201
|
Dolz R, Pujols J, Ordóñez G, Porta R, Majó N. Antigenic and molecular characterization of isolates of the Italy 02 infectious bronchitis virus genotype. Avian Pathol 2006; 35:77-85. [PMID: 16595297 DOI: 10.1080/03079450600597295] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
As part of an epidemiological surveillance of infectious bronchitis virus (IBV) in Spain, four Spanish field isolates showed high S1 spike sequence similarities with an IBV sequence from the GenBank database named Italy 02. Given that little was known about this new emergent IBV strain we have characterized the four isolates by sequencing the entire S1 part of the spike protein gene and have compared them with many reference IBV serotypes. In addition, cross-virus neutralization assays were conducted with the main IBV serotypes present in Europe. The four Spanish field strains and the Italy 02 S1 sequence from the NCBI database were established as a new genotype that showed maximum amino acid identities with the 4/91 serotype (81.7% to 83.7%), the D274 group that included D207, D274 and D3896 strains (79.8% to 81.7%), and the B1648 serotype (79.3% to 80%). Furthermore, on the basis of these results, it was demonstrated that the Italy 02 genotype had been circulating in Spain since as early as 1997. Based on the average ratio of synonymous:non-synonymous (dS/dN) amino acid substitutions within Italy 02 sequences, no positive selection pressures were related with changes observed in the S1 gene. Moreover, phylogenetic analysis of the S1 gene suggested that the Italy 02 genotype has undergone a recombination event. Virus neutralization assays demonstrated that little antigenic relatedness (less than 35%) exists between Italy 02 and some of the reference IBV serotypes, and indicated that Italy 02 is likely to be a new serotype.
Collapse
Affiliation(s)
- Roser Dolz
- Centre de Recerca en Sanitat Animal (CReSA), 43206 Reus, Tarragona, Spain.
| | | | | | | | | |
Collapse
|
202
|
Li W, Wong SK, Li F, Kuhn JH, Huang IC, Choe H, Farzan M. Animal origins of the severe acute respiratory syndrome coronavirus: insight from ACE2-S-protein interactions. J Virol 2006; 80:4211-9. [PMID: 16611880 PMCID: PMC1472041 DOI: 10.1128/jvi.80.9.4211-4219.2006] [Citation(s) in RCA: 203] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Wenhui Li
- Department of Microbiology and Molecular Genetics, Harvard Medical School and New England Primate Research Center, Southborough, Massachusetts, USA.
| | | | | | | | | | | | | |
Collapse
|
203
|
Winter C, Schwegmann-Weßels C, Cavanagh D, Neumann U, Herrler G. Sialic acid is a receptor determinant for infection of cells by avian Infectious bronchitis virus. J Gen Virol 2006; 87:1209-1216. [PMID: 16603523 DOI: 10.1099/vir.0.81651-0] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The importance of sialic acid for infection by avian Infectious bronchitis virus (IBV) has been analysed. Neuraminidase treatment rendered Vero, baby hamster kidney and primary chicken kidney cells resistant to infection by the IBV-Beaudette strain. Sialic acid-dependent infection was also observed with strain M41 of IBV, which infects primary chicken kidney cells but not cells from other species. In comparison with Influenza A virus and Sendai virus, IBV was most sensitive to pre-treatment of cells with neuraminidase. This finding suggests that IBV requires a greater amount of sialic acid on the cell surface to initiate an infection compared with the other two viruses. In previous studies, with respect to the haemagglutinating activity of IBV, it has been shown that the virus preferentially recognizes α2,3-linked sialic acid. In agreement with this finding, susceptibility to infection by IBV was connected to the expression of α2,3-linked sialic acid as indicated by the reactivity with the lectin Maackia amurensis agglutinin. Here, it is discussed that binding to sialic acid may be used by IBV for primary attachment to the cell surface; tighter binding and subsequent fusion between the viral and the cellular membrane may require interaction with a second receptor.
Collapse
Affiliation(s)
- Christine Winter
- Institute for Virology and Clinic for Poultry, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany
| | - Christel Schwegmann-Weßels
- Institute for Virology and Clinic for Poultry, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany
| | - Dave Cavanagh
- Institute for Animal Health, Division of Microbiology, Compton Laboratory, Compton, Newbury, Berkshire RG20 7NN, UK
| | - Ulrich Neumann
- Institute for Virology and Clinic for Poultry, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany
| | - Georg Herrler
- Institute for Virology and Clinic for Poultry, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany
| |
Collapse
|
204
|
Dove B, Brooks G, Bicknell K, Wurm T, Hiscox JA. Cell cycle perturbations induced by infection with the coronavirus infectious bronchitis virus and their effect on virus replication. J Virol 2006; 80:4147-56. [PMID: 16571830 PMCID: PMC1440480 DOI: 10.1128/jvi.80.8.4147-4156.2006] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In eukaryotic cells, cell growth and division occur in a stepwise, orderly fashion described by a process known as the cell cycle. The relationship between positive-strand RNA viruses and the cell cycle and the concomitant effects on virus replication are not clearly understood. We have shown that infection of asynchronously replicating and synchronized replicating cells with the avian coronavirus infectious bronchitis virus (IBV), a positive-strand RNA virus, resulted in the accumulation of infected cells in the G2/M phase of the cell cycle. Analysis of various cell cycle-regulatory proteins and cellular morphology indicated that there was a down-regulation of cyclins D1 and D2 (G1 regulatory cyclins) and that a proportion of virus-infected cells underwent aberrant cytokinesis, in which the cells underwent nuclear, but not cytoplasmic, division. We assessed the impact of the perturbations on the cell cycle for virus-infected cells and found that IBV-infected G2/M-phase-synchronized cells exhibited increased viral protein production when released from the block when compared to cells synchronized in the G0 phase or asynchronously replicating cells. Our data suggested that IBV induces a G2/M phase arrest in infected cells to promote favorable conditions for viral replication.
