201
|
Zaragoza O, García-Rodas R, Nosanchuk JD, Cuenca-Estrella M, Rodríguez-Tudela JL, Casadevall A. Fungal cell gigantism during mammalian infection. PLoS Pathog 2010; 6:e1000945. [PMID: 20585557 PMCID: PMC2887474 DOI: 10.1371/journal.ppat.1000945] [Citation(s) in RCA: 225] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Accepted: 05/07/2010] [Indexed: 02/07/2023] Open
Abstract
The interaction between fungal pathogens with the host frequently results in morphological changes, such as hyphae formation. The encapsulated pathogenic fungus Cryptococcus neoformans is not considered a dimorphic fungus, and is predominantly found in host tissues as round yeast cells. However, there is a specific morphological change associated with cryptococcal infection that involves an increase in capsule volume. We now report another morphological change whereby gigantic cells are formed in tissue. The paper reports the phenotypic characterization of giant cells isolated from infected mice and the cellular changes associated with giant cell formation. C. neoformans infection in mice resulted in the appearance of giant cells with cell bodies up to 30 microm in diameter and capsules resistant to stripping with gamma-radiation and organic solvents. The proportion of giant cells ranged from 10 to 80% of the total lung fungal burden, depending on infection time, individual mice, and correlated with the type of immune response. When placed on agar, giant cells budded to produce small daughter cells that traversed the capsule of the mother cell at the speed of 20-50 m/h. Giant cells with dimensions that approximated those in vivo were observed in vitro after prolonged culture in minimal media, and were the oldest in the culture, suggesting that giant cell formation is an aging-dependent phenomenon. Giant cells recovered from mice displayed polyploidy, suggesting a mechanism by which gigantism results from cell cycle progression without cell fission. Giant cell formation was dependent on cAMP, but not on Ras1. Real-time imaging showed that giant cells were engaged, but not engulfed by phagocytic cells. We describe a remarkable new strategy for C. neoformans to evade the immune response by enlarging cell size, and suggest that gigantism results from replication without fission, a phenomenon that may also occur with other fungal pathogens.
Collapse
MESH Headings
- Animals
- Cell Proliferation
- Cryptococcosis/immunology
- Cryptococcosis/microbiology
- Cryptococcosis/pathology
- Cryptococcus neoformans/growth & development
- Cryptococcus neoformans/pathogenicity
- Cryptococcus neoformans/radiation effects
- DNA, Fungal/genetics
- Female
- Fluorescent Antibody Technique
- Gamma Rays
- Gigantism/immunology
- Gigantism/microbiology
- Lung Diseases, Fungal/immunology
- Lung Diseases, Fungal/microbiology
- Lung Diseases, Fungal/pathology
- Macrophages, Alveolar/immunology
- Macrophages, Alveolar/microbiology
- Macrophages, Alveolar/pathology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Oxidative Stress
- Phagosomes/immunology
- Phagosomes/microbiology
- Phagosomes/pathology
- RNA, Messenger/genetics
- Reverse Transcriptase Polymerase Chain Reaction
Collapse
Affiliation(s)
- Oscar Zaragoza
- Servicio de Micología, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
202
|
Abstract
Opportunistic pathogens have become of increasing medical importance over the last decade due to the AIDS pandemic. Not only is cryptococcosis the fourth-most-common fatal infectious disease in sub-Saharan Africa, but also Cryptococcus is an emerging pathogen of immunocompetent individuals. The interaction between Cryptococcus and the host's immune system is a major determinant for the outcome of disease. Despite initial infection in early childhood with Cryptococcus neoformans and frequent exposure to C. neoformans within the environment, immunocompetent individuals are generally able to contain the fungus or maintain the yeast in a latent state. However, immune deficiencies lead to disseminating infections that are uniformly fatal without rapid clinical intervention. This review will discuss the innate and adaptive immune responses to Cryptococcus and cryptococcal strategies to evade the host's defense mechanisms. It will also address the importance of these strategies in pathogenesis and the potential of immunotherapy in cryptococcosis treatment.
Collapse
Affiliation(s)
- Kerstin Voelz
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Robin C. May
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
203
|
Gupta G, Fries BC. Variability of phenotypic traits in Cryptococcus varieties and species and the resulting implications for pathogenesis. Future Microbiol 2010; 5:775-87. [PMID: 20441549 PMCID: PMC2897164 DOI: 10.2217/fmb.10.44] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Variability of phenotypic characteristics in Cryptococcus neoformans var. grubii and var. neoformans as well as Cryptococcus gattii can have diverse effects on the virulence of these fungi and are thus important for pathogenesis. This article summarizes the diverse phenotypic changes that these fungi can manifest. We divide changes into those that affect the entire fungal population and are predominantly induced by environmental signals, and those that involve subpopulations of the fungal population and have to be selected. Last, the article summarizes the experimental evidence that epitopes on the polysaccharide capsule also vary, which may have implications for the pathogenesis as these findings would further diversify the fungal population.
Collapse
Affiliation(s)
- Gunjan Gupta
- Departments of Medicine, Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Bettina C Fries
- Departments of Medicine, Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
204
|
Casadevall A. Cryptococci at the brain gate: break and enter or use a Trojan horse? J Clin Invest 2010; 120:1389-92. [PMID: 20424319 DOI: 10.1172/jci42949] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The mechanism by which Cryptococcus neoformans invades the central nervous system is fundamental for understanding pathogenesis because cryptococcosis commonly presents as meningoencephalitis. There is evidence for both direct invasion of the endothelial cells lining the brain vasculature and a "Trojan horse" mechanism whereby cryptococci enter the central nervous system after macrophage ingestion. However, in this issue of the JCI, Shi et al. use intravital microscopy to reveal that brain invasion by C. neoformans follows a capillary microembolic event. They find that after suddenly stopping in brain capillaries, cryptococci cross into the central nervous system in a process that is urease dependent, requires viability, and involves cellular deformation. This observation provides evidence for direct brain invasion by C. neoformans, but a consideration of all the currently available evidence suggests a role for both direct and phagocyte-associated invasion. Hence, the remarkable neurotropism of C. neoformans may have more than one mechanism.
Collapse
Affiliation(s)
- Arturo Casadevall
- Department of Microbiology and Immunology and Medicine, Albert Einstein College of Medicine, New York, New York, USA.
| |
Collapse
|
205
|
Role of host sphingosine kinase 1 in the lung response against Cryptococcosis. Infect Immun 2010; 78:2342-52. [PMID: 20194596 DOI: 10.1128/iai.01140-09] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Cryptococcus neoformans is a fungal pathogen causing pulmonary infection and a life-threatening meningoencephalitis in human hosts. The fungus infects the host through inhalation, and thus, the host response in the lung environment is crucial for containment or dissemination of C. neoformans to other organs. In the lung, alveolar macrophages (AMs) are key players in the host lung immune response, and upon phagocytosis, they can kill C. neoformans by evoking an effective immune response through a variety of signaling molecules. On the other hand, under conditions not yet fully defined, the fungus is able to survive and proliferate within macrophages. Since the host sphingosine kinase 1 (SK1) regulates many signaling functions of immune cells, particularly in macrophages, in this study we determined the role of SK1 in the host response to C. neoformans infection. Using wild-type (SK1/2(+/+)) and SK1-deficient (SK1(-/-)) mice, we found that SK1 is dispensable during infection with a facultative intracellular wild-type C. neoformans strain. However, SK1 is required to form a host lung granuloma and to prevent brain infection by a C. neoformans mutant strain lacking the cell wall-associated glycosphingolipid glucosylceramide (Delta gcs1), previously characterized as a mutant able to replicate only intracellularly. Specifically, in contrast to those from SK1/2(+/+) mice, lungs from SK1(-/-) mice have no collagen deposition upon infection with C. neoformans Delta gcs1, and AMs from these mice contain significantly more C. neoformans cells than AMs from SK1/2(+/+) mice, suggesting that under conditions in which C. neoformans is more internalized by AMs, SK1 may become important to control C. neoformans infection. Indeed, when we induced immunosuppression, a host condition in which wild-type C. neoformans cells are increasingly found intracellularly, SK1(-/-) survived significantly less than SK1/2(+/+) mice infected with a facultative intracellular wild-type strain, suggesting that SK1 has an important role in controlling C. neoformans infection under conditions in which the fungus is predominantly found intracellularly.
Collapse
|
206
|
Cryptococcus neoformans variants generated by phenotypic switching differ in virulence through effects on macrophage activation. Infect Immun 2010; 78:1049-57. [PMID: 20048044 DOI: 10.1128/iai.01049-09] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Macrophages have a central role in the pathogenesis of cryptococcosis since they are an important line of defense, serve as a site for fungal replication, and also can contribute to tissue damage. The objective of this study was to investigate the interaction of macrophages with cells from smooth-colony variants (SM) and mucoid-colony variants (MC) arising from phenotypic switching of Cryptococcus neoformans. Alveolar macrophages (AMs) isolated from SM- and MC-infected mice exhibited differences in gene and surface expression of PD-L1, PD-L2, and major histocompatibility class II (MHC-II). PD-L1 and PD-L2 are the ligands for PD1 and are differentially regulated in Th1- and Th2-type cells. In addition, macrophage activation in SM- and MC-infected mice was characterized as alternatively activated. Flow cytometric and cytokine analysis demonstrated that MC infection was associated with the emergence of Th17 cells and higher levels of interleukin-17 (IL-17) in lung tissue, which were reduced by AM depletion. In conclusion, our results indicate that macrophages play a significant role in maintaining damage-promoting inflammation in the lung during MC infection, which ultimately results in death.
