201
|
Hoyt MA, Zhang M, Coffino P. Ubiquitin-independent mechanisms of mouse ornithine decarboxylase degradation are conserved between mammalian and fungal cells. J Biol Chem 2003; 278:12135-43. [PMID: 12562772 DOI: 10.1074/jbc.m211802200] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The polyamine biosynthetic enzyme ornithine decarboxylase (ODC) is degraded by the 26 S proteasome via a ubiquitin-independent pathway in mammalian cells. Its degradation is greatly accelerated by association with the polyamine-induced regulatory protein antizyme 1 (AZ1). Mouse ODC (mODC) that is expressed in the yeast Saccharomyces cerevisiae is also rapidly degraded by the proteasome of that organism. We have now carried out in vivo and in vitro studies to determine whether S. cerevisiae proteasomes recognize mODC degradation signals. Mutations of mODC that stabilized the protein in animal cells also did so in the fungus. Moreover, the mODC degradation signal was able to destabilize a GFP or Ura3 reporter in GFP-mODC and Ura3-mODC fusion proteins. Co-expression of AZ1 accelerated mODC degradation 2-3-fold in yeast cells. The degradation of both mODC and the endogenous yeast ODC (yODC) was unaffected in S. cerevisiae mutants with various defects in ubiquitin metabolism, and ubiquitinylated forms of mODC were not detected in yeast cells. In addition, recombinant mODC was degraded in an ATP-dependent manner by affinity-purified yeast 26 S proteasomes in the absence of ubiquitin. Degradation by purified yeast proteasomes was sensitive to mutations that stabilized mODC in vivo, but was not accelerated by recombinant AZ1. These studies demonstrate that cell constituents required for mODC degradation are conserved between animals and fungi, and that both mammalian and fungal ODC are subject to proteasome-mediated proteolysis by ubiquitin-independent mechanisms.
Collapse
Affiliation(s)
- Martin A Hoyt
- Department of Microbiology and Immunology, University of California, San Francisco, California 94143-0414, USA
| | | | | |
Collapse
|
202
|
Abstract
With its abundant components and extensive study, the glycolytic pathway in the yeast Saccharomyces cerevisiae would appear ideal to obtain and reconcile the 'omes of transcript, protein, metabolite and flux. But to do so is challenging and, as is often the case, close correlation of gene expression and function is elusive, even in this organism.
Collapse
Affiliation(s)
- Dan G Fraenkel
- Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Avenue, Boston, Massachusetts 02115, USA.
| |
Collapse
|
203
|
Ostapenko D, Solomon MJ. Budding yeast CTDK-I is required for DNA damage-induced transcription. EUKARYOTIC CELL 2003; 2:274-83. [PMID: 12684377 PMCID: PMC154854 DOI: 10.1128/ec.2.2.274-283.2003] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2002] [Accepted: 01/06/2003] [Indexed: 12/31/2022]
Abstract
CTDK-I phosphorylates the C-terminal domain (CTD) of the large subunit of yeast RNA polymerase II in a reaction that stimulates transcription elongation. Mutations in CTDK-I subunits-Ctk1p, Ctk2p, and Ctk3p-confer conditional phenotypes. In this study, we examined the role of CTDK-I in the DNA damage response. We found that mutation of individual CTDK-I subunits rendered yeast sensitive to hydroxyurea (HU) and UV irradiation. Treatment with DNA-damaging agents increased phosphorylation of Ser2 within the CTD repeats in wild-type but not in ctk1Delta mutant cells. Using microarray hybridization, we identified genes whose transcription following DNA damage is Ctk1p dependent, including several DNA repair and stress response genes. Following HU treatment, the level of Ser2-phosphorylated RNA polymerase II increased both globally and on the CTDK-I-regulated genes. The pleiotropic phenotypes of ctk mutants suggest that CTDK-I activity is essential during large-scale transcriptional repatterning under stress and unfavorable growth conditions.
Collapse
Affiliation(s)
- Denis Ostapenko
- Department of Molecular Biophysics, Yale University School of Medicine, New Haven, Connecticut 06520-8024, USA
| | | |
Collapse
|
204
|
Abstract
Model organisms have been used over a century to understand basic, conserved biological processes. The study of these experimental systems began with genetics and development, moved into molecular and cellular biology, and most recently propelled into functional genomics and proteomics. The goal of this review is simple: to discuss the place of model organisms in "The Age of the Ome": the genome, the transcriptome, and the proteome. This review will address the following questions. What exactly is a model organism? What characteristics make an excellent model system? Using the yeast Saccharomyces cerevisiae and the nematode Caenorhabditis elegans as examples, this review will discuss these issues with the aim of demonstrating how model organisms remain indispensable scientific tools for understanding complex biological pathways and human disease.
Collapse
Affiliation(s)
- Maureen M Barr
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA.
| |
Collapse
|
205
|
Abstract
Maintenance of genome stability is essential for avoiding the passage to neoplasia. The DNA-damage response--a cornerstone of genome stability--occurs by a swift transduction of the DNA-damage signal to many cellular pathways. A prime example is the cellular response to DNA double-strand breaks, which activate the ATM protein kinase that, in turn, modulates numerous signalling pathways. ATM mutations lead to the cancer-predisposing genetic disorder ataxia-telangiectasia (A-T). Understanding ATM's mode of action provides new insights into the association between defective responses to DNA damage and cancer, and brings us closer to resolving the issue of cancer predisposition in some A-T carriers.
Collapse
Affiliation(s)
- Yosef Shiloh
- The David and Inez Myers Laboratory for Genetic Research, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
206
|
Affiliation(s)
- William C Nierman
- Institute for Genomic Research, 9712 Medical Center Drive, Rockville, Maryland 20850, USA
| | | |
Collapse
|
207
|
Abstract
A number of intrinsic and extrinsic mutagens induce structural damage in cellular DNA. These DNA damages are cytotoxic, miscoding or both and are believed to be at the origin of cell lethality, tissue degeneration, ageing and cancer. In order to counteract immediately the deleterious effects of such lesions, leading to genomic instability, cells have evolved a number of DNA repair mechanisms including the direct reversal of the lesion, sanitation of the dNTPs pools, mismatch repair and several DNA excision pathways including the base excision repair (BER) nucleotide excision repair (NER) and the nucleotide incision repair (NIR). These repair pathways are universally present in living cells and extremely well conserved. This review is focused on the repair of lesions induced by free radicals and ionising radiation. The BER pathway removes most of these DNA lesions, although recently it was shown that other pathways would also be efficient in the removal of oxidised bases. In the BER pathway the process is initiated by a DNA glycosylase excising the modified and mismatched base by hydrolysis of the glycosidic bond between the base and the deoxyribose of the DNA, generating a free base and an abasic site (AP-site) which in turn is repaired since it is cytotoxic and mutagenic.
Collapse
Affiliation(s)
- Laurent Gros
- Groupe Réparation de l'ADN, UMR 8532 CNRS, LBPA-ENS Cachan, Institut Gustave Roussy, 39, rue Camille Desmoulins, 94805 Villejuif Cedex, France
| | | | | |
Collapse
|
208
|
Kiechle M, Manivasakam P, Eckardt-Schupp F, Schiestl RH, Friedl AA. Promoter-trapping in Saccharomyces cerevisiae by radiation-assisted fragment insertion. Nucleic Acids Res 2002; 30:e136. [PMID: 12490727 PMCID: PMC140085 DOI: 10.1093/nar/gnf136] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2002] [Revised: 10/19/2002] [Accepted: 10/19/2002] [Indexed: 11/13/2022] Open
Abstract
Non-homologous insertion (NHI) of DNA fragments into genomic DNA is a method widely used in insertional mutagenesis screens. In the yeast Saccharomyces cerevisiae, the efficiency of NHI is very low. Here we report that its efficiency can be increased by gamma-irradiation of recipient cells at the time of transformation. Radiation-assisted NHI depends on YKU70, but its efficiency is not improved by inactivation of RAD5 or RAD52. In a pilot study, we generated 102 transformant clones expressing a lacZ reporter gene under standard conditions (30 degrees C, rich medium). The site of insertion was determined in a subset of eight clones in which lacZ expression was altered by UV-irradiation. A comparison with published data revealed that three of the eight genes identified in our screen have not been targeted by large-scale transposon-based insertion screens. This suggests that radiation-assisted NHI offers a more homogeneous coverage of the genome than methods relying on transposons or retroviral elements.
