201
|
The absence of interleukin 10 affects the morphology, differentiation, granule content and the production of cryptidin-4 in Paneth cells in mice. PLoS One 2019; 14:e0221618. [PMID: 31509557 PMCID: PMC6738610 DOI: 10.1371/journal.pone.0221618] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 08/12/2019] [Indexed: 12/19/2022] Open
Abstract
Paneth cells (PCs) are specialized epithelial cells of the small bowel that contain multiple secretory granules filled with antimicrobial peptides and trophic factors, which are essential for the control of the microorganisms growth and maintaining intestinal integrity. Alterations in their function are associated with an imbalance of the normal microbiota, gastrointestinal infections and inflammatory processes, such as Crohn's disease (CD). One of the most common murine models for studying CD is IL-10-/- mouse. IL-10-/- mice when housed in conventional conditions and take contact with commensal microorganisms develop an acute enterocolitis mediated by a Th1 immune response. Even though, alterations in PCs function are related to CD, they had not been characterized yet in this mouse model. Here we show that in specific pathogen free conditions IL-10-/- mice have aberrant granules and a large number of immature PCs at the bottom of the crypt in the ileum of IL-10-/- mice before developing intestinal inflammation, along with a reduced expression of Indian Hedgehog. In addition, IL-10-/- Paneth cells presented a reduced expression of cryptidin-4, and a heterogeneous distribution of lysozyme+ granules. The alterations in the maturation of the PCs at the bottom of the crypt were not modified after the colonization by the conventional microbiota. On the other hand, depletion of microbiota altered the phenotype, but did not normalize PCs. Our results suggest that IL-10 could be necessary for the integrity of PCs. Moreover, our results help to explain why IL-10-/- mice develop enterocolitis in response to microorganisms.
Collapse
|
202
|
Zhai S, Qin S, Li L, Zhu L, Zou Z, Wang L. Dietary butyrate suppresses inflammation through modulating gut microbiota in high-fat diet-fed mice. FEMS Microbiol Lett 2019; 366:fnz153. [PMID: 31295342 DOI: 10.1093/femsle/fnz153] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 07/10/2019] [Indexed: 11/14/2022] Open
Abstract
Butyrate, a key metabolite fermented by gut microbiota mainly from undigested carbohydrates such as dietary fibers is widely used as feed additive. However, mechanisms of its contributions in maintaining host health are relatively poorly revealed. The aim of this study was to investigate how butyrate impacts gut microbiota and immunity response in high-fat diet-fed mice. Gut microbial analysis exhibited that butyrate intervention increased short-chain fatty acids (SCFAs)-producing bacteria and decreased pathogenic bacteria, such as endotoxin-secreting bacteria. Our result also demonstrated that butyrate intervention enhanced fecal SCFAs concentrations, and inhibited endotoxin levels in feces and serum. Correlation analysis indicated positive relation between endotoxin level and Desulfovibrionaceae abundance. Furthermore, butyrate intervention inhibited expressions of IL-1β, IL-6 and MCP1/CCL2 in liver, as well as TLR4 in adipose tissue. Apart from inhibiting expressions of proinflammatory cytokines, butyrate exerted anti-inflammation effect through selectively modulating gut microbiota, such as increasing SCFAs-producing bacteria and decreasing endotoxin-secreting bacteria, as well as via regulating levels of microbiota-dependent metabolites and components, such as SCFAs and endotoxin.
Collapse
Affiliation(s)
- Shixiang Zhai
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Song Qin
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China
| | - Lili Li
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China
| | - Limeng Zhu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100080, China
| | - Zhiqiang Zou
- Department of Hepatology, Infectious Disease Hospital of Yantai, Yantai 264001, China
| | - Li Wang
- Department of Hepatology, Infectious Disease Hospital of Yantai, Yantai 264001, China
| |
Collapse
|
203
|
Huang L, Wang T, Wu Q, Dong X, Shen F, Liu D, Qin X, Yan L, Wan Q. Analysis of microbiota in elderly patients with Acute Cerebral Infarction. PeerJ 2019; 7:e6928. [PMID: 31223522 PMCID: PMC6571007 DOI: 10.7717/peerj.6928] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 04/03/2019] [Indexed: 12/13/2022] Open
Abstract
Background and Aims Recent evidence suggest that microbiota is associated with almost all major types of diseases, including cardiovascular diseases. However, its role in Acute Cerebral Infarction remains unexplored. It is important to understand the diversity and distribution of gut microbiota (GM) in patients with Acute Cerebral Infarction and the role that GM plays in this type of disease. Methods We performed pyrosequencing on the gut microbiota of 40 individuals in order to elucidate whether the composition of the microbiota differs between patients with Acute Cerebral Infarction and healthy controls: Of these individuals, there were 31 with Acute Cerebral Infarction and nine controls. We applied linear regression to calculate the correlation between the gut flora and disease risk factors. Finally, KEGG functional enrichment analysis was conducted to examine the correlation between the gut flora and Acute Cerebral Infarction. Results The overall microbial structure was similar in both the controls and the patients, but the control group had higher relative presence of Blautia obeum while the presence of Streptococcus infantis and Prevotella copri were relatively higher in the patient group. Using linear regression, we found that Blautia obeum was negatively associated with white blood cell count and Streptococcus infantis was positively correlated with creatinine and lipoprotein. The KEGG pathway analysis indicated that the bio-pathways including methane metabolism, lipopolysaccharide synthesis, bacterial secretion, and flagellar assembly of the gut microbiota in the patient group was expressed differently than that of the controls. We identified three differentially expressed gut microbial functions in Acute Cerebral Infarction and found four bacterial pathways that might be related to the development of this disease. Conclusions Our study identified three abnormally-expressed bacteria—Blautia obeum, Streptococcus infantis, and Prevotella copri—in patients with Acute Cerebral Infarction compared with healthy controls. It reveals a correlation of these bacterial species with Acute Cerebral Infarction as they relate to disease factors and functional pathways. These findings may shed light on the treatment of cerebral infarction because gut microbiota could serve as a potential therapeutic approach for the treatment of cardiovascular and metabolic diseases.
Collapse
Affiliation(s)
- Lin Huang
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Teng Wang
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Qian Wu
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xin Dong
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Feifei Shen
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Dong Liu
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xiaoxuan Qin
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Lanyun Yan
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Qi Wan
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| |
Collapse
|
204
|
Schwerd T, Koletzko S. Darmmikrobiom und chronisch-entzündliche Darmerkrankungen. Monatsschr Kinderheilkd 2019. [DOI: 10.1007/s00112-019-0683-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
205
|
Björkqvist O, Repsilber D, Seifert M, Brislawn C, Jansson J, Engstrand L, Rangel I, Halfvarson J. Alterations in the relative abundance of Faecalibacterium prausnitzii correlate with changes in fecal calprotectin in patients with ileal Crohn's disease: a longitudinal study. Scand J Gastroenterol 2019; 54:577-585. [PMID: 31104514 DOI: 10.1080/00365521.2019.1599417] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Objectives: Crohn's disease is characterized by a gut dysbiosis with decreased abundance of butyrate producers such as Faecalibacterium prausnitzii. Although F. prausnitzii secretes anti-inflammatory molecules, few studies have addressed the importance of F. prausnitzii in a longitudinal setting. We aimed to examine the relationship between temporal profiles of F. prausnitzii, the C. leptum group, overall butyrate production, and inflammatory activity. Material and methods: Fecal samples (n = 59) were collected every third month from nine patients with ileal Crohn's disease. The abundance of F. prausnitzii and C. leptum was quantified relative to the total amount of bacteria using quantitative-PCR. To assess butyrate production of gut microbiota, gene copy numbers of the butyryl-CoA:acetate-CoA transferase (BCoAT) gene were quantified by qPCR. The inflammatory activity was defined by fecal (f)-calprotectin. Results: No correlation between the relative abundance of F. prausnitzii, the C. leptum group, or copy numbers of the BCoAT gene, and f-calprotectin was observed in the total sample set. By analyzing alterations between consecutive samples, a negative correlation between changes in the relative abundance of F. prausnitzii and f-calprotectin was observed (R = -0.39; p = .009). Changes in C. leptum (R = -0.18, p = .23) and number of copies of the BCoAT gene (R = -0.12; p = .42) did not correlate with f-calprotectin. Conclusions: There was an inverse correlation between temporal changes in the relative abundance of F. prausnitzii, but not overall butyrate producing capacity, and changes in inflammatory activity in ileal Crohn's disease. These findings indicate that F. prausnitzii may play a role in gut homeostasis, even though causality is still to be demonstrated.
