201
|
Jeyanathan M, Thanthrige-Don N, Afkhami S, Lai R, Damjanovic D, Zganiacz A, Feng X, Yao XD, Rosenthal KL, Medina MF, Gauldie J, Ertl HC, Xing Z. Novel chimpanzee adenovirus-vectored respiratory mucosal tuberculosis vaccine: overcoming local anti-human adenovirus immunity for potent TB protection. Mucosal Immunol 2015; 8:1373-87. [PMID: 25872483 DOI: 10.1038/mi.2015.29] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 03/20/2015] [Indexed: 02/07/2023]
Abstract
Pulmonary tuberculosis (TB) remains to be a major global health problem despite many decades of parenteral use of Bacillus Calmette-Guérin (BCG) vaccine. Developing safe and effective respiratory mucosal TB vaccines represents a unique challenge. Over the past decade or so, the human serotype 5 adenovirus (AdHu5)-based TB vaccine has emerged as one of the most promising candidates based on a plethora of preclinical and early clinical studies. However, anti-AdHu5 immunity widely present in the lung of humans poses a serious gap and limitation to its real-world applications. In this study we have developed a novel chimpanzee adenovirus 68 (AdCh68)-vectored TB vaccine amenable to the respiratory route of vaccination. We have evaluated AdCh68-based TB vaccine for its safety, T-cell immunogenicity, and protective efficacy in relevant animal models of human pulmonary TB with or without parenteral BCG priming. We have also compared AdCh68-based TB vaccine with its AdHu5 counterpart in both naive animals and those with preexisting anti-AdHu5 immunity in the lung. We provide compelling evidence that AdCh68-based TB vaccine is not only safe when delivered to the respiratory tract but, importantly, is also superior to its AdHu5 counterpart in induction of T-cell responses and immune protection, and limiting lung immunopathology in the presence of preexisting anti-AdHu5 immunity in the lung. Our findings thus suggest AdCh68-based TB vaccine to be an ideal candidate for respiratory mucosal immunization, endorsing its further clinical development in humans.
Collapse
Affiliation(s)
- M Jeyanathan
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine and Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - N Thanthrige-Don
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine and Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - S Afkhami
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine and Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - R Lai
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine and Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - D Damjanovic
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine and Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - A Zganiacz
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine and Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - X Feng
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine and Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - X-D Yao
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine and Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - K L Rosenthal
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine and Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - M Fe Medina
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine and Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - J Gauldie
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine and Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - H C Ertl
- Department of Immunology, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Z Xing
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine and Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
202
|
Swadling L, Capone S, Antrobus RD, Brown A, Richardson R, Newell EW, Halliday J, Kelly C, Bowen D, Fergusson J, Kurioka A, Ammendola V, Del Sorbo M, Grazioli F, Esposito ML, Siani L, Traboni C, Hill A, Colloca S, Davis M, Nicosia A, Cortese R, Folgori A, Klenerman P, Barnes E. A human vaccine strategy based on chimpanzee adenoviral and MVA vectors that primes, boosts, and sustains functional HCV-specific T cell memory. Sci Transl Med 2015; 6:261ra153. [PMID: 25378645 DOI: 10.1126/scitranslmed.3009185] [Citation(s) in RCA: 263] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A protective vaccine against hepatitis C virus (HCV) remains an unmet clinical need. HCV infects millions of people worldwide and is a leading cause of liver cirrhosis and hepatocellular cancer. Animal challenge experiments, immunogenetics studies, and assessment of host immunity during acute infection highlight the critical role that effective T cell immunity plays in viral control. In this first-in-man study, we have induced antiviral immunity with functional characteristics analogous to those associated with viral control in natural infection, and improved upon a vaccine based on adenoviral vectors alone. We assessed a heterologous prime-boost vaccination strategy based on a replicative defective simian adenoviral vector (ChAd3) and modified vaccinia Ankara (MVA) vector encoding the NS3, NS4, NS5A, and NS5B proteins of HCV genotype 1b. Analysis used single-cell mass cytometry and human leukocyte antigen class I peptide tetramer technology in healthy human volunteers. We show that HCV-specific T cells induced by ChAd3 are optimally boosted with MVA, and generate very high levels of both CD8(+) and CD4(+) HCV-specific T cells targeting multiple HCV antigens. Sustained memory and effector T cell populations are generated, and T cell memory evolved over time with improvement of quality (proliferation and polyfunctionality) after heterologous MVA boost. We have developed an HCV vaccine strategy, with durable, broad, sustained, and balanced T cell responses, characteristic of those associated with viral control, paving the way for the first efficacy studies of a prophylactic HCV vaccine.
Collapse
Affiliation(s)
- Leo Swadling
- Nuffield Department of Medicine, University of Oxford, Oxford OX1 3SY, UK
| | - Stefania Capone
- ReiThera Srl (ex Okairos), Viale Città d'Europa 679, 00144 Rome, Italy
| | - Richard D Antrobus
- Nuffield Department of Medicine, University of Oxford, Oxford OX1 3SY, UK. The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Anthony Brown
- Nuffield Department of Medicine, University of Oxford, Oxford OX1 3SY, UK
| | - Rachel Richardson
- Nuffield Department of Medicine, University of Oxford, Oxford OX1 3SY, UK
| | - Evan W Newell
- Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA. Singapore Immunology Network, Singapore 138648, Singapore
| | - John Halliday
- Nuffield Department of Medicine, University of Oxford, Oxford OX1 3SY, UK. National Institute for Health Research Oxford Biomedical Research Centre, and Translational Gastroenterology Unit, Oxford OX3 7LE, UK
| | - Christabel Kelly
- Nuffield Department of Medicine, University of Oxford, Oxford OX1 3SY, UK. National Institute for Health Research Oxford Biomedical Research Centre, and Translational Gastroenterology Unit, Oxford OX3 7LE, UK
| | - Dan Bowen
- Nuffield Department of Medicine, University of Oxford, Oxford OX1 3SY, UK
| | - Joannah Fergusson
- Nuffield Department of Medicine, University of Oxford, Oxford OX1 3SY, UK
| | - Ayako Kurioka
- Nuffield Department of Medicine, University of Oxford, Oxford OX1 3SY, UK
| | | | | | - Fabiana Grazioli
- ReiThera Srl (ex Okairos), Viale Città d'Europa 679, 00144 Rome, Italy
| | | | - Loredana Siani
- ReiThera Srl (ex Okairos), Viale Città d'Europa 679, 00144 Rome, Italy
| | - Cinzia Traboni
- ReiThera Srl (ex Okairos), Viale Città d'Europa 679, 00144 Rome, Italy
| | - Adrian Hill
- Nuffield Department of Medicine, University of Oxford, Oxford OX1 3SY, UK. The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Stefano Colloca
- ReiThera Srl (ex Okairos), Viale Città d'Europa 679, 00144 Rome, Italy
| | - Mark Davis
- Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA
| | - Alfredo Nicosia
- ReiThera Srl (ex Okairos), Viale Città d'Europa 679, 00144 Rome, Italy. CEINGE, via Gaetano Salvatore 486, 80145 Naples, Italy. Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | | | - Antonella Folgori
- ReiThera Srl (ex Okairos), Viale Città d'Europa 679, 00144 Rome, Italy
| | - Paul Klenerman
- Nuffield Department of Medicine, University of Oxford, Oxford OX1 3SY, UK. National Institute for Health Research Oxford Biomedical Research Centre, and Translational Gastroenterology Unit, Oxford OX3 7LE, UK
| | - Eleanor Barnes
- Nuffield Department of Medicine, University of Oxford, Oxford OX1 3SY, UK. The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK. National Institute for Health Research Oxford Biomedical Research Centre, and Translational Gastroenterology Unit, Oxford OX3 7LE, UK.
| |
Collapse
|
203
|
Murira A, Lapierre P, Lamarre A. Evolution of the Humoral Response during HCV Infection: Theories on the Origin of Broadly Neutralizing Antibodies and Implications for Vaccine Design. Adv Immunol 2015; 129:55-107. [PMID: 26791858 DOI: 10.1016/bs.ai.2015.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Similar to human immunodeficiency virus (HIV)-1, vaccine-induced elicitation of broadly neutralizing (bNt) antibodies (Abs) is gaining traction as a key goal toward the eradication of the hepatitis C virus (HCV) pandemic. Previously, the significance of the Ab response against HCV was underappreciated given the prevailing evidence advancing the role of the cellular immune response in clearance and overall control of the infection. However, recent findings have driven growing interest in the humoral arm of the immune response and in particular the role of bNt responses due to their ability to confer protective immunity upon passive transfer in animal models. Nevertheless, the origin and development of bNt Abs is poorly understood and their occurrence is rare as well as delayed with emergence only observed in the chronic phase of infection. In this review, we characterize the interplay between the host immune response and HCV as it progresses from the acute to chronic phase of infection. In addition, we place these events in the context of current hypotheses on the origin of bNt Abs against the HIV-1, whose humoral immune response is better characterized. Based on the increasing significance of the humoral immune response against HCV, characterization of these events may be critical in understanding the development of the bNt responses and, thus, provide strategies toward effective vaccine design.
Collapse
Affiliation(s)
- Armstrong Murira
- Immunovirology Laboratory, Institut national de la recherche scientifique (INRS), INRS-Institut Armand-Frappier, Laval, Quebec, Canada.
| | - Pascal Lapierre
- Immunovirology Laboratory, Institut national de la recherche scientifique (INRS), INRS-Institut Armand-Frappier, Laval, Quebec, Canada
| | - Alain Lamarre
- Immunovirology Laboratory, Institut national de la recherche scientifique (INRS), INRS-Institut Armand-Frappier, Laval, Quebec, Canada.
| |
Collapse
|
204
|
Development of Novel Adenoviral Vectors to Overcome Challenges Observed With HAdV-5-based Constructs. Mol Ther 2015; 24:6-16. [PMID: 26478249 PMCID: PMC4754553 DOI: 10.1038/mt.2015.194] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 10/07/2015] [Indexed: 12/23/2022] Open
Abstract
Recombinant vectors based on human adenovirus serotype 5 (HAdV-5) have been extensively studied in preclinical models and clinical trials over the past two decades. However, the thorough understanding of the HAdV-5 interaction with human subjects has uncovered major concerns about its product applicability. High vector-associated toxicity and widespread preexisting immunity have been shown to significantly impede the effectiveness of HAdV-5–mediated gene transfer. It is therefore that the in-depth knowledge attained working on HAdV-5 is currently being used to develop alternative vectors. Here, we provide a comprehensive overview of data obtained in recent years disqualifying the HAdV-5 vector for systemic gene delivery as well as novel strategies being pursued to overcome the limitations observed with particular emphasis on the ongoing vectorization efforts to obtain vectors based on alternative serotypes.
Collapse
|
205
|
Sun J, Rajsbaum R, Yi M. Immune and non-immune responses to hepatitis C virus infection. World J Gastroenterol 2015; 21:10739-10748. [PMID: 26478666 PMCID: PMC4600576 DOI: 10.3748/wjg.v21.i38.10739] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 07/06/2015] [Accepted: 09/14/2015] [Indexed: 02/06/2023] Open
Abstract
The host innate and adaptive immune systems are involved in nearly every step of hepatitis C virus (HCV) infection. In patients, the outcome is determined by a series of complex host-virus interactions, whether it is a natural infection or results from clinical intervention. Strong and persistent CD8+ and CD4+ T-cell responses are critical in HCV clearance, as well as cytokine-induced factors that can directly inhibit virus replication. Newly available direct-acting antivirals (DAAs) are very effective in viral clearance in patients. DAA treatment may further result in the down-regulation of programmed death-1, leading to rapid restoration of HCV-specific CD8+ T cell functions. In this review, we focus on recent studies that address the host responses critical for viral clearance and disease resolution. Additional discussion is devoted to the prophylactic vaccine development as well as to current efforts aimed at understanding the host innate responses against HCV infection. Current theories on how the ubiquitin system and interferon-stimulated genes may affect HCV replication are also discussed.