Collapse
Affiliation(s)
- Markus Kiechle
- Department of Pathology, School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | | | |
Collapse
|
209
|
Sharan R, Elkon R, Shamir R. Cluster analysis and its applications to gene expression data. ERNST SCHERING RESEARCH FOUNDATION WORKSHOP 2002:83-108. [PMID: 12061008 DOI: 10.1007/978-3-662-04747-7_5] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- R Sharan
- School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel.
| | | | | |
Collapse
|
210
|
Ai W, Bertram PG, Tsang CK, Chan TF, Zheng XFS. Regulation of subtelomeric silencing during stress response. Mol Cell 2002; 10:1295-305. [PMID: 12504006 DOI: 10.1016/s1097-2765(02)00695-0] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sir proteins play a critical role in silent chromatin domains. While mutations can cause derepression of heterochromatin, it remains unclear whether silencing is actively involved in transcriptional control under changing environmental conditions. We find that TOR inhibits Sir3 phosphorylation. Rapamycin or stress induced by chlorpromazine leads to activation of MAP kinase Mpk1/Slt2, which phosphorylates Sir3. Sir3 hyperphosphorylation is correlated with reduced subtelomeric silencing, increased subtelomeric cell wall gene expression, and stress resistance to chlorpromazine, but does not affect the silent HML and rDNA loci. Based on these observations, we propose that regulation of silencing may be used to control gene expression at specific silent chromatin domains in response to stress and possibly other environmental changes.
Collapse
Affiliation(s)
- Wandong Ai
- Department of Pathology and Immunology, Washington University School of Medicine, 63110, St. Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
211
|
Horak CE, Luscombe NM, Qian J, Bertone P, Piccirrillo S, Gerstein M, Snyder M. Complex transcriptional circuitry at the G1/S transition in Saccharomyces cerevisiae. Genes Dev 2002; 16:3017-33. [PMID: 12464632 PMCID: PMC187492 DOI: 10.1101/gad.1039602] [Citation(s) in RCA: 203] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2002] [Accepted: 10/09/2002] [Indexed: 12/13/2022]
Abstract
In the yeast Saccharomyces cerevisiae, SBF (Swi4-Swi6 cell cycle box binding factor) and MBF (MluI binding factor) are the major transcription factors regulating the START of the cell cycle, a time just before DNA replication, bud growth initiation, and spindle pole body (SPB) duplication. These two factors bind to the promoters of 235 genes, but bind less than a quarter of the promoters upstream of genes with peak transcript levels at the G1 phase of the cell cycle. Several functional categories, which are known to be crucial for G1/S events, such as SPB duplication/migration and DNA synthesis, are under-represented in the list of SBF and MBF gene targets. SBF binds the promoters of several other transcription factors, including HCM1, PLM2, POG1, TOS4, TOS8, TYE7, YAP5, YHP1, and YOX1. Here, we demonstrate that these factors are targets of SBF using an independent assay. To further elucidate the transcriptional circuitry that regulates the G1-to-S-phase progression, these factors were epitope-tagged and their binding targets were identified by chIp-chip analysis. These factors bind the promoters of genes with roles in G1/S events including DNA replication, bud growth, and spindle pole complex formation, as well as the general activities of mitochondrial function, transcription, and protein synthesis. Although functional overlap exists between these factors and MBF and SBF, each of these factors has distinct functional roles. Most of these factors bind the promoters of other transcription factors known to be cell cycle regulated or known to be important for cell cycle progression and differentiation processes indicating that a complex network of transcription factors coordinates the diverse activities that initiate a new cell cycle.
Collapse
Affiliation(s)
- Christine E Horak
- Department of Molecular, Cellular, and Developmental Biology, Connecticut 06520-8103, USA
| | | | | | | | | | | | | |
Collapse
|
212
|
Sudarsanam P, Pilpel Y, Church GM. Genome-wide co-occurrence of promoter elements reveals a cis-regulatory cassette of rRNA transcription motifs in Saccharomyces cerevisiae. Genome Res 2002; 12:1723-31. [PMID: 12421759 PMCID: PMC187556 DOI: 10.1101/gr.301202] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2002] [Accepted: 09/10/2002] [Indexed: 11/25/2022]
Abstract
Combinatorial regulation is an important feature of eukaryotic transcription. However, only a limited number of studies have characterized this aspect on a whole-genome level. We have conducted a genome-wide computational survey to identify cis-regulatory motif pairs that co-occur in a significantly high number of promoters in the S. cerevisiae genome. A pair of novel motifs, mRRPE and PAC, co-occur most highly in the genome, primarily in the promoters of genes involved in rRNA transcription and processing. The two motifs show significant positional and orientational bias with mRRPE being closer to the ATG than PAC in most promoters. Two additional rRNA-related motifs, mRRSE3 and mRRSE10, also co-occur with mRRPE and PAC. mRRPE and PAC are the primary determinants of expression profiles while mRRSE3 and mRRSE10 modulate these patterns. We describe a new computational approach for studying the functional significance of the physical locations of promoter elements that combine analyses of genome sequence and microarray data. Applying this methodology to the regulatory cassette containing the four rRNA motifs demonstrates that the relative promoter locations of these elements have a profound effect on the expression patterns of the downstream genes. These findings provide a function for these novel motifs and insight into the mechanism by which they regulate gene expression. The methodology introduced here should prove particularly useful for analyzing transcriptional regulation in more complex genomes.
Collapse
Affiliation(s)
- Priya Sudarsanam
- Department of Genetics and Lipper Center for Computational Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
213
|
Ramalho-Santos M, Yoon S, Matsuzaki Y, Mulligan RC, Melton DA. "Stemness": transcriptional profiling of embryonic and adult stem cells. Science 2002; 298:597-600. [PMID: 12228720 DOI: 10.1126/science.1072530] [Citation(s) in RCA: 1217] [Impact Index Per Article: 52.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The transcriptional profiles of mouse embryonic, neural, and hematopoietic stem cells were compared to define a genetic program for stem cells. A total of 216 genes are enriched in all three types of stem cells, and several of these genes are clustered in the genome. When compared to differentiated cell types, stem cells express a significantly higher number of genes (represented by expressed sequence tags) whose functions are unknown. Embryonic and neural stem cells have many similarities at the transcriptional level. These results provide a foundation for a more detailed understanding of stem cell biology.
Collapse
Affiliation(s)
- Miguel Ramalho-Santos
- Department of Molecular and Cellular Biology and Howard Hughes Medical Institute (HHMI), Harvard University, Cambridge, MA 02138, USA
| | | | | | | | | |
Collapse
|
214
|
Piper MDW, Daran-Lapujade P, Bro C, Regenberg B, Knudsen S, Nielsen J, Pronk JT. Reproducibility of oligonucleotide microarray transcriptome analyses. An interlaboratory comparison using chemostat cultures of Saccharomyces cerevisiae. J Biol Chem 2002; 277:37001-8. [PMID: 12121991 DOI: 10.1074/jbc.m204490200] [Citation(s) in RCA: 186] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Assessment of reproducibility of DNA-microarray analysis from published data sets is complicated by the use of different microbial strains, cultivation techniques, and analytical procedures. Because intra- and interlaboratory reproducibility is highly relevant for application of DNA-microarray analysis in functional genomics and metabolic engineering, we designed a set of experiments to specifically address this issue. Saccharomyces cerevisiae CEN.PK113-7D was grown under defined conditions in glucose-limited chemostats, followed by transcriptome analysis with Affymetrix GeneChip arrays. In each of the laboratories, three independent replicate cultures were grown aerobically as well as anaerobically. Although variations introduced by in vitro handling steps were small and unbiased, greater variation from replicate cultures underscored that, to obtain reliable information, experimental replication is essential. Under aerobic conditions, 86% of the most highly expressed yeast genes showed an average intralaboratory coefficient of variation of 0.23. This is significantly lower than previously reported for shake-flask-culture transcriptome analyses and probably reflects the strict control of growth conditions in chemostats. Using the triplicate data sets and appropriate statistical analysis, the change calls from anaerobic versus aerobic comparisons yielded an over 95% agreement between the laboratories for transcripts that changed by over 2-fold, leaving only a small fraction of genes that exhibited laboratory bias.
Collapse
Affiliation(s)
- Matthew D W Piper
- Kluyver Laboratory of Biotechnology, Technical University of Delft, Julianalaan 26, Delft 2628BC, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
215
|
Lommel L, Ortolan T, Chen L, Madura K, Sweder KS. Proteolysis of a nucleotide excision repair protein by the 26 S proteasome. Curr Genet 2002; 42:9-20. [PMID: 12420141 DOI: 10.1007/s00294-002-0332-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2002] [Revised: 08/28/2002] [Accepted: 08/29/2002] [Indexed: 12/01/2022]
Abstract
The 26 S proteasome degrades a broad spectrum of proteins and interacts with several nucleotide excision repair (NER) proteins, including the complex of Rad4 and Rad23 that binds preferentially to UV-damaged DNA. The rate of NER is increased in yeast strains with mutations in genes encoding subunits of the 26 S proteasome, indicating that it could negatively regulate a repair process. The specific function of the 26 S proteasome in DNA repair is unclear. It might degrade DNA repair proteins after repair is completed or act as a molecular chaperone to promote the assembly or disassembly of the repair complex. In this study, we show that Rad4 is ubiquitylated and that Rad23 can control this process. We also find that ubiquitylated Rad4 is degraded by the 26 S proteasome. However, the interaction of Rad23 with Rad4 is not only to control degradation of Rad4, but also to assist in assembling the NER incision complex at UV-induced cyclobutane pyrimidine dimers. We speculate that, following the completion of DNA repair, specific repair proteins might be degraded by the proteasome to regulate repair.