Collapse
Affiliation(s)
- Olle Björkqvist
- a School of Medical Sciences , Örebro University , Örebro , Sweden
| | - Dirk Repsilber
- a School of Medical Sciences , Örebro University , Örebro , Sweden
| | - Maike Seifert
- b Department of Microbiology, Tumor and Cell Biology , Karolinska Institutet , Stockholm , Sweden
| | - Colin Brislawn
- c Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory , Richland , WA , USA
| | - Janet Jansson
- c Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory , Richland , WA , USA
| | - Lars Engstrand
- b Department of Microbiology, Tumor and Cell Biology , Karolinska Institutet , Stockholm , Sweden
| | - Ignacio Rangel
- a School of Medical Sciences , Örebro University , Örebro , Sweden
| | - Jonas Halfvarson
- d Department of Gastroenterology, Faculty of Medicine and Health , Örebro University , Örebro , Sweden
| |
Collapse
|
206
|
Analysis of Cdcs1 colitogenic effects in the hematopoietic compartment reveals distinct microbiome interaction and a new subcongenic interval active in T cells. Mucosal Immunol 2019; 12:691-702. [PMID: 30659231 DOI: 10.1038/s41385-019-0133-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 12/14/2018] [Accepted: 12/26/2018] [Indexed: 02/04/2023]
Abstract
Disease activity in Interleukin-10-deficient (Il10-/-) mice, a model for IBD, depends on genetic background and microbiome composition. B6.129P2/JZtm-Il10tm1Cgn (B6-Il10-/-) mice are partially resistant to colitis, whereas mice carrying the Cdcs1C3Bir haplotype on chromosome 3, B6.Cg-Il10tm1CgnMMU3(D3Mit11-D3Mit348)/JZtm (BC-R3-Il10-/-), are susceptible. This study was performed to clarify Cdcs1 and candidate gene effects on the colitogenic potential of hematopoietic cells using bone marrow (BM) and T-cell transfer models. Acute and chronic graft versus host reaction was excluded by high-density genotyping, in vitro and in vivo approaches. BM-chimeras were created with animals housed in two barriers (I and II) with distinct microbiota composition as identified by sequencing. BM-chimeras of all groups developed comparable moderate-to-severe colitis in Barrier I, however, in Barrier II only recipients of BC-R3-Il10-/- BM. Subsequent adoptive T cell transfers pointed to a new subcongenic interval within Cdcs1 affecting their colitogenic potential. Transfers excluded Larp7 and Alpk1 but highlighted Ifi44 as potential candidate genes. In this model-system, colitis development after cell transfer heavily depends on microbiome, though Cdcs1 acts mainly independently in hematopoietic cells. A new subcongenic interval, provisionally named Cdcs1.4, modifies colitogenic T cell function. Within this locus, Ifi44 represents an important candidate gene for colitis expression.
Collapse
|
207
|
Wyss A, Raselli T, Perkins N, Ruiz F, Schmelczer G, Klinke G, Moncsek A, Roth R, Spalinger MR, Hering L, Atrott K, Lang S, Frey-Wagner I, Mertens JC, Scharl M, Sailer AW, Pabst O, Hersberger M, Pot C, Rogler G, Misselwitz B. The EBI2-oxysterol axis promotes the development of intestinal lymphoid structures and colitis. Mucosal Immunol 2019; 12:733-745. [PMID: 30742043 DOI: 10.1038/s41385-019-0140-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 12/09/2018] [Accepted: 12/16/2018] [Indexed: 02/04/2023]
Abstract
The gene encoding for Epstein-Barr virus-induced G-protein-coupled receptor 2 (EBI2) is a risk gene for inflammatory bowel disease (IBD). Together with its oxysterol ligand 7α,25-dihydroxycholesterol, EBI2 mediates migration and differentiation of immune cells. However, the role of EBI2 in the colonic immune system remains insufficiently studied. We found increased mRNA expression of EBI2 and oxysterol-synthesizing enzymes (CH25H, CYP7B1) in the inflamed colon of patients with ulcerative colitis and mice with acute or chronic dextran sulfate sodium (DSS) colitis. Accordingly, we detected elevated levels of 25-hydroxylated oxysterols, including 7α,25-dihydroxycholesterol in mice with acute colonic inflammation. Knockout of EBI2 or CH25H did not affect severity of DSS colitis; however, inflammation was decreased in male EBI2-/- mice in the IL-10 colitis model. The colonic immune system comprises mucosal lymphoid structures, which accumulate upon chronic inflammation in IL-10-deficient mice and in chronic DSS colitis. However, EBI2-/- mice formed significantly less colonic lymphoid structures at baseline and showed defects in inflammation-induced accumulation of lymphoid structures. In summary, we report induction of the EBI2-7α,25-dihydroxycholesterol axis in colitis and a role of EBI2 for the accumulation of lymphoid tissue during homeostasis and inflammation. These data implicate the EBI2-7α,25-dihydroxycholesterol axis in IBD pathogenesis.
Collapse
Affiliation(s)
- Annika Wyss
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Tina Raselli
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Nathan Perkins
- Division of Clinical Chemistry and Biochemistry, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Florian Ruiz
- Laboratories of Neuroimmunology, Division of Neurology and Neuroscience Research Center, Department of Clinical Neurosciences, Lausanne University Hospital, Epalinges, Switzerland
| | - Gérard Schmelczer
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Glynis Klinke
- Division of Clinical Chemistry and Biochemistry, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland.,Department of General Pediatrics, Division of Neuropediatrics and Metabolic Medicine, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Anja Moncsek
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - René Roth
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Marianne R Spalinger
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Larissa Hering
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Kirstin Atrott
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Silvia Lang
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Isabelle Frey-Wagner
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Joachim C Mertens
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Michael Scharl
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Andreas W Sailer
- Chemical Biology & Therapeutics, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Oliver Pabst
- Institute for Molecular Medicine, RWTH Aachen University, Aachen, Germany
| | - Martin Hersberger
- Division of Clinical Chemistry and Biochemistry, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Caroline Pot
- Laboratories of Neuroimmunology, Division of Neurology and Neuroscience Research Center, Department of Clinical Neurosciences, Lausanne University Hospital, Epalinges, Switzerland
| | - Gerhard Rogler
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Benjamin Misselwitz
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland. .,University Clinic for Visceral Surgery and Medicine, Inselspital, University of Bern, Bern, Switzerland.
| |
Collapse
|
208
|
Tumour Necrosis Factor Alpha in Intestinal Homeostasis and Gut Related Diseases. Int J Mol Sci 2019; 20:ijms20081887. [PMID: 30995806 PMCID: PMC6515381 DOI: 10.3390/ijms20081887] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/05/2019] [Accepted: 04/13/2019] [Indexed: 02/06/2023] Open
Abstract
The intestinal epithelium constitutes an indispensable single-layered barrier to protect the body from invading pathogens, antigens or toxins. At the same time, beneficial nutrients and water have to be absorbed by the epithelium. To prevent development of intestinal inflammation or tumour formation, intestinal homeostasis has to be tightly controlled and therefore a strict balance between cell death and proliferation has to be maintained. The proinflammatory cytokine tumour necrosis factor alpha (TNFα) was shown to play a striking role for the regulation of this balance in the gut. Depending on the cellular conditions, on the one hand TNFα is able to mediate cell survival by activating NFκB signalling. On the other hand, TNFα might trigger cell death, in particular caspase-dependent apoptosis but also caspase-independent programmed necrosis. By regulating these cell death and survival mechanisms, TNFα exerts a variety of beneficial functions in the intestine. However, TNFα signalling is also supposed to play a critical role for the pathogenesis of inflammatory bowel disease (IBD), infectious diseases, intestinal wound healing and tumour formation. Here we review the literature about the physiological and pathophysiological role of TNFα signalling for the maintenance of intestinal homeostasis and the benefits and difficulties of anti-TNFα treatment during IBD.
Collapse
|
209
|
Haange SB, Jehmlich N, Hoffmann M, Weber K, Lehmann J, von Bergen M, Slanina U. Disease Development Is Accompanied by Changes in Bacterial Protein Abundance and Functions in a Refined Model of Dextran Sulfate Sodium (DSS)-Induced Colitis. J Proteome Res 2019; 18:1774-1786. [PMID: 30767541 DOI: 10.1021/acs.jproteome.8b00974] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Using the acute dextran sulfate sodium (DSS)-induced colitis model, studies have demonstrated that intestinal inflammation is accompanied by major changes in the composition of the intestinal microbiota. Only little is known about the microbial changes and more importantly their functional impact in the chronic DSS colitis model. We used a refined model of chronic DSS-induced colitis that reflects typical symptoms of the human disease without detrimental weight loss usually observed in DSS models. We sampled cecum and colon content as well as colon mucus from healthy and diseased mouse cohorts ( n = 12) and applied 16S rRNA gene sequencing and metaproteomics. An increase of Prevotella sp. in both colon content and mucus was observed. Functional differences were observed between sample types demonstrating the importance of separately sampling lumen content and mucus. The abundance of Desulfovibrio, a sulfate-reducing bacterium, was positively associated with the carbon metabolism. Lachnoclostridium was positively correlated to both vitamin B6 and tryptophan metabolism. In summary, functional changes in the distal colon caused by DSS treatment were more pronounced in the mucus-associated microbiota than in the microbiota present in the distal colon content.
