| | - Gary Mason
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Scott Lindhorst
- Neuro-Oncology, Department of Neurosurgery, and Department of Medicine, Division of Hematology/Medical Oncology, Medical University of South Carolina, Charleston, SC, USA
| | - Annika Bronsema
- Department of Paediatric Haematology and Oncology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Vanan Magimairajan
- Department of Paediatric Haematology-Oncology, Cancer Care Manitoba, Research Institute in Oncology and Haematology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Enrico Opocher
- Paediatric Haematology, Oncology and Stem Cell Transplant Division, Padua University Hospital, Padua, Italy
| | - Rebecca Loret De Mola
- Pediatric Hematology-Oncology, Helen DeVos Children's Hospital, Grand Rapids, MI, USA
| | - Magnus Sabel
- Department of Paediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden.,Queen Silvia Children's Hospital, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Charlotta Frojd
- Department of Oncology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - David Sumerauer
- Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Motol University Hospital, Charles University, Prague, Czech Republic
| | - David Samuel
- Department of Pediatric Oncology, Valley Children's Hospital, Madera, CA, USA
| | - Kristina Cole
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelpha, PA, USA
| | - Stefano Chiaravalli
- Paediatric Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Maura Massimino
- Paediatric Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Patrick Tomboc
- Department of Pediatrics, J.W. Ruby Memorial Hospital - West Virginia University, Morgantown, WV, USA
| | - David S Ziegler
- Kids Cancer Centre, Sydney Children's Hospital, Randwick, New South Wales, Australia.,School of Women's and Children's Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Ben George
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - An Van Damme
- Department of Paediatric Haematology and Oncology, Saint Luc University Hospital, Université Catholique de Louvain, Brussels, Belgium
| | - Nobuko Hijiya
- Division of Pediatric Hematology/Oncology/Stem Cell Transplantation, Columbia University Irving Medical Centre, New York, NY, USA
| | - David Gass
- Atrium Health Levine Children's Hospital, Charlotte, NC, USA
| | - Rose B McGee
- Cancer Predisposition Division, Oncology Department, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Oz Mordechai
- Department of Pediatric Hematology Oncology, Rambam Health Care Campus, Haifa, Israel
| | - Daniel C Bowers
- Department of Pediatrics, The University of Texas Southwestern Medical School, Dallas, TX, USA
| | - Theodore W Laetsch
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelpha, PA, USA
| | - Alexander Lossos
- Department of Oncology, Leslie and Michael Gaffin Center for Neuro-Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Deborah T Blumenthal
- Neuro-Oncology Service, Tel-Aviv Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel
| | | | - Lee Yi Yen
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Jeffrey Knipstein
- Division of Pediatric Hematology/ Oncology/ BMT, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Anne Bendel
- Department of Pediatric Hematology-Oncology, Children's Hospitals and Clinics of Minnesota, St Paul, MN, USA
| | | | - Sandra Luna-Fineman
- Department of Pediatrics, Anschutz Medical Campus, Children's Hospital of Colorado, Aurora, CO, USA
| | - Stefanie Zimmermann
- Paediatric Haematology and Oncology, University Hospital Frankfurt, Frankfurt, Germany
| | - Isabelle Scheers
- Paediatric Gastroenterology, Hepatology and Nutrition Unit, Cliniques Universitaires St Luc, Université Catholique de Louvain, Brussels, Belgium
| | - Kim E Nichols
- Cancer Predisposition Division, Oncology Department, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Michal Zapotocky
- Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Motol University Hospital, Charles University, Prague, Czech Republic
| | - Jordan R Hansford
- Children's Cancer Centre, Royal Children's Hospital, Murdoch Children's Research Institute, University of Melbourne, Parkville, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| | - John M Maris
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelpha, PA, USA
| | - Peter Dirks
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada.,Division of Neurosurgery, The Hospital for Sick Children, Toronto, Ontario, Canada.,Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Michael D Taylor
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada.,Division of Neurosurgery, The Hospital for Sick Children, Toronto, Ontario, Canada.,Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Abhaya V Kulkarni
- Division of Neurosurgery, The Hospital for Sick Children, Toronto, Ontario, Canada.,Child Health Evaluative Sciences, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Manohar Shroff
- Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Derek S Tsang
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Anita Villani
- Division of Haematology Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Wei Xu
- Department of Biostatistics, Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada.,Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Melyssa Aronson
- Zane Cohen Centre for Digestive Diseases, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Carol Durno
- Zane Cohen Centre for Digestive Diseases, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Adam Shlien
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - David Malkin
- Division of Haematology Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Gad Getz
- Massachusetts General Hospital Cancer Center and Department of Pathology, Charlestown, MA, USA.,Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Yosef E Maruvka
- Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Tel-Aviv, Israel
| | - Pamela S Ohashi
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Cynthia Hawkins
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada.,Program in Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Trevor J Pugh
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Eric Bouffet
- Division of Haematology Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Uri Tabori
- Division of Haematology Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada. .,Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada. .,The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada. .,Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada. .,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
205
|
Anisman H, Kusnecov AW. Immunotherapies and their moderation. Cancer 2022. [DOI: 10.1016/b978-0-323-91904-3.00006-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
206
|
Assessment of Microsatellite Instability from Next-Generation Sequencing Data. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1361:75-100. [DOI: 10.1007/978-3-030-91836-1_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
207
|
Chera A, Stancu AL, Bucur O. Thyroid-related adverse events induced by immune checkpoint inhibitors. Front Endocrinol (Lausanne) 2022; 13:1010279. [PMID: 36204105 PMCID: PMC9530140 DOI: 10.3389/fendo.2022.1010279] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 08/29/2022] [Indexed: 11/24/2022] Open
Abstract
Immune checkpoint inhibitors, namely anti-CTLA-4, anti-PD-1 and anti-PD-L1 monoclonal antibodies, have emerged in the last decade as a novel form of cancer treatment, promoting increased survival in patients. As they tamper with the immune response in order to destroy malignant cells, a new type of adverse reactions has emerged, known as immune-related adverse events (irAEs), which frequently target the endocrine system, especially the thyroid and hypophysis. Thyroid irAEs include hyperthyroidism, thyrotoxicosis, hypothyroidism and a possibly life-threatening condition known as the "thyroid storm". Early prediction of occurrence and detection of the thyroid irAEs should be a priority for the clinician, in order to avoid critical situations. Moreover, they are recently considered both a prognostic marker and a means of overseeing treatment response, since they indicate an efficient activation of the immune system. Therefore, a multidisciplinary approach including both oncologists and endocrinologists is recommended when immune checkpoint inhibitors are used in the clinic.
Collapse
Affiliation(s)
- Alexandra Chera
- Victor Babes National Institute of Pathology, Bucharest, Romania
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Andreea Lucia Stancu
- Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Octavian Bucur
- Victor Babes National Institute of Pathology, Bucharest, Romania
- Viron Molecular Medicine Institute, Boston, MA, United States
- *Correspondence: Octavian Bucur, ;;
| |
Collapse
|
208
|
Kim HD, Ryu MH, Park YS, Lee SY, Moon M, Kang YK. Insertion-deletion rate is a qualitative aspect of the tumor mutation burden associated with the clinical outcomes of gastric cancer patients treated with nivolumab. Gastric Cancer 2022; 25:226-234. [PMID: 34468871 DOI: 10.1007/s10120-021-01233-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/11/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND We aimed to investigate the clinical implications of the tumor mutation burden (TMB) and insertion-deletion (indel) rate in gastric cancer patients treated with nivolumab. METHODS A total of 105 patients with advanced gastric cancer who were treated with nivolumab as third or later line of therapy were included as the study population. The indel rate was defined as the proportion of indels making up the TMB. RESULTS The median age was 58 (32-78 years), and 65 (61.9%) were men. Patients with TMB > 18.03/Mb showed superior progression-free survival (PFS) and overall survival (OS) compared to those with TMB ≤ 18.03/Mb. Patients with a high indel rate (> 40%) had a favorable PFS and OS compared to those with a lower indel rate (≤ 40%) (P = 0.009 and P = 0.007, respectively). The association between a high indel rate and favorable PFS and OS was prominent in a subgroup with TMB > 18.03/Mb (P < 0.001 and P = 0.007 for PFS and OS, respectively), but not in that with TMB ≤ 18.03/Mb. All five patients with deficient-MMR fell into the category of 'TMB > 18.03/Mb with an indel rate of > 40%. TMB ≥ 18.03/Mb with an indel rate of > 40% was independently associated with a favorable PFS (hazard ratio [HR] 0.07, P = 0.012) and OS (HR 0.09, P = 0.023). CONCLUSION TMB and indel rate should be jointly considered to better predict survival outcomes of gastric cancer patients treated with nivolumab. Our findings deserve further investigation and validation in future studies.
Collapse
Affiliation(s)
- Hyung-Don Kim
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Min-Hee Ryu
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Young Soo Park
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sun Young Lee
- Asan Medical Center, Asan Institute for Life Science, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Meesun Moon
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Yoon-Koo Kang
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea.
| |
Collapse
|
209
|
Alpsoy A, Yavuz A, Elpek GO. Artificial intelligence in pathological evaluation of gastrointestinal cancers. Artif Intell Gastroenterol 2021; 2:141-156. [DOI: 10.35712/aig.v2.i6.141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/19/2021] [Accepted: 12/27/2021] [Indexed: 02/06/2023] Open
Abstract
The integration of artificial intelligence (AI) has shown promising benefits in many fields of diagnostic histopathology, including for gastrointestinal cancers (GCs), such as tumor identification, classification, and prognosis prediction. In parallel, recent evidence suggests that AI may help reduce the workload in gastrointestinal pathology by automatically detecting tumor tissues and evaluating prognostic parameters. In addition, AI seems to be an attractive tool for biomarker/genetic alteration prediction in GC, as it can contain a massive amount of information from visual data that is complex and partially understandable by pathologists. From this point of view, it is suggested that advances in AI could lead to revolutionary changes in many fields of pathology. Unfortunately, these findings do not exclude the possibility that there are still many hurdles to overcome before AI applications can be safely and effectively applied in actual pathology practice. These include a broad spectrum of challenges from needs identification to cost-effectiveness. Therefore, unlike other disciplines of medicine, no histopathology-based AI application, including in GC, has ever been approved either by a regulatory authority or approved for public reimbursement. The purpose of this review is to present data related to the applications of AI in pathology practice in GC and present the challenges that need to be overcome for their implementation.
Collapse
Affiliation(s)
- Anil Alpsoy
- Department of Pathology, Akdeniz University Medical School, Antalya 07070, Turkey
| | - Aysen Yavuz
- Department of Pathology, Akdeniz University Medical School, Antalya 07070, Turkey
| | - Gulsum Ozlem Elpek
- Department of Pathology, Akdeniz University Medical School, Antalya 07070, Turkey
| |
Collapse
|
210
|
Zhu L, Liu J, Chen J, Zhou Q. The developing landscape of combinatorial therapies of immune checkpoint blockade with DNA damage repair inhibitors for the treatment of breast and ovarian cancers. J Hematol Oncol 2021; 14:206. [PMID: 34930377 PMCID: PMC8686226 DOI: 10.1186/s13045-021-01218-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 12/05/2021] [Indexed: 02/07/2023] Open
Abstract
The use of immune checkpoint blockade (ICB) using antibodies against programmed death receptor (PD)-1, PD ligand (PD-L)-1, and cytotoxic T-lymphocyte antigen 4 (CTLA-4) has redefined the therapeutic landscape in solid tumors, including skin, lung, bladder, liver, renal, and breast tumors. However, overall response rates to ICB therapy remain limited in PD-L1-negative patients. Thus, rational and effective combination therapies will be needed to address ICB treatment resistance in these patients, as well as in PD-L1-positive patients who have progressed under ICB treatment. DNA damage repair inhibitors (DDRis) may activate T-cell responses and trigger inflammatory cytokines release and eventually immunogenic cancer cell death by amplifying DNA damage and generating immunogenic neoantigens, especially in DDR-defective tumors. DDRi may also lead to adaptive PD-L1 upregulation, providing a rationale for PD-L1/PD-1 blockade. Thus, based on preclinical evidence of efficacy and no significant overlapping toxicity, some ICB/DDRi combinations have rapidly progressed to clinical testing in breast and ovarian cancers. Here, we summarize the available clinical data on the combination of ICB with DDRi agents for treating breast and ovarian cancers and discuss the mechanisms of action and other lessons learned from translational studies conducted to date. We also review potential biomarkers to select patients most likely to respond to ICB/DDRi combination therapy.