Collapse
Affiliation(s)
- Lori Lommel
- Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 164 Frelinghuysen Road, Piscataway 08854-8020, USA
| | | | | | | | | |
Collapse
|
216
|
Gibbons FD, Roth FP. Judging the quality of gene expression-based clustering methods using gene annotation. Genome Res 2002; 12:1574-81. [PMID: 12368250 PMCID: PMC187526 DOI: 10.1101/gr.397002] [Citation(s) in RCA: 172] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2002] [Accepted: 07/30/2002] [Indexed: 02/05/2023]
Abstract
We compare several commonly used expression-based gene clustering algorithms using a figure of merit based on the mutual information between cluster membership and known gene attributes. By studying various publicly available expression data sets we conclude that enrichment of clusters for biological function is, in general, highest at rather low cluster numbers. As a measure of dissimilarity between the expression patterns of two genes, no method outperforms Euclidean distance for ratio-based measurements, or Pearson distance for non-ratio-based measurements at the optimal choice of cluster number. We show the self-organized-map approach to be best for both measurement types at higher numbers of clusters. Clusters of genes derived from single- and average-linkage hierarchical clustering tend to produce worse-than-random results.
Collapse
Affiliation(s)
- Francis D Gibbons
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
217
|
Zhou X, Kao MCJ, Wong WH. Transitive functional annotation by shortest-path analysis of gene expression data. Proc Natl Acad Sci U S A 2002; 99:12783-8. [PMID: 12196633 PMCID: PMC130537 DOI: 10.1073/pnas.192159399] [Citation(s) in RCA: 199] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2002] [Indexed: 11/18/2022] Open
Abstract
Current methods for the functional analysis of microarray gene expression data make the implicit assumption that genes with similar expression profiles have similar functions in cells. However, among genes involved in the same biological pathway, not all gene pairs show high expression similarity. Here, we propose that transitive expression similarity among genes can be used as an important attribute to link genes of the same biological pathway. Based on large-scale yeast microarray expression data, we use the shortest-path analysis to identify transitive genes between two given genes from the same biological process. We find that not only functionally related genes with correlated expression profiles are identified but also those without. In the latter case, we compare our method to hierarchical clustering, and show that our method can reveal functional relationships among genes in a more precise manner. Finally, we show that our method can be used to reliably predict the function of unknown genes from known genes lying on the same shortest path. We assigned functions for 146 yeast genes that are considered as unknown by the Saccharomyces Genome Database and by the Yeast Proteome Database. These genes constitute around 5% of the unknown yeast ORFome.
Collapse
Affiliation(s)
- Xianghong Zhou
- Department of Biostatistics, Harvard School of Public Health, Boston, MA 02115, USA
| | | | | |
Collapse
|
218
|
Pérez-Ortín JE, García-Martínez J, Alberola TM. DNA chips for yeast biotechnology. The case of wine yeasts. J Biotechnol 2002; 98:227-41. [PMID: 12141989 DOI: 10.1016/s0168-1656(02)00134-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The yeast Saccharomyces cerevisiae is one of the most popular model organisms. It was the first eukaryote whose genome was sequenced. Since then many functional analysis projects have tried to find the function of many genes and to understand its metabolism in a holistic way. Apart from basic science this microorganism is of great interest in several biotechnology processes, such as winemaking. Only global studies of the cell as a whole can help us to understand many of the technical problems facing winemaking. DNA chip technology is one of the most promising tools for the analysis of cell physiology. Yeast has been the model organism for the development of this technique. Many of the studies can be applied to improve our knowledge of wine strains. Nevertheless wine strains are quite different in some aspects from the laboratory reference strains so a particular study of wine strains and especially during the winemaking process is needed. During the past two years some groups have started this study and the first results have been published. We review here the current state of the knowledge of wine yeast and the capacity of DNA chip technology for its improvement.
Collapse
Affiliation(s)
- José E Pérez-Ortín
- Departamento de Bioquímica y Biología Molecular and Servicio de Chips de DNA, Universitat de València, Spain.
| | | | | |
Collapse
|
219
|
Ford G, Ellis EM. Characterization of Ypr1p from Saccharomyces cerevisiae as a 2-methylbutyraldehyde reductase. Yeast 2002; 19:1087-96. [PMID: 12210903 DOI: 10.1002/yea.899] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The metabolism of aldehydes and ketones in yeast is important for biosynthetic, catabolic and detoxication processes. Aldo-keto reductases are a family of enzymes that are able to reduce aldehydes and ketones. The roles of individual aldo-keto reductases in yeast has been difficult to determine because of overlapping substrate specificities of these enzymes. In this study, we have cloned, expressed and characterized the aldo-keto reductase Ypr1p from the yeast Saccharomyces cerevisiae and we describe its substrate specificity. The enzyme displays high specific activity towards 2-methylbutyraldehyde, as well as other aldehydes such as hexanal. It exhibits extremely low activity as a glycerol dehydrogenase. The enzyme functions over a wide pH range and uses NADPH as co-factor. In comparison to other mammalian and yeast aldo-keto reductases, Ypr1p has relatively high affinity for D,L-glyceraldehyde (1.08 mM) and hexanal (0.39 mM), but relatively low affinity for 4-nitrobenzaldehyde (1.07 mM). It displays higher specific activity for 2-methylbutyraldehyde than does yeast alcohol dehydrogenase and has a K(m) for 2-methyl butyraldehyde of 1.09 mM. The enzyme is expressed during growth on glucose, but its levels are rapidly induced by osmotic and oxidative stress. Yeast in which the YPR1 gene has been deleted possess 50% lower 2-methylbutyraldehyde reductase activity than the wild-type strain. This suggests that the enzyme may contribute to 2-methyl butyraldehyde reduction in vivo. It may therefore play a role in isoleucine catabolism and fusel alcohol formation and may influence flavour formation by strains of brewing yeast.
Collapse
Affiliation(s)
- Gordon Ford
- Department of Pharmaceutical Sciences, University of Strathclyde, 204 George Street, Glasgow G1 1XW, UK
| | | |
Collapse
|
220
|
Grünenfelder B, Winzeler EA. Treasures and traps in genome-wide data sets: case examples from yeast. Nat Rev Genet 2002; 3:653-61. [PMID: 12209140 DOI: 10.1038/nrg886] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Since the publication of the Saccharomyces cerevisiae genome sequence, much effort has been dedicated to developing high-throughput techniques to generate comprehensive information about the function and dynamics of all genes in this yeast's genome. These techniques have generated data sets that typically contain large amounts of reliable and valuable biological information. Nevertheless, there are also uncertainties that are associated with such large-scale studies, which we discuss in this review. These uncertainties increase with the complexity of the organism under study. On the basis of the results from yeast, we should learn much from human and mouse genomic data sets. However, as with yeast data sets, they might also contain misleading results.
Collapse
Affiliation(s)
- Björn Grünenfelder
- Department of Cell Biology, ICND 202, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | |
Collapse
|
221
|
Zwickl P, Seemüller E, Kapelari B, Baumeister W. The proteasome: a supramolecular assembly designed for controlled proteolysis. ADVANCES IN PROTEIN CHEMISTRY 2002; 59:187-222. [PMID: 11868272 DOI: 10.1016/s0065-3233(01)59006-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- P Zwickl
- Department of Molecular Structural Biology, Max-Planck Institute for Biochemistry, Am Klopferspitz 18a, 82152 Martinsried, Germany
| | | | | | | |
Collapse
|
222
|
Oshiro G, Wodicka LM, Washburn MP, Yates JR, Lockhart DJ, Winzeler EA. Parallel identification of new genes in Saccharomyces cerevisiae. Genome Res 2002; 12:1210-20. [PMID: 12176929 PMCID: PMC186640 DOI: 10.1101/gr.226802] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2001] [Accepted: 05/17/2002] [Indexed: 01/13/2023]
Abstract
Short open reading frames (ORFs) occur frequently in primary genome sequence. Distinguishing bona fide small genes from the tens of thousands of short ORFs is one of the most challenging aspects of genome annotation. Direct experimental evidence is often required. Here we use a combination of expression profiling and mass spectrometry to verify the independent transcription of 138 and the translation of 50 previously nonannotated genes in the Saccharomyces cerevisiae genome. Through combined evidence, we propose the addition of 62 new genes to the genome and provide experimental support for the inclusion of 10 previously identified genes.