Collapse
Affiliation(s)
- Brian Dove
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | | | | | | | | |
Collapse
|
205
|
Ignjatovic J, Gould G, Sapats S. Isolation of a variant infectious bronchitis virus in Australia that further illustrates diversity among emerging strains. Arch Virol 2006; 151:1567-85. [PMID: 16501892 PMCID: PMC7087298 DOI: 10.1007/s00705-006-0726-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2005] [Accepted: 01/05/2006] [Indexed: 01/15/2023]
Abstract
Australian infectious bronchitis viruses (IBV) have undergone a separate evolution due to geographic isolation. Consequently, changes occurring in Australian IBV illustrate, independently from other countries, types of variability that could occur in emerging IBV strains. Previously, we have identified two distinct genetic groups of IBV, designated subgroups 1 and 2. IBV strains of subgroup 1 have S1 and N proteins that share a high degree of amino acid identity, 81 to 98% in S1 and 91 to 99% in N. Subgroup 2 strains possess S1 and N proteins that share a low level of identity with subgroup 1 strains: 54 to 62% in S1 and 60 to 62% in N. This paper describes the isolation and characterisation of a third, previously undetected genetic group of IBV in Australia. The subgroup 3 strains, represented by isolate chicken/Australia/N2/04, had an S1 protein that shared a low level of identity with both subgroups 1 and 2: 61 to 63% and 56 to 59%, respectively. However, the N protein and the 3′ untranslated region were similar to subgroup 1: 90 to 97% identical with the N protein of subgroup 1 strains. This N4/02 subgroup 3 of IBV is reminiscent of two other strains, D1466 and DE072, isolated in the Netherlands and in the USA, respectively. The emergence of the subgroup 3 viruses in Australia, as well as the emergence of subgroup 2 in 1988, could not be explained by any of the mechanisms that are currently considered to be involved in generation of IBV variants.
Collapse
Affiliation(s)
- J Ignjatovic
- CSIRO Livestock Industries, Australian Animal Health Laboratory, Geelong, Australia.
| | | | | |
Collapse
|
206
|
Weiss SR, Navas-Martin S. Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome coronavirus. Microbiol Mol Biol Rev 2006; 69:635-64. [PMID: 16339739 PMCID: PMC1306801 DOI: 10.1128/mmbr.69.4.635-664.2005] [Citation(s) in RCA: 767] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Coronaviruses are a family of enveloped, single-stranded, positive-strand RNA viruses classified within the Nidovirales order. This coronavirus family consists of pathogens of many animal species and of humans, including the recently isolated severe acute respiratory syndrome coronavirus (SARS-CoV). This review is divided into two main parts; the first concerns the animal coronaviruses and their pathogenesis, with an emphasis on the functions of individual viral genes, and the second discusses the newly described human emerging pathogen, SARS-CoV. The coronavirus part covers (i) a description of a group of coronaviruses and the diseases they cause, including the prototype coronavirus, murine hepatitis virus, which is one of the recognized animal models for multiple sclerosis, as well as viruses of veterinary importance that infect the pig, chicken, and cat and a summary of the human viruses; (ii) a short summary of the replication cycle of coronaviruses in cell culture; (iii) the development and application of reverse genetics systems; and (iv) the roles of individual coronavirus proteins in replication and pathogenesis. The SARS-CoV part covers the pathogenesis of SARS, the developing animal models for infection, and the progress in vaccine development and antiviral therapies. The data gathered on the animal coronaviruses continue to be helpful in understanding SARS-CoV.
Collapse
Affiliation(s)
- Susan R Weiss
- Department of Microbiology, University of Pennsylvania School of Medicine, 36th Street and Hamilton Walk, Philadelphia, Pennsylvania 19104-6076, USA.
| | | |
Collapse
|
207
|
Rottier PJM, Nakamura K, Schellen P, Volders H, Haijema BJ. Acquisition of macrophage tropism during the pathogenesis of feline infectious peritonitis is determined by mutations in the feline coronavirus spike protein. J Virol 2006; 79:14122-30. [PMID: 16254347 PMCID: PMC1280227 DOI: 10.1128/jvi.79.22.14122-14130.2005] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In feline coronavirus (FCoV) pathogenesis, the ability to infect macrophages is an essential virulence factor. Whereas the low-virulence feline enteric coronavirus (FECV) isolates primarily replicate in the epithelial cells of the enteric tract, highly virulent feline infectious peritonitis virus (FIPV) isolates have acquired the ability to replicate efficiently in macrophages, which allows rapid dissemination of the virulent virus throughout the body. FIPV 79-1146 and FECV 79-1683 are two genetically closely related representatives of the two pathotypes. Whereas FECV 79-1683 causes at the most a mild enteritis in young kittens, FIPV 79-1146 almost invariably induces a lethal peritonitis. The virulence phenotypes correlate with the abilities of these viruses to infect and replicate in macrophages, a feature of FIPV 79-1146 but not of FECV 79-1683. To identify the genetic determinants of the FIPV 79-1146 macrophage tropism, we exchanged regions of its genome with the corresponding parts of FECV 79-1683, after which the ability of the FIPV/FECV hybrid viruses to infect macrophages was tested. Thus, we established that the FIPV spike protein is the determinant for efficient macrophage infection. Interestingly, this property mapped to the C-terminal domain of the protein, implying that the difference in infection efficiency between the two viruses is not determined at the level of receptor usage, which we confirmed by showing that infection by both viruses was equally blocked by antibodies directed against the feline aminopeptidase N receptor. The implications of these findings are discussed.