Collapse
Affiliation(s)
- Sven-Bastiaan Haange
- Department of Molecular Systems Biology , Helmholtz-Centre for Environmental Research - UFZ , Leipzig 04318 , Germany.,Faculty of Life Sciences, Institute of Biochemistry , University of Leipzig , Leipzig 04103 , Germany
| | - Nico Jehmlich
- Department of Molecular Systems Biology , Helmholtz-Centre for Environmental Research - UFZ , Leipzig 04318 , Germany
| | - Maximilian Hoffmann
- Department of Therapy Validation , Fraunhofer Institute for Cell Therapy and Immunology , Leipzig 04103 , Germany
| | | | - Jörg Lehmann
- Department of Therapy Validation , Fraunhofer Institute for Cell Therapy and Immunology , Leipzig 04103 , Germany
| | - Martin von Bergen
- Department of Molecular Systems Biology , Helmholtz-Centre for Environmental Research - UFZ , Leipzig 04318 , Germany.,Faculty of Life Sciences, Institute of Biochemistry , University of Leipzig , Leipzig 04103 , Germany
| | - Ulla Slanina
- Department of Therapy Validation , Fraunhofer Institute for Cell Therapy and Immunology , Leipzig 04103 , Germany
| |
Collapse
|
210
|
Dobranowski PA, Tang C, Sauvé JP, Menzies SC, Sly LM. Compositional changes to the ileal microbiome precede the onset of spontaneous ileitis in SHIP deficient mice. Gut Microbes 2019; 10:578-598. [PMID: 30760087 PMCID: PMC6748580 DOI: 10.1080/19490976.2018.1560767] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Inflammatory bowel disease, encompassing both ulcerative colitis and Crohn's disease, is characterized by chronic, relapsing-remitting gastrointestinal inflammation of unknown etiology. SHIP deficient mice develop fully penetrant, spontaneous ileitis at 6 weeks of age, and thus offer a tractable model of Crohn's disease-like inflammation. Since disruptions to the microbiome are implicated in the pathogenesis of Crohn's disease, we conducted a 16S rRNA gene survey of the ileum, cecum, colon, and stool contents of SHIP+/+ and SHIP-/- mice. We predicted that diversity and compositional changes would occur after, and possibly prior to, the onset of overt disease. No differences were found in alpha diversity, but significant changes in beta diversity and specific commensal populations were observed in the ileal compartment of SHIP deficient mice after the onset of overt disease. Specifically, reductions in the Bacteroidales taxa, Muribaculum intestinale, and an expansion in Lactobacillus were most notable. In contrast, expansions to bacterial taxa previously associated with inflammation, including Bacteroides, Parabacteroides, and Prevotella were observed in the ilea of SHIP deficient mice prior to the onset of overt disease. Finally, antibiotic treatment reduced the development of intestinal inflammation in SHIP-/- mice. Thus, our findings indicate that SHIP is involved in maintaining ileal microbial homeostasis. These results have broader implications for humans, since reduced SHIP protein levels have been reported in people with Crohn's disease.
Collapse
Affiliation(s)
| | | | | | | | - Laura May Sly
- University of British Columbia,BC Children’s Hospital research institute,CONTACT Laura May Sly BC Children’s Hospital research institute, 950 West 28th Avenue, A5-142TRB, Vancouver, British Columbia V5Z 4H4, Canada
| |
Collapse
|
211
|
Parker A, Vaux L, Patterson AM, Modasia A, Muraro D, Fletcher AG, Byrne HM, Maini PK, Watson AJM, Pin C. Elevated apoptosis impairs epithelial cell turnover and shortens villi in TNF-driven intestinal inflammation. Cell Death Dis 2019; 10:108. [PMID: 30728350 PMCID: PMC6365534 DOI: 10.1038/s41419-018-1275-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 11/05/2018] [Accepted: 12/03/2018] [Indexed: 12/27/2022]
Abstract
The intestinal epithelial monolayer, at the boundary between microbes and the host immune system, plays an important role in the development of inflammatory bowel disease (IBD), particularly as a target and producer of pro-inflammatory TNF. Chronic overexpression of TNF leads to IBD-like pathology over time, but the mechanisms driving early pathogenesis events are not clear. We studied the epithelial response to inflammation by combining mathematical models with in vivo experimental models resembling acute and chronic TNF-mediated injury. We found significant villus atrophy with increased epithelial cell death along the crypt-villus axis, most dramatically at the villus tips, in both acute and chronic inflammation. In the acute model, we observed overexpression of TNF receptor I in the villus tip rapidly after TNF injection and concurrent with elevated levels of intracellular TNF and rapid shedding at the tip. In the chronic model, sustained villus atrophy was accompanied by a reduction in absolute epithelial cell turnover. Mathematical modelling demonstrated that increased cell apoptosis on the villus body explains the reduction in epithelial cell turnover along the crypt-villus axis observed in chronic inflammation. Cell destruction in the villus was not accompanied by changes in proliferative cell number or division rate within the crypt. Epithelial morphology and immunological changes in the chronic setting suggest a repair response to cell damage although the villus length is not recovered. A better understanding of how this state is further destabilised and results in clinical pathology resembling IBD will help identify suitable pathways for therapeutic intervention.
Collapse
Affiliation(s)
- Aimée Parker
- Gut Health and Food Safety Research Programme, Quadram Institute Bioscience, Norwich, United Kingdom
| | - Laura Vaux
- Gut Health and Food Safety Research Programme, Quadram Institute Bioscience, Norwich, United Kingdom
| | - Angela M Patterson
- Gut Health and Food Safety Research Programme, Quadram Institute Bioscience, Norwich, United Kingdom
| | - Amisha Modasia
- Gut Health and Food Safety Research Programme, Quadram Institute Bioscience, Norwich, United Kingdom
| | | | - Alexander G Fletcher
- School of Mathematics and Statistics, University of Sheffield, Sheffield, United Kingdom.,Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| | - Helen M Byrne
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, United Kingdom
| | - Philip K Maini
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, United Kingdom
| | | | - Carmen Pin
- Gut Health and Food Safety Research Programme, Quadram Institute Bioscience, Norwich, United Kingdom. .,Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Cambridge, United Kingdom.
| |
Collapse
|
212
|
Ke X, Walker A, Haange SB, Lagkouvardos I, Liu Y, Schmitt-Kopplin P, von Bergen M, Jehmlich N, He X, Clavel T, Cheung PCK. Synbiotic-driven improvement of metabolic disturbances is associated with changes in the gut microbiome in diet-induced obese mice. Mol Metab 2019; 22:96-109. [PMID: 30792016 PMCID: PMC6437638 DOI: 10.1016/j.molmet.2019.01.012] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 01/29/2019] [Accepted: 01/30/2019] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE The gut microbiota is an important influencing factor of metabolic health. Although dietary interventions with probiotics, prebiotics, and synbiotics can be effective means to regulate obesity and associated comorbidities, the underlying shifts in gut microbial communities, especially at the functional level, have not been characterized in great details. In this study, we sought to investigate the effects of synbiotics on the regulation of gut microbiota and the alleviation of high-fat diet (HFD)-induced metabolic disorders in mice. METHODS Specific pathogen-free (SPF) male C57BL/6J mice were fed diets with either 10% (normal diet, ND) or 60% (high-fat diet, HFD) of total calories from fat (lard). Dietary interventions in the HFD-fed mice included (i) probiotic (Bifidobacterium animalis subsp. lactis and Lactobacillus paracasei subsp. paracasei DSM 46331), (ii) prebiotic (oat β-glucan), and (iii) synbiotic (a mixture of i and ii) treatments for 12 weeks. Besides detailed characterization of host metabolic parameters, a multi-omics approach was used to systematically profile the microbial signatures at both the phylogenetic and functional levels using 16S rRNA gene sequencing, metaproteomics and targeted metabolomics analysis. RESULTS The synbiotic intervention significantly reduced body weight gain and alleviated features of metabolic complications. At the phylogenetic level, the synbiotic treatment significantly reversed HFD-induced changes in microbial populations, both in terms of richness and the relative abundance of specific taxa. Potentially important species such as Faecalibaculum rodentium and Alistipes putredinis that might mediate the beneficial effects of the synbiotic were identified. At the functional level, short-chain fatty acid and bile acid profiles revealed that all dietary interventions significantly restored cecal levels of acetate, propionate, and butyrate, while the synbiotic treatment reduced the bile acid pools most efficiently. Metaproteomics revealed that the effects of the synbiotic intervention might be mediated through metabolic pathways involved in carbohydrate, amino acid, and energy metabolisms. CONCLUSIONS Our results suggested that dietary intervention using the novel synbiotic can alleviate HFD-induced weight gain and restore gut microbial ecosystem homeostasis phylogenetically and functionally.
Collapse
Affiliation(s)
- Xinxin Ke
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Alesia Walker
- Research Unit Analytical BioGeoChemistry, HelmholtzZentrum München, Neuherberg, Germany
| | - Sven-Bastiaan Haange
- Helmholtz-Centre for Environmental Research-UFZ, Department of Molecular Systems Biology, Leipzig, Germany
| | - Ilias Lagkouvardos
- ZIEL Institute for Food and Health, Technical University of Munich, Freising, Germany
| | - Yuwen Liu
- Department of Human Genetics, The University of Chicago, Chicago, IL, 60615, USA; Department of Pig Genomic Design and Breeding, Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Philippe Schmitt-Kopplin
- Research Unit Analytical BioGeoChemistry, HelmholtzZentrum München, Neuherberg, Germany; ZIEL Institute for Food and Health, Technical University of Munich, Freising, Germany; Chair of Analytical Food Chemistry, Technische Universität München, Freising-Weihenstephan, Germany
| | - Martin von Bergen
- Helmholtz-Centre for Environmental Research-UFZ, Department of Molecular Systems Biology, Leipzig, Germany
| | - Nico Jehmlich
- Helmholtz-Centre for Environmental Research-UFZ, Department of Molecular Systems Biology, Leipzig, Germany
| | - Xin He
- Department of Human Genetics, The University of Chicago, Chicago, IL, 60615, USA
| | - Thomas Clavel
- ZIEL Institute for Food and Health, Technical University of Munich, Freising, Germany; University Hospital of RWTH Aachen, Functional Microbiome Research Group, Institute of Medical Microbiology, Aachen, Germany
| | - Peter C K Cheung
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
| |
Collapse
|
213
|
Yilmaz B, Juillerat P, Øyås O, Ramon C, Bravo FD, Franc Y, Fournier N, Michetti P, Mueller C, Geuking M, Pittet VEH, Maillard MH, Rogler G, Wiest R, Stelling J, Macpherson AJ. Microbial network disturbances in relapsing refractory Crohn's disease. Nat Med 2019; 25:323-336. [PMID: 30664783 DOI: 10.1038/s41591-018-0308-z] [Citation(s) in RCA: 269] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 11/19/2018] [Indexed: 02/06/2023]
Abstract
Inflammatory bowel diseases (IBD) can be broadly divided into Crohn's disease (CD) and ulcerative colitis (UC) from their clinical phenotypes. Over 150 host susceptibility genes have been described, although most overlap between CD, UC and their subtypes, and they do not adequately account for the overall incidence or the highly variable severity of disease. Replicating key findings between two long-term IBD cohorts, we have defined distinct networks of taxa associations within intestinal biopsies of CD and UC patients. Disturbances in an association network containing taxa of the Lachnospiraceae and Ruminococcaceae families, typically producing short chain fatty acids, characterize frequently relapsing disease and poor responses to treatment with anti-TNF-α therapeutic antibodies. Alterations of taxa within this network also characterize risk of later disease recurrence of patients in remission after the active inflamed segment of CD has been surgically removed.