Collapse
Affiliation(s)
- Guy Oshiro
- Genomics Institute of the Novartis Research Foundation, San Diego, California 92121, USA
| | | | | | | | | | | |
Collapse
|
223
|
Nautiyal S, DeRisi JL, Blackburn EH. The genome-wide expression response to telomerase deletion in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 2002; 99:9316-21. [PMID: 12084816 PMCID: PMC123138 DOI: 10.1073/pnas.142162499] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2002] [Indexed: 11/18/2022] Open
Abstract
Loss of the protective function of telomeres has previously been hypothesized to cause a DNA damage response. Here, we report a genome-wide expression response, the telomerase deletion response (TDR), that occurs when telomeres can no longer be maintained by telomerase. The TDR shares features with other DNA damage responses and the environmental stress response. Unexpectedly, another feature of the TDR is the up-regulation of energy production genes, accompanied by a proliferation of mitochondria. Finally, a discrete set of genes, the "telomerase deletion signature", is uniquely up-regulated in the TDR but not under other conditions of stress and DNA damage that have been reported. The telomerase deletion signature genes define new candidates for involvement in cellular responses to altered telomere structure or function.
Collapse
Affiliation(s)
- Shivani Nautiyal
- Department of Biochemistry, University of California, Box 0448, San Francisco, CA 94143, USA
| | | | | |
Collapse
|
224
|
Kuznetsov VA, Knott GD, Bonner RF. General statistics of stochastic process of gene expression in eukaryotic cells. Genetics 2002; 161:1321-32. [PMID: 12136033 PMCID: PMC1462190 DOI: 10.1093/genetics/161.3.1321] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Thousands of genes are expressed at such very low levels (< or =1 copy per cell) that global gene expression analysis of rarer transcripts remains problematic. Ambiguity in identification of rarer transcripts creates considerable uncertainty in fundamental questions such as the total number of genes expressed in an organism and the biological significance of rarer transcripts. Knowing the distribution of the true number of genes expressed at each level and the corresponding gene expression level probability function (GELPF) could help resolve these uncertainties. We found that all observed large-scale gene expression data sets in yeast, mouse, and human cells follow a Pareto-like distribution model skewed by many low-abundance transcripts. A novel stochastic model of the gene expression process predicts the universality of the GELPF both across different cell types within a multicellular organism and across different organisms. This model allows us to predict the frequency distribution of all gene expression levels within a single cell and to estimate the number of expressed genes in a single cell and in a population of cells. A random "basal" transcription mechanism for protein-coding genes in all or almost all eukaryotic cell types is predicted. This fundamental mechanism might enhance the expression of rarely expressed genes and, thus, provide a basic level of phenotypic diversity, adaptability, and random monoallelic expression in cell populations.
Collapse
Affiliation(s)
- V A Kuznetsov
- Laboratory of Integrative and Medical Biophysics, National Institute of Child Health and Human Development/NIH, Bldg. 13, Rm. 3W16, Bethesda, MD 20892-5772, USA.
| | | | | |
Collapse
|
225
|
Ustrell V, Hoffman L, Pratt G, Rechsteiner M. PA200, a nuclear proteasome activator involved in DNA repair. EMBO J 2002; 21:3516-25. [PMID: 12093752 PMCID: PMC126083 DOI: 10.1093/emboj/cdf333] [Citation(s) in RCA: 258] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2002] [Revised: 05/17/2002] [Accepted: 05/17/2002] [Indexed: 11/14/2022] Open
Abstract
We have identified a novel 200 kDa nuclear protein that activates the proteasome. The protein, which we call PA200, has been purified to homogeneity from bovine testis and has been shown to activate proteasomal hydrolysis of peptides, but not proteins. Following gamma-irradiation of HeLa cells the uniform nuclear distribution of PA200 changes to a strikingly punctate pattern, a behavior characteristic of many DNA repair proteins. Homologs of PA200 are present in worms, plants and yeast. Others have shown that mutation of yeast PA200 results in hypersensitivity to bleomycin, and exposure of yeast to DNA damaging agents induces the PA200 message. Taken together, these findings implicate PA200 in DNA repair, possibly by recruiting proteasomes to double strand breaks.
Collapse
Affiliation(s)
| | - Laura Hoffman
- Department of Biochemistry, University of Utah, 50 N Medical Drive, Salt Lake City, UT 84132 and
Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope Drive, Salt Lake City, UT 84132, USA Corresponding author e-mail:
| | | | - Martin Rechsteiner
- Department of Biochemistry, University of Utah, 50 N Medical Drive, Salt Lake City, UT 84132 and
Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope Drive, Salt Lake City, UT 84132, USA Corresponding author e-mail:
| |
Collapse
|
226
|
Birrell GW, Brown JA, Wu HI, Giaever G, Chu AM, Davis RW, Brown JM. Transcriptional response of Saccharomyces cerevisiae to DNA-damaging agents does not identify the genes that protect against these agents. Proc Natl Acad Sci U S A 2002; 99:8778-83. [PMID: 12077312 PMCID: PMC124375 DOI: 10.1073/pnas.132275199] [Citation(s) in RCA: 200] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2002] [Indexed: 12/20/2022] Open
Abstract
The recent completion of the deletion of all of the nonessential genes in budding yeast has provided a powerful new way of determining those genes that affect the sensitivity of this organism to cytotoxic agents. We have used this system to test the hypothesis that genes whose transcription is increased after DNA damage are important for the survival to that damage. We used a pool of 4,627 diploid strains each with homozygous deletion of a nonessential gene to identify those genes that are important for the survival of yeast to four DNA-damaging agents: ionizing radiation, UV radiation, and exposure to cisplatin or to hydrogen peroxide. In addition we measured the transcriptional response of the wild-type parental strain to the same DNA-damaging agents. We found no relationship between the genes necessary for survival to the DNA-damaging agents and those genes whose transcription is increased after exposure. These data show that few, if any, of the genes involved in repairing the DNA lesions produced in this study, including double-strand breaks, pyrimidine dimers, single-strand breaks, base damage, and DNA cross-links, are induced in response to toxic doses of the agents that produce these lesions. This finding suggests that the enzymes necessary for the repair of these lesions are at sufficient levels within the cell. The data also suggest that the nature of the lesions produced by DNA-damaging agents cannot easily be deduced from gene expression profiling.
Collapse
Affiliation(s)
- Geoff W Birrell
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | | | | | |
Collapse
|
227
|
Boiteux S, Gellon L, Guibourt N. Repair of 8-oxoguanine in Saccharomyces cerevisiae: interplay of DNA repair and replication mechanisms. Free Radic Biol Med 2002; 32:1244-53. [PMID: 12057762 DOI: 10.1016/s0891-5849(02)00822-5] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
8-Oxo-7,8-dihydroguanine (8-oxoG) is produced abundantly in DNA exposed to free radicals and reactive oxygen species. The biological relevance of 8-oxoG has been unveiled by the study of two mutator genes in Escherichia coli, fpg, and mutY. Both genes code for DNA N-glycosylases that cooperate to prevent the mutagenic effects of 8-oxoG in DNA. In Saccharomyces cerevisiae, the OGG1 gene encodes a DNA N-glycosylase/AP lyase, which is the functional homologue of the bacterial fpg gene product. The inactivation of OGG1 in yeast creates a mutator phenotype that is specific for the generation of GC to TA transversions. In yeast, nucleotide excision repair (NER) also contributes to the release of 8-oxoG in damaged DNA. Furthermore, mismatch repair (MMR) mediated by MSH2/MSH6/MLH1 plays a major role in the prevention of the mutagenic effect of 8-oxoG. Indeed, MMR acts as the functional homologue of the MutY protein of E. coli, excising the adenine incorporated opposite 8-oxoG. Finally, the efficient and accurate replication of 8-oxoG by the yeast DNA polymerase eta also prevents 8-oxoG-induced mutagenesis. The aim of this review is to summarize recent literature dealing with the replication and repair of 8-oxoG in Saccharomyces cerevisiae, which can be used as a paradigm for DNA repair in eukaryotes.