Collapse
Affiliation(s)
- Peter J M Rottier
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands.
| | | | | | | | | |
Collapse
|
208
|
Weiss SR, Navas-Martin S. Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome coronavirus. Microbiol Mol Biol Rev 2005. [PMID: 16339739 DOI: 10.1128/mmbr.69.4.635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023] Open
Abstract
Coronaviruses are a family of enveloped, single-stranded, positive-strand RNA viruses classified within the Nidovirales order. This coronavirus family consists of pathogens of many animal species and of humans, including the recently isolated severe acute respiratory syndrome coronavirus (SARS-CoV). This review is divided into two main parts; the first concerns the animal coronaviruses and their pathogenesis, with an emphasis on the functions of individual viral genes, and the second discusses the newly described human emerging pathogen, SARS-CoV. The coronavirus part covers (i) a description of a group of coronaviruses and the diseases they cause, including the prototype coronavirus, murine hepatitis virus, which is one of the recognized animal models for multiple sclerosis, as well as viruses of veterinary importance that infect the pig, chicken, and cat and a summary of the human viruses; (ii) a short summary of the replication cycle of coronaviruses in cell culture; (iii) the development and application of reverse genetics systems; and (iv) the roles of individual coronavirus proteins in replication and pathogenesis. The SARS-CoV part covers the pathogenesis of SARS, the developing animal models for infection, and the progress in vaccine development and antiviral therapies. The data gathered on the animal coronaviruses continue to be helpful in understanding SARS-CoV.
Collapse
Affiliation(s)
- Susan R Weiss
- Department of Microbiology, University of Pennsylvania School of Medicine, 36th Street and Hamilton Walk, Philadelphia, Pennsylvania 19104-6076, USA.
| | | |
Collapse
|
209
|
Abstract
The number of avian species in which coronaviruses have been detected has doubled in the past couple of years. While the coronaviruses in these species have all been in coronavirus Group 3, as for the better known coronaviruses of the domestic fowl (infectious bronchitis virus [IBV], in Gallus gallus), turkey (Meleagris gallopavo) and pheasant (Phasianus colchicus), there is experimental evidence to suggest that birds are not limited to infection with Group 3 coronaviruses. In China coronaviruses have been isolated from peafowl (Pavo), guinea fowl (Numida meleagris; also isolated in Brazil), partridge (Alectoris) and also from a non-gallinaceous bird, the teal (Anas), all of which were being reared in the vicinity of domestic fowl. These viruses were closely related in genome organization and in gene sequences to IBV. Indeed, gene sequencing and experimental infection of chickens indicated that the peafowl isolate was the H120 IB vaccine strain, while the teal isolate was possibly a field strain of a nephropathogenic IBV. Thus the host range of IBV does extend beyond the chicken. Most recently, Group 3 coronaviruses have been detected in greylag goose (Anser anser), mallard duck (Anas platyrhynchos) and pigeon (Columbia livia). It is clear from the partial genome sequencing of these viruses that they are not IBV, as they have two additional small genes near the 3' end of the genome. Twenty years ago a coronavirus was isolated after inoculation of mice with tissue from the coastal shearwater (Puffinus puffinus). While it is not certain whether the virus was actually from the shearwater or from the mice, recent experiments have shown that bovine coronavirus (a Group 2 coronavirus) can infect and also cause enteric disease in turkeys. Experiments with some Group 1 coronaviruses (all from mammals, to date) have shown that they are not limited to replicating or causing disease in a single host. SARS-coronavirus has a wide host range. Clearly there is the potential for the emergence of new coronavirus diseases in domestic birds, from both avian and mammalian sources. Modest sequence conservation within gene 1 has enabled the design of oligonucleotide primers for use in diagnostic reverse transcriptase-polymerase chain reactions, which will be useful for the detection of new coronaviruses.