Collapse
|
207
|
Saylor CA, Dadachova E, Casadevall A. Murine IgG1 and IgG3 isotype switch variants promote phagocytosis of Cryptococcus neoformans through different receptors. THE JOURNAL OF IMMUNOLOGY 2009; 184:336-43. [PMID: 19949107 DOI: 10.4049/jimmunol.0902752] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Almost 3 decades ago, murine IgG3 was proposed to interact with a different receptor than the other IgG subclasses, but the issue remains unresolved. The question of whether a specific receptor exists for IgG3 is critically important for understanding Ab-mediated immunity against Cryptococcus neoformans, where the different isotypes manifest profound differences in protective efficacy. In this study, we revisited this question by analyzing IgG1- and IgG3-mediated phagocytosis with variable region-identical mAbs using mouse macrophages deficient in various receptors and in conditions of FcgammaR and complement receptor blockage with specific Abs. IgG3 was an efficient opsonin for C. neoformans in FcgammaR- and CD18-deficient cells and in the presence of blocking Abs to FcgammaR and complement receptor. Like IgG1, IgG3-mediated phagocytosis was associated with fungal residence in a mature phagosome that was followed by intracellular replication and exocytosis events. We conclude that a specific receptor for IgG3 exists in mice that is structurally different from the known FcgammaRs.
Collapse
Affiliation(s)
- Carolyn A Saylor
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | |
Collapse
|
208
|
Thalla R, Kim D, Venkat K, Parasuraman R. Sequestration of activeCryptococcus neoformansinfection in the parathyroid gland despite prolonged therapy in a renal transplant recipient. Transpl Infect Dis 2009; 11:349-52. [DOI: 10.1111/j.1399-3062.2009.00398.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
209
|
Giles SS, Dagenais TRT, Botts MR, Keller NP, Hull CM. Elucidating the pathogenesis of spores from the human fungal pathogen Cryptococcus neoformans. Infect Immun 2009; 77:3491-500. [PMID: 19451235 PMCID: PMC2715683 DOI: 10.1128/iai.00334-09] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Revised: 04/24/2009] [Accepted: 05/09/2009] [Indexed: 11/20/2022] Open
Abstract
Cryptococcus neoformans was first described as a human fungal pathogen more than a century ago. One aspect of the C. neoformans infectious life cycle that has been the subject of earnest debate is whether the spores are pathogenic. Despite much speculation, no direct evidence has been presented to resolve this outstanding question. We present evidence that C. neoformans spores are pathogenic in a mouse intranasal inhalation model of infection. In addition, we provide mechanistic insights into spore-host interactions. We found that C. neoformans spores were phagocytosed by alveolar macrophages via interactions between fungal beta-(1,3)-glucan and the host receptors Dectin-1 and CD11b. Moreover, we discovered an important link between spore survival and macrophage activation state: intracellular spores were susceptible to reactive oxygen-nitrogen species. We anticipate these results will serve as the basis for a model to further investigate the pathogenic implications of infections caused by fungal spores.
Collapse
Affiliation(s)
- Steven S Giles
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, USA
| | | | | | | | | |
Collapse
|
210
|
The fatal fungal outbreak on Vancouver Island is characterized by enhanced intracellular parasitism driven by mitochondrial regulation. Proc Natl Acad Sci U S A 2009; 106:12980-5. [PMID: 19651610 DOI: 10.1073/pnas.0902963106] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
In 1999, the population of Vancouver Island, Canada, began to experience an outbreak of a fatal fungal disease caused by a highly virulent lineage of Cryptococcus gattii. This organism has recently spread to the Canadian mainland and Pacific Northwest, but the molecular cause of the outbreak remains unknown. Here we show that the Vancouver Island outbreak (VIO) isolates have dramatically increased their ability to replicate within macrophages of the mammalian immune system in comparison with other C. gattii strains. We further demonstrate that such enhanced intracellular parasitism is directly linked to virulence in a murine model of cryptococcosis, suggesting that this phenotype may be the cause of the outbreak. Finally, microarray studies on 24 C. gattii strains reveals that the hypervirulence of the VIO isolates is characterized by the up-regulation of a large group of genes, many of which are encoded by mitochondrial genome or associated with mitochondrial activities. This expression profile correlates with an unusual mitochondrial morphology exhibited by the VIO strains after phagocytosis. Our data thus demonstrate that the intracellular parasitism of macrophages is a key driver of a human disease outbreak, a finding that has significant implications for a wide range of other human pathogens.
Collapse
|
211
|
Cermelli C, Orsi CF, Cuoghi A, Ardizzoni A, Tagliafico E, Neglia R, Peppoloni S, Blasi E. Gene expression profiling of monocytes displaying herpes simplex virus 1 induced dysregulation of antifungal defences. J Med Microbiol 2009; 58:1283-1290. [PMID: 19608693 DOI: 10.1099/jmm.0.011023-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Recently, we showed that herpes simplex virus 1 (HSV-1)-infected monocytes have altered antifungal defences, in particular they show augmented phagocytosis of Candida albicans followed by a failure of the intracellular killing of the ingested fungi. On the basis of these functional data, comparative studies were carried out on the gene expression profile of cells infected with HSV-1 and/or C. albicans in order to investigate the molecular mechanisms underlying such virus-induced dysfunction. Affymetrix GeneChip technology was used to evaluate the cell transcription pattern, focusing on genes involved in phagocytosis, fungal adhesion, antimicrobial activity and apoptosis. The results indicated there was: (a) prevalent inhibition of opsonin-mediated phagocytosis, (b) upregulation of several pathways of antibody- and complement-independent phagocytosis, (c) inhibition of macrophage activation, (d) marked dysregulation of oxidative burst, (e) induction of apoptosis.
Collapse
Affiliation(s)
- Claudio Cermelli
- Department of Public Health Sciences, University of Modena and Reggio Emilia, Via Campi 287, Modena, Italy
| | - Carlotta Francesca Orsi
- Department of Public Health Sciences, University of Modena and Reggio Emilia, Via Campi 287, Modena, Italy
| | - Alessandro Cuoghi
- Department of Public Health Sciences, University of Modena and Reggio Emilia, Via Campi 287, Modena, Italy
| | - Andrea Ardizzoni
- Department of Public Health Sciences, University of Modena and Reggio Emilia, Via Campi 287, Modena, Italy
| | - Enrico Tagliafico
- Department of Biomedical Sciences, University of Modena and Reggio Emilia, Via Campi 287, Modena, Italy
| | - Rachele Neglia
- Department of Public Health Sciences, University of Modena and Reggio Emilia, Via Campi 287, Modena, Italy
| | - Samuele Peppoloni
- Department of Public Health Sciences, University of Modena and Reggio Emilia, Via Campi 287, Modena, Italy
| | - Elisabetta Blasi
- Department of Public Health Sciences, University of Modena and Reggio Emilia, Via Campi 287, Modena, Italy
| |
Collapse
|
212
|
CHE FB, WU Y, XU N, XU H, CHEN JH. Killer peptide-loaded nanoparticles: characterization and evaluation of anticryptcoccal efficacy. ACTA ACUST UNITED AC 2009. [DOI: 10.3724/sp.j.1008.2009.00505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
213
|
Differential activation of peritoneal cells by subcutaneous treatment of rats with cryptococcal antigens. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2009; 16:1213-21. [PMID: 19494083 DOI: 10.1128/cvi.00100-09] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Previous studies in our laboratory have shown that the subcutaneous pretreatment of rats with heat-killed cells (HKC) of Cryptococcus neoformans emulsified in complete Freund adjuvant (CFA) promotes protective immunity against an intraperitoneal challenge with C. neoformans. In contrast, subcutaneous treatment with the capsular polysaccharide (PSC) emulsified in CFA exacerbates the cryptococcal infection. The purpose of this study was to analyze the mechanisms involved in these phenomena. Adherent peritoneal cells from rats treated with HKC-CFA showed upregulated ED2, CD80, and CD86 expression; an increase in the level of production of anticryptococcal metabolites; and the enhanced production of interleukin-12 (IL-12) in comparison with the findings for cells from rats treated with CFA-phosphate-buffered saline (PBS). Adherent peritoneal cells from rats treated with PSC-CFA, however, also presented upregulated ED2, CD80, and CD86 expression compared to the level of expression for peritoneal cells from controls, but these cells showed an increase in arginase activity and decreased levels of production of IL-12 and tumor necrosis factor (TNF) compared with the activity and levels of production by peritoneal cells from CFA-PBS-treated rats. In addition, treatment with HKC-CFA resulted in a rise in the phagocytic and anticryptococcal activities of adherent peritoneal cells compared to those for control rats. However, adherent peritoneal cells from rats treated with PSC-CFA presented a reduction in anticryptococcal activity in comparison with that for cells from animals treated with CFA-PBS. These results show the differential activation between adherent peritoneal cells from HKC-CFA- and PSC-CFA-treated rats, with this differential activation at the primary site of infection possibly being responsible, at least in part, for the phenomena of protection and exacerbation observed in our model.
Collapse
|
214
|
Cytokine signaling regulates the outcome of intracellular macrophage parasitism by Cryptococcus neoformans. Infect Immun 2009; 77:3450-7. [PMID: 19487474 DOI: 10.1128/iai.00297-09] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The pathogenic yeast Cryptococcus neoformans and C. gattii commonly cause severe infections of the central nervous system in patients with impaired immunity but also increasingly in immunocompetent individuals. Cryptococcus is phagocytosed by macrophages but can then survive and proliferate within the phagosomes of these infected host cells. Moreover, Cryptococcus is able to escape into the extracellular environment via a recently discovered nonlytic mechanism (termed expulsion or extrusion). Although it is well established that the host's cytokine profile dramatically affects the outcome of cryptococcal disease, the molecular basis for this effect is unclear. Here, we report a systematic analysis of the influence of Th1, Th2, and Th17 cytokines on the outcome of the interaction between macrophages and cryptococci. We show that Th1 and Th17 cytokines activate, whereas Th2 cytokines inhibit, anticryptococcal functions. Intracellular yeast proliferation was significantly lower after treatment with the Th1 cytokines gamma interferon and tumor necrosis factor alpha and the Th17 cytokine interleukin-17 (IL-17). Interestingly, however, the Th2 cytokines IL-4 and IL-13 significantly increased intracellular yeast proliferation while reducing the occurrence of pathogen expulsion. These results help explain the observed poor prognosis associated with the Th2 cytokine profile (e.g., in human immunodeficiency virus-infected patients).