Collapse
|
206
|
Xie L, Yan M, Wang X, Ye J, Mi K, Yan S, Niu X, Li H, Sun M. Immunogenicity and efficacy in mice of an adenovirus-based bicistronic rotavirus vaccine expressing NSP4 and VP7. Virus Res 2015; 210:298-307. [PMID: 26368053 DOI: 10.1016/j.virusres.2015.09.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 09/10/2015] [Accepted: 09/10/2015] [Indexed: 01/28/2023]
Abstract
NSP4 and VP7 are important functional proteins of rotavirus. Proper combination of viral gene expression is favorable to improving the protection effect of subunit vaccine. In the present study, We evaluated the immunogenicity and efficacy of the bicistronic recombinant adenovirus (rAd-NSP4-VP7) and two single-gene expressing adenoviruses (rAd-NSP4, rAd-VP7). The three adenovirus vaccines were used to immunize mice by intramuscular or intranasal administration. The data showed significant increases in serum antibodies, T lymphocyte subpopulations proliferation, and cytokine secretions of splenocyte in all immunized groups. However, the serum IgA and neutralizing antibody levels of the rAd-NSP4-VP7 or rAd-VP7 groups were significantly higher than those of the rAd-NSP4, while the splenocyte numbers of IFN-γ secretion in the rAd-NSP4-VP7 or rAd-NSP4 groups was greater than that of the rAd-VP7. Furthermore, the efficacy evaluation in a suckling mice model indicated that only rAd-NSP4-VP7 conferred significant protection against rotavirus shedding challenge. These results suggest that the co-expression of NSP4 and VP7 in an adenovirus vector induce both humoral and cell-mediated immune responses efficiently, and provide potential efficacy for protection against rotavirus disease. It is possible to represent an efficacious subunits vaccine strategy for control of rotavirus infection and transmission.
Collapse
Affiliation(s)
- Li Xie
- Institute of Medical Biology; Chinese Academy of Medical Sciences and Peking Union Medical College; Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, Yunnan Province, PR China; Kunming University, School of Medicine, Kunming, Yunnan Province, PR China
| | - Min Yan
- Institute of Medical Biology; Chinese Academy of Medical Sciences and Peking Union Medical College; Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, Yunnan Province, PR China
| | - Xiaonan Wang
- Institute of Medical Biology; Chinese Academy of Medical Sciences and Peking Union Medical College; Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, Yunnan Province, PR China
| | - Jing Ye
- Institute of Medical Biology; Chinese Academy of Medical Sciences and Peking Union Medical College; Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, Yunnan Province, PR China
| | - Kai Mi
- Institute of Medical Biology; Chinese Academy of Medical Sciences and Peking Union Medical College; Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, Yunnan Province, PR China
| | - Shanshan Yan
- Institute of Medical Biology; Chinese Academy of Medical Sciences and Peking Union Medical College; Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, Yunnan Province, PR China
| | - Xianglian Niu
- Institute of Medical Biology; Chinese Academy of Medical Sciences and Peking Union Medical College; Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, Yunnan Province, PR China
| | - Hongjun Li
- Institute of Medical Biology; Chinese Academy of Medical Sciences and Peking Union Medical College; Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, Yunnan Province, PR China.
| | - Maosheng Sun
- Institute of Medical Biology; Chinese Academy of Medical Sciences and Peking Union Medical College; Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, Yunnan Province, PR China.
| |
Collapse
|
207
|
Fausther-Bovendo H, Kobinger GP. Pre-existing immunity against Ad vectors: humoral, cellular, and innate response, what's important? Hum Vaccin Immunother 2015; 10:2875-84. [PMID: 25483662 PMCID: PMC5443060 DOI: 10.4161/hv.29594] [Citation(s) in RCA: 196] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Pre-existing immunity against human adenovirus (HAd) serotype 5 derived vector in the human population is widespread, thus hampering its clinical use. Various components of the immune system, including neutralizing antibodies (nAbs), Ad specific T cells and type I IFN activated NK cells, contribute to dampening the efficacy of Ad vectors in individuals with pre-existing Ad immunity. In order to circumvent pre-existing immunity to adenovirus, numerous strategies, such as developing alternative Ad serotypes, varying immunization routes and utilizing prime-boost regimens, are under pre-clinical or clinical phases of development. However, these strategies mainly focus on one arm of pre-existing immunity. Selection of alternative serotypes has been largely driven by the absence in the human population of nAbs against them with little attention paid to cross-reactive Ad specific T cells. Conversely, varying the route of immunization appears to mainly rely on avoiding Ad specific tissue-resident T cells. Finally, prime-boost regimens do not actually circumvent pre-existing immunity but instead generate immune responses of sufficient magnitude to confer protection despite pre-existing immunity. Combining the above strategies and thus taking into account all components regulating pre-existing Ad immunity will help further improve the development of Ad vectors for animal and human use.
Collapse
|
208
|
Taylor G, Thom M, Capone S, Pierantoni A, Guzman E, Herbert R, Scarselli E, Napolitano F, Giuliani A, Folgori A, Colloca S, Cortese R, Nicosia A, Vitelli A. Efficacy of a virus-vectored vaccine against human and bovine respiratory syncytial virus infections. Sci Transl Med 2015; 7:300ra127. [DOI: 10.1126/scitranslmed.aac5757] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
209
|
Abstract
The 2014 outbreak of Ebola virus disease in West Africa has highlighted the need for the availability of effective vaccines against outbreak pathogens that are suitable for use in frontline workers who risk their own health in the course of caring for those with the disease, and also for members of the community in the affected area. Along with effective contact tracing and quarantine, use of a vaccine as soon as an outbreak is identified could greatly facilitate rapid control and prevent the outbreak from spreading. This review describes the progress that has been made in producing and testing adenovirus-based Ebola vaccines in both pre-clinical and clinical studies, and considers the likely future use of these vaccines.
Collapse
Affiliation(s)
- Sarah C Gilbert
- a University of Oxford, The Jenner Institute, ORCRB, Oxford OX3 7DQ, UK
| |
Collapse
|
210
|
Walker CM, Grakoui A. Hepatitis C virus: why do we need a vaccine to prevent a curable persistent infection? Curr Opin Immunol 2015; 35:137-43. [PMID: 26241306 DOI: 10.1016/j.coi.2015.06.010] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Revised: 06/23/2015] [Accepted: 06/23/2015] [Indexed: 02/06/2023]
Abstract
Chronic hepatitis C virus infection is now curable by antiviral therapy but the global burden of liver disease is unlikely to diminish without a vaccine to prevent transmission. The objective of HCV vaccination is not to induce sterilizing immunity, but instead to prevent persistent infection. One vaccine that incorporates only non-structural HCV proteins is now in phase I/II efficacy trials to test the novel concept that T cell priming alone is sufficient for protection. Evidence also suggests that antibodies contribute to infection resolution. Vaccines comprised of recombinant envelope glycoproteins targeted by neutralizing antibodies have been assessed in humans for immunogenicity. Here, we discuss current concepts in protective immunity and divergent approaches to vaccination against a highly mutable RNA virus.
Collapse
Affiliation(s)
- Christopher M Walker
- Department of Pediatrics, Nationwide Children's Hospital and The Ohio State University School of Medicine, 700 Children's Drive, Columbus, OH 43004, United States.
| | - Arash Grakoui
- Yerkes National Primate Research Center, Emory Vaccine Center, Emory University, Atlanta, GA 30329, United States; Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA 30322, United States.
| |
Collapse
|
211
|
Priming with two DNA vaccines expressing hepatitis C virus NS3 protein targeting dendritic cells elicits superior heterologous protective potential in mice. Arch Virol 2015. [PMID: 26215441 DOI: 10.1007/s00705-015-2535-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Development an effective vaccine may offer an alternative preventive and therapeutic strategy against HCV infection. DNA vaccination has been shown to induce robust humoral and cellular immunity and overcome many problems associated with conventional vaccines. In this study, mice were primed with either conventional pVRC-based or suicidal pSC-based DNA vaccines carrying DEC-205-targeted NS3 antigen (DEC-NS3) and boosted with type 5 adenoviral vectors encoding the partial NS3 and core antigens (C44P). The prime boost regimen induced a marked increase in antigen-specific humoral and T-cell responses in comparison with either rAd5-based vaccines or DEC-205-targeted DNA immunization in isolation. The protective effect against heterogeneous challenge was correlated with high levels of anti-NS3 IgG and T-cell-mediated immunity against NS3 peptides. Moreover, priming with a suicidal DNA vaccine (pSC-DEC-NS3), which elicited increased TNF-α-producing CD4+ and CD8+ T-cells against NS3-2 peptides (aa 1245-1461), after boosting, showed increased heterogeneous protective potential compared with priming with a conventional DNA vaccine (pVRC-DEC-NS3). In conclusion, a suicidal DNA vector (pSC-DEC-NS3) expressing DEC-205-targeted NS3 combined with boosting using an rAd5-based HCV vaccine (rAd5-C44P) is a good candidate for a safe and effective vaccine against HCV infection.
Collapse
|
212
|
Latimer B, Toporovski R, Yan J, Pankhong P, Morrow MP, Khan AS, Sardesai NY, Welles SL, Jacobson JM, Weiner DB, Kutzler MA. Strong HCV NS3/4a, NS4b, NS5a, NS5b-specific cellular immune responses induced in Rhesus macaques by a novel HCV genotype 1a/1b consensus DNA vaccine. Hum Vaccin Immunother 2015; 10:2357-65. [PMID: 25424943 DOI: 10.4161/hv.29590] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Chronic HCV is a surreptitious disease currently affecting approximately 3% of the world's population that can lead to liver failure and cancer decades following initial infection. However, there are currently no vaccines available for the prevention of chronic HCV. From patients who acutely resolve HCV infection, it is apparent that a strong and broad cytotoxic T lymphocyte (CTL) response is important in HCV clearance. DNA vaccines are naked plasmid DNA molecules that encode pathogen antigens to induce a pathogen-specific immune response. They are inexpensive to produce and have an excellent safety profile in animals and humans. Additionally, DNA vaccines are able to induce strong CTL responses, making them well-suited for an HCV vaccine. We aimed to maximize vaccine recipients' opportunity to induce a broad T cell response with a novel antigenic sequence, multi-antigen vaccine strategy. We have generated DNA plasmids encoding consensus sequences of HCV genotypes 1a and 1b non-structural proteins NS3/4a, NS4b, NS5a, and NS5b. Rhesus macaques were used to study the immunogenicity of these constructs. Four animals were immunized 3 times, 6 weeks apart, at a dose of 1.0mg per antigen construct, as an intramuscular injection followed by in vivo electroporation, which greatly increases DNA uptake by local cells. Immune responses were measured 2 weeks post-immunization regimen (PIR) in immunized rhesus macaques and showed a broad response to multiple HCV nonstructural antigens, with up to 4680 spot-forming units per million peripheral blood mononuclear cells (PBMCs) as measured by Interferon-γ ELISpot. In addition, multiparametric flow cytometry detected HCV-specific CD4+ and CD8+ T cell responses by intracellular cytokine staining and detected HCV-specific CD107a+/GrzB+ CD8+ T cells indicating an antigen specific cytolytic response 2 weeks PIR compared with baseline measurements. At the final study time point, 6 weeks PIR, HCV-specific CD45RA- memory-like T cells remained detectable in peripheral blood. Data presented in this manuscript support the notion that vaccine immunogenicity studies using a macaque model can be used to depict key anti-HCV nonstructural antigenic cellular immune responses and support the development of DNA-based prophylactic HCV vaccines.