Collapse
Affiliation(s)
- Dave Cavanagh
- Institute for Animal Health, Compton Laboratory, Compton, Newbury, Berkshire, RG20 7NN, UK.
| |
Collapse
|
210
|
de Haan CAM, Haijema BJ, Boss D, Heuts FWH, Rottier PJM. Coronaviruses as vectors: stability of foreign gene expression. J Virol 2005; 79:12742-51. [PMID: 16188977 PMCID: PMC1235832 DOI: 10.1128/jvi.79.20.12742-12751.2005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2005] [Accepted: 08/01/2005] [Indexed: 12/15/2022] Open
Abstract
Coronaviruses are enveloped, positive-stranded RNA viruses considered to be promising vectors for vaccine development, as (i) genes can be deleted, resulting in attenuated viruses; (ii) their tropism can be modified by manipulation of their spike protein; and (iii) heterologous genes can be expressed by simply inserting them with appropriate coronaviral transcription signals into the genome. For any live vector, genetic stability is an essential requirement. However, little is known about the genetic stability of recombinant coronaviruses expressing foreign genes. In this study, the Renilla and the firefly luciferase genes were systematically analyzed for their stability after insertion at various genomic positions in the group 1 coronavirus feline infectious peritonitis virus and in the group 2 coronavirus mouse hepatitis virus. It appeared that the two genes exhibit intrinsic differences, the Renilla gene consistently being maintained more stably than the firefly gene. This difference was not caused by genome size restrictions, by different effects of the encoded proteins, or by different consequences of the synthesis of the additional subgenomic mRNAs. The loss of expression of the firefly luciferase was found to result from various, often large deletions of the gene, probably due to RNA recombination. The extent of this process appeared to depend strongly on the coronaviral genomic background, the luciferase gene being much more stable in the feline than in the mouse coronavirus genome. It also depended significantly on the particular genomic location at which the gene was inserted. The data indicate that foreign sequences are more stably maintained when replacing nonessential coronaviral genes.
Collapse
Affiliation(s)
- Cornelis A M de Haan
- Virology Division, Department of Infectious Diseases and Immunology, Utrecht, The Netherlands.
| | | | | | | | | |
Collapse
|
211
|
Casais R, Davies M, Cavanagh D, Britton P. Gene 5 of the avian coronavirus infectious bronchitis virus is not essential for replication. J Virol 2005; 79:8065-78. [PMID: 15956552 PMCID: PMC1143771 DOI: 10.1128/jvi.79.13.8065-8078.2005] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2004] [Accepted: 03/16/2005] [Indexed: 11/20/2022] Open
Abstract
The avian coronavirus Infectious bronchitis virus (IBV), like other coronaviruses, expresses several small nonstructural (ns) proteins in addition to those from gene 1 (replicase) and the structural proteins. These coronavirus ns genes differ both in number and in amino acid similarity between the coronavirus groups but show some concordance within a group or subgroup. The functions and requirements of the small ns gene products remain to be elucidated. With the advent of reverse genetics for coronaviruses, the first steps in elucidating their role can be investigated. We have used our reverse genetics system for IBV (R. Casais, V. Thiel, S. G. Siddell, D. Cavanagh, and P. Britton, J. Virol. 75:12359-12369, 2001) to investigate the requirement of IBV gene 5 for replication in vivo, in ovo, and ex vivo. We produced a series of recombinant viruses, with an isogenic background, in which complete expression of gene 5 products was prevented by the inactivation of gene 5 following scrambling of the transcription-associated sequence, thereby preventing the expression of IBV subgenomic mRNA 5, or scrambling either separately or together of the translation initiation codons for the two gene 5 products. As all of the recombinant viruses replicated very similarly to the wild-type virus, Beau-R, we conclude that the IBV gene 5 products are not essential for IBV replication per se and that they are accessory proteins.
Collapse
Affiliation(s)
- Rosa Casais
- Division of Molecular Biology, Institute for Animal Health, Compton Laboratory, Compton, Newbury, Berkshire, RG20 7NN, United Kingdom
| | | | | | | |
Collapse
|
212
|
Bijlenga G, Cook JKA, Gelb J, de Wit JJ. Development and use of the H strain of avian infectious bronchitis virus from the Netherlands as a vaccine: a review. Avian Pathol 2005; 33:550-7. [PMID: 15763721 PMCID: PMC7154294 DOI: 10.1080/03079450400013154] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The H strain of infectious bronchitis (IB) was one of the earliest live attenuated IB vaccines to be developed and has continued to be use in most parts of the world for almost 50 years. It was developed for used at both the 52nd (H52) and 120th (H120) vaccine levels and, because of it ability to provide heterologous cross-protection against a number of IB viruses of different serotypes, has proved to be one of the most enduring live attenuated IB vaccines. In fact, the H120 vaccine is possibly the most widely used live attenuated IB vaccine globally to this day. The use of H52 has, however, declined with the introduction of safe and highly efficacious inactivated IB vaccines. This review documents the original studies to isolate and attenuate the H strain by serial embryo passage, and describes the early studies to demonstrate its efficacy in laboratory studies and under field conditions. The efficacy of the H vaccine in providing cross-protection against some of the many IB variants now reported worldwide is also discussed, and possible future vaccination strategies for IB considered.