Collapse
Affiliation(s)
- Lingling Zhu
- Lung Cancer Center, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Jiewei Liu
- Lung Cancer Center, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Jiang Chen
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, Zhejiang Province, China.
| | - Qinghua Zhou
- Lung Cancer Center, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan Province, China.
| |
Collapse
|
211
|
Yen YT, Chien M, Wu PY, Ho CC, Ho CT, Huang KCY, Chiang SF, Chao KSC, Chen WTL, Hung SC. Protein phosphatase 2A inactivation induces microsatellite instability, neoantigen production and immune response. Nat Commun 2021; 12:7297. [PMID: 34911954 PMCID: PMC8674339 DOI: 10.1038/s41467-021-27620-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 12/02/2021] [Indexed: 12/21/2022] Open
Abstract
Microsatellite-instable (MSI), a predictive biomarker for immune checkpoint blockade (ICB) response, is caused by mismatch repair deficiency (MMRd) that occurs through genetic or epigenetic silencing of MMR genes. Here, we report a mechanism of MMRd and demonstrate that protein phosphatase 2A (PP2A) deletion or inactivation converts cold microsatellite-stable (MSS) into MSI tumours through two orthogonal pathways: (i) by increasing retinoblastoma protein phosphorylation that leads to E2F and DNMT3A/3B expression with subsequent DNA methylation, and (ii) by increasing histone deacetylase (HDAC)2 phosphorylation that subsequently decreases H3K9ac levels and histone acetylation, which induces epigenetic silencing of MLH1. In mouse models of MSS and MSI colorectal cancers, triple-negative breast cancer and pancreatic cancer, PP2A inhibition triggers neoantigen production, cytotoxic T cell infiltration and ICB sensitization. Human cancer cell lines and tissue array effectively confirm these signaling pathways. These data indicate the dual involvement of PP2A inactivation in silencing MLH1 and inducing MSI.
Collapse
Affiliation(s)
- Yu-Ting Yen
- grid.254145.30000 0001 0083 6092Drug Development Center, Institute of New Drug Development, China Medical University, Taichung, 40402 Taiwan ,grid.411508.90000 0004 0572 9415Integrative Stem Cell Center, China Medical University Hospital, Taichung, 40402 Taiwan
| | - May Chien
- grid.254145.30000 0001 0083 6092Drug Development Center, Institute of New Drug Development, China Medical University, Taichung, 40402 Taiwan ,grid.411508.90000 0004 0572 9415Integrative Stem Cell Center, China Medical University Hospital, Taichung, 40402 Taiwan
| | - Pei-Yi Wu
- grid.254145.30000 0001 0083 6092Drug Development Center, Institute of New Drug Development, China Medical University, Taichung, 40402 Taiwan ,grid.411508.90000 0004 0572 9415Integrative Stem Cell Center, China Medical University Hospital, Taichung, 40402 Taiwan
| | - Chi-Chang Ho
- grid.254145.30000 0001 0083 6092Drug Development Center, Institute of New Drug Development, China Medical University, Taichung, 40402 Taiwan ,grid.411508.90000 0004 0572 9415Integrative Stem Cell Center, China Medical University Hospital, Taichung, 40402 Taiwan
| | - Chun-Te Ho
- grid.254145.30000 0001 0083 6092Drug Development Center, Institute of New Drug Development, China Medical University, Taichung, 40402 Taiwan ,grid.411508.90000 0004 0572 9415Integrative Stem Cell Center, China Medical University Hospital, Taichung, 40402 Taiwan
| | - Kevin Chih-Yang Huang
- grid.254145.30000 0001 0083 6092Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, 40402 Taiwan ,grid.254145.30000 0001 0083 6092Translation Research Core, China Medical University Hospital, China Medical University, Taichung, 40402 Taiwan
| | - Shu-Fen Chiang
- grid.254145.30000 0001 0083 6092Proton Therapy and Science Center, China Medical University Hospital, China Medical University, Taichung, Taiwan 40402 ROC ,grid.454740.6Lab of Precision Medicine, Feng-Yuan Hospital, Ministry of Health and Welfare, Taichung, 42055 Taiwan
| | - K. S. Clifford Chao
- grid.254145.30000 0001 0083 6092Proton Therapy and Science Center, China Medical University Hospital, China Medical University, Taichung, Taiwan 40402 ROC
| | - William Tzu-Liang Chen
- grid.254145.30000 0001 0083 6092Department of Colorectal Surgery, China Medical University Hospital, China Medical University, Taichung, 40402 Taiwan ,grid.254145.30000 0001 0083 6092Department of Colorectal Surgery, China Medical University HsinChu Hospital, China Medical University, HsinChu, 302 Taiwan
| | - Shih-Chieh Hung
- Drug Development Center, Institute of New Drug Development, China Medical University, Taichung, 40402, Taiwan. .,Integrative Stem Cell Center, China Medical University Hospital, Taichung, 40402, Taiwan. .,Department of Orthopaedics, China Medical University Hospital, Taichung, 40402, Taiwan.
| |
Collapse
|
212
|
Zhang Y, Xu J, Fei Z, Dai H, Fan Q, Yang Q, Chen Y, Wang B, Wang C. 3D Printing Scaffold Vaccine for Antitumor Immunity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2106768. [PMID: 34601760 DOI: 10.1002/adma.202106768] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/24/2021] [Indexed: 06/13/2023]
Abstract
Cancer vaccine platform has attracted great interest in the field of cancer immunotherapy. Here, 3D printed scaffolds loaded with immunoregulators are developed for enhanced cancer immunotherapy. The rapid manufacturing and precise molding based on 3D printing can realize the mass manufacturing of cancer vaccines and personalized design. Meanwhile, compared to the traditional hydrogel, the 3D-scaffold with porous structure endows its similar functions compared with real lymphoid organs by recruitment of a great number of immune cells, leading to the formation of "artificial tertiary lymphoid structures," where there is a promising site to enhance both humoral and cellular immune responses. Efficient anticancer immunity is induced when combined with immune checkpoint blockade to inhibit the tumor growth. Personalized antitumor scaffold vaccines are further demonstrated for filling of tumor site after surgery to prevent cancer metastasis. Taken together, these results promise the 3D printing scaffold vaccine as the potential strategy for cancer vaccine therapy in the future.
Collapse
Affiliation(s)
- Yue Zhang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Jialu Xu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Ziying Fei
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Huaxing Dai
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Qin Fan
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Qianyu Yang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Yitong Chen
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Beilei Wang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Chao Wang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| |
Collapse
|
213
|
Beyond immune checkpoint blockade: emerging immunological strategies. Nat Rev Drug Discov 2021; 20:899-919. [PMID: 33686237 DOI: 10.1038/s41573-021-00155-y] [Citation(s) in RCA: 262] [Impact Index Per Article: 65.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2021] [Indexed: 02/07/2023]
Abstract
The success of checkpoint inhibitors has accelerated the clinical implementation of a vast mosaic of single agents and combination immunotherapies. However, the lack of clinical translation for a number of immunotherapies as monotherapies or in combination with checkpoint inhibitors has clarified that new strategies must be employed to advance the field. The next chapter of immunotherapy should examine the immuno-oncology therapeutic failures, and consider the complexity of immune cell-cancer cell interactions to better design more effective anticancer drugs. Herein, we briefly review the history of immunotherapy and checkpoint blockade, highlighting important clinical failures. We discuss the critical aspects - beyond T cell co-receptors - of immune processes within the tumour microenvironment (TME) that may serve as avenues along which new therapeutic strategies in immuno-oncology can be forged. Emerging insights into tumour biology suggest that successful future therapeutics will focus on two key factors: rescuing T cell homing and dysfunction in the TME, and reappropriating mononuclear phagocyte function for TME inflammatory remodelling. New drugs will need to consider the complex cell networks that exist within tumours and among cancer types.
Collapse
|
214
|
McEachron TA, Helman LJ. Recent Advances in Pediatric Cancer Research. Cancer Res 2021; 81:5783-5799. [PMID: 34561271 DOI: 10.1158/0008-5472.can-21-1191] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 09/05/2021] [Accepted: 09/22/2021] [Indexed: 11/16/2022]
Abstract
Over the past few years, the field of pediatric cancer has experienced a shift in momentum, and this has led to new and exciting findings that have relevance beyond pediatric malignancies. Here we present the current status of key aspects of pediatric cancer research. We have focused on genetic and epigenetic drivers of disease, cellular origins of different pediatric cancers, disease models, the tumor microenvironment, and cellular immunotherapies.
Collapse
Affiliation(s)
| | - Lee J Helman
- Osteosarcoma Institute, Dallas, Texas
- Cancer and Blood Disease Institute, Children's Hospital Los Angeles, Los Angeles, California
| |
Collapse
|
215
|
Fang H, Zhu X, Yang H, Oh J, Barbour JA, Wong JWH. Deficiency of replication-independent DNA mismatch repair drives a 5-methylcytosine deamination mutational signature in cancer. SCIENCE ADVANCES 2021; 7:eabg4398. [PMID: 34730999 PMCID: PMC8565909 DOI: 10.1126/sciadv.abg4398] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Multiple mutational signatures have been associated with DNA mismatch repair (MMR)–deficient cancers, but the mechanisms underlying their origin remain unclear. Here, using mutation data from cancer genomes, we identify a previously unknown function of MMR that is able to protect genomes from 5-methylcytosine (5mC) deamination–induced somatic mutations in a replication-independent manner. Cancers with deficiency of MMR proteins MSH2/MSH6 (MutSα) exhibit mutational signature contributions distinct from those that are deficient in MLH1/PMS2 (MutLα). This disparity arises from unrepaired 5mC deamination–induced mismatches rather than replicative DNA polymerase errors. In cancers with biallelic loss of MBD4 DNA glycosylase, repair of 5mC deamination damage is strongly associated with H3K36me3 chromatin, implicating MutSα as the essential factor in its repair. We thus uncover a noncanonical role of MMR in the protection against 5mC deamination–induced mutation in human cancers.
Collapse
|
216
|
PKCλ/ι inhibition activates an ULK2-mediated interferon response to repress tumorigenesis. Mol Cell 2021; 81:4509-4526.e10. [PMID: 34560002 DOI: 10.1016/j.molcel.2021.08.039] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 07/19/2021] [Accepted: 08/27/2021] [Indexed: 01/05/2023]
Abstract
The interferon (IFN) pathway is critical for cytotoxic T cell activation, which is central to tumor immunosurveillance and successful immunotherapy. We demonstrate here that PKCλ/ι inactivation results in the hyper-stimulation of the IFN cascade and the enhanced recruitment of CD8+ T cells that impaired the growth of intestinal tumors. PKCλ/ι directly phosphorylates and represses the activity of ULK2, promoting its degradation through an endosomal microautophagy-driven ubiquitin-dependent mechanism. Loss of PKCλ/ι results in increased levels of enzymatically active ULK2, which, by direct phosphorylation, activates TBK1 to foster the activation of the STING-mediated IFN response. PKCλ/ι inactivation also triggers autophagy, which prevents STING degradation by chaperone-mediated autophagy. Thus, PKCλ/ι is a hub regulating the IFN pathway and three autophagic mechanisms that serve to maintain its homeostatic control. Importantly, single-cell multiplex imaging and bioinformatics analysis demonstrated that low PKCλ/ι levels correlate with enhanced IFN signaling and good prognosis in colorectal cancer patients.
Collapse
|
217
|
Naik PP. Cemiplimab in advanced cutaneous squamous cell carcinoma. Dermatol Ther 2021; 34:e15184. [PMID: 34716727 DOI: 10.1111/dth.15184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/03/2021] [Accepted: 10/27/2021] [Indexed: 12/25/2022]
Abstract
Cemiplimab, a high-affinity, highly potent human monoclonal antibody that binds to the programmed death-1 (PD-1)/programmed death ligand-1 (PD-L1) receptor, is the only drug to attain Food and Drug Administration (FDA) approval and marketing authorization from the European Commission for use in patients with metastatic and locally advanced cutaneous squamous cell carcinoma (CSCC) who are not candidates for curative surgery or curative radiation therapy as a first- or later-line treatment. In pivotal phase II clinical testing, cemiplimab showed rapid and substantial antitumor efficacy and acceptable safety. This systematic review was aimed at evaluating the efficacy and safety of cemiplimab in patients with advanced CSCC. To this end, I reviewed EMBASE, MEDLINE, PubMed, and clinical trial registries/databases by using the following keywords alone or in combination: "cemiplimab," "Libtayo," "cutaneous squamous cell carcinoma," "REGN2810," and "SER439684." Cemiplimab showed clinical efficacy and considerable safety and was associated with low rates of treatment discontinuation (7%) and death (3%). However, the current recommendation is primarily based on only phase II clinical testing due to the absence of an approved comparator agent.
