201
|
Kim CL, Choi SH, Mo JS. Role of the Hippo Pathway in Fibrosis and Cancer. Cells 2019; 8:cells8050468. [PMID: 31100975 PMCID: PMC6562634 DOI: 10.3390/cells8050468] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/10/2019] [Accepted: 05/14/2019] [Indexed: 12/12/2022] Open
Abstract
The Hippo pathway is the key player in various signaling processes, including organ development and maintenance of tissue homeostasis. This pathway comprises a core kinases module and transcriptional activation module, representing a highly conserved mechanism from Drosophila to vertebrates. The central MST1/2-LATS1/2 kinase cascade in this pathway negatively regulates YAP/TAZ transcription co-activators in a phosphorylation-dependent manner. Nuclear YAP/TAZ bind to transcription factors to stimulate gene expression, contributing to the regenerative potential and regulation of cell growth and death. Recent studies have also highlighted the potential role of Hippo pathway dysfunctions in the pathology of several diseases. Here, we review the functional characteristics of the Hippo pathway in organ fibrosis and tumorigenesis, and discuss its potential as new therapeutic targets.
Collapse
Affiliation(s)
- Cho-Long Kim
- Department of Biomedical Sciences, Cancer Biology Graduate Program, Ajou University Graduate School of Medicine, Suwon 16499, Korea.
| | - Sue-Hee Choi
- Department of Biomedical Sciences, Cancer Biology Graduate Program, Ajou University Graduate School of Medicine, Suwon 16499, Korea.
| | - Jung-Soon Mo
- Genomic Instability Research Center (GIRC), Ajou University School of Medicine, Suwon 16499, Korea.
| |
Collapse
|
202
|
Brand CS, Lighthouse JK, Trembley MA. Protective transcriptional mechanisms in cardiomyocytes and cardiac fibroblasts. J Mol Cell Cardiol 2019; 132:1-12. [PMID: 31042488 DOI: 10.1016/j.yjmcc.2019.04.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/19/2019] [Accepted: 04/22/2019] [Indexed: 12/13/2022]
Abstract
Heart failure is the leading cause of morbidity and mortality worldwide. Several lines of evidence suggest that physical activity and exercise can pre-condition the heart to improve the response to acute cardiac injury such as myocardial infarction or ischemia/reperfusion injury, preventing the progression to heart failure. It is becoming more apparent that cardioprotection is a concerted effort between multiple cell types and converging signaling pathways. However, the molecular mechanisms of cardioprotection are not completely understood. What is clear is that the mechanisms underlying this protection involve acute activation of transcriptional activators and their corresponding gene expression programs. Here, we review the known stress-dependent transcriptional programs that are activated in cardiomyocytes and cardiac fibroblasts to preserve function in the adult heart after injury. Focus is given to prominent transcriptional pathways such as mechanical stress or reactive oxygen species (ROS)-dependent activation of myocardin-related transcription factors (MRTFs) and transforming growth factor beta (TGFβ), and gene expression that positively regulates protective PI3K/Akt signaling. Together, these pathways modulate both beneficial and pathological responses to cardiac injury in a cell-specific manner.
Collapse
Affiliation(s)
- Cameron S Brand
- Department of Pharmacology, School of Medicine, University of California - San Diego, 9500 Gilman Drive, Biomedical Sciences Building, La Jolla, CA 92093, USA.
| | - Janet K Lighthouse
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Box CVRI, Rochester, NY 14624, USA.
| | - Michael A Trembley
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
203
|
LaCanna R, Liccardo D, Zhang P, Tragesser L, Wang Y, Cao T, Chapman HA, Morrisey EE, Shen H, Koch WJ, Kosmider B, Wolfson MR, Tian Y. Yap/Taz regulate alveolar regeneration and resolution of lung inflammation. J Clin Invest 2019; 129:2107-2122. [PMID: 30985294 DOI: 10.1172/jci125014] [Citation(s) in RCA: 197] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 03/05/2019] [Indexed: 12/12/2022] Open
Abstract
Alveolar epithelium plays a pivotal role in protecting the lungs from inhaled infectious agents. Therefore, the regenerative capacity of the alveolar epithelium is critical for recovery from these insults in order to rebuild the epithelial barrier and restore pulmonary functions. Here, we show that sublethal infection of mice with Streptococcus pneumoniae, the most common pathogen of community-acquired pneumonia, led to exclusive damage in lung alveoli, followed by alveolar epithelial regeneration and resolution of lung inflammation. We show that surfactant protein C-expressing (SPC-expressing) alveolar epithelial type II cells (AECIIs) underwent proliferation and differentiation after infection, which contributed to the newly formed alveolar epithelium. This increase in AECII activities was correlated with increased nuclear expression of Yap and Taz, the mediators of the Hippo pathway. Mice that lacked Yap/Taz in AECIIs exhibited prolonged inflammatory responses in the lung and were delayed in alveolar epithelial regeneration during bacterial pneumonia. This impaired alveolar epithelial regeneration was paralleled by a failure to upregulate IκBa, the molecule that terminates NF-κB-mediated inflammatory responses. These results demonstrate that signals governing resolution of lung inflammation were altered in Yap/Taz mutant mice, which prevented the development of a proper regenerative niche, delaying repair and regeneration of alveolar epithelium during bacterial pneumonia.
Collapse
Affiliation(s)
- Ryan LaCanna
- Department of Pharmacology, Center for Translational Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | - Daniela Liccardo
- Department of Pharmacology, Center for Translational Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | - Peggy Zhang
- Department of Pharmacology, Center for Translational Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | - Lauren Tragesser
- Department of Pharmacology, Center for Translational Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | - Yan Wang
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Tongtong Cao
- Department of Pharmacology, Center for Translational Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | - Harold A Chapman
- Department of Medicine, Cardiovascular Research Institute, UCSF, San Francisco, California, USA
| | - Edward E Morrisey
- Department of Medicine, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hao Shen
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Walter J Koch
- Department of Pharmacology, Center for Translational Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | - Beata Kosmider
- Department of Physiology, Department of Thoracic Medicine and Surgery, Center for Inflammation, Translational and Clinical Lung Research, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | - Marla R Wolfson
- Department of Physiology, Department of Thoracic Medicine and Surgery, Center for Inflammation, Translational and Clinical Lung Research, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | - Ying Tian
- Department of Pharmacology, Center for Translational Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
204
|
Liu R, Jagannathan R, Li F, Lee J, Balasubramanyam N, Kim BS, Yang P, Yechoor VK, Moulik M. Tead1 is required for perinatal cardiomyocyte proliferation. PLoS One 2019; 14:e0212017. [PMID: 30811446 PMCID: PMC6392249 DOI: 10.1371/journal.pone.0212017] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 01/25/2019] [Indexed: 01/05/2023] Open
Abstract
Adult heart size is determined predominantly by the cardiomyocyte number and size. The cardiomyocyte number is determined primarily in the embryonic and perinatal period, as adult cardiomyocyte proliferation is restricted in comparison to that seen during the perinatal period. Recent evidence has implicated the mammalian Hippo kinase pathway as being critical in cardiomyocyte proliferation. Though the transcription factor, Tead1, is the canonical downstream transcriptional factor of the hippo kinase pathway in cardiomyocytes, the specific role of Tead1 in cardiomyocyte proliferation in the perinatal period has not been determined. Here, we report the generation of a cardiomyocyte specific perinatal deletion of Tead1, using Myh6-Cre deletor mice (Tead1-cKO). Perinatal Tead1 deletion was lethal by postnatal day 9 in Tead1-cKO mice due to dilated cardiomyopathy. Tead1-deficient cardiomyocytes have significantly decreased proliferation during the immediate postnatal period, when proliferation rate is normally high. Deletion of Tead1 in HL-1 cardiac cell line confirmed that cell-autonomous Tead1 function is required for normal cardiomyocyte proliferation. This was secondary to significant decrease in levels of many proteins, in vivo, that normally promote cell cycle in cardiomyocytes. Taken together this demonstrates the non-redundant critical requirement for Tead1 in regulating cell cycle proteins and proliferation in cardiomyocytes in the perinatal heart.
Collapse
Affiliation(s)
- Ruya Liu
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Rajaganapathi Jagannathan
- Division of Cardiology, Department of Pediatrics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Feng Li
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Jeongkyung Lee
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Nikhil Balasubramanyam
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Byung S. Kim
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Ping Yang
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Vijay K. Yechoor
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Mousumi Moulik
- Division of Cardiology, Department of Pediatrics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Division of Cardiology, Department of Pediatrics, UTHealth McGovern Medical School, Houston, Texas, United States of America
| |
Collapse
|
205
|
Cell population balance of cardiovascular spheroids derived from human induced pluripotent stem cells. Sci Rep 2019; 9:1295. [PMID: 30718597 PMCID: PMC6362271 DOI: 10.1038/s41598-018-37686-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 12/11/2018] [Indexed: 02/06/2023] Open
Abstract
Stem cell-derived cardiomyocytes and vascular cells can be used for a variety of applications such as studying human heart development and modelling human disease in culture. In particular, protocols based on modulation of Wnt signaling were able to produce high quality of cardiomyocytes or vascular cells from human pluripotent stem cells (hPSCs). However, the mechanism behind the development of 3D cardiovascular spheroids into either vascular or cardiac cells has not been well explored. Hippo/Yes-associated protein (YAP) signaling plays important roles in the regulation of organogenesis, but its impact on cardiovascular differentiation has been less evaluated. In this study, the effects of seeding density and a change in YAP signaling on 3D cardiovascular spheroids patterning from hPSCs were evaluated. Compared to 2D culture, 3D cardiovascular spheroids exhibited higher levels of sarcomeric striations and higher length-to-width ratios of α-actinin+ cells. The spheroids with high seeding density exhibited more α-actinin+ cells and less nuclear YAP expression. The 3D cardiovascular spheroids were also treated with different small molecules, including Rho kinase inhibitor (Y27632), Cytochalasin D, Dasatinib, and Lysophosphatidic acid to modulate YAP localization. Nuclear YAP inhibition resulted in lower expression of active β-catenin, vascular marker, and MRTF, the transcription factor mediated by RhoGTPases. Y27632 also promoted the gene expression of MMP-2/-3 (matrix remodeling) and Notch-1 (Notch signaling). These results should help our understanding of the underlying effects for the efficient patterning of cardiovascular spheroids after mesoderm formation from hPSCs.
Collapse
|
206
|
Cho H, Kim J, Ahn JH, Hong YK, Mäkinen T, Lim DS, Koh GY. YAP and TAZ Negatively Regulate Prox1 During Developmental and Pathologic Lymphangiogenesis. Circ Res 2019; 124:225-242. [DOI: 10.1161/circresaha.118.313707] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Hyunsoo Cho
- From the Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon (H.C., J.H.A., D.-S.L., G.Y.K.)
| | - Jaeryung Kim
- Center for Vascular Research, Institute for Basic Science, Daejeon, Republic of Korea (J.K., G.Y.K.)
| | - Ji Hoon Ahn
- From the Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon (H.C., J.H.A., D.-S.L., G.Y.K.)
| | - Young-Kwon Hong
- Department of Surgery (Y.-K.H.), Keck School of Medicine, University of Southern California, Los Angeles
- Department of Biochemistry and Molecular Biology (Y.-K.H.), Keck School of Medicine, University of Southern California, Los Angeles
| | - Taija Mäkinen
- Department of Immunology, Genetics, and Pathology, Uppsala University, Sweden (T.M.)
| | - Dae-Sik Lim
- From the Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon (H.C., J.H.A., D.-S.L., G.Y.K.)
| | - Gou Young Koh
- From the Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon (H.C., J.H.A., D.-S.L., G.Y.K.)
- Center for Vascular Research, Institute for Basic Science, Daejeon, Republic of Korea (J.K., G.Y.K.)
| |
Collapse
|
207
|
Zheng J, Peng B, Zhang Y, Ai F, Hu X. miR-9 knockdown inhibits hypoxia-induced cardiomyocyte apoptosis by targeting Yap1. Life Sci 2019; 219:129-135. [PMID: 30639391 DOI: 10.1016/j.lfs.2019.01.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 01/09/2019] [Indexed: 12/14/2022]
Abstract
AIMS Aberrantly expressed miRNAs are demonstrated to be involved in the development of congenital heart disease (CHD). miR-9 was proposed to be upregulated in cardiac tissues from CHD cases. However, the role of miR-9 in hypoxia-induced cardiomyocytes and the potential mechanism are far from being addressed. MAIN METHODS qRT-PCR and western blot analysis were performed to detect miR-9 and Yes-associated protein 1 (Yap1) expressions in hypoxic H9c2 cells. CCK-8, flow cytometry analysis, caspase-3/7 activity assay were applied to evaluate cell proliferation, apoptosis, and caspase-3/7 activity, respectively. The interaction between miR-9 and Yap1 was explored by luciferase reporter assay, qRT-PCR and western blot. KEY FINDINGS miR-9 was upregulated and Yap1 was downregulated in H9c2 cells in response to hypoxia in a time-dependent manner. Knockdown of miR-9 promoted cell proliferation, and inhibited apoptosis and caspase-3/7 activity in hypoxic H9c2 cells, while miR-9 overexpression exerted the opposite effects on hypoxic H9c2 cells. In addition, Yap1 was a direct target of miR-9 in H9c2 cells. Yap1 knockdown suppressed cell proliferation and promoted apoptosis in hypoxia-exposed H9c2 cells. Yap1 knockdown attenuated the effect of anti-miR-9 on cell proliferation and apoptosis in hypoxia-exposed H9c2 cells. SIGNIFICANCE miR-9 knockdown inhibited hypoxia-induced cardiomyocyte apoptosis by targeting Yap1. Our study provided a novel insight into the mechanism of the adaptation of cardiomyocytes to chronic hypoxia.