Collapse
Affiliation(s)
- Gosse Bijlenga
- Retired virologist, Chez
Gavillet, B P 9, 74250 La Tour-en-Faucigny,
France
| | - Jane K. A. Cook
- Intervet, UK,
Walton Manor, Walton, Milton Keynes, Bucks MK7 7AJ,
UK
- To whom correspondence should be addressed. E-mail:
| | - Jack Gelb
- Department of Animal and Food Sciences,
Townsend Hall, University of Delaware, Newark, Delaware 1917-1303,
USA
| | - J. J. de Wit
- Animal Health Service, POB 9, AA
Deventer, the Netherlands
| |
Collapse
|
213
|
Li W, Zhang C, Sui J, Kuhn JH, Moore MJ, Luo S, Wong SK, Huang IC, Xu K, Vasilieva N, Murakami A, He Y, Marasco WA, Guan Y, Choe H, Farzan M. Receptor and viral determinants of SARS-coronavirus adaptation to human ACE2. EMBO J 2005; 24:1634-43. [PMID: 15791205 PMCID: PMC1142572 DOI: 10.1038/sj.emboj.7600640] [Citation(s) in RCA: 778] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2004] [Accepted: 03/04/2005] [Indexed: 12/05/2022] Open
Abstract
Human angiotensin-converting enzyme 2 (ACE2) is a functional receptor for SARS coronavirus (SARS-CoV). Here we identify the SARS-CoV spike (S)-protein-binding site on ACE2. We also compare S proteins of SARS-CoV isolated during the 2002-2003 SARS outbreak and during the much less severe 2003-2004 outbreak, and from palm civets, a possible source of SARS-CoV found in humans. All three S proteins bound to and utilized palm-civet ACE2 efficiently, but the latter two S proteins utilized human ACE2 markedly less efficiently than did the S protein obtained during the earlier human outbreak. The lower affinity of these S proteins could be complemented by altering specific residues within the S-protein-binding site of human ACE2 to those of civet ACE2, or by altering S-protein residues 479 and 487 to residues conserved during the 2002-2003 outbreak. Collectively, these data describe molecular interactions important to the adaptation of SARS-CoV to human cells, and provide insight into the severity of the 2002-2003 SARS epidemic.
Collapse
Affiliation(s)
- Wenhui Li
- Department of Microbiology and Molecular Genetics, Harvard Medical School, New England Primate Research Center, Southborough, MA, USA
| | - Chengsheng Zhang
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
- Department of Microbiology, Queen Mary Hospital, The University of Hong Kong, Hong Kong SAR, PRC
| | - Jianhua Sui
- Department of Medicine, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Jens H Kuhn
- Department of Microbiology and Molecular Genetics, Harvard Medical School, New England Primate Research Center, Southborough, MA, USA
- Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Michael J Moore
- Department of Microbiology and Molecular Genetics, Harvard Medical School, New England Primate Research Center, Southborough, MA, USA
| | - Shiwen Luo
- Department of Microbiology, Queen Mary Hospital, The University of Hong Kong, Hong Kong SAR, PRC
| | - Swee-Kee Wong
- Department of Microbiology and Molecular Genetics, Harvard Medical School, New England Primate Research Center, Southborough, MA, USA
| | - I-Chueh Huang
- Department of Microbiology and Molecular Genetics, Harvard Medical School, New England Primate Research Center, Southborough, MA, USA
| | - Keming Xu
- Department of Microbiology, Queen Mary Hospital, The University of Hong Kong, Hong Kong SAR, PRC
| | - Natalya Vasilieva
- Department of Pediatrics, Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Akikazu Murakami
- Department of Medicine, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Yaqing He
- Center for Disease Control and Prevention of Shenzhen, Shenzhen, Guangdong Province, PRC
| | - Wayne A Marasco
- Department of Medicine, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Yi Guan
- Department of Microbiology, Queen Mary Hospital, The University of Hong Kong, Hong Kong SAR, PRC
| | - Hyeryun Choe
- Department of Pediatrics, Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael Farzan
- Department of Microbiology and Molecular Genetics, Harvard Medical School, New England Primate Research Center, Southborough, MA, USA
| |
Collapse
|
214
|
Abstract
In this article, we describe the reverse genetic system that is based on the use of vaccinia virus cloning vectors. This system represents a generic approach to coronavirus reverse genetics and was first described for the generation of recombinant human coronavirus 229E representing a group I coronavirus. Subsequently, the same approach has been used to generate recombinant avian infectious bronchitis coronavirus and, recently, recombinant mouse hepatitis virus, representing group III and group II coronaviruses, respectively. We describe how vaccinia virus-mediated homologous recombination can be used to introduce specific mutations into the coronavirus genomic cDNA during its propagation in vaccinia virus and how recombinant coronaviruses can be isolated. Finally, we describe how the coronavirus reverse genetic system has now been extended to the generation of coronavirus replicon RNAs.
Collapse
Affiliation(s)
- V Thiel
- Research Department, Cantonal Hospital St Gallen, St Gallen, Switzerland.