Collapse
Affiliation(s)
- Piyu Parth Naik
- Department of Dermatology, Saudi German Hospital and Clinic, Dubai, United Arab Emirates
| |
Collapse
|
218
|
Saiz-Ladera C, Baliu-Piqué M, Cimas FJ, Manzano A, García-Barberán V, Camarero SC, Hinojal GF, Pandiella A, Győrffy B, Stewart D, Cruz-Hernández JJ, Pérez-Segura P, Ocana A. Transcriptomic Correlates of Immunologic Activation in Head and Neck and Cervical Cancer. Front Oncol 2021; 11:714550. [PMID: 34692491 PMCID: PMC8527851 DOI: 10.3389/fonc.2021.714550] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 09/13/2021] [Indexed: 12/31/2022] Open
Abstract
Targeting the immune system has emerged as an effective therapeutic strategy for the treatment of various tumor types, including Head and Neck Squamous Cell Carcinoma (HNSCC) and Non-small-Cell Lung Cancer (NSCLC), and checkpoint inhibitors have shown to improve patient survival in these tumor types. Unfortunately, not all cancers respond to these agents, making it necessary to identify responsive tumors. Several biomarkers of response have been described and clinically tested. As of yet what seems to be clear is that a pre-activation state of the immune system is necessary for these agents to be efficient. In this study, using established transcriptomic signatures, we identified a group of gene combination associated with favorable outcome in HNSCC linked to a higher presence of immune effector cells. CD2, CD3D, CD3E, and CXCR6 combined gene expression is associated with improved outcome of HNSCC patients and an increase of infiltrating immune effector cells. This new signature also identifies a subset of cervical squamous cell carcinoma (CSCC) patients with favorable prognosis, who show an increased presence of immune effector cells in the tumor, which outcome shows similarities with the HP-positive HNSCC cohort of patients. In addition, CD2, CD3D, CD3E, and CXCR6 signature is able to predict the best favorable prognosis in terms of overall survival of CSSC patients. Of note, these findings were not reproduced in other squamous cell carcinomas like esophageal SCC or lung SCC. Prospective confirmatory studies should be employed to validate these findings.
Collapse
Affiliation(s)
- Cristina Saiz-Ladera
- Experimental Therapeutics Unit, Medical Oncology Department, Hospital Clínico Universitario San Carlos (HCSC), Instituto de Investigación Sanitaria (IdISSC), Madrid, Spain
| | - Mariona Baliu-Piqué
- Experimental Therapeutics Unit, Medical Oncology Department, Hospital Clínico Universitario San Carlos (HCSC), Instituto de Investigación Sanitaria (IdISSC), Madrid, Spain
| | - Francisco J Cimas
- Translational Oncology Laboratory, Centro Regional de Investigaciones Biomedicas, Castilla-La Mancha University (CRIB-UCLM), Albacete, Spain
| | - Aránzazu Manzano
- Experimental Therapeutics Unit, Medical Oncology Department, Hospital Clínico Universitario San Carlos (HCSC), Instituto de Investigación Sanitaria (IdISSC), Madrid, Spain
| | - Vanesa García-Barberán
- Experimental Therapeutics Unit, Medical Oncology Department, Hospital Clínico Universitario San Carlos (HCSC), Instituto de Investigación Sanitaria (IdISSC), Madrid, Spain
| | - Santiago Cabezas Camarero
- Experimental Therapeutics Unit, Medical Oncology Department, Hospital Clínico Universitario San Carlos (HCSC), Instituto de Investigación Sanitaria (IdISSC), Madrid, Spain
| | - Gonzalo Fernández Hinojal
- Experimental Therapeutics Unit, Medical Oncology Department, Hospital Clínico Universitario San Carlos (HCSC), Instituto de Investigación Sanitaria (IdISSC), Madrid, Spain
| | - Atanasio Pandiella
- Instituto de Biología Molecular y Celular del Cáncer and Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Centro Superior de Investigaciones Científicas (CSIC), Salamanca, Spain
| | - Balázs Győrffy
- Department of Bioinformatics, Faculty of Medicine, Semmelweis University, Budapest, Hungary.,2nd Department of Pediatrics, Faculty of Medicine, Semmelweis University, Budapest, Hungary.,Institute of Enzymology, Research Centre of Nature Sciences, Budapest, Hungary
| | - David Stewart
- Ottawa University Hospital, University of Ottawa, Ottawa, ON, Canada
| | - Juan J Cruz-Hernández
- Instituto de Biología Molecular y Celular del Cáncer and Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Centro Superior de Investigaciones Científicas (CSIC), Salamanca, Spain
| | - Pedro Pérez-Segura
- Experimental Therapeutics Unit, Medical Oncology Department, Hospital Clínico Universitario San Carlos (HCSC), Instituto de Investigación Sanitaria (IdISSC), Madrid, Spain
| | - Alberto Ocana
- Experimental Therapeutics Unit, Medical Oncology Department, Hospital Clínico Universitario San Carlos (HCSC), Instituto de Investigación Sanitaria (IdISSC), Madrid, Spain.,Translational Oncology Laboratory, Centro Regional de Investigaciones Biomedicas, Castilla-La Mancha University (CRIB-UCLM), Albacete, Spain
| |
Collapse
|
219
|
Baik H, Lee HJ, Park J, Park HY, Park J, Lee S, Bae KB. Complete response of MSI-high metastatic colon cancer following treatment with regorafenib: A case report. Mol Clin Oncol 2021; 15:243. [PMID: 34650810 PMCID: PMC8506641 DOI: 10.3892/mco.2021.2405] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 08/06/2021] [Indexed: 01/29/2023] Open
Abstract
Regorafenib has been demonstrated to prolong survival in patients with metastatic colorectal cancer refractory to standard chemotherapy. However, overall survival is limited to 2.5 months. The present report describes a unique case of metastatic colon cancer, which showed a complete response to regorafenib. A 54-year-old woman was diagnosed with right colon cancer obstruction with peritoneal seeding. The patient underwent laparoscopic right hemicolectomy, and the pathology was T4aN2bM1, moderately differentiated adenocarcinoma with high microsatellite instability (MSI-H) and wild-type KRAS/NRAS. The first-line chemotherapy was fluorouracil, leucovorin and irinotecan with cetuximab. After 12 cycles, recurrence at the anastomotic site was identified. The patient underwent palliative colectomy, and superior mesenteric artery (SMA) lymph node metastases were evident. The patient received second-line chemotherapy of fluorouracil, leucovorin and oxaliplatin with bevacizumab. Progression of metastasis to the right common iliac lymph nodes was detected after only four cycles of therapy. Thereafter, the patient received regorafenib as third-line therapy, starting with 160 mg for two cycles and reducing the dose thereafter, for a total of 17 cycles. The previously confirmed SMA lymph node metastasis had disappeared after the seventh cycle, and the right common iliac lymph node metastasis was not visible on CT after the 16th cycle. The patient decided to terminate regorafenib and has not experienced recurrence 2 years since treatment cessation. This is the first report of refractory metastatic colon cancer with MSI-H showing a complete response to regorafenib. Further studies are required to investigate the efficacy of regorafenib in refractory metastatic colon cancer with MSI-H and to elucidate the mechanism of remission.
Collapse
Affiliation(s)
- Hyungjoo Baik
- Department of Surgery, Inje University, College of Medicine, Busan Paik Hospital, Busan 47392, Republic of Korea
| | - Hee Ju Lee
- Department of Surgery, Inje University, College of Medicine, Busan Paik Hospital, Busan 47392, Republic of Korea
| | - Jueun Park
- Department of Surgery, Inje University, College of Medicine, Busan Paik Hospital, Busan 47392, Republic of Korea
| | - Ha Young Park
- Department of Pathology, Inje University, College of Medicine, Busan Paik Hospital, Busan 47392, Republic of Korea
| | - Jinyoung Park
- Department of Radiology, Inje University, College of Medicine, Busan Paik Hospital, Busan 47392, Republic of Korea
| | - Sunseong Lee
- Department of Nuclear Medicine, Inje University, College of Medicine, Busan Paik Hospital, Busan 47392, Republic of Korea
| | - Ki Beom Bae
- Department of Surgery, Inje University, College of Medicine, Busan Paik Hospital, Busan 47392, Republic of Korea
| |
Collapse
|
220
|
Wang X, Tokheim C, Gu SS, Wang B, Tang Q, Li Y, Traugh N, Zeng Z, Zhang Y, Li Z, Zhang B, Fu J, Xiao T, Li W, Meyer CA, Chu J, Jiang P, Cejas P, Lim K, Long H, Brown M, Liu XS. In vivo CRISPR screens identify the E3 ligase Cop1 as a modulator of macrophage infiltration and cancer immunotherapy target. Cell 2021; 184:5357-5374.e22. [PMID: 34582788 PMCID: PMC9136996 DOI: 10.1016/j.cell.2021.09.006] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 06/14/2021] [Accepted: 09/01/2021] [Indexed: 12/26/2022]
Abstract
Despite remarkable clinical efficacy of immune checkpoint blockade (ICB) in cancer treatment, ICB benefits for triple-negative breast cancer (TNBC) remain limited. Through pooled in vivo CRISPR knockout (KO) screens in syngeneic TNBC mouse models, we found that deletion of the E3 ubiquitin ligase Cop1 in cancer cells decreases secretion of macrophage-associated chemokines, reduces tumor macrophage infiltration, enhances anti-tumor immunity, and strengthens ICB response. Transcriptomics, epigenomics, and proteomics analyses revealed that Cop1 functions through proteasomal degradation of the C/ebpδ protein. The Cop1 substrate Trib2 functions as a scaffold linking Cop1 and C/ebpδ, which leads to polyubiquitination of C/ebpδ. In addition, deletion of the E3 ubiquitin ligase Cop1 in cancer cells stabilizes C/ebpδ to suppress expression of macrophage chemoattractant genes. Our integrated approach implicates Cop1 as a target for improving cancer immunotherapy efficacy in TNBC by regulating chemokine secretion and macrophage infiltration in the tumor microenvironment.
Collapse
Affiliation(s)
- Xiaoqing Wang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02215, USA; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Collin Tokheim
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02215, USA; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Shengqing Stan Gu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02215, USA; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Binbin Wang
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02215, USA
| | - Qin Tang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Yihao Li
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Nicole Traugh
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Zexian Zeng
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02215, USA; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Yi Zhang
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02215, USA; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Ziyi Li
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Boning Zhang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02215, USA; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Jingxin Fu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Tengfei Xiao
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02215, USA; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Wei Li
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02215, USA; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Clifford A Meyer
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02215, USA; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Jun Chu
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui 230038, China
| | - Peng Jiang
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02215, USA; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Paloma Cejas
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Klothilda Lim
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Henry Long
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Myles Brown
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA.
| | - X Shirley Liu
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02215, USA; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA.
| |
Collapse
|
221
|
Roudko V, Cimen Bozkus C, Greenbaum B, Lucas A, Samstein R, Bhardwaj N. Lynch Syndrome and MSI-H Cancers: From Mechanisms to "Off-The-Shelf" Cancer Vaccines. Front Immunol 2021; 12:757804. [PMID: 34630437 PMCID: PMC8498209 DOI: 10.3389/fimmu.2021.757804] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/08/2021] [Indexed: 12/22/2022] Open
Abstract
Defective DNA mismatch repair (dMMR) is associated with many cancer types including colon, gastric, endometrial, ovarian, hepatobiliary tract, urinary tract, brain and skin cancers. Lynch syndrome - a hereditary cause of dMMR - confers increased lifetime risk of malignancy in different organs and tissues. These Lynch syndrome pathogenic alleles are widely present in humans at a 1:320 population frequency of a single allele and associated with an up to 80% risk of developing microsatellite unstable cancer (microsatellite instability - high, or MSI-H). Advanced MSI-H tumors can be effectively treated with checkpoint inhibitors (CPI), however, that has led to response rates of only 30-60% despite their high tumor mutational burden and favorable immune gene signatures in the tumor microenvironment (TME). We and others have characterized a subset of MSI-H associated highly recurrent frameshift mutations that yield shared immunogenic neoantigens. These frameshifts might serve as targets for off-the-shelf cancer vaccine designs. In this review we discuss the current state of research around MSI-H cancer vaccine development, its application to MSI-H and Lynch syndrome cancer patients and the utility of MSI-H as a biomarker for CPI therapy. We also summarize the tumor intrinsic mechanisms underlying the high occurrence rates of certain frameshifts in MSI-H. Finally, we provide an overview of pivotal clinical trials investigating MSI-H as a biomarker for CPI therapy and MSI-H vaccines. Overall, this review aims to inform the development of novel research paradigms and therapeutics.