Collapse
Affiliation(s)
- Bahtiyar Yilmaz
- Maurice Müller Laboratories, Department for Biomedical Research, University of Bern, Bern, Switzerland.,Department of Visceral Surgery and Medicine, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Pascal Juillerat
- Maurice Müller Laboratories, Department for Biomedical Research, University of Bern, Bern, Switzerland.,Department of Visceral Surgery and Medicine, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Ove Øyås
- Department of Biosystems Science and Engineering and SIB Swiss Institute of Bioinformatics, ETH Zurich, Basel, Switzerland
| | - Charlotte Ramon
- Department of Biosystems Science and Engineering and SIB Swiss Institute of Bioinformatics, ETH Zurich, Basel, Switzerland
| | - Francisco Damian Bravo
- Department of Visceral Surgery and Medicine, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Yannick Franc
- Institute of Social and Preventive Medicine (IUMSP), Lausanne University Hospital, Lausanne, Switzerland
| | - Nicolas Fournier
- Institute of Social and Preventive Medicine (IUMSP), Lausanne University Hospital, Lausanne, Switzerland
| | - Pierre Michetti
- Gastroenterology La Source-Beaulieu, Lausanne, Switzerland.,Service of Gastroenterology and Hepatology, Department of Medicine, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Christoph Mueller
- Division of Experimental Pathology, Institute of Pathology, University of Bern, Bern, Switzerland
| | - Markus Geuking
- Maurice Müller Laboratories, Department for Biomedical Research, University of Bern, Bern, Switzerland
| | - Valerie E H Pittet
- Institute of Social and Preventive Medicine (IUMSP), Lausanne University Hospital, Lausanne, Switzerland
| | - Michel H Maillard
- Gastroenterology La Source-Beaulieu, Lausanne, Switzerland.,Service of Gastroenterology and Hepatology, Department of Medicine, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Gerhard Rogler
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | | | - Reiner Wiest
- Maurice Müller Laboratories, Department for Biomedical Research, University of Bern, Bern, Switzerland.,Department of Visceral Surgery and Medicine, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Jörg Stelling
- Department of Biosystems Science and Engineering and SIB Swiss Institute of Bioinformatics, ETH Zurich, Basel, Switzerland
| | - Andrew J Macpherson
- Maurice Müller Laboratories, Department for Biomedical Research, University of Bern, Bern, Switzerland. .,Department of Visceral Surgery and Medicine, Bern University Hospital, University of Bern, Bern, Switzerland.
| |
Collapse
|
214
|
Wilson BC, Vatanen T, Cutfield WS, O'Sullivan JM. The Super-Donor Phenomenon in Fecal Microbiota Transplantation. Front Cell Infect Microbiol 2019; 9:2. [PMID: 30719428 PMCID: PMC6348388 DOI: 10.3389/fcimb.2019.00002] [Citation(s) in RCA: 247] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 01/03/2019] [Indexed: 12/13/2022] Open
Abstract
Fecal microbiota transplantation (FMT) has become a highly effective bacteriotherapy for recurrent Clostridium difficile infection. Meanwhile the efficacy of FMT for treating chronic diseases associated with microbial dysbiosis has so far been modest with a much higher variability in patient response. Notably, a number of studies suggest that FMT success is dependent on the microbial diversity and composition of the stool donor, leading to the proposition of the existence of FMT super-donors. The identification and subsequent characterization of super-donor gut microbiomes will inevitably advance our understanding of the microbial component of chronic diseases and allow for more targeted bacteriotherapy approaches in the future. Here, we review the evidence for super-donors in FMT and explore the concept of keystone species as predictors of FMT success. Possible effects of host-genetics and diet on FMT engraftment and maintenance are also considered. Finally, we discuss the potential long-term applicability of FMT for chronic disease and highlight how super-donors could provide the basis for dysbiosis-matched FMTs.
Collapse
Affiliation(s)
- Brooke C. Wilson
- The Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Tommi Vatanen
- The Liggins Institute, University of Auckland, Auckland, New Zealand
- The Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Wayne S. Cutfield
- The Liggins Institute, University of Auckland, Auckland, New Zealand
| | | |
Collapse
|
215
|
Levy AN, Allegretti JR. Insights into the role of fecal microbiota transplantation for the treatment of inflammatory bowel disease. Therap Adv Gastroenterol 2019; 12:1756284819836893. [PMID: 30906424 PMCID: PMC6421596 DOI: 10.1177/1756284819836893] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 02/16/2019] [Indexed: 02/04/2023] Open
Abstract
Fecal microbiota transplantation (FMT) has changed the treatment landscape of Clostridium difficile infection (CDI). Emerging evidence has shown that FMT can also be an effective and safe treatment strategy in CDI with underlying inflammatory bowel disease (IBD). Recently, randomized controlled trials of FMT in ulcerative colitis support its expanding role in restoring gut homeostasis in this disease. However, heterogeneous study designs leave several questions yet to be answered, including how to best position this novel therapy in the treatment approach of Crohn's disease and pouchitis. Additional studies are needed to validate whether FMT can assume a complementary role in the standard treatment of IBD.
Collapse
Affiliation(s)
- Alexander N. Levy
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women’s Hospital, Boston, MA, USA
| | | |
Collapse
|
216
|
Tyakht AV, Manolov AI, Kanygina AV, Ischenko DS, Kovarsky BA, Popenko AS, Pavlenko AV, Elizarova AV, Rakitina DV, Baikova JP, Ladygina VG, Kostryukova ES, Karpova IY, Semashko TA, Larin AK, Grigoryeva TV, Sinyagina MN, Malanin SY, Shcherbakov PL, Kharitonova AY, Khalif IL, Shapina MV, Maev IV, Andreev DN, Belousova EA, Buzunova YM, Alexeev DG, Govorun VM. Genetic diversity of Escherichia coli in gut microbiota of patients with Crohn's disease discovered using metagenomic and genomic analyses. BMC Genomics 2018; 19:968. [PMID: 30587114 PMCID: PMC6307143 DOI: 10.1186/s12864-018-5306-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 11/23/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Crohn's disease is associated with gut dysbiosis. Independent studies have shown an increase in the abundance of certain bacterial species, particularly Escherichia coli with the adherent-invasive pathotype, in the gut. The role of these species in this disease needs to be elucidated. METHODS We performed a metagenomic study investigating the gut microbiota of patients with Crohn's disease. A metagenomic reconstruction of the consensus genome content of the species was used to assess the genetic variability. RESULTS The abnormal shifts in the microbial community structures in Crohn's disease were heterogeneous among the patients. The metagenomic data suggested the existence of multiple E. coli strains within individual patients. We discovered that the genetic diversity of the species was high and that only a few samples manifested similarity to the adherent-invasive varieties. The other species demonstrated genetic diversity comparable to that observed in the healthy subjects. Our results were supported by a comparison of the sequenced genomes of isolates from the same microbiota samples and a meta-analysis of published gut metagenomes. CONCLUSIONS The genomic diversity of Crohn's disease-associated E. coli within and among the patients paves the way towards an understanding of the microbial mechanisms underlying the onset and progression of the Crohn's disease and the development of new strategies for the prevention and treatment of this disease.