Collapse
Affiliation(s)
- Serge Boiteux
- CEA, DSV, Département de Radiobiologie et Radiopathologie, CNRS-CEA Radiobiologie Moléculaire et Cellulaire, Fontenay aux Roses, France.
| | | | | |
Collapse
|
228
|
Zhou Q, Zhao J, Wiedmer T, Sims PJ. Normal hemostasis but defective hematopoietic response to growth factors in mice deficient in phospholipid scramblase 1. Blood 2002; 99:4030-8. [PMID: 12010804 DOI: 10.1182/blood-2001-12-0271] [Citation(s) in RCA: 169] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phospholipid scramblase 1 (PLSCR1) is an endofacial plasma membrane protein proposed to participate in transbilayer movement of phosphatidylserine and other phospholipids. In addition to its putative role in the reorganization of plasma membrane phospholipids, PLSCR1 is a substrate of intracellular kinases that imply its possible participation in diverse signaling pathways underlying proliferation, differentiation, or apoptosis. Because PLSCR1 is prominently expressed in a variety of blood cells, we evaluated PLSCR activity in platelets and erythrocytes, and cytokine-dependent growth of hematopoietic precursor cells, of PLSCR1 knock-out mice. Adult PLSCR1(-/-) mice showed no obvious hematologic or hemostatic abnormality, and blood cells from these animals normally mobilized phosphatidylserine to the cell surface upon stimulation. Whereas blood cell counts in adult PLSCR1(-/-) mice were normal, in both fetus and newborn animals neutrophil counts were significantly depressed relative to age-matched wild type (WT). Furthermore, when compared with WT, hematopoietic precursor cells from PLSCR1(-/-) mice showed defective colony formation and impaired differentiation to mature granulocytes as stimulated by stem cell factor and granulocyte colony-stimulating factor (G-CSF). By contrast, PLSCR1(-/-) cells showed normal colony formation stimulated by interleukin-3 or granulocyte-macrophage CSF, and expansion of megakaryocytic and erythroid progenitors by thrombopoietin or erythropoietin was unaffected. Stem cell factor and G-CSF were also found to induce marked increases in PLSCR1 levels in WT cells. Consistent with in vitro assays, PLSCR1(-/-) mice treated with G-CSF showed less than 50% of the granulocytosis observed in identically treated WT mice. These data provide direct evidence that PLSCR1 functionally contributes to cytokine-regulated cell proliferation and differentiation and suggest it is required for normal myelopoiesis.
Collapse
Affiliation(s)
- Quansheng Zhou
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
229
|
Hjelmqvist L, Tuson M, Marfany G, Herrero E, Balcells S, Gonzàlez-Duarte R. ORMDL proteins are a conserved new family of endoplasmic reticulum membrane proteins. Genome Biol 2002; 3:RESEARCH0027. [PMID: 12093374 PMCID: PMC116724 DOI: 10.1186/gb-2002-3-6-research0027] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2002] [Revised: 03/12/2002] [Accepted: 04/10/2002] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Annotations of completely sequenced genomes reveal that nearly half of the genes identified are of unknown function, and that some belong to uncharacterized gene families. To help resolve such issues, information can be obtained from the comparative analysis of homologous genes in model organisms. RESULTS While characterizing genes from the retinitis pigmentosa locus RP26 at 2q31-q33, we have identified a new gene, ORMDL1, that belongs to a novel gene family comprising three genes in humans (ORMDL1, ORMDL2 and ORMDL3), and homologs in yeast, microsporidia, plants, Drosophila, urochordates and vertebrates. The human genes are expressed ubiquitously in adult and fetal tissues. The Drosophila ORMDL homolog is also expressed throughout embryonic and larval stages, particularly in ectodermally derived tissues. The ORMDL genes encode transmembrane proteins anchored in the endoplasmic reticulum (ER). Double knockout of the two Saccharomyces cerevisiae homologs leads to decreased growth rate and greater sensitivity to tunicamycin and dithiothreitol. Yeast mutants can be rescued by human ORMDL homologs. CONCLUSIONS From protein sequence comparisons we have defined a novel gene family, not previously recognized because of the absence of a characterized functional signature. The sequence conservation of this family from yeast to vertebrates, the maintenance of duplicate copies in different lineages, the ubiquitous pattern of expression in human and Drosophila, the partial functional redundancy of the yeast homologs and phenotypic rescue by the human homologs, strongly support functional conservation. Subcellular localization and the response of yeast mutants to specific agents point to the involvement of ORMDL in protein folding in the ER.
Collapse
Affiliation(s)
- Lars Hjelmqvist
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain.
| | | | | | | | | | | |
Collapse
|
230
|
Audhya A, Emr SD. Stt4 PI 4-kinase localizes to the plasma membrane and functions in the Pkc1-mediated MAP kinase cascade. Dev Cell 2002; 2:593-605. [PMID: 12015967 DOI: 10.1016/s1534-5807(02)00168-5] [Citation(s) in RCA: 230] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Production of the essential phospholipid PI4P at the Golgi by the Pik1 kinase is required for protein secretion, while a distinct pool of PI4P generated by the Stt4 kinase is critical for normal actin cytoskeleton organization. We identify a transmembrane protein that stabilizes Stt4 at the plasma membrane where it directs synthesis of PI4P, which is required for activation of the Rho1/Pkc1-mediated MAP kinase cascade. Inactivation of Stt4 or the PI4P 5-kinase Mss4 results in mislocalization of the Rho-GTPase GEF Rom2. Rom2 binds PI4,5P(2) through its PH domain and represents the first identified effector in the Stt4-Mss4 pathway. Based on these results, we propose that Stt4-Mss4 generates PI4,5P(2) at the plasma membrane, required to recruit/activate effector proteins such as Rom2.
Collapse
Affiliation(s)
- Anjon Audhya
- Division of Cellular and Molecular Medicine, The Howard Hughes Medical Institute, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | | |
Collapse
|
231
|
Abstract
Changes in gene expression after treatment of Escherichia coli cultures with mitomycin C were assessed using gene array technology. Unexpectedly, a large number of genes (nearly 30% of all genes) displayed significant changes in their expression level. Analysis and classification of expression profiles of the corresponding genes allowed us to assign this large number of genes into one or two dozen small clusters of genes with similar expression profiles. This assignment allowed us to describe systematically the changes in the level of gene expression in response to DNA damage. Among the damage-induced genes, more than 100 are novel. From those genes involved in DNA metabolism that have not previously been shown to be induced by DNA damage, the mutS gene involved in mismatch repair is especially noteworthy. In addition to the SOS response, we observed the induction of other stress response pathways, such as those of oxidative stress and osmotic protection. Among the genes that are downregulated in response to DNA damage are numerous protein biosynthesis genes. Analysis of the gene expression data highlighted the essential involvement of sigma(s)-regulated genes and the general stress response network in the response to DNA damage.
Collapse
Affiliation(s)
- Pavel P Khil
- Genetics and Biochemistry Branch, NIDDK, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA
| | | |
Collapse
|
232
|
Fauchon M, Lagniel G, Aude JC, Lombardia L, Soularue P, Petat C, Marguerie G, Sentenac A, Werner M, Labarre J. Sulfur sparing in the yeast proteome in response to sulfur demand. Mol Cell 2002; 9:713-23. [PMID: 11983164 DOI: 10.1016/s1097-2765(02)00500-2] [Citation(s) in RCA: 182] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Genome-wide studies have recently revealed the unexpected complexity of the genetic response to apparently simple physiological changes. Here, we show that when yeast cells are exposed to Cd(2+), most of the sulfur assimilated by the cells is converted into glutathione, a thiol-metabolite essential for detoxification. Cells adapt to this vital metabolite requirement by modifying globally their proteome to reduce the production of abundant sulfur-rich proteins. In particular, some abundant glycolytic enzymes are replaced by sulfur-depleted isozymes. This global change in protein expression allows an overall sulfur amino acid saving of 30%. This proteomic adaptation is essentially regulated at the mRNA level. The main transcriptional activator of the sulfate assimilation pathway, Met4p, plays an essential role in this sulfur-sparing response.
Collapse
Affiliation(s)
- Mirène Fauchon
- Service de Biochimie et Génétique Moléculaire, Bâtiment 142, CEA/Saclay, F-91191 Gif-sur-Yvette Cedex, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
233
|
Glickman MH, Ciechanover A. The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev 2002; 82:373-428. [PMID: 11917093 DOI: 10.1152/physrev.00027.2001] [Citation(s) in RCA: 3118] [Impact Index Per Article: 135.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Between the 1960s and 1980s, most life scientists focused their attention on studies of nucleic acids and the translation of the coded information. Protein degradation was a neglected area, considered to be a nonspecific, dead-end process. Although it was known that proteins do turn over, the large extent and high specificity of the process, whereby distinct proteins have half-lives that range from a few minutes to several days, was not appreciated. The discovery of the lysosome by Christian de Duve did not significantly change this view, because it became clear that this organelle is involved mostly in the degradation of extracellular proteins, and their proteases cannot be substrate specific. The discovery of the complex cascade of the ubiquitin pathway revolutionized the field. It is clear now that degradation of cellular proteins is a highly complex, temporally controlled, and tightly regulated process that plays major roles in a variety of basic pathways during cell life and death as well as in health and disease. With the multitude of substrates targeted and the myriad processes involved, it is not surprising that aberrations in the pathway are implicated in the pathogenesis of many diseases, certain malignancies, and neurodegeneration among them. Degradation of a protein via the ubiquitin/proteasome pathway involves two successive steps: 1) conjugation of multiple ubiquitin moieties to the substrate and 2) degradation of the tagged protein by the downstream 26S proteasome complex. Despite intensive research, the unknown still exceeds what we currently know on intracellular protein degradation, and major key questions have remained unsolved. Among these are the modes of specific and timed recognition for the degradation of the many substrates and the mechanisms that underlie aberrations in the system that lead to pathogenesis of diseases.