Collapse
Affiliation(s)
- Vladimir Roudko
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Cansu Cimen Bozkus
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Benjamin Greenbaum
- Epidemiology and Biostatistics, Computational Oncology program, Memorial Sloan Kettering Cancer Center, New York, NY, United States.,Physiology, Biophysics & Systems Biology, Weill Cornell Medical College, New York, NY, United States
| | - Aimee Lucas
- Henry D. Janowitz Division of Gastroenterology, Samuel D. Bronfman Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Robert Samstein
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Radiation Oncology, Mount Sinai Hospital, New York, NY, United States
| | - Nina Bhardwaj
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
222
|
Qiu H. Genomic and Immunologic Markers of Intrinsic Resistance to Pembrolizumab Monotherapy in Microsatellite Instability-High Gastric Cancer: Observations from a Prospective Phase II Study. Glob Med Genet 2021; 9:60-62. [PMID: 35707777 PMCID: PMC9192172 DOI: 10.1055/s-0041-1736237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Affiliation(s)
- Haibo Qiu
- Department of Gastric Surgery, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| |
Collapse
|
223
|
Hu X, Xu H, Xue Q, Wen R, Jiao W, Tian K. The role of ERBB4 mutations in the prognosis of advanced non-small cell lung cancer treated with immune checkpoint inhibitors. Mol Med 2021; 27:126. [PMID: 34620079 PMCID: PMC8496027 DOI: 10.1186/s10020-021-00387-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/23/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) have witnessed the achievements of convincing clinical benefits that feature the significantly prolonged overall survival (OS) of patients suffering from advanced non-small cell lung cancer (NSCLC), according to reports recently. Sensitivity to immunotherapy is related to several biomarkers, such as PD-L1 expression, TMB level, MSI-H and MMR. However, a further investigation into the novel biomarkers of the prognosis on ICIs treatment is required. In addition, there is an urgent demand for the establishment of a systematic hazard model to assess the efficacy of ICIs therapy for advanced NSCLC patients. METHODS In this study, the gene mutation and clinical data of NSCLC patients was obtained from the TCGA database, followed by the analysis of the detailed clinical information and mutational data relating to two advanced NSCLC cohorts receiving the ICIs treatment from the cBioPortal of Cancer Genomics. The Kaplan-Meier plot method was used to perform survival analyses, while selected variables were adopted to develop a systematic nomogram. The prognostic significance of ERBB4 in pan-cancer was analyzed by another cohort from the cBioPortal of Cancer Genomics. RESULTS The mutation frequencies of TP53 and ERBB4 were 54% and 8% in NSCLC, respectively. The mutual exclusive analysis in cBioPortal has indicated that ERBB4 does show co-occurencing mutations with TP53. Patients with ERBB4 mutations were confirmed to have better prognosis for ICIs treatment, compared to those seeing ERBB4 wild type (PFS: exact p = 0.017; OS: exact p < 0.01) and only TP53 mutations (OS: p = 0.021). The mutation status of ERBB4 and TP53 was tightly linked to DCB of ICIs treatment, PD-L1 expression, TMB value, and TIICs. Finally, a novel nomogram was built to evaluate the efficacy of ICIs therapy. CONCLUSION ERBB4 mutations could serve as a predictive biomarker for the prognosis of ICIs treatment. The systematic nomogram was proven to have the great potential for evaluating the efficacy of ICIs therapy for advanced NSCLC patients.
Collapse
Affiliation(s)
- Xilin Hu
- Department of Thoracic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Hanlin Xu
- Department of Thoracic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Qianwen Xue
- Qingdao Maternal & Child Health and Family Planning Service Center, Qingdao, 266000, Shandong, China
| | - Ruran Wen
- Department of Thoracic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Wenjie Jiao
- Department of Thoracic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Kaihua Tian
- Department of Thoracic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China.
| |
Collapse
|
224
|
Abstract
PURPOSE The purpose of this review is to summarize recent updates regarding immune checkpoint inhibitor therapy in GBM patients including updates in brain immunology, clinical trials, mechanisms of resistance, and biomarkers of response. METHODS PubMed was searched to identify recent relevant articles on immune checkpoint inhibitor therapy as it pertains to GBM. Clinicaltrials.gov was also searched to identify relevant clinical trials. RESULTS The reported randomized phase 2 and 3 clinical trials of immune checkpoint inhibitors (alone or in combination with standard therapy) have not demonstrated a survival benefit to date in either newly diagnosed or recurrent GBM. A small randomized surgical study of neoadjuvant and adjuvant pembrolizumab suggested an increase in PFS and OS compared to adjuvant pembrolizumab only; further studies are needed to validate this finding. CONCLUSIONS Despite the positive impact of immune checkpoint inhibitors in many cancers, only a small subset of GBM patients respond to these agents. Further research is needed to identify biomarkers of response and therapies to rationally combine with immune checkpoint inhibitors.
Collapse
|
225
|
Lozinski M, Bowden NA, Graves MC, Fay M, Tooney PA. DNA damage repair in glioblastoma: current perspectives on its role in tumour progression, treatment resistance and PIKKing potential therapeutic targets. Cell Oncol (Dordr) 2021; 44:961-981. [PMID: 34057732 DOI: 10.1007/s13402-021-00613-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 05/17/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The aggressive, invasive and treatment resistant nature of glioblastoma makes it one of the most lethal cancers in humans. Total surgical resection is difficult, and a combination of radiation and chemotherapy is used to treat the remaining invasive cells beyond the tumour border by inducing DNA damage and activating cell death pathways in glioblastoma cells. Unfortunately, recurrence is common and a major hurdle in treatment, often met with a more aggressive and treatment resistant tumour. A mechanism of resistance is the response of DNA repair pathways upon treatment-induced DNA damage, which enact cell-cycle arrest and repair of DNA damage that would otherwise cause cell death in tumour cells. CONCLUSIONS In this review, we discuss the significance of DNA repair mechanisms in tumour formation, aggression and treatment resistance. We identify an underlying trend in the literature, wherein alterations in DNA repair pathways facilitate glioma progression, while established high-grade gliomas benefit from constitutively active DNA repair pathways in the repair of treatment-induced DNA damage. We also consider the clinical feasibility of inhibiting DNA repair in glioblastoma and current strategies of using DNA repair inhibitors as agents in combination with chemotherapy, radiation or immunotherapy. Finally, the importance of blood-brain barrier penetrance when designing novel small-molecule inhibitors is discussed.
Collapse
Affiliation(s)
- Mathew Lozinski
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Newcastle, NSW, Australia
- Centre for Drug Repurposing and Medicines Research, University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Nikola A Bowden
- Centre for Drug Repurposing and Medicines Research, University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, Newcastle, NSW, Australia
- School of Medicine and Public Health, Faculty of Health and Medicine, University of Newcastle, Newcastle, NSW, Australia
| | - Moira C Graves
- Centre for Drug Repurposing and Medicines Research, University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, Newcastle, NSW, Australia
- School of Medicine and Public Health, Faculty of Health and Medicine, University of Newcastle, Newcastle, NSW, Australia
| | - Michael Fay
- Centre for Drug Repurposing and Medicines Research, University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, Newcastle, NSW, Australia
- Genesis Cancer Care, Gateshead, New South Wales, Australia
| | - Paul A Tooney
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Newcastle, NSW, Australia.
- Centre for Drug Repurposing and Medicines Research, University of Newcastle, Newcastle, NSW, Australia.
- Hunter Medical Research Institute, Newcastle, NSW, Australia.
| |
Collapse
|
226
|
Gebert J, Gelincik O, Oezcan-Wahlbrink M, Marshall JD, Hernandez-Sanchez A, Urban K, Long M, Cortes E, Tosti E, Katzenmaier EM, Song Y, Elsaadi A, Deng N, Vilar E, Fuchs V, Nelius N, Yuan YP, Ahadova A, Sei S, Shoemaker RH, Umar A, Wei L, Liu S, Bork P, Edelmann W, von Knebel Doeberitz M, Lipkin SM, Kloor M. Recurrent Frameshift Neoantigen Vaccine Elicits Protective Immunity With Reduced Tumor Burden and Improved Overall Survival in a Lynch Syndrome Mouse Model. Gastroenterology 2021; 161:1288-1302.e13. [PMID: 34224739 PMCID: PMC10184299 DOI: 10.1053/j.gastro.2021.06.073] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 06/02/2021] [Accepted: 06/28/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS DNA mismatch repair deficiency drives microsatellite instability (MSI). Cells with MSI accumulate numerous frameshift mutations. Frameshift mutations affecting cancer-related genes may promote tumorigenesis and, therefore, are shared among independently arising MSI tumors. Consequently, such recurrent frameshift mutations can give rise to shared immunogenic frameshift peptides (FSPs) that represent ideal candidates for a vaccine against MSI cancer. Pathogenic germline variants of mismatch repair genes cause Lynch syndrome (LS), a hereditary cancer syndrome affecting approximately 20-25 million individuals worldwide. Individuals with LS are at high risk of developing MSI cancer. Previously, we demonstrated safety and immunogenicity of an FSP-based vaccine in a phase I/IIa clinical trial in patients with a history of MSI colorectal cancer. However, the cancer-preventive effect of FSP vaccination in the scenario of LS has not yet been demonstrated. METHODS A genome-wide database of 488,235 mouse coding mononucleotide repeats was established, from which a set of candidates was selected based on repeat length, gene expression, and mutation frequency. In silico prediction, in vivo immunogenicity testing, and epitope mapping was used to identify candidates for FSP vaccination. RESULTS We identified 4 shared FSP neoantigens (Nacad [FSP-1], Maz [FSP-1], Senp6 [FSP-1], Xirp1 [FSP-1]) that induced CD4/CD8 T cell responses in naïve C57BL/6 mice. Using VCMsh2 mice, which have a conditional knockout of Msh2 in the intestinal tract and develop intestinal cancer, we showed vaccination with a combination of only 4 FSPs significantly increased FSP-specific adaptive immunity, reduced intestinal tumor burden, and prolonged overall survival. Combination of FSP vaccination with daily naproxen treatment potentiated immune response, delayed tumor growth, and prolonged survival even more effectively than FSP vaccination alone. CONCLUSIONS Our preclinical findings support a clinical strategy of recurrent FSP neoantigen vaccination for LS cancer immunoprevention.
Collapse
MESH Headings
- Adjuvants, Immunologic/pharmacology
- Animals
- Anti-Inflammatory Agents, Non-Steroidal/pharmacology
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/immunology
- Antigens, Neoplasm/pharmacology
- Cancer Vaccines/genetics
- Cancer Vaccines/immunology
- Cancer Vaccines/pharmacology
- Colorectal Neoplasms, Hereditary Nonpolyposis/drug therapy
- Colorectal Neoplasms, Hereditary Nonpolyposis/genetics
- Colorectal Neoplasms, Hereditary Nonpolyposis/immunology
- Colorectal Neoplasms, Hereditary Nonpolyposis/pathology
- Databases, Genetic
- Disease Models, Animal
- Epitopes
- Frameshift Mutation
- Immunity, Cellular/drug effects
- Immunity, Humoral/drug effects
- Immunogenetic Phenomena
- Mice, Inbred C57BL
- Mice, Knockout
- MutS Homolog 2 Protein/genetics
- Naproxen/pharmacology
- Peptide Fragments/genetics
- Peptide Fragments/immunology
- Peptide Fragments/pharmacology
- Tumor Burden/drug effects
- Tumor Microenvironment
- Vaccination
- Vaccine Efficacy
- Mice
Collapse
Affiliation(s)
- Johannes Gebert
- Department of Applied Tumor Biology, Institute of Pathology, University of Heidelberg, Heidelberg, Germany; Clinical Cooperation Unit Applied Tumor Biology, German Cancer Research Center, Heidelberg, Germany.
| | | | - Mine Oezcan-Wahlbrink
- Department of Applied Tumor Biology, Institute of Pathology, University of Heidelberg, Heidelberg, Germany; Clinical Cooperation Unit Applied Tumor Biology, German Cancer Research Center, Heidelberg, Germany
| | - Jason D Marshall
- Cancer ImmunoPrevention Laboratory, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Alejandro Hernandez-Sanchez
- Department of Applied Tumor Biology, Institute of Pathology, University of Heidelberg, Heidelberg, Germany; Clinical Cooperation Unit Applied Tumor Biology, German Cancer Research Center, Heidelberg, Germany
| | - Katharina Urban
- Department of Applied Tumor Biology, Institute of Pathology, University of Heidelberg, Heidelberg, Germany; Clinical Cooperation Unit Applied Tumor Biology, German Cancer Research Center, Heidelberg, Germany
| | - Mark Long
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Eduardo Cortes
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Elena Tosti
- Department of Cell Biology, Albert Einstein College of Medicine, New York, New York
| | - Eva-Maria Katzenmaier
- Department of Applied Tumor Biology, Institute of Pathology, University of Heidelberg, Heidelberg, Germany; Clinical Cooperation Unit Applied Tumor Biology, German Cancer Research Center, Heidelberg, Germany
| | - Yurong Song
- Cancer ImmunoPrevention Laboratory, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Ali Elsaadi
- Weill Cornell Medical College, New York, New York
| | - Nan Deng
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Eduardo Vilar
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Vera Fuchs
- Department of Applied Tumor Biology, Institute of Pathology, University of Heidelberg, Heidelberg, Germany; Clinical Cooperation Unit Applied Tumor Biology, German Cancer Research Center, Heidelberg, Germany
| | - Nina Nelius
- Department of Applied Tumor Biology, Institute of Pathology, University of Heidelberg, Heidelberg, Germany; Clinical Cooperation Unit Applied Tumor Biology, German Cancer Research Center, Heidelberg, Germany
| | - Yan P Yuan
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
| | - Aysel Ahadova
- Department of Applied Tumor Biology, Institute of Pathology, University of Heidelberg, Heidelberg, Germany; Clinical Cooperation Unit Applied Tumor Biology, German Cancer Research Center, Heidelberg, Germany
| | - Shizuko Sei
- Division of Cancer Prevention, National Cancer Institute, Bethesda, Maryland
| | - Robert H Shoemaker
- Division of Cancer Prevention, National Cancer Institute, Bethesda, Maryland
| | - Asad Umar
- Division of Cancer Prevention, National Cancer Institute, Bethesda, Maryland
| | - Lei Wei
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Song Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Peer Bork
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany; Max Delbrück Centre for Molecular Medicine, Berlin, Germany; Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Winfried Edelmann
- Department of Cell Biology, Albert Einstein College of Medicine, New York, New York
| | - Magnus von Knebel Doeberitz
- Department of Applied Tumor Biology, Institute of Pathology, University of Heidelberg, Heidelberg, Germany; Clinical Cooperation Unit Applied Tumor Biology, German Cancer Research Center, Heidelberg, Germany.