Collapse
|
215
|
Alvarez M, Burn T, Luo Y, Pirofski LA, Casadevall A. The outcome of Cryptococcus neoformans intracellular pathogenesis in human monocytes. BMC Microbiol 2009; 9:51. [PMID: 19265539 PMCID: PMC2670303 DOI: 10.1186/1471-2180-9-51] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Accepted: 03/05/2009] [Indexed: 11/10/2022] Open
Abstract
Background Cryptococcus neoformans is an encapsulated yeast that is a facultative intracellular pathogen. The interaction between macrophages and C. neoformans is critical for extrapulmonary dissemination of this pathogenic yeast. C. neoformans can either lyse macrophages or escape from within them through a process known as phagosomal extrusion. However, most studies of intracellular pathogenesis have been made with mouse cells and their relevance to human infection is uncertain. In this study we extended studies of C. neoformans-macrophage cellular interaction/s to human peripheral blood monocytes. Results This study demonstrated that C. neoformans can shed polysaccharide within human monocytes, spread from cell to cell, and be extruded from them. Furthermore, human monocytes responded to ingestion of C. neoformans with cell cycle progression from G1 to S. Conclusion Similarities between mouse and human cells support the suitability of mouse cells for the study of intracellular pathogenesis mechanisms. Given that these hosts diverged over 70 million years ago, the similar pathogenic strategies for C. neoformans in murine and human cells supports the hypothesis that the mechanism that underlies the mammalian intracellular pathogenesis of C. neoformans originated from interactions with a third host, possibly soil amoeboid predators, before the mammalian radiation.
Collapse
Affiliation(s)
- Mauricio Alvarez
- Department of Microbiology and Immunology and Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | | | | | | | | |
Collapse
|
216
|
Osterholzer JJ, Surana R, Milam JE, Montano GT, Chen GH, Sonstein J, Curtis JL, Huffnagle GB, Toews GB, Olszewski MA. Cryptococcal urease promotes the accumulation of immature dendritic cells and a non-protective T2 immune response within the lung. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 174:932-43. [PMID: 19218345 DOI: 10.2353/ajpath.2009.080673] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Urease, a major virulence factor for Cryptococcus neoformans, promotes lethal meningitis/encephalitis in mice. The effect of urease within the lung, the primary site of most invasive fungal infections, is unknown. An established model of murine infection that utilizes either urease-producing (wt and ure1::URE1) or urease-deficient (ure1) strains (H99) of C. neoformans was used to characterize fungal clearance and the resultant immune response evoked by these strains within the lung. Results indicate that mice infected with urease-producing strains of C. neoformans demonstrate a 100-fold increase in fungal burden beginning 2 weeks post-infection (as compared with mice infected with urease-deficient organisms). Infection with urease-producing C. neoformans was associated with a highly polarized T2 immune response as evidenced by increases in the following: 1) pulmonary eosinophils, 2) serum IgE levels, 3) T2 cytokines (interleukin-4, -13, and -4 to interferon-gamma ratio), and 4) alternatively activated macrophages. Furthermore, the percentage and total numbers of immature dendritic cells within the lung-associated lymph nodes was markedly increased in mice infected with urease-producing C. neoformans. Collectively, these data define cryptococcal urease as a pulmonary virulence factor that promotes immature dendritic cell accumulation and a potent, yet non-protective, T2 immune response. These findings provide new insights into mechanisms by which microbial factors contribute to the immunopathology associated with invasive fungal disease.
Collapse
Affiliation(s)
- John J Osterholzer
- Veterans Affairs Ann Arbor Health System, Ann Arbor, 2215 Fuller Rd., Ann Arbor, MI 48105, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
217
|
Jain N, Li L, Hsueh YP, Guerrero A, Heitman J, Goldman DL, Fries BC. Loss of allergen 1 confers a hypervirulent phenotype that resembles mucoid switch variants of Cryptococcus neoformans. Infect Immun 2009; 77:128-40. [PMID: 18955480 PMCID: PMC2612268 DOI: 10.1128/iai.01079-08] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Revised: 10/13/2008] [Accepted: 10/15/2008] [Indexed: 01/05/2023] Open
Abstract
Microbial survival in a host is usually dependent on the ability of a pathogen to undergo changes that promote escape from host defense mechanisms. The human-pathogenic fungus Cryptococcus neoformans undergoes phenotypic switching in vivo that promotes persistence in tissue. By microarray and real-time PCR analyses, the allergen 1 gene (ALL1) was found to be downregulated in the hypervirulent mucoid switch variant, both during logarithmic growth and during intracellular growth in macrophages. The ALL1 gene encodes a small cytoplasmic protein that is involved in capsule formation. Growth of an all1Delta gene deletion mutant was normal. Similar to cells of the mucoid switch variant, all1Delta cells produced a larger polysaccharide capsule than cells of the smooth parent and the complemented strain produced, and the enlarged capsule inhibited macrophage phagocytosis. The mutant exhibited a modest defect in capsule induction compared to all of the other variants. In animal models the phenotype of the all1Delta mutant mimicked the hypervirulent phenotype of the mucoid switch variant, which is characterized by decreased host survival and elevated intracranial pressure. Decreased survival is likely the result of both an ineffective cell-mediated immune response and impaired phagocytosis by macrophages. Consequently, we concluded that, unlike loss of most virulence-associated genes, where loss of gene function results in attenuated virulence, loss of the ALL1 gene enhances virulence by altering the host-pathogen interaction and thereby impairing clearance. Our data identified the first cryptococcal gene associated with elevated intracranial pressure and support the hypothesis that an environmental opportunistic pathogen has modified its virulence in vivo by epigenetic downregulation of gene function.
Collapse
Affiliation(s)
- Neena Jain
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | | | | | |
Collapse
|
218
|
Abstract
Cryptococcus neoformans and Cryptococcus gattii are the cause of life-threatening meningoencephalitis in immunocompromised and immunocompetent individuals respectively. The increasing incidence of cryptococcal infection as a result of the AIDS epidemic, the recent emergence of a hypervirulent cryptococcal strain in Canada and the fact that mortality from cryptococcal disease remains high have stimulated intensive research into this organism. Here we outline recent advances in our understanding of C. neoformans and C. gattii, including intraspecific complexity, virulence factors, and key signaling pathways. We discuss the molecular basis of cryptococcal virulence and the interaction between these pathogens and the host immune system. Finally, we discuss future challenges in the study and treatment of cryptococcosis.
Collapse
Affiliation(s)
- Hansong Ma
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | | |
Collapse
|
219
|
Zaragoza O, Rodrigues ML, De Jesus M, Frases S, Dadachova E, Casadevall A. The capsule of the fungal pathogen Cryptococcus neoformans. ADVANCES IN APPLIED MICROBIOLOGY 2009; 68:133-216. [PMID: 19426855 PMCID: PMC2739887 DOI: 10.1016/s0065-2164(09)01204-0] [Citation(s) in RCA: 333] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The capsule of the fungal pathogen Cryptococcus neoformans has been studied extensively in recent decades and a large body of information is now available to the scientific community. Well-known aspects of the capsule include its structure, antigenic properties and its function as a virulence factor. The capsule is composed primarily of two polysaccharides, glucuronoxylomannan (GXM) and galactoxylomannan (GalXM), in addition to a smaller proportion of mannoproteins (MPs). Most of the studies on the composition of the capsule have focused on GXM, which comprises more than 90% of the capsule's polysaccharide mass. It is GalXM, however, that is of particular scientific interest because of its immunological properties. The molecular structure of these polysaccharides is very complex and has not yet been fully elucidated. Both GXM and GalXM are high molecular mass polymers with the mass of GXM equaling roughly 10 times that of GalXM. Recent findings suggest, however, that the actual molecular weight might be different to what it has traditionally been thought to be. In addition to their structural roles in the polysaccharide capsule, these molecules have been associated with many deleterious effects on the immune response. Capsular components are therefore considered key virulence determinants in C. neoformans, which has motivated their use in vaccines and made them targets for monoclonal antibody treatments. In this review, we will provide an update on the current knowledge of the C. neoformans capsule, covering aspects related to its structure, synthesis and particularly, its role as a virulence factor.
Collapse
Affiliation(s)
- Oscar Zaragoza
- Servicio de Micología. Centro Nacional de Microbiología. Instituto de Salud Carlos III. Crta Majadahonda-Pozuelo, Km2. Majadahonda 28220. Madrid. Spain
| | - Marcio L. Rodrigues
- Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, RJ, 21941-902 Brasil
| | - Magdia De Jesus
- Microbiology and Immunology Department. Albert Einstein College of Medicine. 1300 Morris Park Avenue. Bronx, NY 10461
| | - Susana Frases
- Microbiology and Immunology Department. Albert Einstein College of Medicine. 1300 Morris Park Avenue. Bronx, NY 10461
| | - Ekaterina Dadachova
- Microbiology and Immunology Department. Albert Einstein College of Medicine. 1300 Morris Park Avenue. Bronx, NY 10461
- Nuclear Medicine Department, Albert Einstein College of Medicine. 1695A Eastchester Rd. Bronx, NY 10461
| | - Arturo Casadevall
- Microbiology and Immunology Department. Albert Einstein College of Medicine. 1300 Morris Park Avenue. Bronx, NY 10461
- Medicine Deparment. Albert Einstein College of Medicine. 1300 Morris Park Avenue. Bronx, NY 10461
| |
Collapse
|
220
|
Bliska JB, Casadevall A. Intracellular pathogenic bacteria and fungi--a case of convergent evolution? Nat Rev Microbiol 2008; 7:165-71. [PMID: 19098923 DOI: 10.1038/nrmicro2049] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The bacterium Yersinia pestis and the fungus Cryptococcus neoformans are the causative agents of human plague and cryptococcosis, respectively. Both microorganisms are facultatively intracellular pathogens. A comparison of their pathogenic strategies reveals similar tactics for intracellular survival in Y. pestis and C. neoformans despite their genetic unrelatedness. Both organisms can survive in environments where they are vulnerable to predation by amoeboid protozoal hosts. Here, we propose that the overall similarities in their pathogenic strategies are an example of convergent evolution that has solved the problem of intracellular survival.