Collapse
Affiliation(s)
- Michael H Glickman
- Faculty of Biology and the Institute for Catalysis Science and Technology, Haifa, Israel.
| | | |
Collapse
|
234
|
Abstract
In the past year, great strides have been made in our understanding of the regulatory networks that control gene expression in the model eukaryote Saccharomyces cerevisiae. The development and use of a number of genomic tools, including genome-wide location and expression analysis, has fueled this progress. In addition, a variety of computational algorithms have been devised to mine genomic sequence for conserved regulatory motifs in co-regulated genes. The recent description of the genetic network controlling the cell cycle illustrates the tremendous potential of these approaches for deciphering gene expression regulatory networks in eukaryotic cells.
Collapse
Affiliation(s)
- John J Wyrick
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA.
| | | |
Collapse
|
235
|
Abstract
Studies of DNA repair and the maintenance of genomic integrity are essential to understanding the etiology and pathology of cancer. The availability of the complete genome sequence of Saccharomyces cerevissiae has greatly facilitated the discovery of new genes important for DNA repair.
Collapse
Affiliation(s)
- Ali Jazayeri
- Wellcome/Cancer Research UK Institute of Cancer and Developmental Biology and Department of Zoology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK.
| | | |
Collapse
|
236
|
Teng SC, Epstein C, Tsai YL, Cheng HW, Chen HL, Lin JJ. Induction of global stress response in Saccharomyces cerevisiae cells lacking telomerase. Biochem Biophys Res Commun 2002; 291:714-21. [PMID: 11855849 DOI: 10.1006/bbrc.2002.6509] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cellular senescence is a major intermediate step from healthy cells toward tumor cells. By using microarrays that simultaneously examine the transcription levels of 6,200 Saccharomyces cerevisiae genes, we show that 45 gene transcript levels are increased and 11 are decreased after exposure to telomere shortening and cellular senescence in a telomerase-deficient mutant. About half of the genes that showed increased expression were found induced under stress, consistent with the notion that critical short telomeres cause stress to cells. Surprisingly, the expression level of telomere recombination genes was not altered suggesting that even though recombination is a means to rescue critically short telomeres, its machinery was not controlled by telomere shortening. The expression of telomere-proximal genes was also analyzed. The possibility of induction of a program to cope with cellular senescence and active telomere-telomere recombination is discussed.
Collapse
Affiliation(s)
- Shu-Chun Teng
- Department of Microbiology, National Taiwan University College of Medicine, Taipei, 10018, Taiwan.
| | | | | | | | | | | |
Collapse
|
237
|
Cohen Y, Dardalhon M, Averbeck D. Homologous recombination is essential for RAD51 up-regulation in Saccharomyces cerevisiae following DNA crosslinking damage. Nucleic Acids Res 2002; 30:1224-32. [PMID: 11861915 PMCID: PMC101242 DOI: 10.1093/nar/30.5.1224] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2001] [Revised: 12/28/2001] [Accepted: 01/08/2002] [Indexed: 11/15/2022] Open
Abstract
We have determined the kinetics of up-regulation of the homologous recombination gene RAD51, one of the genes induced following DNA damage in isogenic haploid DNA repair-deficient mutants of Saccharomyces cerevisiae, using treatment with the DNA crosslinking agent 8-methoxypsoralen. We show that RAD51 is up-regulated concomitantly, although independently, with a shift from the G1 cell cycle phase to G2/M arrest. This up-regulation is absent in homologous recombination repair-deficient mutants and increased in mutants deficient in nucleotide excision repair and pol(zeta)-dependent translesion synthesis. We demonstrate that the Rad53-dependent DNA damage signal transduction cascade is active in RAD51 non-inducing mutants. However, when independently eliminated, it too abolishes RAD51 up-regulation. We present a model in which RAD51 up-regulation requires two signals: one depending on the Rad53-dependent DNA damage signal transduction cascade and the other on homologous recombination repair.
Collapse
Affiliation(s)
- Yuval Cohen
- Institut Curie, Section de Recherche, UMR 2027 CNRS/IC, LRC-28V du CEA, Centre Universitaire Paris-Sud, Bât. 110, F-91405 Orsay, France
| | | | | |
Collapse
|
238
|
Owsianik G, Balzi l L, Ghislain M. Control of 26S proteasome expression by transcription factors regulating multidrug resistance in Saccharomyces cerevisiae. Mol Microbiol 2002; 43:1295-308. [PMID: 11918814 DOI: 10.1046/j.1365-2958.2002.02823.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In eukaryotic cells, intracellular proteolysis occurs mainly via the ubiquitin-proteasome system. Expression of the yeast proteasome is under the control of the transcription factor, Rpn4p (also known as Son1p/Ufd5p). We show here that the RPN4 gene promoter contains regulatory sequences that bind Pdr1p and Pdr3p, two homologous zinc finger-containing transcription factors, which mediate multiple drug resistance through the expression of membrane transporter proteins. Mutations in the RPN4 Pdr1p/Pdr3p binding sites lead to decreased expression of the proteasome RPT6 gene and to defective ubiquitin-mediated proteolysis. Pdr3p, but not Pdr1p, is required for normal levels of intracellular proteolysis, indicating that the two transcription factors have distinct functions in the control of RPN4 expression. The RPN4 promoter contains an additional sequence that binds Yap1p, a bZIP-type transcription factor that plays an important role in the oxidative stress response and multidrug resistance. We also show that the Yap1p response element is important in the transactivation of RPN4 by Yap1p. In yeast cells lacking Pdr1p, ubiquitin-Pro-beta-galactosidase, a short-lived protein used to assay proteasome activity, is stabilized by the loss of Yap1p. These data demonstrate that the ubiquitin-proteasome system is controlled by transcriptional regulators of multidrug resistance via RPN4 expression.
Collapse
Affiliation(s)
- Grzegorz Owsianik
- Unité de Biochimie Physiologique, Université Catholique de Louvain, Croix du Sud 2-20, B-1348 Louvain-la-Neuve, Belgium
| | | | | |
Collapse
|
239
|
Woudstra EC, Gilbert C, Fellows J, Jansen L, Brouwer J, Erdjument-Bromage H, Tempst P, Svejstrup JQ. A Rad26-Def1 complex coordinates repair and RNA pol II proteolysis in response to DNA damage. Nature 2002; 415:929-33. [PMID: 11859374 DOI: 10.1038/415929a] [Citation(s) in RCA: 173] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Eukaryotic cells use multiple, highly conserved mechanisms to contend with ultraviolet-light-induced DNA damage. One important response mechanism is transcription-coupled repair (TCR), during which DNA lesions in the transcribed strand of an active gene are repaired much faster than in the genome overall. In mammalian cells, defective TCR gives rise to the severe human disorder Cockayne's syndrome (CS). The best-studied CS gene, CSB, codes for a Swi/Snf-like DNA-dependent ATPase, whose yeast homologue is called Rad26 (ref. 4). Here we identify a yeast protein, termed Def1, which forms a complex with Rad26 in chromatin. The phenotypes of cells lacking DEF1 are consistent with a role for this factor in the DNA damage response, but Def1 is not required for TCR. Rather, def1 cells are compromised for transcript elongation, and are unable to degrade RNA polymerase II (RNAPII) in response to DNA damage. Our data suggest that RNAPII stalled at a DNA lesion triggers a coordinated rescue mechanism that requires the Rad26-Def1 complex, and that Def1 enables ubiquitination and proteolysis of RNAPII when the lesion cannot be rapidly removed by Rad26-promoted DNA repair.
