201
|
Caengprasath N, Gonzalez-Abuin N, Shchepinova M, Ma Y, Inoue A, Tate EW, Frost G, Hanyaloglu AC. Internalization-Dependent Free Fatty Acid Receptor 2 Signaling Is Essential for Propionate-Induced Anorectic Gut Hormone Release. iScience 2020; 23:101449. [PMID: 32853993 PMCID: PMC7452316 DOI: 10.1016/j.isci.2020.101449] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 07/30/2020] [Accepted: 08/10/2020] [Indexed: 01/14/2023] Open
Abstract
The ability of propionate, a short-chain fatty acid produced from the fermentation of non-digestible carbohydrates in the colon, to stimulate the release of anorectic gut hormones, such as glucagon like peptide-1 (GLP-1), is an attractive approach to enhance appetite regulation, weight management, and glycemic control. Propionate induces GLP-1 release via its G protein-coupled receptor (GPCR), free fatty acid receptor 2 (FFA2), a GPCR that activates Gαi and Gαq/11. However, how pleiotropic GPCR signaling mechanisms in the gut regulates appetite is poorly understood. Here, we identify propionate-mediated G protein signaling is spatially directed within the cell whereby FFA2 is targeted to very early endosomes. Furthermore, propionate activates a Gαi/p38 signaling pathway, which requires receptor internalization and is essential for propionate-induced GLP-1 release in enteroendocrine cells and colonic crypts. Our study reveals that intestinal metabolites engage membrane trafficking pathways and that receptor internalization could orchestrate complex GPCR pathways within the gut.
Collapse
Affiliation(s)
- Natarin Caengprasath
- Institute of Reproductive and Developmental Biology (IRDB), Department of Metabolism, Digestion and Reproduction, Imperial College London, Rm 2009, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - Noemi Gonzalez-Abuin
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | | | - Yue Ma
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Edward W. Tate
- Department of Chemistry, Imperial College London, London, UK
| | - Gary Frost
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Aylin C. Hanyaloglu
- Institute of Reproductive and Developmental Biology (IRDB), Department of Metabolism, Digestion and Reproduction, Imperial College London, Rm 2009, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| |
Collapse
|
202
|
Role of Gut Microbiome and Microbial Metabolites in Alleviating Insulin Resistance After Bariatric Surgery. Obes Surg 2020; 31:327-336. [PMID: 32974816 DOI: 10.1007/s11695-020-04974-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 09/05/2020] [Accepted: 09/11/2020] [Indexed: 02/07/2023]
Abstract
Insulin resistance (IR) is the most common pathophysiological change in patients with type 2 diabetes mellitus (T2DM). Several recent studies have suggested that the gut microbiome and microbial metabolites are involved in the pathogenesis of IR. Bariatric surgery, as an effective treatment for T2DM, can markedly alleviate IR through mechanisms that have not been elucidated. In this review, we summarize the current evidence on the changes in the gut microbiome and microbial metabolites (including lipopolysaccharide, short-chain fatty acids, branched-chain amino acids, aromatic amino acids, bile acids, methylamines, and indole derivatives) after bariatric surgery. Additionally, we discuss the mechanisms that correlate the changes in microbial metabolites with the postoperative alleviation of IR. Furthermore, we discuss the prospect of bariatric surgery as a treatment for T2DM.
Collapse
|
203
|
Huey SL, Jiang L, Fedarko MW, McDonald D, Martino C, Ali F, Russell DG, Udipi SA, Thorat A, Thakker V, Ghugre P, Potdar RD, Chopra H, Rajagopalan K, Haas JD, Finkelstein JL, Knight R, Mehta S. Nutrition and the Gut Microbiota in 10- to 18-Month-Old Children Living in Urban Slums of Mumbai, India. mSphere 2020; 5:e00731-20. [PMID: 32968008 PMCID: PMC7568645 DOI: 10.1128/msphere.00731-20] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 09/03/2020] [Indexed: 12/20/2022] Open
Abstract
In this cross-sectional study, we describe the composition and diversity of the gut microbiota among undernourished children living in urban slums of Mumbai, India, and determine how nutritional status, including anthropometric measurements, dietary intakes from complementary foods, feeding practices, and micronutrient concentrations, is associated with their gut microbiota. We collected rectal swabs from children aged 10 to 18 months living in urban slums of Mumbai participating in a randomized controlled feeding trial and conducted 16S rRNA sequencing to determine the composition of the gut microbiota. Across the study cohort, Proteobacteria dominated the gut microbiota at over 80% relative abundance, with Actinobacteria representation at <4%, suggesting immaturity of the gut. Increased microbial α-diversity was associated with current breastfeeding, greater head circumference, higher fat intake, and lower hemoglobin concentration and weight-for-length Z-score. In redundancy analyses, 47% of the variation in Faith's phylogenetic diversity (Faith's PD) could be accounted for by age and by iron and polyunsaturated fatty acid intakes. Differences in community structure (β-diversity) of the microbiota were observed among those consuming fats and oils the previous day compared to those not consuming fats and oils the previous day. Our findings suggest that growth, diet, and feeding practices are associated with gut microbiota metrics in undernourished children, whose gut microbiota were comprised mainly of Proteobacteria, a phylum containing many potentially pathogenic taxa.IMPORTANCE The impact of comprehensive nutritional status, defined as growth, nutritional blood biomarkers, dietary intakes, and feeding practices, on the gut microbiome in children living in low-resource settings has remained underreported in microbiome research. Among undernourished children living in urban slums of Mumbai, India, we observed a high relative abundance of Proteobacteria, a phylum including many potentially pathogenic species similar to the composition in preterm infants, suggesting immaturity of the gut, or potentially a high inflammatory burden. We found head circumference, fat and iron intake, and current breastfeeding were positively associated with microbial diversity, while hemoglobin and weight for length were associated with lower diversity. Findings suggest that examining comprehensive nutrition is critical to gain more understanding of how nutrition and the gut microbiota are linked, particularly in vulnerable populations such as children in urban slum settings.
Collapse
Affiliation(s)
- Samantha L Huey
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, USA
| | - Lingjing Jiang
- Division of Biostatistics, University of California, San Diego, California, USA
| | - Marcus W Fedarko
- Center for Microbiome Innovation, University of California San Diego, La Jolla, California, USA
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, California, USA
| | - Daniel McDonald
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Cameron Martino
- Center for Microbiome Innovation, University of California San Diego, La Jolla, California, USA
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, California, USA
| | - Farhana Ali
- Department of Bioengineering, University of California, San Diego, California, USA
| | - David G Russell
- Department of Microbiology and Immunology, Cornell University, Ithaca, New York, USA
| | - Shobha A Udipi
- Department of Nutrition and Food Science, SNDT Women's University, Mumbai, India
| | - Aparna Thorat
- Department of Nutrition and Food Science, SNDT Women's University, Mumbai, India
| | - Varsha Thakker
- Department of Nutrition and Food Science, SNDT Women's University, Mumbai, India
| | - Padmini Ghugre
- Department of Nutrition and Food Science, SNDT Women's University, Mumbai, India
| | - R D Potdar
- Centre for the Study of Social Change, Mumbai, India
| | - Harsha Chopra
- Centre for the Study of Social Change, Mumbai, India
| | - Kripa Rajagopalan
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, USA
| | - Jere D Haas
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, USA
| | - Julia L Finkelstein
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, USA
- Institute for Nutritional Sciences, Global Health, and Technology (INSiGHT), Cornell University, Ithaca, New York, USA
| | - Rob Knight
- Department of Bioengineering, University of California, San Diego, California, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, California, USA
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, California, USA
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Saurabh Mehta
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, USA
- Institute for Nutritional Sciences, Global Health, and Technology (INSiGHT), Cornell University, Ithaca, New York, USA
| |
Collapse
|
204
|
Engevik MA, Banks LD, Engevik KA, Chang-Graham AL, Perry JL, Hutchinson DS, Ajami NJ, Petrosino JF, Hyser JM. Rotavirus infection induces glycan availability to promote ileum-specific changes in the microbiome aiding rotavirus virulence. Gut Microbes 2020; 11:1324-1347. [PMID: 32404017 PMCID: PMC7524290 DOI: 10.1080/19490976.2020.1754714] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Multiple studies have identified changes within the gut microbiome in response to diarrheal-inducing bacterial pathogens. However, examination of the microbiome in response to viral pathogens remains understudied. Compounding this, many studies use fecal samples to assess microbiome composition; which may not accurately mirror changes within the small intestine, the primary site for most enteric virus infections. As a result, the functional significance of small intestinal microbiome shifts during infection is not well defined. To address these gaps, rotavirus-infected neonatal mice were examined for changes in bacterial community dynamics, host gene expression, and tissue recovery during infection. Profiling bacterial communities using 16S rRNA sequencing suggested significant and distinct changes in ileal communities in response to rotavirus infection, with no significant changes for other gastrointestinal (GI) compartments. At 1-d post-infection, we observed a loss in Lactobacillus species from the ileum, but an increase in Bacteroides and Akkermansia, both of which exhibit mucin-digesting capabilities. Concomitant with the bacterial community shifts, we observed a loss of mucin-filled goblet cells in the small intestine at d 1, with recovery occurring by d 3. Rotavirus infection of mucin-producing cell lines and human intestinal enteroids (HIEs) stimulated release of stored mucin granules, similar to in vivo findings. In vitro, incubation of mucins with Bacteroides or Akkermansia members resulted in significant glycan degradation, which altered the binding capacity of rotavirus in silico and in vitro. Taken together, these data suggest that the response to and recovery from rotavirus-diarrhea is unique between sub-compartments of the GI tract and may be influenced by mucin-degrading microbes.
Collapse
Affiliation(s)
- Melinda A. Engevik
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA,Department of Pathology, Texas Children’s Hospital, Houston, TX, USA
| | - Lori D. Banks
- Alkek Center for Metagenomic and Microbiome Research, Baylor College of Medicine, Houston, TX, USA,Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Kristen A. Engevik
- Alkek Center for Metagenomic and Microbiome Research, Baylor College of Medicine, Houston, TX, USA,Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Alexandra L. Chang-Graham
- Alkek Center for Metagenomic and Microbiome Research, Baylor College of Medicine, Houston, TX, USA,Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Jacob L. Perry
- Alkek Center for Metagenomic and Microbiome Research, Baylor College of Medicine, Houston, TX, USA,Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Diane S. Hutchinson
- Alkek Center for Metagenomic and Microbiome Research, Baylor College of Medicine, Houston, TX, USA,Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Nadim J. Ajami
- Alkek Center for Metagenomic and Microbiome Research, Baylor College of Medicine, Houston, TX, USA,Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Joseph F. Petrosino
- Alkek Center for Metagenomic and Microbiome Research, Baylor College of Medicine, Houston, TX, USA,Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Joseph M. Hyser
- Alkek Center for Metagenomic and Microbiome Research, Baylor College of Medicine, Houston, TX, USA,Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA,CONTACT Joseph M. Hyser 1 Baylor Plaza, HoustonTX77030, USA
| |
Collapse
|
205
|
Kerns J, Fisher M. Epidemiology, pathophysiology and etiology of obesity in children and adolescents. Curr Probl Pediatr Adolesc Health Care 2020; 50:100869. [PMID: 32950388 DOI: 10.1016/j.cppeds.2020.100869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Jessica Kerns
- Division of Adolescent Medicine, Cohen Children's Medical Center, Northwell Health, 410 Lakeville Road, Suite 108, New Hyde Park, New York, 11042, United States; Donald and Barbara Zucker, School of Medicine at Hofstra/Northwell, Hempstead, New York, United States.
| | - Martin Fisher
- Division of Adolescent Medicine, Cohen Children's Medical Center, Northwell Health, 410 Lakeville Road, Suite 108, New Hyde Park, New York, 11042, United States; Donald and Barbara Zucker, School of Medicine at Hofstra/Northwell, Hempstead, New York, United States
| |
Collapse
|
206
|
Recent advances in the mechanisms underlying the beneficial effects of bariatric and metabolic surgery. Surg Obes Relat Dis 2020; 17:231-238. [PMID: 33036939 DOI: 10.1016/j.soard.2020.08.028] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/11/2020] [Accepted: 08/22/2020] [Indexed: 02/07/2023]
Abstract
Bariatric and metabolic surgery (BMS) is the most effective treatment for obesity, type 2 diabetes and co-morbidities, including nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. The beneficial effects of BMS are beyond the primary goal of gastric restriction and nutrients malabsorption. Roux-en-Y gastric bypass and vertical sleeve gastrectomy are the 2 most commonly performed procedures of BMS. Both surgeries lead to physiologic changes in gastrointestinal tract; subsequently alter bile acids pool and composition, gut microbial activities, gut hormones, and circulating exosomes; and ultimately contribute to the improved glycemic control, insulin sensitivity, lipid metabolism, energy expenditure, and weight loss. The mechanisms underlying the benefits of BMS likely involve the bile acid-signaling pathway mediated mainly by nuclear farnesoid X receptor and the membrane Takeda G protein-coupled receptor, bile acids-gut microbiota interaction, and exosomes. In this review, we focus on recent advances in potential mechanisms and aim to learn novel insights into the molecular mechanisms underlying metabolic disorders.
Collapse
|
207
|
Komorniak N, Martynova-Van Kley A, Nalian A, Wardziukiewicz W, Skonieczna-Żydecka K, Styburski D, Palma J, Kowalewski B, Kaseja K, Stachowska E. Can the FUT 2 Gene Variant Have an Effect on the Body Weight of Patients Undergoing Bariatric Surgery?-Preliminary, Exploratory Study. Nutrients 2020; 12:E2621. [PMID: 32872099 PMCID: PMC7551162 DOI: 10.3390/nu12092621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/24/2020] [Accepted: 08/26/2020] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The FUT2 gene (Se gene) encoding the enzyme α-1,2-L-fucosyltransferase 2 seems to have a significant effect on the number and type of bacteria colonizing the intestines. METHODS In a group of 19 patients after bariatric surgery, the polymorphism (rs601338) of FUT2 gene was analyzed in combination with body mass reduction, intestinal microbiome (16S RNA sequencing), and short chain fatty acids (SCFA) measurements in stools. RESULTS Among the secretors (Se/Se polymorphism of the FUT2 gene rs601338, carriers of GG variant), correlations between waist-hip ratio (WHR) and propionate content and an increase in Prevotella, Escherichia, Shigella, and Bacteroides were observed. On the other hand-in non-secretors (carriers of GA and AA variants)-higher abundance of Enterobacteriaceae, Ruminococcaceae, Enterobacteriaceae, Clostridiales was recorded. CONCLUSIONS The increased concentrations of propionate observed among the GG variants of FUT 2 may be used as an additional source of energy for the patient and may have a higher risk of increasing the WHR than carriers of the other variants (GA and AA).