Collapse
Affiliation(s)
- Alexander V. Tyakht
- Federal Research and Clinical Centre of Physical-Chemical Medicine, Malaya Pirogovskaya 1a, Moscow, 119435 Russia
- Moscow Institute of Physics and Technology, 9 Institutskiy per., Dolgoprudny, Moscow Region, Russian Federation 141700
- ITMO University, 49 Kronverkskiy pr, Saint-Petersburg, Russian Federation 197101
| | - Alexander I. Manolov
- Federal Research and Clinical Centre of Physical-Chemical Medicine, Malaya Pirogovskaya 1a, Moscow, 119435 Russia
| | - Alexandra V. Kanygina
- Moscow Institute of Physics and Technology, 9 Institutskiy per., Dolgoprudny, Moscow Region, Russian Federation 141700
| | - Dmitry S. Ischenko
- Federal Research and Clinical Centre of Physical-Chemical Medicine, Malaya Pirogovskaya 1a, Moscow, 119435 Russia
- Moscow Institute of Physics and Technology, 9 Institutskiy per., Dolgoprudny, Moscow Region, Russian Federation 141700
| | - Boris A. Kovarsky
- Federal Research and Clinical Centre of Physical-Chemical Medicine, Malaya Pirogovskaya 1a, Moscow, 119435 Russia
| | - Anna S. Popenko
- Federal Research and Clinical Centre of Physical-Chemical Medicine, Malaya Pirogovskaya 1a, Moscow, 119435 Russia
| | - Alexander V. Pavlenko
- Federal Research and Clinical Centre of Physical-Chemical Medicine, Malaya Pirogovskaya 1a, Moscow, 119435 Russia
| | - Anna V. Elizarova
- Moscow Institute of Physics and Technology, 9 Institutskiy per., Dolgoprudny, Moscow Region, Russian Federation 141700
| | - Daria V. Rakitina
- Federal Research and Clinical Centre of Physical-Chemical Medicine, Malaya Pirogovskaya 1a, Moscow, 119435 Russia
| | - Julia P. Baikova
- Federal Research and Clinical Centre of Physical-Chemical Medicine, Malaya Pirogovskaya 1a, Moscow, 119435 Russia
| | - Valentina G. Ladygina
- Federal Research and Clinical Centre of Physical-Chemical Medicine, Malaya Pirogovskaya 1a, Moscow, 119435 Russia
| | - Elena S. Kostryukova
- Federal Research and Clinical Centre of Physical-Chemical Medicine, Malaya Pirogovskaya 1a, Moscow, 119435 Russia
- Moscow Institute of Physics and Technology, 9 Institutskiy per., Dolgoprudny, Moscow Region, Russian Federation 141700
| | - Irina Y. Karpova
- Federal Research and Clinical Centre of Physical-Chemical Medicine, Malaya Pirogovskaya 1a, Moscow, 119435 Russia
| | - Tatyana A. Semashko
- Federal Research and Clinical Centre of Physical-Chemical Medicine, Malaya Pirogovskaya 1a, Moscow, 119435 Russia
- Moscow Institute of Physics and Technology, 9 Institutskiy per., Dolgoprudny, Moscow Region, Russian Federation 141700
| | - Andrei K. Larin
- Federal Research and Clinical Centre of Physical-Chemical Medicine, Malaya Pirogovskaya 1a, Moscow, 119435 Russia
| | | | - Mariya N. Sinyagina
- Kazan Federal University, 18 Kremlyovskaya St., Kazan, Russian Federation 420008
| | - Sergei Y. Malanin
- Kazan Federal University, 18 Kremlyovskaya St., Kazan, Russian Federation 420008
| | - Petr L. Shcherbakov
- Moscow Clinical Scientific Center, 86 Shosse Entuziastov St., Moscow, Russian Federation 111123
| | - Anastasiya Y. Kharitonova
- Clinical and Research Institute of Emergency Children’s Surgery and Trauma, 22 Bolshaya Polyanka St., Moscow, Russian Federation 119180
| | - Igor L. Khalif
- State Scientific Center of Coloproctology, 2 Salam Adil St., Moscow, Russian Federation 123423
| | - Marina V. Shapina
- State Scientific Center of Coloproctology, 2 Salam Adil St., Moscow, Russian Federation 123423
| | - Igor V. Maev
- Moscow State University of Medicine and Dentistry, Build. 6, 20 Delegatskaya St., Moscow, Russian Federation 127473
| | - Dmitriy N. Andreev
- Moscow State University of Medicine and Dentistry, Build. 6, 20 Delegatskaya St., Moscow, Russian Federation 127473
| | - Elena A. Belousova
- Moscow Regional Research and Clinical Institute, 61/2 Shchepkina str, Moscow, Russian Federation 129110
| | - Yulia M. Buzunova
- Moscow Regional Research and Clinical Institute, 61/2 Shchepkina str, Moscow, Russian Federation 129110
| | - Dmitry G. Alexeev
- Federal Research and Clinical Centre of Physical-Chemical Medicine, Malaya Pirogovskaya 1a, Moscow, 119435 Russia
- Moscow Institute of Physics and Technology, 9 Institutskiy per., Dolgoprudny, Moscow Region, Russian Federation 141700
| | - Vadim M. Govorun
- Federal Research and Clinical Centre of Physical-Chemical Medicine, Malaya Pirogovskaya 1a, Moscow, 119435 Russia
- Moscow Institute of Physics and Technology, 9 Institutskiy per., Dolgoprudny, Moscow Region, Russian Federation 141700
- M.M. Shemyakin - Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 16/10 Miklukho-Maklaya St., Moscow, Russian Federation 117997
| |
Collapse
|
217
|
Wang XQ, Zhang AH, Miao JH, Sun H, Yan GL, Wu FF, Wang XJ. Gut microbiota as important modulator of metabolism in health and disease. RSC Adv 2018; 8:42380-42389. [PMID: 35558413 PMCID: PMC9092240 DOI: 10.1039/c8ra08094a] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 12/02/2018] [Indexed: 12/12/2022] Open
Abstract
The human gastrointestinal tract colonizes a large number of microbial microflora, forms a host-microbiota co-metabolism structure with the host to participate in various metabolic processes in the human body, and plays a major role in the host immune response. In addition, the dysbiosis of intestinal microbial homeostasis is closely related to many diseases. Thus, an in-depth understanding of the relationship between them is of importance for disease pathogenesis, prevention and treatment. The combined use of metagenomics, transcriptomics, proteomics and metabolomics techniques for the analysis of gut microbiota can reveal the relationship between microbiota and the host in many ways, which has become a hot topic of analysis in recent years. This review describes the mechanism of co-metabolites in host health, including short-chain fatty acids (SCFA) and bile acid metabolism. The metabolic role of gut microbiota in obesity, liver diseases, gastrointestinal diseases and other diseases is also summarized, and the research methods for multi-omics combined application on gut microbiota are summarized. According to the studies of the interaction mechanism between gut microbiota and the host, we have a better understanding of the use of intestinal microflora in the treatment of related diseases. It is hoped that the gut microbiota can be utilized to maintain human health, providing a reference for future research.
Collapse
Affiliation(s)
- Xiang-Qian Wang
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plant Nanning Guangxi China +86-451-82110818 +86-451-82110818
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine Heping Road 24 Harbin China
| | - Ai-Hua Zhang
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine Heping Road 24 Harbin China
| | - Jian-Hua Miao
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plant Nanning Guangxi China +86-451-82110818 +86-451-82110818
| | - Hui Sun
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine Heping Road 24 Harbin China
| | - Guang-Li Yan
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine Heping Road 24 Harbin China
| | - Fang-Fang Wu
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plant Nanning Guangxi China +86-451-82110818 +86-451-82110818
| | - Xi-Jun Wang
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plant Nanning Guangxi China +86-451-82110818 +86-451-82110818
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine Heping Road 24 Harbin China
| |
Collapse
|
218
|
Coleman OI, Lobner EM, Bierwirth S, Sorbie A, Waldschmitt N, Rath E, Berger E, Lagkouvardos I, Clavel T, McCoy KD, Weber A, Heikenwalder M, Janssen KP, Haller D. Activated ATF6 Induces Intestinal Dysbiosis and Innate Immune Response to Promote Colorectal Tumorigenesis. Gastroenterology 2018; 155:1539-1552.e12. [PMID: 30063920 DOI: 10.1053/j.gastro.2018.07.028] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 07/12/2018] [Accepted: 07/25/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND & AIMS Activating transcription factor 6 (ATF6) regulates endoplasmic reticulum stress. We studied whether ATF6 contributes to the development of colorectal cancer (CRC) using tissue from patients and transgenic mice. METHODS We analyzed data from 541 patients with CRC in The Cancer Genome Atlas database for genetic variants and aberrant expression levels of unfolded protein response genes. Findings were validated in a cohort of 83 patients with CRC in Germany. We generated mice with intestinal epithelial cell-specific expression of the active form of Atf6 (nATF6IEC) from 2 alleles (homozygous), mice with expression of nATF6IEC from 1 allele (heterozygous), and nATF6IECfl/fl mice (controls). All nATF6IEC mice were housed under either specific-pathogen-free or germ-free conditions. Cecal microbiota from homozygous nATF6IEC mice or control mice was transferred into homozygous nATF6IEC mice or control mice. nATF6IEC mice were crossed with mice with disruptions in the myeloid differentiation primary response gene 88 and toll-like receptor adaptor molecule 1 gene (Myd88/Trif-knockout mice). Intestinal tissues were collected from mice and analyzed by histology, immunohistochemistry, immunoblots, gene expression profiling of unfolded protein response and inflammatory genes, array-based comparative genome hybridization, and 16S ribosomal RNA gene sequencing. RESULTS Increased expression of ATF6 was associated with reduced disease-free survival times of patients with CRC. Homozygous nATF6IEC mice developed spontaneous colon adenomas at 12 weeks of age. Compared with controls, homozygous nATF6IEC mice had changes in the profile of their cecal microbiota, increased proliferation of intestinal epithelial cells, and loss of the mucus barrier-all preceding tumor formation. These mice had increased penetration of bacteria into the inner mucus layer and activation of signal transducer and activator of transcription 3, yet inflammation was not observed at the pretumor or tumor stages. Administration of antibiotics to homozygous nATF6IEC mice greatly reduced tumor incidence, and germ-free housing completely prevented tumorigenesis. Analysis of nATF6IEC MyD88/TRIF-knockout mice showed that tumor initiation and growth required MyD88/TRIF-dependent activation of signal transducer and activator of transcription 3. Transplantation of cecal microbiota from nATF6IEC mice and control mice, collected before tumor formation, caused tumor formation in ex-germ-free nATF6IEC mice. CONCLUSIONS In patients with CRC, ATF6 was associated with reduced time of disease-free survival. In studies of nATF6IEC mice, we found sustained intestinal activation of ATF6 in the colon to promote dysbiosis and microbiota-dependent tumorigenesis.