Collapse
Affiliation(s)
- Jiayong Zheng
- Department of Children's Heart Center, Henan Provincial People's Hospital, Fuwai Central China Cardiovascular Hospital, No. 1 Fuwai Avenue, Zhengzhou 450000, China
| | - Bangtian Peng
- Department of Children's Heart Center, Henan Provincial People's Hospital, Fuwai Central China Cardiovascular Hospital, No. 1 Fuwai Avenue, Zhengzhou 450000, China.
| | - Yanwei Zhang
- Department of Children's Heart Center, Henan Provincial People's Hospital, Fuwai Central China Cardiovascular Hospital, No. 1 Fuwai Avenue, Zhengzhou 450000, China
| | - Feng Ai
- Department of Children's Heart Center, Henan Provincial People's Hospital, Fuwai Central China Cardiovascular Hospital, No. 1 Fuwai Avenue, Zhengzhou 450000, China
| | - Xiaosong Hu
- Department of Children's Heart Center, Henan Provincial People's Hospital, Fuwai Central China Cardiovascular Hospital, No. 1 Fuwai Avenue, Zhengzhou 450000, China
| |
Collapse
|
208
|
Hashmi S, Ahmad HR. Molecular switch model for cardiomyocyte proliferation. CELL REGENERATION 2019; 8:12-20. [PMID: 31205684 PMCID: PMC6557755 DOI: 10.1016/j.cr.2018.11.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/03/2018] [Accepted: 11/27/2018] [Indexed: 02/07/2023]
Abstract
This review deals with the human adult cardiomyocyte proliferation as a potential source for heart repair after injury. The mechanism to regain the proliferative capacity of adult cardiomyocytes is a challenge. However, recent studies are promising in showing that the ‘locked’ cell cycle of adult cardiomyocytes could be released through modulation of cell cycle checkpoints. In support of this are the signaling pathways of Notch, Hippo, Wnt, Akt and Jak/Stat that facilitate or inhibit the transition at cell cycle checkpoints. Cyclins and cyclin dependant kinases (CDKs) facilitate this transition which in turn is regulated by inhibitory action of pocket protein e.g. p21, p27 and p57. Transcription factors e.g. E2F, GATA4, TBx20 up regulate Cyclin A, A2, D, E, and CDK4 as promoters of cell cycle and Meis-1 and HIF-1 alpha down regulate cyclin D and E to inhibit the cell cycle. Paracrine factors like Neuregulin-1, IGF-1 and Oncostatin M and Extracellular Matrix proteins like Agrin have been involved in cardiomyocyte proliferation and dedifferentiation processes. A molecular switch model is proposed that transforms the post mitotic cell into an actively dividing cell. This model shows how the cell cycle is regulated through on- and off switch mechanisms through interaction of transcription factors and signaling pathways with proteins of the cell cycle checkpoints. Signals triggered by injury may activate the right combination of the various pathways that can ‘switch on’ the proliferation signals leading to myocardial regeneration.
Collapse
Affiliation(s)
- Satwat Hashmi
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi
| | - H R Ahmad
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi
| |
Collapse
|
209
|
Sakurai K, Osada Y, Takeba Y, Mizuno M, Tsuzuki Y, Ohta Y, Ootaki M, Iri T, Aso K, Yamamoto H, Matsumoto N. Exposure of immature rat heart to antenatal glucocorticoid results in cardiac proliferation. Pediatr Int 2019; 61:31-42. [PMID: 30387893 DOI: 10.1111/ped.13725] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 09/12/2018] [Accepted: 10/31/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND ATP synthesis and cardiac contraction-related protein production are accelerated in the immature fetal heart by antenatal glucocorticoids (GC). This study investigated the structural maturity of the myocardium and underlying signal pathway associated with cardiac growth in fetal rats that received antenatal GC. METHODS AND RESULTS Dexamethasone (DEX) was given to pregnant rats for 2 days from day 17 or day 19 of gestation, and the hearts of 19 and 21 day fetuses and 1-day-old neonates were analyzed. Although irregular myofibril orientation was observed morphologically in 19 day fetal hearts, the myofibril components were organized in fetuses after DEX. The cross-sectional area of the myocardium and Ki-67-positive cells were significantly increased in fetal DEX groups, suggesting that cardiac enlargement resulted from myocyte proliferation. Glycogen synthase kinase-3β (GSK-3β) protein was significantly decreased in fetal DEX groups. β-Catenin and vascular endothelial growth factor protein were also significantly increased. Furthermore, increased cardiomyocyte proliferation appeared to be mediated by GC receptors after culture with DEX in vitro. CONCLUSIONS Antenatal DEX induces structural maturity accompanying cardiomyocyte proliferation in the premature fetal rat heart, and GSK-3β and β-catenin are thought to contribute to cardiac growth.
Collapse
Affiliation(s)
- Kenzo Sakurai
- Department of Pediatrics, St Marianna University School of Medicine, Kawasaki, Japan
| | - Yosuke Osada
- Department of Pediatrics, St Marianna University School of Medicine, Kawasaki, Japan
| | - Yuko Takeba
- Department of Pharmacology, St Marianna University School of Medicine, Kawasaki, Japan
| | - Masanori Mizuno
- Department of Pediatrics, St Marianna University School of Medicine, Kawasaki, Japan
| | - Yoshimitsu Tsuzuki
- Department of Pediatrics, St Marianna University School of Medicine, Kawasaki, Japan
| | - Yuki Ohta
- Department of Pharmacology, St Marianna University School of Medicine, Kawasaki, Japan
| | - Masanori Ootaki
- Department of Pharmacology, St Marianna University School of Medicine, Kawasaki, Japan
| | - Taro Iri
- Department of Pharmacology, St Marianna University School of Medicine, Kawasaki, Japan
| | - Kentaro Aso
- Department of Pediatrics, St Marianna University School of Medicine, Kawasaki, Japan
| | - Hitoshi Yamamoto
- Department of Pediatrics, St Marianna University School of Medicine, Kawasaki, Japan
| | - Naoki Matsumoto
- Department of Pharmacology, St Marianna University School of Medicine, Kawasaki, Japan
| |
Collapse
|
210
|
Luo J, Chimge NO, Zhou B, Flodby P, Castaldi A, Firth AL, Liu Y, Wang H, Yang C, Marconett CN, Crandall ED, Offringa IA, Frenkel B, Borok Z. CLDN18.1 attenuates malignancy and related signaling pathways of lung adenocarcinoma in vivo and in vitro. Int J Cancer 2018; 143:3169-3180. [PMID: 30325015 PMCID: PMC6263834 DOI: 10.1002/ijc.31734] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 05/21/2018] [Accepted: 06/11/2018] [Indexed: 12/18/2022]
Abstract
Claudins are a family of transmembrane proteins integral to the structure and function of tight junctions (TJ). Disruption of TJ and alterations in claudin expression are important features of invasive and metastatic cancer cells. Expression of CLDN18.1, the lung-specific isoform of CLDN18, is markedly decreased in lung adenocarcinoma (LuAd). Furthermore, we recently observed that aged Cldn18 -/- mice have increased propensity to develop LuAd. We now demonstrate that CLDN18.1 expression correlates inversely with promoter methylation and with LuAd patient mortality. In addition, when restored in LuAd cells that have lost expression, CLDN18.1 markedly attenuates malignant properties including xenograft tumor growth in vivo as well as cell proliferation, migration, invasion and anchorage-independent colony formation in vitro. Based on high throughput analyses of Cldn18 -/- murine lung alveolar epithelial type II cells, as well as CLDN18.1-repleted human LuAd cells, we hypothesized and subsequently confirmed by Western analysis that CLDN18.1 inhibits insulin-like growth factor-1 receptor (IGF-1R) and AKT phosphorylation. Consistent with recent data in Cldn18 -/- knockout mice, expression of CLDN18.1 in human LuAd cells also decreased expression of transcriptional co-activator with PDZ-binding motif (TAZ) and Yes-associated protein (YAP) and their target genes, contributing to its tumor suppressor activity. Moreover, analysis of LuAd cells in which YAP and/or TAZ are silenced with siRNA suggests that inhibition of TAZ, and possibly YAP, is also involved in CLDN18.1-mediated AKT inactivation. Taken together, these data indicate a tumor suppressor role for CLDN18.1 in LuAd mediated by a regulatory network that encompasses YAP/TAZ, IGF-1R and AKT signaling.
Collapse
Affiliation(s)
- Jiao Luo
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Hastings Center for Pulmonary Research, University of Southern California, Los Angeles, CA, USA
- Will Rogers Institute Pulmonary Research Center, University of Southern California, Los Angeles, CA, USA
| | - Nyam-Osor Chimge
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Hastings Center for Pulmonary Research, University of Southern California, Los Angeles, CA, USA
- Will Rogers Institute Pulmonary Research Center, University of Southern California, Los Angeles, CA, USA
| | - Beiyun Zhou
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Hastings Center for Pulmonary Research, University of Southern California, Los Angeles, CA, USA
- Will Rogers Institute Pulmonary Research Center, University of Southern California, Los Angeles, CA, USA
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Per Flodby
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Hastings Center for Pulmonary Research, University of Southern California, Los Angeles, CA, USA
- Will Rogers Institute Pulmonary Research Center, University of Southern California, Los Angeles, CA, USA
| | - Alessandra Castaldi
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Hastings Center for Pulmonary Research, University of Southern California, Los Angeles, CA, USA
- Will Rogers Institute Pulmonary Research Center, University of Southern California, Los Angeles, CA, USA
| | - Amy L. Firth
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Hastings Center for Pulmonary Research, University of Southern California, Los Angeles, CA, USA
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Yixin Liu
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Hastings Center for Pulmonary Research, University of Southern California, Los Angeles, CA, USA
- Will Rogers Institute Pulmonary Research Center, University of Southern California, Los Angeles, CA, USA
| | - Hongjun Wang
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Hastings Center for Pulmonary Research, University of Southern California, Los Angeles, CA, USA
- Will Rogers Institute Pulmonary Research Center, University of Southern California, Los Angeles, CA, USA
| | - Chenchen Yang
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Crystal N. Marconett
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Edward D. Crandall
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Hastings Center for Pulmonary Research, University of Southern California, Los Angeles, CA, USA
- Will Rogers Institute Pulmonary Research Center, University of Southern California, Los Angeles, CA, USA
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Chemical Engineering and Materials Science, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Ite A. Offringa
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Baruch Frenkel
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Zea Borok
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Hastings Center for Pulmonary Research, University of Southern California, Los Angeles, CA, USA
- Will Rogers Institute Pulmonary Research Center, University of Southern California, Los Angeles, CA, USA
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Chemical Engineering and Materials Science, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
211
|
Frum T, Murphy TM, Ralston A. HIPPO signaling resolves embryonic cell fate conflicts during establishment of pluripotency in vivo. eLife 2018; 7:42298. [PMID: 30526858 PMCID: PMC6289571 DOI: 10.7554/elife.42298] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 11/12/2018] [Indexed: 01/03/2023] Open
Abstract
During mammalian development, the challenge for the embryo is to override intrinsic cellular plasticity to drive cells to distinct fates. Here, we unveil novel roles for the HIPPO signaling pathway in controlling cell positioning and expression of Sox2, the first marker of pluripotency in the mouse early embryo. We show that maternal and zygotic YAP1 and WWTR1 repress Sox2 while promoting expression of the trophectoderm gene Cdx2 in parallel. Yet, Sox2 is more sensitive than Cdx2 to Yap1/Wwtr1 dosage, leading cells to a state of conflicted cell fate when YAP1/WWTR1 activity is moderate. Remarkably, HIPPO signaling activity resolves conflicted cell fate by repositioning cells to the interior of the embryo, independent of its role in regulating Sox2 expression. Rather, HIPPO antagonizes apical localization of Par complex components PARD6B and aPKC. Thus, negative feedback between HIPPO and Par complex components ensure robust lineage segregation. As an embryo develops, its cells divide, grow and migrate in specific patterns to build an organized collection of cells that go on to form our tissues and organs. One of the first steps – well before the embryo has implanted into the womb – is to allocate cells to make part of the placenta. Once this process is complete, the remaining cells continue building the organism. These cells are pluripotent, meaning they can develop into any part of the body. Scientists think that the embryo manages to sort ‘placenta cells’ from pluripotent ones with the help of certain proteins, which the mother has packaged into her eggs. To investigate this further, Frum et al. used genetic tools to track a specific gene called Sox2 that identifies pluripotent cells as soon as they are formed in mouse embryos. The experiments revealed that the mother places two closely related proteins known as YAP1 and WWTR1 within each egg, which help to make placenta cells different from pluripotent cells. Moreover, both proteins enable the embryo to segregate these two cell types to two different locations: placenta cells are moved to the outer layer of the embryo, while pluripotent cells are moved to the inside. Current technologies allow researchers to create pluripotent cells in the laboratory. But these approaches often result in error, failing to replicate the embryo’s natural ability. By studying how embryos form and arrange pluripotent cells, scientists hope to advance stem cell technology (which emerge from pluripotent cells). This may help to find new ways to heal damaged tissues and organs, or to treat or even prevent many diseases.