Collapse
Affiliation(s)
- James B Bliska
- Department of Molecular Genetics and Microbiology and Center for Infectious Diseases, School of Medicine, Stony Brook University, Stony Brook, New York, New York 11794, USA
| | | |
Collapse
|
221
|
Abstract
Over the past three decades new fungal diseases have emerged that now constitute a major threat, especially for patients with chronic diseases and/or underlying immune defi ciencies. Despite the epidemiologic data, the emergence of stable drug-resistant or hyper-virulent fungal strains in human disease has not been demonstrated as seen in emerging viral and bacterial infections. Fungi are eukaryotic microbes that capitalize on a sophisticated built-in ability to generate phenotypic variability. This successful strategy allows them to undergo rapid adaptation in response to environmental challenges, such as individual body locations that may exhibit drastic differences in temperature and pH. Rapid microevolution can also confer drug resistance and protect them from the host's immune response. This review explores phenotypic switching in pathogenic fungi, including Candida spp and Cryptococcus spp, and how phenotypic switching contributes to the pathogenesis of fungal diseases.
Collapse
|
222
|
Chiapello LS, Baronetti JL, Garro AP, Spesso MF, Masih DT. Cryptococcus neoformans glucuronoxylomannan induces macrophage apoptosis mediated by nitric oxide in a caspase-independent pathway. Int Immunol 2008; 20:1527-41. [DOI: 10.1093/intimm/dxn112] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
|
223
|
The Cryptococcus neoformans Rho-GDP dissociation inhibitor mediates intracellular survival and virulence. Infect Immun 2008; 76:5729-37. [PMID: 18779335 DOI: 10.1128/iai.00896-08] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Rho-GDP dissociation inhibitors (Rho-GDI) are repressors of Rho-type monomeric GTPases that control fundamental cellular processes, such as cytoskeletal arrangement, vesicle trafficking, and polarized growth. We identified and altered the expression of the gene encoding a Rho-GDI homolog in the human fungal pathogen Cryptococcus neoformans and investigated its impact on pathogenicity in animal models of cryptococcosis. Consistent with its predicted function to inhibit and sequester Rho-type GTPases, overexpression of RDI1 results in cytosolic localization of Cdc42. Likely as a result of this finding, RDI1-overexpressing strains exhibited altered morphology compared to that of the wild type, with apparent defects in maintaining proper cell polarity and cytokinesis. RDI1 deletion resulted in increased vacuole size in tissue culture medium and aberrant cell morphology at neutral pH. Maintenance of normal cell morphology is vital for C. neoformans pathogenicity. Accordingly, the rdi1Delta mutant strain also showed reduced intracellular survival in macrophages and severe attenuation of virulence in two murine models of cryptococcosis. This reduction in virulence of the rdi1Delta mutant occurs in the absence of major growth defects in rich medium and with classical virulence-associated phenotypes.
Collapse
|
224
|
Guerrero A, Fries BC. Phenotypic switching in Cryptococcus neoformans contributes to virulence by changing the immunological host response. Infect Immun 2008; 76:4322-31. [PMID: 18591227 PMCID: PMC2519423 DOI: 10.1128/iai.00529-08] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Revised: 06/05/2008] [Accepted: 06/12/2008] [Indexed: 11/20/2022] Open
Abstract
Cryptococcus neoformans is an encapsulated opportunistic organism that can undergo phenotypic switching. In this process, the parent smooth colony (SM) switches to a more virulent mucoid colony (MC) variant. The host responses mounted against the SM and MC variants differ, and lower tissue interleukin 10 (IL-10) levels are consistently observed in lungs of MC-infected C57BL/6 and BALB/c mice. This suggested different roles of this cytokine in SM and MC infections. The objective of this study was to compare survival rates and characterize the host responses of SM- and MC-infected IL-10-depleted (IL-10(-/-)) mice, which exhibit a Th1-polarized immune response and are considered resistant hosts. As expected, SM-infected IL-10(-/-) mice survived longer than wild-type mice, whereas MC-infected IL-10(-/-) mice did not exhibit a survival benefit. Consistent with this observation, we demonstrated marked differences in the inflammatory responses of SM- and MC-infected IL-10(-/-) and wild-type mice. This included a more Th1-polarized inflammatory response with enhanced recruitment of macrophages and natural killer and CD8 cells in MC- than in SM-infected IL-10(-/-) and wild-type mice. In contrast, both SM-infected IL-10(-/-) and wild-type mice exhibited higher recruitment of CD4 cells, consistent with enhanced survival and differences in recruitment and Th1/Th2 polarization. Lung tissue levels of IL-21, IL-6, IL-4, transforming growth factor beta, IL-12, and gamma interferon were higher in MC-infected IL-10(-/-) and wild-type mice than in SM-infected mice, whereas tumor necrosis factor alpha levels were higher in SM-infected IL-10(-/-) mice. In conclusion, the MC variant elicits an excessive inflammatory response in a Th1-polarized host environment, and therefore, the outcome is negatively affected by the absence of IL-10.
Collapse
Affiliation(s)
- Abraham Guerrero
- Departments of Microbiology and Immunology, Medicine, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | |
Collapse
|
225
|
Hu G, Cheng PY, Sham A, Perfect JR, Kronstad JW. Metabolic adaptation in Cryptococcus neoformans during early murine pulmonary infection. Mol Microbiol 2008; 69:1456-75. [PMID: 18673460 PMCID: PMC2730461 DOI: 10.1111/j.1365-2958.2008.06374.x] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
SUMMARY The pathogenic fungus Cryptococcus neoformans generally initiates infection in mammalian lung tissue and subsequently disseminates to the brain. We performed serial analysis of gene expression (SAGE) on C. neoformans cells recovered from the lungs of mice and found elevated expression of genes for central carbon metabolism including functions for acetyl-CoA production and utilization. Deletion of the highly expressed ACS1 gene encoding acetyl-CoA synthetase revealed a requirement for growth on acetate and for full virulence. Transcripts for transporters (e.g. for monosaccharides, iron, copper and acetate) and for stress-response proteins were also elevated thus indicating a nutrient-limited and hostile host environment. The pattern of regulation was reminiscent of the control of alternative carbon source utilization and stress response by the Snf1 protein kinase in Saccharomyces cerevisiae. A snf1 mutant of C. neoformans showed defects in alternative carbon source utilization, the response to nitrosative stress, melanin production and virulence. However, loss of Snf1 did not influence the expression of a set of genes for carbon metabolism that were elevated upon lung infection. Taken together, the results reveal specific metabolic adaptations of C. neoformans during pulmonary infection and indicate a role for ACS1 and SNF1 in virulence.
Collapse
Affiliation(s)
| | | | | | - John R. Perfect
- Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | | |
Collapse
|
226
|
Enhanced innate immune responsiveness to pulmonary Cryptococcus neoformans infection is associated with resistance to progressive infection. Infect Immun 2008; 76:4745-56. [PMID: 18678664 DOI: 10.1128/iai.00341-08] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Genetically regulated mechanisms of host defense against Cryptococcus neoformans infection are not well understood. In this study, pulmonary infection with the moderately virulent C. neoformans strain 24067 was used to compare the host resistance phenotype of C57BL/6J with that of inbred mouse strain SJL/J. At 7 days or later after infection, C57BL/6J mice exhibited a significantly greater fungal burden in the lungs than SJL/J mice. Characterization of the pulmonary innate immune response at 3 h after cryptococcal infection revealed that resistant SJL/J mice exhibited significantly higher neutrophilia, with elevated levels of inflammatory cytokine tumor necrosis factor alpha (TNF-alpha) and keratinocyte-derived chemokine (KC)/CXCL1 in the airways, as well as increased whole-lung mRNA expression of chemokines KC/CXCL1, MIP-1alpha/CCL3, MIP-1beta/CCL4, MIP-2/CXCL2, and MCP-1/CCL2 and cytokines interleukin 1beta (IL-1beta) and IL-1Ra. At 7 and 14 days after infection, SJL/J mice maintained significantly higher levels of TNF-alpha and KC/CXCL1 in the airways and exhibited a Th1 response characterized by elevated levels of lung gamma interferon (IFN-gamma) and IL-12/IL-23p40, while C57BL/6J mice exhibited Th2 immunity as defined by eosinophilia and IL-4 production. Alveolar and resident peritoneal macrophages from SJL/J mice also secreted significantly greater amounts of TNF-alpha and KC/CXCL1 following in vitro stimulation with C. neoformans. Intracellular signaling analysis demonstrated that TNF-alpha and KC/CXCL1 production was regulated by NF-kappaB and phosphatidylinositol 3 kinase in both strains; however, SJL/J macrophages exhibited heightened and prolonged activation in response to C. neoformans infection compared to that of C57BL/6J. Taken together, these data demonstrate that an enhanced innate immune response against pulmonary C. neoformans infection in SJL/J mice is associated with natural resistance to progressive infection.
Collapse
|
227
|
Rodrigues ML, Nimrichter L, Oliveira DL, Nosanchuk JD, Casadevall A. Vesicular Trans-Cell Wall Transport in Fungi: A Mechanism for the Delivery of Virulence-Associated Macromolecules? Lipid Insights 2008; 2:27-40. [PMID: 20617119 PMCID: PMC2898286 DOI: 10.4137/lpi.s1000] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Fungal cells are encaged in rigid, complex cell walls. Until recently, there was remarkably little information regarding the trans-fungal cell wall transfer of intracellular macromolecules to the extracellular space. Recently, several studies have begun to elucidate the mechanisms that fungal cells utilize to secrete a wide variety of macromolecules through the cell wall. The combined use of transmission electron microscopy, serology, biochemistry, proteomics and lipidomics have revealed that the fungal pathogens Cryptococcus neoformans, Histoplasma capsulatum, Candida albicans, Candida parapsilosis and Sporothrix schenckii, as well as the model yeast Saccharomyces cerevisiae, each produces extracellular vesicles that carry lipids, proteins, polysaccharides and pigment-like structures of unquestionable biological significance. Compositional analysis of the C. neoformans and H. capsulatum extracellular vesicles suggests that they may function as 'virulence bags', with the potential to modulate the host-pathogen interaction in favor of the fungus. The cellular origin of the extracellular vesicles remains unknown, but morphological and biochemical features indicate that they are similar to the well-described mammalian exosomes.
