201
|
Talbot K, Davies KE. Chapter 7 Spinal muscular atrophies and hereditary motor neuropathies. HANDBOOK OF CLINICAL NEUROLOGY 2007; 82:141-153. [PMID: 18808892 DOI: 10.1016/s0072-9752(07)80010-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Affiliation(s)
- Kevin Talbot
- Department of Human Anatomy and Genetics, University of Oxford, UK; Department of Clinical Neurology, University of Oxford, UK
| | | |
Collapse
|
202
|
Williams KL, Rahimtula M, Mearow KM. Heat shock protein 27 is involved in neurite extension and branching of dorsal root ganglion neurons in vitro. J Neurosci Res 2006; 84:716-23. [PMID: 16862544 DOI: 10.1002/jnr.20983] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Alteration of the cytoskeleton in response to growth factors and extracellular matrix proteins is necessary for neurite growth. The cytoskeletal components, such as actin and tubulin, can be modified through interaction with other cellular proteins, including the small heat shock protein Hsp27. Our previous work suggested that Hsp27 influences neurite growth, potentially via its phosphorylation state interactions with actin. To investigate further the role of Hsp27 in neurite outgrowth of adult dorsal root ganglion (DRG) neurons, we have both down-regulated endogenous Hsp27 and expressed exogenous Hsp27. Down-regulation of Hsp27 with Hsp27 siRNA resulted in a decrease of neuritic tree length and complexity. In contrast, expression of exogenous Hsp27 in these neurons resulted in an increase in neuritic tree length and branching. Collectively, these results demonstrate that Hsp27 may play a role in neuritic growth via modulation of the actin cytoskeleton.
Collapse
Affiliation(s)
- Kristy L Williams
- Division of Basic Medical Sciences, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | | | | |
Collapse
|
203
|
Kang JH, Park KK, Lee IS, Magae J, Ando K, Kim CH, Chang YC. Proteome analysis of responses to ascochlorin in a human osteosarcoma cell line by 2-D gel electrophoresis and MALDI-TOF MS. J Proteome Res 2006; 5:2620-2631. [PMID: 17022633 DOI: 10.1021/pr060111i] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ascochlorin is a prenyl-phenol compound that was isolated from the fungus Ascochyta viciae. Ascochlorin reduces serum cholesterol and triglyceride levels, suppresses hypertension and tumor development, and ameliorates type I and II diabetes. Here, to better understand the mechanisms by which ascochlorin regulates physiological or pathological events and induces responses in the pharmacological treatment of cancer, we performed differential analysis of the proteome of the human osteosarcoma cells U2OS in response to ascochlorin. In addition, we established the first two-dimensional map of the U2OS proteome. The U2OS cell proteomes with and without treatment with ascochlorin were compared using two-dimensional electrophoresis, matrix-assisted laser desorption/ionization mass spectrometry and bioinformatics. The largest differences in expression were observed for the epidermal growth factor receptor (4-fold decrease), ribulose-5-phosphate-epimerase (13-fold decrease), ATP-dependent RNA helicase (8-fold decrease), and kelch-like ECH-associated protein 1 (6-fold decrease). The abundance of heterogeneous nuclear ribonucleoprotein L and minichromosome maintenance protein 7 increased 12- and 8.2-fold, respectively. In addition, Erk 2 was increased 3-fold in U2OS cells treated with ascochlorin. The expression of some selected proteins was confirmed by western blotting, zymography and RT-PCR analysis.
Collapse
Affiliation(s)
- Jeong Han Kang
- Department of Pathology, Catholic University of Daegu School of Medicine, Daegu 705-034, Korea
| | | | | | | | | | | | | |
Collapse
|
204
|
Dhib-Jalbut S, Arnold DL, Cleveland DW, Fisher M, Friedlander RM, Mouradian MM, Przedborski S, Trapp BD, Wyss-Coray T, Yong VW. Neurodegeneration and neuroprotection in multiple sclerosis and other neurodegenerative diseases. J Neuroimmunol 2006; 176:198-215. [PMID: 16983747 DOI: 10.1016/j.jneuroim.2006.03.027] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Multiple sclerosis is considered a disease of myelin destruction; Parkinson's disease (PD), one of dopaminergic neuron depletion; ALS, a disease of motor neuron death; and Alzheimer's, a disease of plaques and tangles. Although these disorders differ in important ways, they also have common pathogenic features, including inflammation, genetic mutations, inappropriate protein aggregates (e.g., Lewy bodies, amyloid plaques), and biochemical defects leading to apoptosis, such as oxidative stress and mitochondrial dysfunction. In most disorders, it remains uncertain whether inflammation and protein aggregation are neurotoxic or neuroprotective. Elucidating the mechanisms that orchestrate neuronal diseases should facilitate development of neuroprotective and neurorestorative strategies.
Collapse
Affiliation(s)
- Suhayl Dhib-Jalbut
- UMDNJ-Robert Wood Johnson Medical School, New Brunswick, NJ 08901, and The Cleveland Clinic, OH, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
205
|
Teimourian S, Jalal R, Sohrabpour M, Goliaei B. Down-regulation of Hsp27 radiosensitizes human prostate cancer cells. Int J Urol 2006; 13:1221-5. [PMID: 16984557 DOI: 10.1111/j.1442-2042.2006.01483.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AIM In this study, we examined whether human Hsp27 is involved in the radiation sensitization induced by gamma radiation in cultured human prostate cancer cells. METHODS We transfected DU145 cells with full length Hsp27 antisense cDNA to obtain viable cell lines which expressed reduced Hsp27. Selected individual clones were subjected to western blot analyses to confirm reduced expression of Hsp27. RESULTS Hsp27 belongs to a family of abundant and ubiquitous stress proteins, the small heat shock proteins. It has been shown that Hsp27 can inhibit apoptosis both in a caspase-dependent and independent manner. Colony assays showed that the cells engineered to express reduced Hsp27 levels had a significantly increased sensitivity to gamma radiation compared with control cells that were transfected with the vector alone. However, there was also a significant difference in viability of cells with reduced Hsp27 levels and control cells 72 h after gamma-irradiation. CONCLUSIONS Our results suggest the possible application of antisense Hsp27 cDNA or other methods to reduce Hsp27 expression as a radiation sensitizer in radiation oncology.
Collapse
Affiliation(s)
- Shahram Teimourian
- Laboratory of Biophysics and Molecular Biology, Institute of Biophysics and Biochemistry, University of Tehran, Iran
| | | | | | | |
Collapse
|
206
|
Vertii A, Hakim C, Kotlyarov A, Gaestel M. Analysis of Properties of Small Heat Shock Protein Hsp25 in MAPK-activated Protein Kinase 2 (MK2)-deficient Cells. J Biol Chem 2006; 281:26966-75. [PMID: 16840785 DOI: 10.1074/jbc.m602134200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Small heat shock proteins (sHsps) exist in dynamic oligomeric complexes and display diverse biological functions ranging from chaperone properties to modulator of apoptosis. So far, the role of stress-dependent phosphorylation of mammalian sHsps for its structure and function has been analyzed by using various phosphorylation site mutants overexpressed in different cell types as well as by non-exclusive inhibitors of the p38 MAPK cascade. Here we investigate the role of phosphorylation of endogenous sHsp in a genetic model lacking the major Hsp25 kinase, the MAP kinase-activated protein kinase MK2. We demonstrate that in MK2-deficient fibroblasts, where no stress-dependent phosphorylation of Hsp25 at Ser86 and no in vitro binding to 14-3-3 was detectable, stress-dependent disaggregation of endogenous Hsp25 complexes is impared and kinetics of arsenite-dependent, H2O2-dependent, and sublethal heat shock-induced insolubilization of Hsp25 is delayed. Similarly, green fluorescent protein-tagged Hsp25 shows retarded subcellular accumulation into stress granules in MK2-deficient cells after arsenite treatment. Decreased insolubilization of Hsp25 in MK2-deficient cells correlates with increased resistance against arsenite, H2O2, and sublethal heat shock treatment and with decreased apoptosis. In contrast, after severe, lethal heat shock MK2-deficient embryonic fibroblasts cells show fast and complete insolubilization of Hsp25 independent of MK2 and no increased stress resistance. Hence, MK2-dependent formation of insoluble stress granules and irreversible cell damage by oxidative stresses and sublethal heat shock correlate and only upon severe, lethal heat shock MK2-independent processes could determine insolubilization of Hsp25 and are more relevant for cellular stress damage.
Collapse
Affiliation(s)
- Anastassiia Vertii
- Institute of Biochemistry, Medical School Hannover, Hannover 30625, Germany
| | | | | | | |
Collapse
|
207
|
Shi B, Han B, Schwab IR, Isseroff RR. UVB Irradiation-Induced Changes in the 27-kd Heat Shock Protein (HSP27) in Human Corneal Epithelial Cells. Cornea 2006; 25:948-55. [PMID: 17102673 DOI: 10.1097/01.ico.0000224643.43601.5d] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
PURPOSE This study investigated the presence of the 27-kd heat shock protein (HSP27) and its responses to ultraviolet B (UVB) irradiation in human corneal epithelium and in cultured corneal epithelial cells. METHODS Human corneal epithelial cells including presumed corneal epithelial stem cells were cultured in vitro. HSP27 expression and intracellular localization in normal corneas or cultured corneal cells were examined using immunofluorescence staining. The expression of HSP27 in cultured corneal cells was also detected using western blotting, and the phosphorylated isoforms of HSP27 were identified using isoelectric focusing. RESULTS In normal corneal tissue, HSP27 was present in limbal basal and suprabasilar epithelial cells. In cultured epithelial corneal cells, HSP27 expression was heterogeneous: Some cells expressed virtually no HSP27 and others showed relatively strong expression. HSP27 was localized to the cytoplasm in nonstressed cells and translocated to the perinuclear and nuclear areas after UVB irradiation. UVB irradiation also induced the phosphorylation of HSP27, resulting in the increase in monophosphorylated isoform and formation of biphosphorylated isoform. UV induced the phosphorylation of HSP27 apparently through activation of p38 mitogen-activated protein kinase. CONCLUSION HSP27 is present mainly as a nonphosphorylated isoform in corneal epithelium and cultured corneal epithelial cells under nonstressed conditions. The constitutional expression of HSP27 suggests that it plays a physiologic role in the cornea. After UVB irradiation, HSP27 undergoes rapid phosphorylation and translocation. This stress response may be related to a protective role of HSP27 for survival of UVB-exposed corneal cells.