Collapse
Affiliation(s)
- Brian Latimer
- a Department of Medicine, Division of Infectious Diseases & HIV Medicine; Drexel University College of Medicine; Philadelphia, PA USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
213
|
Abstract
Recently, a number of promising approaches have been developed using synthetic chemistry, materials science, and bioengineering-based strategies to address challenges in the design of more effective cancer vaccines. At the stage of initial priming, potency can be improved by maximizing vaccine delivery to lymph nodes. Because lymphatic uptake from peripheral tissues is strongly size dependent, antigens and adjuvants packaged into optimally sized nanoparticles access the lymph node with much greater efficiency than unformulated vaccines. Once primed, T cells must home to the tumor site. Because T cells acquire the necessary surface receptors in the local lymph node draining the tissue of interest, vaccines must be engineered that reach organs, such as the lung and gut, which are common sites of tumor lesions but inaccessible by traditional vaccination routes. Particulate vaccine carriers can improve antigen exposure in these organs, resulting in greater lymphocyte priming. Immunomodulatory agents can also be injected directly into the tumor site to stimulate a systemic response capable of clearing even distal lesions; materials have been designed that entrap or slowly release immunomodulators at the tumor site, reducing systemic exposure and improving therapeutic efficacy. Finally, lessons learned from the design of biomaterial-based scaffolds in regenerative medicine have led to the development of implantable vaccines that recruit and activate antigen-presenting cells to drive antitumor immunity. Overall, these engineering strategies represent an expanding toolkit to create safe and effective cancer vaccines.
Collapse
Affiliation(s)
- Naveen K Mehta
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts. Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Kelly D Moynihan
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts. Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts. Ragon Institute of MGH, MIT and Harvard University, Boston, Massachusetts
| | - Darrell J Irvine
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts. Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts. Ragon Institute of MGH, MIT and Harvard University, Boston, Massachusetts. Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts. Howard Hughes Medical Institute, Chevy Chase, Maryland.
| |
Collapse
|
214
|
Li D, Huang Z, Zhong J. Hepatitis C virus vaccine development: old challenges and new opportunities. Natl Sci Rev 2015. [DOI: 10.1093/nsr/nwv040] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Abstract
Hepatitis C virus (HCV), an enveloped positive-sense single-stranded RNA virus, can cause chronic and end-stage liver diseases. Approximately 185 million people worldwide are infected with HCV. Tremendous progress has been achieved in the therapeutics of chronic hepatitis C thanks to the development of direct-acting antiviral agents (DAAs), but the worldwide use of these highly effective DAAs is limited due to their high treatment cost. In addition, drug-resistance mutations remain a potential problem as DAAs are becoming a standard therapy for chronic hepatitis C. Unfortunately, no vaccine is available for preventing new HCV infection. Therefore, HCV still imposes a big threat to human public health, and the worldwide eradication of HCV is critically dependent on an effective HCV vaccine. In this review, we summarize recent progresses on HCV vaccine development and present our views on the rationale and strategy to develop an effective HCV vaccine.
Collapse
Affiliation(s)
- Dapeng Li
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhong Huang
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jin Zhong
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
215
|
A Multiantigenic DNA Vaccine That Induces Broad Hepatitis C Virus-Specific T-Cell Responses in Mice. J Virol 2015; 89:7991-8002. [PMID: 26018154 DOI: 10.1128/jvi.00803-15] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 05/15/2015] [Indexed: 12/23/2022] Open
Abstract
UNLABELLED There are 3 to 4 million new hepatitis C virus (HCV) infections annually around the world, but no vaccine is available. Robust T-cell mediated responses are necessary for effective clearance of the virus, and DNA vaccines result in a cell-mediated bias. Adjuvants are often required for effective vaccination, but during natural lytic viral infections damage-associated molecular patterns (DAMPs) are released, which act as natural adjuvants. Hence, a vaccine that induces cell necrosis and releases DAMPs will result in cell-mediated immunity (CMI), similar to that resulting from natural lytic viral infection. We have generated a DNA vaccine with the ability to elicit strong CMI against the HCV nonstructural (NS) proteins (3, 4A, 4B, and 5B) by encoding a cytolytic protein, perforin (PRF), and the antigens on a single plasmid. We examined the efficacy of the vaccines in C57BL/6 mice, as determined by gamma interferon enzyme-linked immunosorbent spot assay, cell proliferation studies, and intracellular cytokine production. Initially, we showed that encoding the NS4A protein in a vaccine which encoded only NS3 reduced the immunogenicity of NS3, whereas including PRF increased NS3 immunogenicity. In contrast, the inclusion of NS4A increased the immunogenicity of the NS3, NS4B, andNS5B proteins, when encoded in a DNA vaccine that also encoded PRF. Finally, vaccines that also encoded PRF elicited similar levels of CMI against each protein after vaccination with DNA encoding NS3, NS4A, NS4B, and NS5B compared to mice vaccinated with DNA encoding only NS3 or NS4B/5B. Thus, we have developed a promising "multiantigen" vaccine that elicits robust CMI. IMPORTANCE Since their development, vaccines have reduced the global burden of disease. One strategy for vaccine development is to use commercially viable DNA technology, which has the potential to generate robust immune responses. Hepatitis C virus causes chronic liver infection and is a leading cause of liver cancer. To date, no vaccine is currently available, and treatment is costly and often results in side effects, limiting the number of patients who are treated. Despite recent advances in treatment, prevention remains the key to efficient control and elimination of this virus. Here, we describe a novel DNA vaccine against hepatitis C virus that is capable of inducing robust cell-mediated immune responses in mice and is a promising vaccine candidate for humans.
Collapse
|
216
|
Fuchs JD, Bart PA, Frahm N, Morgan C, Gilbert PB, Kochar N, DeRosa SC, Tomaras GD, Wagner TM, Baden LR, Koblin BA, Rouphael NG, Kalams SA, Keefer MC, Goepfert PA, Sobieszczyk ME, Mayer KH, Swann E, Liao HX, Haynes BF, Graham BS, McElrath MJ. Safety and Immunogenicity of a Recombinant Adenovirus Serotype 35-Vectored HIV-1 Vaccine in Adenovirus Serotype 5 Seronegative and Seropositive Individuals. ACTA ACUST UNITED AC 2015; 6. [PMID: 26587311 DOI: 10.4172/2155-6113.1000461] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Recombinant adenovirus serotype 5 (rAd5)-vectored HIV-1 vaccines have not prevented HIV-1 infection or disease and pre-existing Ad5 neutralizing antibodies may limit the clinical utility of Ad5 vectors globally. Using a rare Ad serotype vector, such as Ad35, may circumvent these issues, but there are few data on the safety and immunogenicity of rAd35 directly compared to rAd5 following human vaccination. METHODS HVTN 077 randomized 192 healthy, HIV-uninfected participants into one of four HIV-1 vaccine/placebo groups: rAd35/rAd5, DNA/rAd5, and DNA/rAd35 in Ad5-seronegative persons; and DNA/rAd35 in Ad5-seropositive persons. All vaccines encoded the HIV-1 EnvA antigen. Antibody and T-cell responses were measured 4 weeks post boost immunization. RESULTS All vaccines were generally well tolerated and similarly immunogenic. As compared to rAd5, rAd35 was equally potent in boosting HIV-1-specific humoral and cellular immunity and responses were not significantly attenuated in those with baseline Ad5 seropositivity. Like DNA, rAd35 efficiently primed rAd5 boosting. All vaccine regimens tested elicited cross-clade antibody responses, including Env V1/V2-specific IgG responses. CONCLUSIONS Vaccine antigen delivery by rAd35 is well-tolerated and immunogenic as a prime to rAd5 immunization and as a boost to prior DNA immunization with the homologous insert. Further development of rAd35-vectored prime-boost vaccine regimens is warranted.
Collapse
Affiliation(s)
- Jonathan D Fuchs
- Population Health Division, San Francisco Department of Public Health, San Francisco, CA, USA ; Department of Medicine, University of California, San Francisco, San Francisco, USA
| | | | - Nicole Frahm
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Cecilia Morgan
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Peter B Gilbert
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Nidhi Kochar
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Stephen C DeRosa
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | - Theresa M Wagner
- Population Health Division, San Francisco Department of Public Health, San Francisco, CA, USA
| | - Lindsey R Baden
- Division of Infectious Disease, Brigham and Women's Hospital, Boston, MA, USA
| | - Beryl A Koblin
- Laboratory of Infectious Disease Prevention, New York Blood Center, New York, NY, USA
| | - Nadine G Rouphael
- The Hope Clinic, Division of Infectious Diseases, Emory University, Atlanta, GA, USA
| | - Spyros A Kalams
- Infectious Diseases Division, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Michael C Keefer
- University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Paul A Goepfert
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Magdalena E Sobieszczyk
- Division of Infectious Diseases, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Kenneth H Mayer
- Fenway Health and the Division of Infectious Diseases, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, USA
| | - Edith Swann
- Division of AIDS, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Hua-Xin Liao
- Human Vaccine Institute, Duke University, Durham, NC, USA
| | | | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - M Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | |
Collapse
|
217
|
Hullegie SJ, Arends JE, Rijnders BJA, Irving WL, Salmon D, Prins M, Wensing AM, Klenerman P, Leblebicioglu H, Boesecke C, Rockstroh JK, Hoepelman AIM. Current knowledge and future perspectives on acute hepatitis C infection. Clin Microbiol Infect 2015; 21:797.e9-797.e17. [PMID: 25892133 DOI: 10.1016/j.cmi.2015.03.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 03/17/2015] [Accepted: 03/28/2015] [Indexed: 12/13/2022]
Abstract
Acute hepatitis C virus (HCV) infections are frequently seen worldwide in certain risk groups, with an annual incidence rate varying between 0.08% and 66%. Although this incidence is substantial, a delayed diagnosis during chronic infection is most often made in the absence of clinical symptoms in the acute phase of the infection. Currently used methods to diagnose acute HCV infection are IgG antibody seroconversion and repeated HCV RNA measurements, although no definitive diagnostic test is currently available. Progress in the field of adaptive and innate immune responses has aided both advances in the field of HCV vaccine development and a more basic understanding of viral persistence. The rapid changes in the treatment of chronic HCV infection will affect therapeutic regimens for acute HCV infection in the coming years, leading to shorter treatment courses and pegylated interferon-free modalities. This review gives an overview of the current knowledge and uncertainties, together with some future perspectives on acute hepatitis C epidemiology, virology, immunology, and treatment.
Collapse
Affiliation(s)
- S J Hullegie
- Department of Infectious Diseases, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - J E Arends
- Department of Infectious Diseases, University Medical Centre Utrecht, Utrecht, The Netherlands; The European Study Group of Viral Hepatitis (ESGVH), UK.
| | - B J A Rijnders
- Department of Infectious Diseases, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - W L Irving
- The European Study Group of Viral Hepatitis (ESGVH), UK; NIHR Biomedical Research Unit in Gastroenterology and the Liver, University of Nottingham, Nottingham, UK
| | - D Salmon
- The European Study Group of Viral Hepatitis (ESGVH), UK; Université Paris Descartes, Paris, France
| | - M Prins
- Cluster Infectious Diseases, Department of Research, Public Health Service, Amsterdam, The Netherlands; Department of Infectious Diseases, CINIMA, Academic Medical Centre, Amsterdam, The Netherlands
| | - A M Wensing
- Department of Infectious Diseases, University Medical Centre Utrecht, Utrecht, The Netherlands; The European Study Group of Viral Hepatitis (ESGVH), UK
| | - P Klenerman
- NDM and Jenner Institute, University of Oxford, Oxford, UK
| | - H Leblebicioglu
- The European Study Group of Viral Hepatitis (ESGVH), UK; Department of Infectious Diseases, Ondokuz Mayis University, Samsun, Turkey
| | - C Boesecke
- Department of Internal Medicine I, University of Bonn, Bonn, Germany
| | - J K Rockstroh
- The European Study Group of Viral Hepatitis (ESGVH), UK; Department of Internal Medicine I, University of Bonn, Bonn, Germany
| | - A I M Hoepelman
- Department of Infectious Diseases, University Medical Centre Utrecht, Utrecht, The Netherlands; The European Study Group of Viral Hepatitis (ESGVH), UK
| |
Collapse
|
218
|
Measuring Cellular Immunity to Influenza: Methods of Detection, Applications and Challenges. Vaccines (Basel) 2015; 3:293-319. [PMID: 26343189 PMCID: PMC4494351 DOI: 10.3390/vaccines3020293] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 03/27/2015] [Accepted: 03/30/2015] [Indexed: 12/11/2022] Open
Abstract
Influenza A virus is a respiratory pathogen which causes both seasonal epidemics and occasional pandemics; infection continues to be a significant cause of mortality worldwide. Current influenza vaccines principally stimulate humoral immune responses that are largely directed towards the variant surface antigens of influenza. Vaccination can result in an effective, albeit strain-specific antibody response and there is a need for vaccines that can provide superior, long-lasting immunity to influenza. Vaccination approaches targeting conserved viral antigens have the potential to provide broadly cross-reactive, heterosubtypic immunity to diverse influenza viruses. However, the field lacks consensus on the correlates of protection for cellular immunity in reducing severe influenza infection, transmission or disease outcome. Furthermore, unlike serological methods such as the standardized haemagglutination inhibition assay, there remains a large degree of variation in both the types of assays and method of reporting cellular outputs. T-cell directed immunity has long been known to play a role in ameliorating the severity and/or duration of influenza infection, but the precise phenotype, magnitude and longevity of the requisite protective response is unclear. In order to progress the development of universal influenza vaccines, it is critical to standardize assays across sites to facilitate direct comparisons between clinical trials.