| | | |
Collapse
|
215
|
Britton P, Evans S, Dove B, Davies M, Casais R, Cavanagh D. Generation of a recombinant avian coronavirus infectious bronchitis virus using transient dominant selection. J Virol Methods 2005; 123:203-11. [PMID: 15620403 PMCID: PMC7112893 DOI: 10.1016/j.jviromet.2004.09.017] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2004] [Revised: 09/22/2004] [Accepted: 09/29/2004] [Indexed: 02/08/2023]
Abstract
A reverse genetics system for the avian coronavirus infectious bronchitis virus (IBV) has been described in which a full-length cDNA, corresponding to the IBV (Beaudette-CK) genome, was inserted into the vaccinia virus genome following in vitro assembly of three contiguous cDNAs [Casais, R., Thiel, V., Siddell, S.G., Cavanagh, D., Britton, P., 2001. Reverse genetics system for the avian coronavirus infectious bronchitis virus. J. Virol. 75, 12359-12369]. The method has subsequently been used to generate a recombinant IBV expressing a chimaeric S gene [Casais, R., Dove, B., Cavanagh, D., Britton, P., 2003. Recombinant avian infectious bronchitis virus expressing a heterologous spike gene demonstrates that the spike protein is a determinant of cell tropism. J. Virol. 77, 9084-9089]. Use of vaccinia virus as a vector for the full-length cDNA of the IBV genome has the advantage that modifications can be made to the IBV cDNA using homologous recombination, a method frequently used to insert and delete sequences from the vaccinia virus genome. We describe the use of homologous recombination as a method for modifying the Beaudette full-length cDNA, within the vaccinia virus genome, without the requirement for in vitro assembly of the IBV cDNA. To demonstrate the feasibility of the method we exchanged the ectodomain of the Beaudette spike gene for the corresponding region from IBV M41 and generated two recombinant infectious bronchitis viruses (rIBVs) expressing the chimaeric S protein, validating the method as an alternative way for generating rIBVs.
Collapse
Affiliation(s)
- Paul Britton
- Division of Molecular Biology, Institute for Animal Health, Compton Laboratory, Compton, Newbury, Berkshire RG20 7NN, UK.
| | | | | | | | | | | |
Collapse
|
216
|
Coronaviridae: a review of coronaviruses and toroviruses. CORONAVIRUSES WITH SPECIAL EMPHASIS ON FIRST INSIGHTS CONCERNING SARS 2005. [PMCID: PMC7123520 DOI: 10.1007/3-7643-7339-3_1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
|
217
|
Diversity of Coronavirus Spikes: Relationship to Pathogen Entry and Dissemination. VIRAL MEMBRANE PROTEINS: STRUCTURE, FUNCTION, AND DRUG DESIGN 2005. [PMCID: PMC7121885 DOI: 10.1007/0-387-28146-0_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Coronaviruses are widespread in the environment, infecting humans, domesticated and wild mammals, and birds. Infections cause a variety of diseases including bronchitis, gastroenteritis, hepatitis, and encephalitis, with symptoms ranging from being nearly undetectable to rapidly fatal. A combination of interacting variables determine the pattern and severity of coronavirus-induced disease, including the infecting virus strain, its transmission strategy, and the age and immune status of the infected host. Coronavirus pathogenesis is best understood by discerning how each of these variables dictates clinical outcomes. This chapter focuses on variabilities amongst the spike (S) proteins of infecting virus strains. Diversity of coronavirus surface proteins likely contributes to epidemic disease, an important and timely topic given the recent emergence of the human SARS coronavirus.
Collapse
|
218
|
Hodgson T, Casais R, Dove B, Britton P, Cavanagh D. Recombinant infectious bronchitis coronavirus Beaudette with the spike protein gene of the pathogenic M41 strain remains attenuated but induces protective immunity. J Virol 2004; 78:13804-11. [PMID: 15564488 PMCID: PMC533908 DOI: 10.1128/jvi.78.24.13804-13811.2004] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have replaced the ectodomain of the spike (S) protein of the Beaudette strain (Beau-R; apathogenic for Gallus domesticus chickens) of avian infectious bronchitis coronavirus (IBV) with that from the pathogenic M41 strain to produce recombinant IBV BeauR-M41(S). We have previously shown that this changed the tropism of the virus in vitro (R. Casais, B. Dove, D. Cavanagh, and P. Britton, J. Virol. 77:9084-9089, 2003). Herein we have assessed the pathogenicity and immunogenicity of BeauR-M41(S). There were no consistent differences in pathogenicity between the recombinant BeauR-M41(S) and its apathogenic parent Beau-R (based on snicking, nasal discharge, wheezing, watery eyes, rales, and ciliostasis in trachea), and both replicated poorly in trachea and nose compared to M41; the S protein from the pathogenic M41 had not altered the apathogenic nature of Beau-R. Both Beau-R and BeauR-M41(S) induced protection against challenge with M41 as assessed by absence of recovery of challenge virus and nasal exudate. With regard to snicking and ciliostasis, BeauR-M41(S) induced greater protection (seven out of nine chicks [77%]; assessed by ciliostasis) than Beau-R (one out of nine; 11%) but less than M41 (100%). The greater protection induced by BeauR-M41(S) against M41 may be related to the ectodomain of the spike protein of Beau-R differing from that of M41 by 4.1%; a small number of epitopes on the S protein may play a disproportionate role in the induction of immunity. The results are promising for the prospects of S-gene exchange for IBV vaccine development.