Collapse
Affiliation(s)
- Biao Shi
- Department of Dermatology, University of California Davis School of Medicine, Davis, CA 95616, USA
| | | | | | | |
Collapse
|
208
|
|
209
|
Schmitt E, Gehrmann M, Brunet M, Multhoff G, Garrido C. Intracellular and extracellular functions of heat shock proteins: repercussions in cancer therapy. J Leukoc Biol 2006; 81:15-27. [PMID: 16931602 DOI: 10.1189/jlb.0306167] [Citation(s) in RCA: 417] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Stress or heat shock proteins (HSPs) are the most conserved proteins present in both prokaryotes and eukaryotes. Their expression is induced in response to a wide variety of physiological and environmental insults. These proteins play an essential role as molecular chaperones by assisting the correct folding of nascent and stress-accumulated misfolded proteins, and preventing their aggregation. HSPs have a dual function depending on their intracellular or extracellular location. Intracellular HSPs have a protective function. They allow the cells to survive lethal conditions. Various mechanisms have been proposed to account for the cytoprotective functions of HSPs. Several HSPs have also been demonstrated to directly interact with various components of the tightly regulated programmed cell death machinery, upstream and downstream of the mitochondrial events. On the other hand, extracellular located or membrane-bound HSPs mediate immunological functions. They can elicit an immune response modulated either by the adaptive or innate immune system. This review will focus on HSP27, HSP70, and HSP90. We will discuss the dual role of these HSPs, protective vs. immunogenic properties, making a special emphasis in their utility as targets in cancer therapy.
Collapse
Affiliation(s)
- E Schmitt
- INSERM U-517, 7 Boulevard Jeanne d'Arc, Faculty of Medicine and Pharmacy, Dijon 21079, France, and Department of Hematology/Oncology, University Hospital Regensburg, Germany
| | | | | | | | | |
Collapse
|
210
|
Ferns G, Shams S, Shafi S. Heat shock protein 27: its potential role in vascular disease. Int J Exp Pathol 2006; 87:253-74. [PMID: 16875491 PMCID: PMC2517372 DOI: 10.1111/j.1365-2613.2006.00484.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2006] [Accepted: 03/23/2006] [Indexed: 11/30/2022] Open
Abstract
Heat shock proteins are molecular chaperones that have an ability to protect proteins from damage induced by environmental factors such as free radicals, heat, ischaemia and toxins, allowing denatured proteins to adopt their native configuration. Heat shock protein-27 (Hsp27) is a member of the small Hsp (sHsp) family of proteins, and has a molecular weight of approximately 27 KDa. In addition to its role as a chaperone, it has also been reported to have many additional functions. These include effects on the apoptotic pathway, cell movement and embryogenesis. In this review, we have focused on its possible role in vascular disease.
Collapse
Affiliation(s)
- Gordon Ferns
- Centre for Clinical Science and Measurement, School of Biomedical Science, University of Surrey, Guildford Surrey, UK.
| | | | | |
Collapse
|
211
|
Casado P, Zuazua-Villar P, del Valle E, Martínez-Campa C, Lazo PS, Ramos S. Vincristine regulates the phosphorylation of the antiapoptotic protein HSP27 in breast cancer cells. Cancer Lett 2006; 247:273-82. [PMID: 16843591 DOI: 10.1016/j.canlet.2006.05.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2006] [Revised: 05/04/2006] [Accepted: 05/09/2006] [Indexed: 11/21/2022]
Abstract
Vincristine is an antitumor drug that inhibits microtubule polymerization, causes G2/M arrest and induces apoptosis. 2D-PAGE and MALDI-TOF-MS analysis of vincristine effects on MCF7 cells, revealed a vincristine upregulated form and a vincristine downregulated form of the antiapoptotic protein HSP27. These findings linked to the lack of vincristine effect over HSP27 mRNA, suggest a protein post-translational modification. Further assays indicated the presence of a phosphorylated peptide, containing serine 82, only in the vincristine upregulated form. Serine 82 phosphorylation was confirmed using specific antibodies. Thus, phosphorylation of HSP27 may play a role in the cellular response to vincristine.
Collapse
Affiliation(s)
- Pedro Casado
- Departamento de Bioquimica y Biología Molecular, Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A), Universidad de Oviedo, 33071 Oviedo, Spain
| | | | | | | | | | | |
Collapse
|
212
|
Kubisch CH, Gukovsky I, Lugea A, Pandol SJ, Kuick R, Misek DE, Hanash SM, Logsdon CD. Long-term ethanol consumption alters pancreatic gene expression in rats: a possible connection to pancreatic injury. Pancreas 2006; 33:68-76. [PMID: 16804415 DOI: 10.1097/01.mpa.0000226878.81377.94] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVES Long-term ethanol consumption does not cause acute pancreatitis but rather sensitizes the pancreas to subsequent insults. The mechanisms responsible for this sensitization are unknown. To determine whether alterations in pancreatic gene expression might participate in ethanol-mediated sensitization, we performed gene-profiling analysis. METHODS Animals were fed ethanol-containing Lieber-DeCarli or control diet (pair-fed). After 8 weeks, pancreatic RNA expression was analyzed using Affimetrix GeneChips. Changes in specific genes were verified using quantitative reverse transcriptase-polymerase chain reaction. RESULTS Long-term ethanol feeding caused a significant alteration of pancreatic gene expression. Selection criteria of changes more than 3-fold and P < 0.05 yielded 114 probe sets. Activating transcription factor 3, heat shock protein 70, heat shock protein 27, and mesotrypsinogen were increased, whereas pancreatitis associate protein, folate carrier, and metallothionein were decreased. CONCLUSIONS Ethanol had a profound effect on pancreatic gene expression. The genes identified as elevated and reduced in this study may contribute to pancreatic sensitivity to stress. This study indicates for the first time the identities of multiple genes whose expression levels are dramatically influenced by long-term ethanol feeding. The identified genes may help explain the relationship between long-term ethanol abuse and pancreatic disease and lead to possible preventative or therapeutic approaches to ethanol-induced pancreatic disease.
Collapse
MESH Headings
- Activating Transcription Factor 3/genetics
- Activating Transcription Factor 3/metabolism
- Animals
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/metabolism
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Ethanol/toxicity
- Gene Expression Profiling
- Gene Expression Regulation
- HSP70 Heat-Shock Proteins/genetics
- HSP70 Heat-Shock Proteins/metabolism
- Lectins, C-Type/genetics
- Lectins, C-Type/metabolism
- Male
- Oligonucleotide Array Sequence Analysis
- Pancreas/drug effects
- Pancreas/metabolism
- Pancreatitis, Alcoholic/chemically induced
- Pancreatitis, Alcoholic/genetics
- Pancreatitis, Alcoholic/metabolism
- Pancreatitis-Associated Proteins
- RNA, Messenger/metabolism
- Rats
- Rats, Wistar
- Time Factors
Collapse
Affiliation(s)
- Constanze H Kubisch
- Department of Cancer Biology, MD Anderson Cancer Center, University of Texas, Houston, TX 77230-1429, USA
| | | | | | | | | | | | | | | |
Collapse
|
213
|
Chilosi M, Zamò A, Doglioni C, Reghellin D, Lestani M, Montagna L, Pedron S, Ennas MG, Cancellieri A, Murer B, Poletti V. Migratory marker expression in fibroblast foci of idiopathic pulmonary fibrosis. Respir Res 2006; 7:95. [PMID: 16813649 PMCID: PMC1538593 DOI: 10.1186/1465-9921-7-95] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2006] [Accepted: 06/30/2006] [Indexed: 12/18/2022] Open
Abstract
Background Fibroblast foci (FF) are considered a relevant morphologic marker of idiopathic pulmonary fibrosis/usual interstitial pneumonia (IPF/UIP), and are recognised as sites where fibrotic responses are initiated and/or perpetuated in this severe disease. Despite their relevance, the cellular and molecular mechanisms responsible for the formation of FF and their role in tissue remodelling are poorly defined. In previous studies we have provided evidence of abnormal activation of the wnt-signaling-pathway in IPF/UIP that is centred on FF and the overlying epithelium. This important morphogenetic pathway is able to trigger epithelial-mesenchymal-transition (EMT), a mechanism involved in developmental and metastatic processes, which is also potentially involved in pulmonary fibrosis. Methods Since EMT is characterised by enhancement of migratory potential of cells, we investigated the molecular profile of FF in 30 biopsies of IPF/UIP and a variety of control samples, focussing on the immunohistochemical expression of three molecules involved in cell motility and invasiveness, namely laminin-5-γ2-chain, fascin, and heat-shock-protein-27. Results We provide evidence that in UIP these three molecules are abnormally expressed in discrete clusters of bronchiolar basal cells precisely localised in FF. These cellular clusters expressed laminin-5-γ2-chain and heat-shock-protein-27 at very high levels, forming characteristic three-layered lesions defined as "sandwich-foci" (SW-FF). Upon quantitative analysis SW-FF were present in 28/30 UIP samples, representing more than 50% of recognisable FF in 21/30, but were exceedingly rare in a wide variety of lung pathologies examined as controls. In UIP, SW-FF were often observed in areas of microscopic honeycombing, and were also found at the interface between normal lung tissue and areas of dense scarring. Conclusion These molecular abnormalities strongly suggest that SW-FF represent the leading edge of pulmonary remodelling, where abnormal migration and re-epithelialisation take place, and that abnormal proliferation and migration of bronchiolar basal cells have a major role in the remodelling process characterising IPF/UIP. Further investigations will assess their possible use as reliable markers for better defining the UIP-pattern in difficult cases.