Collapse
Affiliation(s)
- Tristan Frum
- Department of Biochemistry and Molecular Biology, Michigan State University, Michigan, United States
| | - Tayler M Murphy
- Genetics Graduate Program, Michigan State University, Michigan, United States.,Reproductive and Developmental Biology Training Program, Michigan State University, Michigan, United States
| | - Amy Ralston
- Department of Biochemistry and Molecular Biology, Michigan State University, Michigan, United States.,Genetics Graduate Program, Michigan State University, Michigan, United States.,Reproductive and Developmental Biology Training Program, Michigan State University, Michigan, United States
| |
Collapse
|
212
|
Lock MC, Tellam RL, Botting KJ, Wang KCW, Selvanayagam JB, Brooks DA, Seed M, Morrison JL. The role of miRNA regulation in fetal cardiomyocytes, cardiac maturation and the risk of heart disease in adults. J Physiol 2018; 596:5625-5640. [PMID: 29785790 PMCID: PMC6265572 DOI: 10.1113/jp276072] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 05/15/2018] [Indexed: 12/14/2022] Open
Abstract
Myocardial infarction is a primary contributor towards the global burden of cardiovascular disease. Rather than repairing the existing damage of myocardial infarction, current treatments only address the symptoms of the disease and reducing the risk of a secondary infarction. Cardiac regenerative capacity is dependent on cardiomyocyte proliferation, which concludes soon after birth in humans and precocial species such as sheep. Human fetal cardiac tissue has some ability to repair following tissue damage, whereas a fully matured human heart has minimal capacity for cellular regeneration. This is in contrast to neonatal mice and adult zebrafish hearts, which retain the ability to undergo cardiomyocyte proliferation and can regenerate cardiac tissue after birth. In mice and zebrafish models, microRNAs (miRNAs) have been implicated in the regulation of genes involved in cardiac cell cycle progression and regeneration. However, the significance of miRNA regulation in cardiomyocyte proliferation for humans and other large mammals, where the timing of heart development in relation to birth is similar, remains unclear. miRNAs may be valuable targets for therapies that promote cardiac repair after injury. Therefore, elucidating the role of specific miRNAs in large animals, where heart development closely resembles that of humans, remains vitally important for identifying therapeutic targets that may be translated into clinical practice focused on tissue repair.
Collapse
Affiliation(s)
- Mitchell C. Lock
- Early Origins of Adult Health Research Group, School of Pharmacy & Medical SciencesUniversity of South AustraliaAdelaideSA 5001Australia
| | - Ross L. Tellam
- Early Origins of Adult Health Research Group, School of Pharmacy & Medical SciencesUniversity of South AustraliaAdelaideSA 5001Australia
| | - Kimberley J. Botting
- Early Origins of Adult Health Research Group, School of Pharmacy & Medical SciencesUniversity of South AustraliaAdelaideSA 5001Australia
| | - Kimberley C. W. Wang
- Early Origins of Adult Health Research Group, School of Pharmacy & Medical SciencesUniversity of South AustraliaAdelaideSA 5001Australia
- School of Human SciencesUniversity of Western AustraliaCrawleyWA 6009Australia
| | - Joseph B. Selvanayagam
- Cardiac Imaging Research Group, Department of Heart HealthSouth Australian Health & Medical Research Institute, and Flinders UniversityGPO Box 2100AdelaideSA 5001Australia
| | - Doug A. Brooks
- Mechanisms in Cell Biology and Disease Research Group, School of Pharmacy & Medical SciencesUniversity of South AustraliaAdelaideSA 5001Australia
| | - Mike Seed
- Hospital for Sick Children, Division of Cardiology555 University AvenueTorontoON M5G 1X8Canada
| | - Janna L. Morrison
- Early Origins of Adult Health Research Group, School of Pharmacy & Medical SciencesUniversity of South AustraliaAdelaideSA 5001Australia
| |
Collapse
|
213
|
Mittal R, Woo FW, Castro CS, Cohen MA, Karanxha J, Mittal J, Chhibber T, Jhaveri VM. Organ‐on‐chip models: Implications in drug discovery and clinical applications. J Cell Physiol 2018; 234:8352-8380. [DOI: 10.1002/jcp.27729] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 10/22/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Rahul Mittal
- Department of Otolaryngology University of Miami Miller School of Medicine Miami Florida
| | - Frank W. Woo
- Department of Otolaryngology University of Miami Miller School of Medicine Miami Florida
| | - Carlo S. Castro
- Department of Otolaryngology University of Miami Miller School of Medicine Miami Florida
| | - Madeline A. Cohen
- Department of Otolaryngology University of Miami Miller School of Medicine Miami Florida
| | - Joana Karanxha
- Department of Otolaryngology University of Miami Miller School of Medicine Miami Florida
| | - Jeenu Mittal
- Department of Otolaryngology University of Miami Miller School of Medicine Miami Florida
| | - Tanya Chhibber
- University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University Chandigarh India
| | - Vasanti M. Jhaveri
- Department of Otolaryngology University of Miami Miller School of Medicine Miami Florida
| |
Collapse
|
214
|
Nantie LB, Young RE, Paltzer WG, Zhang Y, Johnson RL, Verheyden JM, Sun X. Lats1/2 inactivation reveals Hippo function in alveolar type I cell differentiation during lung transition to air breathing. Development 2018; 145:dev163105. [PMID: 30305289 PMCID: PMC6240317 DOI: 10.1242/dev.163105] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 10/03/2018] [Indexed: 12/21/2022]
Abstract
Lung growth to its optimal size at birth is driven by reiterative airway branching followed by differentiation and expansion of alveolar cell types. How this elaborate growth is coordinated with the constraint of the chest is poorly understood. Here, we investigate the role of Hippo signaling, a cardinal pathway in organ size control, in mouse lung development. Unexpectedly, we found that epithelial loss of the Hippo kinase genes Lats1 and Lats2 (Lats1/2) leads to a striking reduction of lung size owing to an early arrest of branching morphogenesis. This growth defect is accompanied by abnormalities in epithelial cell polarity, cell division plane and extracellular matrix deposition, as well as precocious and increased expression of markers for type 1 alveolar epithelial cells (AEC1s), an indicator of terminal differentiation. Increased AEC1s were also observed in transgenic mice with overexpression of a constitutive nuclear form of downstream transcriptional effector YAP. Conversely, loss of Yap and Taz led to decreased AEC1s, demonstrating that the canonical Hippo signaling pathway is both sufficient and necessary to drive AEC1 fate. These findings together reveal unique roles of Hippo-LATS-YAP signaling in the developing mouse lung.
Collapse
Affiliation(s)
- Leah B Nantie
- Laboratory of Genetics, Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Randee E Young
- Laboratory of Genetics, Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Pediatrics, Department of Biological Sciences, University of California-San Diego, La Jolla, CA 92093, USA
| | - Wyatt G Paltzer
- Department of Pediatrics, Department of Biological Sciences, University of California-San Diego, La Jolla, CA 92093, USA
| | - Yan Zhang
- Laboratory of Genetics, Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Pediatrics, Department of Biological Sciences, University of California-San Diego, La Jolla, CA 92093, USA
| | - Randy L Johnson
- Department of Cancer Biology, University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jamie M Verheyden
- Department of Pediatrics, Department of Biological Sciences, University of California-San Diego, La Jolla, CA 92093, USA
| | - Xin Sun
- Laboratory of Genetics, Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Pediatrics, Department of Biological Sciences, University of California-San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
215
|
Deng Y, Lu J, Li W, Wu A, Zhang X, Tong W, Ho KK, Qin L, Song H, Mak KK. Reciprocal inhibition of YAP/TAZ and NF-κB regulates osteoarthritic cartilage degradation. Nat Commun 2018; 9:4564. [PMID: 30385786 PMCID: PMC6212432 DOI: 10.1038/s41467-018-07022-2] [Citation(s) in RCA: 212] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 10/10/2018] [Indexed: 12/28/2022] Open
Abstract
Osteoarthritis is one of the leading causes of pain and disability in the aged population due to articular cartilage damage. This warrants investigation of signaling mechanisms that could protect cartilage from degeneration and degradation. Here we show in a murine model of experimental osteoarthritis that YAP activation by transgenic overexpression or by deletion of its upstream inhibitory kinases Mst1/2 preserves articular cartilage integrity, whereas deletion of YAP in chondrocytes promotes cartilage disruption. Our work shows that YAP is both necessary and sufficient for the maintenance of cartilage homeostasis in osteoarthritis. Mechanistically, inflammatory cytokines, such as TNFα or IL-1β, trigger YAP/TAZ degradation through TAK1-mediated phosphorylation. Furthermore, YAP directly interacts with TAK1 and attenuates NF-κB signaling by inhibiting substrate accessibility of TAK1. Our study establishes a reciprocal antagonism between Hippo-YAP/TAZ and NF-κB signaling in regulating the induction of matrix-degrading enzyme expression and cartilage degradation during osteoarthritis pathogenesis.
Collapse
Affiliation(s)
- Yujie Deng
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, 310058, China.,Developmental and Regenerative Biology, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Jinqiu Lu
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, 310058, China
| | - Wenling Li
- Developmental and Regenerative Biology, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Ailing Wu
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, 310058, China
| | - Xu Zhang
- Developmental and Regenerative Biology, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Wenxue Tong
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Kiwai Kevin Ho
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Ling Qin
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Hai Song
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, 310058, China.
| | - Kinglun Kingston Mak
- Developmental and Regenerative Biology, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| |
Collapse
|
216
|
The Hippo Pathway Prevents YAP/TAZ-Driven Hypertranscription and Controls Neural Progenitor Number. Dev Cell 2018; 47:576-591.e8. [PMID: 30523785 DOI: 10.1016/j.devcel.2018.09.021] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 07/24/2018] [Accepted: 09/25/2018] [Indexed: 01/12/2023]
Abstract
The Hippo pathway controls the activity of YAP/TAZ transcriptional coactivators through a kinase cascade. Despite the critical role of this pathway in tissue growth and tumorigenesis, it remains unclear how YAP/TAZ-mediated transcription drives proliferation. By analyzing the effects of inactivating LATS1/2 kinases, the direct upstream inhibitors of YAP/TAZ, on mouse brain development and applying cell-number-normalized transcriptome analyses, we discovered that YAP/TAZ activation causes a global increase in transcription activity, known as hypertranscription, and upregulates many genes associated with cell growth and proliferation. In contrast, conventional read-depth-normalized RNA-sequencing analysis failed to detect the scope of the transcriptome shift and missed most relevant gene ontologies. Following a transient increase in proliferation, however, hypertranscription in neural progenitors triggers replication stress, DNA damage, and p53 activation, resulting in massive apoptosis. Our findings reveal a significant impact of YAP/TAZ activation on global transcription activity and have important implications for understanding YAP/TAZ function.
Collapse
|
217
|
Cox AG, Tsomides A, Yimlamai D, Hwang KL, Miesfeld J, Galli GG, Fowl BH, Fort M, Ma KY, Sullivan MR, Hosios AM, Snay E, Yuan M, Brown KK, Lien EC, Chhangawala S, Steinhauser ML, Asara JM, Houvras Y, Link B, Vander Heiden MG, Camargo FD, Goessling W. Yap regulates glucose utilization and sustains nucleotide synthesis to enable organ growth. EMBO J 2018; 37:embj.2018100294. [PMID: 30348863 DOI: 10.15252/embj.2018100294] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 09/12/2018] [Accepted: 09/13/2018] [Indexed: 12/14/2022] Open
Abstract
The Hippo pathway and its nuclear effector Yap regulate organ size and cancer formation. While many modulators of Hippo activity have been identified, little is known about the Yap target genes that mediate these growth effects. Here, we show that yap -/- mutant zebrafish exhibit defects in hepatic progenitor potential and liver growth due to impaired glucose transport and nucleotide biosynthesis. Transcriptomic and metabolomic analyses reveal that Yap regulates expression of glucose transporter glut1, causing decreased glucose uptake and use for nucleotide biosynthesis in yap -/- mutants, and impaired glucose tolerance in adults. Nucleotide supplementation improves Yap deficiency phenotypes, indicating functional importance of glucose-fueled nucleotide biosynthesis. Yap-regulated glut1 expression and glucose uptake are conserved in mammals, suggesting that stimulation of anabolic glucose metabolism is an evolutionarily conserved mechanism by which the Hippo pathway controls organ growth. Together, our results reveal a central role for Hippo signaling in glucose metabolic homeostasis.