Collapse
Affiliation(s)
- Teri Hodgson
- Institute for Animal Health, Division of Molecular Biology, Compton Laboratory, Compton, Newbury, Berkshire, RG20 7NN United Kingdom
| | | | | | | | | |
Collapse
|
219
|
Cavanagh D. Severe acute respiratory syndrome vaccine development: experiences of vaccination against avian infectious bronchitis coronavirus. Avian Pathol 2004; 32:567-82. [PMID: 14676007 PMCID: PMC7154303 DOI: 10.1080/03079450310001621198] [Citation(s) in RCA: 225] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Vaccines against infectious bronchitis of chickens (Gallus gallus domesticus) have arguably been the most successful, and certainly the most widely used, of vaccines for diseases caused by coronaviruses, the others being against bovine, canine, feline and porcine coronaviruses. Infectious bronchitis virus (IBV), together with the genetically related coronaviruses of turkey (Meleagris gallopovo) and ring-necked pheasant (Phasianus colchicus), is a group 3 coronavirus, severe acute respiratory syndrome (SARS) coronavirus being tentatively in group 4, the other known mammalian coronaviruses being in groups 1 and 2. IBV replicates not only in respiratory tissues (including the nose, trachea, lungs and airsacs, causing respiratory disease), but also in the kidney (associated with minor or major nephritis), oviduct, and in many parts of the alimentary tract--the oesophagus, proventriculus, duodenum, jejunum, bursa of Fabricius, caecal tonsils (near the distal end of the tract), rectum and cloaca (the common opening for release of eggs and faeces), usually without clinical effects. The virus can persist, being re-excreted at the onset of egg laying (4 to 5 months of age), believed to be a consequence of the stress of coming into lay. Genetic lines of chickens differ in the extent to which IBV causes mortality in chicks, and in respect of clearance of the virus after the acute phase. Live attenuated (by passage in chicken embryonated eggs) IBV strains were introduced as vaccines in the 1950s, followed a couple of decades later by inactivated vaccines for boosting protection in egg-laying birds. Live vaccines are usually applied to meat-type chickens at 1 day of age. In experimental situations this can result in sterile immunity when challenged by virulent homologous virus. Although 100% of chickens may be protected (against clinical signs and loss of ciliary activity in trachea), sometimes 10% of vaccinated chicks do not respond with a protective immune response. Protection is short lived, the start of the decline being apparent 9 weeks after vaccination with vaccines based on highly attenuated strains. IBV exists as scores of serotypes (defined by the neutralization test), cross-protection often being poor. Consequently, chickens may be re-vaccinated, with the same or another serotype, two or three weeks later. Single applications of inactivated virus has generally led to protection of <50% of chickens. Two applications have led to 90 to 100% protection in some reports, but remaining below 50% in others. In practice in the field, inactivated vaccines are used in laying birds that have previously been primed with two or three live attenuated virus vaccinations. This increases protection of the laying birds against egg production losses and induces a sustained level of serum antibody, which is passed to progeny. The large spike glycoprotein (S) comprises a carboxy-terminal S2 subunit (approximately 625 amino acid residues), which anchors S in the virus envelope, and an amino-terminal S1 subunit (approximately 520 residues), believed to largely form the distal bulbous part of S. The S1 subunit (purified from IBV virus, expressed using baculovirus or expressed in birds from a fowlpoxvirus vector) induced virus neutralizing antibody. Although protective immune responses were induced, multiple inoculations were required and the percentage of protected chickens was too low (<50%) for commercial application. Remarkably, expression of S1 in birds using a non-pathogenic fowl adenovirus vector induced protection in 90% and 100% of chickens in two experiments. Differences of as little as 5% between the S1 sequences can result in poor cross-protection. Differences in S1 of 2 to 3% (10 to 15 amino acids) can change serotype, suggesting that a small number of epitopes are immunodominant with respect to neutralizing antibody. Initial studies of the role of the IBV nucleocapsid protein (N) in immunity suggested that immunization with bacterially expressed N, while not inducing protection directly, improved the induction of protection by a subsequent inoculation with inactivated IBV. In another study, two intramuscular immunizations of a plasmid expressing N induced protective immunity. The basis of immunity to IBV is not well understood. Serum antibody levels do not correlate with protection, although local antibody is believed to play a role. Adoptive transfer of IBV-infection-induced alphabeta T cells bearing CD8 antigen protected chicks from challenge infection. In conclusion, live attenuated IBV vaccines induce good, although short-lived, protection against homologous challenge, although a minority of individuals may respond poorly. Inactivated IBV vaccines are insufficiently efficacious when applied only once and in the absence of priming by live vaccine. Two applications of inactivated IBV are much more efficacious, although this is not a commercially viable proposition in the poultry industry. However, the cost and logistics of multiple application of a SARS inactivated vaccine would be more acceptable for the protection of human populations, especially if limited to targeted groups (e.g. health care workers and high-risk contacts). Application of a SARS vaccine is perhaps best limited to a minimal number of targeted individuals who can be monitored, as some vaccinated persons might, if infected by SARS coronavirus, become asymptomatic excretors of virus, thereby posing a risk to non-vaccinated people. Looking further into the future, the high efficacy of the fowl adenovirus vector expressing the IBV S1 subunit provides optimism for a live SARS vaccine, if that were deemed to be necessary, with the possibility of including the N protein gene.