Collapse
Affiliation(s)
- Marco Chilosi
- Department of Pathology, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy
| | - Alberto Zamò
- Department of Pathology, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy
| | - Claudio Doglioni
- Department of Pathology San Raffaele Hospital, Via Olgettina60, 20132 Milan, Italy
| | - Daniela Reghellin
- Department of Pathology, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy
| | - Maurizio Lestani
- Department of Pathology, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy
| | - Licia Montagna
- Department of Pathology, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy
| | - Serena Pedron
- Department of Pathology, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy
| | - Maria Grazia Ennas
- Department of Cytomorphology, University of Cagliari, Cittadella Universitaria 09042 Monserrato, Cagliari, Italy
| | | | - Bruno Murer
- Department of Pathology, Umberto I Hospital, via Circonvallazione 50, 30173 Venice, Italy
| | - Venerino Poletti
- Department of Pneumology, G.B.Morgagni-L.Pierantoni Hospital, Via Carlo Forlanini 34, 47100 Forlì, Italy
| |
Collapse
|
214
|
Lo WY, Tsai MH, Tsai Y, Hua CH, Tsai FJ, Huang SY, Tsai CH, Lai CC. Identification of over-expressed proteins in oral squamous cell carcinoma (OSCC) patients by clinical proteomic analysis. Clin Chim Acta 2006; 376:101-7. [PMID: 16889763 DOI: 10.1016/j.cca.2006.06.030] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2006] [Revised: 06/12/2006] [Accepted: 06/26/2006] [Indexed: 10/24/2022]
Abstract
BACKGROUND Oral cancer is a worldwide problem. It is a universal aggressive disease in the population of smoking and drinking. The oral cancer mortality has been ranked 5th place in Taiwan in male cancer patients. A number of protein markers for oral cancer are still not applicable in large populations. Proteomic technologies provide excellent tools for rapid screening of a large number of potential biomarkers in malignant cells. METHOD Proteomics and real-time quantitative RT-PCR were used to analyze over-expressed proteins in 10 OSCC patients. RESULT Forty-one proteins were identified as commonly over-expressed in OSCC tissues. In OSCC tissues, alphaB-crystallin, tropomyosin 2, myosin light chain 1, heat shock protein 27 (HSP27), stratifin, thioredoxin-dependent peroxide reductase, flavin reductase, vimentin, rho GDP-dissociation inhibitor 2 (rho GDI-2), glutathione S-transferase Pi (GST-pi) and superoxide dismutase [Mn] (MnSOD) were significantly over-expressed (an average of 7.2, 6.0, 5.7, 4.3, 3.6, 3.4, 3.0, 3.0, 2.6, 2.5, 2.1-fold, respectively). In real-time quantitative RT-PCR analysis, the gene expressions of alphaB-crystallin, HSP27 and MnSOD were also increased in the cancer tissues, consistent with proteomic results. CONCLUSION The identified proteins in this experiment may be used in future studies of carcinogenesis or as diagnostic markers and therapeutic targets for OSCC.
Collapse
Affiliation(s)
- Wan-Yu Lo
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
215
|
Hwang JR, Zhang C, Patterson C. C-terminus of heat shock protein 70-interacting protein facilitates degradation of apoptosis signal-regulating kinase 1 and inhibits apoptosis signal-regulating kinase 1-dependent apoptosis. Cell Stress Chaperones 2006; 10:147-56. [PMID: 16038411 PMCID: PMC1176473 DOI: 10.1379/csc-90r.1] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Apoptosis signal-regulating kinase 1 (ASK1) is a mitogen-activated protein kinase kinase kinase (MAPKKK) that is regulated under conditions of cellular stress. ASK1 phosphorylates c-Jun N-terminal kinase (JNK) and elicits an apoptotic response. ASK1 activity is regulated at multiple levels, 1 of which is through inhibition by cytosolic chaperones of the heat shock protein (Hsp) 70 family. Among the proteins that determine Hsp70 function, CHIP (C-terminus of Hsp70-interacting protein) is a cochaperone and ubiquitin ligase that interacts with Hsp70 through an amino-terminal tetratricopeptide repeat (TPR) domain. Prominent among the cellular functions mediated by CHIP is protection against physiologic stress. Because ASK1 is known to contain a TPR-acceptor site, we examined the role of CHIP in regulating ASK1 function. CHIP interacted with ASK1 in a TPR-dependent fashion and induced ubiquitylation and proteasome-dependent degradation of ASK1. Targeting of ASK1 by CHIP inhibited JNK activation in response to oxidative challenge and reduced ASK1-dependent apoptosis, whereas short interfering RNA (siRNA)-dependent depletion of CHIP enhanced JNK activation. Consistent with its ability to reduce cytoplasmic ASK1 levels, CHIP triggered the translocation of ASK1 partner protein death-associated protein (Daxx) into the nucleus, where it is known to activate an antiapoptotic response. These results indicate that CHIP regulates ASK1 activity by inducing its ubiquitylation and degradation, which, together with its effects on Daxx localization, provides a mechanism for the antiapoptotic effects of CHIP observed in the face of cellular and physiologic stress.
Collapse
Affiliation(s)
- Jae Ryoung Hwang
- Carolina Cardiovascular Biology Center and Department of Medicine, 8200 Medical Biomolecular Research Building, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | |
Collapse
|
216
|
Henschke P, Vorum H, Honoré B, Rice GE. Protein profiling the effects of in vitro hyperoxic exposure on fetal rabbit lung. Proteomics 2006; 6:1957-62. [PMID: 16447161 DOI: 10.1002/pmic.200500245] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The aim of this study was to test the hypothesis that acute in vitro exposure of prematurely delivered fetal rabbit lungs to hyperoxic conditions will induce the expression of an adaptive cassette of proteins that mediates antioxidant and inflammatory processes. To test this hypothesis, ex situ fetal rabbit lung explants were prepared from New Zealand white rabbits delivered by cesarean section on day 29 of gestation and incubated under air (21% O2; 5% CO2) or hyperoxic (95% O2; 5% CO2) atmospheres. Total tissue protein was extracted following incubation and subjected to 2-DE. Using this technique, 1500-2000 protein spots were resolved per gel. Treatment-dependent, differentially expressed proteins were identified by image analysis (Melanie II) and MALDI-TOF MS and MALDI-MS/MS. The analysis identified 12 protein spots that were differentially expressed by 1.5-fold or more (p<0.05) by exposure to hyperoxic conditions. Six of these differentially expressed proteins were identified as vimentin, annexin I, inorganic pyrophosphatase, prohibitin, an N-terminal fragment of ATP synthase and heat shock protein 27. The data obtained are consistent with the roles of these proteins in mediating cellular response to oxidative stress and in regulating cell proliferation.
Collapse
Affiliation(s)
- Phillip Henschke
- Department of Neonatology, The Royal Women's Hospital, Melbourne, Australia
| | | | | | | |
Collapse
|
217
|
Abstract
Many cellular signaling molecules exist in different conformations corresponding to active and inactive states. Transition between these states is regulated by reversible modifications, such as phosphorylation, or by binding of nucleotide triphosphates, their regulated hydrolysis to diphosphates, and their exchange against fresh triphosphates. Specificity and efficiency of cellular signaling is further maintained by regulated subcellular localization of signaling molecules as well as regulated protein-protein interaction. Hence, it is not surprising that molecular chaperones--proteins that are able to specifically interact with distinct conformations of other proteins--could per se interfere with cellular signaling. Hence, it is not surprising that chaperones have co-evolved as integral components of signaling networks where they can function in the maturation as well as in regulating the transition between active and inactive state of signaling molecules, such as receptors, transcriptional regulators and protein kinases. Furthermore, new classes of specific chaperones are emerging and their role in histone-mediated chromatin remodeling and RNA folding are under investigation.
Collapse
Affiliation(s)
- M Gaestel
- Institute of Biochemistry, Medical School Hannover, Germany.
| |
Collapse
|
218
|
Didelot C, Schmitt E, Brunet M, Maingret L, Parcellier A, Garrido C. Heat shock proteins: endogenous modulators of apoptotic cell death. Handb Exp Pharmacol 2006:171-98. [PMID: 16610360 DOI: 10.1007/3-540-29717-0_8] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The highly conserved heat shock proteins (Hsps) accumulate in cells exposed to heat and a variety of other stressful stimuli. Hsps, that function mainly as molecular chaperones, allow cells to adapt to gradual changes in their environment and to survive in otherwise lethal conditions. The events of cell stress and cell death are linked and Hsps induced in response to stress appear to function at key regulatory points in the control of apoptosis. Hsps include anti-apoptotic and pro-apoptotic proteins that interact with a variety of cellular proteins involved in apoptosis. Their expression level can determine the fate of the cell in response to a death stimulus, and apoptosis-inhibitory Hsps, in particular Hsp27 and Hsp70, may participate in carcinogenesis. This review summarizes the apoptosis-regulatory function of Hsps.
Collapse
Affiliation(s)
- C Didelot
- Faculty of Medicine and Pharmacy, INSERM U-517, Dijon, France
| | | | | | | | | | | |
Collapse
|
219
|
Sharp P, Krishnan M, Pullar O, Navarrete R, Wells D, de Belleroche J. Heat shock protein 27 rescues motor neurons following nerve injury and preserves muscle function. Exp Neurol 2006; 198:511-8. [PMID: 16497297 DOI: 10.1016/j.expneurol.2005.12.031] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2005] [Revised: 12/20/2005] [Accepted: 12/23/2005] [Indexed: 10/25/2022]
Abstract
Heat shock proteins (HSPs) are a family of ubiquitously expressed proteins that are up-regulated in response to a range of stresses and play an important role in cellular defence mechanisms. In previous studies, we demonstrated that overexpression of heat shock protein 27 (HSP27) in transgenic mice has significant cytoprotective properties in vivo, reducing caspase-3-mediated cell death in the hippocampus associated with limbic seizures and reducing infarct size in cardiac ischaemia. In motor neurons, HSP27 is also implicated as a survival promoting factor; however, it remains to be established whether HSP27 is able to exert long-term neuroprotective effects following neonatal nerve injury. We now show that, following neonatal nerve crush, HSP27 overexpression in vivo provides a substantial rescue of motor neurons 5-6 months following nerve injury. Furthermore, in vivo isometric tension recordings demonstrate that surviving motor neurons were able to regenerate, resulting in a 90% improvement (P < 0.0005) in motor unit number in HSP27 mice. Moreover, this increase in motor unit number was associated with improved muscle weight, muscle force, contractile speeds, and histochemical markers of muscle activity. These properties of HSP27 therefore have considerable potential for improving long-term muscle function in motor neuron disorders.