Collapse
Affiliation(s)
- Elies C Woudstra
- Mechanisms of Gene Transcription Laboratory, Cancer Research UK, Clare Hall Laboratories, Blanche Lane, South Mimms, Hertfordshire EN6 3LD, UK
| | | | | | | | | | | | | | | |
Collapse
|
240
|
Fleming JA, Lightcap ES, Sadis S, Thoroddsen V, Bulawa CE, Blackman RK. Complementary whole-genome technologies reveal the cellular response to proteasome inhibition by PS-341. Proc Natl Acad Sci U S A 2002; 99:1461-6. [PMID: 11830665 PMCID: PMC122213 DOI: 10.1073/pnas.032516399] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2001] [Indexed: 11/18/2022] Open
Abstract
Although the biochemical targets of most drugs are known, the biological consequences of their actions are typically less well understood. In this study, we have used two whole-genome technologies in Saccharomyces cerevisiae to determine the cellular impact of the proteasome inhibitor PS-341. By combining population genomics, the screening of a comprehensive panel of bar-coded mutant strains, and transcript profiling, we have identified the genes and pathways most affected by proteasome inhibition. Many of these function in regulated protein degradation or a subset of mitotic activities. In addition, we identified Rpn4p as the transcription factor most responsible for the cell's ability to compensate for proteasome inhibition. Used together, these complementary technologies provide a general and powerful means to elucidate the cellular ramifications of drug treatment.
Collapse
Affiliation(s)
- James A Fleming
- Millennium Pharmaceuticals, Incorporated, 75 Sidney Street, Cambridge, MA 02139, USA
| | | | | | | | | | | |
Collapse
|
241
|
Watanabe CMH, Supekova L, Schultz PG. Transcriptional effects of the potent enediyne anti-cancer agent Calicheamicin gamma(I)(1). CHEMISTRY & BIOLOGY 2002; 9:245-51. [PMID: 11880039 DOI: 10.1016/s1074-5521(02)00103-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
We have investigated the mode of action of calicheamicin in living cells by using oligonucleotide microarrays to monitor its effects on gene expression across the entire yeast genome. Transcriptional effects were observed as early as 2 min into drug exposure. Among these effects were the upregulation of two nuclear proteins encoding a Y'-helicase (a subtelomerically encoded protein whose function is to maintain telomeres) and a suppressor of rpc10 and rpb40 mutations (both rpc10 and rpb40 encode RNA polymerase subunits). With longer calicheamicin exposure, genes involved in chromatin arrangement, DNA repair and/or oxidative damage, DNA synthesis and cell cycle checkpoint control as well as other nuclear proteins were all differentially expressed. Additionally, ribosomal proteins and a variety of metabolic, biosynthetic, and stress response genes were also altered in their expression.
Collapse
Affiliation(s)
- Coran M H Watanabe
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
242
|
Hinnebusch AG, Natarajan K. Gcn4p, a master regulator of gene expression, is controlled at multiple levels by diverse signals of starvation and stress. EUKARYOTIC CELL 2002; 1:22-32. [PMID: 12455968 PMCID: PMC118051 DOI: 10.1128/ec.01.1.22-32.2002] [Citation(s) in RCA: 265] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Alan G Hinnebusch
- Laboratory of Gene Regulation and Development, National Institute of Child Health and Human Development, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
243
|
van Laar T, van der Eb AJ, Terleth C. A role for Rad23 proteins in 26S proteasome-dependent protein degradation? Mutat Res 2002; 499:53-61. [PMID: 11804604 DOI: 10.1016/s0027-5107(01)00291-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Treatment of cells with genotoxic agents affects protein degradation in both positive and negative ways. Exposure of S. cerevisiae to the alkylating agent MMS resulted in activation of genes that are involved in ubiquitin- and 26S proteasome-dependent protein degradation. This process partially overlaps with the activation of the ER-associated protein degradation pathway. The DNA repair protein Rad23p and its mammalian homologues have been shown to inhibit degradation of specific substrates in response to DNA damage. Particularly the recently identified inhibition of degradation by mouse Rad23 protein (mHR23) of the associated nucleotide excision repair protein XPC was shown to stimulate DNA repair.Recently, it was shown that Rad23p and the mouse homologue mHR23B also associate with Png1p, a deglycosylation enzyme. Png1p-mediated deglycosylation plays a role in ER-associated protein degradation after accumulation of malfolded proteins in the endoplasmic reticulum. Thus, if stabilization of proteins that are associated with the C-terminus of Rad23p is a general phenomenon, then Rad23 might be implicated in the stimulation of ER-associated protein degradation as well. Interestingly, the recently identified HHR23-like protein Mif1 is also thought to play a role in ER-associated protein degradation. The MIF1 gene is strongly activated in response to ER-stress. Mif1 contains a ubiquitin-like domain which is most probably involved in binding to S5a, a subunit of the 19S regulatory complex of the 26S proteasome. On the basis of its localization in the ER-membrane, it is hypothesized that Mif1 could play a role in the translocation of the 26S proteasome towards the ER-membrane, thereby enhancing ER-associated protein degradation.
Collapse
Affiliation(s)
- Theo van Laar
- MGC Department of Radiation Genetics and Chemical Mutagenesis, Leiden University Medical Centre, P.O. Box 9503, 2300 RA Leiden, The Netherlands.
| | | | | |
Collapse
|
244
|
Aardema MJ, MacGregor JT. Toxicology and genetic toxicology in the new era of "toxicogenomics": impact of "-omics" technologies. Mutat Res 2002; 499:13-25. [PMID: 11804602 DOI: 10.1016/s0027-5107(01)00292-5] [Citation(s) in RCA: 215] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The unprecedented advances in molecular biology during the last two decades have resulted in a dramatic increase in knowledge about gene structure and function, an immense database of genetic sequence information, and an impressive set of efficient new technologies for monitoring genetic sequences, genetic variation, and global functional gene expression. These advances have led to a new sub-discipline of toxicology: "toxicogenomics". We define toxicogenomics as "the study of the relationship between the structure and activity of the genome (the cellular complement of genes) and the adverse biological effects of exogenous agents". This broad definition encompasses most of the variations in the current usage of this term, and in its broadest sense includes studies of the cellular products controlled by the genome (messenger RNAs, proteins, metabolites, etc.). The new "global" methods of measuring families of cellular molecules, such as RNA, proteins, and intermediary metabolites have been termed "-omic" technologies, based on their ability to characterize all, or most, members of a family of molecules in a single analysis. With these new tools, we can now obtain complete assessments of the functional activity of biochemical pathways, and of the structural genetic (sequence) differences among individuals and species, that were previously unattainable. These powerful new methods of high-throughput and multi-endpoint analysis include gene expression arrays that will soon permit the simultaneous measurement of the expression of all human genes on a single "chip". Likewise, there are powerful new methods for protein analysis (proteomics: the study of the complement of proteins in the cell) and for analysis of cellular small molecules (metabonomics: the study of the cellular metabolites formed and degraded under genetic control). This will likely be extended in the near future to other important classes of biomolecules such as lipids, carbohydrates, etc. These assays provide a general capability for global assessment of many classes of cellular molecules, providing new approaches to assessing functional cellular alterations. These new methods have already facilitated significant advances in our understanding of the molecular responses to cell and tissue damage, and of perturbations in functional cellular systems. As a result of this rapidly changing scientific environment, regulatory and industrial toxicology practice is poised to undergo dramatic change during the next decade. These advances present exciting opportunities for improved methods of identifying and evaluating potential human and environmental toxicants, and of monitoring the effects of exposures to these toxicants. These advances also present distinct challenges. For example, the significance of specific changes and the performance characteristics of new methods must be fully understood to avoid misinterpretation of data that could lead to inappropriate conclusions about the toxicity of a chemical or a mechanism of action. We discuss the likely impact of these advances on the fields of general and genetic toxicology, and risk assessment. We anticipate that these new technologies will (1) lead to new families of biomarkers that permit characterization and efficient monitoring of cellular perturbations, (2) provide an increased understanding of the influence of genetic variation on toxicological outcomes, and (3) allow definition of environmental causes of genetic alterations and their relationship to human disease. The broad application of these new approaches will likely erase the current distinctions among the fields of toxicology, pathology, genetic toxicology, and molecular genetics. Instead, a new integrated approach will likely emerge that involves a comprehensive understanding of genetic control of cellular functions, and of cellular responses to alterations in normal molecular structure and function.
Collapse
Affiliation(s)
- Marilyn J Aardema
- Miami Valley Laboratories, The Procter & Gamble Co., P.O. Box 538707, Cincinnati, OH 45253, USA.
| | | |
Collapse
|
245
|
Le Crom S, Devaux F, Jacq C, Marc P. yMGV: helping biologists with yeast microarray data mining. Nucleic Acids Res 2002; 30:76-9. [PMID: 11752259 PMCID: PMC99164 DOI: 10.1093/nar/30.1.76] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
yMGV (yeast Microarray Global Viewer) was designed to provide biologists with meaningful information from genome-wide yeast expression data. The database includes most of the available expression data published on yeast microarrays over the last 4 years. It provides customizable tools for the rapid visualization of expression profiles associated with a set of genes from all published experiments. It also allows users to compare the results from different publications so that they can identify genes with common expression profiles. We used yMGV to perform global analyses to find a gene expression profile specific for given biological conditions and to locate functional gene clusters on chromosomes. Other organisms will be added to this database. yMGV is accessible on the web at http://transcriptome.ens.fr/ymgv.