| | | | - Matthias Kloor
- Department of Applied Tumor Biology, Institute of Pathology, University of Heidelberg, Heidelberg, Germany; Clinical Cooperation Unit Applied Tumor Biology, German Cancer Research Center, Heidelberg, Germany.
| |
Collapse
|
227
|
Westcott PMK, Sacks NJ, Schenkel JM, Ely ZA, Smith O, Hauck H, Jaeger AM, Zhang D, Backlund CM, Beytagh MC, Patten JJ, Elbashir R, Eng G, Irvine DJ, Yilmaz OH, Jacks T. Low neoantigen expression and poor T-cell priming underlie early immune escape in colorectal cancer. NATURE CANCER 2021; 2:1071-1085. [PMID: 34738089 PMCID: PMC8562866 DOI: 10.1038/s43018-021-00247-z] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 07/16/2021] [Indexed: 02/08/2023]
Abstract
Immune evasion is a hallmark of cancer, and therapies that restore immune surveillance have proven highly effective in cancers with high tumor mutation burden (TMB) (e.g., those with microsatellite instability (MSI)). Whether low TMB cancers, which are largely refractory to immunotherapy, harbor potentially immunogenic neoantigens remains unclear. Here, we show that tumors from all patients with microsatellite stable (MSS) colorectal cancer (CRC) express clonal predicted neoantigens despite low TMB. Unexpectedly, these neoantigens are broadly expressed at lower levels compared to those in MSI CRC. Using a versatile platform for modulating neoantigen expression in CRC organoids and transplantation into the distal colon of mice, we show that low expression precludes productive cross priming and drives immediate T cell dysfunction. Strikingly, experimental or therapeutic rescue of priming rendered T cells capable of controlling tumors with low neoantigen expression. These findings underscore a critical role of neoantigen expression level in immune evasion and therapy response.
Collapse
Affiliation(s)
- Peter M K Westcott
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Nathan J Sacks
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jason M Schenkel
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Zackery A Ely
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Olivia Smith
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Haley Hauck
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alex M Jaeger
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Daniel Zhang
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Coralie M Backlund
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Mary C Beytagh
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - J J Patten
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ryan Elbashir
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - George Eng
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Darrell J Irvine
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Omer H Yilmaz
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Tyler Jacks
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
228
|
Koh G, Degasperi A, Zou X, Momen S, Nik-Zainal S. Mutational signatures: emerging concepts, caveats and clinical applications. Nat Rev Cancer 2021; 21:619-637. [PMID: 34316057 DOI: 10.1038/s41568-021-00377-7] [Citation(s) in RCA: 153] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/08/2021] [Indexed: 02/05/2023]
Abstract
Whole-genome sequencing has brought the cancer genomics community into new territory. Thanks to the sheer power provided by the thousands of mutations present in each patient's cancer, we have been able to discern generic patterns of mutations, termed 'mutational signatures', that arise during tumorigenesis. These mutational signatures provide new insights into the causes of individual cancers, revealing both endogenous and exogenous factors that have influenced cancer development. This Review brings readers up to date in a field that is expanding in computational, experimental and clinical directions. We focus on recent conceptual advances, underscoring some of the caveats associated with using the mutational signature frameworks and highlighting the latest experimental insights. We conclude by bringing attention to areas that are likely to see advancements in clinical applications.
Collapse
Affiliation(s)
- Gene Koh
- Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- MRC Cancer Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Andrea Degasperi
- Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- MRC Cancer Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Xueqing Zou
- Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- MRC Cancer Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Sophie Momen
- Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- MRC Cancer Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Serena Nik-Zainal
- Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge, UK.
- MRC Cancer Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK.
| |
Collapse
|
229
|
Lee D, Park J, Choi H, Gim G, Cho S, Kim L, Oh Y, Kang CY, Kim Y, Tan D, de Viveiros PAH, Chae YK. Association of HLA class I homozygosity with unfavorable clinical outcomes in patients with non-small cell lung cancer treated with chemo-immunotherapy or immunotherapy as first-line therapy. Heliyon 2021; 7:e07916. [PMID: 34568594 PMCID: PMC8449023 DOI: 10.1016/j.heliyon.2021.e07916] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/19/2021] [Accepted: 08/31/2021] [Indexed: 11/19/2022] Open
Abstract
Background Homozygosity at HLA-I locus has been reported to be an unfavorable predictive biomarker of second-line or beyond immunotherapy in patients with different types of cancer. The linkage between HLA-I zygosity and survival in NSCLC patients treated with first-line immunotherapy with or without chemotherapy has not been reported. Methods Next generation sequencing with HLA genotyping was performed on patients with advanced NSCLC treated with immune checkpoint inhibitors with or without chemotherapy as first-line (N = 29). Progression free survival was compared between HLA-I homozygous (defined as homozygosity in at least one locus A, B, or C) and heterozygous patients. Kaplan-Meier curves were built, and log-rank test was used. Results Among 29 enrollees, 25 patients (86.2%) were HLA-I heterozygous and four patients (13.8%) were HLA-I homozygous. Treatment response was not available in five patients with HLA-I heterozygosity. Among 20 patients with HLA-I heterozygosity, five patients (20.0%) had partial response, 10 patients (50.0%) had stable disease, two patients (8.0%) had non-complete response/non-progressive disease, and three patients (12.0%) had progressive disease. Among four patients with HLA-I heterozygosity, one patient (25.0%) had partial response, one patient (25.0%) had stable disease, and two patients (50.0%) had progressive disease. The median progression free survival was not reached in heterozygous group and was 2.97 months in homozygous group (Log-rank p = 0.68). Conclusions We observed a trend toward an inverse association between HLA-I homozygosity and survival outcomes in patients with NSCLC treated with first-line therapy in conjunction with immunotherapy. Further prospective studies to validate aforementioned relationship are warranted.
Collapse
Affiliation(s)
- Dongyup Lee
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Geisinger Health System, Danville, PA, USA
| | - Jonghanne Park
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
- Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Horyun Choi
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- University of Hawaii, Honolulu, HI, USA
| | - Gahyun Gim
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- St. Elizabeth's Medical Center, Tufts University School of Medicine, Boston, MA, USA
| | - Sukjoo Cho
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Leeseul Kim
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Youjin Oh
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Cyra Y. Kang
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- John H. Stroger, Jr. Hospital of Cook County, Chicago, IL, USA
| | - Yeseul Kim
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Dean Tan
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | - Young Kwang Chae
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA
- Corresponding author.
| |
Collapse
|
230
|
Xiao D, Deng Q, He D, Huang Y, Liang W, Wang F, Yang H. High Tumor Mutation Burden and DNA Repair Gene Mutations are Associated with Primary Resistance to Crizotinib in ALK-Rearranged Lung Cancer. Onco Targets Ther 2021; 14:4809-4817. [PMID: 34552337 PMCID: PMC8450189 DOI: 10.2147/ott.s325443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/31/2021] [Indexed: 11/23/2022] Open
Abstract
Background About 20% of patients with ALK-rearranged non-small cell lung cancer (NSCLC) develop acquired resistance to tyrosine kinase inhibitor (TKI) during the first 6 months. This study aimed to examine the molecular mechanisms of early TKI resistance and prognosis in ALK-rearranged NSCLC. Methods Ten patients with ALK-rearranged NSCLC were included: five who developed rapid resistance to crizotinib (progression-free survival (PFS) ≤3 months) and five who exhibited a good response to crizotinib (PFS ≥36 months). The tumor specimens were subjected to whole-exome sequencing (WES). The validation cohort included 19 patients with ALK-rearranged NSCLC who received crizotinib; targeted sequencing of 43 selected genes was performed. The effect of the TP53 G245S mutation on crizotinib sensitivity was tested in H3122 cells. Results Mutations in DNA repair-associated genes were identified in primary resistance to crizotinib. Patients with a poor response to crizotinib harbored a greater burden of somatic mutations than those with a good response [median somatic mutations, 136 (range, 72-180) vs 31 (range, 10-48)]. Compared with the patients carrying wild-type TP53 or TP53 exon 3 deletion, 29 patients with TP53 G245S mutation showed a shorter survival time (P < 0.05), with a median PFS of 3 (95% CI: 1.9-4.1) months and a median overall survival of 7 (95% CI: 3.4-10.5) months. TP53 mutation promoted the proliferation of EML4-ALK-rearranged H3122 cells by approximately 3 folds (P < 0.001). H3122 cells with TP53 mutant were more sensitive to crizotinib compared with control cells. Conclusion A higher mutation burden and mutations in DNA repair gene, including TP53, were potentially associated with primary resistance to crizotinib in ALK-rearranged NSCLC. An immune-checkpoint inhibition strategy could be examined, which might overcome primary resistance to crizotinib in ALK-rearranged NSCLC.
Collapse
Affiliation(s)
- Dakai Xiao
- Research Center forTranslational Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, People's Republic of China
| | - Qiuhua Deng
- Research Center forTranslational Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, People's Republic of China
| | - Dongyun He
- Department of Thoracic Oncology, State Key Laboratory of Respiratory Diseases, National Clinical Research Center of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, People's Republic of China
| | - Ying Huang
- Department of Thoracic Oncology, State Key Laboratory of Respiratory Diseases, National Clinical Research Center of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, People's Republic of China
| | - Wenchi Liang
- Department of Thoracic Oncology, State Key Laboratory of Respiratory Diseases, National Clinical Research Center of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, People's Republic of China
| | - Fengnan Wang
- Department of Thoracic Oncology, State Key Laboratory of Respiratory Diseases, National Clinical Research Center of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, People's Republic of China
| | - Haihong Yang
- Department of Thoracic Oncology, State Key Laboratory of Respiratory Diseases, National Clinical Research Center of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, People's Republic of China
| |
Collapse
|
231
|
Pisibon C, Ouertani A, Bertolotto C, Ballotti R, Cheli Y. Immune Checkpoints in Cancers: From Signaling to the Clinic. Cancers (Basel) 2021; 13:cancers13184573. [PMID: 34572799 PMCID: PMC8468441 DOI: 10.3390/cancers13184573] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 12/19/2022] Open
Abstract
The immune system is known to help fight cancers. Ten years ago, the first immune checkpoint inhibitor targeting CTLA4 was approved by the FDA to treat patients with metastatic melanoma. Since then, immune checkpoint therapies have revolutionized the field of oncology and the treatment of cancer patients. Numerous immune checkpoint inhibitors have been developed and tested, alone or in combination with other treatments, in melanoma and other cancers, with overall clear benefits to patient outcomes. However, many patients fail to respond or develop resistance to these treatments. It is therefore essential to decipher the mechanisms of action of immune checkpoints and to understand how immune cells are affected by signaling to be able to understand and overcome resistance. In this review, we discuss the signaling and effects of each immune checkpoint on different immune cells and their biological and clinical relevance. Restoring the functionality of T cells and their coordination with other immune cells is necessary to overcome resistance and help design new clinical immunotherapy strategies. In this respect, NK cells have recently been implicated in the resistance to anti-PD1 evoked by a protein secreted by melanoma, ITGBL1. The complexity of this network will have to be considered to improve the efficiency of future immunotherapies and may lead to the discovery of new immune checkpoints.
Collapse
Affiliation(s)
- Céline Pisibon
- Université Côte d’Azur, 06103 Nice, France; (C.P.); (A.O.); (C.B.); (R.B.)
- INSERM, Centre Méditerranéen de Médecine Moléculaire, Biology and Pathologies of Melanocytes, Team1, 06200 Nice, France
| | - Amira Ouertani
- Université Côte d’Azur, 06103 Nice, France; (C.P.); (A.O.); (C.B.); (R.B.)