Collapse
Affiliation(s)
- Paul Sharp
- Department of Cellular and Molecular Neuroscience, Division of Neuroscience and Mental Health, Faculty of Medicine, Imperial College London, Charing Cross Hospital Campus, Fulham Palace Road, London W6 8RF, UK
| | | | | | | | | | | |
Collapse
|
220
|
Martin-Ventura JL, Nicolas V, Houard X, Blanco-Colio LM, Leclercq A, Egido J, Vranckx R, Michel JB, Meilhac O. Biological significance of decreased HSP27 in human atherosclerosis. Arterioscler Thromb Vasc Biol 2006; 26:1337-43. [PMID: 16574891 DOI: 10.1161/01.atv.0000220108.97208.67] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Because culprit atherosclerotic plaques contain proteases, we hypothesized that the diminished heat shock protein 27 (HSP27) released by atherosclerotic plaques could be due to proteolysis. We assessed the role of HSP27 in human vascular smooth muscle cells (VSMCs) under proteolytic injury. METHODS AND RESULTS Active plasmin is present in culprit atherosclerotic plaques. Recombinant HSP27 was cleaved by plasmin and this effect was prevented by different inhibitors. Fragments and aggregated forms of HSP27 appeared after incubation of mammary control endarteries with plasmin. Coincubation of atherosclerotic plaques with recombinant HSP27 or mammary endarteries led to HSP27 proteolysis. After incubation of VSMCs with plasmin, HSP27 was overexpressed, phosphorylated, aggregated, and redistributed from the cytoskeleton to the cytosol, nucleus, and cell membrane. Plasmin-induced VSMC apoptosis was significantly higher in VSMCs treated by HSP27 siRNA. Immunohistochemical analysis of atherosclerotic plaques showed that plasmin(ogen) and apoptotic cells are localized in the core/shoulder whereas HSP27 and VSMCs are mainly expressed in the cap/media. CONCLUSIONS Extracellular HSP27 can be degraded by enzymes released from atherosclerotic plaques and may reflect a proteolytic imbalance. Intracellular HSP27 downregulation decreases VSMCs resistance to proteolytically-induced apoptosis. HSP27 might play a pivotal role in the prevention of plaque instability and rupture.
Collapse
|
221
|
Takeuchi S. Analytical assays of human HSP27 and thermal-stress survival of Escherichia coli cells that overexpress it. Biochem Biophys Res Commun 2006; 341:1252-6. [PMID: 16466698 DOI: 10.1016/j.bbrc.2006.01.090] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2006] [Accepted: 01/17/2006] [Indexed: 11/29/2022]
Abstract
HSP27 is a small heat-shock protein (sHSP). Such proteins are produced in all organisms. These small HSPs exhibit chaperone-like activity that can bind to unfolded polypeptides and prevent uncontrolled protein aggregation in vitro. Cellular anti-apoptosis function and enhanced cell survival are correlated with increased expression of HSPs. This study presents a thermal-stress survival model for cells using the Escherichia coli expression system for which human HSP27, a recombinant protein, is inducible. Results show that E. coli cells overexpressing human HSP27 have enhanced tolerance to 50 degrees C thermal stress.
Collapse
Affiliation(s)
- Satoru Takeuchi
- Department of Protein Research, ProstaColon, 85 NE, Takamatsu, Kahoku, Ishikawa 929-1215, Japan.
| |
Collapse
|
222
|
Kretz A, Schmeer C, Tausch S, Isenmann S. Simvastatin promotes heat shock protein 27 expression and Akt activation in the rat retina and protects axotomized retinal ganglion cells in vivo. Neurobiol Dis 2006; 21:421-30. [PMID: 16168661 DOI: 10.1016/j.nbd.2005.08.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2005] [Revised: 07/29/2005] [Accepted: 08/17/2005] [Indexed: 02/05/2023] Open
Abstract
Heat shock proteins (Hsps) are stress proteins that mediate protein stabilization in various tissues and protect cells from environmental stress. Novel evidence suggests that overexpression of the small heat shock protein 27 (Hsp27) in neurons protects against neurotoxic stimuli and may act as an inhibitor of neurodegeneration. Overexpression of Hsps has been achieved by different means including pharmacological induction. Here, we show that intravitreal injection of the 3-Hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase inhibitor simvastatin induces Hsp27 expression in axotomized retinal ganglion cells (RGCs) and enhances RGC survival 7 and 14 days after optic nerve (ON) axotomy by 90% and 19%, respectively. The flavonoid quercetin inhibited Hsp27 induction and abrogated simvastatin-mediated neuroprotection. Simvastatin increased Akt phosphorylation in vivo, indicating that the PI3K/Akt pathway contributes to central nervous system (CNS) protective effects achieved. We propose the use of statins as a feasible approach to reduce lesion-induced CNS neuronal degeneration in vivo.
Collapse
Affiliation(s)
- Alexandra Kretz
- Neuroregeneration Laboratory, Department of Neurology, Friedrich-Schiller University, Erlanger Allee 101, D-07747 Jena, Germany
| | | | | | | |
Collapse
|
223
|
Salomoni P, Khelifi AF. Daxx: death or survival protein? Trends Cell Biol 2006; 16:97-104. [PMID: 16406523 DOI: 10.1016/j.tcb.2005.12.002] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2005] [Revised: 10/21/2005] [Accepted: 12/08/2005] [Indexed: 12/26/2022]
Abstract
The death domain-associated protein (Daxx) was originally cloned as a CD95 (FAS)-interacting protein and modulator of FAS-induced cell death. Daxx accumulates in both the nucleus and the cytoplasm; in the nucleus, Daxx is found associated with the promyelocytic leukaemia (PML) nuclear body and with alpha-thalassemia/mental retardation syndrome protein (ATRX)-positive heterochromatic regions. In the cytoplasm, Daxx has been reported to interact with various proteins involved in cell death regulation. Despite a significant number of studies attempting to determine Daxx function in apoptotic and non-apoptotic cell death, its precise role in this process is only partially understood. Here, we critically review the current understanding of Daxx function and shed new light on this interesting field.
Collapse
|
224
|
Lelj-Garolla B, Mauk AG. Self-association and chaperone activity of Hsp27 are thermally activated. J Biol Chem 2006; 281:8169-74. [PMID: 16436384 DOI: 10.1074/jbc.m512553200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The small heat shock protein 27 (Hsp27) is an oligomeric, molecular chaperone in vitro. This chaperone activity and other physiological roles attributed to Hsp27 have been reported to depend on the state of self-association. In the present work, we have used sedimentation velocity experiments to demonstrate that the self-association of Hsp27 is independent of pH and ionic strength but increases significantly as the temperature is increased from 10 to 40 degrees C. The largest oligomers formed at 10 degrees C are approximately 8-12 mer, whereas at 40 degrees C oligomers as large as 22-30 mer are observed. Similarly, the chaperone activity of Hsp27 as indicated by its ability to inhibit dithiothreitol-induced insulin aggregation also increases with increased temperature, with a particularly sharp increase in activity as temperature is increased from 34 to 43 degrees C. Similar studies of an Hsp27 triple variant that mimics the behavior of the phosphorylated protein establish that this protein has greatly diminished chaperone activity that responds minimally to increased temperature. We conclude that Hsp27 can exploit a large number of oligomerization states and that the range of oligomer size and the magnitude of chaperone activity increase significantly as temperature is increased over the range that is relevant to the physiological heat shock response.
Collapse
Affiliation(s)
- Barbara Lelj-Garolla
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | | |
Collapse
|
225
|
Healy DA, Daly PJ, Docherty NG, Murphy M, Fitzpatrick JM, Watson RWG. Heat shock-induced protection of renal proximal tubular epithelial cells from cold storage and rewarming injury. J Am Soc Nephrol 2006; 17:805-12. [PMID: 16421224 DOI: 10.1681/asn.2005090980] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Cold storage and reperfusion injury to transplanted kidneys contributes to increased incidence of delayed graft function and may have a negative impact on graft survival. This study examined the mechanisms by which previous heat shock protects against cell death in an in vitro model of kidney storage. Cold storage is mimicked by incubating human renal proximal tubular epithelial (HK-2) cells in University of Wisconsin solution at 4 degrees C with and without subsequent rewarming. Heat shock was induced by incubation of cells at 42 degrees C for 1 h. Altered protein expression was measured by Western blot, and cell viability and apoptosis were measured by propidium iodide DNA staining using flow cytometry. The specific role of heat-shock protein 70 (HSP-70) was determined both by siRNA knockdown and by stable overexpression approaches. Cold storage and rewarming-induced cell death was associated with decreased expression of HSP-70, HSP-90, HSP-27, and Bcl-2. Previous heat shock significantly reduced HK-2 cell death after cold storage and rewarming and was associated with the maintenance of HSP-70, HSP-27, and Bcl-2 protein levels. Blocking heat stress-induced HSP-70 with siRNA did not significantly block the protective effect of heat stress against cold storage and rewarming cell death; however, overexpression of HSP-70 protected HK-2 cells from this stress. It is concluded that previous heat shock protects HK-2 cells from cold storage and rewarming injury. siRNA inhibition of HSP-70 induction did not block the protective effect of heat shock, indicating that HSP-70 is not essential to the heat stress-induced protective effect reported in this study.
Collapse
Affiliation(s)
- Declan A Healy
- UCD School of Medicine and Medical Science, UCD Conway Institute of Biomolecular and Biomedical Research, Mater Misericordiae University Hospital, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | | | | | | | |
Collapse
|
226
|
Ackerley S, James PA, Kalli A, French S, Davies KE, Talbot K. A mutation in the small heat-shock protein HSPB1 leading to distal hereditary motor neuronopathy disrupts neurofilament assembly and the axonal transport of specific cellular cargoes. Hum Mol Genet 2006; 15:347-54. [PMID: 16368711 DOI: 10.1093/hmg/ddi452] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Distal hereditary motor neuronopathies (dHMNs) are a clinically and genetically heterogeneous group of disorders in which motor neurons selectively undergo age-dependant degeneration. Mutations in the small heat-shock protein HSPB1 (HSP27) are responsible for one form of dHMN. In this study, we have analysed the effect of expressing a form of mutant HSPB1 in primary neuronal cells in culture. Mutant (P182L) but not wild-type HSPB1 led to the formation of insoluble intracellular aggregates and to the sequestration in the cytoplasm of selective cellular components, including neurofilament middle chain subunit (NF-M) and p150 dynactin. These findings suggest a possible pathogenic mechanism for HSPB1 whereby the mutation may lead to preferential motor neuron loss by disrupting selective components essential for axonal structure and transport.