Collapse
Affiliation(s)
- Natalia Komorniak
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland; (N.K.); (W.W.); (K.S.-Ż.); (D.S.); (J.P.)
| | | | - Armen Nalian
- Department of Biology, Stephen F. Austin State University, Nacogdoches, TX 75962, USA; (A.M.-V.K.); (A.N.)
| | - Wiktoria Wardziukiewicz
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland; (N.K.); (W.W.); (K.S.-Ż.); (D.S.); (J.P.)
| | - Karolina Skonieczna-Żydecka
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland; (N.K.); (W.W.); (K.S.-Ż.); (D.S.); (J.P.)
| | - Daniel Styburski
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland; (N.K.); (W.W.); (K.S.-Ż.); (D.S.); (J.P.)
| | - Joanna Palma
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland; (N.K.); (W.W.); (K.S.-Ż.); (D.S.); (J.P.)
| | - Bartosz Kowalewski
- Independent Provincial Public Hospital Complex in Szczecin—Zdunowo, 70-891 Szczecin, Poland;
| | - Krzysztof Kaseja
- Department of General Surgery and Transplantation, Independent Public Clinical Hospital No.2, 70-111 Szczecin, Poland;
| | - Ewa Stachowska
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland; (N.K.); (W.W.); (K.S.-Ż.); (D.S.); (J.P.)
| |
Collapse
|
208
|
Kraeuter AK, Phillips R, Sarnyai Z. The Gut Microbiome in Psychosis From Mice to Men: A Systematic Review of Preclinical and Clinical Studies. Front Psychiatry 2020; 11:799. [PMID: 32903683 PMCID: PMC7438757 DOI: 10.3389/fpsyt.2020.00799] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 07/24/2020] [Indexed: 12/17/2022] Open
Abstract
The gut microbiome is rapidly becoming the focus of interest as a possible factor involved in the pathophysiology of neuropsychiatric disorders. Recent understanding of the pathophysiology of schizophrenia emphasizes the role of systemic components, including immune/inflammatory and metabolic processes, which are influenced by and interacting with the gut microbiome. Here we systematically review the current literature on the gut microbiome in schizophrenia-spectrum disorders and in their animal models. We found that the gut microbiome is altered in psychosis compared to healthy controls. Furthermore, we identified potential factors related to psychosis, which may contribute to the gut microbiome alterations. However, further research is needed to establish the disease-specificity and potential causal relationships between changes of the microbiome and disease pathophysiology. This can open up the possibility of. manipulating the gut microbiome for improved symptom control and for the development of novel therapeutic approaches in schizophrenia and related psychotic disorders.
Collapse
Affiliation(s)
- Ann-Katrin Kraeuter
- Laboratory of Psychiatric Neuroscience, Centre for Molecular Therapeutics, James Cook University, Townsville, QLD, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD, Australia
- Faculty of Health and Life Sciences, Psychology, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Riana Phillips
- Laboratory of Psychiatric Neuroscience, Centre for Molecular Therapeutics, James Cook University, Townsville, QLD, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD, Australia
| | - Zoltán Sarnyai
- Laboratory of Psychiatric Neuroscience, Centre for Molecular Therapeutics, James Cook University, Townsville, QLD, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD, Australia
| |
Collapse
|
209
|
Cook J, Lehne C, Weiland A, Archid R, Ritze Y, Bauer K, Zipfel S, Penders J, Enck P, Mack I. Gut Microbiota, Probiotics and Psychological States and Behaviors after Bariatric Surgery-A Systematic Review of Their Interrelation. Nutrients 2020; 12:nu12082396. [PMID: 32785153 PMCID: PMC7468806 DOI: 10.3390/nu12082396] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/01/2020] [Accepted: 08/07/2020] [Indexed: 02/07/2023] Open
Abstract
The gastrointestinal (GI) microbiota plays an important role in health and disease, including brain function and behavior. Bariatric surgery (BS) has been reported to result in various changes in the GI microbiota, therefore demanding the investigation of the impact of GI microbiota on treatment success. The goal of this systematic review was to assess the effects of BS on the microbiota composition in humans and other vertebrates, whether probiotics influence postoperative health, and whether microbiota and psychological and behavioral factors interact. A search was conducted using PubMed and Web of Science to find relevant studies with respect to the GI microbiota and probiotics after BS, and later screened for psychological and behavioral parameters. Studies were classified into groups and subgroups to provide a clear overview of the outcomes. Microbiota changes were further assessed for whether they were specific to BS in humans through the comparison to sham operated controls in other vertebrate studies. Changes in alpha diversity appear not to be specific, whereas dissimilarity in overall microbial community structure, and increases in the abundance of the phylum Proteobacteria and Akkermansia spp. within the phylum Verrucomicrobia after surgery were observed in both human and other vertebrates studies and may be specific to BS in humans. Human probiotic studies differed regarding probiotic strains and dosages, however it appeared that probiotic interventions were not superior to a placebo for quality of life scores or weight loss after BS. The relationship between GI microbiota and psychological diseases in this context is unclear due to insufficient available data.
Collapse
Affiliation(s)
- Jessica Cook
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Hospital, 72072 Tübingen, Germany; (J.C.); (C.L.); (A.W.); (K.B.); (S.Z.); (P.E.)
| | - Christine Lehne
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Hospital, 72072 Tübingen, Germany; (J.C.); (C.L.); (A.W.); (K.B.); (S.Z.); (P.E.)
| | - Alisa Weiland
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Hospital, 72072 Tübingen, Germany; (J.C.); (C.L.); (A.W.); (K.B.); (S.Z.); (P.E.)
| | - Rami Archid
- Department of General, Visceral and Transplant Surgery, University Hospital, 72072 Tübingen, Germany;
| | - Yvonne Ritze
- Institute for Medical Psychology and Behavioral Neurobiology, University Hospital, 72072 Tübingen, Germany;
| | - Kerstin Bauer
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Hospital, 72072 Tübingen, Germany; (J.C.); (C.L.); (A.W.); (K.B.); (S.Z.); (P.E.)
| | - Stephan Zipfel
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Hospital, 72072 Tübingen, Germany; (J.C.); (C.L.); (A.W.); (K.B.); (S.Z.); (P.E.)
| | - John Penders
- Department of Medical Microbiology, School of Nutrition and Translational Research in Metabolism (NUTRIM) and Care and Public Health Research Institute(Caphri), Maastricht University Medical Centre, 6211 Maastricht, The Netherlands;
| | - Paul Enck
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Hospital, 72072 Tübingen, Germany; (J.C.); (C.L.); (A.W.); (K.B.); (S.Z.); (P.E.)
| | - Isabelle Mack
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Hospital, 72072 Tübingen, Germany; (J.C.); (C.L.); (A.W.); (K.B.); (S.Z.); (P.E.)
- Correspondence: ; Tel.: +49-7071-2985614; Fax: +49-7071-294382
| |
Collapse
|
210
|
Zhou LY, Deng MQ, Xiao XH. Potential contribution of the gut microbiota to hypoglycemia after gastric bypass surgery. Chin Med J (Engl) 2020; 133:1834-1843. [PMID: 32649508 PMCID: PMC7470015 DOI: 10.1097/cm9.0000000000000932] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Indexed: 12/12/2022] Open
Abstract
Obesity has become a global health problem. Lifestyle modification and medical treatment only appear to yield short-term weight loss. Roux-en-Y gastric bypass (RYGB) is the most popular bariatric procedure, and it sustains weight reduction and results in the remission of obesity-associated comorbidities for obese individuals. However, patients who undergo this surgery may develop hypoglycemia. To date, the diagnosis is challenging and the prevalence of post-RYGB hypoglycemia (PRH) is unclear. RYGB alters the anatomy of the upper gastrointestinal tract and has a combined effect of caloric intake restriction and nutrient malabsorption. Nevertheless, the physiologic changes after RYGB are complex. Although hyperinsulinemia, incretin effects, dysfunction of β-cells and α-cells, and some other factors have been widely investigated and are reported to be possible mediators of PRH, the pathogenesis is still not completely understood. In light of the important role of the gut microbiome in metabolism, we hypothesized that the gut microbiome might also be a critical link between RYGB and hypoglycemia. In this review, we mainly highlight the current possible factors predisposing individuals to PRH, particularly related to the gut microbiota, which may yield significant insights into the intestinal regulation of glucose metabolic homeostasis and provide novel clues to improve the treatment of type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Li-Yuan Zhou
- Key Laboratory of Endocrinology, Translational Medicine Center, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | | | | |
Collapse
|
211
|
Bu F, Zhang S, Duan Z, Ding Y, Chen T, Wang R, Feng Z, Shi G, Zhou J, Chen Y. A critical review on the relationship of herbal medicine, Akkermansia muciniphila, and human health. Biomed Pharmacother 2020; 128:110352. [PMID: 32521456 DOI: 10.1016/j.biopha.2020.110352] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/18/2020] [Accepted: 05/30/2020] [Indexed: 02/07/2023] Open
Abstract
There are trillions and trillions of microorganisms in the human gut, and these microorganisms and their metabolites are closely related to human health. Recent studies have found that the abundance of Akkermansia muciniphila is decreased in many diseases. Supplementation of A. muciniphila is used to treat many diseases, suggesting it as a probiotic. Herbal medicines are considered as valuable asset of traditional Chinese medicine. Recent studies have revealed traditional Chinese medicine as a potential prebiotic agent for the treatment of many diseases. Hence, in this review, we aimed to provide a plausible mechanistic basis for the interactions between herbal medicines and A. muciniphila, and therapeutic benefits on this interaction in various illnesses.
Collapse
Affiliation(s)
- Fan Bu
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Shuhui Zhang
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhenglan Duan
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yang Ding
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Tuo Chen
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Rong Wang
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zeyu Feng
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Guoping Shi
- Collaborative Innovation Center for Cancer Medicine, The Affifiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Jinyong Zhou
- Central Laboratory, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China
| | - Yugen Chen
- Department of Colorectal Surgery, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029,China.
| |
Collapse
|
212
|
West KA, Kanu C, Maric T, McDonald JAK, Nicholson JK, Li JV, Johnson MR, Holmes E, Savvidou MD. Longitudinal metabolic and gut bacterial profiling of pregnant women with previous bariatric surgery. Gut 2020; 69:1452-1459. [PMID: 31964751 PMCID: PMC7398482 DOI: 10.1136/gutjnl-2019-319620] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 12/03/2019] [Accepted: 12/04/2019] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Due to the global increase in obesity rates and success of bariatric surgery in weight reduction, an increasing number of women now present pregnant with a previous bariatric procedure. This study investigates the extent of bariatric-associated metabolic and gut microbial alterations during pregnancy and their impact on fetal development. DESIGN A parallel metabonomic (molecular phenotyping based on proton nuclear magnetic resonance spectroscopy) and gut bacterial (16S ribosomal RNA gene amplicon sequencing) profiling approach was used to determine maternal longitudinal phenotypes associated with malabsorptive/mixed (n=25) or restrictive (n=16) procedures, compared with women with similar early pregnancy body mass index but without bariatric surgery (n=70). Metabolic profiles of offspring at birth were also analysed. RESULTS Previous malabsorptive, but not restrictive, procedures induced significant changes in maternal metabolic pathways involving branched-chain and aromatic amino acids with decreased circulation of leucine, isoleucine and isobutyrate, increased excretion of microbial-associated metabolites of protein putrefaction (phenylacetlyglutamine, p-cresol sulfate, indoxyl sulfate and p-hydroxyphenylacetate), and a shift in the gut microbiota. The urinary concentration of phenylacetylglutamine was significantly elevated in malabsorptive patients relative to controls (p=0.001) and was also elevated in urine of neonates born from these mothers (p=0.021). Furthermore, the maternal metabolic changes induced by malabsorptive surgery were associated with reduced maternal insulin resistance and fetal/birth weight. CONCLUSION Metabolism is altered in pregnant women with a previous malabsorptive bariatric surgery. These alterations may be beneficial for maternal outcomes, but the effect of elevated levels of phenolic and indolic compounds on fetal and infant health should be investigated further.
Collapse
Affiliation(s)
- Kiana Ashley West
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Chidimma Kanu
- Obstetrics & Gynaecology, Chelsea and Westminster Hospital, Institute of Reproductive Developmental Biology, Department of Metabolism, Digestion & Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Tanya Maric
- Obstetrics & Gynaecology, Chelsea and Westminster Hospital, Institute of Reproductive Developmental Biology, Department of Metabolism, Digestion & Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Julie Anne Kathryn McDonald
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Jeremy K Nicholson
- Australian National Phenome Centre, Health Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
| | - Jia V Li
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Mark R Johnson
- Obstetrics & Gynaecology, Chelsea and Westminster Hospital, Institute of Reproductive Developmental Biology, Department of Metabolism, Digestion & Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Elaine Holmes
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK .,Australian National Phenome Centre, Health Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
| | - Makrina D Savvidou
- Obstetrics & Gynaecology, Chelsea and Westminster Hospital, Institute of Reproductive Developmental Biology, Department of Metabolism, Digestion & Reproduction, Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
213
|
Druart C, Plovier H, Van Hul M, Brient A, Phipps KR, de Vos WM, Cani PD. Toxicological safety evaluation of pasteurized Akkermansia muciniphila. J Appl Toxicol 2020; 41:276-290. [PMID: 32725676 PMCID: PMC7818173 DOI: 10.1002/jat.4044] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/10/2020] [Accepted: 07/10/2020] [Indexed: 12/13/2022]
Abstract
Gut microorganisms are vital for many aspects of human health, and the commensal bacterium Akkermansia muciniphila has repeatedly been identified as a key component of intestinal microbiota. Reductions in A. muciniphila abundance are associated with increased prevalence of metabolic disorders such as obesity and type 2 diabetes. It was recently discovered that administration of A. muciniphila has beneficial effects and that these are not diminished, but rather enhanced after pasteurization. Pasteurized A. muciniphila is proposed for use as a food ingredient, and was therefore subjected to a nonclinical safety assessment, comprising genotoxicity assays (bacterial reverse mutation and in vitro mammalian cell micronucleus tests) and a 90-day toxicity study. For the latter, Han Wistar rats were administered with the vehicle or pasteurized A. muciniphila at doses of 75, 375 or 1500 mg/kg body weight/day (equivalent to 4.8 × 109 , 2.4 × 1010 , or 9.6 × 1010 A. muciniphila cells/kg body weight/day) by oral gavage for 90 consecutive days. The study assessed potential effects on clinical observations (including detailed arena observations and a modified Irwin test), body weight, food and water consumption, clinical pathology, organ weights, and macroscopic and microscopic pathology. The results of both in vitro genotoxicity studies were negative. No test item-related adverse effects were observed in the 90-day study; therefore, 1500 mg/kg body weight/day (the highest dose tested, equivalent to 9.6 × 1010 A. muciniphila cells/kg body weight/day) was established as the no-observed-adverse-effect-level. These results support that pasteurized A. muciniphila is safe for use as a food ingredient.