Collapse
|
219
|
Kong L, Jackson KN, Wilson IA, Law M. Capitalizing on knowledge of hepatitis C virus neutralizing epitopes for rational vaccine design. Curr Opin Virol 2015; 11:148-57. [PMID: 25932568 PMCID: PMC4507806 DOI: 10.1016/j.coviro.2015.04.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 04/08/2015] [Indexed: 12/13/2022]
Abstract
Hepatitis C virus infects nearly 3% of the world's population and is often referred as a silent epidemic. It is a leading cause of liver cirrhosis and hepatocellular carcinoma in endemic countries. Although antiviral drugs are now available, they are not readily accessible to marginalized social groups and developing nations that are disproportionally impacted by HCV. To stop the HCV pandemic, a vaccine is needed. Recent advances in HCV research have provided new opportunities for studying HCV neutralizing antibodies and their subsequent use for rational vaccine design. It is now recognized that neutralizing antibodies to conserved antigenic sites of the virus can cross-neutralize diverse HCV genotypes and protect against infection in vivo. Structural characterization of the neutralizing epitopes has provided valuable information for design of candidate immunogens.
Collapse
Affiliation(s)
- Leopold Kong
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Kelli N Jackson
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Mansun Law
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
220
|
Abstract
Hepatitis C virus (HCV) infection is a major health problem worldwide. The effects of chronic infection include cirrhosis, end-stage liver disease, and hepatocellular carcinoma. As a result of shared routes of transmission, co-infection with HIV is a substantial problem, and individuals infected with both viruses have poorer outcomes than do peers infected with one virus. No effective vaccine exists, although persistent HCV infection is potentially curable. The standard of care has been subcutaneous interferon alfa and oral ribavirin for 24-72 weeks. This treatment results in a sustained virological response in around 50% of individuals, and is complicated by clinically significant adverse events. In the past 10 years, advances in HCV cell culture have enabled an improved understanding of HCV virology, which has led to development of many new direct-acting antiviral drugs that target key components of virus replication. These direct-acting drugs allow for simplified and shortened treatments for HCV that can be given as oral regimens with increased tolerability and efficacy than interferon and ribavirin. Remaining obstacles include access to appropriate care and treatment, and development of a vaccine.
Collapse
Affiliation(s)
- Daniel P Webster
- Department of Virology, Royal Free London NHS Foundation Trust, London, UK.
| | - Paul Klenerman
- National Institute for Health Research (NIHR) Biomedical Research Centre and Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Geoffrey M Dusheiko
- Institute of Liver and Digestive Health, University College London, London, UK
| |
Collapse
|
221
|
Rossi LMG, Escobar-Gutierrez A, Rahal P. Advanced molecular surveillance of hepatitis C virus. Viruses 2015; 7:1153-88. [PMID: 25781918 PMCID: PMC4379565 DOI: 10.3390/v7031153] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 02/05/2015] [Accepted: 02/20/2015] [Indexed: 12/12/2022] Open
Abstract
Hepatitis C virus (HCV) infection is an important public health problem worldwide. HCV exploits complex molecular mechanisms, which result in a high degree of intrahost genetic heterogeneity. This high degree of variability represents a challenge for the accurate establishment of genetic relatedness between cases and complicates the identification of sources of infection. Tracking HCV infections is crucial for the elucidation of routes of transmission in a variety of settings. Therefore, implementation of HCV advanced molecular surveillance (AMS) is essential for disease control. Accounting for virulence is also important for HCV AMS and both viral and host factors contribute to the disease outcome. Therefore, HCV AMS requires the incorporation of host factors as an integral component of the algorithms used to monitor disease occurrence. Importantly, implementation of comprehensive global databases and data mining are also needed for the proper study of the mechanisms responsible for HCV transmission. Here, we review molecular aspects associated with HCV transmission, as well as the most recent technological advances used for virus and host characterization. Additionally, the cornerstone discoveries that have defined the pathway for viral characterization are presented and the importance of implementing advanced HCV molecular surveillance is highlighted.
Collapse
Affiliation(s)
- Livia Maria Gonçalves Rossi
- Department of Biology, Institute of Bioscience, Language and Exact Science, Sao Paulo State University, Sao Jose do Rio Preto, SP 15054-000, Brazil.
| | | | - Paula Rahal
- Department of Biology, Institute of Bioscience, Language and Exact Science, Sao Paulo State University, Sao Jose do Rio Preto, SP 15054-000, Brazil.
| |
Collapse
|
222
|
Zabaleta A, D'Avola D, Echeverria I, Llopiz D, Silva L, Villanueva L, Riezu-Boj JI, Larrea E, Pereboev A, Lasarte JJ, Rodriguez-Lago I, Iñarrairaegui M, Sangro B, Prieto J, Sarobe P. Clinical testing of a dendritic cell targeted therapeutic vaccine in patients with chronic hepatitis C virus infection. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2015; 2:15006. [PMID: 26029717 PMCID: PMC4444996 DOI: 10.1038/mtm.2015.6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 01/21/2015] [Indexed: 12/24/2022]
Abstract
The lack of antiviral cellular immune responses in patients with chronic hepatitis C virus (HCV) infection suggests that T-cell vaccines may provide therapeutic benefit. Due to the central role that dendritic cells (DC) play in the activation of T-cell responses, our aim was to carry out a therapeutic vaccination clinical trial in HCV patients using DC. Five patients with chronic HCV infection were vaccinated with three doses of 5 × 106 or 107 autologous DC transduced with a recombinant adenovirus encoding NS3 using the adapter protein CFh40L, which facilitates DC transduction and maturation. No significant adverse effects were recorded after vaccination. Treatment caused no changes in serum liver enzymes nor in viral load. Vaccination induced weak but consistent expansion of T-cell responses against NS3 and adenoviral antigens. Patients’ DC, as opposed to murine DC or DC from healthy subjects, secreted high IL-10 levels after transduction, inducing the activation of IL-10–producing T cells. IL-10 blockade during vaccine preparation restored its ability to stimulate anti-NS3 Th1 responses. Thus, vaccination with adenovirus-transduced DC is safe and induces weak antiviral immune responses. IL-10 associated with vaccine preparation may be partly responsible for these effects, suggesting that future vaccines should consider concomitant inhibition of this cytokine.
Collapse
Affiliation(s)
- Aintzane Zabaleta
- Division of Hepatology and Gene Therapy, Center for Applied Medical Research (CIMA), University of Navarra , Pamplona, Spain ; Instituto de Investigación Sanitaria de Navarra (IDISNA) , Pamplona, Spain
| | - Delia D'Avola
- Instituto de Investigación Sanitaria de Navarra (IDISNA) , Pamplona, Spain ; Liver Unit, Clínica Universidad de Navarra , Pamplona, Spain ; Centro de Investigación Biomédica en Red en el Área temática de Enfermedades Hepáticas y Digestivas (Ciberehd), Clínica Universidad de Navarra , Pamplona, Spain
| | - Itziar Echeverria
- Division of Hepatology and Gene Therapy, Center for Applied Medical Research (CIMA), University of Navarra , Pamplona, Spain ; Instituto de Investigación Sanitaria de Navarra (IDISNA) , Pamplona, Spain
| | - Diana Llopiz
- Division of Hepatology and Gene Therapy, Center for Applied Medical Research (CIMA), University of Navarra , Pamplona, Spain ; Instituto de Investigación Sanitaria de Navarra (IDISNA) , Pamplona, Spain
| | - Leyre Silva
- Division of Hepatology and Gene Therapy, Center for Applied Medical Research (CIMA), University of Navarra , Pamplona, Spain ; Instituto de Investigación Sanitaria de Navarra (IDISNA) , Pamplona, Spain
| | - Lorea Villanueva
- Division of Hepatology and Gene Therapy, Center for Applied Medical Research (CIMA), University of Navarra , Pamplona, Spain ; Instituto de Investigación Sanitaria de Navarra (IDISNA) , Pamplona, Spain
| | - José Ignacio Riezu-Boj
- Division of Hepatology and Gene Therapy, Center for Applied Medical Research (CIMA), University of Navarra , Pamplona, Spain ; Instituto de Investigación Sanitaria de Navarra (IDISNA) , Pamplona, Spain
| | - Esther Larrea
- Division of Hepatology and Gene Therapy, Center for Applied Medical Research (CIMA), University of Navarra , Pamplona, Spain ; Instituto de Investigación Sanitaria de Navarra (IDISNA) , Pamplona, Spain
| | - Alexander Pereboev
- Division of Hepatology and Gene Therapy, Center for Applied Medical Research (CIMA), University of Navarra , Pamplona, Spain ; Instituto de Investigación Sanitaria de Navarra (IDISNA) , Pamplona, Spain ; Division of Human Gene Therapy, Department of Medicine, University of Alabama at Birmingham , Birmingham, Alabama, USA
| | - Juan José Lasarte
- Division of Hepatology and Gene Therapy, Center for Applied Medical Research (CIMA), University of Navarra , Pamplona, Spain ; Instituto de Investigación Sanitaria de Navarra (IDISNA) , Pamplona, Spain
| | - Iago Rodriguez-Lago
- Instituto de Investigación Sanitaria de Navarra (IDISNA) , Pamplona, Spain ; Liver Unit, Clínica Universidad de Navarra , Pamplona, Spain
| | - Mercedes Iñarrairaegui
- Instituto de Investigación Sanitaria de Navarra (IDISNA) , Pamplona, Spain ; Liver Unit, Clínica Universidad de Navarra , Pamplona, Spain ; Centro de Investigación Biomédica en Red en el Área temática de Enfermedades Hepáticas y Digestivas (Ciberehd), Clínica Universidad de Navarra , Pamplona, Spain
| | - Bruno Sangro
- Instituto de Investigación Sanitaria de Navarra (IDISNA) , Pamplona, Spain ; Liver Unit, Clínica Universidad de Navarra , Pamplona, Spain ; Centro de Investigación Biomédica en Red en el Área temática de Enfermedades Hepáticas y Digestivas (Ciberehd), Clínica Universidad de Navarra , Pamplona, Spain
| | - Jesús Prieto
- Division of Hepatology and Gene Therapy, Center for Applied Medical Research (CIMA), University of Navarra , Pamplona, Spain ; Instituto de Investigación Sanitaria de Navarra (IDISNA) , Pamplona, Spain ; Liver Unit, Clínica Universidad de Navarra , Pamplona, Spain ; Centro de Investigación Biomédica en Red en el Área temática de Enfermedades Hepáticas y Digestivas (Ciberehd), Clínica Universidad de Navarra , Pamplona, Spain
| | - Pablo Sarobe
- Division of Hepatology and Gene Therapy, Center for Applied Medical Research (CIMA), University of Navarra , Pamplona, Spain ; Instituto de Investigación Sanitaria de Navarra (IDISNA) , Pamplona, Spain
| |
Collapse
|
223
|
Transmitted/Founder Viruses Rapidly Escape from CD8+ T Cell Responses in Acute Hepatitis C Virus Infection. J Virol 2015; 89:5478-90. [PMID: 25740982 DOI: 10.1128/jvi.03717-14] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 02/25/2015] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED The interaction between hepatitis C virus (HCV) and cellular immune responses during very early infection is critical for disease outcome. To date, the impact of antigen-specific cellular immune responses on the evolution of the viral population establishing infection and on potential escape has not been studied. Understanding these early host-virus dynamics is important for the development of a preventative vaccine. Three subjects who were followed longitudinally from the detection of viremia preseroconversion until disease outcome were analyzed. The evolution of transmitted/founder (T/F) viruses was undertaken using deep sequencing. CD8(+) T cell responses were measured via enzyme-linked immunosorbent spot (ELISpot) assay using HLA class I-restricted T/F epitopes. T/F viruses were rapidly extinguished in all subjects associated with either viral clearance (n = 1) or replacement with viral variants leading to establishment of chronic infection (n = 2). CD8(+) T cell responses against 11 T/F epitopes were detectable by 33 to 44 days postinfection, and 5 of these epitopes had not previously been reported. These responses declined rapidly in those who became chronically infected and were maintained in the subject who cleared infection. Higher-magnitude CD8(+) T cell responses were associated with rapid development of immune escape variants at a rate of up to 0.1 per day. Rapid escape from CD8(+) T cell responses has been quantified for the first time in the early phase of primary HCV infection. These rapid escape dynamics were associated with higher-magnitude CD8(+) T cell responses. These findings raise questions regarding optimal selection of immunogens for HCV vaccine development and suggest that detailed analysis of individual epitopes may be required. IMPORTANCE A major limitation in our detailed understanding of the role of immune response in HCV clearance has been the lack of data on very early primary infection when the transmitted viral variants successfully establish the acute infection. This study was made possible through the availability of specimens from a unique cohort of asymptomatic primary infection cases in whom the first available viremic samples were collected approximately 3 weeks postinfection and at regular intervals thereafter. The study included detailed examination of both the evolution of the viral population and the host cellular immune responses against the T/F viruses. The findings here provide the first evidence of host cellular responses targeting T/F variants and imposing a strong selective force toward viral escape. The results of this study provide useful insight on how virus escapes the host response and consequently on future analysis of vaccine-induced immunity.