Collapse
Affiliation(s)
- Olivia I Coleman
- Chair of Nutrition and Immunology, Technische Universität München, Freising, Germany
| | - Elena M Lobner
- Chair of Nutrition and Immunology, Technische Universität München, Freising, Germany
| | - Sandra Bierwirth
- Chair of Nutrition and Immunology, Technische Universität München, Freising, Germany
| | - Adam Sorbie
- Chair of Nutrition and Immunology, Technische Universität München, Freising, Germany
| | - Nadine Waldschmitt
- Chair of Nutrition and Immunology, Technische Universität München, Freising, Germany
| | - Eva Rath
- Chair of Nutrition and Immunology, Technische Universität München, Freising, Germany
| | - Emanuel Berger
- Chair of Nutrition and Immunology, Technische Universität München, Freising, Germany
| | - Ilias Lagkouvardos
- ZIEL -Institute for Food & Health, Technische Universität München, Germany
| | - Thomas Clavel
- ZIEL -Institute for Food & Health, Technische Universität München, Germany
| | - Kathleen D McCoy
- Department of Physiology and Pharmacology, University of Calgary, Canada
| | - Achim Weber
- Institute of Pathology, University Zurich and University Hospital Zurich, Zurich, Switzerland
| | - Mathias Heikenwalder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Klaus-Peter Janssen
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, München, Germany
| | - Dirk Haller
- Chair of Nutrition and Immunology, Technische Universität München, Freising, Germany; ZIEL -Institute for Food & Health, Technische Universität München, Germany.
| |
Collapse
|
219
|
Liu TC, Kern JT, VanDussen KL, Xiong S, Kaiko GE, Wilen CB, Rajala MW, Caruso R, Holtzman MJ, Gao F, McGovern DP, Nunez G, Head RD, Stappenbeck TS. Interaction between smoking and ATG16L1T300A triggers Paneth cell defects in Crohn's disease. J Clin Invest 2018; 128:5110-5122. [PMID: 30137026 DOI: 10.1172/jci120453] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 08/21/2018] [Indexed: 12/14/2022] Open
Abstract
It is suggested that subtyping of complex inflammatory diseases can be based on genetic susceptibility and relevant environmental exposure (G+E). We propose that using matched cellular phenotypes in human subjects and corresponding preclinical models with the same G+E combinations is useful to this end. As an example, defective Paneth cells can subtype Crohn's disease (CD) subjects; Paneth cell defects have been linked to multiple CD susceptibility genes and are associated with poor outcome. We hypothesized that CD susceptibility genes interact with cigarette smoking, a major CD environmental risk factor, to trigger Paneth cell defects. We found that both CD subjects and mice with ATG16L1T300A (T300A; a prevalent CD susceptibility allele) developed Paneth cell defects triggered by tobacco smoke. Transcriptional analysis of full-thickness ileum and Paneth cell-enriched crypt base cells showed the T300A-smoking combination altered distinct pathways, including proapoptosis, metabolic dysregulation, and selective downregulation of the PPARγ pathway. Pharmacologic intervention by either apoptosis inhibitor or PPARγ agonist rosiglitazone prevented smoking-induced crypt apoptosis and Paneth cell defects in T300A mice and mice with conditional Paneth cell-specific knockout of Atg16l1. This study demonstrates how explicit G+E can drive disease-relevant phenotype and provides rational strategies for identifying actionable targets.
Collapse
Affiliation(s)
- Ta-Chiang Liu
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Justin T Kern
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Kelli L VanDussen
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Shanshan Xiong
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Gerard E Kaiko
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Craig B Wilen
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Michael W Rajala
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - Roberta Caruso
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | | | - Feng Gao
- Department of Surgery, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Dermot Pb McGovern
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Gabriel Nunez
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - Richard D Head
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Thaddeus S Stappenbeck
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, USA
| |
Collapse
|
220
|
Pickard JM, Zeng MY, Caruso R, Núñez G. Gut microbiota: Role in pathogen colonization, immune responses, and inflammatory disease. Immunol Rev 2018; 279:70-89. [PMID: 28856738 DOI: 10.1111/imr.12567] [Citation(s) in RCA: 1041] [Impact Index Per Article: 148.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The intestinal tract of mammals is colonized by a large number of microorganisms including trillions of bacteria that are referred to collectively as the gut microbiota. These indigenous microorganisms have co-evolved with the host in a symbiotic relationship. In addition to metabolic benefits, symbiotic bacteria provide the host with several functions that promote immune homeostasis, immune responses, and protection against pathogen colonization. The ability of symbiotic bacteria to inhibit pathogen colonization is mediated via several mechanisms including direct killing, competition for limited nutrients, and enhancement of immune responses. Pathogens have evolved strategies to promote their replication in the presence of the gut microbiota. Perturbation of the gut microbiota structure by environmental and genetic factors increases the risk of pathogen infection, promotes the overgrowth of harmful pathobionts, and the development of inflammatory disease. Understanding the interaction of the microbiota with pathogens and the immune system will provide critical insight into the pathogenesis of disease and the development of strategies to prevent and treat inflammatory disease.
Collapse
Affiliation(s)
- Joseph M Pickard
- Department of Pathology and Comprehensive Cancer Center, The University of Michigan Medical School, Ann Arbor, MI, USA
| | - Melody Y Zeng
- Department of Pathology and Comprehensive Cancer Center, The University of Michigan Medical School, Ann Arbor, MI, USA
| | - Roberta Caruso
- Department of Pathology and Comprehensive Cancer Center, The University of Michigan Medical School, Ann Arbor, MI, USA
| | - Gabriel Núñez
- Department of Pathology and Comprehensive Cancer Center, The University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
221
|
Chen G, Huang B, Fu S, Li B, Ran X, He D, Jiang L, Li Y, Liu B, Xie L, Liu J, Wang W. G Protein-Coupled Receptor 109A and Host Microbiota Modulate Intestinal Epithelial Integrity During Sepsis. Front Immunol 2018; 9:2079. [PMID: 30271409 PMCID: PMC6146091 DOI: 10.3389/fimmu.2018.02079] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 08/22/2018] [Indexed: 01/02/2023] Open
Abstract
The intestinal epithelial barrier is important to mucosal immunity, although how it is maintained after damage is unclear. Here, we show that G protein-coupled receptor 109A (GPR109A) supports barrier integrity and decreases mortality in a mouse cecum ligation and puncture (CLP) sepsis model. Data from 16S RNA sequencing showed that the intestinal microbiota of WT and Gpr109a−/− mice clustered differently and their compositions were disrupted after CLP surgery. GPR109A-deficient mice showed increased mortality, intestinal permeability, altered inflammation, and lower tight junction gene expression. After eliminating the intestinal flora with antibiotics, all experimental mice died within 48 h of CLP surgery. This demonstrates the critical role of the gut microbiota in CLP-induced sepsis. Importantly, mortality and other pathologies in the model were decreased after Gpr109a−/− mice received WT gut microbiota. These findings indicate that GPR109A regulates the gut microbiota, contributing to intestinal epithelial barrier integrity and decreased mortality in CLP-induced sepsis.
Collapse
Affiliation(s)
- Guangxin Chen
- College of Veterinary Medicine, Jilin University, Changchun, China.,Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Bingxu Huang
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Shoupeng Fu
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Bai Li
- First Hospital of Jilin University, Changchun, China
| | - Xin Ran
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Dewei He
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Liqiang Jiang
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yuhang Li
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Bingdong Liu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China.,First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Liwei Xie
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Juxiong Liu
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Wei Wang
- College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
222
|
Ruiz L, López P, Suárez A, Sánchez B, Margolles A. The role of gut microbiota in lupus: what we know in 2018? Expert Rev Clin Immunol 2018; 14:787-792. [PMID: 30173572 DOI: 10.1080/1744666x.2018.1519395] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION The role of the human intestinal microbiota in the maintenance of a healthy physiological condition, as well as its relation to the development of disease, remains to be clarified. Current evidence suggests that intestinal microbes could be involved in the initiation and amplification of autoimmune diseases, including rheumatoid arthritis and systemic lupus erythematosus (SLE). Despite recent progress in understanding how these microbes influence the pathophysiology of lupus, studies are still limited. Areas covered: In this review, we have tried to summarize the most relevant findings that have contributed to our understanding of the links between the human intestinal microbiota and the development of lupus. We also describe the potential role of individual microbial players in the physiology of lupus, and how they can shape relevant immune responses. Expert commentary: Culture-independent techniques based on massive sequencing represent a powerful tool to unravel the biological activity of gut microbes. Current data demonstrates that, depending on the pattern of intestinal microorganisms or the presence of specific bacteria, different responses related to lupus physiology can be triggered. Fecal microbiota transplantation, live biotherapeutics, or dietary interventions targeting the microbiota will likely become a treatment for SLE.