Collapse
Affiliation(s)
- Marcio L. Rodrigues
- Laboratório de Estudos Integrados em Bioquímica Microbiana, Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, 21941590, Brazil
| | - Leonardo Nimrichter
- Laboratório de Estudos Integrados em Bioquímica Microbiana, Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, 21941590, Brazil
| | - Debora L. Oliveira
- Laboratório de Estudos Integrados em Bioquímica Microbiana, Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, 21941590, Brazil
| | - Joshua D. Nosanchuk
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY, U.S.A. 10461
- Division of Infectious Diseases of the Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY, U.S.A. 10461
| | - Arturo Casadevall
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY, U.S.A. 10461
- Division of Infectious Diseases of the Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY, U.S.A. 10461
| |
Collapse
|
228
|
Zaragoza O, Chrisman CJ, Castelli MV, Frases S, Cuenca-Estrella M, Rodríguez-Tudela JL, Casadevall A. Capsule enlargement in Cryptococcus neoformans confers resistance to oxidative stress suggesting a mechanism for intracellular survival. Cell Microbiol 2008; 10:2043-57. [PMID: 18554313 DOI: 10.1111/j.1462-5822.2008.01186.x] [Citation(s) in RCA: 187] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Cryptococcus neoformans is a facultative intracellular pathogen. The most distinctive feature of C. neoformans is a polysaccharide capsule that enlarges depending on environmental stimuli. The mechanism by which C. neoformans avoids killing during phagocytosis is unknown. We hypothesized that capsule growth conferred resistance to microbicidal molecules produced by the host during infection, particularly during phagocytosis. We observed that capsule enlargement conferred resistance to reactive oxygen species produced by H(2)O(2) that was not associated with a higher catalase activity, suggesting a new function for the capsule as a scavenger of reactive oxidative intermediates. Soluble capsular polysaccharide protected C. neoformans and Saccharomyces cerevisiae from killing by H(2)O(2). Acapsular mutants had higher susceptibility to free radicals. Capsular polysaccharide acted as an antioxidant in the nitroblue tetrazolium (NBT) reduction coupled to beta-nicotinamide adenine dinucleotide (NADH)/phenazine methosulfate (PMS) assay. Capsule enlargement conferred resistance to antimicrobial peptides and the antifungal drug Amphotericin B. Interestingly, the capsule had no effect on susceptibility to azoles and increased susceptibility to fluconazole. Capsule enlargement reduced phagocytosis by environmental predators, although we also noticed that in this system, starvation of C. neoformans cells produced resistance to phagocytosis. Our results suggest that capsular enlargement is a mechanism that enhances C. neoformans survival when ingested by phagocytic cells.
Collapse
Affiliation(s)
- Oscar Zaragoza
- Servicio de Micología, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Carretera Majadahonda-Pozuelo, Km 2, Majadahonda, 28220, Madrid, Spain.
| | | | | | | | | | | | | |
Collapse
|
229
|
Infectomic analysis of gene expression profiles of human brain microvascular endothelial cells infected with Cryptococcus neoformans. J Biomed Biotechnol 2008; 2008:375620. [PMID: 18309373 PMCID: PMC2248231 DOI: 10.1155/2008/375620] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2007] [Accepted: 12/17/2007] [Indexed: 11/22/2022] Open
Abstract
In order to dissect the pathogenesis of Cryptococcus neoformans meningoencephalitis, a genomic survey of the changes in gene expression of human brain microvascular endothelial cells infected by C. neoformans was carried out in a time-course study. Principal component analysis (PCA) revealed significant fluctuations in the expression levels of different groups of genes during the pathogen-host interaction. Self-organizing map (SOM) analysis revealed that most genes were up- or downregulated 2 folds or more at least at one time point during the pathogen-host engagement. The microarray data were validated by Western blot analysis of a group of genes, including β-actin, Bcl-x, CD47, Bax, Bad, and Bcl-2. Hierarchical cluster profile showed that 61 out of 66 listed interferon genes were changed at least at one time point. Similarly, the active responses in expression of MHC genes were detected at all stages of the interaction. Taken together, our infectomic approaches suggest that the host cells significantly change the gene profiles and also actively participate in immunoregulations of the central nervous system (CNS) during C. neoformans infection.
Collapse
|
230
|
Hu G, Hacham M, Waterman SR, Panepinto J, Shin S, Liu X, Gibbons J, Valyi-Nagy T, Obara K, Jaffe HA, Ohsumi Y, Williamson PR. PI3K signaling of autophagy is required for starvation tolerance and virulenceof Cryptococcus neoformans. J Clin Invest 2008; 118:1186-97. [PMID: 18259613 DOI: 10.1172/jci32053] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2007] [Accepted: 12/05/2007] [Indexed: 12/17/2022] Open
Abstract
Autophagy is a process by which cells recycle cytoplasm and defective organelles during stress situations such as nutrient starvation. It can also be used by host cells as an immune defense mechanism to eliminate infectious pathogens. Here we describe the use of autophagy as a survival mechanism and virulence-associated trait by the human fungal pathogen Cryptococcus neoformans. We report that a mutant form of C. neoformans lacking the Vps34 PI3K (vps34Delta), which is known to be involved in autophagy in ascomycete yeast, was defective in the formation of autophagy-related 8-labeled (Atg8-labeled) vesicles and showed a dramatic attenuation in virulence in mouse models of infection. In addition, autophagic vesicles were observed in WT but not vps34Delta cells after phagocytosis by a murine macrophage cell line, and Atg8 expression was exhibited in WT C. neoformans during human infection of brain. To dissect the contribution of defective autophagy in vps34Delta C. neoformans during pathogenesis, a strain of C. neoformans in which Atg8 expression was knocked down by RNA interference was constructed and these fungi also demonstrated markedly attenuated virulence in a mouse model of infection. These results demonstrated PI3K signaling and autophagy as a virulence-associated trait and survival mechanism during infection with a fungal pathogen. Moreover, the data show that molecular dissection of such pathogen stress-response pathways may identify new approaches for chemotherapeutic interventions.
Collapse
Affiliation(s)
- Guowu Hu
- Section of Infectious Diseases, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
231
|
Alvarez M, Saylor C, Casadevall A. Antibody action after phagocytosis promotes Cryptococcus neoformans and Cryptococcus gattii macrophage exocytosis with biofilm-like microcolony formation. Cell Microbiol 2008; 10:1622-33. [PMID: 18384661 DOI: 10.1111/j.1462-5822.2008.01152.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Antibody-mediated phagocytosis was discovered over a century ago but little is known about antibody effects in phagolysosomes. We explored the consequences of antibody-mediated phagocytosis for two closely related human pathogenic fungal species, Cryptococcus neoformans and Cryptococcus gattii, of which C. neoformans encompasses two varieties: neoformans and grubii. The interaction between C. neoformans varieties grubii and neoformans and host cells has been extensively studied, but that of C. gattii and macrophages remains largely unexplored. Like C. neoformans, antibody-mediated phagocytosis of C. gattii cells was followed by intracellular replication, host cell cytoplasmic polysaccharide accumulation and phagosomal extrusion. Both C. gattii and C. neoformans cells exited macrophages in biofilm-like microcolonies where the yeast cells were aggregated in a polysaccharide matrix that contained bound antibody. In contrast, complement-opsonized C. neoformans variety grubii cells were released from macrophages dispersed as individual cells. Hence, both antibody- and complement-mediated phagocytosis resulted in intracellular replication but the mode of opsonization affected the outcome of exocytosis. The biofilm-like microcolony exit strategy of C. neoformans and C. gattii following antibody opsonization reduced fungal cell dispersion. This finding suggests that antibody agglutination effects persist in the phagosome to entangle nascent daughter cells and this phenomenon may contribute to antibody-mediated protection.
Collapse
Affiliation(s)
- Mauricio Alvarez
- Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA
| | | | | |
Collapse
|
232
|
|
233
|
Abstract
Cryptococcus neoformans is a yeastlike fungus that causes a lethal meningoencephalitis in a broad spectrum of immunocompromised patients and has become the most common cause of meningitis due to AIDS-related infections in Africa. Key to the development of new agents to control and prevent this infection is the identification of cellular mechanisms required for pathogenesis. Survival of the fungus within the hostile and nutrient-deprived environments of the host has recently been shown to depend on the induction of autophagy, whereby the cell recycles nutrients by slowly digesting itself in a regulated fashion. Further study of the role of autophagy during infection by C. neoformans requires the use of markers of autophagy that are specially adapted to the fungus within the mammalian host.
Collapse
|
234
|
Alvarez M, Casadevall A. Cell-to-cell spread and massive vacuole formation after Cryptococcus neoformans infection of murine macrophages. BMC Immunol 2007; 8:16. [PMID: 17705844 PMCID: PMC1988836 DOI: 10.1186/1471-2172-8-16] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2007] [Accepted: 08/16/2007] [Indexed: 11/25/2022] Open
Abstract
Background The interaction between macrophages and Cryptococcus neoformans (Cn) is critical for containing dissemination of this pathogenic yeast. However, Cn can either lyse macrophages or escape from within them through a process known as phagosomal extrusion. Both events result in live extracellular yeasts capable of reproducing and disseminating in the extracellular milieu. Another method of exiting the intracellular confines of cells is through host cell-to-cell transfer of the pathogen, and this commonly occurs with the human immuno-deficiency virus (HIV) and CD4+ T cells and macrophages. In this report we have used time-lapse imaging to determine if this occurs with Cn. Results Live imaging of Cryptococcus neoformans interactions with murine macrophages revealed cell-to-cell spread of yeast cells from infected donor cells to uninfected cells. Although this phenomenon was relatively rare its occurrence documents a new capacity for this pathogen to infect adjacent cells without exiting the intracellular space. Cell-to-cell spread appeared to be an actin-dependent process. In addition, we noted that cryptococcal phagosomal extrusion was followed by the formation of massive vacuoles suggesting that intracellular residence is accompanied by long lasting damage to host cells. Conclusion C. neoformans can escape the intracellular confines of macrophages in an actin dependent manner by cell-to-cell transfer of the yeast leading to infection of adjacent cells. In addition, complete extrusion of internalized Cn cells can lead to the formation of a massive vacuole which may be a sign of damage to the host macrophage. These observations document new outcomes for the interaction of C. neoformans with host cells that provide precedents for cell biological effects that may contribute to the pathogenesis of cryptococcal infections.