Collapse
|
224
|
Identification, molecular cloning, and analysis of full-length hepatitis C virus transmitted/founder genotypes 1, 3, and 4. mBio 2015; 6:e02518. [PMID: 25714714 PMCID: PMC4358020 DOI: 10.1128/mbio.02518-14] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Hepatitis C virus (HCV) infection is characterized by persistent replication of a complex mixture of viruses termed a “quasispecies.” Transmission is generally associated with a stringent population bottleneck characterized by infection by limited numbers of “transmitted/founder” (T/F) viruses. Characterization of T/F genomes of human immunodeficiency virus type 1 (HIV-1) has been integral to studies of transmission, immunopathogenesis, and vaccine development. Here, we describe the identification of complete T/F genomes of HCV by single-genome sequencing of plasma viral RNA from acutely infected subjects. A total of 2,739 single-genome-derived amplicons comprising 10,966,507 bp from 18 acute-phase and 11 chronically infected subjects were analyzed. Acute-phase sequences diversified essentially randomly, except for the poly(U/UC) tract, which was subject to polymerase slippage. Fourteen acute-phase subjects were productively infected by more than one genetically distinct virus, permitting assessment of recombination between replicating genomes. No evidence of recombination was found among 1,589 sequences analyzed. Envelope sequences of T/F genomes lacked transmission signatures that could distinguish them from chronic infection viruses. Among chronically infected subjects, higher nucleotide substitution rates were observed in the poly(U/UC) tract than in envelope hypervariable region 1. Fourteen full-length molecular clones with variable poly(U/UC) sequences corresponding to seven genotype 1a, 1b, 3a, and 4a T/F viruses were generated. Like most unadapted HCV clones, T/F genomes did not replicate efficiently in Huh 7.5 cells, indicating that additional cellular factors or viral adaptations are necessary for in vitro replication. Full-length T/F HCV genomes and their progeny provide unique insights into virus transmission, virus evolution, and virus-host interactions associated with immunopathogenesis. Hepatitis C virus (HCV) infects 2% to 3% of the world’s population and exhibits extraordinary genetic diversity. This diversity is mirrored by HIV-1, where characterization of transmitted/founder (T/F) genomes has been instrumental in studies of virus transmission, immunopathogenesis, and vaccine development. Here, we show that despite major differences in genome organization, replication strategy, and natural history, HCV (like HIV-1) diversifies essentially randomly early in infection, and as a consequence, sequences of actual T/F viruses can be identified. This allowed us to capture by molecular cloning the full-length HCV genomes that are responsible for infecting the first hepatocytes and eliciting the initial immune responses, weeks before these events could be directly analyzed in human subjects. These findings represent an enabling experimental strategy, not only for HCV and HIV-1 research, but also for other RNA viruses of medical importance, including West Nile, chikungunya, dengue, Venezuelan encephalitis, and Ebola viruses.
Collapse
|
225
|
Krueger PD, Kim TS, Sung SSJ, Braciale TJ, Hahn YS. Liver-resident CD103+ dendritic cells prime antiviral CD8+ T cells in situ. THE JOURNAL OF IMMUNOLOGY 2015; 194:3213-22. [PMID: 25712214 DOI: 10.4049/jimmunol.1402622] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The liver maintains a tolerogenic environment to avoid unwarranted activation of its resident immune cells upon continuous exposure to food and bacterially derived Ags. However, in response to hepatotropic viral infection, the liver's ability to switch from a hyporesponsive to a proinflammatory environment is mediated by select sentinels within the parenchyma. To determine the contribution of hepatic dendritic cells (DCs) in the activation of naive CD8(+) T cells, we first characterized resident DC subsets in the murine liver. Liver DCs exhibit unique properties, including the expression of CD8α (traditionally lymphoid tissue specific), CD11b, and CD103 markers. In both the steady-state and following viral infection, liver CD103(+) DCs express high levels of MHC class II, CD80, and CD86 and contribute to the high number of activated CD8(+) T cells. Importantly, viral infection in the Batf3(-/-) mouse, which lacks CD8α(+) and CD103(+) DCs in the liver, results in a 3-fold reduction in the proliferative response of Ag-specific CD8(+) T cells. Limiting DC migration out of the liver does not significantly alter CD8(+) T cell responsiveness, indicating that CD103(+) DCs initiate the induction of CD8(+) T cell responses in situ. Collectively, these data suggest that liver-resident CD103(+) DCs are highly immunogenic in response to hepatotropic viral infection and serve as a major APC to support the local CD8(+) T cell response. It also implies that CD103(+) DCs present a promising cellular target for vaccination strategies to resolve chronic liver infections.
Collapse
Affiliation(s)
- Peter D Krueger
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA 22908; Department of Microbiology, University of Virginia, Charlottesville, VA 22908
| | - Taeg S Kim
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA 22908; Department of Pathology, University of Virginia, Charlottesville, VA 22908; and
| | - Sun-Sang J Sung
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA 22908; Department of Medicine, Center for Immunity, Inflammation and Regenerative Medicine, University of Virginia, Charlottesville, VA 22908
| | - Thomas J Braciale
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA 22908; Department of Pathology, University of Virginia, Charlottesville, VA 22908; and
| | - Young S Hahn
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA 22908; Department of Microbiology, University of Virginia, Charlottesville, VA 22908;
| |
Collapse
|
226
|
Holst PJ, Jensen BAH, Ragonnaud E, Thomsen AR, Christensen JP. Targeting of non-dominant antigens as a vaccine strategy to broaden T-cell responses during chronic viral infection. PLoS One 2015; 10:e0117242. [PMID: 25679375 PMCID: PMC4334508 DOI: 10.1371/journal.pone.0117242] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 12/22/2014] [Indexed: 12/26/2022] Open
Abstract
In this study, we compared adenoviral vaccine vectors with the capacity to induce equally potent immune responses against non-dominant and immunodominant epitopes of murine lymphocytic choriomeningitis virus (LCMV). Our results demonstrate that vaccination targeting non-dominant epitopes facilitates potent virus-induced T-cell responses against immunodominant epitopes during subsequent challenge with highly invasive virus. In contrast, when an immunodominant epitope was included in the vaccine, the T-cell response associated with viral challenge remained focussed on that epitope. Early after challenge with live virus, the CD8+ T cells specific for vaccine-encoded epitopes, displayed a phenotype typically associated with prolonged/persistent antigenic stimulation marked by high levels of KLRG-1, as compared to T cells reacting to epitopes not included in the vaccine. Notably, this association was lost over time in T cells specific for the dominant T cell epitopes, and these cells were fully capable of expanding in response to a new viral challenge. Overall, our data suggests a potential for broadening of the antiviral CD8+ T-cell response by selecting non-dominant antigens to be targeted by vaccination. In addition, our findings suggest that prior adenoviral vaccination is not likely to negatively impact the long-term and protective immune response induced and maintained by a vaccine-attenuated chronic viral infection.
Collapse
Affiliation(s)
- Peter J. Holst
- Department of International Health, Immunology and Microbiology, University of Copenhagen, The Panum Institute, Copenhagen, Denmark
- Centre for Medical Parasitology, Department of International Health, Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- * E-mail:
| | - Benjamin A. H. Jensen
- Department of International Health, Immunology and Microbiology, University of Copenhagen, The Panum Institute, Copenhagen, Denmark
| | - Emeline Ragonnaud
- Centre for Medical Parasitology, Department of International Health, Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Allan R. Thomsen
- Department of International Health, Immunology and Microbiology, University of Copenhagen, The Panum Institute, Copenhagen, Denmark
| | - Jan P. Christensen
- Department of International Health, Immunology and Microbiology, University of Copenhagen, The Panum Institute, Copenhagen, Denmark
| |
Collapse
|
227
|
Emergency Ebola response: a new approach to the rapid design and development of vaccines against emerging diseases. THE LANCET. INFECTIOUS DISEASES 2015; 15:356-9. [PMID: 25595637 DOI: 10.1016/s1473-3099(14)71071-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The epidemic of Ebola virus disease has spread at an alarming rate despite containment efforts. As a result, unprecedented large-scale international response efforts have been made in an attempt to gain control of the outbreak and reduce transmission. Several international consortia have been formed in a remarkable worldwide collaborative effort to expedite trials of two candidate Ebola virus vaccines: cAd3-EBOZ and rVSV-EBOV. In parallel, both vaccines are being manufactured in large amounts to enable future rapid deployment for management of the crisis.