Collapse
Affiliation(s)
- Lorena Ruiz
- a Department of Microbiology and Biochemistry , Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas , Villaviciosa , Asturias , Spain
| | - Patricia López
- b Departament of Funtional Biology , Immunology Area, University of Oviedo , Oviedo , Spain.,c Instituto de Investigación Sanitaria del Principado de Asturias (ISPA) , Oviedo , Spain
| | - Ana Suárez
- b Departament of Funtional Biology , Immunology Area, University of Oviedo , Oviedo , Spain.,c Instituto de Investigación Sanitaria del Principado de Asturias (ISPA) , Oviedo , Spain
| | - Borja Sánchez
- a Department of Microbiology and Biochemistry , Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas , Villaviciosa , Asturias , Spain
| | - Abelardo Margolles
- a Department of Microbiology and Biochemistry , Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas , Villaviciosa , Asturias , Spain
| |
Collapse
|
223
|
Li Z, Zhu H, Zhang L, Qin C. The intestinal microbiome and Alzheimer's disease: A review. Animal Model Exp Med 2018; 1:180-188. [PMID: 30891563 PMCID: PMC6388077 DOI: 10.1002/ame2.12033] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/12/2018] [Accepted: 08/15/2018] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's disease (AD) is an increasingly common neurodegenerative disease. Since the intestinal microbiome is closely related to nervous system diseases, alterations in the composition of intestinal microbiota could potentially contribute to the pathophysiology of AD. However, how the initial interactions with intestinal microbes alter events later in life, such as during neurodegenerative diseases, is still unclear. This review summarizes what is known about the relationship between the intestinal microbiome and AD.
Collapse
Affiliation(s)
- Zhuo Li
- Institute of Medical Laboratory Animal ScienceChinese Academy of Medical Sciences & Comparative Medical CenterPeking Union Medical CollegeBeijingChina
| | - Hua Zhu
- Institute of Medical Laboratory Animal ScienceChinese Academy of Medical Sciences & Comparative Medical CenterPeking Union Medical CollegeBeijingChina
| | - Ling Zhang
- Institute of Medical Laboratory Animal ScienceChinese Academy of Medical Sciences & Comparative Medical CenterPeking Union Medical CollegeBeijingChina
| | - Chuan Qin
- Institute of Medical Laboratory Animal ScienceChinese Academy of Medical Sciences & Comparative Medical CenterPeking Union Medical CollegeBeijingChina
| |
Collapse
|
224
|
Inflammation-independent TL1A-mediated intestinal fibrosis is dependent on the gut microbiome. Mucosal Immunol 2018; 11:1466-1476. [PMID: 29988118 PMCID: PMC6162160 DOI: 10.1038/s41385-018-0055-y] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 05/16/2018] [Accepted: 06/04/2018] [Indexed: 02/08/2023]
Abstract
Tumor necrosis factor-like cytokine 1A (TL1A, TNFSF15) is implicated in inflammatory bowel disease (IBD), modulating the location and severity of intestinal inflammation and fibrosis. TL1A expression is increased in inflamed gut mucosa and associated with fibrostenosing Crohn's disease. Tl1a-overexpression in mice lead to spontaneous ileitis, and exacerbated induced proximal colitis and fibrosis. IBD is associated with shifts in the gut microbiome, but the effect of differing microbial populations and their interaction with TL1A on fibrosis has not been investigated. We demonstrate that the pro-fibrotic and inflammatory phenotype resulting from Tl1a-overexpression is abrogated in the absence of resident microbiota. To evaluate if this is due to the absence of a unique bacterial population, as opposed to any bacteria per se, we gavaged germ-free (GF) wild-type and Tl1a-transgenic (Tl1a-Tg) mice with stool from specific pathogen free (SPF) mice and a healthy human donor (Hu). Reconstitution with SPF, but not Hu microbiota, resulted in increased intestinal collagen deposition and fibroblast activation in Tl1a-Tg mice. Notably, there was reduced fibroblast migration and activation under GF conditions compared to native conditions. We then identified several candidate organisms that correlated directly with increased fibrosis in reconstituted mice and showed that these organisms directly impact fibroblast function in vitro. Thus, Tl1a-mediated intestinal fibrosis and fibroblast activation are dependent on specific microbial populations.
Collapse
|
225
|
Bretin A, Lucas C, Larabi A, Dalmasso G, Billard E, Barnich N, Bonnet R, Nguyen HTT. AIEC infection triggers modification of gut microbiota composition in genetically predisposed mice, contributing to intestinal inflammation. Sci Rep 2018; 8:12301. [PMID: 30120269 PMCID: PMC6098085 DOI: 10.1038/s41598-018-30055-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 07/21/2018] [Indexed: 12/12/2022] Open
Abstract
A high prevalence of adherent-invasive E. coli (AIEC) in the intestinal mucosa of Crohn's disease patients has been shown. AIEC colonize the intestine and induce inflammation in genetically predisposed mouse models including CEABAC10 transgenic (Tg) mice expressing human CEACAM6-receptor for AIEC and eif2ak4-/- mice exhibiting autophagy defect in response to AIEC infection. Here, we aimed at investigating whether gut microbiota modification contributes to AIEC-induced intestinal inflammation in these mouse models. For this, eif2ak4+/+ and eif2ak4-/- mice or CEABAC10 Tg mice invalidated for Eif2ak4 gene (Tg/eif2ak4-/-) or not (Tg/eif2ak4+/+) were infected with the AIEC reference strain LF82 or the non-pathogenic E. coli K12 MG1655 strain. In all mouse groups, LF82 colonized the gut better and longer than MG1655. No difference in fecal microbiota composition was observed in eif2ak4+/+ and eif2ak4-/- mice before infection and at day 1 and 4 post-infection. LF82-infected eif2ak4-/- mice exhibited altered fecal microbiota composition at day 14 and 21 post-infection and increased fecal lipocalin-2 level at day 21 post-infection compared to other groups, indicating that intestinal inflammation developed after microbiota modification. Similar results were obtained for LF82-infected Tg/eif2ak4-/- mice. These results suggest that in genetically predisposed hosts, AIEC colonization might induce chronic intestinal inflammation by altering the gut microbiota composition.
Collapse
Affiliation(s)
- Alexis Bretin
- M2iSH (Microbes, intestine, inflammation and Susceptibility of the Host), UMR 1071 Inserm, Université Clermont Auvergne, INRA USC 2018, Clermont-Ferrand, 63001, France
| | - Cécily Lucas
- M2iSH (Microbes, intestine, inflammation and Susceptibility of the Host), UMR 1071 Inserm, Université Clermont Auvergne, INRA USC 2018, Clermont-Ferrand, 63001, France
| | - Anaïs Larabi
- M2iSH (Microbes, intestine, inflammation and Susceptibility of the Host), UMR 1071 Inserm, Université Clermont Auvergne, INRA USC 2018, Clermont-Ferrand, 63001, France
| | - Guillaume Dalmasso
- M2iSH (Microbes, intestine, inflammation and Susceptibility of the Host), UMR 1071 Inserm, Université Clermont Auvergne, INRA USC 2018, Clermont-Ferrand, 63001, France
| | - Elisabeth Billard
- M2iSH (Microbes, intestine, inflammation and Susceptibility of the Host), UMR 1071 Inserm, Université Clermont Auvergne, INRA USC 2018, Clermont-Ferrand, 63001, France
| | - Nicolas Barnich
- M2iSH (Microbes, intestine, inflammation and Susceptibility of the Host), UMR 1071 Inserm, Université Clermont Auvergne, INRA USC 2018, Clermont-Ferrand, 63001, France
| | - Richard Bonnet
- M2iSH (Microbes, intestine, inflammation and Susceptibility of the Host), UMR 1071 Inserm, Université Clermont Auvergne, INRA USC 2018, Clermont-Ferrand, 63001, France
- Centre Hospitalier Universitaire (CHU), Clermont-Ferrand, 63001, France
| | - Hang Thi Thu Nguyen
- M2iSH (Microbes, intestine, inflammation and Susceptibility of the Host), UMR 1071 Inserm, Université Clermont Auvergne, INRA USC 2018, Clermont-Ferrand, 63001, France.
| |
Collapse
|
226
|
Fulde M, Sommer F, Chassaing B, van Vorst K, Dupont A, Hensel M, Basic M, Klopfleisch R, Rosenstiel P, Bleich A, Bäckhed F, Gewirtz AT, Hornef MW. Neonatal selection by Toll-like receptor 5 influences long-term gut microbiota composition. Nature 2018; 560:489-493. [PMID: 30089902 DOI: 10.1038/s41586-018-0395-5] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 07/05/2018] [Indexed: 11/09/2022]
Abstract
Alterations in enteric microbiota are associated with several highly prevalent immune-mediated and metabolic diseases1-3, and experiments involving faecal transplants have indicated that such alterations have a causal role in at least some such conditions4-6. The postnatal period is particularly critical for the development of microbiota composition, host-microbe interactions and immune homeostasis7-9. However, the underlying molecular mechanisms of this neonatal priming period have not been defined. Here we report the identification of a host-mediated regulatory circuit of bacterial colonization that acts solely during the early neonatal period but influences life-long microbiota composition. We demonstrate age-dependent expression of the flagellin receptor Toll-like receptor 5 (TLR5) in the gut epithelium of neonate mice. Using competitive colonization experiments, we demonstrate that epithelial TLR5-mediated REG3γ production is critical for the counter-selection of colonizing flagellated bacteria. Comparative microbiota transfer experiments in neonate and adult wild-type and Tlr5-deficient germ-free mice reveal that neonatal TLR5 expression strongly influences the composition of the microbiota throughout life. Thus, the beneficial microbiota in the adult host is shaped during early infancy. This might explain why environmental factors that disturb the establishment of the microbiota during early life can affect immune homeostasis and health in adulthood.