Collapse
Affiliation(s)
- Steven Ackerley
- Department of Human Anatomy and Genetics, South Parks Road, Oxford OX1 3QX, UK
| | | | | | | | | | | |
Collapse
|
227
|
Duverger O, Morange M. Heat shock protein 25 plays multiple roles during mouse skin development. Cell Stress Chaperones 2006; 10:268-77. [PMID: 16333981 PMCID: PMC1283872 DOI: 10.1379/csc-114r.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Heat shock protein (Hsp) 25 is a member of the small Hsp family. High levels of Hsp25 can be detected in skin. During adult epidermis differentiation, the concentration of Hsp25 increases as the distance of keratinocytes from the basal layer increases, in parallel with the extent of keratinization. We previously showed that Hsp25, mouse keratin (MK) 5, and MK14 participated in the formation of characteristic ring-shaped aggregates during the differentiation of the PAM212 keratinocyte cell line. We suggested that Hsp25 was involved in the disorganization of the MK5-MK14 keratin network before the establishment of the MK1-MK10 keratin network at the beginning of epidermis stratification. In this study, we have investigated the distribution of Hsp25 and keratins throughout skin development. We demonstrate that the distribution of Hsp25 and MK5 in the epidermis at the beginning of stratification and before keratinization is similar to that observed in PAM212 keratinocytes. These results indicate that there is a strong correlation between the mechanism we described ex vivo and the events taking place in vivo. Moreover, we show that Hsp25 is produced in different cell types in the epidermis and in the hair follicle at different stages of their development. Thus, our results suggest that Hsp25 is involved in more than one process during skin development.
Collapse
Affiliation(s)
- Olivier Duverger
- Département de Biologie, Unité de Génétique Moléculaire, Ecole Normale Supérieure, Paris, France
| | | |
Collapse
|
228
|
Kitamura C, Nishihara T, Ueno Y, Chen KK, Morotomi T, Yano J, Nagayoshi M, Terashita M. Effects of sequential exposure to lipopolysaccharide and heat stress on dental pulp cells. J Cell Biochem 2006; 99:797-806. [PMID: 16676349 DOI: 10.1002/jcb.20967] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In the present study, we examined the effects of sequential exposure to bacterial lipopolysaccharide (LPS) and heat stress on dental pulp cells. LPS induced the proliferation of pulp cells through the activation of p38 MAPK. HSP27 was expressed in cells with or without LPS during the entire period of heat stress, while transiently phosphorylated by short-term heat stress. In LPS-treated cells, short-term heat stress also induced the phosphorylation of HSF1. The immediate phosphorylation of HSF1 and HSP27 in LPS-treated cells by short-term heat stress occurred dependent on the activation of p38 MAPK. However, with long-term heat stress, the activation of HSF1 and induction of HSP27 occurred independent of p38 MAPK. Further, full activation of Akt in LPS-treated cells was immediately induced by short-term heat stress and lasted during the entire period of heat stress. IkappaB alpha was induced and phosphorylated throughout sequential exposure to LPS and heat stress. These results suggest that LPS has the unique effects on the cytoprotection and the cell death of pulp cells during heat stress through the modification and the activation of heat stress responsive molecules, HSF1 and HSP27, and cell survival molecules, Akt and NF-kappaB/IkappaB alpha.
Collapse
Affiliation(s)
- Chiaki Kitamura
- Division of Pulp Biology, Operative Dentistry, and Endodontics, Department of Cariology and Periodontology, Science of Oral Functions, Kyushu Dental College, 2-6-1 Manazuru, Kokurakita, Kitakyushu 803-8580, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
229
|
Oya-Ito T, Liu BF, Nagaraj RH. Effect of methylglyoxal modification and phosphorylation on the chaperone and anti-apoptotic properties of heat shock protein 27. J Cell Biochem 2006; 99:279-91. [PMID: 16615138 DOI: 10.1002/jcb.20781] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Heat shock protein 27 (Hsp27) is a stress-inducible protein in cells that functions as a molecular chaperone and also as an anti-apoptotic protein. Methylglyoxal (MGO) is a reactive dicarbonyl compound produced from cellular glycolytic intermediates that reacts non-enzymatically with proteins to form products such as argpyrimidine. We found considerable amount of Hsp27 in phosphorylated form (pHsp27) in human cataractous lenses. pHsp27 was the major argpyrimidine-modified protein in brunescent cataractous lenses. Modification by MGO enhanced the chaperone function of both pHsp27 and native Hsp27, but the effect on Hsp27 was at least three-times greater than on pHsp27. Phosphorylation of Hsp27 abolished its chaperone function. Transfer of Hsp27 using a cationic lipid inhibited staurosporine (SP)-induced apoptotic cell death by 53% in a human lens epithelial cell line (HLE B-3). MGO-modified Hsp27 had an even greater effect (62% inhibition). SP-induced reactive oxygen species in HLE-B3 cells was significantly lower in cells transferred with MGO-modified Hsp27 when compared to native Hsp27. In vitro incubation experiments showed that MGO-modified Hsp27 reduced the activity of caspase-9, and MGO-modified pHsp27 reduced activities of both caspase-9 and caspase-3. Based on these results, we propose that Hsp27 becomes a better anti-apoptotic protein after modification by MGO, which may be due to multiple mechanisms that include enhancement of chaperone function, reduction in oxidative stress, and inhibition of activity of caspases. Our results suggest that MGO modification and phosphorylation of Hsp27 may have important consequences for lens transparency and cataract development.
Collapse
Affiliation(s)
- Tomoko Oya-Ito
- Department of Ophthalmology, Case Western Reserve University, Cleveland, Ohio
| | | | | |
Collapse
|
230
|
Salih E. Phosphoproteomics by mass spectrometry and classical protein chemistry approaches. MASS SPECTROMETRY REVIEWS 2005; 24:828-846. [PMID: 15538747 DOI: 10.1002/mas.20042] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The general fields of biological sciences have seen phenomenal transformations in the past two decades at the level of data acquisition, understanding biological processes, and technological developments. Those advances have been made partly because of the advent of molecular biology techniques (which led to genomics) coupled to the advances made in mass spectrometry (MS) to provide the current capabilities and developments in proteomics. However, our current knowledge that approximately 30,000 human genes may code for up to 1 million or more proteins disengage the interface between the genome sequence database algorithms and MS to generate a major interest in independent de novo MS/MS sequence determination. Significant progress has been made in this area through procedures to covalently modify peptide N- and C-terminal amino-acids by sulfonation and guanidination to permit rapid de novo sequence determination by MS/MS analysis. A number of strategies that have been developed to perform qualitative and quantitative proteomics range from 2D-gel electrophoresis, affinity tag reagents, and stable-isotope labeling. Those procedures, combined with MS/MS peptide sequence analysis at the subpicomole level, permit the rapid and effective identification and quantification of a large number of proteins within a given biological sample. The identification of proteins per se, however, is not always sufficient to interpret biological function because many of the naturally occurring proteins are post-translationally modified. One such modification is protein phosphorylation, which regulates a large array of cellular biochemical pathways of the biological system. Traditionally, the study of phosphoprotein structure-function relationships involved classical protein chemistry approaches that required protein purification, peptide mapping, and the identification of the phosphorylated peptide regions and sites by N-terminal sequence analysis. Recent advances made in mass spectrometry have clearly revolutionized the studies of phosphoprotein biochemistry, and include the development of specific strategies to preferentially enrich phosphoproteins by covalent-modifications that incorporate affinity tags that use the physicochemical properties of phosphoaminoacids. The phosphoserine/phosphothreonine-containing proteins/peptides are derivatized under base-catalyzed conditions by thiol agents; mono- and di-thiol reagents both have been used in such studies. The thiol agent may have: (i) an affinity tag for protein enrichment; (ii) stable-isotopic variants for relative quantitation; or (iii) a combination of the moieties in (i) and (ii). These strategies and techniques, together with others, are reviewed, including their practical application to the study of phosphoprotein biochemistry and structure-function. The consensus of how classical protein chemistry and current MS technology overlap into special case of proteomics, namely "phosphoproteomics," will be discussed.
Collapse
Affiliation(s)
- Erdjan Salih
- Laboratory for the Study of Skeletal Disorders and Rehabilitation, Department of Orthopaedic Surgery, Harvard Medical School and Children's Hospital Boston, Boston, MA 02115, USA. Erdjan.Salih@Gardenof knowledge.org
| |
Collapse
|
231
|
Feng JT, Liu YK, Song HY, Dai Z, Qin LX, Almofti MR, Fang CY, Lu HJ, Yang PY, Tang ZY. Heat-shock protein 27: A potential biomarker for hepatocellular carcinoma identified by serum proteome analysis. Proteomics 2005; 5:4581-8. [PMID: 16240287 DOI: 10.1002/pmic.200401309] [Citation(s) in RCA: 156] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer mortality worldwide and ranks second in China. The prognosis of HCC remains dismal mainly because of its late diagnosis, especially in patients with coexisting chronic liver diseases. To identify serum biomarkers for HCC, sera from 20 healthy volunteers, 20 hepatitis B virus (HBV) infected patients and 20 HCC patients were selected for screening study and same number of sera into the same three groups were used for validation study. A strategy including sonication, albumin and immunoglobulin G (IgG) depletion and desalting was optimized for screening differentially expressed proteins of low abundance in serum. By 2-DE image analysis and MALDI-TOF-MS/MS identification, eight proteins including heat-shock protein 27 (HSP27), alpha-fetoprotein (AFP), alpha-1 antitrypsin, clusterin, caeruloplasmin, haptoglobin alpha2 chain, tranferrin and transthyretin were found significantly changed among the healthy, HBV and HCC groups. Further validation study by Western blot showed the detection of HSP27 in 90% HCC sera and two HBV sera, but in none of normal sera. Thus, 2-DE based serum proteome analysis can be useful in the screening of serum biomarkers for HCC and HSP27 could aid in the diagnosis of HCC though further validation is needed.