- INSERM, Centre Méditerranéen de Médecine Moléculaire, Biology and Pathologies of Melanocytes, Team1, 06200 Nice, France
| | - Corine Bertolotto
- Université Côte d’Azur, 06103 Nice, France; (C.P.); (A.O.); (C.B.); (R.B.)
- INSERM, Centre Méditerranéen de Médecine Moléculaire, Biology and Pathologies of Melanocytes, Team1, 06200 Nice, France
| | - Robert Ballotti
- Université Côte d’Azur, 06103 Nice, France; (C.P.); (A.O.); (C.B.); (R.B.)
- INSERM, Centre Méditerranéen de Médecine Moléculaire, Biology and Pathologies of Melanocytes, Team1, 06200 Nice, France
| | - Yann Cheli
- Université Côte d’Azur, 06103 Nice, France; (C.P.); (A.O.); (C.B.); (R.B.)
- INSERM, Centre Méditerranéen de Médecine Moléculaire, Biology and Pathologies of Melanocytes, Team1, 06200 Nice, France
- Correspondence:
| |
Collapse
|
232
|
Srivastava RM, Purohit TA, Chan TA. Diverse Neoantigens and the Development of Cancer Therapies. Semin Radiat Oncol 2021; 30:113-128. [PMID: 32381291 DOI: 10.1016/j.semradonc.2019.12.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cancer is the manifestation of uncontrolled cellular growth and immune escape mechanisms. Unrestrained tumor growth can be associated with incidental errors in the genome during replication and genotoxic agents can alter the structure and sequence of our DNA. Among all genetic aberrations in cancer, only limited number of mutations can produce immunogenic antigens which have the potential to bind human leukocyte antigen class I or human leukocyte antigen class II, and help activate the adaptive immune system. These neoantigens can be recognized by CD8+ and CD4+ neoantigen-specific T lymphocytes. Recently, several immune checkpoint targeting drugs have been approved for clinical use. Primarily, these drugs expand and facilitate the cytotoxic activity of neoantigen-specific T cells to eradicate tumors. Differential drug response across cancers could be attributed, at least in part, to differences in the 'tumor antigen landscape' and 'antigen presentation pathway' in patients. Although tumor mutational burden correlates with response to immune checkpoint inhibitors in many cancer types and has evolved as a broad biomarker, a comprehensive understanding of the neoantigen landscape and the function of cognate T cell responses is lacking and is needed for improved patient selection criteria and neoantigen vaccine design. Here, we review cancer neoantigens, their implications for antitumor responses, the dynamics of neoantigen-specific T cells, and the advancement of neoantigen-based therapy in proposed clinical trials.
Collapse
Affiliation(s)
- Raghvendra M Srivastava
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Tanaya A Purohit
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Timothy A Chan
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY; Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY.
| |
Collapse
|
233
|
Bashash D, Zandi Z, Kashani B, Pourbagheri-Sigaroodi A, Salari S, Ghaffari SH. Resistance to immunotherapy in human malignancies: Mechanisms, research progresses, challenges, and opportunities. J Cell Physiol 2021; 237:346-372. [PMID: 34498289 DOI: 10.1002/jcp.30575] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/19/2021] [Accepted: 08/24/2021] [Indexed: 12/31/2022]
Abstract
Despite remarkable advances in different types of cancer therapies, an effective therapeutic strategy is still a major and significant challenge. One of the most promising approaches in this regard is immunotherapy, which takes advantage of the patients' immune system; however, the many mechanisms that cancerous cells harbor to extend their survival make it impossible to gain perfect eradication of tumors. The response rate to cancer immunotherapies, especially checkpoint inhibitors and adoptive T cell therapy, substantially differs in various cancer types with the highest rates in advanced melanoma and non-small cell lung cancer. Indeed, the lack of response in many tumors indicates primary resistance that can originate from either tumor cells (intrinsic) or tumor microenvironment (extrinsic). On the other hand, some tumors show an initial response to immunotherapy followed by relapse in few months (acquired resistance). Understanding the underlying molecular mechanisms of immunotherapy resistance makes it possible to develop effective strategies to overcome this hurdle and boost therapy outcomes. In this review, we take a look at immunotherapy strategies and go through a number of primary and acquired resistance mechanisms. Also, we present various ongoing methods to overcoming resistance and introduce some promising fields to improve the outcome of immunotherapy in patients affected with cancer.
Collapse
Affiliation(s)
- Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Zandi
- Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahareh Kashani
- Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Atieh Pourbagheri-Sigaroodi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sina Salari
- Department of Medical Oncology, Hematology and Bone Marrow Transplantation, Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed H Ghaffari
- Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
234
|
Shin G, Greer SU, Hopmans E, Grimes SM, Lee H, Zhao L, Miotke L, Suarez C, Almeda AF, Haraldsdottir S, Ji HP. Profiling diverse sequence tandem repeats in colorectal cancer reveals co-occurrence of microsatellite and chromosomal instability involving Chromosome 8. Genome Med 2021; 13:145. [PMID: 34488871 PMCID: PMC8420050 DOI: 10.1186/s13073-021-00958-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 08/23/2021] [Indexed: 11/10/2022] Open
Abstract
We developed a sensitive sequencing approach that simultaneously profiles microsatellite instability, chromosomal instability, and subclonal structure in cancer. We assessed diverse repeat motifs across 225 microsatellites on colorectal carcinomas. Our study identified elevated alterations at both selected tetranucleotide and conventional mononucleotide repeats. Many colorectal carcinomas had a mix of genomic instability states that are normally considered exclusive. An MSH3 mutation may have contributed to the mixed states. Increased copy number of chromosome arm 8q was most prevalent among tumors with microsatellite instability, including a case of translocation involving 8q. Subclonal analysis identified co-occurring driver mutations previously known to be exclusive.
Collapse
Affiliation(s)
- GiWon Shin
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, 269 Campus Drive, Stanford, CA, 94305-5151, USA
| | - Stephanie U Greer
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, 269 Campus Drive, Stanford, CA, 94305-5151, USA
| | - Erik Hopmans
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, 269 Campus Drive, Stanford, CA, 94305-5151, USA
| | - Susan M Grimes
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, 269 Campus Drive, Stanford, CA, 94305-5151, USA
| | - HoJoon Lee
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, 269 Campus Drive, Stanford, CA, 94305-5151, USA
| | - Lan Zhao
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, 269 Campus Drive, Stanford, CA, 94305-5151, USA
| | - Laura Miotke
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, 269 Campus Drive, Stanford, CA, 94305-5151, USA
| | - Carlos Suarez
- Department of Pathology, Stanford University School of Medicine, Palo Alto, CA, 94304, USA
| | - Alison F Almeda
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, 269 Campus Drive, Stanford, CA, 94305-5151, USA
| | - Sigurdis Haraldsdottir
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, 269 Campus Drive, Stanford, CA, 94305-5151, USA
| | - Hanlee P Ji
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, 269 Campus Drive, Stanford, CA, 94305-5151, USA. .,Stanford Genome Technology Center, Stanford University, Palo Alto, CA, 94304, USA.
| |
Collapse
|
235
|
Chen F, Wendl MC, Wyczalkowski MA, Bailey MH, Li Y, Ding L. Moving pan-cancer studies from basic research toward the clinic. NATURE CANCER 2021; 2:879-890. [PMID: 35121865 DOI: 10.1038/s43018-021-00250-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 07/21/2021] [Indexed: 06/14/2023]
Abstract
Although all cancers share common hallmarks, we have long realized that there is no silver-bullet treatment for the disease. Many clinical oncologists specialize in a single cancer type, based predominantly on the tissue of origin. With advances brought by genetics and cancer genomic research, we now know that cancers are profoundly different, both in origins and in genetic alterations. At the same time, commonalities such as key driver mutations, altered pathways, mutational, immune and microbial signatures and other areas (many revealed by pan-cancer studies) point to the intriguing possibility of targeting common traits across diverse cancer types with the same therapeutic strategies. Studies designed to delineate differences and similarities across cancer types are thus critical in discerning the basic dynamics of oncogenesis, as well as informing diagnoses, prognoses and therapies. We anticipate growing emphases on the development and application of therapies targeting underlying commonalities of different cancer types, while tailoring to the unique tissue environment and intrinsic molecular fingerprints of each cancer type and subtype. Here we summarize the facets of pan-cancer research and how they are pushing progress toward personalized medicine.
Collapse
Affiliation(s)
- Feng Chen
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, USA
- Department of Cell Biology and Physiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Michael C Wendl
- Department of Genetics, Washington University in St. Louis, St. Louis, MO, USA
- Department of Mathematics, Washington University in St. Louis, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA
| | - Matthew A Wyczalkowski
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA
| | - Matthew H Bailey
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- Eccles Institute of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | - Yize Li
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA
| | - Li Ding
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA.
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, USA.
- Department of Genetics, Washington University in St. Louis, St. Louis, MO, USA.
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
236
|
Saeed OAM, Mann SA, Luchini C, Huang K, Zhang S, Sen JD, Piredda ML, Wang M, Baldrige LA, Sperling RM, Curless KL, Cheng L. Evaluating mismatch repair deficiency for solid tumor immunotherapy eligibility: immunohistochemistry versus microsatellite molecular testing. Hum Pathol 2021; 115:10-18. [PMID: 34052294 DOI: 10.1016/j.humpath.2021.05.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 05/13/2021] [Accepted: 05/20/2021] [Indexed: 12/11/2022]
Abstract
While many landmark solid tumor immunotherapy studies show clinical benefits for solid tumors with high microsatellite instability (MSI-H) and mismatch repair deficiency (dMMR), the methodologies focus only on confirmatory polymerase chain reaction (PCR) testing for MSI-H. Because some tumors are either dMMR or MSI-H but not the other, clinicians must choose between two testing methods for a broad patient population. We investigated the level of correlation between MMR protein immunohistochemistry (IHC) and microsatellite PCR testing results in 62 cancer patients. Thirty-five of the 62 cases (56.5%) were MSI-H by PCR, whereas 35 (56.5%) were dMMR by IHC. MMR IHC results correlated well with MSI PCR in 32 co-positive cases (91.4%) and 24 co-negative cases (88.9%). Six discrepant cases (9.7%) were identified, among which three were MSI-H and MMR intact, and three were dMMR and microsatellite stable. The results of this study highlight the implications of dMMR/MSI testing strategies on precision oncology. Co-testing with both MMR IHC and MSI PCR may be an effective screening strategy for evaluating immunotherapy eligibility status for solid tumors.
Collapse
Affiliation(s)
- Omer A M Saeed
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202 USA
| | - Steven A Mann
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202 USA
| | - Claudio Luchini
- Department of Diagnostics and Public Health, Section of Pathology, University of Verona, Verona, 37134, Italy
| | - Kun Huang
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN, 46202 USA; Regenstrief Institute, Indianapolis, 46202, USA
| | - Shaobo Zhang
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202 USA
| | - Joyashree D Sen
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202 USA
| | - Maria L Piredda
- Department of Diagnostics and Public Health, Section of Pathology, University of Verona, Verona, 37134, Italy
| | - Mingsheng Wang
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202 USA
| | - Lee Ann Baldrige
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202 USA
| | - R Matthew Sperling
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202 USA
| | - Kendra L Curless
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202 USA
| | - Liang Cheng
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202 USA.
| |
Collapse
|
237
|
Abstract
Herein, we wanted to explore the molecular landscape of mucosal melanoma from different sites and identify potential molecular targets for future therapy. Mucosal melanomas (N = 40) from different sites (conjunctiva, sinonasal cavity, rectum, and vagina) were investigated. Targeted next-generation sequencing along with Nanostring gene expression profiling was performed. Genetically, conjunctival melanoma was characterized by BRAF-V600E (30%) and NF1 mutations (17%). Mucosal melanomas at nonsun-exposed sites harbored alterations in NRAS, KIT, NF1, along with atypical BRAF mutations. When comparing the gene expression profile of conjunctival melanoma and nonsun-exposed mucosal melanoma, 41 genes were found to be significantly deregulated. Programmed death-ligand 1 (PD-L1) presented a significant sixfold upregulation in conjunctival melanoma compared to the other mucosal melanomas. While melanomas of the sinonasal cavity, vagina, and rectum are molecularly similar, conjunctival melanoma is characterized by a higher frequency of BRAF-V600E mutations and differential expression of several genes involved in the immune response.