Collapse
|
228
|
Therapeutic vaccines in HBV: lessons from HCV. Med Microbiol Immunol 2015; 204:79-86. [PMID: 25573348 PMCID: PMC4305103 DOI: 10.1007/s00430-014-0376-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 10/07/2014] [Indexed: 12/15/2022]
Abstract
Currently, millions of people infected with hepatitis B virus (HBV) are committed to decades of treatment with anti-viral therapy to control viral replication. However, new tools for immunotherapy that include both viral vectors and molecular checkpoint inhibitors are now available. This has led to a resurgence of interest in new strategies to develop immunotherapeutic strategies with the aim of inducing HBeAg seroconversion—an end-point that has been associated with a decrease in the rates of disease progression. Ultimately, a true cure will involve the elimination of covalently closed circular DNA which presents a greater challenge for immunotherapy. In this manuscript, I describe the development of immunotherapeutic strategies for HBV that are approaching or currently in clinical studies, and draw on observations of T cell function in natural infection supported by recent animal studies that may lead to additional rational vaccine strategies using checkpoint inhibitors. I also draw on our recent experience in developing potent vaccines for HCV prophylaxis based on simian adenoviral and MVA vectors used in prime–boost strategies in both healthy volunteers and HCV infected patients. I have shown that the induction of T cell immune responses is markedly attenuated when administered to people with persistent HCV viremia. These studies and recently published animal studies using the woodchuck model suggest that potent vaccines based on DNA or adenoviral vectored vaccination represent a rational way forward. However, combining these with drugs to suppress viral replication, alongside checkpoint inhibitors may be required to induce long-term immune control.
Collapse
|
229
|
Coughlan L, Mullarkey C, Gilbert S. Adenoviral vectors as novel vaccines for influenza. ACTA ACUST UNITED AC 2015; 67:382-99. [PMID: 25560474 DOI: 10.1111/jphp.12350] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 10/05/2014] [Indexed: 12/19/2022]
Abstract
OBJECTIVES Influenza is a viral respiratory disease causing seasonal epidemics, with significant annual illness and mortality. Emerging viruses can pose a major pandemic threat if they acquire the capacity for sustained human-to-human transmission. Vaccination reduces influenza-associated mortality and is critical in minimising the burden on the healthcare system. However, current vaccines are not always effective in at-risk populations and fail to induce long-lasting protective immunity against a range of viruses. KEY FINDINGS The development of 'universal' influenza vaccines, which induce heterosubtypic immunity capable of reducing disease severity, limiting viral shedding or protecting against influenza subtypes with pandemic potential, has gained interest in the research community. To date, approaches have focused on inducing immune responses to conserved epitopes within the stem of haemagglutinin, targeting the ectodomain of influenza M2e or by stimulating cellular immunity to conserved internal antigens, nucleoprotein or matrix protein 1. SUMMARY Adenoviral vectors are potent inducers of T-cell and antibody responses and have demonstrated safety in clinical applications, making them an excellent choice of vector for delivery of vaccine antigens. In order to circumvent pre-existing immunity in humans, serotypes from non-human primates have recently been investigated. We will discuss the pre-clinical development of these novel vectors and their advancement to clinical trials.
Collapse
|
230
|
|
231
|
Messina JP, Humphreys I, Flaxman A, Brown A, Cooke GS, Pybus OG, Barnes E. Global distribution and prevalence of hepatitis C virus genotypes. Hepatology 2015; 61:77-87. [PMID: 25069599 PMCID: PMC4303918 DOI: 10.1002/hep.27259] [Citation(s) in RCA: 1140] [Impact Index Per Article: 114.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 06/09/2014] [Indexed: 12/11/2022]
Abstract
UNLABELLED Hepatitis C virus (HCV) exhibits high genetic diversity, characterized by regional variations in genotype prevalence. This poses a challenge to the improved development of vaccines and pan-genotypic treatments, which require the consideration of global trends in HCV genotype prevalence. Here we provide the first comprehensive survey of these trends. To approximate national HCV genotype prevalence, studies published between 1989 and 2013 reporting HCV genotypes are reviewed and combined with overall HCV prevalence estimates from the Global Burden of Disease (GBD) project. We also generate regional and global genotype prevalence estimates, inferring data for countries lacking genotype information. We include 1,217 studies in our analysis, representing 117 countries and 90% of the global population. We calculate that HCV genotype 1 is the most prevalent worldwide, comprising 83.4 million cases (46.2% of all HCV cases), approximately one-third of which are in East Asia. Genotype 3 is the next most prevalent globally (54.3 million, 30.1%); genotypes 2, 4, and 6 are responsible for a total 22.8% of all cases; genotype 5 comprises the remaining <1%. While genotypes 1 and 3 dominate in most countries irrespective of economic status, the largest proportions of genotypes 4 and 5 are in lower-income countries. CONCLUSION Although genotype 1 is most common worldwide, nongenotype 1 HCV cases—which are less well served by advances in vaccine and drug development—still comprise over half of all HCV cases. Relative genotype proportions are needed to inform healthcare models, which must be geographically tailored to specific countries or regions in order to improve access to new treatments. Genotype surveillance data are needed from many countries to improve estimates of unmet need.
Collapse
Affiliation(s)
- Jane P Messina
- Spatial Epidemiology and Ecology Group, Department of Zoology, University of OxfordOxford, UK
| | - Isla Humphreys
- Peter Medawar Building for Pathogen Research, University of Oxford, and Oxford NHIR BRCOxford, UK
| | | | - Anthony Brown
- Peter Medawar Building for Pathogen Research, University of Oxford, and Oxford NHIR BRCOxford, UK
| | - Graham S Cooke
- Division of Infectious Diseases, St Mary's Campus, Imperial CollegeLondon, UK
| | | | - Eleanor Barnes
- Peter Medawar Building for Pathogen Research, University of Oxford, and Oxford NHIR BRCOxford, UK
| |
Collapse
|
232
|
Appaiahgari MB, Vrati S. Adenoviruses as gene/vaccine delivery vectors: promises and pitfalls. Expert Opin Biol Ther 2014; 15:337-51. [DOI: 10.1517/14712598.2015.993374] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
233
|
Holz L, Rehermann B. T cell responses in hepatitis C virus infection: historical overview and goals for future research. Antiviral Res 2014; 114:96-105. [PMID: 25433310 DOI: 10.1016/j.antiviral.2014.11.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 11/16/2014] [Accepted: 11/18/2014] [Indexed: 02/08/2023]
Abstract
Hepatitis C virus (HCV)-specific T cells are key factors in the outcome of acute HCV infection and in protective immunity. This review recapitulates the steps that immunologists have taken in the past 25years to dissect the role of T cell responses in HCV infection. It describes technical as well as disease-specific challenges that were caused by the inapparent onset of acute HCV infection, the difficulty to identify subjects who spontaneously clear HCV infection, the low frequency of HCV-specific T cells in the blood of chronically infected patients, and the lack of small animal models with intact immune systems to study virus-host interaction. The review provides a historical perspective on techniques and key findings, and identifies areas for future research.
Collapse
Affiliation(s)
- Lauren Holz
- Immunology Section, Liver Diseases Branch, NIDDK, National Institutes of Health, DHHS, Bethesda, MD 20892, USA
| | - Barbara Rehermann
- Immunology Section, Liver Diseases Branch, NIDDK, National Institutes of Health, DHHS, Bethesda, MD 20892, USA.
| |
Collapse
|
234
|
Abstract
UNLABELLED Adenovirus vectors are widely used as vaccine candidates for a variety of pathogens, including HIV-1. To date, human and chimpanzee adenoviruses have been explored in detail as vaccine vectors. The phylogeny of human and chimpanzee adenoviruses is overlapping, and preexisting humoral and cellular immunity to both are exhibited in human populations worldwide. More distantly related adenoviruses may therefore offer advantages as vaccine vectors. Here we describe the primary isolation and vectorization of three novel adenoviruses from rhesus monkeys. The seroprevalence of these novel rhesus monkey adenovirus vectors was extremely low in sub-Saharan Africa human populations, and these vectors proved to have immunogenicity comparable to that of human and chimpanzee adenovirus vaccine vectors in mice. These rhesus monkey adenoviruses phylogenetically clustered with the poorly described adenovirus species G and robustly stimulated innate immune responses. These novel adenoviruses represent a new class of candidate vaccine vectors. IMPORTANCE Although there have been substantial efforts in the development of vaccine vectors from human and chimpanzee adenoviruses, far less is known about rhesus monkey adenoviruses. In this report, we describe the isolation and vectorization of three novel rhesus monkey adenoviruses. These vectors exhibit virologic and immunologic characteristics that make them attractive as potential candidate vaccine vectors for both HIV-1 and other pathogens.
Collapse
|
235
|
Shahid I, ALMalki WH, Hafeez MH, Hassan S. Hepatitis C virus infection treatment: An era of game changer direct acting antivirals and novel treatment strategies. Crit Rev Microbiol 2014; 42:535-47. [PMID: 25373616 DOI: 10.3109/1040841x.2014.970123] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chronic hepatitis C virus infection and associated liver diseases represent a major health care burden all over the world. The current standard of care, i.e. peginterferon-alfa (PEG-IFNα) plus ribavirin (RBV) are associated with frequent and sometimes serious adverse effects and contraindications, which further limit their therapeutic efficacy. The approval of first and second generation HCV protease inhibitors represents a major breakthrough in the development of novel direct acting antivirals (DAAs) against different HCV genotypes and establishes a new standard of care for chronically infected HCV genotypes 1 patients. Similarly, next generation protease inhibitors and HCV RNA polymerase inhibitors have shown better pharmacokinetics and pharmacodynamics in terms of broader HCV genotypes coverage, better safety profile, fewer drug interactions and possible once daily administration than first generation direct acting antivirals. The testing of adenovirus-based vector vaccines, which escalates the innate and acquired immune responses against the most conserved regions of the HCV genome in chimpanzees and humans, may be a promising therapeutic approach against HCV infection in coming future. This review article presents up-to-date knowledge and recent developments in HCV therapeutics, insights the shortcomings of current HCV therapies and key lessons from the therapeutic potential of improved anti-HCV treatment strategies.
Collapse
Affiliation(s)
- Imran Shahid
- a Department of Molecular Biology , Applied and Functional Genomics Lab, CEMB, University of the Punjab , Near Thokar Niaz Baig , Lahore , Pakistan .,b Department of Pharmacology and Toxicology , College of Pharmacy, Umm Al Qura University , Al-Abidiyah , Makkah , Saudi Arabia
| | - Waleed Hassan ALMalki
- b Department of Pharmacology and Toxicology , College of Pharmacy, Umm Al Qura University , Al-Abidiyah , Makkah , Saudi Arabia
| | - Muhammad Hassan Hafeez
- c Department of Gastroenterology and Hepatology , Fatima Memorial Hospital and College of Medicine and Dentistry , Shadman , Lahore , Pakistan , and
| | - Sajida Hassan
- a Department of Molecular Biology , Applied and Functional Genomics Lab, CEMB, University of the Punjab , Near Thokar Niaz Baig , Lahore , Pakistan .,d Viral Hepatitis Program, Laboratory of Medicine, University of Washington , Seattle , WA , USA
| |
Collapse
|
236
|
Baumert TF, Fauvelle C, Chen DY, Lauer GM. A prophylactic hepatitis C virus vaccine: a distant peak still worth climbing. J Hepatol 2014; 61:S34-44. [PMID: 25443345 DOI: 10.1016/j.jhep.2014.09.009] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 08/04/2014] [Accepted: 09/05/2014] [Indexed: 12/23/2022]
Abstract
Hepatitis C virus (HCV) infects an estimated more than 150 million people and is a leading cause of liver disease worldwide. The development of direct-acting antivirals (DAAs) will markedly improve the outcome of antiviral treatment with cure of the majority of treated patients. However, several hurdles remain before HCV infection can be considered a menace of the past: High treatment costs will most likely result in absent or limited access in middle and low resource countries and will lead to selective use even in wealthier countries. The limited efficacy of current HCV screening programs leads to a majority of cases being undiagnosed or diagnosed at a late stage and DAAs will not cure virus-induced end-stage liver disease such as hepatocellular carcinoma. Certain patient subgroups may not respond or not be eligible for DAA-based treatment strategies. Finally, reinfection remains possible, making control of HCV infection in people with ongoing infection risk difficult. The unmet medical needs justify continued efforts to develop an effective vaccine, protecting from chronic HCV infection as a mean to impact the epidemic on a global scale. Recent progress in the understanding of virus-host interactions provides new perspectives for vaccine development, but many critical questions remain unanswered. In this review, we focus on what is known about the immune correlates of HCV control, highlight key mechanisms of viral evasion that pose challenges for vaccine development and suggest areas of further investigation that could enable a rational approach to vaccine design. Within this context we also discuss insights from recent HCV vaccination studies and what they suggest about the best way to go forward.