Collapse
Affiliation(s)
- Andrew G Cox
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Allison Tsomides
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Dean Yimlamai
- Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Katie L Hwang
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Harvard/MIT MD-PhD Program, Harvard Medical School, Boston, MA, USA
| | | | - Giorgio G Galli
- Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Brendan H Fowl
- Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael Fort
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kimberly Y Ma
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mark R Sullivan
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Aaron M Hosios
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Erin Snay
- Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Min Yuan
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Kristin K Brown
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Evan C Lien
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.,Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Sagar Chhangawala
- Weill Cornell Medical College and New York Presbyterian Hospital, New York, NY, USA
| | - Matthew L Steinhauser
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Harvard Stem Cell Institute, Cambridge, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - John M Asara
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Yariv Houvras
- Weill Cornell Medical College and New York Presbyterian Hospital, New York, NY, USA
| | - Brian Link
- Medical College of Wisconsin, Milwaukee, WI, USA
| | - Matthew G Vander Heiden
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.,Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Fernando D Camargo
- Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.,Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Wolfram Goessling
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA .,Harvard Stem Cell Institute, Cambridge, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.,Harvard-MIT Division of Health Sciences and Technology, Boston, MA, USA
| |
Collapse
|
218
|
A conserved HH-Gli1-Mycn network regulates heart regeneration from newt to human. Nat Commun 2018; 9:4237. [PMID: 30315164 PMCID: PMC6185975 DOI: 10.1038/s41467-018-06617-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 08/15/2018] [Indexed: 01/07/2023] Open
Abstract
The mammalian heart has a limited regenerative capacity and typically progresses to heart failure following injury. Here, we defined a hedgehog (HH)-Gli1-Mycn network for cardiomyocyte proliferation and heart regeneration from amphibians to mammals. Using a genome-wide screen, we verified that HH signaling was essential for heart regeneration in the injured newt. Next, pharmacological and genetic loss- and gain-of-function of HH signaling demonstrated the essential requirement for HH signaling in the neonatal, adolescent, and adult mouse heart regeneration, and in the proliferation of hiPSC-derived cardiomyocytes. Fate-mapping and molecular biological studies revealed that HH signaling, via a HH-Gli1-Mycn network, contributed to heart regeneration by inducing proliferation of pre-existing cardiomyocytes and not by de novo cardiomyogenesis. Further, Mycn mRNA transfection experiments recapitulated the effects of HH signaling and promoted adult cardiomyocyte proliferation. These studies defined an evolutionarily conserved function of HH signaling that may serve as a platform for human regenerative therapies. Due to the limited proliferation capacity of adult mammalian cardiomyocytes, the human heart has negligible regenerative capacity after injury. Here the authors show that a Hedgehog-Gli1-Mycn signaling cascade regulates cardiomyocyte proliferation and cardiac regeneration from amphibians to mammals.
Collapse
|
219
|
Abstract
After decades of directed research, no effective regenerative therapy is currently available to repair the injured human heart. The epicardium, a layer of mesothelial tissue that envelops the heart in all vertebrates, has emerged as a new player in cardiac repair and regeneration. The epicardium is essential for muscle regeneration in the zebrafish model of innate heart regeneration, and the epicardium also participates in fibrotic responses in mammalian hearts. This structure serves as a source of crucial cells, such as vascular smooth muscle cells, pericytes, and fibroblasts, during heart development and repair. The epicardium also secretes factors that are essential for proliferation and survival of cardiomyocytes. In this Review, we describe recent advances in our understanding of the biology of the epicardium and the effect of these findings on the candidacy of this structure as a therapeutic target for heart repair and regeneration.
Collapse
Affiliation(s)
- Jingli Cao
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA.
- Regeneration Next, Duke University, Durham, NC, USA.
- Cardiovascular Research Institute, Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY, USA.
| | - Kenneth D Poss
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA.
- Regeneration Next, Duke University, Durham, NC, USA.
| |
Collapse
|
220
|
Chen J, You H, Li Y, Xu Y, He Q, Harris RC. EGF Receptor-Dependent YAP Activation Is Important for Renal Recovery from AKI. J Am Soc Nephrol 2018; 29:2372-2385. [PMID: 30072422 PMCID: PMC6115662 DOI: 10.1681/asn.2017121272] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 06/22/2018] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Increasing evidence indicates that renal recovery from AKI stems from dedifferentiation and proliferation of surviving tubule epithelial cells. Both EGF receptor (EGFR) and the Hippo signaling pathway are implicated in cell proliferation and differentiation, and previous studies showed that activation of EGFR in renal proximal tubule epithelial cells (RPTCs) plays a critical role in recovery from ischemia-reperfusion injury (IRI). In this study, we explored RPTC activation of Yes-associated protein (YAP) and transcriptional coactivator with PDZ binding motif (TAZ), two key downstream effectors of the Hippo pathway, and their potential involvement in recovery from AKI. METHODS We used immunofluorescence to examine YAP expression in kidney biopsy samples from patients with clinical AKI and controls (patients with minimal change disease). Studies of RPTC activation of YAP and TAZ used cultured human RPTCs that were exposed to hypoxia-reoxygenation as well as knockout mice (with inducible deletions of Yap, Taz, or both occurring specifically in RPTCs) that were subjected to bilateral IRI. RESULTS YAP was activated in RPTCs in kidneys from post-AKI patients and post-IRI mouse kidneys. Inhibition of the interaction of YAP and the TEA domain (TEAD) transcription factor complex by verteporfin or conditional deletion of YAP in RPTCs delayed renal functional and structural recovery from IRI, whereas TAZ deletion had no effect. Activation of the EGFR-PI3K-Akt pathway in response to IRI signaled YAP activation, which promoted cell cycle progression. CONCLUSIONS This study shows that EGFR-PI3K-Akt-dependent YAP activation plays an essential role in mediating epithelial cell regeneration during kidney recovery from AKI.
Collapse
Affiliation(s)
- Jianchun Chen
- Department of Veterans Affairs, Nashville, Tennessee; Departments of
- Medicine and
- Vanderbilt Center for Kidney Disease, Nashville, Tennessee
| | - Huaizhou You
- Medicine and
- Division of Nephrology, Huashan Hospital, Fudan University, Shanghai, China; and
| | - Yan Li
- Medicine and
- Division of Nephrology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | | | | | - Raymond C Harris
- Department of Veterans Affairs, Nashville, Tennessee; Departments of
- Medicine and
- Vanderbilt Center for Kidney Disease, Nashville, Tennessee
- Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
| |
Collapse
|
221
|
Liu S, Martin JF. The regulation and function of the Hippo pathway in heart regeneration. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2018; 8:e335. [PMID: 30169913 DOI: 10.1002/wdev.335] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 06/30/2018] [Accepted: 07/25/2018] [Indexed: 12/31/2022]
Abstract
Heart failure caused by cardiomyocyte loss and fibrosis is a leading cause of death worldwide. Although current treatments for heart failure such as heart transplantation and left ventricular assist device implantation have obvious value, new approaches are needed. Endogenous adult cardiomyocyte renewal is measurable but inefficient and inadequate in response to extensive acute heart damage. Stimulating self-renewal of endogenous cardiomyocytes holds great promise for heart repair. Uncovering the genetic mechanisms underlying cardiomyocyte renewal is a critical step in developing new approaches to repairing the heart. Recent studies have revealed that the inhibition of the Hippo pathway is sufficient to promote the proliferation of endogenous cardiomyocytes, indicating that the manipulation of the Hippo pathway in the heart may be a promising treatment for heart failure in the future. We summarize recent findings that have shed light on the function of the Hippo pathway in heart regeneration. We also discuss the mechanisms by which Hippo pathway inhibition promotes heart regeneration and how the Hippo pathway responds to different types of injury or stress during the regenerative process. This article is categorized under: Adult Stem Cells, Tissue Renewal, and Regeneration > Regeneration.
Collapse
Affiliation(s)
- Shijie Liu
- Cardiomyocyte Renewal Laboratory, Texas Heart Institute, Houston, Texas
| | - James F Martin
- Cardiomyocyte Renewal Laboratory, Texas Heart Institute, Houston, Texas.,Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
222
|
Janse van Rensburg HJ, Lai D, Azad T, Hao Y, Yang X. TAZ enhances mammary cell proliferation in 3D culture through transcriptional regulation of IRS1. Cell Signal 2018; 52:12-22. [PMID: 30138697 DOI: 10.1016/j.cellsig.2018.08.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 08/16/2018] [Accepted: 08/17/2018] [Indexed: 12/13/2022]
Abstract
WW domain-containing transcriptional regulator 1 (TAZ) is a transcriptional co-activator and effector of the Hippo signaling pathway. In certain breast cancer subtypes, Hippo signaling is dysregulated leading to activation of TAZ and altered expression of TAZ transcriptional targets. Over the past decade, we and others have found that TAZ transcriptionally regulates genes that affect multiple aspects of breast cancer cell behaviour. However, while cancer cell-intrinsic oncogenic functions of TAZ have emerged, less is known about whether TAZ might also contribute to tumourigenesis by sensitizing tumour cells to factors present in the tumour microenvironment or in systemic circulation. Here, we show that TAZ directly regulates the expression of insulin receptor substrate 1 (IRS1) in breast cancer cells. TAZ or IRS1 overexpression induces a similar proliferative transformation phenotype in MCF10A mammary epithelial cells. TAZ enhances IRS1 mRNA, protein levels and downstream signaling in MCF10A. Mechanistically, TAZ interacts with the IRS1 promoter through the TEAD family of transcription factors and enhances its activity. Critically, TAZ-induced IRS1 upregulation contributes to the proliferation of TAZ-overexpressing MCF10A in 3-dimensional (3D) Matrigel culture. Therefore, we offer compelling evidence that TAZ regulates signaling through the insulin pathway in breast cancer cells. These findings highlight an additional mechanism by which TAZ may promote breast cancer tumourigenesis and progression by modulating cancer cell responses to exogenously produced factors.
Collapse
Affiliation(s)
| | - Dulcie Lai
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Taha Azad
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Yawei Hao
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Xiaolong Yang
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario K7L 3N6, Canada.
| |
Collapse
|
223
|
Wu M. Mechanisms of Trabecular Formation and Specification During Cardiogenesis. Pediatr Cardiol 2018; 39:1082-1089. [PMID: 29594501 PMCID: PMC6164162 DOI: 10.1007/s00246-018-1868-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 03/14/2018] [Indexed: 01/08/2023]
Abstract
Trabecular morphogenesis is a key morphologic event during cardiogenesis and contributes to the formation of a competent ventricular wall. Lack of trabeculation results in embryonic lethality. The trabecular morphogenesis is a multistep process that includes, but is not limited to, trabecular initiation, proliferation/growth, specification, and compaction. Although a number of signaling molecules have been implicated in regulating trabeculation, the cellular processes underlying mammalian trabecular formation are not fully understood. Recent works show that the myocardium displays polarity, and oriented cell division (OCD) and directional migration of the cardiomyocytes in the monolayer myocardium are required for trabecular initiation and formation. Furthermore, perpendicular OCD is an extrinsic asymmetric cell division that contributes to trabecular specification, and is a mechanism that causes the trabecular cardiomyocytes to be distinct from the cardiomyocytes in compact zone. Once the coronary vasculature system starts to function in the embryonic heart, the trabeculae will coalesce with the compact zone to thicken the heart wall, and abnormal compaction will lead to left ventricular non-compaction (LVNC) and heart failure. There are many reviews about compaction and LVNC. In this review, we will focus on the roles of myocardial polarity and OCD in trabecular initiation, formation, and specification.