Collapse
Affiliation(s)
- Mauricio Alvarez
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Arturo Casadevall
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| |
Collapse
|
235
|
Ma H, Croudace JE, Lammas DA, May RC. Direct cell-to-cell spread of a pathogenic yeast. BMC Immunol 2007; 8:15. [PMID: 17705831 PMCID: PMC1976318 DOI: 10.1186/1471-2172-8-15] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2007] [Accepted: 08/16/2007] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Cryptococcosis, a fatal fungal infection of the central nervous system, is one of the major killers of AIDS patients and other immunocompromised hosts. The causative agent, Cryptococcus neoformans, has a remarkable ability to 'hide' and proliferate within phagocytic cells of the human immune system. This intracellular phase is thought to underlie the ability of the pathogen to remain latent for long periods of time within infected individuals. RESULTS We now report that Cryptococcus is able to undergo 'lateral transfer' between phagocytes, moving directly from infected to uninfected macrophages. This novel process was observed in both C. neoformans serotypes (A and D) and occurs in both immortalised cell lines and in primary human macrophages. Lateral transfer is independent of the initial route of uptake, since both serum-opsonised and antibody-opsonised C. neoformans are able to undergo direct cell-to-cell transfer. CONCLUSION We provide the first evidence for lateral transfer of a human fungal pathogen. This rare event may occur repeatedly during latent cryptococcal infections, thereby allowing the pathogen to remain concealed from the immune system and protecting it from exposure to antifungal agents.
Collapse
Affiliation(s)
- Hansong Ma
- Molecular Pathobiology, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Joanne E Croudace
- Division of Immunity and Infection, The Medical School, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - David A Lammas
- Division of Immunity and Infection, The Medical School, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Robin C May
- Molecular Pathobiology, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| |
Collapse
|
236
|
Waterman SR, Williamson PR. Pathogen diversity and adaptation to the host: applications to clinical genomics. Future Microbiol 2007; 2:215-8. [PMID: 17661692 DOI: 10.2217/17460913.2.3.215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
237
|
Kechichian TB, Shea J, Del Poeta M. Depletion of alveolar macrophages decreases the dissemination of a glucosylceramide-deficient mutant of Cryptococcus neoformans in immunodeficient mice. Infect Immun 2007; 75:4792-8. [PMID: 17664261 PMCID: PMC2044542 DOI: 10.1128/iai.00587-07] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In previous studies we showed that a Cryptococcus neoformans mutant lacking glucosylceramide (Deltagcs1) is avirulent and unable to reach the brain when it is administered intranasally into an immunocompetent mouse and is contained in a lung granuloma. To determine whether granuloma formation is key for containment of C. neoformans Deltagcs1, we studied the role of C. neoformans glucosylceramide in a T- and NK-cell-immunodeficient mouse model (Tgepsilon26) in which alveolar macrophages (AMs) are not activated and granuloma formation is not expected. The results show that Tgepsilon26 mice infected with Deltagcs1 do not produce a lung granuloma and that the Deltagcs1 mutant proliferates in the lungs and does disseminate to the brain, although its virulence phenotype is dramatically reduced. Since Deltagcs1 can grow only in acidic niches, such as the phagolysosome of AMs, and not in neutral or alkaline environments, such as the extracellular spaces, we hypothesize that in immunodeficient mice Deltagcs1 proliferates inside AMs. Indeed, we found that depletion of AMs significantly improved Tgepsilon26 mouse survival and decreased the dissemination of Deltagcs1 cells to the central nervous system. Thus, these results suggest that the growth of Deltagcs1 in immunodeficient mice is maintained within AMs. This study highlights the hypothesis that AMs may exacerbate C. neoformans infection in conditions in which there is severe host immunodeficiency.
Collapse
Affiliation(s)
- Talar B Kechichian
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | |
Collapse
|
238
|
Fan W, Idnurm A, Breger J, Mylonakis E, Heitman J. Eca1, a sarcoplasmic/endoplasmic reticulum Ca2+-ATPase, is involved in stress tolerance and virulence in Cryptococcus neoformans. Infect Immun 2007; 75:3394-405. [PMID: 17502401 PMCID: PMC1932933 DOI: 10.1128/iai.01977-06] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The basidiomycetous fungal pathogen Cryptococcus neoformans is adapted to survive challenges in the soil and environment and within the unique setting of the mammalian host. A C. neoformans mutant was isolated with enhanced virulence in a soil amoeba model that nevertheless exhibits dramatically reduced growth at mammalian body temperature (37 degrees C). This mutant phenotype results from an insertion in the ECA1 gene, which encodes a sarcoplasmic/endoplasmic reticulum (ER) Ca2+-ATPase (SERCA)-type calcium pump. Infection in murine macrophages, amoebae (Acanthamoeba castellanii), nematodes (Caenorhabditis elegans), and wax moth (Galleria mellonella) larvae revealed that the eca1 mutants are virulent or hypervirulent at permissive growth temperatures but attenuated at 37 degrees C. Deletion mutants lacking the entire ECA1 gene were also hypersensitive to the calcineurin inhibitors cyclosporin and FK506 and to ER and osmotic stresses. An eca1Delta cna1Delta mutant lacking both Eca1 and the calcineurin catalytic subunit was more sensitive to high temperature and ER stresses than the single mutants and exhibited reduced survival in C. elegans and attenuated virulence towards wax moth larvae at temperatures that permit normal growth in vitro. Eca1 is likely involved in maintaining ER function, thus contributing to stress tolerance and virulence acting in parallel with Ca2+-calcineurin signaling.
Collapse
Affiliation(s)
- Weihua Fan
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | |
Collapse
|
239
|
Tavares AHFP, Silva SS, Dantas A, Campos EG, Andrade RV, Maranhão AQ, Brígido MM, Passos-Silva DG, Fachin AL, Teixeira SMR, Passos GAS, Soares CMA, Bocca AL, Carvalho MJA, Silva-Pereira I, Felipe MSS. Early transcriptional response of Paracoccidioides brasiliensis upon internalization by murine macrophages. Microbes Infect 2007; 9:583-90. [PMID: 17387029 DOI: 10.1016/j.micinf.2007.01.024] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2006] [Revised: 01/17/2007] [Accepted: 01/30/2007] [Indexed: 11/15/2022]
Abstract
Paracoccidioides brasiliensis, a thermal dimorphic fungus, is the etiologic agent of the most common systemic mycosis in Latin America, paracoccidioidomycosis. The yeast form of P. brasiliensis acts as a facultative intracellular pathogen being able to survive and replicate within the phagosome of nonactivated murine and human macrophages. This ability has been proposed to be crucial to the development of disease. Thus, P. brasiliensis may have evolved mechanisms that counteract the constraints imposed by phagocytic cells. By using cDNA microarray technology we evaluated the early transcriptional response of this fungus to the environment of peritoneal murine macrophages in order to shed light on the mechanisms used by P. brasiliensis to survive within phagocytic cells. Of the 1152 genes analyzed, we identified 152 genes that were differentially transcribed. Intracellularly expressed genes were primarily associated with glucose and amino acid limitation, cell wall construction, and oxidative stress. For the first time, a comprehensive gene expression tool is used for the expression analysis of P. brasiliensis genes when interacting with macrophages. Overall, our data show a transcriptional plasticity of P. brasiliensis in response to the harsh environment of macrophages which may lead to adaptation and consequent survival of this pathogen.
Collapse
Affiliation(s)
- Aldo Henrique F P Tavares
- Departamento de Biologia Celular, Laboratório de Biologia Molecular, Universidade de Brasília-Unb Brasília, Campus Darcy Ribeiro-Asa Norte 70910-900, Brasília, DF, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
240
|
Zaragoza O, Alvarez M, Telzak A, Rivera J, Casadevall A. The relative susceptibility of mouse strains to pulmonary Cryptococcus neoformans infection is associated with pleiotropic differences in the immune response. Infect Immun 2007; 75:2729-39. [PMID: 17371865 PMCID: PMC1932903 DOI: 10.1128/iai.00094-07] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
CBA/J mice were highly susceptible to intratracheal (i.t.) Cryptococcus neoformans infection relative to BALB/c mice, while both strains were equally susceptible to intravenous (i.v.) infection. Increased susceptibility in i.t. infection was associated with higher brain CFU, lower serum immunoglobulin M (IgM) and IgG responses to glucuronoxylomannan (GXM), lack of IgE regulation during infection, and alveolar macrophage permissiveness to intracellular replication in vitro. In contrast, for BALB/c mice, relative resistance was associated with increased interleukin-12 (IL-12) and decreased IL-10 pulmonary levels. In CBA/J mice, relative susceptibility was associated with a decreased proportion of CD4+ and CD8+ T cells and an increase in macrophage percentage in pulmonary infiltrates. In contrast, no significant differences in these cytokines or cell recruitment were observed in the i.v. model, consistent with no differences in the survival rate. Passive antibody (Ab) protection experiments revealed a prozone effect in the BALB/c mice with i.v. infection, such that Ab efficacy decreased at higher doses. In the i.t. model using CBA/J mice, low Ab doses were disease enhancing and protection was observed only at high doses. Our results show (i) that differences in mouse strain susceptibility are a function of the infection model, (ii) that susceptibility to pulmonary infection was associated with macrophage permissiveness for intracellular replication, and (iii) that the efficacy of passive Ab in pulmonary infection is a function of dose and mouse strain. The results highlight significant differences in the pathogenesis of cryptococcal infection among inbred mice and associate their relative susceptibility with differences in numerous components of the innate and adaptive immune responses.