Collapse
Affiliation(s)
| | | | - Matthias Van Hul
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | | | - Kirt R Phipps
- Intertek Health Sciences Inc., Farnborough, Hampshire, UK
| | - Willem M de Vos
- Laboratory of Microbiology, Wageningen University, Wageningen, the Netherlands.,Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Patrice D Cani
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
214
|
PBPK modeling of CYP3A and P-gp substrates to predict drug-drug interactions in patients undergoing Roux-en-Y gastric bypass surgery. J Pharmacokinet Pharmacodyn 2020; 47:493-512. [PMID: 32710209 DOI: 10.1007/s10928-020-09701-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 07/02/2020] [Indexed: 12/11/2022]
Abstract
Roux-en-Y gastric bypass surgery (RYGBS) is an effective surgical intervention to reduce mortality in morbidly obese patients. Following RYGBS, the disposition of drugs may be affected by anatomical alterations and changes in intestinal and hepatic drug metabolizing enzyme activity. The aim of this study was to better understand the drug-drug interaction (DDI) potential of CYP3A and P-gp inhibitors. The impacts of RYGBS on the absorption and metabolism of midazolam, acetaminophen, digoxin, and their major metabolites were simulated using physiologically-based pharmacokinetic (PBPK) modeling. PBPK models for verapamil and posaconazole were built to evaluate CYP3A- and P-gp-mediated DDIs pre- and post-RYGBS. The simulations suggest that for highly soluble drugs, such as verapamil, the predicted bioavailability was comparable pre- and post-RYGBS. For verapamil inhibition, RYGBS did not affect the fold-change of the predicted inhibited-to-control plasma AUC ratio or predicted inhibited-to-control peak plasma concentration ratio for either midazolam or digoxin. In contrast, the predicted bioavailability of posaconazole, a poorly soluble drug, decreased from 12% pre-RYGBS to 5% post-RYGBS. Compared to control, the predicted posaconazole-inhibited midazolam plasma AUC increased by 2.0-fold pre-RYGBS, but only increased by 1.6-fold post-RYGBS. A similar trend was predicted for pre- and post-RYGBS inhibited-to-control midazolam peak plasma concentration ratios (2.0- and 1.6-fold, respectively) following posaconazole inhibition. Absorption of highly soluble drugs was more rapid post-RYGBS, resulting in higher predicted midazolam peak plasma concentrations, which was further increased following inhibition by verapamil or posaconazole. To reduce the risk of a drug-drug interaction in patients post-RYGBS, the dose or frequency of object drugs may need to be decreased when administered with highly soluble inhibitor drugs, especially if toxicities are associated with plasma peak concentrations.
Collapse
|
215
|
Ten-year remission rates in insulin-treated type 2 diabetes after biliopancreatic diversion with duodenal switch. Surg Obes Relat Dis 2020; 16:1701-1712. [PMID: 32800734 DOI: 10.1016/j.soard.2020.06.052] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 06/10/2020] [Accepted: 06/27/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Biliopancreatic diversion with duodenal switch (BPD-DS) confers the highest rate of type 2 diabetes (T2D) remission compared with other bariatric procedures. Previous studies suggest that type of antidiabetic therapy used before surgery and duration of disease influence postsurgical glycemic outcomes. Short-term, progressive improvement in insulin sensitivity and beta-cell function after metabolic surgery in patients with noninsulin-treated T2D has been demonstrated. Whether patients with more advanced disease can achieve sustained remission remains unclear. OBJECTIVE The aim of this study was to assess long-term glycemic outcomes in insulin-treated patients with T2D after BPD-DS and identify predictors of sustained diabetes remission or relapse. SETTING University-affiliated tertiary care center. METHODS Data from 141 patients with insulin-treated T2D who underwent BPD-DS between 1994 and 2006 with 10 years of follow-up data were collected from a prospective electronic database. RESULTS Follow-up was available in 132 patients (91%). At 10 years after metabolic surgery, 90 patients (68.1%) had a complete remission of diabetes, 3 (2.3%) had a partial remission, 21 (15.9%) had an improvement, and 3 (2.3%) were unchanged in their diabetes status. Fourteen patients died during the 10-year follow-up period. Relapse after an initial period of remission occurred in 15 (11.4%) patients. Insulin discontinuation was achieved in 97%. Duration of diabetes was an independent predictor of nonremission at 10 years. CONCLUSIONS The BPD-DS maintains remission at 10 years postoperatively in patients with more advanced diabetes. Long-term benefits of the BPD-DS on weight loss and glycemic control should be considered when offering metabolic surgery to patients with insulin-treated T2D.
Collapse
|
216
|
Kumar J, Rani K, Datt C. Molecular link between dietary fibre, gut microbiota and health. Mol Biol Rep 2020; 47:6229-6237. [PMID: 32623619 DOI: 10.1007/s11033-020-05611-3] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 06/20/2020] [Indexed: 12/17/2022]
Abstract
Natural polysaccharides cellulose, hemicelluloses, inulin etc., galactooligosaccharides (GOS), and fructooligosaccharides (FOS) play a significant role in the improvement of gut microbiota balance and human health. These polysaccharides prevent pathogen adhesion that stimulates the immune system and gut barrier function by servicing as fermentable substrates for the gut microbiota. The gut microbiota plays a key role in the fermentation of non-digestible carbohydrates (NDCs) fibres. Moreover, the gut microbiota is responsible for the production of short-chain fatty acids (SCFAs) like acetate, propionate and butyrate. Acetate is the most abundant and it is used by many gut commensals to produce propionate and butyrate in a growth-promoting cross-feeding process. The dietary fibres affect the gut microbiome and play vital roles in signaling pathways. The SCFAs, acetate, butyrate, and propionate have been reported to affect on metabolic activities at the molecular level. Acetate affects the metabolic pathway through the G protein-coupled receptor (GPCR) and free fatty acid receptor 2 (FFAR2/GPR43) while butyrate and propionate transactivate the peroxisome proliferator-activated receptorsγ (PPARγ/NR1C3) and regulate the PPARγ target gene Angptl4 in colonic cells of the gut. The FFAR2 signaling pathway regulates the insulin-stimulated lipid accumulation in adipocytes and inflammation, however peptide tyrosine-tyrosine (PPY) and glucagon-like peptide 1 regulates appetite. The NDCs via gut microbiota dependent pathway regulate glucose homeostasis, gut integrity and hormone by GPCR, NF-kB, and AMPK-dependent processes.
Collapse
Affiliation(s)
- Jitendra Kumar
- ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India.
| | - Kavita Rani
- ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Chander Datt
- Division of Animal Nutrition, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| |
Collapse
|
217
|
Aoun A, Darwish F, Hamod N. The Influence of the Gut Microbiome on Obesity in Adults and the Role of Probiotics, Prebiotics, and Synbiotics for Weight Loss. Prev Nutr Food Sci 2020; 25:113-123. [PMID: 32676461 PMCID: PMC7333005 DOI: 10.3746/pnf.2020.25.2.113] [Citation(s) in RCA: 166] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/08/2020] [Indexed: 12/23/2022] Open
Abstract
The link between the gut microbiome and obesity is not well defined. Understanding of the role of the gut microbiome in weight and health management may lead to future revolutionary changes for treating obesity. This review examined the relationship between obesity and the gut microbiome, and the role of probiotics, prebiotics, and synbiotics for preventing and treating obesity. We used PubMed and Google Scholar to collect appropriate articles for the review. We showed that the gut microbiome has an impact on nutrient metabolism and energy expenditure. Moreover, different modalities of obesity treatment have been shown to change the diversity and composition of the gut microbiome; this raises questions about the role these changes may play in weight loss. In addition, studies have shown that supplementation with probiotics, prebiotics, and synbiotics may alter the secretion of hormones, neurotransmitters, and inflammatory factors, thus preventing food intake triggers that lead to weight gain. Further clinical studies are needed to better understand how different species of bacteria in the gut microbiome may affect weight gain, and to determine the most appropriate doses, compositions, and regimens of probiotics, prebiotics, and synbiotics supplementation for long-term weight control.
Collapse
Affiliation(s)
- Antoine Aoun
- Faculty of Nursing and Health Sciences, Notre Dame University-Louaize, Zouk Mosbeh 72, Lebanon
| | - Fatima Darwish
- Faculty of Nursing and Health Sciences, Notre Dame University-Louaize, Zouk Mosbeh 72, Lebanon
| | - Natacha Hamod
- Faculty of Nursing and Health Sciences, Notre Dame University-Louaize, Zouk Mosbeh 72, Lebanon
| |
Collapse
|
218
|
Péan N, Le Lay A, Brial F, Wasserscheid J, Rouch C, Vincent M, Myridakis A, Hedjazi L, Dumas ME, Grundberg E, Lathrop M, Magnan C, Dewar K, Gauguier D. Dominant gut Prevotella copri in gastrectomised non-obese diabetic Goto-Kakizaki rats improves glucose homeostasis through enhanced FXR signalling. Diabetologia 2020; 63:1223-1235. [PMID: 32173762 PMCID: PMC7228998 DOI: 10.1007/s00125-020-05122-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 02/04/2020] [Indexed: 12/19/2022]
Abstract
AIMS/HYPOTHESIS Drug and surgical-based therapies in type 2 diabetes are associated with altered gut microbiota architecture. Here we investigated the role of the gut microbiome in improved glucose homeostasis following bariatric surgery. METHODS We carried out gut microbiome analyses in gastrectomised (by vertical sleeve gastrectomy [VSG]) rats of the Goto-Kakizaki (GK) non-obese model of spontaneously occurring type 2 diabetes, followed by physiological studies in the GK rat. RESULTS VSG in the GK rat led to permanent improvement of glucose tolerance associated with minor changes in the gut microbiome, mostly characterised by significant enrichment of caecal Prevotella copri. Gut microbiota enrichment with P. copri in GK rats through permissive antibiotic treatment, inoculation of gut microbiota isolated from gastrectomised GK rats, and direct inoculation of P. copri, resulted in significant improvement of glucose tolerance, independent of changes in body weight. Plasma bile acids were increased in GK rats following inoculation with P. copri and P. copri-enriched microbiota from VSG-treated rats; the inoculated GK rats then showed increased liver glycogen and upregulated expression of Fxr (also known as Nr1h4), Srebf1c, Chrebp (also known as Mlxipl) and Il10 and downregulated expression of Cyp7a1. CONCLUSIONS Our data underline the impact of intestinal P. copri on improved glucose homeostasis through enhanced bile acid metabolism and farnesoid X receptor (FXR) signalling, which may represent a promising opportunity for novel type 2 diabetes therapeutics.
Collapse
Affiliation(s)
- Noémie Péan
- Inserm UMR 1124, Université de Paris, 45 rue des Saint-Pères, 75006, Paris, France
| | - Aurelie Le Lay
- Inserm UMR 1124, Université de Paris, 45 rue des Saint-Pères, 75006, Paris, France
| | - Francois Brial
- Inserm UMR 1124, Université de Paris, 45 rue des Saint-Pères, 75006, Paris, France
| | - Jessica Wasserscheid
- McGill University and Genome Quebec Innovation Centre, 740 Doctor Penfield Avenue, Montreal, QC, H3A 0G1, Canada
| | - Claude Rouch
- Unit of Functional and Adaptive Biology, UMR 8251, CNRS, Université de Paris, 4 rue Marie Andrée Lagroua Weill-Halle, Paris, France
| | - Mylène Vincent
- Unit of Functional and Adaptive Biology, UMR 8251, CNRS, Université de Paris, 4 rue Marie Andrée Lagroua Weill-Halle, Paris, France
| | - Antonis Myridakis
- Section of Biomolecular Medicine, Division of Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK
| | | | - Marc-Emmanuel Dumas
- Section of Biomolecular Medicine, Division of Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK
| | - Elin Grundberg
- McGill University and Genome Quebec Innovation Centre, 740 Doctor Penfield Avenue, Montreal, QC, H3A 0G1, Canada
| | - Mark Lathrop
- McGill University and Genome Quebec Innovation Centre, 740 Doctor Penfield Avenue, Montreal, QC, H3A 0G1, Canada
| | - Christophe Magnan
- Unit of Functional and Adaptive Biology, UMR 8251, CNRS, Université de Paris, 4 rue Marie Andrée Lagroua Weill-Halle, Paris, France
| | - Ken Dewar
- McGill University and Genome Quebec Innovation Centre, 740 Doctor Penfield Avenue, Montreal, QC, H3A 0G1, Canada.
| | - Dominique Gauguier
- Inserm UMR 1124, Université de Paris, 45 rue des Saint-Pères, 75006, Paris, France.
- McGill University and Genome Quebec Innovation Centre, 740 Doctor Penfield Avenue, Montreal, QC, H3A 0G1, Canada.
| |
Collapse
|
219
|
Chen G, Zhuang J, Cui Q, Jiang S, Tao W, Chen W, Yu S, Wu L, Yang W, Liu F, Yang J, Wang C, Jia S. Two Bariatric Surgical Procedures Differentially Alter the Intestinal Microbiota in Obesity Patients. Obes Surg 2020; 30:2345-2361. [PMID: 32152837 DOI: 10.1007/s11695-020-04494-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
AIMS To explore the intestinal microbiota composition affected by the two most widely used procedures of bariatric surgery, laparoscopic sleeve gastrectomy (LSG) and laparoscopic roux-en-Y gastric bypass (LRYGB), in Chinese obesity patients. METHODS Stool samples were collected from the obese patients before (n = 87) and with follow-up after the surgery (n = 53). After DNA extraction, 16S rDNA (V3 + V4 regions) sequencing was completed on Illumina HiSeq 2500 sequencing platform. The samples were analyzed base on four groups, pre-LSG (n = 54), pre-LRYGB (n = 33), post-LSG (n = 33), and post-LRYGB (n = 20). The linear mixed models were used to analyze the alteration of intestinal microbiota before and after the surgeries of LSG or LRYGB. Student's t test and χ2 test were used for analysis of independent groups; Metastats analysis was used to compare the relative abundance of bacteria, and Pearson correlation and Spearman correlation analysis were used to test the correlation between indicated groups. RESULTS 87 patients were included and 53 (60.92%) of them completed the follow-up (9.60 ± 3.92 months). Body mass index (BMI) decreased from 37.84 ± 6.16 kg/m2 to 26.22 ± 4.33 kg/m2 after LSG and from 45.75 ± 14.26 kg/m2 to 33.15 ± 10.99 kg/m2 after LRYGB. The relative abundance of 5 phyla and 42 genera were altered after the surgery in the cohort. Although no alteration of Firmicutes was observed at phylum level, 54.76% of the altered genera belong to phylum Firmicutes. Both LSG and LRYGB procedures increased the richness and evenness of intestinal microbiota in obese patients after the surgery. Particularly, 33 genera altered after LSG and 19 genera altered after LRYGB, in which 11 genera were common alterations in both procedures. CONCLUSION Both LSG and LRYGB altered the composition of intestinal microbiota in Chinese obesity patients, and particularly increased the richness and evenness of microbiota. Genera belonging to phylum Firmicutes were the most altered bacteria by bariatric surgery. The procedure of LSG resulted in much more pronounced alteration of the intestinal microbiota abundance than that observed in LRYGB. While different genera were altered after LSG and LRYGB procedures, 10 genera were the common altered genera in both procedures. Bacteria altered after LSG and LRYGB were functionally associated with BMI, and with relieving of the metabolic syndromes.