Collapse
Affiliation(s)
- Thomas F Baumert
- Gastrointestinal Unit, Massachusetts General Hospital and Harvard Medical School, USA; Inserm Unité 1110, France; Institut de Recherche sur les Maladies Virales et Hépatiques, Université de Strasbourg, France; Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.
| | - Catherine Fauvelle
- Inserm Unité 1110, France; Institut de Recherche sur les Maladies Virales et Hépatiques, Université de Strasbourg, France
| | - Diana Y Chen
- Gastrointestinal Unit, Massachusetts General Hospital and Harvard Medical School, USA
| | - Georg M Lauer
- Gastrointestinal Unit, Massachusetts General Hospital and Harvard Medical School, USA.
| |
Collapse
|
237
|
Clearance of persistent HPV infection and cervical lesion by therapeutic DNA vaccine in CIN3 patients. Nat Commun 2014; 5:5317. [PMID: 25354725 PMCID: PMC4220493 DOI: 10.1038/ncomms6317] [Citation(s) in RCA: 179] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 09/19/2014] [Indexed: 12/26/2022] Open
Abstract
Here, we demonstrate that electroporation-enhanced immunization with a rationally designed HPV DNA vaccine (GX-188E), preferentially targeting HPV antigens to dendritic cells, elicits a significant E6/E7-specific IFN-γ-producing T-cell response in all nine cervical intraepithelial neoplasia 3 (CIN3) patients. Importantly, eight out of nine patients exhibit an enhanced polyfunctional HPV-specific CD8 T-cell response as shown by an increase in cytolytic activity, proliferative capacity and secretion of effector molecules. Notably, seven out of nine patients display complete regression of their lesions and viral clearance within 36 weeks of follow up. GX-188E administration does not elicit serious vaccine-associated adverse events at all administered doses. These findings indicate that the magnitude of systemic polyfunctional CD8 T-cell response is the main contributing factor for histological, cytological and virological responses, providing valuable insights into the design of therapeutic vaccines for effectively treating persistent infections and cancers in humans.
Collapse
|
238
|
Kelly C, Swadling L, Brown A, Capone S, Folgori A, Salio M, Klenerman P, Barnes E. Cross-reactivity of hepatitis C virus specific vaccine-induced T cells at immunodominant epitopes. Eur J Immunol 2014; 45:309-16. [PMID: 25263407 PMCID: PMC4784727 DOI: 10.1002/eji.201444686] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 08/02/2014] [Accepted: 09/24/2014] [Indexed: 12/24/2022]
Abstract
Viral diversity is a challenge to the development of a hepatitis C virus (HCV) vaccine. Following vaccination of humans with adenoviral vectors, we determined the capacity of T cells to target common viral variants at immundominant epitopes ex vivo. We identified two major variants for epitopes NS31073 and NS31446, and multiple variants for epitope NS31406 that occurred in >5% of genotype 1 and 3 sequences at a population level. Cross‐reactivity of vaccine‐induced T cells was determined using variant peptides in IFN‐γ ELISPOT assays. Vaccine‐induced T cells targeted approximately 90% of NS31073 genotype 1 sequences and 50% of NS31446 genotype 1 and 3 sequences. For NS31406, 62% of subtype‐1b sequences were targeted. Next, we assessed whether an in vitro priming system, using dendritic cells and T cells from healthy donors, could identify a variant of NS31406 that was maximally cross‐reactive. In vitro priming assays showed that of those tested the NS31406 vaccine variant was the most immunogenic. T cells primed with genotype 1 variants from subtype 1a or 1b were broadly cross‐reactive with other variants from the same subtype. We conclude that immunization with candidate HCV adenoviral vaccines generates cross‐reactive T cells at immunodominant epitopes. The degree of cross‐reactivity varies between epitopes and may be HCV‐subtype specific.
Collapse
Affiliation(s)
- Christabel Kelly
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | | | | | | | | | | | | |
Collapse
|
239
|
Abstract
The ultimate solution to the global HIV-1 epidemic will probably require the development of a safe and effective vaccine. Multiple vaccine platforms have been evaluated in preclinical and clinical trials, but given the disappointing results of clinical efficacy studies so far, novel vaccine approaches are needed. In this Opinion article, we discuss the scientific basis and clinical potential of novel adenovirus and cytomegalovirus vaccine vectors for HIV-1 as two contrasting but potentially complementary vector approaches. Both of these vector platforms have demonstrated partial protection against stringent simian immunodeficiency virus challenges in rhesus monkeys using different immunological mechanisms.
Collapse
|
240
|
Houghton M. Hepatitis C: The next 25 years. Antiviral Res 2014; 110:77-8. [DOI: 10.1016/j.antiviral.2014.06.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Accepted: 06/26/2014] [Indexed: 12/21/2022]
|
241
|
The novel tuberculosis vaccine, AERAS-402, is safe in healthy infants previously vaccinated with BCG, and induces dose-dependent CD4 and CD8T cell responses. Vaccine 2014; 32:5908-17. [DOI: 10.1016/j.vaccine.2014.09.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 08/29/2014] [Accepted: 09/01/2014] [Indexed: 12/17/2022]
|
242
|
Assessment of humoral immune responses to blood-stage malaria antigens following ChAd63-MVA immunization, controlled human malaria infection and natural exposure. PLoS One 2014; 9:e107903. [PMID: 25254500 PMCID: PMC4177865 DOI: 10.1371/journal.pone.0107903] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Accepted: 08/17/2014] [Indexed: 11/19/2022] Open
Abstract
The development of protective vaccines against many difficult infectious pathogens will necessitate the induction of effective antibody responses. Here we assess humoral immune responses against two antigens from the blood-stage merozoite of the Plasmodium falciparum human malaria parasite--MSP1 and AMA1. These antigens were delivered to healthy malaria-naïve adult volunteers in Phase Ia clinical trials using recombinant replication-deficient viral vectors--ChAd63 to prime the immune response and MVA to boost. In subsequent Phase IIa clinical trials, immunized volunteers underwent controlled human malaria infection (CHMI) with P. falciparum to assess vaccine efficacy, whereby all but one volunteer developed low-density blood-stage parasitemia. Here we assess serum antibody responses against both the MSP1 and AMA1 antigens following i) ChAd63-MVA immunization, ii) immunization and CHMI, and iii) primary malaria exposure in the context of CHMI in unimmunized control volunteers. Responses were also assessed in a cohort of naturally-immune Kenyan adults to provide comparison with those induced by a lifetime of natural malaria exposure. Serum antibody responses against MSP1 and AMA1 were characterized in terms of i) total IgG responses before and after CHMI, ii) responses to allelic variants of MSP1 and AMA1, iii) functional growth inhibitory activity (GIA), iv) IgG avidity, and v) isotype responses (IgG1-4, IgA and IgM). These data provide the first in-depth assessment of the quality of adenovirus-MVA vaccine-induced antibody responses in humans, along with assessment of how these responses are modulated by subsequent low-density parasite exposure. Notable differences were observed in qualitative aspects of the human antibody responses against these malaria antigens depending on the means of their induction and/or exposure of the host to the malaria parasite. Given the continued clinical development of viral vectored vaccines for malaria and a range of other diseases targets, these data should help to guide further immuno-monitoring studies of vaccine-induced human antibody responses.
Collapse
|
243
|
Stanley DA, Honko AN, Asiedu C, Trefry JC, Lau-Kilby AW, Johnson JC, Hensley L, Ammendola V, Abbate A, Grazioli F, Foulds KE, Cheng C, Wang L, Donaldson MM, Colloca S, Folgori A, Roederer M, Nabel GJ, Mascola J, Nicosia A, Cortese R, Koup RA, Sullivan NJ. Chimpanzee adenovirus vaccine generates acute and durable protective immunity against ebolavirus challenge. Nat Med 2014; 20:1126-9. [DOI: 10.1038/nm.3702] [Citation(s) in RCA: 260] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 09/02/2014] [Indexed: 12/13/2022]
|
244
|
Kwon YC, Ray RB, Ray R. Hepatitis C virus infection: establishment of chronicity and liver disease progression. EXCLI JOURNAL 2014; 13:977-96. [PMID: 26417315 PMCID: PMC4464452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 08/14/2014] [Indexed: 11/16/2022]
Abstract
Hepatitis C virus (HCV) often causes persistent infection, and is an important factor in the etiology of fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). There are no preventive or therapeutic vaccines available against HCV. Treatment strategies of HCV infection are likely to improve with recently discovered direct antiviral agents (DAAs). However, a proportion of patients still progress to liver failure and/or HCC despite having been cured of the infection. Thus, there is a need for early diagnosis and therapeutic modalities for HCV related end stage liver disease prevention. HCV genome does not integrate into its host genome, and has a predominantly cytoplasmic life cycle. Therefore, HCV mediated liver disease progression appears to involve indirect mechanisms from persistent infection of hepatocytes. Studying the underlying mechanisms of HCV mediated evasion of immune responses and liver disease progression is challenging due to the lack of a naturally susceptible small animal model. We and other investigators have used a number of experimental systems to investigate the mechanisms for establishment of chronic HCV infection and liver disease progression. HCV infection modulates immune systems. Further, HCV infection of primary human hepatocytes promotes growth, induces phenotypic changes, modulates epithelial mesenchymal transition (EMT) related genes, and generates tumor initiating stem-like cells (TISCs). HCV infection also modulates microRNAs (miRNAs), and influences growth by overriding normal death progression of primary human hepatocytes for disease pathogenesis. Understanding these ob-servations at the molecular level should aid in developing strategies for additional effective therapies against HCV mediated liver disease progression.
Collapse
Affiliation(s)
- Young-Chan Kwon
- Department of Internal Medicine, Saint Louis University, Missouri
| | - Ratna B. Ray
- Department of Pathology, Saint Louis University, Missouri
| | - Ranjit Ray
- Department of Internal Medicine, Saint Louis University, Missouri,Department of Molecular Microbiology & Immunology, Saint Louis University, Missouri,*To whom correspondence should be addressed: Ranjit Ray, Division of Infectious Diseases, Allergy & Immunology, Edward A. Doisy Research Center, 1100 S. Grand Blvd, 8th Floor, St. Louis, MO 63104, USA, E-mail:
| |
Collapse
|
245
|
Ondondo BO. The influence of delivery vectors on HIV vaccine efficacy. Front Microbiol 2014; 5:439. [PMID: 25202303 PMCID: PMC4141443 DOI: 10.3389/fmicb.2014.00439] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 08/03/2014] [Indexed: 12/31/2022] Open
Abstract
Development of an effective HIV/AIDS vaccine remains a big challenge, largely due to the enormous HIV diversity which propels immune escape. Thus novel vaccine strategies are targeting multiple variants of conserved antibody and T cell epitopic regions which would incur a huge fitness cost to the virus in the event of mutational escape. Besides immunogen design, the delivery modality is critical for vaccine potency and efficacy, and should be carefully selected in order to not only maximize transgene expression, but to also enhance the immuno-stimulatory potential to activate innate and adaptive immune systems. To date, five HIV vaccine candidates have been evaluated for efficacy and protection from acquisition was only achieved in a small proportion of vaccinees in the RV144 study which used a canarypox vector for delivery. Conversely, in the STEP study (HVTN 502) where human adenovirus serotype 5 (Ad5) was used, strong immune responses were induced but vaccination was more associated with increased risk of HIV acquisition than protection in vaccinees with pre-existing Ad5 immunity. The possibility that pre-existing immunity to a highly promising delivery vector may alter the natural course of HIV to increase acquisition risk is quite worrisome and a huge setback for HIV vaccine development. Thus, HIV vaccine development efforts are now geared toward delivery platforms which attain superior immunogenicity while concurrently limiting potential catastrophic effects likely to arise from pre-existing immunity or vector-related immuno-modulation. However, it still remains unclear whether it is poor immunogenicity of HIV antigens or substandard immunological potency of the safer delivery vectors that has limited the success of HIV vaccines. This article discusses some of the promising delivery vectors to be harnessed for improved HIV vaccine efficacy.