Collapse
Affiliation(s)
- Ju-Tao Feng
- Liver Cancer Institute & Zhong Shan Hospital, Fudan University, Shanghai, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
232
|
Parasassi T, Brunelli R, Bracci-Laudiero L, Greco G, Gustafsson AC, Krasnowska EK, Lundeberg J, Lundeberg T, Pittaluga E, Romano MC, Serafino A. Differentiation of normal and cancer cells induced by sulfhydryl reduction: biochemical and molecular mechanisms. Cell Death Differ 2005; 12:1285-1296. [PMID: 15920536 DOI: 10.1038/sj.cdd.4401663] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
We examined the morphological, biochemical and molecular outcome of a nonspecific sulfhydryl reduction in cells, obtained by supplementation of N-acetyl-L-cysteine (NAC) in a 0.1-10 mM concentration range. In human normal primary keratinocytes and in colon and ovary carcinoma cells we obtained evidences for: (i) a dose-dependent inhibition of proliferation without toxicity or apoptosis; (ii) a transition from a proliferative mesenchymal morphology to cell-specific differentiated structures; (iii) a noticeable increase in cell-cell and cell-substratum junctions; (iv) a relocation of the oncogenic beta-catenin at the cell-cell junctions; (v) inhibition of microtubules aggregation; (vi) upregulation of differentiation-related genes including p53, heat shock protein 27 gene, N-myc downstream-regulated gene 1, E-cadherin, and downregulation of cyclooxygenase-2; (vii) inhibition of c-Src tyrosine kinase. In conclusion, a thiol reduction devoid of toxicity as that operated by NAC apparently leads to terminal differentiation of normal and cancer cells through a pleiade of converging mechanisms, many of which are targets of the recently developed differentiation therapy.
Collapse
Affiliation(s)
- T Parasassi
- Istituto di Neurobiologia e Medicina Molecolare, CNR, Viale Marx 15-43, 00137 Roma, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
233
|
Chang WH, Cemal CK, Hsu YH, Kuo CL, Nukina N, Chang MH, Hu HT, Li C, Hsieh M. Dynamic expression of Hsp27 in the presence of mutant ataxin-3. Biochem Biophys Res Commun 2005; 336:258-67. [PMID: 16126176 DOI: 10.1016/j.bbrc.2005.08.065] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2005] [Accepted: 08/07/2005] [Indexed: 10/25/2022]
Abstract
Machado-Joseph disease (MJD)/spinocerebellar ataxia type 3 (SCA3) is an autosomal dominant spinocerebellar degeneration characterized by a wide range of clinical manifestations. The molecular mechanisms underlying the selective neuronal death typical of MJD/SCA3 are unknown. In this study, human SK-N-SH neuroblastoma cells stably transfected with full-length MJD with 78 CAG repeats were assayed for the dynamic expression of Hsp27, known as a suppressor of poly-Q mediated cell death, in the presence of mutant ataxin-3 in different passages of cultured cells. A dramatic decrease of Hsp27 expression was observed in the earlier passage of cultured SK-N-SH-MJD78 cells, however, the later passage of cells showed a significant increase of Hsp27 to almost the same level of the parental cells. Furthermore, immunohistochemical analysis of MJD transgenic mice and post-mortem human brain tissues showed increased expression of Hsp27 compared to normal control brain, suggesting an up-regulation of Hsp27 in the end stage of MJD. However, mutant cells of earlier passages were more susceptible to serum deprivation than mutant cells of later passages, indicating weak tolerance toward stress in cells with reduced Hsp27. While heat shock was used to assess the stress response, cells expressing mutant ataxin-3 displayed normal response upon heat shock stimuli when compared to the parental cells. Taken together, we proposed that during the early disease stage, the reduction of Hsp27 synthesis mitigated the ability of neuron cells to cope with cytotoxicity induced by mutant ataxin-3, triggering the cell death process during the disease progress. In the late stage of disease, after prolonged stressful conditions of polyglutamine cytotoxicity, the increased level of Hsp27 may reflect a dynamic process of the survived cells to unfold and remove mutant ataxin-3. However, this increased Hsp27 still cannot reverse the global dysfunction of cellular proteins due to accumulation of cytotoxic effects.
Collapse
Affiliation(s)
- Wei-Hsiu Chang
- Department of Life Science, Tunghai University, Taichung, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
234
|
N/A. N/A. Shijie Huaren Xiaohua Zazhi 2005; 13:1725-1730. [DOI: 10.11569/wcjd.v13.i14.1725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
235
|
Tang J, Chang HY, Yang X. The death domain-associated protein modulates activity of the transcription co-factor Skip/NcoA62. FEBS Lett 2005; 579:2883-90. [PMID: 15878163 DOI: 10.1016/j.febslet.2005.04.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2005] [Revised: 03/30/2005] [Accepted: 04/08/2005] [Indexed: 01/16/2023]
Abstract
Death domain-associated protein (Daxx) regulates both transcription and apoptosis. The role of Daxx in transcription is not well understood. Here, we show that Daxx interacts with Skip/NcoA62, a transcription cofactor that modulates the activity of oncoproteins including Ski and NotchIC. Daxx strongly binds with Skip both in vitro and in mammalian cells. This interaction is mediated by the PAH2 domain of Daxx and the highly conserved SNW domain of Skip. Daxx partially co-localizes with Skip in vivo and changes the cellular distribution of Skip. In addition, Skip represses transcription when tethered to a promoter, and Daxx antagonizes this activity. Furthermore, Skip is phosphorylated at serine 224 in its SNW domain. These results suggest a novel function of Daxx in transcription regulation through alteration of the cellular localization of Skip.
Collapse
Affiliation(s)
- Jun Tang
- Abramson Family Cancer Research Institute and Department of Cancer Biology, University of Pennsylvania School of Medicine, Philadelphia, 19104, USA
| | | | | |
Collapse
|
236
|
Junn E, Taniguchi H, Jeong BS, Zhao X, Ichijo H, Mouradian MM. Interaction of DJ-1 with Daxx inhibits apoptosis signal-regulating kinase 1 activity and cell death. Proc Natl Acad Sci U S A 2005; 102:9691-6. [PMID: 15983381 PMCID: PMC1172235 DOI: 10.1073/pnas.0409635102] [Citation(s) in RCA: 256] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Investigations into the cellular and molecular biology of genes that cause inherited forms of Parkinson's disease, as well as the downstream pathways that they trigger, shed considerable light on our understanding the fundamental determinants of life and death in dopaminergic neurons. Homozygous deletion or missense mutation in DJ-1 results in autosomal recessively inherited Parkinson's disease, suggesting that wild-type DJ-1 has a favorable role in maintaining these neurons. Here, we show that DJ-1 protects against oxidative stress-induced cell death, but that its relatively modest ability to quench reactive oxygen species is insufficient to account for its more robust cytoprotective effect. To elucidate the mechanism of this cell-preserving function, we have screened out the death protein Daxx as a DJ-1-interacting partner. We demonstrate that wild-type DJ-1 sequesters Daxx in the nucleus, prevents it from gaining access to the cytoplasm, from binding to and activating its effector kinase apoptosis signal-regulating kinase 1, and therefore, from triggering the ensuing death pathway. All these steps are impaired by the disease-causing L166P mutant isoform of DJ-1. These findings suggest that the regulated sequestration of Daxx in the nucleus and keeping apoptosis signal-regulating kinase 1 activation in check is a critical mechanism by which DJ-1 exerts its cytoprotective function.
Collapse
Affiliation(s)
- Eunsung Junn
- Center for Neurodegenerative and Neuroimmunologic Diseases, Department of Neurology, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | | | | | | | | | | |
Collapse
|
237
|
Hsieh M, Tsai HF, Chang WH. HSP27 and cell death in spinocerebellar ataxia type 3. THE CEREBELLUM 2005; 4:31-6. [PMID: 15895556 DOI: 10.1080/14734220410026248] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Spinocerebellar ataxia type 3 (SCA3) is an autosomal dominant spinocerebellar degeneration characterized by a wide range of clinical manifestations. In this review, we discuss the role(s) that heat shock protein 27 (HSP27) may play in the cell death process of spinocerebellar ataxia type 3.
Collapse
Affiliation(s)
- Mingli Hsieh
- Department of Life Science, Tunghai University, Taichung, Taiwan, Republic of China.
| | | | | |
Collapse
|
238
|
Nakajima K, Hirade K, Ishisaki A, Matsuno H, Suga H, Kanno Y, Shu E, Kitajima Y, Katagiri Y, Kozawa O. Akt regulates thrombin-induced HSP27 phosphorylation in aortic smooth muscle cells: function at a point downstream from p38 MAP kinase. Life Sci 2005; 77:96-107. [PMID: 15848222 DOI: 10.1016/j.lfs.2004.12.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2004] [Accepted: 12/21/2004] [Indexed: 11/28/2022]
Abstract
We previously reported that p38 MAP kinase takes part in thrombin-induced HSP27 phosphorylation in aortic smooth muscle A10 cells. In the present study, we investigated whether Akt is involved in the phosphorylation of HSP27 and the role of adenylyl cyclase-cAMP system. Thrombin time-dependently induced the phosphorylation of heat shock protein 27 (HSP27) and Akt in aortic smooth muscle A10 cells. SB203580, a p38 MAP kinase inhibitor, significantly suppressed the thrombin-induced phosphorylation of Akt and the Akt inhibitor suppressed the phosphorylation of HSP27. Furthermore, the thrombin-induced phosphorylation of HSP27, p38 MAP kinase and Akt were decreased by dibutyryl-cAMP (DBcAMP). These results strongly suggest that Akt functions the thrombin-induced phosphorylation of HSP27 at a point downstream from p38 MAP kinase in aortic smooth muscle cells and the adenylyl cyclase-cAMP system is upstream regulator of the HSP27 phosphorylation in these cells.
Collapse
Affiliation(s)
- Keiichi Nakajima
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
239
|
Djamali A, Reese S, Oberley T, Hullett D, Becker B. Heat Shock Protein 27 in Chronic Allograft Nephropathy: A Local Stress Response. Transplantation 2005; 79:1645-57. [PMID: 15973165 DOI: 10.1097/01.tp.0000164319.83159.a7] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Heat shock protein (HSP) 27 plays a cytoprotective role through its antioxidant, antiapoptotic, and actin-stabilizing properties during cell stress. The authors hypothesized that HSP27 is involved in chronic allograft nephropathy (CAN), a chronic state of inflammation and stress. METHODS The authors used the Fisher 344-to-Lewis model of CAN. Transplants were performed in 3-month-old recipient rats. HSP27 mRNA and protein levels were determined using semiquantitative polymerase chain reaction, microarray (stress-toxicity, GEArray) analyses, gene sequencing, immunoblotting, and immunohistochemical analyses at 10 days and 6 months posttransplant. P38 mitogen-activated protein kinase (MAPK), manganese (Mn) superoxide dismutase (SOD), copper-zinc (CuZn) SOD, FasL, Bax, hypoxia-inducible factor (HIF)-1alpha, and CD3 lymphocytes were studied in parallel as selective biomarkers of oxidative stress (OS), apoptosis, hypoxia, and graft-infiltrating immune cells. RESULTS Six months after transplantation, kidney allografts displayed histologic and functional features of CAN, including tubular atrophy, interstitial fibrosis, glomerulosclerosis, and increased proteinuria and serum creatinine levels. HSP27 mRNA and protein levels in CAN were reduced by 50% and 85%, respectively (P=0.04). Immunohistochemical analyses revealed a "shift" in HSP27 from the medulla to the cortex in allografts with CAN. Bax, phosphorylated p38-MAPK, HIF-1alpha, and MnSOD followed a parallel relocation pattern. CD3 lymphocyte density and tubular FasL expression were also greater in the cortex of allografts with CAN. Time-course analyses revealed that most of these changes were present as early as 10 days posttransplant. CONCLUSIONS The shift of HSP27 from the medulla to the cortex, combined with greater CD3, p38-MAPK, Bax, FasL, HIF-1alpha, and MnSOD immunoreactivity in this area of the kidney, likely represents an allograft-level response to CAN-related OS-hypoxia.