Collapse
Affiliation(s)
- Guolin Chen
- The First Affiliated Hospital, Jinan University, Huangpu Avenue West 613, Tianhe District, Guangzhou, Guangdong, China
- Joint Institute of Metabolic Medicine between Jinan University and the University of Hong Kong, Huangpu Avenue West 613, Tianhe District, Guangzhou, Guangdong, China
- Institute of Obesity and Metabolism, Jinan University, Huangpu Avenue West 613, Tianhe District, Guangzhou, Guangdong, China
| | - Jingshen Zhuang
- The First Affiliated Hospital, Jinan University, Huangpu Avenue West 613, Tianhe District, Guangzhou, Guangdong, China
- Joint Institute of Metabolic Medicine between Jinan University and the University of Hong Kong, Huangpu Avenue West 613, Tianhe District, Guangzhou, Guangdong, China
- Institute of Obesity and Metabolism, Jinan University, Huangpu Avenue West 613, Tianhe District, Guangzhou, Guangdong, China
| | - Qianwen Cui
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Jinan University, Guangzhou, China
| | - Shuwen Jiang
- The First Affiliated Hospital, Jinan University, Huangpu Avenue West 613, Tianhe District, Guangzhou, Guangdong, China
- Joint Institute of Metabolic Medicine between Jinan University and the University of Hong Kong, Huangpu Avenue West 613, Tianhe District, Guangzhou, Guangdong, China
- Institute of Obesity and Metabolism, Jinan University, Huangpu Avenue West 613, Tianhe District, Guangzhou, Guangdong, China
| | - Weihua Tao
- The First Affiliated Hospital, Jinan University, Huangpu Avenue West 613, Tianhe District, Guangzhou, Guangdong, China
| | - Wanqun Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Jinan University, Guangzhou, China
| | - Shuqing Yu
- The First Affiliated Hospital, Jinan University, Huangpu Avenue West 613, Tianhe District, Guangzhou, Guangdong, China
| | - Lina Wu
- The First Affiliated Hospital, Jinan University, Huangpu Avenue West 613, Tianhe District, Guangzhou, Guangdong, China
| | - Wah Yang
- The First Affiliated Hospital, Jinan University, Huangpu Avenue West 613, Tianhe District, Guangzhou, Guangdong, China
- Joint Institute of Metabolic Medicine between Jinan University and the University of Hong Kong, Huangpu Avenue West 613, Tianhe District, Guangzhou, Guangdong, China
- Institute of Obesity and Metabolism, Jinan University, Huangpu Avenue West 613, Tianhe District, Guangzhou, Guangdong, China
| | - Fucheng Liu
- Department of Cardiology of the First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Jingge Yang
- The First Affiliated Hospital, Jinan University, Huangpu Avenue West 613, Tianhe District, Guangzhou, Guangdong, China.
- Joint Institute of Metabolic Medicine between Jinan University and the University of Hong Kong, Huangpu Avenue West 613, Tianhe District, Guangzhou, Guangdong, China.
- Institute of Obesity and Metabolism, Jinan University, Huangpu Avenue West 613, Tianhe District, Guangzhou, Guangdong, China.
| | - Cunchuan Wang
- The First Affiliated Hospital, Jinan University, Huangpu Avenue West 613, Tianhe District, Guangzhou, Guangdong, China.
- Joint Institute of Metabolic Medicine between Jinan University and the University of Hong Kong, Huangpu Avenue West 613, Tianhe District, Guangzhou, Guangdong, China.
- Institute of Obesity and Metabolism, Jinan University, Huangpu Avenue West 613, Tianhe District, Guangzhou, Guangdong, China.
| | - Shiqi Jia
- The First Affiliated Hospital, Jinan University, Huangpu Avenue West 613, Tianhe District, Guangzhou, Guangdong, China.
- Joint Institute of Metabolic Medicine between Jinan University and the University of Hong Kong, Huangpu Avenue West 613, Tianhe District, Guangzhou, Guangdong, China.
- Institute of Obesity and Metabolism, Jinan University, Huangpu Avenue West 613, Tianhe District, Guangzhou, Guangdong, China.
- Institute of Clinical Medicine, Jinan University, Huangpu Avenue West 613, Tianhe District, Guangzhou, Guangdong, China.
| |
Collapse
|
220
|
Abstract
Reviewed here are multiple mouse models of vertical sleeve gastrectomy (VSG) and Roux-en Y gastric bypass (RYGB) that have emerged over the past decade. These models use diverse approaches to both operative and perioperative procedures. Scrutinizing the benefits and pitfalls of each surgical model and what to expect in terms of post-operative outcomes will enhance our assessment of studies using mouse models, as well as advance our understanding of their translational potential. Two mouse models of bariatric surgery, VSG-lembert and RYGB-small pouch, demonstrate low mortality and most closely recapitulate the human forms of surgery. The use of liquid diets can be minimized, and in mice, RYGB demonstrates more reliable and longer lasting effects on weight loss compared to that of VSG.
Collapse
|
221
|
Abstract
Through diverse mechanisms, obesity contributes to worsened cardiometabolic health and increases rates of cardiovascular events. Effective treatment of obesity is necessary to reduce the associated burdens of diabetes mellitus, cardiovascular disease, and death. Despite increasing cardiovascular outcome data on obesity interventions, only a small fraction of the population with obesity are optimally treated. This is a primary impetus for this article in which we describe the typical weight loss, as well as the associated impact on both traditional and novel cardiovascular disease risk factors, provided by the 4 primary modalities for obtaining weight loss in obesity-dietary modification, increasing physical activity, pharmacotherapy, and surgery. We also attempt to highlight instances where changes in metabolic risk are relatively specific to particular interventions and appear at least somewhat independent of weight loss. Finally, we suggest important areas for further research to reduce and prevent adverse cardiovascular consequences due to obesity.
Collapse
Affiliation(s)
- Sean P. Heffron
- Leon H. Charney Division of Cardiology, NYU Grossman School of Medicine, New York, NY,NYU Center for the Prevention of Cardiovascular Disease, NYU Grossman School of Medicine, New York, NY,Corresponding author: Sean P. Heffron, 227 East 30 St., #834, New York, NY 10016, 646-501-2735 ,
| | - Johnathon S. Parham
- NYU Center for the Prevention of Cardiovascular Disease, NYU Grossman School of Medicine, New York, NY
| | - Jay Pendse
- Department of Medicine, Division of Endocrinology, NYU Grossman School of Medicine, New York, NY,Medical Service, Veterans Affairs New York Harbor Healthcare System, New York, NY
| | - José O. Alemán
- Department of Medicine, Division of Endocrinology, NYU Grossman School of Medicine, New York, NY
| |
Collapse
|
222
|
Ikeda T, Aida M, Yoshida Y, Matsumoto S, Tanaka M, Nakayama J, Nagao Y, Nakata R, Oki E, Akahoshi T, Okano S, Nomura M, Hashizume M, Maehara Y. Alteration in faecal bile acids, gut microbial composition and diversity after laparoscopic sleeve gastrectomy. Br J Surg 2020; 107:1673-1685. [DOI: 10.1002/bjs.11654] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/02/2020] [Accepted: 04/06/2020] [Indexed: 12/20/2022]
Abstract
Abstract
Background
Laparoscopic sleeve gastrectomy (LSG) is a well established treatment for severe obesity and type 2 diabetes. Although the gut microbiota is linked to the efficacy of LSG, the underlying mechanisms remain elusive. The effect of LSG for morbid obesity on the gut microbiota and bile acids was assessed here.
Methods
Severely obese subjects who were candidates for LSG were included and followed until 6 months after surgery. The composition and abundance of the microbiota and bile acids in faeces were assessed by 16S ribosomal RNA sequencing, quantitative PCR and liquid chromatography–mass spectrometry.
Results
In total, 28 patients with a mean(s.d.) BMI of 44·2(6·6) kg/m2 were enrolled. These patients had achieved excess weight loss of 53·2(19·0) per cent and showed improvement in metabolic diseases by 6 months after LSG, accompanied by an alteration in the faecal microbial community. The increase in α-diversity and abundance of specific taxa, such as Rikenellaceae and Christensenellaceae, was strongly associated with reduced faecal bile acid levels. These changes had a significant positive association with excess weight loss and metabolic alterations. However, the total number of faecal bacteria was lower in patients before (mean(s.d.) 10·26(0·36) log10 cells per g faeces) and after (10·39(0·29) log10 cells per g faeces) operation than in healthy subjects (10·83(0·27) log10 cells per g faeces).
Conclusion
LSG is associated with a reduction in faecal bile acids and greater abundance of specific bacterial taxa and α-diversity that may contribute to the metabolic changes.
Collapse
Affiliation(s)
- T Ikeda
- Department of Integration of Advanced Medicine and Innovative Technology, Kyushu University Hospital, Fukuoka, Japan
- Department of Oral Medicine Research Centre, Fukuoka, Japan
| | - M Aida
- Yakult Central Institute, Tokyo, Japan
| | - Y Yoshida
- Yakult Central Institute, Tokyo, Japan
| | | | - M Tanaka
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Fukuoka, Japan
| | - J Nakayama
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Fukuoka, Japan
| | - Y Nagao
- Department of Integration of Advanced Medicine and Innovative Technology, Kyushu University Hospital, Fukuoka, Japan
| | - R Nakata
- Department of Integration of Advanced Medicine and Innovative Technology, Kyushu University Hospital, Fukuoka, Japan
| | - E Oki
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - T Akahoshi
- Department of Integration of Advanced Medicine and Innovative Technology, Kyushu University Hospital, Fukuoka, Japan
| | - S Okano
- Department of Pathology, Fukuoka Dental College, Fukuoka, Japan
| | - M Nomura
- Department of Medicine and Bioregulatory Science, Fukuoka, Japan
| | - M Hashizume
- Department of Integration of Advanced Medicine and Innovative Technology, Kyushu University Hospital, Fukuoka, Japan
| | - Y Maehara
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
223
|
Lee CJ, Florea L, Sears CL, Maruthur N, Potter JJ, Schweitzer M, Magnuson T, Clark JM. Changes in Gut Microbiome after Bariatric Surgery Versus Medical Weight Loss in a Pilot Randomized Trial. Obes Surg 2020; 29:3239-3245. [PMID: 31256356 DOI: 10.1007/s11695-019-03976-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Gut microbiota likely impact obesity and metabolic diseases. We evaluated the changes in gut microbiota after surgical versus medical weight loss in adults with diabetes and obesity. METHODS We performed 16S rRNA amplicon sequencing to identify the gut microbial composition at baseline and at 10% weight loss in adults with diabetes who were randomized to medical weight loss (MWL, n = 4), adjustable gastric banding (AGB, n = 4), or Roux-en-Y gastric bypass (RYGB, n = 4). RESULTS All participants were female, 75% reported black race with mean age of 51 years. At similar weight loss amount and glycemic improvement, the RYGB group had the most number of bacterial species (10 increased, 1 decreased) that significantly changed (p < 0.05) in relative abundance. Alpha-diversity at follow-up was significantly lower in AGB group compared to MWL and RYGB (observed species for AGB vs. MWL, p = 0.0093; AGB vs. RYGB, p = 0.0093). The relative abundance of Faecalibacterium prausnitzii increased in 3 participants after RYGB, 1 after AGB, and 1 after MWL. CONCLUSIONS At similar weight loss and glycemic improvement, the greatest alteration in gut microbiota occurred after RYGB with an increase in the potentially beneficial bacterium, F. prausnitzii. Gut microbial diversity tended to decrease after AGB and increase after RYGB and MWL. Future studies are needed to determine the impact and durability of gut microbial changes over time and their role in long-term metabolic improvement after bariatric surgery in adults with type 2 diabetes. CLINICAL TRIAL REGISTRATION NCTDK089557- ClinicalTrials.gov.
Collapse
Affiliation(s)
- Clare J Lee
- Divisions of Endocrinology, Diabetes & Metabolism, The Johns Hopkins University, 1830 E. Monument St, Baltimore, MD, 21287, USA.
| | - Liliana Florea
- Division of General Internal Medicine, The Johns Hopkins University, Baltimore, MD, USA.,Center for Computational Biology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Cynthia L Sears
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, The Johns Hopkins University, Baltimore, MD, USA.,Division of Infectious Diseases, The Johns Hopkins University Baltimore, Baltimore, MD, USA
| | - Nisa Maruthur
- Division of General Internal Medicine, The Johns Hopkins University, Baltimore, MD, USA.,Department of Epidemiology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - James J Potter
- Division of Gastroenterology and Hepatology, The Johns Hopkins University, Baltimore, MD, USA
| | | | - Thomas Magnuson
- Department of Surgery, The Johns Hopkins University, Baltimore, MD, USA
| | - Jeanne M Clark
- Division of General Internal Medicine, The Johns Hopkins University, Baltimore, MD, USA.,Department of Epidemiology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| |
Collapse
|
224
|
Dagbasi A, Lett AM, Murphy K, Frost G. Understanding the interplay between food structure, intestinal bacterial fermentation and appetite control. Proc Nutr Soc 2020; 79:1-17. [PMID: 32383415 DOI: 10.1017/s0029665120006941] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Epidemiological and clinical evidence highlight the benefit of dietary fibre consumption on body weight. This benefit is partly attributed to the interaction of dietary fibre with the gut microbiota. Dietary fibre possesses a complex food structure which resists digestion in the upper gut and therefore reaches the distal gut where it becomes available for bacterial fermentation. This process yields SCFA which stimulate the release of appetite-suppressing hormones glucagon-like peptide-1 and peptide YY. Food structures can further enhance the delivery of fermentable substrates to the distal gut by protecting the intracellular nutrients during upper gastrointestinal digestion. Domestic and industrial processing can disturb these food structures that act like barriers towards digestive enzymes. This leads to more digestible products that are better absorbed in the upper gut. As a result, less resistant material (fibre) and intracellular nutrients may reach the distal gut, thus reducing substrates for bacterial fermentation and its subsequent benefits on the host metabolism including appetite suppression. Understanding this link is essential for the design of diets and food products that can promote appetite suppression and act as a successful strategy towards obesity management. This article reviews the current evidence in the interplay between food structure, bacterial fermentation and appetite control.
Collapse
Affiliation(s)
- A Dagbasi
- Department of Medicine, Section for Nutrition Research, Imperial College London, Hammersmith Hospital, London, UK
| | - A M Lett
- Department of Medicine, Section for Nutrition Research, Imperial College London, Hammersmith Hospital, London, UK
| | - K Murphy
- Department of Medicine, Section of Endocrinology and Investigative Medicine, Imperial College London, Hammersmith Hospital, London, UK
| | - G Frost
- Department of Medicine, Section for Nutrition Research, Imperial College London, Hammersmith Hospital, London, UK
| |
Collapse
|
225
|
Nonnutritive sweetener consumption during pregnancy, adiposity, and adipocyte differentiation in offspring: evidence from humans, mice, and cells. Int J Obes (Lond) 2020; 44:2137-2148. [PMID: 32366959 DOI: 10.1038/s41366-020-0575-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 03/16/2020] [Accepted: 03/27/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND Obesity often originates in early life, and is linked to excess sugar intake. Nonnutritive sweeteners (NNS) are widely consumed as "healthier" alternatives to sugar, yet recent evidence suggests NNS may adversely influence weight gain and metabolic health. The impact of NNS during critical periods of early development has rarely been studied. We investigated the effect of prenatal NNS exposure on postnatal adiposity and adipocyte development. METHODS In the CHILD birth cohort (N = 2298), we assessed maternal NNS beverage intake during pregnancy and child body composition at 3 years, controlling for maternal BMI and other potential confounders. To investigate causal mechanisms, we fed NNS to pregnant C57BL6J mice at doses relevant to human consumption (42 mg/kg/day aspartame or 6.3 mg/kg/day sucralose), and assessed offspring until 12 weeks of age for: body weight, adiposity, adipose tissue morphology and gene expression, glucose and insulin tolerance. We also studied the effect of sucralose on lipid accumulation and gene expression in cultured 3T3-L1 pre-adipocyte cells. RESULTS In the CHILD cohort, children born to mothers who regularly consumed NNS beverages had elevated body mass index (mean z-score difference +0.23, 95% CI 0.05-0.42 for daily vs. no consumption, adjusted for maternal BMI). In mice, maternal NNS caused elevated body weight, adiposity, and insulin resistance in offspring, especially in males (e.g., 47% and 15% increase in body fat for aspartame and sucralose vs. controls, p < 0.001). In cultured adipocytes, sucralose exposure at early stages of differentiation caused increased lipid accumulation and expression of adipocyte differentiation genes (e.g., C/EBP-α, FABP4, and FASN). These genes were also upregulated in adipose tissue of male mouse offspring born to sucralose-fed dams. CONCLUSION By triangulating evidence from humans, mice, and cultured adipocytes, this study provides new evidence that maternal NNS consumption during pregnancy may program obesity risk in offspring through effects on adiposity and adipocyte differentiation.