Collapse
Affiliation(s)
- Mingfu Wu
- Department of Molecular and Cellular Physiology, Albany Medical College, 43 New Scotland Ave, Albany, NY, 12208, USA.
| |
Collapse
|
224
|
Günthel M, Barnett P, Christoffels VM. Development, Proliferation, and Growth of the Mammalian Heart. Mol Ther 2018; 26:1599-1609. [PMID: 29929790 PMCID: PMC6037201 DOI: 10.1016/j.ymthe.2018.05.022] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 05/24/2018] [Accepted: 05/25/2018] [Indexed: 01/01/2023] Open
Abstract
During development, the embryonic heart grows by addition of cells from a highly proliferative progenitor pool and by subsequent precisely controlled waves of cardiomyocyte proliferation. In this period, the heart can compensate for cardiomyocyte loss by an increased proliferation rate of the remaining cardiomyocytes. This proliferative capacity is lost soon after birth, with heart growth continuing by an increase in cardiomyocyte volume. The failure of the injured adult heart to regenerate often leads to the development of heart failure, a major cause of death. With the recent observation of a small fraction of cardiomyocytes that appear to have retained the proliferative capacity within the adult heart, as well as the identification of developmental pathways such as the Hippo-signaling pathway that can invoke mature cardiomyocyte proliferation, more studies are taking a knowledge-based mechanistic approach to heart regeneration. A key question being asked is if this knowledge can be used therapeutically to reinitiate cardiomyocyte proliferation after injury such as myocardial infarction. In this respect, uncovering and understanding the mechanisms and conditions that give rise to a fully functional and adaptive heart in the developing embryo could provide us with the answers to many of the questions that are now being asked.
Collapse
Affiliation(s)
- Marie Günthel
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, Amsterdam, the Netherlands
| | - Phil Barnett
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, Amsterdam, the Netherlands
| | - Vincent M Christoffels
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, Amsterdam, the Netherlands.
| |
Collapse
|
225
|
Astone M, Lai JKH, Dupont S, Stainier DYR, Argenton F, Vettori A. Zebrafish mutants and TEAD reporters reveal essential functions for Yap and Taz in posterior cardinal vein development. Sci Rep 2018; 8:10189. [PMID: 29976931 PMCID: PMC6033906 DOI: 10.1038/s41598-018-27657-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 06/05/2018] [Indexed: 01/07/2023] Open
Abstract
As effectors of the Hippo signaling cascade, YAP1 and TAZ are transcriptional regulators playing important roles in development, tissue homeostasis and cancer. A number of different cues, including mechanotransduction of extracellular stimuli, adhesion molecules, oncogenic signaling and metabolism modulate YAP1/TAZ nucleo-cytoplasmic shuttling. In the nucleus, YAP1/TAZ tether with the DNA binding proteins TEADs, to activate the expression of target genes that regulate proliferation, migration, cell plasticity, and cell fate. Based on responsive elements present in the human and zebrafish promoters of the YAP1/TAZ target gene CTGF, we established zebrafish fluorescent transgenic reporter lines of Yap1/Taz activity. These reporter lines provide an in vivo view of Yap1/Taz activity during development and adulthood at the whole organism level. Transgene expression was detected in many larval tissues including the otic vesicles, heart, pharyngeal arches, muscles and brain and is prominent in endothelial cells. Analysis of vascular development in yap1/taz zebrafish mutants revealed specific defects in posterior cardinal vein (PCV) formation, with altered expression of arterial/venous markers. The overactivation of Yap1/Taz in endothelial cells was sufficient to promote an aberrant vessel sprouting phenotype. Our findings confirm and extend the emerging role of Yap1/Taz in vascular development including angiogenesis.
Collapse
MESH Headings
- Animals
- Animals, Genetically Modified
- Connective Tissue Growth Factor/genetics
- Embryo, Nonmammalian
- Endothelial Cells/metabolism
- Endothelium, Vascular/cytology
- Endothelium, Vascular/metabolism
- Gene Expression Regulation, Developmental
- Genes, Reporter/genetics
- Intracellular Signaling Peptides and Proteins/genetics
- Intracellular Signaling Peptides and Proteins/metabolism
- Luciferases/chemistry
- Luciferases/genetics
- Microscopy, Confocal
- Microscopy, Fluorescence
- Mutation
- Neovascularization, Physiologic/genetics
- Promoter Regions, Genetic/genetics
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Transcriptional Coactivator with PDZ-Binding Motif Proteins
- Transgenes/genetics
- Veins/cytology
- Veins/growth & development
- YAP-Signaling Proteins
- Zebrafish
- Zebrafish Proteins/genetics
- Zebrafish Proteins/metabolism
Collapse
Affiliation(s)
- Matteo Astone
- University of Padova, Department of Biology, Padova, Italy
| | | | - Sirio Dupont
- University of Padova, Department of Molecular Medicine, Padova, Italy
| | | | | | - Andrea Vettori
- University of Padova, Department of Biology, Padova, Italy.
| |
Collapse
|
226
|
Ardestani A, Lupse B, Maedler K. Hippo Signaling: Key Emerging Pathway in Cellular and Whole-Body Metabolism. Trends Endocrinol Metab 2018; 29:492-509. [PMID: 29739703 DOI: 10.1016/j.tem.2018.04.006] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/06/2018] [Accepted: 04/13/2018] [Indexed: 12/14/2022]
Abstract
The evolutionarily conserved Hippo pathway is a key regulator of organ size and tissue homeostasis. Its dysregulation is linked to multiple pathological disorders. In addition to regulating development and growth, recent studies show that Hippo pathway components such as MST1/2 and LATS1/2 kinases, as well as YAP/TAZ transcriptional coactivators, are regulated by metabolic pathways and that the Hippo pathway controls metabolic processes at the cellular and organismal levels in physiological and metabolic disease states such as obesity, type 2 diabetes (T2D), nonalcoholic fatty liver disease (NAFLD), cardiovascular disorders, and cancer. In this review we summarize the connection between key Hippo components and metabolism, and how this interplay regulates cellular metabolism and metabolic pathways. The emerging function of Hippo in the regulation of metabolic homeostasis under physiological and pathological conditions is highlighted.
Collapse
Affiliation(s)
- Amin Ardestani
- University of Bremen, Centre for Biomolecular Interactions Bremen, Bremen 28359, Germany.
| | - Blaz Lupse
- University of Bremen, Centre for Biomolecular Interactions Bremen, Bremen 28359, Germany
| | - Kathrin Maedler
- University of Bremen, Centre for Biomolecular Interactions Bremen, Bremen 28359, Germany.
| |
Collapse
|
227
|
Xiong J, Almeida M, O'Brien CA. The YAP/TAZ transcriptional co-activators have opposing effects at different stages of osteoblast differentiation. Bone 2018; 112:1-9. [PMID: 29626544 PMCID: PMC5970058 DOI: 10.1016/j.bone.2018.04.001] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 03/26/2018] [Accepted: 04/04/2018] [Indexed: 01/06/2023]
Abstract
The related transcriptional co-factors YAP (Yes-associated protein) and TAZ (transcriptional co-activator with PDZ-binding motif) have been proposed to either promote or inhibit osteoblast differentiation. Here we investigated the skeletal consequences of deleting YAP and TAZ at different stages of the osteoblast lineage using Prx1-Cre, Osx1-Cre, and Dmp1-Cre transgenic mice. Prx1-Cre-mediated deletion resulted in embryonic lethality. Mice lacking both copies of TAZ and one copy of YAP in cells targeted by Prx1-Cre were viable and displayed elevated bone mass associated increased bone formation. Deletion of YAP and TAZ using Osx1-Cre mice led to perinatal lethality. Suppression of Osx1-Cre activity until 21 days of age permitted postnatal deletion of YAP and TAZ, which resulted in increased osteoblast number at 12 weeks of age but no change in bone mass. Mechanistic studies revealed that YAP and TAZ suppress canonical Wnt signaling and Runx2 activity in osteoblast progenitors. Consistent with this, deletion of YAP and TAZ from osteoprogenitor cells increased osteoblast differentiation in vitro. Deletion of YAP and TAZ from mature osteoblasts and osteocytes using Dmp1-Cre mice led to reduced osteoblast number and bone formation, as well as increased osteoclast number, but no changes in known regulators of bone turnover such as RANKL, OPG, and Sost. Together these results suggest that YAP and TAZ in osteoblast progenitors oppose differentiation towards the osteoblast lineage but in mature osteoblasts and osteocytes, they promote bone formation and inhibit bone resorption.
Collapse
Affiliation(s)
- Jinhu Xiong
- Department of Orthopaedic Surgery, Center for Musculoskeletal Disease Research, University of Arkansas for Medical Sciences, Little Rock, AR, United States; Central Arkansas Veterans Healthcare System, Little Rock, AR, United States.
| | - Maria Almeida
- Department of Orthopaedic Surgery, Center for Musculoskeletal Disease Research, University of Arkansas for Medical Sciences, Little Rock, AR, United States; Central Arkansas Veterans Healthcare System, Little Rock, AR, United States
| | - Charles A O'Brien
- Department of Orthopaedic Surgery, Center for Musculoskeletal Disease Research, University of Arkansas for Medical Sciences, Little Rock, AR, United States; Central Arkansas Veterans Healthcare System, Little Rock, AR, United States
| |
Collapse
|
228
|
Nicolás-Ávila JA, Hidalgo A, Ballesteros I. Specialized functions of resident macrophages in brain and heart. J Leukoc Biol 2018; 104:743-756. [PMID: 29947422 DOI: 10.1002/jlb.6mr0118-041r] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 05/08/2018] [Accepted: 05/30/2018] [Indexed: 12/16/2022] Open
Abstract
The functions of macrophages in healthy tissues extend beyond their well-established roles as immune sentinels and effectors. Among tissues, cells of the brain and heart possess unique excitatory properties that likely demand special support. Accordingly, existing evidence demonstrates that microglia in the brain has an active role in synaptic organization, control of neuronal excitability, phagocytic removal of debris, and trophic support during brain development. In the heart, recent studies suggest that cardiac macrophages are involved in the regulation of heart homeostasis by phagocytosis, production of trophic, and immune-related factors, and by forming direct contacts with cardiomyocytes to regulate electrical conduction. In this review, we discuss mechanisms associated with the high degree of specialization of resident macrophages in both tissues, their origin and heterogeneity, and their contributions in regulating homeostasis under steady-state and pathological conditions.
Collapse
Affiliation(s)
| | - Andrés Hidalgo
- Area of Cell and Developmental Biology, Fundación CNIC, Madrid, Spain
| | - Iván Ballesteros
- Area of Cell and Developmental Biology, Fundación CNIC, Madrid, Spain
| |
Collapse
|
229
|
Jing X, Wang J, Yin W, Li G, Fang Z, Zhu W, Guo F, Ye Y. Proliferation and differentiation of rat adipose‑derived stem cells are regulated by yes‑associated protein. Int J Mol Med 2018; 42:1526-1536. [PMID: 29916531 PMCID: PMC6089759 DOI: 10.3892/ijmm.2018.3734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 06/07/2018] [Indexed: 12/27/2022] Open
Abstract
Adipose‑derived stem cell (ASC)‑based therapy is a promising treatment strategy for diseases of the musculoskeletal system, as ASCs have the potential to differentiate into numerous cell lineages. However, this field has only recently been explored; therefore, a considerable amount of work is required to determine the therapeutic potential of ASCs. The mechanisms and factors associated with ASC proliferation and differentiation remain to be elucidated. In order to determine the biological properties and subsequent clinical applications of ASCs, these molecular mechanisms must be investigated. The transcriptional co‑activator yes‑associated protein (YAP), which is a major target of the Hippo signaling pathway, has been reported to serve a crucial role in stem cell proliferation and differentiation. To the best of our knowledge, the role of YAP in the proliferation and differentiation of rat ASCs (rASCs) has not yet been reported. The results of an immunofluorescence analysis revealed that subcellular distribution of YAP in rASCs was regulated by cell density and the actin cytoskeleton. Furthermore, western blot analysis demonstrated that YAP protein expression in rASCs was regulated by lysophosphatidic acid and the actin cytoskeleton. In addition, YAP activation promoted the proliferation of rASCs, whereas YAP inactivation promoted osteogenesis and inhibited adipogenesis of rASCs. In conclusion, these findings demonstrated that YAP may regulate the proliferation and differentiation of rASCs. Targeted modulation of YAP in rASCs may therefore increase the therapeutic effect of rASCs in musculoskeletal diseases.
Collapse
Affiliation(s)
- Xingzhi Jing
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Jiang Wang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Weifeng Yin
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Guanghui Li
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Zhong Fang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Wentao Zhu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Fengjing Guo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Yaping Ye
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
230
|
|
231
|
|
232
|
Hippo Signaling Plays an Essential Role in Cell State Transitions during Cardiac Fibroblast Development. Dev Cell 2018; 45:153-169.e6. [PMID: 29689192 DOI: 10.1016/j.devcel.2018.03.019] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 02/02/2018] [Accepted: 03/26/2018] [Indexed: 12/14/2022]
Abstract
During development, progenitors progress through transition states. The cardiac epicardium contains progenitors of essential non-cardiomyocytes. The Hippo pathway, a kinase cascade that inhibits the Yap transcriptional co-factor, controls organ size in developing hearts. Here, we investigated Hippo kinases Lats1 and Lats2 in epicardial diversification. Epicardial-specific deletion of Lats1/2 was embryonic lethal, and mutant embryos had defective coronary vasculature remodeling. Single-cell RNA sequencing revealed that Lats1/2 mutant cells failed to activate fibroblast differentiation but remained in an intermediate cell state with both epicardial and fibroblast characteristics. Lats1/2 mutant cells displayed an arrested developmental trajectory with persistence of epicardial markers and expanded expression of Yap targets Dhrs3, an inhibitor of retinoic acid synthesis, and Dpp4, a protease that modulates extracellular matrix (ECM) composition. Genetic and pharmacologic manipulation revealed that Yap inhibits fibroblast differentiation, prolonging a subepicardial-like cell state, and promotes expression of matricellular factors, such as Dpp4, that define ECM characteristics.