Collapse
Affiliation(s)
- Oscar Zaragoza
- Departments of Microbiology and Immunology and Medicine, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | | | | | | | |
Collapse
|
241
|
Waterman SR, Hacham M, Hu G, Zhu X, Park YD, Shin S, Panepinto J, Valyi-Nagy T, Beam C, Husain S, Singh N, Williamson PR. Role of a CUF1/CTR4 copper regulatory axis in the virulence of Cryptococcus neoformans. J Clin Invest 2007; 117:794-802. [PMID: 17290306 PMCID: PMC1784002 DOI: 10.1172/jci30006] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Accepted: 12/12/2006] [Indexed: 01/18/2023] Open
Abstract
The study of regulatory networks in human pathogens such as Cryptococcus neoformans provides insights into host-pathogen interactions that may allow for correlation of gene expression patterns with clinical outcomes. In the present study, deletion of the cryptococcal copper-dependent transcription factor 1 (Cuf1) led to defects in growth and virulence factor expression in low copper conditions. In mouse models, cuf1Delta strains exhibited reduced dissemination to the brain, but no change in lung growth, suggesting copper is limiting in neurologic infections. To examine this further, a biologic probe of available copper was constructed using the cryptococcal CUF1-dependent copper transporter, CTR4. Fungal cells demonstrated high CTR4 expression levels after phagocytosis by macrophage-like J774.16 cells and during infection of mouse brains, but not lungs, consistent with limited copper availability during neurologic infection. This was extended to human brain infections by demonstrating CTR4 expression during C. neoformans infection of an AIDS patient. Moreover, high CTR4 expression by cryptococcal strains from 24 solid organ transplant patients was associated with dissemination to the CNS. Our results suggest that copper acquisition plays a central role in fungal pathogenesis during neurologic infection and that measurement of stable traits such as CTR4 expression may be useful for risk stratification of individuals with cryptococcosis.
Collapse
Affiliation(s)
- Scott R. Waterman
- Section of Infectious Diseases, Department of Medicine, University of Illinois at Chicago College of Medicine, Chicago, Illinois, USA.
Department of Pathology, University of Illinois at Chicago Medical Center, Chicago, Illinois, USA.
Division of Epidemiology and Biostatistics, School of Public Health, University of Illinois at Chicago, Chicago, Illinois, USA.
Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
Jesse Brown VA Medical Center, Chicago, Illinois, USA
| | - Moshe Hacham
- Section of Infectious Diseases, Department of Medicine, University of Illinois at Chicago College of Medicine, Chicago, Illinois, USA.
Department of Pathology, University of Illinois at Chicago Medical Center, Chicago, Illinois, USA.
Division of Epidemiology and Biostatistics, School of Public Health, University of Illinois at Chicago, Chicago, Illinois, USA.
Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
Jesse Brown VA Medical Center, Chicago, Illinois, USA
| | - Guowu Hu
- Section of Infectious Diseases, Department of Medicine, University of Illinois at Chicago College of Medicine, Chicago, Illinois, USA.
Department of Pathology, University of Illinois at Chicago Medical Center, Chicago, Illinois, USA.
Division of Epidemiology and Biostatistics, School of Public Health, University of Illinois at Chicago, Chicago, Illinois, USA.
Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
Jesse Brown VA Medical Center, Chicago, Illinois, USA
| | - Xudong Zhu
- Section of Infectious Diseases, Department of Medicine, University of Illinois at Chicago College of Medicine, Chicago, Illinois, USA.
Department of Pathology, University of Illinois at Chicago Medical Center, Chicago, Illinois, USA.
Division of Epidemiology and Biostatistics, School of Public Health, University of Illinois at Chicago, Chicago, Illinois, USA.
Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
Jesse Brown VA Medical Center, Chicago, Illinois, USA
| | - Yoon-Dong Park
- Section of Infectious Diseases, Department of Medicine, University of Illinois at Chicago College of Medicine, Chicago, Illinois, USA.
Department of Pathology, University of Illinois at Chicago Medical Center, Chicago, Illinois, USA.
Division of Epidemiology and Biostatistics, School of Public Health, University of Illinois at Chicago, Chicago, Illinois, USA.
Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
Jesse Brown VA Medical Center, Chicago, Illinois, USA
| | - Soowan Shin
- Section of Infectious Diseases, Department of Medicine, University of Illinois at Chicago College of Medicine, Chicago, Illinois, USA.
Department of Pathology, University of Illinois at Chicago Medical Center, Chicago, Illinois, USA.
Division of Epidemiology and Biostatistics, School of Public Health, University of Illinois at Chicago, Chicago, Illinois, USA.
Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
Jesse Brown VA Medical Center, Chicago, Illinois, USA
| | - John Panepinto
- Section of Infectious Diseases, Department of Medicine, University of Illinois at Chicago College of Medicine, Chicago, Illinois, USA.
Department of Pathology, University of Illinois at Chicago Medical Center, Chicago, Illinois, USA.
Division of Epidemiology and Biostatistics, School of Public Health, University of Illinois at Chicago, Chicago, Illinois, USA.
Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
Jesse Brown VA Medical Center, Chicago, Illinois, USA
| | - Tibor Valyi-Nagy
- Section of Infectious Diseases, Department of Medicine, University of Illinois at Chicago College of Medicine, Chicago, Illinois, USA.
Department of Pathology, University of Illinois at Chicago Medical Center, Chicago, Illinois, USA.
Division of Epidemiology and Biostatistics, School of Public Health, University of Illinois at Chicago, Chicago, Illinois, USA.
Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
Jesse Brown VA Medical Center, Chicago, Illinois, USA
| | - Craig Beam
- Section of Infectious Diseases, Department of Medicine, University of Illinois at Chicago College of Medicine, Chicago, Illinois, USA.
Department of Pathology, University of Illinois at Chicago Medical Center, Chicago, Illinois, USA.
Division of Epidemiology and Biostatistics, School of Public Health, University of Illinois at Chicago, Chicago, Illinois, USA.
Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
Jesse Brown VA Medical Center, Chicago, Illinois, USA
| | - Shahid Husain
- Section of Infectious Diseases, Department of Medicine, University of Illinois at Chicago College of Medicine, Chicago, Illinois, USA.
Department of Pathology, University of Illinois at Chicago Medical Center, Chicago, Illinois, USA.
Division of Epidemiology and Biostatistics, School of Public Health, University of Illinois at Chicago, Chicago, Illinois, USA.
Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
Jesse Brown VA Medical Center, Chicago, Illinois, USA
| | - Nina Singh
- Section of Infectious Diseases, Department of Medicine, University of Illinois at Chicago College of Medicine, Chicago, Illinois, USA.
Department of Pathology, University of Illinois at Chicago Medical Center, Chicago, Illinois, USA.
Division of Epidemiology and Biostatistics, School of Public Health, University of Illinois at Chicago, Chicago, Illinois, USA.
Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
Jesse Brown VA Medical Center, Chicago, Illinois, USA
| | - Peter R. Williamson
- Section of Infectious Diseases, Department of Medicine, University of Illinois at Chicago College of Medicine, Chicago, Illinois, USA.
Department of Pathology, University of Illinois at Chicago Medical Center, Chicago, Illinois, USA.
Division of Epidemiology and Biostatistics, School of Public Health, University of Illinois at Chicago, Chicago, Illinois, USA.
Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
Jesse Brown VA Medical Center, Chicago, Illinois, USA
| |
Collapse
|
242
|
Alvarez M, Casadevall A. Phagosome extrusion and host-cell survival after Cryptococcus neoformans phagocytosis by macrophages. Curr Biol 2007; 16:2161-5. [PMID: 17084702 DOI: 10.1016/j.cub.2006.09.061] [Citation(s) in RCA: 309] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2006] [Revised: 09/18/2006] [Accepted: 09/20/2006] [Indexed: 10/23/2022]
Abstract
Cryptococcus neoformans (Cn) is an encapsulated yeast that is a facultative intracellular pathogen and a frequent cause of human disease. The interaction of Cn with alveolar macrophages is critical for containing the infection , but Cn can also replicate intracellularly and lyse macrophages . Cn has a unique intracellular pathogenic strategy that involves cytoplasmic accumulation of polysaccharide-containing vesicles and intracellular replication leading to the formation of spacious phagosomes in which multiple cryptococcal cells are present . The Cn intracellular pathogenic strategy in macrophages and amoebas is similar, leading to the proposal that it originated as a mechanism for survival against phagocytic predators in the environment . Here, we report that under certain conditions, including phagosomal maturation, possible actin depolymerization, and homotypic phagosome fusion, Cn can exit the macrophage host through an extrusion of the phagosome, while both the released pathogen and host remain alive and able to propagate. The phenomenon of "phagosomal extrusion" indicates the existence of a previously unrecognized mechanism whereby a fungal pathogen can escape the intracellular confines of mammalian macrophages to continue propagation and, possibly, dissemination.
Collapse
Affiliation(s)
- Mauricio Alvarez
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, 10461, USA
| | | |
Collapse
|
243
|
Schop J. Protective immunity against cryptococcus neoformans infection. Mcgill J Med 2007; 10:35-43. [PMID: 18523595 PMCID: PMC2323542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Cryptococcus neoformans, the etiological agent of cryptococcosis, is an occasional opportunistic fungal pathogen of immune competent individuals. However, it is a relatively frequent cause of life-threatening meningoencephalitis and pulmonary infections in immunosuppressed hosts and is a leading mycological cause of morbidity and mortality among patients with AIDS in most parts of the world. The lack of an effective fungicidal regimen and the development of antifungal resistant strains suggest that continued investigation is necessary to devise immunotherapeutic strategies, drug targets and/or vaccines to combat C. neoformans infections. Until recently, cryptococcal virulence factors such as its polysaccharide capsule, macrophage parasitism, and its ability to induce an ineffective antibody mediated immune (AMI) response along with a non-protective type II (Th2) cell-mediated immune response have thwarted efforts to induce complete protective immunity against a lethal cryptococcal strain in murine models. The presence of C. neoformans antibodies in adult human serum suggests that immune competent individuals have difficulty resolving an early cryptococcal infection allowing for the establishment of a subclinical chronic infection. Recent studies have shown that pro-inflammatory cytokines, specifically interferon-g (IFN-gamma), associated with type I (Th1) cell-mediated immunity can successfully drive cell-mediated immune (CMI) responses to produce protective immunity to a second experimental C. neoformans infection in mice. This review will evaluate the intricacies of the host-cryptococcal interaction and discuss recent developments in C. neoformans research and the potential for human vaccines and/or drug therapies.
Collapse
Affiliation(s)
- Joel Schop
- University of Texas at San Antonio, San Antonio, TX 78229, USA.
| |
Collapse
|
244
|
Abstract
The dramatic increase in fungal diseases in recent years can be attributed to the increased aggressiveness of medical therapy and other human activities. Immunosuppressed patients are at risk of contracting fungal diseases in healthcare settings and from natural environments. Increased prescribing of antifungals has led to the emergence of resistant fungi, resulting in treatment challenges. These concerns, together with the elucidation of the mechanisms of protective immunity against fungal diseases, have renewed interest in the development of vaccines against the mycoses. Most research has used murine models of human disease and, as we review in this article, the knowledge gained from these studies has advanced to the point where the development of vaccines targeting human fungal pathogens is now a realistic and achievable goal.