Collapse
Affiliation(s)
- Dave Cavanagh
- Institute for Animal Health, Division of Molecular Biology, Compton Laboratory, Newbury, Berkshire, UK.
| |
Collapse
|
220
|
Guan Y, Peiris JSM, Zheng B, Poon LLM, Chan KH, Zeng FY, Chan CWM, Chan MN, Chen JD, Chow KYC, Hon CC, Hui KH, Li J, Li VYY, Wang Y, Leung SW, Yuen KY, Leung FC. Molecular epidemiology of the novel coronavirus that causes severe acute respiratory syndrome. Lancet 2004; 363:99-104. [PMID: 14726162 PMCID: PMC7112497 DOI: 10.1016/s0140-6736(03)15259-2] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND Severe acute respiratory syndrome (SARS) is a newly emerged disease caused by a novel coronavirus (SARS-CoV), which spread globally in early 2003, affecting over 30 countries. We have used molecular epidemiology to define the patterns of spread of the virus in Hong Kong and beyond. METHODS The case definition of SARS was based on that recommended by WHO. We genetically sequenced the gene for the S1 unit of the viral spike protein of viruses from patients with SARS in Hong Kong (138) and Guangdong (three) in February to April, 2003. We undertook phylogenetic comparisons with 27 other sequences available from public databases (Genbank). FINDINGS Most of the Hong Kong viruses (139/142), including those from a large outbreak in an apartment block, clustered closely together with the isolate from a single index case (HKU-33) who came from Guangdong to Hong Kong in late February. Three other isolates were genetically distinct from HKU-33 in Hong Kong during February, but none of these contributed substantially to the subsequent local outbreak. Viruses identified in Guangdong and Beijing were genetically more diverse. INTERPRETATION The molecular epidemiological evidence suggests that most SARS-CoV from the outbreak in Hong Kong, as well as the viruses from Canada, Vietnam, and Singapore, are genetically closely linked. Three viruses found in Hong Kong in February were phylogenetically distinct from the major cluster, which suggests that several introductions of the virus had occurred, but that only one was associated with the subsequent outbreak in Hong Kong, which in turn spread globally.
Collapse
Affiliation(s)
- Y Guan
- Department of Microbiology, University of Hong Kong, Hong Kong SAR, China
| | - JSM Peiris
- Department of Microbiology, University of Hong Kong, Hong Kong SAR, China
| | - B Zheng
- Department of Microbiology, University of Hong Kong, Hong Kong SAR, China
| | - LLM Poon
- Department of Microbiology, University of Hong Kong, Hong Kong SAR, China
| | - KH Chan
- Department of Microbiology, University of Hong Kong, Hong Kong SAR, China
| | - FY Zeng
- Department of Zoology, University of Hong Kong, Hong Kong SAR, China
| | - CWM Chan
- Department of Zoology, University of Hong Kong, Hong Kong SAR, China
| | - MN Chan
- Department of Zoology, University of Hong Kong, Hong Kong SAR, China
| | - JD Chen
- Department of Zoology, University of Hong Kong, Hong Kong SAR, China
| | - KYC Chow
- Department of Zoology, University of Hong Kong, Hong Kong SAR, China
| | - CC Hon
- Department of Zoology, University of Hong Kong, Hong Kong SAR, China
| | - KH Hui
- Department of Zoology, University of Hong Kong, Hong Kong SAR, China
| | - J Li
- Department of Zoology, University of Hong Kong, Hong Kong SAR, China
| | - VYY Li
- Department of Zoology, University of Hong Kong, Hong Kong SAR, China
| | - Y Wang
- Department of Zoology, University of Hong Kong, Hong Kong SAR, China
| | - SW Leung
- Department of Microbiology, University of Hong Kong, Hong Kong SAR, China
| | - KY Yuen
- Department of Microbiology, University of Hong Kong, Hong Kong SAR, China
| | - FC Leung
- Department of Zoology, University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
221
|
Abstract
The identification of a new coronavirus as the etiological agent of severe acute respiratory syndrome (SARS) has evoked much new interest in the molecular biology and pathogenesis of coronaviruses. This review summarizes present knowledge on coronavirus molecular biology and pathogenesis with particular emphasis on mouse hepatitis virus (MHV). MHV, a member of coronavirus group 2, is a natural pathogen of the mouse; MHV infection of the mouse is considered one of the best models for the study of demyelinating disease, such as multiple sclerosis, in humans. As a result of the SARS epidemic, coronaviruses can now be considered as emerging pathogens. Future research on SARS needs to be based on all the knowledge that coronavirologists have generated over more than 30 years of research.
Collapse
Affiliation(s)
- Sonia Navas-Martin
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6076, USA
| | | |
Collapse
|
222
|
Chow KYC, Hon CC, Hui RKH, Wong RTY, Yip CW, Zeng F, Leung FCC. Molecular advances in severe acute respiratory syndrome-associated coronavirus (SARS-CoV). GENOMICS, PROTEOMICS & BIOINFORMATICS 2003; 1:247-62. [PMID: 15629054 PMCID: PMC5172416 DOI: 10.1016/s1672-0229(03)01031-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The sudden outbreak of severe acute respiratory syndrome (SARS) in 2002 prompted the establishment of a global scientific network subsuming most of the traditional rivalries in the competitive field of virology. Within months of the SARS outbreak, collaborative work revealed the identity of the disastrous pathogen as SARS-associated coronavirus (SARS-CoV). However, although the rapid identification of the agent represented an important breakthrough, our understanding of the deadly virus remains limited. Detailed biological knowledge is crucial for the development of effective countermeasures, diagnostic tests, vaccines and antiviral drugs against the SARS-CoV. This article reviews the present state of molecular knowledge about SARS-CoV, from the aspects of comparative genomics, molecular biology of viral genes, evolution, and epidemiology, and describes the diagnostic tests and the anti-viral drugs derived so far based on the available molecular information.
Collapse
|