Collapse
Affiliation(s)
- Stéphane Le Crom
- Laboratoire de Génétique Moléculaire, CNRS UMR8541, Ecole Normale Supérieure, 46 Rue d'Ulm, 75005 Paris, France
| | | | | | | |
Collapse
|
246
|
Sweder K, Madura K. Regulation of repair by the 26S proteasome. J Biomed Biotechnol 2002; 2:94-105. [PMID: 12488589 PMCID: PMC153791 DOI: 10.1155/s1110724302205033] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2002] [Accepted: 05/10/2002] [Indexed: 11/17/2022] Open
Abstract
Cellular processes such as transcription and DNA repair may be regulated through diverse mechanisms, including RNA synthesis, protein synthesis, posttranslational modification and protein degradation. The 26S proteasome, which is responsible for degrading a broad spectrum of proteins, has been shown to interact with several nucleotide excision repair proteins, including xeroderma pigmentosum B protein (XPB), Rad4, and Rad23. Rad4 and Rad23 form a complex that binds preferentially to UV-damaged DNA. The 26S proteasome may regulate repair by degrading DNA repair proteins after repair is completed or, alternatively, the proteasome may act as a molecular chaperone to promote disassembly of the repair complex. In either case, the interaction between the proteasome and nucleotide excision repair depends on proteins like Rad23 that bind ubiquitin-conjugated proteins and the proteasome. While the iteration between Rad4 and Rad23 is well established, it will be interesting to determine what other proteins are regulated in a Rad23-dependent manner.
Collapse
Affiliation(s)
- K. Sweder
- Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 164 Frelinghuysen Road, Piscataway, NJ 08854-8020, USA
| | - K. Madura
- Department of Biochemistry, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, 675 Hoes Lane, Piscataway, NJ 08854-5635, USA
| |
Collapse
|
247
|
Mercier G, Denis Y, Marc P, Picard L, Dutreix M. Transcriptional induction of repair genes during slowing of replication in irradiated Saccharomyces cerevisiae. Mutat Res 2001; 487:157-72. [PMID: 11738942 DOI: 10.1016/s0921-8777(01)00116-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
We investigated the inhibition of cell-cycle progression and replication and the induction of the transcriptional response in diploid budding yeast populations exposed to two different doses of gamma-rays resulting in 15 and 85% survival respectively. We studied the kinetics of the cellular response to ionizing treatment during the period required for all of the surviving cells to achieve at least one cell division. The length of these periods increased with the dose. Irradiated populations arrested as large-budded cells containing partially replicated chromosomes. The extent of the S-phase was proportional to the amount of damage and lasted 3 or 7h depending on the irradiation dose. In parallel to the division study, we carried out a kinetic analysis of the expression of 126 selected genes by use of dedicated microarrays. About 26 genes were induced by irradiation and displayed various pattern of expression. Interestingly, 10 repair genes (RAD51, RAD54, CDC8, MSH2, RFA2, RFA3, UBC5, SRS2, SPO12 and TOP1), involved in recombination and DNA synthesis, display similar regulation of expression in the two irradiated populations. Their pattern of expression were confirmed by Northern analysis. At the two doses, the expression of this group of genes closely followed the extended replication period, and their expression resumed when replication restarted. These results suggest that the damage-induced response and DNA synthesis are closely regulated during repair. The analysis of the promoter regions indicates a high occurrence of the three MCB, HAP and UASH regulatory boxes in the promoters of this group of genes. The association of the three boxes could confer an irradiation-replication specific regulation.
Collapse
Affiliation(s)
- G Mercier
- CNRS-UMR 2027, Institut Curie, Bât. 110, Centre Universitaire, F-91405 Orsay, France
| | | | | | | | | |
Collapse
|
248
|
Rutherford JC, Jaron S, Ray E, Brown PO, Winge DR. A second iron-regulatory system in yeast independent of Aft1p. Proc Natl Acad Sci U S A 2001; 98:14322-7. [PMID: 11734641 PMCID: PMC64680 DOI: 10.1073/pnas.261381198] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2001] [Indexed: 11/18/2022] Open
Abstract
Iron homeostasis in the yeast Saccharomyces cerevisiae is regulated at the transcriptional level by Aft1p, which activates the expression of its target genes in response to low-iron conditions. The yeast genome contains a paralog of AFT1, which has been designated AFT2. To establish whether AFT1 and AFT2 have overlapping functions, a mutant containing a double aft1Deltaaft2Delta deletion was generated. Growth assays established that the single aft2Delta strain exhibited no iron-dependent phenotype. However, the double-mutant aft1Deltaaft2Delta strain was more sensitive to low-iron growth conditions than the single-mutant aft1Delta strain. A mutant allele of AFT2 (AFT2-1(up)), or overexpression of the wild-type AFT2 gene, led to partial complementation of the respiratory-deficient phenotype of the aft1Delta strain. The AFT2-1(up) allele also increased the uptake of (59)Fe in an aft1Delta strain. DNA microarrays were used to identify genes regulated by AFT2. Some of the AFT2-regulated genes are known to be regulated by Aft1p; however, AFT2-1(up)-dependent activation was independent of Aft1p. The kinetics of induction of two genes activated by the AFT2-1(up) allele are consistent with Aft2p acting as a direct transcriptional factor. Truncated forms of Aft1p and Aft2p bound to a DNA duplex containing the Aft1p binding site in vitro. The wild-type allele of AFT2 activated transcription in response to growth under low-iron conditions. Together, these data suggest that yeast has a second regulatory pathway for the iron regulon, with AFT1 and AFT2 playing partially redundant roles.
Collapse
Affiliation(s)
- J C Rutherford
- University of Utah Health Sciences Center, Department of Medicine, Salt Lake City, Utah 84132, USA
| | | | | | | | | |
Collapse
|
249
|
Bennett CB, Lewis LK, Karthikeyan G, Lobachev KS, Jin YH, Sterling JF, Snipe JR, Resnick MA. Genes required for ionizing radiation resistance in yeast. Nat Genet 2001; 29:426-34. [PMID: 11726929 DOI: 10.1038/ng778] [Citation(s) in RCA: 240] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The ability of Saccharomyces cerevisiae to tolerate ionizing radiation damage requires many DNA-repair and checkpoint genes, most having human orthologs. A genome-wide screen of diploid mutants homozygous with respect to deletions of 3,670 nonessential genes revealed 107 new loci that influence gamma-ray sensitivity. Many affect replication, recombination and checkpoint functions. Nearly 90% were sensitive to other agents, and most new genes could be assigned to the following functional groups: chromatin remodeling, chromosome segregation, nuclear pore formation, transcription, Golgi/vacuolar activities, ubiquitin-mediated protein degradation, cytokinesis, mitochondrial activity and cell wall maintenance. Over 50% share homology with human genes, including 17 implicated in cancer, indicating that a large set of newly identified human genes may have related roles in the toleration of radiation damage.
Collapse
Affiliation(s)
- C B Bennett
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, USA
| | | | | | | | | | | | | | | |
Collapse
|
250
|
Ge H, Liu Z, Church GM, Vidal M. Correlation between transcriptome and interactome mapping data from Saccharomyces cerevisiae. Nat Genet 2001; 29:482-6. [PMID: 11694880 DOI: 10.1038/ng776] [Citation(s) in RCA: 401] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Genomic and proteomic approaches can provide hypotheses concerning function for the large number of genes predicted from genome sequences. Because of the artificial nature of the assays, however, the information from these high-throughput approaches should be considered with caution. Although it is possible that more meaningful hypotheses could be formulated by integrating the data from various functional genomic and proteomic projects, it has yet to be seen to what extent the data can be correlated and how such integration can be achieved. We developed a 'transcriptome-interactome correlation mapping' strategy to compare the interactions between proteins encoded by genes that belong to common expression-profiling clusters with those between proteins encoded by genes that belong to different clusters. Using this strategy with currently available data sets for Saccharomyces cerevisiae, we provide the first global evidence that genes with similar expression profiles are more likely to encode interacting proteins. We show how this correlation between transcriptome and interactome data can be used to improve the quality of hypotheses based on the information from both approaches. The strategy described here may help to integrate other functional genomic and proteomic data, both in yeast and in higher organisms.
Collapse
Affiliation(s)
- H Ge
- Dana-Farber Cancer Institute and Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|