Collapse
|
233
|
Lai JKH, Collins MM, Uribe V, Jiménez-Amilburu V, Günther S, Maischein HM, Stainier DYR. The Hippo pathway effector Wwtr1 regulates cardiac wall maturation in zebrafish. Development 2018; 145:145/10/dev159210. [PMID: 29773645 DOI: 10.1242/dev.159210] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 04/23/2018] [Indexed: 12/14/2022]
Abstract
Cardiac trabeculation is a highly regulated process that starts with the delamination of compact layer cardiomyocytes. The Hippo signaling pathway has been implicated in cardiac development but many questions remain. We have investigated the role of Wwtr1, a nuclear effector of the Hippo pathway, in zebrafish and find that its loss leads to reduced cardiac trabeculation. However, in mosaic animals, wwtr1-/- cardiomyocytes contribute more frequently than wwtr1+/- cardiomyocytes to the trabecular layer of wild-type hearts. To investigate this paradox, we examined the myocardial wall at early stages and found that compact layer cardiomyocytes in wwtr1-/- hearts exhibit disorganized cortical actin structure and abnormal cell-cell junctions. Accordingly, wild-type cardiomyocytes in mosaic mutant hearts contribute less frequently to the trabecular layer than when present in mosaic wild-type hearts, indicating that wwtr1-/- hearts are not able to support trabeculation. We also found that Nrg/Erbb2 signaling, which is required for trabeculation, could promote Wwtr1 nuclear export in cardiomyocytes. Altogether, these data suggest that Wwtr1 establishes the compact wall architecture necessary for trabeculation, and that Nrg/Erbb2 signaling negatively regulates its nuclear localization and therefore its activity.
Collapse
Affiliation(s)
- Jason K H Lai
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim 61231, Germany
| | - Michelle M Collins
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim 61231, Germany
| | - Veronica Uribe
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim 61231, Germany
| | - Vanesa Jiménez-Amilburu
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim 61231, Germany
| | - Stefan Günther
- Max Planck Institute for Heart and Lung Research, ECCPS Bioinformatics and Deep Sequencing Platform, Bad Nauheim 61231, Germany
| | - Hans-Martin Maischein
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim 61231, Germany
| | - Didier Y R Stainier
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim 61231, Germany
| |
Collapse
|
234
|
Artap S, Manderfield LJ, Smith CL, Poleshko A, Aghajanian H, See K, Li L, Jain R, Epstein JA. Endocardial Hippo signaling regulates myocardial growth and cardiogenesis. Dev Biol 2018; 440:22-30. [PMID: 29727635 DOI: 10.1016/j.ydbio.2018.04.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/19/2018] [Accepted: 04/19/2018] [Indexed: 01/17/2023]
Abstract
The Hippo signaling pathway has been implicated in control of cell and organ size, proliferation, and endothelial-mesenchymal transformation. This pathway impacts upon two partially redundant transcription cofactors, Yap and Taz, that interact with other factors, including members of the Tead family, to affect expression of downstream genes. Yap and Taz have been shown to regulate, in a cell-autonomous manner, myocardial proliferation, myocardial hypertrophy, regenerative potential, and overall size of the heart. Here, we show that Yap and Taz also play an instructive, non-cell-autonomous role in the endocardium of the developing heart to regulate myocardial growth through release of the paracrine factor, neuregulin. Without endocardial Yap and Taz, myocardial growth is impaired causing early post-natal lethality. Thus, the Hippo signaling pathway regulates cell size via both cell-autonomous and non-cell-autonomous mechanisms. Furthermore, these data suggest that Hippo may regulate organ size via a sensing and paracrine function in endothelial cells.
Collapse
Affiliation(s)
- Stanley Artap
- Department of Cell and Developmental Biology, The Cardiovascular Institute and the Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lauren J Manderfield
- Department of Cell and Developmental Biology, The Cardiovascular Institute and the Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Cheryl L Smith
- Department of Cell and Developmental Biology, The Cardiovascular Institute and the Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Andrey Poleshko
- Department of Cell and Developmental Biology, The Cardiovascular Institute and the Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Haig Aghajanian
- Department of Cell and Developmental Biology, The Cardiovascular Institute and the Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kelvin See
- Department of Cell and Developmental Biology, The Cardiovascular Institute and the Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Li Li
- Department of Cell and Developmental Biology, The Cardiovascular Institute and the Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rajan Jain
- Department of Cell and Developmental Biology, The Cardiovascular Institute and the Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jonathan A Epstein
- Department of Cell and Developmental Biology, The Cardiovascular Institute and the Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
235
|
Dalal S, Connelly B, Singh M, Singh K. NF2 signaling pathway plays a pro-apoptotic role in β-adrenergic receptor stimulated cardiac myocyte apoptosis. PLoS One 2018; 13:e0196626. [PMID: 29709009 PMCID: PMC5927447 DOI: 10.1371/journal.pone.0196626] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 04/16/2018] [Indexed: 12/24/2022] Open
Abstract
β-adrenergic receptor (β-AR) stimulation induces cardiac myocyte apoptosis in vitro and in vivo. Neurofibromin 2 (NF2) is a member of the ezrin/radixin/moesin (ERM) family of proteins. Post-translational modifications such as phosphorylation and sumoylation affect NF2 activity, subcellular localization and function. Here, we tested the hypothesis that β-AR stimulation induces post-translational modifications of NF2, and NF2 plays a pro-apoptotic role in β-AR-stimulated myocyte apoptosis.
Collapse
Affiliation(s)
- Suman Dalal
- Department of Biomedical Sciences, James H Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States of America
| | - Barbara Connelly
- Department of Biomedical Sciences, James H Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States of America
| | - Mahipal Singh
- Department of Biomedical Sciences, James H Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States of America
| | - Krishna Singh
- Department of Biomedical Sciences, James H Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States of America
- Center for Inflammation, Infectious Disease and Immunity, East Tennessee State University, Johnson City, TN, United States of America
- James H Quillen Veterans Affairs Medical Center, Mountain Home, TN, United States of America
- * E-mail:
| |
Collapse
|
236
|
Park S, Choe M, Yeo H, Han H, Kim J, Chang W, Yun S, Lee H, Lee M. Yes-associated protein mediates human embryonic stem cell-derived cardiomyocyte proliferation: Involvement of epidermal growth factor receptor signaling. J Cell Physiol 2018; 233:7016-7025. [PMID: 29693249 DOI: 10.1002/jcp.26625] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 03/28/2018] [Indexed: 11/09/2022]
Abstract
Unlike mature cardiomyocytes, human pluripotent stem cell-derived cardiomyocytes exhibit higher proliferative capacity; however, the underlying mechanisms involved are yet to be elucidated. Here, we revealed that the Yes-associated protein (YAP) plays a critical role in regulating cell proliferation in association with epidermal growth factor receptor (EGFR) in human embryonic stem cell-derived cardiomyocytes (hESC-CMs). Our results show that low-density culture significantly promotes the proliferation of hESC-CMs via YAP. Interestingly, the low-density culture-induced YAP expression further induced EGFR expression, without any alterations in the activity of EGFR and its two major downstream kinases, ERK, and AKT. However, treatment of a low-density-culture of hESC-CMs with epidermal growth factor (EGF) increased proliferation via phosphorylation of EGFR, ERK, and AKT, and the EGF-induced phosphorylation of EGFR, ERK, and AKT was significantly higher in low-density hESC-CMs than in high-density hESC-CMs. Furthermore, the EGF-induced activation of EGFR, ERK, and AKT increased YAP expression and subsequently proliferation. In conclusion, YAP mediates both low-density culture-induced and EGF-induced proliferation of hESC-CMs in low-density culture conditions.
Collapse
Affiliation(s)
- Somi Park
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, South Korea
| | - Museog Choe
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, South Korea
| | - Hancheol Yeo
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, South Korea
| | - Hojae Han
- College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Joongsun Kim
- K-herb Research Center, Korea Institute of Oriental Medicine, Daejeon, South Korea
| | - Woocheol Chang
- Department of Biology Education, College of Education, Pusan National University, Busan, South Korea
| | - Seungpil Yun
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Hojin Lee
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut
| | - Minyoung Lee
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
237
|
Yes-associated protein (YAP) in pancreatic cancer: at the epicenter of a targetable signaling network associated with patient survival. Signal Transduct Target Ther 2018; 3:11. [PMID: 29682330 PMCID: PMC5908807 DOI: 10.1038/s41392-017-0005-2] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 11/27/2017] [Accepted: 12/13/2017] [Indexed: 12/14/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is generally a fatal disease with no efficacious treatment modalities. Elucidation of signaling mechanisms that will lead to the identification of novel targets for therapy and chemoprevention is urgently needed. Here, we review the role of Yes-associated protein (YAP) and WW-domain-containing Transcriptional co-Activator with a PDZ-binding motif (TAZ) in the development of PDAC. These oncogenic proteins are at the center of a signaling network that involves multiple upstream signals and downstream YAP-regulated genes. We also discuss the clinical significance of the YAP signaling network in PDAC using a recently published interactive open-access database (www.proteinatlas.org/pathology) that allows genome-wide exploration of the impact of individual proteins on survival outcomes. Multiple YAP/TEAD-regulated genes, including AJUBA, ANLN, AREG, ARHGAP29, AURKA, BUB1, CCND1, CDK6, CXCL5, EDN2, DKK1, FOSL1,FOXM1, HBEGF, IGFBP2, JAG1, NOTCH2, RHAMM, RRM2, SERP1, and ZWILCH, are associated with unfavorable survival of PDAC patients. Similarly, components of AP-1 that synergize with YAP (FOSL1), growth factors (TGFα, EPEG, and HBEGF), a specific integrin (ITGA2), heptahelical receptors (P2Y2R, GPR87) and an inhibitor of the Hippo pathway (MUC1), all of which stimulate YAP activity, are associated with unfavorable survival of PDAC patients. By contrast, YAP inhibitory pathways (STRAD/LKB-1/AMPK, PKA/LATS, and TSC/mTORC1) indicate a favorable prognosis. These associations emphasize that the YAP signaling network correlates with poor survival of pancreatic cancer patients. We conclude that the YAP pathway is a major determinant of clinical aggressiveness in PDAC patients and a target for therapeutic and preventive strategies in this disease. Yes-associated protein (YAP) signaling contributes to pancreatic cancer progression and is associated with poor patient survival. Previous studies have shown that YAP activates genes involved in cell proliferation to incite tumor growth and metastasis. Enrique Rozengurt and colleagues at University of California Los Angeles review the latest knowledge on YAP signaling and used the open access database The Human Protein Atlas to analyze the gene expression profile and prognosis of 176 patients with pancreatic ductal adenocarcinoma. Activation of upstream or downstream elements of the YAP signaling pathway correlated with shorter survival in patients. Conversely, the activation of signaling pathways that oppose YAP signaling were associated with a more favorable prognosis. These findings highlight YAP signaling pathway components as both prognostic markers and potential targets for developing much needed therapeutic and preventative strategies.
Collapse
|
238
|
|
239
|
Neddylation mediates ventricular chamber maturation through repression of Hippo signaling. Proc Natl Acad Sci U S A 2018; 115:E4101-E4110. [PMID: 29632206 DOI: 10.1073/pnas.1719309115] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
During development, ventricular chamber maturation is a crucial step in the formation of a functionally competent postnatal heart. Defects in this process can lead to left ventricular noncompaction cardiomyopathy and heart failure. However, molecular mechanisms underlying ventricular chamber development remain incompletely understood. Neddylation is a posttranslational modification that attaches ubiquitin-like protein NEDD8 to protein targets via NEDD8-specific E1-E2-E3 enzymes. Here, we report that neddylation is temporally regulated in the heart and plays a key role in cardiac development. Cardiomyocyte-specific knockout of NAE1, a subunit of the E1 neddylation activating enzyme, significantly decreased neddylated proteins in the heart. Mice lacking NAE1 developed myocardial hypoplasia, ventricular noncompaction, and heart failure at late gestation, which led to perinatal lethality. NAE1 deletion resulted in dysregulation of cell cycle-regulatory genes and blockade of cardiomyocyte proliferation in vivo and in vitro, which was accompanied by the accumulation of the Hippo kinases Mst1 and LATS1/2 and the inactivation of the YAP pathway. Furthermore, reactivation of YAP signaling in NAE1-inactivated cardiomyocytes restored cell proliferation, and YAP-deficient hearts displayed a noncompaction phenotype, supporting an important role of Hippo-YAP signaling in NAE1-depleted hearts. Mechanistically, we found that neddylation regulates Mst1 and LATS2 degradation and that Cullin 7, a NEDD8 substrate, acts as the ubiquitin ligase of Mst1 to enable YAP signaling and cardiomyocyte proliferation. Together, these findings demonstrate a role for neddylation in heart development and, more specifically, in the maturation of ventricular chambers and also identify the NEDD8 substrate Cullin 7 as a regulator of Hippo-YAP signaling.