Collapse
Affiliation(s)
- Jim E. Cutler
- Departments of Pediatrics and Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences, and Research Institute for Children at Children’s Hospital, New Orleans, Louisiana, 70118 USA
| | - George S. Deepe
- Division of Infectious Diseases, University of Cincinnati College of Medicine, Cincinnati, Ohio, 45267–0560 USA
| | - Bruce S. Klein
- Departments of Pediatrics, Internal Medicine, and Medical Microbiology and Immunology and the University of Wisconsin Comprehensive Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, 53792 USA
| |
Collapse
|
245
|
Giles SS, Stajich JE, Nichols C, Gerrald QD, Alspaugh JA, Dietrich F, Perfect JR. The Cryptococcus neoformans catalase gene family and its role in antioxidant defense. EUKARYOTIC CELL 2006; 5:1447-59. [PMID: 16963629 PMCID: PMC1563583 DOI: 10.1128/ec.00098-06] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In the present study, we sought to elucidate the contribution of the Cryptococcus neoformans catalase gene family to antioxidant defense. We employed bioinformatics techniques to identify four members of the C. neoformans catalase gene family and created mutants lacking single or multiple catalase genes. Based on a phylogenetic analysis, CAT1 and CAT3 encode putative spore-specific catalases, CAT2 encodes a putative peroxisomal catalase, and CAT4 encodes a putative cytosolic catalase. Only Cat1 exhibited detectable biochemical activity in vitro, and Cat1 activity was constitutive in the yeast form of this organism. Although they were predicted to be important in spores, neither CAT1 nor CAT3 was essential for mating or spore viability. Consistent with previous studies of Saccharomyces cerevisiae, the single (cat1, cat2, cat3, and cat4) and quadruple (cat1 cat2 cat3 cat4) catalase mutant strains exhibited no oxidative-stress phenotypes under conditions in which either exogenous or endogenous levels of reactive oxygen species were elevated. In addition, there were no significant differences in the mean times to mortality between groups of mice infected with C. neoformans catalase mutant strains (the cat1 and cat1 cat2 cat3 cat4 mutants) and those infected with wild-type strain H99. We conclude from the results of this study that C. neoformans possesses a robust antioxidant system, composed of functionally overlapping and compensatory components that provide protection against endogenous and exogenous oxidative stresses.
Collapse
Affiliation(s)
- Steven S Giles
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | |
Collapse
|
246
|
Shea JM, Kechichian TB, Luberto C, Del Poeta M. The cryptococcal enzyme inositol phosphosphingolipid-phospholipase C confers resistance to the antifungal effects of macrophages and promotes fungal dissemination to the central nervous system. Infect Immun 2006; 74:5977-88. [PMID: 16988277 PMCID: PMC1594881 DOI: 10.1128/iai.00768-06] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In recent years, sphingolipids have emerged as critical molecules in the regulation of microbial pathogenesis. In fungi, the synthesis of complex sphingolipids is important for the regulation of pathogenicity, but the role of sphingolipid degradation in fungal virulence is not known. Here, we isolated and characterized the inositol phosphosphingolipid-phospholipase C1 (ISC1) gene from the fungal pathogen Cryptococcus neoformans and showed that it encodes an enzyme that metabolizes fungal inositol sphingolipids. Isc1 protects C. neoformans from acidic, oxidative, and nitrosative stresses, which are encountered by the fungus in the phagolysosomes of activated macrophages, through a Pma1-dependent mechanism(s). In an immunocompetent mouse model, the C. neoformans Deltaisc1 mutant strain is almost exclusively found extracellularly and in a hyperencapsulated form, and its dissemination to the brain is remarkably reduced compared to that of control strains. Interestingly, the dissemination of the C. neoformans Deltaisc1 strain to the brain is promptly restored in these mice when alveolar macrophages are pharmacologically depleted or when infecting an immunodeficient mouse in which macrophages are not efficiently activated. These studies suggest that Isc1 plays a key role in protecting C. neoformans from the intracellular environment of macrophages, whose activation is important for preventing fungal dissemination of the Deltaisc1 strain to the central nervous system and the development of meningoencephalitis.
Collapse
Affiliation(s)
- John M Shea
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 173 Ashley Avenue, BSB 503, Charleston, SC 29425, USA
| | | | | | | |
Collapse
|
247
|
Rodrigues ML, Nimrichter L, Oliveira DL, Frases S, Miranda K, Zaragoza O, Alvarez M, Nakouzi A, Feldmesser M, Casadevall A. Vesicular polysaccharide export in Cryptococcus neoformans is a eukaryotic solution to the problem of fungal trans-cell wall transport. EUKARYOTIC CELL 2006; 6:48-59. [PMID: 17114598 PMCID: PMC1800364 DOI: 10.1128/ec.00318-06] [Citation(s) in RCA: 378] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The mechanisms by which macromolecules are transported through the cell wall of fungi are not known. A central question in the biology of Cryptococcus neoformans, the causative agent of cryptococcosis, is the mechanism by which capsular polysaccharide synthesized inside the cell is exported to the extracellular environment for capsule assembly and release. We demonstrate that C. neoformans produces extracellular vesicles during in vitro growth and animal infection. Vesicular compartments, which are transferred to the extracellular space by cell wall passage, contain glucuronoxylomannan (GXM), a component of the cryptococcal capsule, and key lipids, such as glucosylceramide and sterols. A correlation between GXM-containing vesicles and capsule expression was observed. The results imply a novel mechanism for the release of the major virulence factor of C. neoformans whereby polysaccharide packaged in lipid vesicles crosses the cell wall and the capsule network to reach the extracellular environment.
Collapse
Affiliation(s)
- Marcio L Rodrigues
- Laboratório de Estudos Integrados em Bioquímica Microbiana, Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941590, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
248
|
Waterman SR, Hacham M, Panepinto J, Hu G, Shin S, Williamson PR. Cell wall targeting of laccase of Cryptococcus neoformans during infection of mice. Infect Immun 2006; 75:714-22. [PMID: 17101662 PMCID: PMC1828480 DOI: 10.1128/iai.01351-06] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Laccase is a major virulence factor of the pathogenic fungus Cryptococcus neoformans, which afflicts both immunocompetent and immunocompromised individuals. In the present study, laccase was expressed in C. neoformans lac1Delta cells as a fusion protein with an N-terminal green fluorescent protein (GFP) using C. neoformans codon usage. The fusion protein was robustly localized to the cell wall at physiological pH, but it was mislocalized at low pH. Structural analysis of the laccase identified a C-terminal region unique to C. neoformans, and expression studies showed that the region was required for efficient transport to the cell wall both in vitro and during infection of mouse lungs. During infection of mice, adherence to alveolar macrophages was also associated with a partial mislocalization of GFP-laccase within cytosolic vesicles. In addition, recovery of cryptococcal cells from lungs of two strains of mice (CBA/J and Swiss Albino) later in infection was also associated with cytosolic mislocalization, but cells from the brain showed almost exclusive localization to cell walls, suggesting that there was more efficient cell wall targeting during infection of the brain. These data suggest that host cell antifungal defenses may reduce effective cell wall targeting of laccase during infection of the lung but not during infection of the brain, which may contribute to a more predominant role for the enzyme during infection of the brain.
Collapse
Affiliation(s)
- Scott R Waterman
- Section of Infectious Diseases, Department of Medicine, University of Illinois at Chicago College of Medicine, Chicago, IL 60612, USA
| | | | | | | | | | | |
Collapse
|
249
|
Barbosa FM, Fonseca FL, Figueiredo RT, Bozza MT, Casadevall A, Nimrichter L, Rodrigues ML. Binding of glucuronoxylomannan to the CD14 receptor in human A549 alveolar cells induces interleukin-8 production. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2006; 14:94-8. [PMID: 17093102 PMCID: PMC1797707 DOI: 10.1128/cvi.00296-06] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Glucuronoxylomannan (GXM) is the major capsular polysaccharide of Cryptococcus neoformans. GXM receptors have been characterized in phagocytes and endothelial cells, but epithelial molecules recognizing the polysaccharide remain unknown. In the current study, we demonstrate that GXM binds to the CD14 receptor in human type II alveolar epithelial cells, resulting in the production of the proinflammatory chemokine interleukin-8.
Collapse
Affiliation(s)
- Fabiane M Barbosa
- Laboratório de Estudos Integrados em Bioquímica Microbiana, Departamento de Microbiologia Geral, Universidade Federal do Rio de Janeiro, Centro de Ciencias da Saude (CCS), Rio de Janeiro, Brazil
| | | | | | | | | | | | | |
Collapse
|
250
|
Ma H, Croudace JE, Lammas DA, May RC. Expulsion of live pathogenic yeast by macrophages. Curr Biol 2006; 16:2156-60. [PMID: 17084701 DOI: 10.1016/j.cub.2006.09.032] [Citation(s) in RCA: 234] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2006] [Revised: 09/05/2006] [Accepted: 09/05/2006] [Indexed: 11/30/2022]
Abstract
Phagocytic cells, such as neutrophils and macrophages, perform a critical role in protecting organisms from infection by engulfing and destroying invading microbes . Although some bacteria and fungi have evolved strategies to survive within a phagocyte after uptake, most of these pathogens must eventually kill the host cell if they are to escape and infect other tissues . However, we now demonstrate that the human fungal pathogen Cryptococcus neoformans is able to escape from within macrophages without killing the host cell by a novel expulsive mechanism. This process occurs in both murine J774 cells and primary human macrophages. It is extremely rapid and yet can occur many hours after phagocytosis of the pathogen. Expulsion occurs independently of the initial route of phagocytic uptake and does not require phagosome maturation . After the expulsive event, both the host macrophage and the expelled C. neoformans appear morphologically normal and continue to proliferate, suggesting that this process may represent an important mechanism by which pathogens are able to escape from phagocytic cells without triggering host cell death and thus inflammation .
Collapse
Affiliation(s)
- Hansong Ma
- Molecular Pathobiology, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | | | | | | |
Collapse
|