Collapse
|
238
|
Pan YH, Zhang JX, Chen X, Liu F, Cao JZ, Chen Y, Chen W, Luo JH. Predictive Value of the TP53/ PIK3CA/ ATM Mutation Classifier for Patients With Bladder Cancer Responding to Immune Checkpoint Inhibitor Therapy. Front Immunol 2021; 12:643282. [PMID: 34421886 PMCID: PMC8371040 DOI: 10.3389/fimmu.2021.643282] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 07/15/2021] [Indexed: 12/18/2022] Open
Abstract
Background Only a proportion of patients with bladder cancer may benefit from durable response to immune checkpoint inhibitor (ICI) therapy. More precise indicators of response to immunotherapy are warranted. Our study aimed to construct a more precise classifier for predicting the benefit of immune checkpoint inhibitor therapy. Methods This multi-cohort study examined the top 20 frequently mutated genes in five cohorts of patients with bladder cancer and developed the TP53/PIK3CA/ATM mutation classifier based on the MSKCC ICI cohort. The classifier was then validated in a validation set consisting of IMvigor210 cohort and Broad/Dana-Farber cohort. The molecular profile and immune infiltration characteristics in each subgroup as defined by this classifier were explored. Results Among all 881 patients with bladder cancer, the mutation frequency of TP53, PIK3CA, and ATM ranked in the top 20 mutated genes. The TP53/PIK3CA/ATM mutation classifier was constructed based on the Memorial Sloan Kettering Cancer Center (MSKCC) ICI cohort and only showed predictive value for patients with bladder cancer who received ICI therapy (median overall survival: low-risk group, not reached; moderate-risk group, 13.0 months; high-risk group, 8.0 months; P<0.0001). Similar results were found in subgroups of MSKCC ICI cohort defined by tumor mutation burden. Multivariate Cox analysis revealed that the risk group defined by the classifier served as an independent prognostic factor for overall survival in patients with bladder cancer. Efficacy of the classifier was verified in a validation set consisting of IMvigor210 cohort and Broad/Dana-Farber cohort. Lower expression of PD-1/PD-L1 and less tumor immune infiltration were observed in the high-risk group than the other two groups of the TCGA cohort and the IMvigor210 cohort. Conclusion Our study constructed a TP53/PIK3CA/ATM mutation classifier to predict the benefit of immune checkpoint inhibitor therapy for patients with bladder cancer. This classifier can potentially complement the tumor mutation burden and guide clinical ICI treatment decisions according to distinct risk levels.
Collapse
Affiliation(s)
- Yi-Hui Pan
- Department of Urology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jia-Xing Zhang
- Department of Oncology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xu Chen
- Department of Urology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Fei Liu
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jia-Zheng Cao
- Department of Urology, Jiangmen Hospital, Sun Yat-sen University, Jiangmen, China
| | - Yu Chen
- Department of Urology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wei Chen
- Department of Urology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jun-Hang Luo
- Department of Urology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
239
|
Zhao X, Yuan C, Wangmo D, Subramanian S. Tumor-Secreted Extracellular Vesicles Regulate T-Cell Costimulation and Can Be Manipulated To Induce Tumor-Specific T-Cell Responses. Gastroenterology 2021; 161:560-574.e11. [PMID: 33895168 DOI: 10.1053/j.gastro.2021.04.036] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Colorectal cancer is a major cause of cancer-related deaths worldwide. Immune checkpoint blockade therapies are effective in 30%-60% of the microsatellite instable-high subtype. Unfortunately, most patients with colorectal cancer (>85%) have microsatellite stable tumors that do not respond. In this study, we aimed to decipher the underlying tumor-intrinsic mechanisms critical for improving immunotherapy in colorectal cancer. METHODS We used human and mouse tumor samples, cell lines, human colorectal cancer organoids, and various syngeneic orthotopic mouse models of late-stage colorectal cancer to define the effects of tumor cell-secreted extracellular vesicles (EVs) on antitumor immune response. RESULTS Our analyses of human colorectal cancer immune profiles and tumor-immune cell interactions showed that tumor-secreted EVs containing microRNA miR-424 suppressed the CD28-CD80/86 costimulatory pathway in tumor-infiltrating T cells and dendritic cells, leading to immune checkpoint blockade resistance. Modified tumor-secreted EVs with miR-424 knocked down enhanced T-cell-mediated antitumor immune response in colorectal cancer tumor models and increased the immune checkpoint blockade response. Intravenous injections of modified tumor-secreted EVs induced tumor antigen-specific immune responses and boosted the immune checkpoint blockade efficacy in colorectal cancer models that mimic aggressively progressing, late-stage disease. CONCLUSIONS Collectively, we show a critical role for tumor-secreted EVs in antitumor immune regulation and immunotherapy response, which could be developed as a novel treatment for immune checkpoint blockade-resistant colorectal cancer.
Collapse
Affiliation(s)
- Xianda Zhao
- Department of Surgery, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Ce Yuan
- Department of Surgery, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Dechen Wangmo
- Department of Surgery, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Subbaya Subramanian
- Department of Surgery, University of Minnesota Medical School, Minneapolis, Minnesota; Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota; Center for Immunology, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
240
|
Dias MH, Bernards R. Playing cancer at its own game: activating mitogenic signaling as a paradoxical intervention. Mol Oncol 2021; 15:1975-1985. [PMID: 33955157 PMCID: PMC8333773 DOI: 10.1002/1878-0261.12979] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/12/2021] [Accepted: 04/30/2021] [Indexed: 12/12/2022] Open
Abstract
In psychotherapy, paradoxical interventions are characterized by a deliberate reinforcement of the pathological behavior to improve the clinical condition. Such a counter-intuitive approach can be considered when more conventional interventions fail. The development of targeted cancer therapies has enabled the selective inhibition of activated oncogenic signaling pathways. However, in advanced cancers, such therapies, on average, deliver modest benefits due to the development of resistance. Here, we review the perspective of a 'paradoxical intervention' in cancer therapy: rather than attempting to inhibit oncogenic signaling, the proposed therapy would further activate mitogenic signaling to disrupt the labile homeostasis of cancer cells and overload stress response pathways. Such overactivation can potentially be combined with stress-targeted drugs to kill overstressed cancer cells. Although counter-intuitive, such an approach exploits intrinsic and ubiquitous differences between normal and cancer cells. We discuss the background underlying this unconventional approach and how such intervention might address some current challenges in cancer therapy.
Collapse
Affiliation(s)
- Matheus Henrique Dias
- Division of Molecular CarcinogenesisOncode InstituteThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - René Bernards
- Division of Molecular CarcinogenesisOncode InstituteThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| |
Collapse
|
241
|
Kang BW, Chau I. Current status and future potential of predictive biomarkers for immune checkpoint inhibitors in gastric cancer. ESMO Open 2021; 5:S2059-7029(20)32652-1. [PMID: 32817133 PMCID: PMC7440716 DOI: 10.1136/esmoopen-2020-000791] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/17/2020] [Accepted: 05/25/2020] [Indexed: 02/06/2023] Open
Abstract
Immunotherapy is revolutionising cancer treatment and has already emerged as standard treatment for patients with recurrent or metastatic gastric cancer (GC). Recent research has been focused on identifying robust predictive biomarkers for GC treated with immune checkpoint inhibitors (ICIs). The expression of programmed cell death protein-ligand-1 (PD-L1) is considered a manifestation of immune response evasion, and several studies have already reported the potential of PD-L1 expression as a predictive parameter for various human malignancies. Meanwhile, based on comprehensive molecular characterisation of GC, testing for Epstein-Barr virus and microsatellite instability is a potential predictive biomarker. Culminating evidence suggests that novel biomarkers, such as the tumour mutational burden and gene expression signature, could indicate the success of treatment with ICIs. However, the exact roles of these biomarkers in GC treated with ICIs remain unclear. Therefore, this study reviews recent scientific data on current and emerging biomarkers for ICIs in GC, which have potential to improve treatment outcomes.
Collapse
Affiliation(s)
- Byung Woog Kang
- Department of Oncology/Hematology, Kyungpook National University Hospital, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Ian Chau
- Department of Medicine, Royal Marsden Hospital, London and Surrey, UK
| |
Collapse
|
242
|
The WRN helicase: resolving a new target in microsatellite unstable cancers. Curr Opin Genet Dev 2021; 71:34-38. [PMID: 34284257 DOI: 10.1016/j.gde.2021.06.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/22/2021] [Accepted: 06/29/2021] [Indexed: 11/22/2022]
Abstract
One of the goals of precision medicine is to uncover selective vulnerabilities in various cancers. A notable success has been the development of PARP inhibitors for the treatment of breast and ovarian cancers with mutations in BRCA genes. Only two years ago, it was discovered that cancers with microsatellite instability (MSI) were selectively dependent on the RecQ DNA helicase WRN. Subsequently, the molecular mechanism underlying WRN dependency in MSI cancers was uncovered. Here, we review how these developments have led to a promising new drug target in MSI cancers.
Collapse
|
243
|
Pei Q, Yi X, Chen C, Pang P, Fu Y, Lei G, Chen C, Tan F, Gong G, Li Q, Zai H, Chen BT. Pre-treatment CT-based radiomics nomogram for predicting microsatellite instability status in colorectal cancer. Eur Radiol 2021; 32:714-724. [PMID: 34258636 DOI: 10.1007/s00330-021-08167-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 05/23/2021] [Accepted: 06/08/2021] [Indexed: 12/19/2022]
Abstract
OBJECTIVES Stratification of microsatellite instability (MSI) status in patients with colorectal cancer (CRC) improves clinical decision-making for cancer treatment. The present study aimed to develop a radiomics nomogram to predict the pre-treatment MSI status in patients with CRC. METHODS A total of 762 patients with CRC confirmed by surgical pathology and MSI status determined with polymerase chain reaction (PCR) method were retrospectively recruited between January 2013 and May 2019. Radiomics features were extracted from routine pre-treatment abdominal pelvic computed tomography (CT) scans acquired as part of the patients' clinical care. A radiomics nomogram was constructed using multivariate logistic regression. The performance of the nomogram was evaluated using discrimination, calibration, and decision curves. RESULTS The radiomics nomogram incorporating radiomics signatures, tumor location, patient age, high-density lipoprotein expression, and platelet counts showed good discrimination between patients with non-MSI-H and MSI-H, with an area under the curve (AUC) of 0.74 [95% CI, 0.68-0.80] in the training cohort and 0.77 [95% CI, 0.68-0.85] in the validation cohort. Favorable clinical application was observed using decision curve analysis. The addition of pathological characteristics to the nomogram failed to show incremental prognostic value. CONCLUSIONS We developed a radiomics nomogram incorporating radiomics signatures and clinical indicators, which could potentially be used to facilitate the individualized prediction of MSI status in patients with CRC. KEY POINTS • There is an unmet need to non-invasively determine MSI status prior to treatment. However, the traditional radiological evaluation of CT is limited for evaluating MSI status. • Our non-invasive CT imaging-based radiomics method could efficiently distinguish patients with high MSI disease from those with low MSI disease. • Our radiomics approach demonstrated promising diagnostic efficiency for MSI status, similar to the commonly used IHC method.
Collapse
Affiliation(s)
- Qian Pei
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Xiaoping Yi
- Department of Radiology, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, 410008, People's Republic of China. .,National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Central South University, Changsha, 410008, People's Republic of China.
| | - Chen Chen
- Department of Radiology, 331 Hospital of Zhuzhou City, Zhuzhou, People's Republic of China
| | - Peipei Pang
- GE Healthcare, Hangzhou, 310000, People's Republic of China
| | - Yan Fu
- Department of Radiology, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, 410008, People's Republic of China.,National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Central South University, Changsha, 410008, People's Republic of China
| | - Guangwu Lei
- Department of Radiology, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, 410008, People's Republic of China
| | - Changyong Chen
- Department of Radiology, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, 410008, People's Republic of China
| | - Fengbo Tan
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Guanghui Gong
- Department of Pathology, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, 410008, People's Republic of China
| | - Qingling Li
- Department of Pathology, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, 410008, People's Republic of China.
| | - Hongyan Zai
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Bihong T Chen
- Department of Diagnostic Radiology, City of Hope National Medical Center, Duarte, CA, USA
| |
Collapse
|
244
|
Gorgun FM, Widen SG, Tyler DS, Englander EW. Enhanced Antitumor Response to Immune Checkpoint Blockade Exerted by Cisplatin-Induced Mutagenesis in a Murine Melanoma Model. Front Oncol 2021; 11:701968. [PMID: 34295826 PMCID: PMC8290318 DOI: 10.3389/fonc.2021.701968] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/16/2021] [Indexed: 12/21/2022] Open
Abstract
Sequencing data from different types of cancers including melanomas demonstrate that tumors with high mutational loads are more likely to respond to immune checkpoint blockade (ICB) therapies. We have previously shown that low-dose intratumoral injection of the chemotherapeutic DNA damaging drug cisplatin activates intrinsic mutagenic DNA damage tolerance pathway, and when combined with ICB regimen leads to tumor regression in the mouse YUMM1.7 melanoma model. We now report that tumors generated with an in vitro cisplatin-mutagenized YUMM1.7 clone (YUMM1.7-CM) regress in response to ICB, while an identical ICB regimen alone fails to suppress growth of tumors generated with the parental YUMM1.7 cells. Regressing YUMM1.7-CM tumors show greater infiltration of CD8 T lymphocytes, higher granzyme B expression, and higher tumoral cell death. Similarly, ex-vivo, immune cells isolated from YUMM1.7-CM tumors-draining lymph nodes (TDLNs) co-incubated with cultured YUMM1.7-CM cells, eliminate the tumor cells more efficiently than immune cells isolated from TDLNs of YUMM1.7 tumor-bearing mice. Collectively, our findings show that in vitro induced cisplatin mutations potentiate the antitumor immune response and ICB efficacy, akin to tumor regression achieved in the parental YUMM1.7 model by ICB administered in conjunction with intratumoral cisplatin injection. Hence, our data uphold the role of tumoral mutation burden in improving immune surveillance and response to ICB, suggesting a path for expanding the range of patients benefiting from ICB therapy.