Collapse
Affiliation(s)
- Beatrice O Ondondo
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford Oxford, UK
| |
Collapse
|
246
|
Carey JB, Vrdoljak A, O'Mahony C, Hill AVS, Draper SJ, Moore AC. Microneedle-mediated immunization of an adenovirus-based malaria vaccine enhances antigen-specific antibody immunity and reduces anti-vector responses compared to the intradermal route. Sci Rep 2014; 4:6154. [PMID: 25142082 PMCID: PMC4139947 DOI: 10.1038/srep06154] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 08/04/2014] [Indexed: 11/28/2022] Open
Abstract
Substantial effort has been placed in developing efficacious recombinant attenuated adenovirus-based vaccines. However induction of immunity to the vector is a significant obstacle to its repeated use. Here we demonstrate that skin-based delivery of an adenovirus-based malaria vaccine, HAdV5-PyMSP142, to mice using silicon microneedles induces equivalent or enhanced antibody responses to the encoded antigen, however it results in decreased anti-vector responses, compared to intradermal delivery. Microneedle-mediated vaccine priming and resultant induction of low anti-vector antibody titres permitted repeated use of the same adenovirus vaccine vector. This resulted in significantly increased antigen-specific antibody responses in these mice compared to ID-treated mice. Boosting with a heterologous vaccine; MVA-PyMSP142 also resulted in significantly greater antibody responses in mice primed with HAdV5-PyMSP142 using MN compared to the ID route. The highest protection against blood-stage malaria challenge was observed when a heterologous route of immunization (MN/ID) was used. Therefore, microneedle-mediated immunization has potential to both overcome some of the logistic obstacles surrounding needle-and-syringe-based immunization as well as to facilitate the repeated use of the same adenovirus vaccine thereby potentially reducing manufacturing costs of multiple vaccines. This could have important benefits in the clinical ease of use of adenovirus-based immunization strategies.
Collapse
Affiliation(s)
- John B Carey
- School of Pharmacy, University College Cork, Cork, Ireland
| | - Anto Vrdoljak
- School of Pharmacy, University College Cork, Cork, Ireland
| | - Conor O'Mahony
- The Tyndall National Institute, University College Cork, Cork, Ireland
| | | | | | - Anne C Moore
- 1] School of Pharmacy, University College Cork, Cork, Ireland [2] Dept. of Pharmacology and Therapeutics, University College Cork, Cork, Ireland
| |
Collapse
|
247
|
Assessing the feasibility of hepatitis C virus vaccine trials: results from the Hepatitis C Incidence and Transmission Study-community (HITS-c) vaccine preparedness study. Vaccine 2014; 32:5460-7. [PMID: 25131726 DOI: 10.1016/j.vaccine.2014.07.091] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 07/07/2014] [Accepted: 07/30/2014] [Indexed: 12/26/2022]
Abstract
Efficacy trials of preventive hepatitis C virus (HCV) vaccine candidates raise challenging scientific and ethical issues. Based on data from the first 3 years of a community-based prospective observational study - the Hepatitis C Incidence and Transmission Study-community (HITS-c) - this paper examines the feasibility of conducting trials of candidate HCV vaccines with people who inject drugs (PWID) in Sydney, Australia. Of the 166 PWID confirmed HCV antibody negative and eligible for enrolment, 156 (94%) completed baseline procedures. Retention was high, with 89% of participants retained at 48 weeks and 76% of participants completing at least 75% of study visits within 2 weeks of schedule. The rate of primary HCV infection was 7.9/100 py (95% CI 4.9, 12.7). Of the 17 incident cases, 16 completed at least one follow-up assessment and 12 (75%) had evidence of chronic viraemia with progression to chronic HCV infection estimated to be 6/100 py. Power calculations suggest a chronic HCV infection rate of at least 12/100 py (primary HCV infection rate 16/100 py) will be required for stand-alone trials of highly efficacious candidates designed to prevent chronic infection. However, elevated primary HCV infection was observed among participants not receiving opioid substitution therapy who reported heroin as the main drug injected (26.9/100 py, 95% CI 14.5, 50.0) and those who reported unstable housing (23.5/100 py, 95% CI 7.6, 72.8), daily or more frequent injecting (22.7/100 py, 95% CI 12.2, 42.2) and receptive syringe sharing (23.6/100 py, 95% CI 9.8, 56.7) in the 6 months prior to baseline. These data suggest that it is possible to recruit and retain at-risk PWID who adhere to study protocols and that modification of eligibility criteria may identify populations with sufficiently high HCV incidence. Results support the feasibility of large multi-centre HCV vaccine trials, including in the Australian setting.
Collapse
|
248
|
Mishra S, Lavelle BJ, Desrosiers J, Ardito MT, Terry F, Martin WD, De Groot AS, Gregory SH. Dendritic cell-mediated, DNA-based vaccination against hepatitis C induces the multi-epitope-specific response of humanized, HLA transgenic mice. PLoS One 2014; 9:e104606. [PMID: 25111185 PMCID: PMC4128787 DOI: 10.1371/journal.pone.0104606] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 06/29/2014] [Indexed: 12/26/2022] Open
Abstract
Hepatitis C virus (HCV) is the etiologic agent of chronic liver disease, hepatitis C. Spontaneous resolution of viral infection is associated with vigorous HLA class I- and class II-restricted T cell responses to multiple viral epitopes. Unfortunately, only 20% of patients clear infection spontaneously, most develop chronic disease and require therapy. The response to chemotherapy varies, however; therapeutic vaccination offers an additional treatment strategy. To date, therapeutic vaccines have demonstrated only limited success. Vector-mediated vaccination with multi-epitope-expressing DNA constructs alone or in combination with chemotherapy offers an additional treatment approach. Gene sequences encoding validated HLA-A2- and HLA-DRB1-restricted epitopes were synthesized and cloned into an expression vector. Dendritic cells (DCs) derived from humanized, HLA-A2/DRB1 transgenic (donor) mice were transfected with these multi-epitope-expressing DNA constructs. Recipient HLA-A2/DRB1 mice were vaccinated s.c. with transfected DCs; control mice received non-transfected DCs. Peptide-specific IFN-γ production by splenic T cells obtained at 5 weeks post-immunization was quantified by ELISpot assay; additionally, the production of IL-4, IL-10 and TNF-α were quantified by cytokine bead array. Splenocytes derived from vaccinated HLA-A2/DRB1 transgenic mice exhibited peptide-specific cytokine production to the vast majority of the vaccine-encoded HLA class I- and class II-restricted T cell epitopes. A multi-epitope-based HCV vaccine that targets DCs offers an effective approach to inducing a broad immune response and viral clearance in chronic, HCV-infected patients.
Collapse
Affiliation(s)
- Sasmita Mishra
- Department of Medicine, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| | - Bianca J. Lavelle
- Department of Medicine, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| | - Joe Desrosiers
- Institute for Immunology and Informatics, University of Rhode Island, Providence, Rhode Island, United States of America
| | - Matt T. Ardito
- EpiVax, Inc., Providence, Rhode Island, United States of America
| | - Frances Terry
- EpiVax, Inc., Providence, Rhode Island, United States of America
| | | | - Anne S. De Groot
- Institute for Immunology and Informatics, University of Rhode Island, Providence, Rhode Island, United States of America
- EpiVax, Inc., Providence, Rhode Island, United States of America
| | - Stephen H. Gregory
- Department of Medicine, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| |
Collapse
|
249
|
Lange M, Fiedler M, Bankwitz D, Osburn W, Viazov S, Brovko O, Zekri AR, Khudyakov Y, Nassal M, Pumpens P, Pietschmann T, Timm J, Roggendorf M, Walker A. Hepatitis C virus hypervariable region 1 variants presented on hepatitis B virus capsid-like particles induce cross-neutralizing antibodies. PLoS One 2014; 9:e102235. [PMID: 25014219 PMCID: PMC4094522 DOI: 10.1371/journal.pone.0102235] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 06/16/2014] [Indexed: 01/01/2023] Open
Abstract
Hepatitis C virus (HCV) infection is still a serious global health burden. Despite improved therapeutic options, a preventative vaccine would be desirable especially in undeveloped countries. Traditionally, highly conserved epitopes are targets for antibody-based prophylactic vaccines. In HCV-infected patients, however, neutralizing antibodies are primarily directed against hypervariable region I (HVRI) in the envelope protein E2. HVRI is the most variable region of HCV, and this heterogeneity contributes to viral persistence and has thus far prevented the development of an effective HVRI-based vaccine. The primary goal of an antibody-based HCV vaccine should therefore be the induction of cross-reactive HVRI antibodies. In this study we approached this problem by presenting selected cross-reactive HVRI variants in a highly symmetric repeated array on capsid-like particles (CLPs). SplitCore CLPs, a novel particulate antigen presentation system derived from the HBV core protein, were used to deliberately manipulate the orientation of HVRI and therefore enable the presentation of conserved parts of HVRI. These HVRI-CLPs induced high titers of cross-reactive antibodies, including neutralizing antibodies. The combination of only four HVRI CLPs was sufficient to induce antibodies cross-reactive with 81 of 326 (24.8%) naturally occurring HVRI peptides. Most importantly, HVRI CLPs with AS03 as an adjuvant induced antibodies with a 10-fold increase in neutralizing capability. These antibodies were able to neutralize infectious HCVcc isolates and 4 of 19 (21%) patient-derived HCVpp isolates. Taken together, these results demonstrate that the induction of at least partially cross-neutralizing antibodies is possible. This approach might be useful for the development of a prophylactic HCV vaccine and should also be adaptable to other highly variable viruses.
Collapse
Affiliation(s)
- Milena Lange
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Melanie Fiedler
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | | | - William Osburn
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Sergei Viazov
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Olena Brovko
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | | | - Yury Khudyakov
- Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Michael Nassal
- Department of Internal Medicine II, University Hospital Freiburg, Freiburg, Germany
| | - Paul Pumpens
- Department of Recombinant biotechnology, Latvian Biomedical Research and Study Centre, Riga, Latvia
| | | | - Jörg Timm
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Michael Roggendorf
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Andreas Walker
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
250
|
Wang D, Gao G. State-of-the-art human gene therapy: part I. Gene delivery technologies. DISCOVERY MEDICINE 2014; 18:67-77. [PMID: 25091489 PMCID: PMC4440413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Safe and effective gene delivery is a prerequisite for successful gene therapy. In the early age of human gene therapy, setbacks due to problematic gene delivery vehicles plagued the exciting therapeutic outcome. However, gene delivery technologies rapidly evolved ever since. With the advancement of gene delivery techniques, gene therapy clinical trials surged during the past decade. As the first gene therapy product (Glybera) has obtained regulatory approval and reached clinic, human gene therapy finally realized the promise that genes can be medicines. The diverse gene delivery techniques available today have laid the foundation for gene therapy applications in treating a wide range of human diseases. Some of the most urgent unmet medical needs, such as cancer and pandemic infectious diseases, have been tackled by gene therapy strategies with promising results. Furthermore, combining gene transfer with other breakthroughs in biomedical research and novel biotechnologies opened new avenues for gene therapy. Such innovative therapeutic strategies are unthinkable until now, and are expected to be revolutionary. In part I of this review, we introduced recent development of non-viral and viral gene delivery technology platforms. As cell-based gene therapy blossomed, we also summarized the diverse types of cells and vectors employed in ex vivo gene transfer. Finally, challenges in current gene delivery technologies for human use were discussed.
Collapse
Affiliation(s)
- Dan Wang
- Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Guangping Gao
- Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiology Systems, University of Massachusetts Medical School, Worcester, MA 01605, USA
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| |
Collapse
|