Collapse
|
226
|
Abstract
Advances in the understanding of the pathogenesis of type 2 diabetes mellitus (T2D) have revealed a role for gut microbiota dysbiosis in driving this disease. This suggests the possibility that approaches to restore a healthy host-microbiota relationship might be a means of ameliorating T2D. Indeed, recent studies indicate that many currently used treatments for T2D are reported to impact gut microbiota composition. Such changes in gut microbiota may mediate and/or reflect the efficacy of these interventions. This article outlines the rationale for considering the microbiota as a central determent of development of T2D and, moreover, reviews evidence that impacting microbiota might be germane to amelioration of T2D, both in terms of understanding mechanisms that mediate efficacy of exiting T2D therapies and in developing novel treatments for this disorder.
Collapse
Affiliation(s)
- Aneseh Adeshirlarijaney
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA,CONTACT Andrew Gewirtz Institute for Biomedical Sciences, Georgia State University, Atlanta, GA30303, USA
| | - Andrew T. Gewirtz
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
227
|
Le transfert de microbiote fécal : quel potentiel thérapeutique dans le traitement des maladies métaboliques ? NUTR CLIN METAB 2020. [DOI: 10.1016/j.nupar.2019.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
228
|
Mukorako P, Lopez C, Baraboi ED, Roy MC, Plamondon J, Lemoine N, Biertho L, Varin TV, Marette A, Richard D. Alterations of Gut Microbiota After Biliopancreatic Diversion with Duodenal Switch in Wistar Rats. Obes Surg 2020; 29:2831-2842. [PMID: 31165976 DOI: 10.1007/s11695-019-03911-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND The biliopancreatic diversion with duodenal switch (BPD/DS) represents the most effective surgical procedure for the treatment of severe obesity and associated type 2 diabetes. The mechanisms whereby BPD/DS exerts its positive metabolic effects have however yet to be fully delineated. The objective of this study was to distinguish the effects of the two components of BPD/DS, namely the sleeve gastrectomy (SG) and the DS derivation, on gut microbiota, and to appraise whether changes in microbial composition are linked with surgery-induced metabolic benefits. METHODS BPD/DS, DS, and SG were performed in Wistar rats fed a standard chow diet. Body weight and energy intake were measured daily during 8 weeks post-surgery, at which time glucagon-like peptide 1 (GLP-1), peptide tyrosine tyrosine (PYY), insulin, and glucose were measured. Fecal samples were collected prior to surgery and at 2 and 8 weeks post-surgery. Intraluminal contents of the alimentary, biliopancreatic, and common limbs (resulting from BPD/DS) were taken from the proximal portion of each limb. Fecal and small intestinal limb samples were analyzed by 16S ribosomal RNA gene sequencing. RESULTS BPD/DS and DS led to lower digestible energy intake (P = 0.0007 and P = 0.0002, respectively), reduced weight gain (P < 0.0001) and body fat mass (P < 0.0001), improved glucose metabolism, and increased GLP-1 (P = 0.0437, SHAM versus DS) and PYY levels (P < 0.0001). These effects were associated with major alterations of both the fecal and small intestinal microbiota, as revealed by significant decrease in bacterial richness and diversity at 2 (P < 0.0001, Chao1 index; P < 0.0001, Shannon index) and 8 weeks (P = 0.0159, SHAM versus DS, Chao1 index; P = 0.0219, SHAM versus DS, P = 0.0472, SHAM versus BPD/DS, Shannon index) post-surgery in BPD/DS and DS, and increased proportions of Bifidobacteriales (a 60% increase in both groups) but reduced Clostridiales (a 50% decrease and a 90% decrease respectively), which were mostly accounted at the genus level by higher relative abundance of Bifidobacterium in both the fecal and intestinal limb samples, as well as reduced abundance of Peptostreptococcaceae and Clostridiaceae in the small intestine. Those effects were not seen in SG rats. CONCLUSION The metabolic benefits following BPD/DS are seemingly due to the DS component of the surgery. Furthermore, BPD/DS causes marked alterations in fecal and small intestinal microbiota resulting in reduced bacterial diversity and richness. Our data further suggest that increased abundance of Bifidobacterium and reduced level of two Clostridiales species in the gut microbiota might contribute to the positive metabolic outcomes of BPD/DS.
Collapse
Affiliation(s)
- Paulette Mukorako
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Pavillon Marguerite-d'Youville 2725 chemin Sainte- Foy, Québec, G1V 4G5, Canada
| | - Carlos Lopez
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Pavillon Marguerite-d'Youville 2725 chemin Sainte- Foy, Québec, G1V 4G5, Canada
| | - Elena-Dana Baraboi
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Pavillon Marguerite-d'Youville 2725 chemin Sainte- Foy, Québec, G1V 4G5, Canada
| | - Marie-Claude Roy
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Pavillon Marguerite-d'Youville 2725 chemin Sainte- Foy, Québec, G1V 4G5, Canada
| | - Julie Plamondon
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Pavillon Marguerite-d'Youville 2725 chemin Sainte- Foy, Québec, G1V 4G5, Canada
| | - Natacha Lemoine
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Pavillon Marguerite-d'Youville 2725 chemin Sainte- Foy, Québec, G1V 4G5, Canada
| | - Laurent Biertho
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Pavillon Marguerite-d'Youville 2725 chemin Sainte- Foy, Québec, G1V 4G5, Canada
| | - Thibault V Varin
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Pavillon Marguerite-d'Youville 2725 chemin Sainte- Foy, Québec, G1V 4G5, Canada
| | - André Marette
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Pavillon Marguerite-d'Youville 2725 chemin Sainte- Foy, Québec, G1V 4G5, Canada
| | - Denis Richard
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Pavillon Marguerite-d'Youville 2725 chemin Sainte- Foy, Québec, G1V 4G5, Canada.
| |
Collapse
|
229
|
Microbial Adaptation Due to Gastric Bypass Surgery: The Nutritional Impact. Nutrients 2020; 12:nu12041199. [PMID: 32344612 PMCID: PMC7230554 DOI: 10.3390/nu12041199] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 12/12/2022] Open
Abstract
Bariatric surgery leads to sustained weight loss and the resolution of obesity-related comorbidities. Recent studies have suggested that changes in gut microbiota are associated with the weight loss induced by bariatric surgery. Several studies have observed major changes in the microbial composition following gastric bypass surgery. However, there are inconsistencies between the reported alterations in microbial compositions in different studies. Furthermore, it is well established that diet is an important factor shaping the composition and function of intestinal microbiota. However, most studies on gastric bypass have not assessed the impact of dietary intake on the microbiome composition in general, let alone the impact of restrictive diets prior to bariatric surgery, which are recommended for reducing liver fat content and size. Thus, the relative impact of bariatric surgery on weight loss and gut microbiota remains unclear. Therefore, this review aims to provide a deeper understanding of the current knowledge of the changes in intestinal microbiota induced by bariatric surgery considering pre-surgical nutritional changes.
Collapse
|
230
|
Whang E, Liu Y, Kageyama S, Woo SL, Yang J, Lee R, Li Z, Ji H, Chen Y, Kupiec-Weglinski JW. Vertical Sleeve Gastrectomy Attenuates the Progression of Non-Alcoholic Steatohepatitis in Mice on a High-Fat High-Cholesterol Diet. Obes Surg 2020; 29:2420-2429. [PMID: 30982168 DOI: 10.1007/s11695-019-03860-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE To determine whether vertical sleeve gastrectomy (VSG) attenuates fibrosis in mice on a high-fat high-cholesterol (HFHC) diet. BACKGROUND Bariatric surgery mitigates non-alcoholic steatohepatitis in 85-90% of obese patients. While animal models demonstrate similar results on a high-fat diet, none have observed the effects of bariatric surgery on a combined HFHC diet. METHODS Mice on a HFHC diet were used to confirm the development of hepatic fibrosis at 8 (n = 15) and 24 (n = 15) weeks. A separate cohort of mice on a HFHC diet for 12 weeks was subjected to either VSG (n = 18) or sham (n = 12) operations and remained on a HFHC diet for an additional 20 weeks. Changes in weight, dyslipidemia, and the development of steatosis and fibrosis were documented. Serum was obtained for bile acid analysis by liquid chromatography and mass spectrometry, while hepatic gene expression by RT-PCR was performed to evaluate intrahepatic lipid metabolism. RESULTS Hepatic steatosis and fibrosis developed after 8 weeks on the HFHC diet. After VSG, mice demonstrated a sustained decrease in weight with a significant decrease in fibrosis compared to sham mice. Serum total cholesterol, HDL, and LDL were significantly reduced following surgery, while serum bile acids were significantly elevated. Intra-hepatic cholesterol excretion was not upregulated based on hepatic gene expression of CYP7A1 and ABCG5/8. CONCLUSIONS VSG attenuates the development of hepatic fibrosis in diet-induced obese mice, presumably through enhancement of cholesterol elimination at the intestinal level.
Collapse
Affiliation(s)
- Emily Whang
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA.
| | - Yuan Liu
- Division of Liver and Pancreas Transplantation, Department of Surgery, The Dumont-UCLA Transplantation Center, David Geffen School of Medicine, UCLA, 77-120 CHS, 10833 Le Conte Ave., Los Angeles, CA, 90095, USA.,Division of Liver Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shoichi Kageyama
- Division of Liver and Pancreas Transplantation, Department of Surgery, The Dumont-UCLA Transplantation Center, David Geffen School of Medicine, UCLA, 77-120 CHS, 10833 Le Conte Ave., Los Angeles, CA, 90095, USA
| | - Shih Lung Woo
- Center for Human Nutrition, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Jieping Yang
- Center for Human Nutrition, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Rupo Lee
- Center for Human Nutrition, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Zhaoping Li
- Center for Human Nutrition, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Haofeng Ji
- Division of Liver and Pancreas Transplantation, Department of Surgery, The Dumont-UCLA Transplantation Center, David Geffen School of Medicine, UCLA, 77-120 CHS, 10833 Le Conte Ave., Los Angeles, CA, 90095, USA
| | - Yijun Chen
- Division of General Surgery, Department of Surgery, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Jerzy W Kupiec-Weglinski
- Division of Liver and Pancreas Transplantation, Department of Surgery, The Dumont-UCLA Transplantation Center, David Geffen School of Medicine, UCLA, 77-120 CHS, 10833 Le Conte Ave., Los Angeles, CA, 90095, USA.
| |
Collapse
|
231
|
Tabasi M, Ashrafian F, Khezerloo JK, Eshghjoo S, Behrouzi A, Javadinia SA, Poursadegh F, Eybpoosh S, Ahmadi S, Radmanesh A, Soroush A, Siadat SD. Changes in Gut Microbiota and Hormones After Bariatric Surgery: a Bench-to-Bedside Review. Obes Surg 2020; 29:1663-1674. [PMID: 30793228 DOI: 10.1007/s11695-019-03779-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Overweight and obesity are among the most prevalent non-communicable diseases which are generally treated successfully by bariatric or sleeve surgery. There are evidences affirming that sleeve surgery can manipulate the pH of the stomach and interact with the metabolism of fatty acids, carbohydrates, and bile acid transfer, leading to the overgrowth of gut microbiota. Therefore, this study aims to review the changes in gut microbiota and hormones after bariatric surgery.
Collapse
Affiliation(s)
- Mohsen Tabasi
- Department of Molecular Biology, Pasteur Institute of Iran, Pasteur Ave., Tehran, 13164, Iran
- Legal Medicine Research Center, Legal Medicine Organization, Tehran, Iran
| | - Fatemeh Ashrafian
- Department of Mycobacteriology and Pulmonary Research, Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Jamil Kheirvari Khezerloo
- Young Researchers and Elite Club, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Sahar Eshghjoo
- Microbial Pathogenesis and Immunology Department, Texas A&M University, Bryan, TX, USA
| | - Ava Behrouzi
- Department of Mycobacteriology and Pulmonary Research, Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Alireza Javadinia
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Islamic Republic of Iran
| | - Farid Poursadegh
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Islamic Republic of Iran
| | - Sana Eybpoosh
- Department of Epidemiology and Biostatistics, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran
| | - Sara Ahmadi
- Department of Mycobacteriology and Pulmonary Research, Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Amin Radmanesh
- Legal Medicine Research Center, Legal Medicine Organization, Tehran, Iran
| | - Ahmadreza Soroush
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Davar Siadat
- Department of Mycobacteriology and Pulmonary Research, Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
232
|
TGR5 Protects Against Colitis in Mice, but Vertical Sleeve Gastrectomy Increases Colitis Severity. Obes Surg 2020; 29:1593-1601. [PMID: 30623320 DOI: 10.1007/s11695-019-03707-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS Bariatric surgery, such as vertical sleeve gastrectomy (VSG), is the most effective long-term treatment for obesity. However, there are conflicting reports on the effect of bariatric surgery on inflammatory bowel disease (IBD). Bariatric surgery increases bile acid concentrations, which can decrease inflammation by signaling through the bile acid receptor, TGR5. TGR5 signaling protects against chemically induced colitis in mice. VSG increases circulating bile acid concentrations to increase TGR5 signaling, which contributes to improved metabolic regulation after VSG. Therefore, we investigated the effect of VSG on chemically induced colitis development and the role of TGR5 in this context. METHODS VSG or sham surgery was performed in high fat diet-fed male Tgr5+/+ and Tgr5-/- littermates. Sham-operated mice were food restricted to match their body weight to VSG-operated mice. Colitis was induced with 2.5% dextran sodium sulfate (DSS) in water post-operatively. Body weight, energy intake, fecal scoring, colon histopathology, colonic markers of inflammation, goblet cell counts, and colonic microRNA-21 levels were assessed. RESULTS VSG decreased body weight independently of genotype. Consistent with previous work, genetic ablation of TGR5 increased the severity of DSS-induced colitis. Notably, despite the effect of VSG to decrease body weight and increase TGR5 signaling, VSG increased the severity of DSS-induced colitis. VSG-induced increases in colitis were associated with increased colonic expression of TNF-α, IL-6, MCP-1, and microRNA-21. CONCLUSIONS While our data demonstrate that TGR5 protects against colitis, they also demonstrate that VSG potentiates chemically induced colitis in mice. These data suggest that individuals undergoing VSG may be at increased risk for developing colitis; however, further study is needed.