Collapse
Affiliation(s)
- Falih M Gorgun
- Department of Neurosurgery, University of Texas Medical Branch, Galveston, TX, United States
| | - Steven G Widen
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, United States
| | - Douglas S Tyler
- Department of Surgery, University of Texas Medical Branch, Galveston, TX, United States
| | - Ella W Englander
- Department of Neurosurgery, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
245
|
Mancuso JG, Foulkes WD, Pollak MN. Cancer Immunoprevention: A Case Report Raising the Possibility of "Immuno-interception". Cancer Prev Res (Phila) 2021; 13:351-356. [PMID: 32241906 DOI: 10.1158/1940-6207.capr-19-0528] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/31/2020] [Accepted: 02/19/2020] [Indexed: 11/16/2022]
Abstract
Immune checkpoint blockade therapy provides substantial benefits for subsets of patients with advanced cancer, but its utility for cancer prevention is unknown. Lynch syndrome (MIM 120435) is characterized by defective DNA mismatch repair and predisposition to multiple cancers. A variant of Lynch syndrome, Muir-Torre syndrome (MIM 158320), is characterized by frequent gastrointestinal tumors and hyperplastic or neoplastic skin tumors. We report the case of a man with Muir-Torre syndrome who had 136 cutaneous or visceral hyperplastic or neoplastic lesions over a period of 19 years (mean 7.5 neoplasms/year, range 2-26) prior to receiving pembrolizumab immunotherapy as part of multi-modality treatment for invasive bladder cancer. He not only had a complete response of the bladder cancer, but also was noted to have an absence of new cancers during a 22-month follow-up period. This case adds to the rationale for exploring the utility of immune checkpoint blockade for cancer prevention, particularly for patients with DNA repair deficits.
Collapse
Affiliation(s)
- Jessica G Mancuso
- Cancer Prevention Centre, Jewish General Hospital, Montreal, Quebec, Canada
| | - William D Foulkes
- Cancer Prevention Centre, Jewish General Hospital, Montreal, Quebec, Canada.,Department of Oncology, McGill University, Montreal, Quebec, Canada.,Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Michael N Pollak
- Cancer Prevention Centre, Jewish General Hospital, Montreal, Quebec, Canada. .,Department of Oncology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
246
|
Framing the potential of public frameshift peptides as immunotherapy targets in colon cancer. PLoS One 2021; 16:e0251630. [PMID: 34181673 PMCID: PMC8238217 DOI: 10.1371/journal.pone.0251630] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 04/29/2021] [Indexed: 11/21/2022] Open
Abstract
Approximately 15% of Colon Cancers are Microsatellite Instable (MSI). Frameshift Peptides (FPs) formed in MSI Colon Cancer are potential targets for immunotherapeutic strategies. Here we comprehensively characterize the mutational landscape of 71 MSI Colon Cancer patients from the cancer genome atlas (TCGA). We confirm that the mutations in MSI Colon Cancers are frequently frameshift deletions (23% in MSI; 1% in microsatellite stable), We find that these mutations cluster at specific locations in the genome which are mutated in up to 41% of the patients. We filter these for an adequate variant allele frequency, a sufficient mean mRNA level and the formation of a Super Neo Open Reading Frame (SNORF). Finally, we check the influence of Nonsense Mediated Decay (MMD) by comparing RNA and DNA sequencing results. Thereby we identify a set of 20 NMD-escaping Public FPs (PFPs) that cover over 90% of MSI Colon, 62.2% of MSI Endometrial and 58.8% of MSI Stomach cancer patients and 3 out of 4 Lynch patients in the TCGA-COAD. This underlines the potential for PFP directed immunotherapy, both in a therapeutic and a prophylactic setting in multiple types of MSI cancers.
Collapse
|
247
|
Qian H, Li H, Xie J, Lu X, Li F, Wang W, Tang X, Shi M, Jiang L, Li H, Chen H, Peng C, Xu Z, Deng X, Shen B. Immunity-Related Gene Signature Identifies Subtypes Benefitting From Adjuvant Chemotherapy or Potentially Responding to PD1/PD-L1 Blockage in Pancreatic Cancer. Front Cell Dev Biol 2021; 9:682261. [PMID: 34249934 PMCID: PMC8264789 DOI: 10.3389/fcell.2021.682261] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/26/2021] [Indexed: 01/04/2023] Open
Abstract
Tumor microenvironment comprises of a variety of cell types, which is quite complex and involved in chemotherapy and immune checkpoint blockage resistance. In order to explore the mechanisms involved in tumor immune microenvironment in pancreatic ductal adenocarcinoma (PDAC), we first constructed an immunity-related 18-gene signature using The Cancer Genome Atlas (TCGA) PDAC project data. Then we applied the 18-gene signature to divide PDAC patients into low score and high score groups. Patients in high score group showed inferior prognosis, which was validated in another four independent cohorts, including Ruijin cohort. High score group showed significant enrichment of pathways involved in cell division and cell cycle especially in G1/S phase transition. In high score group, IHC analysis revealed higher levels of the proliferative indexes of Ki67 and PCNA than that in low score group. Prognostic analysis confirmed that patients in high score group could benefit from the gemcitabine-based adjuvant chemotherapy. In low score group, the programmed cell death 1 ligand 1(PD-L1) (+) cases showed worse prognosis but higher T cell infiltration than PD-L1(−) cases. Our immunity-related 18-gene signature could effectively predict PDAC prognosis, and it might be a practical predictive tool to identify PDAC subtype benefitting from gemcitabine-based adjuvant chemotherapy or potentially responding to PD1/PD-L1 blockade therapy.
Collapse
Affiliation(s)
- Hao Qian
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongzhe Li
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junjie Xie
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiongxiong Lu
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fanlu Li
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weishen Wang
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaomei Tang
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Minmin Shi
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Linxi Jiang
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongwei Li
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Chen
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenghong Peng
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhiwei Xu
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaxing Deng
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Baiyong Shen
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,State Key Laboratory of Oncogenes and Related Genes, Shanghai, China.,Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
248
|
Ghidini M, Fusco N, Salati M, Khakoo S, Tomasello G, Petrelli F, Trapani D, Petrillo A. The Emergence of Immune-checkpoint Inhibitors in Colorectal Cancer Therapy. Curr Drug Targets 2021; 22:1021-1033. [PMID: 33563194 DOI: 10.2174/1389450122666210204204415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/06/2020] [Accepted: 12/30/2020] [Indexed: 12/24/2022]
Abstract
Immunotherapy has revolutionized the treatment landscape in a number of solid tumors. In colorectal cancer, evidence suggests that microsatellite high (MSI-H) tumors are the most responsive to immune checkpoint blockade due to increased neo-antigen load and a favorable tumor microenvironment. Indeed, Pembrolizumab now represents a first-line option in such patients. However, MSI-H tumors represent the minority and a proportion of patients' progress despite initially responding. Trials are investigating different immunotherapy combinatorial strategies to enhance immune response in less immunogenic colorectal tumors. Such strategies include dual immune checkpoint blockade, combining immune checkpoint inhibitors with other treatment modalities such as radiotherapy, chemotherapy or other biological or targeted agents. Moreover, there is an increasing drive to identify biomarkers to better select patients most likely to respond to immunotherapy and understand intrinsic and acquired resistance mechanisms. Apart from MSI-H tumors, there is a strong rationale to suggest that tumors with alterations in DNA polymerase epsilon and DNA polymerase delta are also likely to respond to immunotherapy and trials in this subpopulation are underway. Other strategies such as priming O6-methylguanineDNA methyltransferase silenced tumors with alkylating agents to make them receptive to immune checkpoint blockade are also being investigated. Here we discuss different colorectal subpopulations together with their likelihood of response to immune checkpoint blockade and strategies to overcome barriers to a successful clinical outcome. We summarize evidence from published clinical trials and provide an overview of trials in progress whilst discussing newer immunotherapy strategies such as adoptive cell therapies and cancer vaccines.
Collapse
Affiliation(s)
- Michele Ghidini
- Medical Oncology Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Nicola Fusco
- Department of Oncology and Hemato-Oncology, University of Milan, Italy
| | - Massimiliano Salati
- PhD Program, Clinical and Experimental Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Shelize Khakoo
- Department of Medicine, The Royal Marsden Hospital NHS Foundation Trust, London and Surrey, United Kingdom
| | - Gianluca Tomasello
- Medical Oncology Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Fausto Petrelli
- Medical Oncology Unit, Azienda Socio-Sanitaria Territoriale Bergamo Ovest, Treviglio, Bergamo, Italy
| | - Dario Trapani
- Division of Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, Milan, Italy
| | | |
Collapse
|
249
|
Ma SC, Zhu HB, Wang J, Zhang YP, Guo XJ, Long LL, Guo ZQ, Wu DH, Dong ZY, Bai X. De Novo Mutation in Non-Tyrosine Kinase Domain of ROS1 as a Potential Predictor of Immune Checkpoint Inhibitors in Melanoma. Front Oncol 2021; 11:666145. [PMID: 34221982 PMCID: PMC8247586 DOI: 10.3389/fonc.2021.666145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/25/2021] [Indexed: 11/13/2022] Open
Abstract
PURPOSE Despite the success of targeted therapy in c-ros oncogene 1 (ROS1)-rearranged cancers, especially non-small cell lung cancer (NSCLC), the clinical significance of ROS1 de novo mutation has not yet been understood. We sought to elucidate the predictive effect of ROS1 mutation for immune checkpoint inhibitor (ICI) therapy in melanoma. METHODS The Cancer Genome Atlas [TCGA (n = 10967)] and Memorial Sloan Kettering Cancer Center [MSK (n = 10,945)] datasets, as well as two clinical cohorts of melanoma received ICI [CA209-038 (n = 73) and MEL-IPI (n = 110)], were included to explore the prevalence, prognostic effect, and immunotherapeutic predictive effect of ROS1 mutation in melanoma. Overall survival (OS) was defined as the primary outcome. RESULTS Overall, melanoma accounted for the highest proportion of ROS1 mutation (~20%) which made up the majority (~95%) of the ROS1-alterated cases. Remarkably, ROS1 mutation yielded longer OS from ICI than the wild-type counterpart in the MSK melanoma population [hazard ratio (HR) 0.47, 95% confidence interval (CI) 0.30-0.74], and two external melanoma cohorts (CA209-038: HR 0.42, 95% CI 0.20-0.89; MEL-IPI: HR 0.55, 95% CI 0.34-0.91), without affecting the prognosis of patients. Elevated tumor mutational burden and enrichment of DNA damage repair was observed in ROS1 mutated patients, providing an explanation for the favorable responses to ICI therapy. Precisely, ROS1 mutation in non-protein tyrosine kinase (PTK) domain but not PTK mutation was responsible for the immunotherapy-specific responses of the ROS1 mutated patients in melanoma. CONCLUSIONS Collectively, ROS1 mutation, specifically the non-PTK mutation, is a potential predictor of ICI therapy in melanoma, which is distinct from the well-established role of ROS1 rearrangement for targeted therapy in NSCLC.
Collapse
Affiliation(s)
- Si-Cong Ma
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Information Management and Big Data Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hong-Bo Zhu
- Department of Oncology, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Jian Wang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yan-Pei Zhang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Information Management and Big Data Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xue-Jun Guo
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Li-Li Long
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ze-Qin Guo
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - De-Hua Wu
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhong-Yi Dong
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xue Bai
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
250
|
Maroun CA, Mandal R. Anti-PD-1 Immune Checkpoint Blockade for Head and Neck Cancer: Biomarkers of Response and Resistance. Otolaryngol Clin North Am 2021; 54:751-759. [PMID: 34116842 DOI: 10.1016/j.otc.2021.04.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Christopher A Maroun
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University, Baltimore, MD 21287, USA; Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins, Baltimore, MD 21287, USA
| | - Rajarsi Mandal
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University, Baltimore, MD 21287, USA; Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins, Baltimore, MD 21287, USA.
| |
Collapse
|