Collapse
|
240
|
Vite A, Zhang C, Yi R, Emms S, Radice GL. α-Catenin-dependent cytoskeletal tension controls Yap activity in the heart. Development 2018; 145:dev.149823. [PMID: 29467248 PMCID: PMC5868989 DOI: 10.1242/dev.149823] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 02/07/2018] [Indexed: 01/08/2023]
Abstract
Shortly after birth, muscle cells of the mammalian heart lose their ability to divide. At the same time, the N-cadherin/catenin cell adhesion complex accumulates at the cell termini, creating a specialized type of cell-cell contact called the intercalated disc (ICD). To investigate the relationship between ICD maturation and proliferation, αE-catenin (Ctnna1) and αT-catenin (Ctnna3) genes were deleted to generate cardiac-specific α-catenin double knockout (DKO) mice. DKO mice exhibited aberrant N-cadherin expression, mislocalized actomyosin activity and increased cardiomyocyte proliferation that was dependent on Yap activity. To assess effects on tension, cardiomyocytes were cultured on deformable polyacrylamide hydrogels of varying stiffness. When grown on a stiff substrate, DKO cardiomyocytes exhibited increased cell spreading, nuclear Yap and proliferation. A low dose of either a myosin or RhoA inhibitor was sufficient to block Yap accumulation in the nucleus. Finally, activation of RhoA was sufficient to increase nuclear Yap in wild-type cardiomyocytes. These data demonstrate that α-catenins regulate ICD maturation and actomyosin contractility, which, in turn, control Yap subcellular localization, thus providing an explanation for the loss of proliferative capacity in the newborn mammalian heart.
Collapse
Affiliation(s)
- Alexia Vite
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Caimei Zhang
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Roslyn Yi
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Sabrina Emms
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Glenn L Radice
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
241
|
Yao E, Lin C, Wu Q, Zhang K, Song H, Chuang PT. Notch Signaling Controls Transdifferentiation of Pulmonary Neuroendocrine Cells in Response to Lung Injury. Stem Cells 2018; 36:377-391. [PMID: 29148109 DOI: 10.1002/stem.2744] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 10/21/2017] [Accepted: 11/04/2017] [Indexed: 12/23/2022]
Abstract
Production of an appropriate number of distinct cell types in precise locations during embryonic development is critical for proper tissue function. Homeostatic renewal or repair of damaged tissues in adults also requires cell expansion and transdifferentiation to replenish lost cells. However, the responses of diverse cell types to tissue injury are not fully elucidated. Moreover, the molecular mechanisms underlying transdifferentiation remain poorly understood. This knowledge is essential for harnessing the regenerative potential of individual cell types. This study investigated the fate of pulmonary neuroendocrine cells (PNECs) following lung damage to understand their plasticity and potential. PNECs are proposed to carry out diverse physiological functions in the lung and can also be the cells of origin of human small cell lung cancer. We found that Notch signaling is activated in proliferating PNECs in response to epithelial injury. Forced induction of high levels of Notch signaling in PNECs in conjunction with lung injury results in extensive proliferation and transdifferentiation of PNECs toward the fate of club cells, ciliated cells and goblet cells. Conversely, inactivating Notch signaling in PNECs abolishes their ability to switch cell fate following lung insult. We also established a connection between PNEC transdifferentiation and epigenetic modification mediated by the polycomb repressive complex 2 and inflammatory responses that involve the IL6-STAT3 pathway. These studies not only reveal a major pathway that controls PNEC fate change following lung injury but also provide tools to uncover the molecular basis of cell proliferation and fate determination in response to lung injury. Stem Cells 2018;36:377-391.
Collapse
Affiliation(s)
- Erica Yao
- Cardiovascular Research Institute, University of California, San Francisco, California, USA
| | - Chuwen Lin
- Cardiovascular Research Institute, University of California, San Francisco, California, USA
| | - Qingzhe Wu
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, People's Republic of China
| | - Kuan Zhang
- Cardiovascular Research Institute, University of California, San Francisco, California, USA
| | - Hai Song
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, People's Republic of China
- Cardiovascular Research Institute, University of California, San Francisco, California, USA
| | - Pao-Tien Chuang
- Cardiovascular Research Institute, University of California, San Francisco, California, USA
| |
Collapse
|
242
|
Notch signaling regulates Hey2 expression in a spatiotemporal dependent manner during cardiac morphogenesis and trabecular specification. Sci Rep 2018; 8:2678. [PMID: 29422515 PMCID: PMC5805758 DOI: 10.1038/s41598-018-20917-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 01/25/2018] [Indexed: 12/13/2022] Open
Abstract
Hey2 gene mutations in both humans and mice have been associated with multiple cardiac defects. However, the currently reported localization of Hey2 in the ventricular compact zone cannot explain the wide variety of cardiac defects. Furthermore, it was reported that, in contrast to other organs, Notch doesn’t regulate Hey2 in the heart. To determine the expression pattern and the regulation of Hey2, we used novel methods including RNAscope and a Hey2CreERT2 knockin line to precisely determine the spatiotemporal expression pattern and level of Hey2 during cardiac development. We found that Hey2 is expressed in the endocardial cells of the atrioventricular canal and the outflow tract, as well as at the base of trabeculae, in addition to the reported expression in the ventricular compact myocardium. By disrupting several signaling pathways that regulate trabeculation and/or compaction, we found that, in contrast to previous reports, Notch signaling and Nrg1/ErbB2 regulate Hey2 expression level in myocardium and/or endocardium, but not its expression pattern: weak expression in trabecular myocardium and strong expression in compact myocardium. Instead, we found that FGF signaling regulates the expression pattern of Hey2 in the early myocardium, and regulates the expression level of Hey2 in a Notch1 dependent manner.
Collapse
|
243
|
Zhou W, Zhao M. How Hippo Signaling Pathway Modulates Cardiovascular Development and Diseases. J Immunol Res 2018; 2018:3696914. [PMID: 29577047 PMCID: PMC5822808 DOI: 10.1155/2018/3696914] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 11/12/2017] [Indexed: 01/26/2023] Open
Abstract
Cardiovascular disease remains the leading cause of death around the globe. Cardiac deterioration is associated with irreversible cardiomyocyte loss. Understanding how the cardiovascular system develops and the pathological processes of cardiac disease will contribute to finding novel and preventive therapeutic methods. The canonical Hippo tumor suppressor pathway in mammalian cells is primarily composed of the MST1/2-SAV1-LATS1/2-MOB1-YAP/TAZ cascade. Continuing research on this pathway has identified other factors like RASSF1A, Nf2, MAP4Ks, and NDR1/2, further enriching our knowledge of the Hippo-YAP pathway. YAP, the core effecter of the Hippo pathway, may accumulate in the nucleus and initiate transcriptional activity if the pathway is inhibited. The role of Hippo signaling has been widely investigated in organ development and cancers. A heart of normal size and function which is critical for survival could not be generated without the proper regulation of the Hippo tumor suppressor pathway. Recent research has demonstrated a novel role of Hippo signaling in cardiovascular disease in the context of development, hypertrophy, angiogenesis, regeneration, apoptosis, and autophagy. In this review, we summarize the current knowledge of how Hippo signaling modulates pathological processes in cardiovascular disease and discuss potential molecular therapeutic targets.
Collapse
Affiliation(s)
- Wenyi Zhou
- Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510100, China
- Guangzhou Medical University, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510000, China
| | - Mingyi Zhao
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| |
Collapse
|
244
|
Jeong SH, Kim HB, Kim MC, Lee JM, Lee JH, Kim JH, Kim JW, Park WY, Kim SY, Kim JB, Kim H, Kim JM, Choi HS, Lim DS. Hippo-mediated suppression of IRS2/AKT signaling prevents hepatic steatosis and liver cancer. J Clin Invest 2018; 128:1010-1025. [PMID: 29400692 DOI: 10.1172/jci95802] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 12/19/2017] [Indexed: 12/17/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a major risk factor for liver cancer; therefore, its prevention is an important clinical goal. Ablation of phosphatase and tensin homolog (PTEN) or the protein kinase Hippo signaling pathway induces liver cancer via activation of AKT or the transcriptional regulators YAP/TAZ, respectively; however, the potential for crosstalk between the PTEN/AKT and Hippo/YAP/TAZ pathways in liver tumorigenesis has thus far remained unclear. Here, we have shown that deletion of both PTEN and SAV1 in the liver accelerates the development of NAFLD and liver cancer in mice. At the molecular level, activation of YAP/TAZ in the liver of Pten-/- Sav1-/- mice amplified AKT signaling through the upregulation of insulin receptor substrate 2 (IRS2) expression. Both ablation of YAP/TAZ and activation of the Hippo pathway could rescue these phenotypes. A high level of YAP/ TAZ expression was associated with a high level of IRS2 expression in human hepatocellular carcinoma (HCC). Moreover, treatment with the AKT inhibitor MK-2206 or knockout of IRS2 by AAV-Cas9 successfully repressed liver tumorigenesis in Pten-/- Sav1-/- mice. Thus, our findings suggest that Hippo signaling interacts with AKT signaling by regulating IRS2 expression to prevent NAFLD and liver cancer progression and provide evidence that impaired crosstalk between these 2 pathways accelerates NAFLD and liver cancer.
Collapse
Affiliation(s)
- Sun-Hye Jeong
- National Creative Research Initiatives Center, Department of Biological Sciences, Biomedical Research Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Han-Byul Kim
- National Creative Research Initiatives Center, Department of Biological Sciences, Biomedical Research Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Min-Chul Kim
- National Creative Research Initiatives Center, Department of Biological Sciences, Biomedical Research Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Ji-Min Lee
- National Creative Research Initiatives Center for Nuclear Receptor Signals and Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju, South Korea
| | - Jae Ho Lee
- National Creative Research Initiatives Center for Adipose Tissue Remodeling, School of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| | - Jeong-Hwan Kim
- Medical Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Jin-Woo Kim
- National Creative Research Initiatives Center, Department of Biological Sciences, Biomedical Research Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Woong-Yang Park
- Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Seon-Young Kim
- Medical Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Jae Bum Kim
- National Creative Research Initiatives Center for Adipose Tissue Remodeling, School of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| | - Haeryoung Kim
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Jin-Man Kim
- Department of Pathology, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Hueng-Sik Choi
- National Creative Research Initiatives Center for Nuclear Receptor Signals and Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju, South Korea
| | - Dae-Sik Lim
- National Creative Research Initiatives Center, Department of Biological Sciences, Biomedical Research Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| |
Collapse
|
245
|
Fu V, Plouffe SW, Guan KL. The Hippo pathway in organ development, homeostasis, and regeneration. Curr Opin Cell Biol 2018; 49:99-107. [PMID: 29316535 DOI: 10.1016/j.ceb.2017.12.012] [Citation(s) in RCA: 167] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 12/05/2017] [Accepted: 12/16/2017] [Indexed: 12/12/2022]
Abstract
The Hippo pathway is a universal governor of organ size, tissue homeostasis, and regeneration. A growing body of work has advanced our understanding of Hippo pathway regulation of cell proliferation, differentiation, and spatial patterning not only in organ development but also upon injury-induced regeneration. The pathway's central role in stem cell biology thus implicates its potential for therapeutic manipulation in mammalian organ regeneration. In this review, we survey recent literature linking the Hippo pathway to the development, homeostasis, and regeneration of various organs, including Hippo-independent roles for YAP, defined here as YAP functions that are not regulated by the Hippo pathway kinases LATS1/2.
Collapse
Affiliation(s)
- Vivian Fu
- Department of Pharmacology and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, United States
| | - Steven W Plouffe
- Department of Pharmacology and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, United States
| | - Kun-Liang Guan
- Department of Pharmacology and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, United States.
| |
Collapse
|
246
|
Sun C, Kontaridis MI. Physiology of Cardiac Development: From Genetics to Signaling to Therapeutic Strategies. CURRENT OPINION IN PHYSIOLOGY 2017. [PMID: 29532042 DOI: 10.1016/j.cophys.2017.09.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The heart is one of the first organs to form and function during embryonic development. It is comprised of multiple cell lineages, each integral for proper cardiac development, and include cardiomyocytes, endothelial cells, epicardial cells and neural crest cells. The molecular mechanisms regulating cardiac development and morphogenesis are dependent on signaling crosstalk between multiple lineages through paracrine interactions, cell-ECM interactions, and cell-cell interactions, which together, help facilitate survival, growth, proliferation, differentiation and migration of cardiac tissue. Aberrant regulation of any of these processes can induce developmental disorders and pathological phenotypes. Here, we will discuss each of these processes, the genetic factors that contribute to each step of cardiac development, as well as the current and future therapeutic targets and mechanisms of heart development and disease. Understanding the complex interactions that regulate cardiac development, proliferation and differentiation is not only vital to understanding the causes of congenital heart defects, but to also finding new therapeutics that can treat both pediatric and adult cardiac disease in the near future.