Collapse
|
233
|
Gimeno RE, Briere DA, Seeley RJ. Leveraging the Gut to Treat Metabolic Disease. Cell Metab 2020; 31:679-698. [PMID: 32187525 PMCID: PMC7184629 DOI: 10.1016/j.cmet.2020.02.014] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/23/2019] [Accepted: 02/20/2020] [Indexed: 02/07/2023]
Abstract
25 years ago, the future of treating obesity and diabetes focused on end organs known to be involved in energy balance and glucose regulation, including the brain, muscle, adipose tissue, and pancreas. Today, the most effective therapies are focused around the gut. This includes surgical options, such as vertical sleeve gastrectomy and Roux-en-Y gastric bypass, that can produce sustained weight loss and diabetes remission but also extends to pharmacological treatments that simulate or amplify various signals that come from the gut. The purpose of this Review is to discuss the wealth of approaches currently under development that seek to further leverage the gut as a source of novel therapeutic opportunities with the hope that we can achieve the effects of surgical interventions with less invasive and more scalable solutions.
Collapse
Affiliation(s)
- Ruth E Gimeno
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46225, USA
| | - Daniel A Briere
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46225, USA
| | - Randy J Seeley
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
234
|
Abstract
PURPOSE OF REVIEW Enteric hyperoxaluria is commonly observed in malabsorptive conditions including Roux en Y gastric bypass (RYGB) and inflammatory bowel diseases (IBD). Its incidence is increasing secondary to an increased prevalence of both disorders. In this review, we summarize the evidence linking the gut microbiota to the risk of enteric hyperoxaluria. RECENT FINDINGS In enteric hyperoxaluria, fat malabsorption leads to increased binding of calcium to free fatty acids resulting in more soluble oxalate in the intestinal lumen. Bile acids and free fatty acids in the lumen also cause increased gut permeability allowing more passive absorption of oxalate. In recent years, there is more interest in the role of the gut microbiota in modulating urinary oxalate excretion in enteric hyperoxaluria, stemming from our knowledge that microbiota in the intestines can degrade oxalate. Oxalobacter formigenes reduced urinary oxalate in animal models of RYGB. The contribution of other oxalate-degrading organisms and the microbiota community to the pathophysiology of enteric hyperoxaluria are also currently under investigation. SUMMARY Gut microbiota might play a role in modulating the risk of enteric hyperoxaluria through oxalate degradation and bile acid metabolism. O. formigenes is a promising therapeutic target in this population; however, further studies in humans are needed to test its effectiveness.
Collapse
|
235
|
Talavera-Urquijo E, Beisani M, Balibrea JM, Alverdy JC. Is bariatric surgery resolving NAFLD via microbiota-mediated bile acid ratio reversal? A comprehensive review. Surg Obes Relat Dis 2020; 16:1361-1369. [PMID: 32336663 DOI: 10.1016/j.soard.2020.03.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 01/18/2020] [Accepted: 03/11/2020] [Indexed: 02/07/2023]
Abstract
Despite the fact that there is still insufficient evidence to consider non-alcoholic fatty liver disease (NAFLD) as an stand-alone indication for bariatric surgery, many clinical and histopathological beneficial effects on both NAFLD and non-alcoholic steatohepatitis (NASH) have been shown. Although weight loss seems to be the obvious mechanism, weight-loss independent factors are also believed to be involved. Among them, changes in gut microbiota and bile acids (BA) composition may be playing an unappreciated role in the improvement of NAFLD. In this review we examine the mechanisms and interdependence of the gut microbiota and BA, and their influence on NAFLD pathogenesis and its reversal following bariatric surgery. According to the currently available evidence, gut microbiota has a major influence on BA composition. In fact, both BA and microbiome disturbances (dysbiosis) play a role in the etiopathogenesis of NAFLD and might be potential therapeutic targets. In addition, bariatric surgery can modify the intraluminal ileal environment in a way that causes significant repopulation of the gut microbiota and a reversal of the plasma primary/secondary BA ratio, which, in turn, induces weigh-independent metabolic improvements.
Collapse
Affiliation(s)
- Eider Talavera-Urquijo
- Department of General & Digestive Surgery, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Marc Beisani
- Department of Surgery, Hospital del Mar, Barcelona, Spain
| | - José M Balibrea
- Department of Gastrointestinal Surgery, Hospital Clínic de Barcelona, Universitat de Barcelona, Barcelona, Spain.
| | - John C Alverdy
- Department of Surgery University of Chicago, Pritzker School of Medicine, Chicago, Illinois
| |
Collapse
|
236
|
Farin W, Oñate FP, Plassais J, Bonny C, Beglinger C, Woelnerhanssen B, Nocca D, Magoules F, Le Chatelier E, Pons N, Cervino ACL, Ehrlich SD. Impact of laparoscopic Roux-en-Y gastric bypass and sleeve gastrectomy on gut microbiota: a metagenomic comparative analysis. Surg Obes Relat Dis 2020; 16:852-862. [PMID: 32360114 DOI: 10.1016/j.soard.2020.03.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Bariatric surgery is an effective therapeutic procedure for morbidly obese patients. The 2 most common interventions are sleeve gastrectomy (SG) and laparoscopic Roux-en-Y gastric bypass (LRYGB). OBJECTIVES The aim of this study was to compare microbiome long-term microbiome after SG and LRYGB surgery in obese patients. SETTING University Hospital, France; University Hospital, United States; and University Hospital, Switzerland. METHODS Eighty-nine and 108 patients who underwent SG and LRYGB, respectively, were recruited. Stools were collected before and 6 months after surgery. Microbial DNA was analyzed with shotgun metagenomic sequencing (SOLiD 5500 xl Wildfire). MSPminer, a novel innovative tool to characterize new in silico biological entities, was used to identify 715 Metagenomic Species Pan-genome. One hundred forty-eight functional modules were analyzed using GOmixer and KEGG database. RESULTS Both interventions resulted in a similar increase of Shannon's diversity index and gene richness of gut microbiota, in parallel with weight loss, but the changes of microbial composition were different. LRYGB led to higher relative abundance of aero-tolerant bacteria, such as Escherichia coli and buccal species, such as Streptococcus and Veillonella spp. In contrast, anaerobes, such as Clostridium, were more abundant after SG, suggesting better conservation of anaerobic conditions in the gut. Enrichment of Akkermansia muciniphila was also observed after both surgeries. Function-level changes included higher potential for bacterial use of supplements, such as vitamin B12, B1, and iron upon LRYGB. CONCLUSION Microbiota changes after bariatric surgery depend on the nature of the intervention. LRYGB induces greater taxonomic and functional changes in gut microbiota than SG. Possible long-term health consequences of these alterations remain to be established.
Collapse
Affiliation(s)
| | - Florian Plaza Oñate
- Data Science, Enterome, Paris, France; Université Paris-Saclay, Jouy en Josas, France
| | | | | | - Christoph Beglinger
- Department of Biomedicine, University of Basel and Department of Research, St. Claraspital, Basel, Switzerland
| | - Bettina Woelnerhanssen
- Department of Biomedicine, University of Basel and Department of Research, St. Claraspital, Basel, Switzerland
| | - David Nocca
- Digestive Surgery, Saint-Eloi University Hospital of Montpellier, Montpellier, France
| | | | | | | | | | - S Dusko Ehrlich
- Université Paris-Saclay, Jouy en Josas, France; Centre for Host Microbiome Interaction, Dental Institute, King's College London, London, United Kingdom
| |
Collapse
|
237
|
Li K, Zou J, Li S, Guo J, Shi W, Wang B, Han X, Zhang H, Zhang P, Miao Z, Li Y. Farnesoid X receptor contributes to body weight-independent improvements in glycemic control after Roux-en-Y gastric bypass surgery in diet-induced obese mice. Mol Metab 2020; 37:100980. [PMID: 32305491 PMCID: PMC7182762 DOI: 10.1016/j.molmet.2020.100980] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 03/12/2020] [Accepted: 03/12/2020] [Indexed: 02/08/2023] Open
Abstract
Objective Roux-en-Y gastric bypass surgery (RYGB) can achieve long-term remission of type 2 diabetes. However, the specific molecular mechanism through which this occurs has remained largely elusive. Bile acid signaling through the nuclear hormone receptor farnesoid X receptor (FXR) exerts beneficial effects after sleeve gastrectomy (VSG), which has similar effects to RYGB. Therefore, we investigated whether FXR signaling is necessary to mediate glycemic control after RYGB. Methods RYGB or sham surgery was performed in high-fat diet-induced obese FXR−/− (knockout) and FXR+/+ (wild type) littermates. Sham-operated mice were fed ad libitum (S-AL) or by weight matching (S-WM) to RYGB mice via caloric restriction. Body weight, body composition, food intake, energy expenditure, glucose tolerance tests, insulin tolerance tests, and homeostatic model assessment of insulin resistance were performed. Results RYGB surgery decreases body weight and fat mass in WT and FXR-KO mice. RYGB surgery has similar effects on food intake and energy expenditure independent of genotype. In addition, body weight-independent improvements in glucose control were attenuated in FXR −/− relative to FXR +/+ mice after RYGB. Furthermore, pharmacologic blockade of the glucagon-like peptide-1 receptor (GLP-1R) blunts the glucoregulatory effects of RYGB in FXR +/+ but not in FXR −/− mice at 4 weeks after surgery. Conclusions These results suggest that FXR signaling is not required for the weight loss up to 16 weeks after RYGB. Although most of the improvements in glucose homeostasis are secondary to RYGB-induced weight loss in wild type mice, FXR signaling contributes to glycemic control after RYGB in a body weight-independent manner, which might be mediated by an FXR-GLP-1 axis during the early postoperative period. The reduction in body weight after RYGB is independent of FXR, which is mainly due to a decrease in net energy intake. RYGB prevents the weight loss-induced decrease observed in nonsurgical weight-matched mice in both genotypes. FXR signaling contributes to glycemic control after RYGB in a body weight-independent manner. The early body weight-independent improvements in glucose homeostasis after RYGB might be mediated by an FXR-GLP-1 axis.
Collapse
Affiliation(s)
- Kun Li
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, PR China
| | - Jianan Zou
- Department of Nephrology, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, PR China
| | - Song Li
- School of Basic Medicine, Shandong First Medical University, Tai'an, 271000, PR China
| | - Jing Guo
- Discipline Planning Department, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, PR China
| | - Wentao Shi
- Clinical Research Center, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, PR China
| | - Bing Wang
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, PR China
| | - Xiaodong Han
- Department of Metabolic & Bariatric Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, PR China
| | - Hongwei Zhang
- Department of Metabolic & Bariatric Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, PR China
| | - Pin Zhang
- Department of Metabolic & Bariatric Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, PR China
| | - Zengmin Miao
- School of Life Sciences, Shandong First Medical University, Tai'an, 271000, PR China.
| | - Yousheng Li
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, PR China.
| |
Collapse
|
238
|
Ilhan ZE, DiBaise JK, Dautel SE, Isern NG, Kim YM, Hoyt DW, Schepmoes AA, Brewer HM, Weitz KK, Metz TO, Crowell MD, Kang DW, Rittmann BE, Krajmalnik-Brown R. Temporospatial shifts in the human gut microbiome and metabolome after gastric bypass surgery. NPJ Biofilms Microbiomes 2020; 6:12. [PMID: 32170068 PMCID: PMC7070067 DOI: 10.1038/s41522-020-0122-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 02/14/2020] [Indexed: 02/08/2023] Open
Abstract
Although the etiology of obesity is not well-understood, genetic, environmental, and microbiome elements are recognized as contributors to this rising pandemic. It is well documented that Roux-en-Y gastric bypass (RYGB) surgery drastically alters the fecal microbiome, but data are sparse on temporal and spatial microbiome and metabolome changes, especially in human populations. We characterized the structure and function (through metabolites) of the microbial communities in the gut lumen and structure of microbial communities on mucosal surfaces in nine morbidly obese individuals before, 6 months, and 12 months after RYGB surgery. Moreover, using a comprehensive multi-omic approach, we compared this longitudinal cohort to a previously studied cross-sectional cohort (n = 24). In addition to the expected weight reduction and improvement in obesity-related comorbidities after RYGB surgery, we observed that the impact of surgery was much greater on fecal communities in comparison to mucosal ones. The changes in the fecal microbiome were linked to increased concentrations of branched-chain fatty acids and an overall decrease in secondary bile acid concentrations. The microbiome and metabolome data sets for this longitudinal cohort strengthen our understanding of the persistent impact of RYGB on the gut microbiome and its metabolism. Our findings highlight the importance of changes in mucosal and fecal microbiomes after RYGB surgery. The spatial modifications in the microbiome after RYGB surgery corresponded to persistent changes in fecal fermentation and bile acid metabolism, both of which are associated with improved metabolic outcomes.
Collapse
Affiliation(s)
- Zehra Esra Ilhan
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, USA.
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, USA.
| | - John K DiBaise
- Mayo Clinic, Division of Gastroenterology, Scottsdale, AZ, USA
| | - Sydney E Dautel
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Nancy G Isern
- William R. Wiley Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Young-Mo Kim
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - David W Hoyt
- William R. Wiley Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Athena A Schepmoes
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Heather M Brewer
- William R. Wiley Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Karl K Weitz
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Thomas O Metz
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | | | - Dae-Wook Kang
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, USA
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, USA
- Department of Civil & Environmental Engineering, The University of Toledo, Toledo, OH, USA
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, USA
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, USA
| | - Rosa Krajmalnik-Brown
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, USA.
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, USA.