Collapse
Affiliation(s)
- Arjang Djamali
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | | | | | | | | |
Collapse
|
240
|
Schepers H, Geugien M, van der Toorn M, Bryantsev AL, Kampinga HH, Eggen BJL, Vellenga E. HSP27 protects AML cells against VP-16-induced apoptosis through modulation of p38 and c-Jun. Exp Hematol 2005; 33:660-70. [PMID: 15911090 DOI: 10.1016/j.exphem.2005.03.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2005] [Revised: 03/15/2005] [Accepted: 03/18/2005] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To investigate 1) the signal transduction pathways affected by heat shock protein 27 (HSP27) expression; and 2) the expression and regulation of HSP27 in acute myeloid leukemia (AML). MATERIALS AND METHODS RNA interference studies for HSP27 in leukemic TF-1 cells were used to investigate the effects on downstream signal transduction and apoptosis after VP-16 and CD95/Fas treatment. HSP27 expression and activation was investigated in AML blasts through Western blot analysis. RESULTS RNA interference for HSP27 resulted in a twofold increase in VP-16-induced apoptosis, which was preceded by enhanced p38 and c-Jun phosphorylation and a twofold increased cytochrome c release into the cytoplasm. DAXX co-immunoprecipitated with HSP27, suggesting an inhibitory role of HSP27 in VP-16-mediated activation of the ASK1/p38/JNK pathway. CD95/Fas-induced apoptosis, however, was unaffected by HSP27 siRNA, due to upregulation of HSP27. Although HSP27 was highly expressed and phosphorylated in primitive monocytic AML blasts (M4-M5, 91%, n=11) and undetectable in myeloid blasts (M1-M2, n=5), VP-16-mediated apoptosis correlated moderately with HSP27 expression. This is likely due to the co-expression of p21Waf1/Cip1, which is in the majority of the monocytic AML M4-M5 blasts constitutively localized in the cytoplasm. Overexpression of cytoplasmic p21 inhibited the enhanced p38 phosphorylation after HSP27 RNAi, suggesting a predominant anti-apoptotic role of p21 over HSP27. CONCLUSION 1) HSP27 inhibits VP-16-mediated phosphorylation of p38 and c-Jun, cytochrome c release, and subsequent apoptosis; 2) HSP27 is expressed and activated in monocytic AML blasts; 3) cytoplasmic expression of p21 compensates for the lack of HSP27.
Collapse
Affiliation(s)
- Hein Schepers
- Division of Hematology, Department of Medicine, University Medical Center Groningen, Groningen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
241
|
Carra S, Sivilotti M, Chávez Zobel AT, Lambert H, Landry J. HspB8, a small heat shock protein mutated in human neuromuscular disorders, has in vivo chaperone activity in cultured cells. Hum Mol Genet 2005; 14:1659-69. [PMID: 15879436 DOI: 10.1093/hmg/ddi174] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The family of small heat shock proteins (sHsp) is composed of 10 members in mammals, four of which are found mutated in diseases associated with the accumulation of protein aggregates. Though many sHsp have demonstrated molecular chaperone activity in vitro in cell-free conditions, their activity in vivo in the normal cellular context remains unclear. In the present study, we investigated the capacity of the sHsp, HspB8/Hsp22, to prevent protein aggregation in the cells using the polyglutamine protein Htt43Q as a model. In control conditions, Htt43Q accumulated in perinuclear inclusions composed of SDS-insoluble aggregates. Co-transfected with Htt43Q, HspB8 became occasionally trapped within the inclusions; however, in most cells, HspB8 blocked inclusion formation. Biochemical analyses indicated that HspB8 inhibited the accumulation of SDS-insoluble Htt43Q as efficiently as Hsp40 which was taken as a positive control. Htt43Q then accumulated in the SDS-soluble fraction, provided that protein degradation was blocked by proteasome and autophagy inhibitors. In contrast, the other sHsp Hsp27/HspB1 and alphaB-crystallin/HspB5 had no effect. This suggested that HspB8 functions as a molecular chaperone, maintaining Htt43Q in a soluble state competent for rapid degradation. Analyses of Hsp27-HspB8 chimeric proteins indicated that the C-terminal domain of HspB8 contains the specific sequence necessary for chaperone activity. Missense mutations in this domain at lysine 141, which are found in human motor neuropathies, significantly reduced the chaperone activity of the protein. A decrease in the HspB8 chaperone activity may therefore contribute to the development of these diseases.
Collapse
Affiliation(s)
- Serena Carra
- Centre de recherche en cancérologie de l'Université Laval, L'Hôtel-Dieu de Québec, 9 rue McMahon, Québec, Canada G1R 2J6
| | | | | | | | | |
Collapse
|
242
|
Suga H, Nakajima K, Shu E, Kanno Y, Hirade K, Ishisaki A, Matsuno H, Tanabe K, Takai S, Akamatsu S, Kato K, Oiso Y, Kozawa O. Possible involvement of phosphatidylinositol 3-kinase/Akt signal pathway in vasopressin-induced HSP27 phosphorylation in aortic smooth muscle A10 cells. Arch Biochem Biophys 2005; 438:137-45. [PMID: 15896702 DOI: 10.1016/j.abb.2005.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2005] [Revised: 04/02/2005] [Accepted: 04/08/2005] [Indexed: 11/25/2022]
Abstract
We previously reported that p38 mitogen-activated protein (MAP) kinase takes a part in arginine vasopressin (AVP)-induced heat shock protein 27 (HSP27) phosphorylation in aortic smooth muscle A10 cells. In the present study, we investigated whether phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) is involved in the phosphorylation of HSP27 in these cells. AVP time-dependently induced the phosphorylation of PI3K and Akt. Akt inhibitor, 1l-6-hydroxymethyl-chiro-inositol 2-(R)-2-O-methyl-3-O-octadecylcarbonate, partially suppressed the phosphorylation of HSP27. The AVP-induced HSP27 phosphorylation was attenuated by LY294002, a PI3K inhibitor. The combination of Akt inhibitor and SB203580, a p38 MAP kinase inhibitor, completely suppressed the AVP-induced phosphorylation of HSP27. Furthermore, LY294002 or Akt inhibitor did not affect the AVP-induced phosphorylation of p38 MAP kinase and SB203580 did not affect the phosphorylation of PI3K or Akt. These results suggest that PI3K/Akt plays a part in the AVP-induced phosphorylation of HSP27, maybe independently of p38 MAP kinase, in aortic smooth muscle A10 cells.
Collapse
Affiliation(s)
- Hidetaka Suga
- Department of Pharmacology, Gifu University Graduate School of Medicine, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
243
|
Patel YJK, Payne Smith MD, de Belleroche J, Latchman DS. Hsp27 and Hsp70 administered in combination have a potent protective effect against FALS-associated SOD1-mutant-induced cell death in mammalian neuronal cells. ACTA ACUST UNITED AC 2005; 134:256-74. [PMID: 15836922 DOI: 10.1016/j.molbrainres.2004.10.028] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2004] [Revised: 09/25/2004] [Accepted: 10/24/2004] [Indexed: 01/27/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is an adult-onset degenerative disorder characterised by the death of motor neurons in the cortex, brainstem, and spinal cord; resulting in progressive muscle weakness, atrophy, and death from respiratory paralysis, usually within 3-5 years of symptom onset. Approximately 10% of ALS cases are familial (FALS). Mutations in superoxide dismutase-1 (SOD1) cause approximately 20% of FALS cases and there is overwhelming evidence that a toxic gain of function is the cause of the disease. We have previously shown that FALS-associated SOD1 disease mutants enhanced neuronal death in response to a wide range of stimuli tested whereas wt-SOD1 protected against all insults. We demonstrate for the first time that over-expression of either heat shock protein Hsp27 or Hsp70 has a protective effect against SOD1 disease associated mutant-induced cell death. However, over-expression of Hsp27 and Hsp70 together has a greater potent anti-apoptotic effect, than when expressed singly, against the damaging effects of mutant SOD1. Our results indicate that FALS-associated SOD1 disease mutants possess enhanced death-inducing properties and lead to increased apoptosis which can be prevented by either the use of specific caspase inhibitors or Hsp27 and/or Hsp70 over-expression. This potent protective effect of Hsp27 and Hsp70 against the FALS-associated SOD1 disease mutants may be of potential therapeutic importance.
Collapse
Affiliation(s)
- Yogesh J K Patel
- Medical Molecular Biology Unit, Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| | | | | | | |
Collapse
|
244
|
Diaz-Latoud C, Buache E, Javouhey E, Arrigo AP. Substitution of the unique cysteine residue of murine Hsp25 interferes with the protective activity of this stress protein through inhibition of dimer formation. Antioxid Redox Signal 2005; 7:436-45. [PMID: 15706091 DOI: 10.1089/ars.2005.7.436] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Murine small stress protein [heat shock protein 25 (Hsp25)] expression confers thermotolerance and protection against oxidative stress. Hsp25 is an oligomeric ATP-independent phospho-chaperone that can generate a glutathione-dependent pro-reducing state in cells that are normally devoid of small stress protein constitutive expression. Hsp25 contains only one cysteine residue (position 141) that is highly susceptible to oxidation. We have explored the significance of this reactive residue by generating a mutant in which cysteine-141 was substituted by an alanine residue (C141A mutant). We report here that the C141A mutant did not form dimers when expressed in either murine L929 or human HeLa cells, hence, demonstrating that cysteine-141 regulates Hsp25 dimer formation. The C141A mutant also interfered with the dimerization of human Hsp27, a constitutively expressed small stress protein in HeLa cells. The mutated polypeptide showed a decreased ability to multimerize, but its expression was still able to induce cellular protection against oxidative stress. The C141A mutant was, however, less efficient than the wild-type protein in counteracting staurosporine-induced apoptosis, and it showed no in vivo chaperone activity. Hence, the cellular protection mediated against different stressors may require specific structural organizations of Hsp25 that are differently altered by the mutation. Of interest, when expressed concomitantly with wild-type Hsp25, the C141A polypeptide induced a dominant-negative effect, a phenomenon that may result from the ability of small stress proteins to interact and multimerize with each other.