Collapse
Affiliation(s)
- Cheng Sun
- Department of Medicine, Division of Cardiology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Maria I Kontaridis
- Department of Medicine, Division of Cardiology, Beth Israel Deaconess Medical Center, Boston, MA, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
247
|
Hou N, Wen Y, Yuan X, Xu H, Wang X, Li F, Ye B. Activation of Yap1/Taz signaling in ischemic heart disease and dilated cardiomyopathy. Exp Mol Pathol 2017; 103:267-275. [PMID: 29154888 DOI: 10.1016/j.yexmp.2017.11.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 10/09/2017] [Accepted: 11/14/2017] [Indexed: 01/20/2023]
Abstract
Genetic manipulation of key components of the evolutionally conserved Hippo pathway has shown that the precise control of these signaling molecules is critical to cardiac development and response to stresses. However, how this pathway is involved in the progression of cardiac dysfunction in different heart diseases remains unclear. We investigated the expressional levels and subcellular localization of Yap1, Taz, and Tead1 and determined Hippo target gene expression in failing human hearts with ischemic heart disease (IHD) and idiopathic dilated cardiomyopathy (IDC) and mouse desmin-related cardiomyopathy (DES). Our results demonstrated that Yap1, Taz, and Tead1 were significantly increased in failing human and DES hearts compared with the non-failing controls (NFH) or wild type (WT) mouse hearts at both mRNA and protein levels. Interestingly, adult human and mouse hearts had more Taz than Yap1 by mRNA and protein expression and their increases in diseased hearts were proportional and did not change Yap1/Taz ratio. Yap1, Taz, and Tead1 were accumulated in the nuclear fraction and cardiomyocyte nuclei of diseased hearts. The ratio of Yap1 phosphorylated at serine 127 (human) or serine 112 (mouse) to the total Yap1 (pYap1/Yap1) was significantly lower in the nuclear fraction of diseased hearts than that in normal controls. More importantly, Hippo downstream targets Ankrd1, Ctgf, and Cyr61 were transcriptionally elevated in the diseased hearts. These results suggest that Yap1/Taz signaling is activated in human and mouse dysfunctional hearts. Further investigation with relevant animal models will determine whether this pathway is a potential target for preventing and reversing abnormal remodeling during the progression of different cardiac disorders.
Collapse
Affiliation(s)
- Ning Hou
- Department of Pharmacology, School of Pharmaceutical Sciences, and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, PR China; Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Ying Wen
- Department of Laboratory Medicine and Pathology, University of Minnesota, 420 Delaware St SE, Minneapolis, MN 55455, USA
| | - Xun Yuan
- Department of Laboratory Medicine and Pathology, University of Minnesota, 420 Delaware St SE, Minneapolis, MN 55455, USA
| | - Haodong Xu
- Department of Pathology, Center for Cardiovascular Biology and Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98195, USA
| | - Xuejun Wang
- Division of Basic Biomedical Sciences, University of South Dakota Sanford School of Medicine, Vermillion, SD 57069, USA
| | - Faqian Li
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA; Department of Laboratory Medicine and Pathology, University of Minnesota, 420 Delaware St SE, Minneapolis, MN 55455, USA; Masonic Cancer Center, University of Minnesota, 420 Delaware Street SE, Minneapolis, MN 55455, USA; Lillehei Heart Institute, Cancer & Cardiovascular Research Center, 2231 6th Street SE, Minneapolis, MN 55455, USA.
| | - Bo Ye
- Department of Laboratory Medicine and Pathology, University of Minnesota, 420 Delaware St SE, Minneapolis, MN 55455, USA.
| |
Collapse
|
248
|
Liu M, Zhang Z, Sampson L, Zhou X, Nalapareddy K, Feng Y, Akunuru S, Melendez J, Davis AK, Bi F, Geiger H, Xin M, Zheng Y. RHOA GTPase Controls YAP-Mediated EREG Signaling in Small Intestinal Stem Cell Maintenance. Stem Cell Reports 2017; 9:1961-1975. [PMID: 29129684 PMCID: PMC5785633 DOI: 10.1016/j.stemcr.2017.10.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 10/10/2017] [Accepted: 10/11/2017] [Indexed: 02/05/2023] Open
Abstract
RHOA, a founding member of the Rho GTPase family, is critical for actomyosin dynamics, polarity, and morphogenesis in response to developmental cues, mechanical stress, and inflammation. In murine small intestinal epithelium, inducible RHOA deletion causes a loss of epithelial polarity, with disrupted villi and crypt organization. In the intestinal crypts, RHOA deficiency results in reduced cell proliferation, increased apoptosis, and a loss of intestinal stem cells (ISCs) that mimic effects of radiation damage. Mechanistically, RHOA loss reduces YAP signaling of the Hippo pathway and affects YAP effector epiregulin (EREG) expression in the crypts. Expression of an active YAP (S112A) mutant rescues ISC marker expression, ISC regeneration, and ISC-associated Wnt signaling, but not defective epithelial polarity, in RhoA knockout mice, implicating YAP in RHOA-regulated ISC function. EREG treatment or active β-catenin Catnblox(ex3) mutant expression rescues the RhoA KO ISC phenotypes. Thus, RHOA controls YAP-EREG signaling to regulate intestinal homeostasis and ISC regeneration.
Collapse
Affiliation(s)
- Ming Liu
- Division of Experimental Hematology & Cancer Biology, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Department of Medical Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Zheng Zhang
- Division of Experimental Hematology & Cancer Biology, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Leesa Sampson
- Division of Experimental Hematology & Cancer Biology, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Xuan Zhou
- Division of Experimental Hematology & Cancer Biology, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Kodandaramireddy Nalapareddy
- Division of Experimental Hematology & Cancer Biology, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Yuxin Feng
- Division of Experimental Hematology & Cancer Biology, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Shailaja Akunuru
- Division of Experimental Hematology & Cancer Biology, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Jaime Melendez
- Division of Experimental Hematology & Cancer Biology, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Laboratorio de Bioquímica y Biología Molecular Depto. Farmacia Facultad de Química, P. Universidad Católica de Chile, Santiago, Chile
| | - Ashley Kuenzi Davis
- Division of Experimental Hematology & Cancer Biology, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Feng Bi
- Department of Medical Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Hartmut Geiger
- Division of Experimental Hematology & Cancer Biology, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Mei Xin
- Division of Experimental Hematology & Cancer Biology, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Yi Zheng
- Division of Experimental Hematology & Cancer Biology, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229, USA.
| |
Collapse
|
249
|
Levasseur A, St-Jean G, Paquet M, Boerboom D, Boyer A. Targeted Disruption of YAP and TAZ Impairs the Maintenance of the Adrenal Cortex. Endocrinology 2017; 158:3738-3753. [PMID: 28938438 PMCID: PMC5695830 DOI: 10.1210/en.2017-00098] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 09/08/2017] [Indexed: 01/08/2023]
Abstract
Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) are functionally redundant transcriptional regulators that are downstream effectors of the Hippo signaling pathway. They act as major regulators of stem cell maintenance, cell growth, and differentiation. To characterize their roles in the adrenal cortex, we generated a mouse model in which Yap and Taz were conditionally deleted in steroidogenic cells (Yapflox/flox;Tazflox/flox;Nr5a1cre/+). Male Yapflox/flox;Tazflox/flox;Nr5a1cre/+ mice were characterized by an age-dependent degeneration of the adrenal cortex associated with an increase in apoptosis and a progressive reduction in the expression levels of steroidogenic genes. Evaluation of the expression levels of stem and progenitor cell population markers in the adrenal glands of Yapflox/flox;Tazflox/flox;Nr5a1cre/+ mice also showed the downregulation of sonic hedgehog (Shh), a marker of the subcapsular progenitor cell population. Gross degenerative changes were not observed in the adrenal glands of Yapflox/flox;Tazflox/flox;Nr5a1cre/+ females, although steroidogenic capacity and Shh expression were reduced, suggesting that mechanisms of adrenocortical maintenance are sex specific. These results define a crucial role for YAP and TAZ in the maintenance of the postnatal adrenal cortex.
Collapse
Affiliation(s)
- Adrien Levasseur
- Centre de Recherche en Reproduction et Fertilité, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Quebec J2S 7C6, Canada
| | - Guillaume St-Jean
- Centre de Recherche en Reproduction et Fertilité, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Quebec J2S 7C6, Canada
| | - Marilène Paquet
- Centre de Recherche en Reproduction et Fertilité, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Quebec J2S 7C6, Canada
| | - Derek Boerboom
- Centre de Recherche en Reproduction et Fertilité, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Quebec J2S 7C6, Canada
| | - Alexandre Boyer
- Centre de Recherche en Reproduction et Fertilité, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Quebec J2S 7C6, Canada
| |
Collapse
|
250
|
Dethlefsen C, Hansen LS, Lillelund C, Andersen C, Gehl J, Christensen JF, Pedersen BK, Hojman P. Exercise-Induced Catecholamines Activate the Hippo Tumor Suppressor Pathway to Reduce Risks of Breast Cancer Development. Cancer Res 2017; 77:4894-4904. [PMID: 28887324 DOI: 10.1158/0008-5472.can-16-3125] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 04/19/2017] [Accepted: 06/27/2017] [Indexed: 11/16/2022]
Abstract
Strong epidemiologic evidence documents the protective effect of physical activity on breast cancer risk, recurrence, and mortality, but the underlying mechanisms remain to be identified. Using human exercise-conditioned serum for breast cancer cell incubation studies and murine exercise interventions, we aimed to identify exercise factors and signaling pathways involved in the exercise-dependent suppression of breast cancer. Exercise-conditioned serum from both women with breast cancer (n = 20) and healthy women (n = 7) decreased MCF-7 (hormone-sensitive) and MDA-MB-231 (hormone-insensitive) breast cancer cell viability in vitro by 11% to 19% and reduced tumorigenesis by 50% when preincubated MCF-7 breast cancer cells were inoculated into NMRI-Foxn1nu mice. This exercise-mediated suppression of cell viability and tumor formation was completely blunted by blockade of β-adrenergic signaling in MCF-7 cells, indicating that catecholamines were the responsible exercise factors. Both epinephrine (EPI) and norepinephrine (NE) could directly inhibit breast cancer cell viability, as well as tumor growth in vivo EPI and NE activate the tumor suppressor Hippo signaling pathway, and the suppressive effect of exercise-conditioned serum was found to be mediated through phosphorylation and cytoplasmic retention of YAP and reduced expression of downstream target genes, for example, ANKRD1 and CTGF. In parallel, tumor-bearing mice with access to running wheels showed reduced growth of MCF-7 (-36%, P < 0.05) and MDA-MB-231 (-66%, P < 0.01) tumors and, for the MCF-7 tumor, increased regulation of the Hippo signaling pathway. Taken together, our findings offer a mechanistic explanation for exercise-dependent suppression of breast cancer cell growth. Cancer Res; 77(18); 4894-904. ©2017 AACR.
Collapse
Affiliation(s)
- Christine Dethlefsen
- Centre of Inflammation and Metabolism (CIM) and Centre for Physical Activity Research (CFAS), Rigshospitalet, Faculty of Health Science, University of Copenhagen, Denmark
| | - Louise S Hansen
- Centre of Inflammation and Metabolism (CIM) and Centre for Physical Activity Research (CFAS), Rigshospitalet, Faculty of Health Science, University of Copenhagen, Denmark
| | - Christian Lillelund
- The University Hospitals Centre for Health Research, Rigshospitalet, Copenhagen, Denmark
| | - Christina Andersen
- The University Hospitals Centre for Health Research, Rigshospitalet, Copenhagen, Denmark
| | - Julie Gehl
- Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Jesper F Christensen
- Centre of Inflammation and Metabolism (CIM) and Centre for Physical Activity Research (CFAS), Rigshospitalet, Faculty of Health Science, University of Copenhagen, Denmark
| | - Bente K Pedersen
- Centre of Inflammation and Metabolism (CIM) and Centre for Physical Activity Research (CFAS), Rigshospitalet, Faculty of Health Science, University of Copenhagen, Denmark
| | - Pernille Hojman
- Centre of Inflammation and Metabolism (CIM) and Centre for Physical Activity Research (CFAS), Rigshospitalet, Faculty of Health Science, University of Copenhagen, Denmark. .,Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| |
Collapse
|