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
239
|
Yu EW, Gao L, Stastka P, Cheney MC, Mahabamunuge J, Torres Soto M, Ford CB, Bryant JA, Henn MR, Hohmann EL. Fecal microbiota transplantation for the improvement of metabolism in obesity: The FMT-TRIM double-blind placebo-controlled pilot trial. PLoS Med 2020; 17:e1003051. [PMID: 32150549 PMCID: PMC7062239 DOI: 10.1371/journal.pmed.1003051] [Citation(s) in RCA: 195] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 02/10/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND There is intense interest about whether modulating gut microbiota can impact systemic metabolism. We investigated the safety of weekly oral fecal microbiota transplantation (FMT) capsules from healthy lean donors and their ability to alter gut microbiota and improve metabolic outcomes in patients with obesity. METHODS AND FINDINGS FMT-TRIM was a 12-week double-blind randomized placebo-controlled pilot trial of oral FMT capsules performed at a single US academic medical center. Between August 2016 and April 2018, we randomized 24 adults with obesity and mild-moderate insulin resistance (homeostatic model assessment of insulin resistance [HOMA-IR] between 2.0 and 8.0) to weekly healthy lean donor FMT versus placebo capsules for 6 weeks. The primary outcome, assessed by intention to treat, was change in insulin sensitivity between 0 and 6 weeks as measured by hyperinsulinemic euglycemic clamps. Additional metabolic parameters were evaluated at 0, 6, and 12 weeks, including HbA1c, body weight, body composition by dual-energy X-ray absorptiometry, and resting energy expenditure by indirect calorimetry. Fecal samples were serially collected and evaluated via 16S V4 rRNA sequencing. Our study population was 71% female, with an average baseline BMI of 38.8 ± 6.7 kg/m2 and 41.3 ± 5.1 kg/m2 in the FMT and placebo groups, respectively. There were no statistically significant improvements in insulin sensitivity in the FMT group compared to the placebo group (+5% ± 12% in FMT group versus -3% ± 32% in placebo group, mean difference 9%, 95% CI -5% to 28%, p = 0.16). There were no statistically significant differences between groups for most of the other secondary metabolic outcomes, including HOMA-IR (mean difference 0.2, 95% CI -0.9 to 0.9, p = 0.96) and body composition (lean mass mean difference -0.1 kg, 95% CI -1.9 to 1.6 kg, p = 0.87; fat mass mean difference 1.2 kg, 95% CI -0.6 to 3.0 kg, p = 0.18), over the 12-week study. We observed variable engraftment of donor bacterial groups among FMT recipients, which persisted throughout the 12-week study. There were no significant differences in adverse events (AEs) (10 versus 5, p = 0.09), and no serious AEs related to FMT. Limitations of this pilot study are the small sample size, inclusion of participants with relatively mild insulin resistance, and lack of concurrent dietary intervention. CONCLUSIONS Weekly administration of FMT capsules in adults with obesity results in gut microbiota engraftment in most recipients for at least 12 weeks. Despite engraftment, we did not observe clinically significant metabolic effects during the study. TRIAL REGISTRATION ClinicalTrials.gov NCT02530385.
Collapse
Affiliation(s)
- Elaine W. Yu
- Endocrine Unit, Division of Endocrinology and Metabolism, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Liu Gao
- Endocrine Unit, Division of Endocrinology and Metabolism, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Petr Stastka
- Endocrine Unit, Division of Endocrinology and Metabolism, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Michael C. Cheney
- Endocrine Unit, Division of Endocrinology and Metabolism, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Jasmin Mahabamunuge
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Mariam Torres Soto
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | | | - Jessica A. Bryant
- Seres Therapeutics, Cambridge, Massachusetts, United States of America
| | - Matthew R. Henn
- Seres Therapeutics, Cambridge, Massachusetts, United States of America
| | - Elizabeth L. Hohmann
- Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| |
Collapse
|
240
|
Hankir MK, Al-Bas S, Rullmann M, Chakaroun R, Seyfried F, Pleger B. Homeostatic, reward and executive brain functions after gastric bypass surgery. Appetite 2020; 146:104419. [DOI: 10.1016/j.appet.2019.104419] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 07/01/2019] [Accepted: 08/23/2019] [Indexed: 12/15/2022]
|
241
|
de Groot P, Scheithauer T, Bakker GJ, Prodan A, Levin E, Khan MT, Herrema H, Ackermans M, Serlie MJM, de Brauw M, Levels JHM, Sales A, Gerdes VE, Ståhlman M, Schimmel AWM, Dallinga-Thie G, Bergman JJGHM, Holleman F, Hoekstra JBL, Groen A, Bäckhed F, Nieuwdorp M. Donor metabolic characteristics drive effects of faecal microbiota transplantation on recipient insulin sensitivity, energy expenditure and intestinal transit time. Gut 2020; 69:502-512. [PMID: 31147381 PMCID: PMC7034343 DOI: 10.1136/gutjnl-2019-318320] [Citation(s) in RCA: 212] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 05/10/2019] [Accepted: 05/13/2019] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Bariatric surgery improves glucose metabolism. Recent data suggest that faecal microbiota transplantation (FMT) using faeces from postbariatric surgery diet-induced obese mice in germ-free mice improves glucose metabolism and intestinal homeostasis. We here investigated whether allogenic FMT using faeces from post-Roux-en-Y gastric bypass donors (RYGB-D) compared with using faeces from metabolic syndrome donors (METS-D) has short-term effects on glucose metabolism, intestinal transit time and adipose tissue inflammation in treatment-naïve, obese, insulin-resistant male subjects. DESIGN Subjects with metabolic syndrome (n=22) received allogenic FMT either from RYGB-D or METS-D. Hepatic and peripheral insulin sensitivity as well as lipolysis were measured at baseline and 2 weeks after FMT by hyperinsulinaemic euglycaemic stable isotope (2H2-glucose and 2H5-glycerol) clamp. Secondary outcome parameters were changes in resting energy expenditure, intestinal transit time, faecal short-chain fatty acids (SCFA) and bile acids, and inflammatory markers in subcutaneous adipose tissue related to intestinal microbiota composition. Faecal SCFA, bile acids, glycaemic control and inflammatory parameters were also evaluated at 8 weeks. RESULTS We observed a significant decrease in insulin sensitivity 2 weeks after allogenic METS-D FMT (median rate of glucose disappearance: from 40.6 to 34.0 µmol/kg/min; p<0.01). Moreover, a trend (p=0.052) towards faster intestinal transit time following RYGB-D FMT was seen. Finally, we observed changes in faecal bile acids (increased lithocholic, deoxycholic and (iso)lithocholic acid after METS-D FMT), inflammatory markers (decreased adipose tissue chemokine ligand 2 (CCL2) gene expression and plasma CCL2 after RYGB-D FMT) and changes in several intestinal microbiota taxa. CONCLUSION Allogenic FMT using METS-D decreases insulin sensitivity in metabolic syndrome recipients when compared with using post-RYGB-D. Further research is needed to delineate the role of donor characteristics in FMT efficacy in human insulin-resistant subjects. TRIAL REGISTRATION NUMBER NTR4327.
Collapse
Affiliation(s)
- Pieter de Groot
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centres, Amsterdam, The Netherlands
| | - Torsten Scheithauer
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centres, Amsterdam, The Netherlands
| | - Guido J Bakker
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centres, Amsterdam, The Netherlands
| | - Andrei Prodan
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centres, Amsterdam, The Netherlands
| | - Evgeni Levin
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centres, Amsterdam, The Netherlands
| | - Muhammad Tanweer Khan
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, Goteborgs Universitet, Gothenburg, Sweden
| | - Hilde Herrema
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centres, Amsterdam, The Netherlands
| | - Mariette Ackermans
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centres, Amsterdam, The Netherlands
| | - Mireille J M Serlie
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centres, Amsterdam, The Netherlands
| | - Maurits de Brauw
- Department of Surgery, Spaarne Gasthuis, Haarlem, The Netherlands
| | - Johannes H M Levels
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centres, Amsterdam, The Netherlands
| | - Amber Sales
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centres, Amsterdam, The Netherlands
| | - Victor E Gerdes
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centres, Amsterdam, The Netherlands
| | - Marcus Ståhlman
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, Goteborgs Universitet, Gothenburg, Sweden
| | - Alinda W M Schimmel
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centres, Amsterdam, The Netherlands
| | - Geesje Dallinga-Thie
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centres, Amsterdam, The Netherlands
| | - Jacques JGHM Bergman
- Department of Gastroenterology, Amsterdam University Medical Centres, Amsterdam, The Netherlands
| | - Frits Holleman
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centres, Amsterdam, The Netherlands
| | - Joost B L Hoekstra
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centres, Amsterdam, The Netherlands
| | - Albert Groen
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centres, Amsterdam, The Netherlands
| | - Fredrik Bäckhed
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, Goteborgs Universitet, Gothenburg, Sweden
| | - Max Nieuwdorp
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centres, Amsterdam, The Netherlands
| |
Collapse
|
242
|
Wang H, Liu D, Ji Y, Liu Y, Xu L, Guo Y. Dietary Supplementation of Black Rice Anthocyanin Extract Regulates Cholesterol Metabolism and Improves Gut Microbiota Dysbiosis in C57BL/6J Mice Fed a High-Fat and Cholesterol Diet. Mol Nutr Food Res 2020; 64:e1900876. [PMID: 32050056 DOI: 10.1002/mnfr.201900876] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 12/23/2019] [Indexed: 12/19/2022]
Abstract
SCOPE This study explores the beneficial effects of dietary supplementation of black rice anthocyanin extract (BRAE) on cholesterol metabolism and gut dysbiosis. METHODS AND RESULTS C57BL/6J mice are grouped into the normal chow diet group (NCD), the high-fat and the cholesterol diet group (HCD), and three treatment groups feeding HCD supplemented with various dosage of BRAE for 12 weeks. Results reveal that BRAE alleviates the increased body weight, serum triglyceride (TG), total cholesterol (TC), non-high-density lipoprotein cholesterol levels (non-HDL-C), and increased fecal sterols excretion and caecal short-chain fatty acids (SCFAs) concentration in HCD-induced hypercholesterolemic mice. Moreover, BRAE decreases hepatic TC content through the fundamental regulation of body energy balance gene, adenosine 5'-monophosphate activated protein kinase α (AMPKα). Meanwhile, BRAE improves the genes expression involved in cholesterol uptake and efflux, and preserves CYP7A1, ATP-binding cassette subfamily G member 5/8 mRNA expression, and the relative abundance of gut microbiota. Additionally, the antibiotic treatment experiment indicates that the beneficial effects of BRAE in reducing hypocholesterolemia risk largely depends on the gut microbiota homeostasis. CONCLUSION BRAE supplement could be a beneficial treatment option for preventing HCD-induced hypocholesterolemia and related metabolic syndromes.
Collapse
Affiliation(s)
- Hao Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Dong Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Yanglin Ji
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Yaojie Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Lin Xu
- Pathology Department, Tianjin Municipal Public Security Hospital, Tianjin, 300042, China
| | - Yatu Guo
- Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Hospital, Tianjin Eye Institute, Tianjin, 300384, China
| |
Collapse
|
243
|
Fouladi F, Brooks AE, Fodor AA, Carroll IM, Bulik-Sullivan EC, Tsilimigras MCB, Sioda M, Steffen KJ. The Role of the Gut Microbiota in Sustained Weight Loss Following Roux-en-Y Gastric Bypass Surgery. Obes Surg 2020; 29:1259-1267. [PMID: 30604078 DOI: 10.1007/s11695-018-03653-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND The aim of the study was to investigate the role of the gut microbiota in weight regain or suboptimal weight loss following Roux-en-Y gastric bypass (RYGB). MATERIALS AND METHODS The gut microbiota composition in post-RYGB patients who experienced successful weight loss (SWL, n = 6), post-RYGB patients who experienced poor weight loss (PWL, n = 6), and non-surgical controls (NSC, n = 6) who were age- and BMI-matched to the SWL group (NSC, n = 6) were characterized through 16S rRNA gene sequencing. To further investigate the impact of the gut microbiota on weight profile, human fecal samples were transplanted into antibiotic-treated mice. RESULTS Orders of Micrococcales and Lactobacillales were enriched in SWL and PWL groups compared to the NSC group. No significant difference was observed in the gut microbiota composition between PWL and SWL patients. However, transfer of the gut microbiota from human patients into antibiotic-treated mice resulted in significantly greater weight gain in PWL recipient mice compared to SWL recipient mice. A few genera that were effectively transferred from humans to mice were associated with weight gain in mice. Among them, Barnesiella was significantly higher in PWL recipient mice compared to SWL and NSC recipient mice. CONCLUSION These results indicate that the gut microbiota are at least functionally, if not compositionally, different between PWL and SWL patients. Some taxa may contribute to weight gain after surgery. Future studies will need to determine the molecular mechanisms behind the effects of the gut bacteria on weight regain after RYGB.
Collapse
Affiliation(s)
- Farnaz Fouladi
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, 9331 Robert D. Snyder Road, Charlotte, NC, 28223, USA.
| | - Amanda E Brooks
- Department of Pharmaceutical Sciences, North Dakota State University, 1401 Albrecht Blvd, Fargo, ND, 58102, USA
| | - Anthony A Fodor
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, 9331 Robert D. Snyder Road, Charlotte, NC, 28223, USA
| | - Ian M Carroll
- Department of Nutrition, School of Medicine, University of North Carolina at Chapel Hill, 135 Dauer Drive, Chapel Hill, NC, 27599, USA
- Center for Gastrointestinal Biology and Disease, School of Medicine, University of North Carolina at Chapel Hill, 130 Mason Farm Rd., Chapel Hill, NC, 27599, USA
| | - Emily C Bulik-Sullivan
- Department of Nutrition, School of Medicine, University of North Carolina at Chapel Hill, 135 Dauer Drive, Chapel Hill, NC, 27599, USA
| | - Matthew C B Tsilimigras
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, 9331 Robert D. Snyder Road, Charlotte, NC, 28223, USA
| | - Michael Sioda
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, 9331 Robert D. Snyder Road, Charlotte, NC, 28223, USA
| | - Kristine J Steffen
- Department of Pharmaceutical Sciences, North Dakota State University, 1401 Albrecht Blvd, Fargo, ND, 58102, USA
- Center for Biobehavioral Research/Sanford Research, 120 8th St. S., Fargo, ND, 58103, USA
| |
Collapse
|
244
|
Haange SB, Jehmlich N, Krügel U, Hintschich C, Wehrmann D, Hankir M, Seyfried F, Froment J, Hübschmann T, Müller S, Wissenbach DK, Kang K, Buettner C, Panagiotou G, Noll M, Rolle-Kampczyk U, Fenske W, von Bergen M. Gastric bypass surgery in a rat model alters the community structure and functional composition of the intestinal microbiota independently of weight loss. MICROBIOME 2020; 8:13. [PMID: 32033593 PMCID: PMC7007695 DOI: 10.1186/s40168-020-0788-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 01/13/2020] [Indexed: 05/02/2023]
Abstract
BACKGROUND Roux-en-Y gastric bypass (RYGB) surgery is a last-resort treatment to induce substantial and sustained weight loss in cases of severe obesity. This anatomical rearrangement affects the intestinal microbiota, but so far, little information is available on how it interferes with microbial functionality and microbial-host interactions independently of weight loss. METHODS A rat model was employed where the RYGB-surgery cohort is compared to sham-operated controls which were kept at a matched body weight by food restriction. We investigated the microbial taxonomy and functional activity using 16S rRNA amplicon gene sequencing, metaproteomics, and metabolomics on samples collected from theileum, the cecum, and the colon, and separately analysed the lumen and mucus-associated microbiota. RESULTS Altered gut architecture in RYGB increased the relative occurrence of Actinobacteria, especially Bifidobacteriaceae and Proteobacteria, while in general, Firmicutes were decreased although Streptococcaceae and Clostridium perfringens were observed at relative higher abundances independent of weight loss. A decrease of conjugated and secondary bile acids was observed in the RYGB-gut lumen. The arginine biosynthesis pathway in the microbiota was altered, as indicated by the changes in the abundance of upstream metabolites and enzymes, resulting in lower levels of arginine and higher levels of aspartate in the colon after RYGB. CONCLUSION The anatomical rearrangement in RYGB affects microbiota composition and functionality as well as changes in amino acid and bile acid metabolism independently of weight loss. The shift in the taxonomic structure of the microbiota after RYGB may be mediated by the resulting change in the composition of the bile acid pool in the gut and by changes in the composition of nutrients in the gut. Video abstract.