Collapse
Affiliation(s)
- Chantal Diaz-Latoud
- Laboratoire Stress Oxydant, Chaperons et Apoptose, Centre de Génétique Moléculaire et Cellulaire, CNRS UMR 5534, Université Claude Bernard, Lyon-1, 43 Boulevard du 11 Novembre, 69622 Villeurbanne Cédex, France
| | | | | | | |
Collapse
|
245
|
Arrigo AP, Virot S, Chaufour S, Firdaus W, Kretz-Remy C, Diaz-Latoud C. Hsp27 consolidates intracellular redox homeostasis by upholding glutathione in its reduced form and by decreasing iron intracellular levels. Antioxid Redox Signal 2005; 7:414-22. [PMID: 15706088 DOI: 10.1089/ars.2005.7.414] [Citation(s) in RCA: 190] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Small stress proteins [small heat shock proteins (sHsps)] are molecular chaperones that modulate the ability of cells to respond to oxidative stress. The current knowledge concerning the protective mechanism generated by the expression of mammalian heat shock protein-27 (Hsp27) that allows cells to increase their resistance to oxidative stress is presented. We describe the effects mediated by Hsp27 expression toward crucial enzymes such as glucose-6-phosphate dehydrogenase and glutathione reductase that uphold glutathione in its reduced form. New data are presented showing that the expression of sHsps correlates with a drastic decrease in the intracellular level of iron, a catalyzer of hydroxyl radical (OH( . )) generation. A decreased ability of sHsps expressing cells to concentrate iron will therefore end up in a decreased level of oxidized proteins. In addition, we propose a role of Hsp27 in the presentation of oxidized proteins to the proteasome degradation machinery. We also present an analysis of several Hsp27 mutants that suggests that the C-terminal part of this stress protein is essential for its protective activity against oxidative stress.
Collapse
Affiliation(s)
- André-Patrick Arrigo
- Laboratoire stress oxydant, chaperons et apoptose, Centre de Génétique Moléculaire et Cellulaire, CNRS UMR-5534, Université Claude Bernard, Lyon-I, Bât. Gregor Mendel, 16 rue Dubois, 69622 Villeurbanne Cédex, France.
| | | | | | | | | | | |
Collapse
|
246
|
Parcellier A, Schmitt E, Brunet M, Hammann A, Solary E, Garrido C. Small heat shock proteins HSP27 and alphaB-crystallin: cytoprotective and oncogenic functions. Antioxid Redox Signal 2005; 7:404-13. [PMID: 15706087 DOI: 10.1089/ars.2005.7.404] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Heat shock protein-27 (HSP27) and alphaB-crystallin are ubiquitous small heat shock proteins whose expression is induced in response to a wide variety of physiological and environmental insults. They allow the cells to survive in otherwise lethal conditions. Various mechanisms have been proposed to account for the cytoprotective functions of these small heat shock proteins. First, these proteins are powerful molecular chaperones whose main function is to prevent the aggregation of nascent and stress-accumulated misfolded proteins. Second, they interact directly with various components of the tightly regulated programmed cell death machinery, upstream and downstream of the mitochondrial events. Third, they appear to play a role in the proteasome-mediated degradation of selected proteins. Both HSP27 and alphaB-crystallin were also proposed to participate in the development of neurodegenerative diseases and malignant tumors in which their overexpression could induce drug resistance. Altogether, these properties suggest that these small heat shock proteins are appropriate targets for modulating cell death pathways.
Collapse
Affiliation(s)
- Arnaud Parcellier
- INSERM U-517, IFR-100, Faculty of Medicine and Pharmacy, 7 boulevard Jeanne d'Arc, 21033 Dijon, France
| | | | | | | | | | | |
Collapse
|
247
|
Manero F, Ljubic-Thibal V, Moulin M, Goutagny N, Yvin JC, Arrigo AP. Stimulation of Fas agonistic antibody-mediated apoptosis by heparin-like agents suppresses Hsp27 but not Bcl-2 protective activity. Cell Stress Chaperones 2005; 9:150-66. [PMID: 15497502 PMCID: PMC1065295 DOI: 10.1379/csc-16r.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
We report that in Jurkat T cells or freshly isolated T lymphocytes, physiological concentrations of high-molecular weight sulfated polysaccharides such as heparin, heparan sulfate, and dextran sulfate significantly increased the percentage of cell death induced by Fas IgM agonistic antibody. The phenomenon was caspase dependent and P53 independent and correlated with an increased accessibility of cell surface Fas receptors. We also observed that the Fas IgM agonistic antibody-dependent formation of sodium dodecyl sulfate (SDS)-resistant large structures containing Fas receptor was decreased in the presence of heparin-like agents. In contrast, the different agents had no effect when cell death was triggered by FasL, the natural ligand of Fas that does not generate SDS-resistant forms of Fas. Interestingly, the synergistic effect of heparin-like agents toward Fas IgM agonistic antibody-mediated cell death abolished Hsp27 antiapoptotic activity but did not alter much the protection generated by Bcl-2 expression.
Collapse
Affiliation(s)
- Florence Manero
- Laboratoire Stress Oxydant, Chaperons et Apoptose, Centre de Génétique Moléculaire et Cellulaire, CNRS UMR 5534, Université Claude Bernard Lyon-l, Villeurbanne, France
| | | | | | | | | | | |
Collapse
|
248
|
Beere HM. "The stress of dying": the role of heat shock proteins in the regulation of apoptosis. J Cell Sci 2005; 117:2641-51. [PMID: 15169835 DOI: 10.1242/jcs.01284] [Citation(s) in RCA: 470] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Heat shock proteins (Hsps) are a family of highly homologous chaperone proteins that are induced in response to environmental, physical and chemical stresses and that limit the consequences of damage and facilitate cellular recovery. The underlying ability of Hsps to maintain cell survival correlates with an inhibition of caspase activation and apoptosis that can, but does not always, depend upon their chaperoning activities. Several mechanisms proposed to account for these observations impact on both the "intrinsic", mitochondria-dependent and the "extrinsic", death-receptor-mediated pathways to apoptosis. Hsps can inhibit the activity of pro-apoptotic Bcl-2 proteins to prevent permeabilization of the outer mitochondrial membrane and release of apoptogenic factors. The disruption of apoptosome formation represents another mechanism by which Hsps can prevent caspase activation and induction of apoptosis. Several signaling cascades involved in the regulation of key elements within the apoptotic cascade are also subject to modulation by Hsps, including those involving JNK, NF-kappaB and AKT. The coordinated activities of the Hsps thus modulate multiple events within apoptotic pathways to help sustain cell survival following damaging stimuli.
Collapse
Affiliation(s)
- Helen M Beere
- La Jolla Institute for Allergy and Immunology, 10355 Science Center Drive, San Diego, CA 92121, USA.
| |
Collapse
|
249
|
Hargis MT, Storck CW, Wickstrom E, Yakubov LA, Leeper DB, Coss RA. Hsp27 anti-sense oligonucleotides sensitize the microtubular cytoskeleton of Chinese hamster ovary cells grown at low pH to 42 degrees C-induced reorganization. Int J Hyperthermia 2005; 20:491-502. [PMID: 15277022 DOI: 10.1080/02656730410001699100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Chinese hamster ovary (CHO) cells maintained in vitro at pH 6.7 were used to model cells in the acidic environment of tumours. CHO cells grown at pH 6.7 develop thermotolerance during 42 degrees C heating at pH 6.7 and their cytoskeletal systems are resistant to 42 degrees C-induced perinuclear collapse. Hsp27 levels are elevated in cells grown at pH 6.7 and are further induced during 42 degrees C heating, while Hsp70 levels remain low or undetectable, suggesting that Hsp27 is responsible for some of the novel characteristics of these cells. An anti-sense oligonucleotide strategy was used to test the importance of Hsp27 by lowering heat-induced levels of the protein. The response of the microtubular cytoskeleton to heat was used as an endpoint to assess the effectiveness of the anti-sense strategy. Treatment with anti-sense oligonucleotides prevented the heat-induced increase of Hsp27 levels measured immediately following heat. Treatment with anti-sense oligonucleotides also sensitized the cytoskeleton of cells grown at low pH to heat-induced perinuclear collapse. However, cytoskeletal collapse was not evident in cells grown at pH 6.7 and treated with 4-nt mismatch oligonucleotides or in control cells maintained and heated at pH 6.7. The cytoskeleton collapsed around the nucleus in cells cultured and heated at pH 7.3. These results confirm that over-expression of Hsp27 confers heat protection to the microtubular cytoskeleton in CHO cells grown at low pH.
Collapse
Affiliation(s)
- M T Hargis
- Department of Radiation Oncology, Thomas Jefferson University 111 S, 11th Street, Philadelphia, PA 19107-5097, USA
| | | | | | | | | | | |
Collapse
|
250
|
Abstract
Small heat shock proteins (small HSPs) are molecular chaperones that protect cells against stress by assisting in the correct folding of denatured proteins and thus prevent aggregation of misfolded proteins. Small HSPs also modulate apoptotic pathways by interacting with components of programmed cell death. Furthermore, some small HSPs interact with the cytoskeleton to assist in spatial organization and dynamics of its structural elements. The role of small HSPs has been studied in many disorders, including neurodegenerative disease. Recently, mutations in HSPB1 (HSP27) and HSPB8 (HSP22), two members of the small HSP superfamily, have been associated with inherited peripheral neuropathies. In this review, we will summarize the current knowledge of small HSPs, in particular HSPB1 and HSPB8, and discuss their role in health and disease.
Collapse
Affiliation(s)
- Ines Dierick
- Department of Molecular Genetics, Flanders Interuniversity Institute for Biotechnology, Institute Born-Bunge, University of Antwerp, Antwerpen, Belgium
| | | | | | | |
Collapse
|