Collapse
Affiliation(s)
- Sven-Bastiaan Haange
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
- Institute of Biochemistry, Faculty of Life Sciences, University of Leipzig, Leipzig, Germany
| | - Nico Jehmlich
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Ute Krügel
- Rudolf Boehm Institute of Pharmacology and Toxicology, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Constantin Hintschich
- Neuroendocrine Regulation of Energy Homeostasis Group, IFB Adiposity Diseases, Leipzig, Germany
| | - Dorothee Wehrmann
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Mohammed Hankir
- Neuroendocrine Regulation of Energy Homeostasis Group, IFB Adiposity Diseases, Leipzig, Germany
- Current address: Department of Experimental Surgery, Wuerzburg University Hospital, Wuerzburg, Germany
| | - Florian Seyfried
- Department of General, Visceral, Vascular and Pediatric Surgery, Wuerzburg University Hospital, Wuerzburg, Germany
| | - Jean Froment
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Thomas Hübschmann
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Susann Müller
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Dirk K. Wissenbach
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
- Current address: Institute of Forensic Medicine, Jena University Hospital, Jena, Germany
| | - Kang Kang
- Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoll Institute, Jena, Germany
| | - Christian Buettner
- Institute for Bioanalysis, Faculty of Applied Sciences, Coburg University of Applied Sciences and Arts, Coburg, Germany
| | - Gianni Panagiotou
- Systems Biology and Bioinformatics Group, School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Matthias Noll
- Institute for Bioanalysis, Faculty of Applied Sciences, Coburg University of Applied Sciences and Arts, Coburg, Germany
| | - Ulrike Rolle-Kampczyk
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Wiebke Fenske
- Neuroendocrine Regulation of Energy Homeostasis Group, IFB Adiposity Diseases, Leipzig, Germany
| | - Martin von Bergen
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
- Institute of Biochemistry, Faculty of Life Sciences, University of Leipzig, Leipzig, Germany
| |
Collapse
|
245
|
van der Merwe M, Sharma S, Caldwell JL, Smith NJ, Gomes CK, Bloomer RJ, Buddington RK, Pierre JF. Time of Feeding Alters Obesity-Associated Parameters and Gut Bacterial Communities, but Not Fungal Populations, in C57BL/6 Male Mice. Curr Dev Nutr 2020; 4:nzz145. [PMID: 32025616 PMCID: PMC6992463 DOI: 10.1093/cdn/nzz145] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/02/2019] [Accepted: 12/31/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Fasting and timed feeding strategies normalize obesity parameters even under high-fat dietary intake. Although previous work demonstrated that these dietary strategies reduce adiposity and improve metabolic health, limited work has examined intestinal microbial communities. OBJECTIVES We determined whether timed feeding modifies the composition of the intestinal microbiome and mycobiome (yeast and fungi). METHODS Male C57BL/6 mice were fed a high-fat diet (HF) for 6 wk. Animals were then randomly assigned to the following groups (n = 8-10/group): 1) HF ad libitum; 2) purified high-fiber diet (Daniel Fast, DF); 3) HF-time-restricted feeding (TRF) (6 h); 4) HF-alternate-day fasting (ADF); or 5) HF at 80% total caloric restriction (CR). After 8 wk, obesity and gut parameters were characterized. We also examined changes to the gut microbiome and mycobiome before, during, and following dietary interventions. RESULTS Body mass gain was reduced with all restricted dietary groups. HF-fed microbiota displayed lower α-diversity along with reduced phylum levels of Bacteroidetes and increased Firmicutes. Animals switched from HF to DF demonstrated a rapid transition in bacterial taxonomic composition, α-, and β-diversity that initially resembled HF, but was distinct after 4 and 8 wk of DF feeding. Time-or calorie-restricted HF-fed groups did not show changes at the phylum level, but α-diversity was increased, with specific genera altered. Six weeks of HF feeding reduced various fungal populations, particularly Alternaria, Aspergillus, Cladosporium, and Talaromyces, and increased Candida, Hanseniaspora, and Kurtzmaniella. However, 8 wk of intervention did not change the fungal populations, with the most abundant genera being Candida, Penicillium, and Hanseniaspora. CONCLUSIONS These data suggest that timed-feeding protocols and diet composition do not significantly affect the gut fungal community, despite inducing measurable shifts in the bacterial population that coincide with improvements in metabolism.
Collapse
Affiliation(s)
| | - Sunita Sharma
- School of Health Studies, University of Memphis, Memphis, TN, USA
| | - Jade L Caldwell
- School of Health Studies, University of Memphis, Memphis, TN, USA
| | - Nicholas J Smith
- School of Health Studies, University of Memphis, Memphis, TN, USA
| | - Charles K Gomes
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA
| | | | | | - Joseph F Pierre
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
246
|
Stefater MA, Pacheco JA, Bullock K, Pierce K, Deik A, Liu E, Clish C, Stylopoulos N. Portal Venous Metabolite Profiling After RYGB in Male Rats Highlights Changes in Gut-Liver Axis. J Endocr Soc 2020; 4:bvaa003. [PMID: 32099946 PMCID: PMC7033034 DOI: 10.1210/jendso/bvaa003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 01/21/2020] [Indexed: 12/15/2022] Open
Abstract
After Roux-en-Y gastric bypass (RYGB) surgery, the intestine undergoes structural and metabolic reprogramming and appears to enhance use of energetic fuels including glucose and amino acids (AAs), changes that may be related to the surgery’s remarkable metabolic effects. Consistently, RYGB alters serum levels of AAs and other metabolites, perhaps reflecting mechanisms for metabolic improvement. To home in on the intestinal contribution, we performed metabolomic profiling in portal venous (PV) blood from lean, Long Evans rats after RYGB vs sham surgery. We found that one-carbon metabolism (OCM), nitrogen metabolism, and arginine and proline metabolism were significantly enriched in PV blood. Nitrogen, OCM, and sphingolipid metabolism as well as ubiquinone biosynthesis were also overrepresented among metabolites uniquely affected in PV vs peripheral blood in RYGB-operated but not sham-operated animals. Peripheral blood demonstrated changes in AA metabolism, OCM, sphingolipid metabolism, and glycerophospholipid metabolism. Despite enrichment for many of the same pathways, the overall metabolite fingerprint of the 2 compartments did not correlate, highlighting a unique role for PV metabolomic profiling as a window into gut metabolism. AA metabolism and OCM were enriched in peripheral blood both from humans and lean rats after RYGB, demonstrating that these conserved pathways might represent mechanisms for clinical improvement elicited by the surgery in patients. Together, our data provide novel insight into RYGB’s effects on the gut-liver axis and highlight a role for OCM as a key metabolic pathway affected by RYGB.
Collapse
Affiliation(s)
- Margaret A Stefater
- Division of Endocrinology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | | | - Kevin Bullock
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Kerry Pierce
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Amy Deik
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Enju Liu
- Institutional Centers for Clinical and Translational Research, Boston Children's Hospital, Boston, Massachusetts
| | - Clary Clish
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Nicholas Stylopoulos
- Division of Endocrinology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts.,Institutional Centers for Clinical and Translational Research, Boston Children's Hospital, Boston, Massachusetts
| |
Collapse
|
247
|
Li M, Liu Z, Qian B, Liu W, Horimoto K, Xia J, Shi M, Wang B, Zhou H, Chen L. "Dysfunctions" induced by Roux-en-Y gastric bypass surgery are concomitant with metabolic improvement independent of weight loss. Cell Discov 2020; 6:4. [PMID: 32025334 PMCID: PMC6985254 DOI: 10.1038/s41421-019-0138-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 12/03/2019] [Indexed: 12/19/2022] Open
Abstract
Metabolic surgery has been increasingly recommended for obese diabetic patients, but questions remain as to its molecular mechanism that leads to improved metabolic parameters independently of weight loss from a network viewpoint. We evaluated the role of the Roux limb (RL) in Roux-en-Y gastric bypass (RYGB) surgery in nonobese diabetic rat models. Improvements in metabolic parameters were greater in the long-RL RYGB group. Transcriptome profiles reveal that amelioration of diabetes state following RYGB differs remarkably from both normal and diabetic states. According to functional analysis, RYGB surgery significantly affected a major gene group, i.e., the newly changed group, which represented diabetes-irrelevant genes abnormally expressed after RYGB. We hypothesize that novel "dysfunctions" carried by this newly changed gene group induced by RYGB rebalance diabetic states and contribute to amelioration of metabolic parameters. An unusual increase in cholesterol (CHOL) biosynthesis in RL enriched by the newly changed group was concomitant with ameliorated metabolic parameters, as demonstrated by measurements of physiological parameters and biodistribution analysis using [14C]-labeled glucose. Our findings demonstrate RYGB-induced "dysfunctions" in the newly changed group as a compensatory role contributes to amelioration of diabetes. Rather than attempting to normalize "abnormal" molecules, we suggest a new disease treatment strategy of turning "normal" molecules "abnormal" in order to achieve a new "normal" physiological balance. It further implies a novel strategy for drug discovery, i.e. targeting also on "normal" molecules, which are traditionally ignored in pharmaceutical development.
Collapse
Affiliation(s)
- Meiyi Li
- Key Laboratory of Systems Biology, Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy Sciences, Shanghai, 200031 China
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, 201199 China
| | - Zhiyuan Liu
- Key Laboratory of Systems Biology, Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy Sciences, Shanghai, 200031 China
| | - Bangguo Qian
- Key Laboratory of Systems Biology, Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy Sciences, Shanghai, 200031 China
| | - Weixin Liu
- Key Laboratory of Systems Biology, Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy Sciences, Shanghai, 200031 China
| | - Katsuhisa Horimoto
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
| | - Jie Xia
- Key Laboratory of Systems Biology, Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy Sciences, Shanghai, 200031 China
| | - Meilong Shi
- Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011 China
| | - Bing Wang
- Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011 China
| | - Huarong Zhou
- Sherman College of Chiropractic, Boiling Springs, SC 29316 USA
| | - Luonan Chen
- Key Laboratory of Systems Biology, Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy Sciences, Shanghai, 200031 China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223 China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 200031 China
- Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai, 201210 China
| |
Collapse
|
248
|
Guida C, Ramracheya R. PYY, a Therapeutic Option for Type 2 Diabetes? CLINICAL MEDICINE INSIGHTS-ENDOCRINOLOGY AND DIABETES 2020; 13:1179551419892985. [PMID: 32030069 PMCID: PMC6977199 DOI: 10.1177/1179551419892985] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 11/13/2019] [Indexed: 12/23/2022]
Abstract
Metabolic surgery leads to rapid and effective diabetes reversal in humans, by weight-independent mechanisms. The crucial improvement in pancreatic islet function observed after surgery is induced by alteration in several factors, including gut hormones. In addition to glucagon-like peptide 1 (GLP-1), increasing lines of evidence show that peptide tyrosine tyrosine (PYY) plays a key role in the metabolic benefits associated with the surgery, ranging from appetite regulation to amelioration of islet secretory properties and survival. Here, we summarize the current knowledge and the latest advancements in the field, which pitch a strong case for the development of novel PYY-based therapy for the treatment of diabetes.
Collapse
Affiliation(s)
- Claudia Guida
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | - Reshma Ramracheya
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| |
Collapse
|
249
|
Gut Microbiota Profile of Obese Diabetic Women Submitted to Roux-en-Y Gastric Bypass and Its Association with Food Intake and Postoperative Diabetes Remission. Nutrients 2020; 12:nu12020278. [PMID: 31973130 PMCID: PMC7071117 DOI: 10.3390/nu12020278] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/07/2019] [Accepted: 12/17/2019] [Indexed: 02/07/2023] Open
Abstract
Gut microbiota composition is influenced by environmental factors and has been shown to impact body metabolism. Objective: To assess the gut microbiota profile before and after Roux-en-Y gastric bypass (RYGB) and the correlation with food intake and postoperative type 2 diabetes remission (T2Dr). Design: Gut microbiota profile from obese diabetic women was evaluated before (n = 25) and 3 (n = 20) and 12 months (n = 14) after RYGB, using MiSeq Illumina-based V4 bacterial 16S rRNA gene profiling. Data on food intake (7-day record) and T2Dr (American Diabetes Association (ADA) criteria) were recorded. Results: Preoperatively, the abundance of five bacteria genera differed between patients with (57%) and without T2Dr (p < 0.050). Preoperative gut bacteria genus signature was able to predict the T2Dr status with 0.94 accuracy ROC curve (receiver operating characteristic curve). Postoperatively (vs. preoperative), the relative abundance of some gut bacteria genera changed, the gut microbial richness increased, and the Firmicutes to Bacteroidetes ratio (rFB) decreased (p < 0.05) regardless of T2Dr. Richness levels was correlated with dietary profile pre and postoperatively, mainly displaying positive and inverse correlations with fiber and lipid intakes, respectively (p < 0.05). Conclusions: Gut microbiota profile was influenced by RYGB and correlated with diet and T2Dr preoperatively, suggesting the possibility to assess its composition to predict postoperative T2Dr.
Collapse
|
250
|
Zama D, Bossù G, Leardini D, Muratore E, Biagi E, Prete A, Pession A, Masetti R. Insights into the role of intestinal microbiota in hematopoietic stem-cell transplantation. Ther Adv Hematol 2020; 11:2040620719896961. [PMID: 32010434 PMCID: PMC6974760 DOI: 10.1177/2040620719896961] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 11/20/2019] [Indexed: 12/11/2022] Open
Abstract
The gut microbiota (GM) is able to modulate the human immune system. The development of novel investigation methods has provided better characterization of the GM, increasing our knowledge of the role of GM in the context of hematopoietic stem-cell transplantation (HSCT). In particular, the GM influences the development of the major complications seen after HSCT, having an impact on overall survival. In fact, this evidence highlights the possible therapeutic implications of modulation of the GM during HSCT. Insights into the complex mechanisms and functions of the GM are essential for the rational design of these therapeutics. To date, preemptive and curative approaches have been tested. The current state of understanding of the impact of the GM on HSCT, and therapies targeting the GM balance is reviewed herein.
Collapse
Affiliation(s)
- Daniele Zama
- Pediatric Oncology and Hematology Unit ‘Lalla
Seràgnoli,’ Sant’Orsola-Malpighi Hospital, University of Bologna, Via
Massarenti 11, Bologna, 40137, Italy
| | - Gianluca Bossù
- Department of Pediatrics, ‘Lalla Seràgnoli,’
Hematology-Oncology Unit, University of Bologna, Italy
| | - Davide Leardini
- Department of Pediatrics, ‘Lalla Seràgnoli,’
Hematology-Oncology Unit, University of Bologna, Italy
| | - Edoardo Muratore
- Department of Pediatrics, ‘Lalla Seràgnoli,’
Hematology-Oncology Unit, University of Bologna, Italy
| | - Elena Biagi
- Department of Pharmacy and Biotechnology,
University of Bologna, Bologna, Italy
| | - Arcangelo Prete
- Department of Pediatrics, ‘Lalla Seràgnoli,’
Hematology-Oncology Unit, University of Bologna, Italy
| | - Andrea Pession
- Department of Pediatrics, ‘Lalla Seràgnoli,’
Hematology-Oncology Unit, University of Bologna, Italy
| | - Riccardo Masetti
- Department of Pediatrics, ‘Lalla Seràgnoli,’
Hematology-Oncology Unit, University of Bologna, Italy
| |
Collapse
|