Collapse
Affiliation(s)
- Marcus Fulde
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany.,Institute of Microbiology and Epizootics, Department of Veterinary Medicine at the Freie Universität Berlin, Berlin, Germany
| | - Felix Sommer
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden.,Institute of Clinical Molecular Biology (IKMB), Kiel University, Kiel, Germany
| | - Benoit Chassaing
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA.,Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Kira van Vorst
- Institute of Microbiology and Epizootics, Department of Veterinary Medicine at the Freie Universität Berlin, Berlin, Germany
| | - Aline Dupont
- Institute for Medical Microbiology, RWTH University Hospital Aachen, Aachen, Germany
| | - Michael Hensel
- Division of Microbiology, University of Osnabrück, Osnabrück, Germany
| | - Marijana Basic
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Robert Klopfleisch
- Institute of Veterinary Pathology, Department of Veterinary Medicine at the Freie Universität Berlin, Berlin, Germany
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology (IKMB), Kiel University, Kiel, Germany
| | - André Bleich
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Fredrik Bäckhed
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Andrew T Gewirtz
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Mathias W Hornef
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany. .,Institute for Medical Microbiology, RWTH University Hospital Aachen, Aachen, Germany.
| |
Collapse
|
227
|
Mortier C, Govindarajan S, Venken K, Elewaut D. It Takes "Guts" to Cause Joint Inflammation: Role of Innate-Like T Cells. Front Immunol 2018; 9:1489. [PMID: 30008717 PMCID: PMC6033969 DOI: 10.3389/fimmu.2018.01489] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 06/15/2018] [Indexed: 12/12/2022] Open
Abstract
Innate-like T cells such as invariant natural killer T (iNKT) cells and mucosal-associated T (MAIT) cells, characterized by a semi-invariant T cell receptor and restriction toward MHC-like molecules (CD1 and MR1 respectively), are a unique unconventional immune subset acting at the interface of innate and adaptive immunity. Highly represented at barrier sites and capable of rapidly producing substantial amounts of cytokines, they serve a pivotal role as first-line responders against microbial infections. In contrast, it was demonstrated that innate-like T cells can be skewed toward a predominant pro-inflammatory state and are consequently involved in a number of autoimmune and inflammatory diseases like inflammatory bowel diseases and rheumatic disorders, such as spondyloarthritis (SpA) and rheumatoid arthritis. Interestingly, there is link between gut and joint disease as they often co-incide and share certain aspects of the pathogenesis such as established genetic risk factors, a critical role for pro-inflammatory cytokines, such as TNF-α, IL-23, and IL-17 and therapeutic susceptibility. In this regard dysregulated IL-23/IL-17 responses appear to be crucial in both debilitating pathologies and innate-like T cells likely act as key player. In this review, we will explore the remarkable features of iNKT cells and MAIT cells, and discuss their contribution to immunity and combined gut-joint disease.
Collapse
Affiliation(s)
- Céline Mortier
- Department of Rheumatology, Ghent University Hospital, Ghent, Belgium.,Unit for Molecular Immunology and Inflammation, VIB Center for Inflammation Research, Ghent University, Ghent, Belgium
| | - Srinath Govindarajan
- Department of Rheumatology, Ghent University Hospital, Ghent, Belgium.,Unit for Molecular Immunology and Inflammation, VIB Center for Inflammation Research, Ghent University, Ghent, Belgium
| | - Koen Venken
- Department of Rheumatology, Ghent University Hospital, Ghent, Belgium.,Unit for Molecular Immunology and Inflammation, VIB Center for Inflammation Research, Ghent University, Ghent, Belgium
| | - Dirk Elewaut
- Department of Rheumatology, Ghent University Hospital, Ghent, Belgium.,Unit for Molecular Immunology and Inflammation, VIB Center for Inflammation Research, Ghent University, Ghent, Belgium
| |
Collapse
|
228
|
Roy U, Gálvez EJC, Iljazovic A, Lesker TR, Błażejewski AJ, Pils MC, Heise U, Huber S, Flavell RA, Strowig T. Distinct Microbial Communities Trigger Colitis Development upon Intestinal Barrier Damage via Innate or Adaptive Immune Cells. Cell Rep 2018; 21:994-1008. [PMID: 29069606 PMCID: PMC5668567 DOI: 10.1016/j.celrep.2017.09.097] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 08/15/2017] [Accepted: 09/28/2017] [Indexed: 02/08/2023] Open
Abstract
Inflammatory bowel disease comprises a group of heterogeneous diseases characterized by chronic and relapsing mucosal inflammation. Alterations in microbiota composition have been proposed to contribute to disease development, but no uniform signatures have yet been identified. Here, we compare the ability of a diverse set of microbial communities to exacerbate intestinal inflammation after chemical damage to the intestinal barrier. Strikingly, genetically identical wild-type mice differing only in their microbiota composition varied strongly in their colitis susceptibility. Transfer of distinct colitogenic communities in gene-deficient mice revealed that they triggered disease via opposing pathways either independent or dependent on adaptive immunity, specifically requiring antigen-specific CD4+ T cells. Our data provide evidence for the concept that microbial communities may alter disease susceptibility via different immune pathways despite eventually resulting in similar host pathology. This suggests a potential benefit for personalizing IBD therapies according to patient-specific microbiota signatures. Gut microbiota composition modulates colitis severity in immunocompetent hosts Colitogenic microbiota drive colitis via innate or adaptive immunity Distinct microbiota members induce pathogenic CD4+ T cells to drive colitis
Collapse
Affiliation(s)
- Urmi Roy
- Microbial Immune Regulation Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Eric J C Gálvez
- Microbial Immune Regulation Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Aida Iljazovic
- Microbial Immune Regulation Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Till Robin Lesker
- Microbial Immune Regulation Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Adrian J Błażejewski
- Microbial Immune Regulation Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Marina C Pils
- Mouse Pathology Platform, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Ulrike Heise
- Mouse Pathology Platform, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Samuel Huber
- I. Medizinische Klinik und Poliklinik, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA; Howard Hughes Medical Institute, Yale University, New Haven, CT, USA
| | - Till Strowig
- Microbial Immune Regulation Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany.
| |
Collapse
|
229
|
Yoon H, Schaubeck M, Lagkouvardos I, Blesl A, Heinzlmeir S, Hahne H, Clavel T, Panda S, Ludwig C, Kuster B, Manichanh C, Kump P, Haller D, Hörmannsperger G. Increased Pancreatic Protease Activity in Response to Antibiotics Impairs Gut Barrier and Triggers Colitis. Cell Mol Gastroenterol Hepatol 2018; 6:370-388.e3. [PMID: 30182050 PMCID: PMC6121113 DOI: 10.1016/j.jcmgh.2018.05.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 05/15/2018] [Indexed: 12/19/2022]
Abstract
Background & Aims Antibiotic (ABx) therapy is associated with increased risk for Crohn's disease but underlying mechanisms are unknown. We observed high fecal serine protease activity (PA) to be a frequent side effect of ABx therapy. The aim of the present study was to unravel whether this rise in large intestinal PA may promote colitis development via detrimental effects on the large intestinal barrier. Methods Transwell experiments were used to assess the impact of high PA in ABx-treated patients or vancomycin/metronidazole-treated mice on the epithelial barrier. Serine protease profiling was performed using liquid chromatography-mass spectrometry/mass spectrometry analysis. The impact of high large intestinal PA on the intestinal barrier in wild-type and interleukin (IL)10-/- mice and on colitis development in IL10-/- mice was investigated using vancomycin/metronidazole with or without oral serine protease inhibitor (AEBSF) treatment. Results The ABx-induced, high large intestinal PA was caused by significantly increased levels of pancreatic proteases and impaired epithelial barrier integrity. In wild-type mice, the rise in PA caused a transient increase in intestinal permeability but did not affect susceptibility to chemically induced acute colitis. In IL10-/- mice, increased PA caused a consistent impairment of the intestinal barrier associated with inflammatory activation in the large intestinal tissue. In the long term, the vancomycin/metronidazole-induced lasting increase in PA aggravated colitis development in IL10-/- mice. Conclusions High large intestinal PA is a frequent adverse effect of ABx therapy, which is detrimental to the large intestinal barrier and may contribute to the development of chronic intestinal inflammation in susceptible individuals.
Collapse
Key Words
- ABx, antibiotics
- AEBSF, 4-(2-aminoethyl) benzenesulfonyl fluoride hydrochloride
- DSS, dextran sulfate sodium
- Epithelial Barrier
- GF, germ-free
- Gut Microbiota
- IBD, inflammatory bowel diseases
- IL, interleukin
- Inflammatory Bowel Diseases
- LC-MS/MS, liquid chromatography–mass spectrometry/mass spectrometry
- PA, protease activity
- PBS, phosphate-buffered saline
- PMSF, phenylmethane-sulfonylfluoride
- SPF, specific pathogen-free
- Serine Proteases
- TEER, transepithelial electrical resistance
- V/M, vancomycin/metronidazole
- WT, wild-type
- cecal-sup, cecal-supernatants
- ctr, control
- stool-sup, stool-supernatants
Collapse
Affiliation(s)
- Hongsup Yoon
- Technische Universität München, Chair of Nutrition and Immunology, Freising-Weihenstephan, Germany
| | - Monika Schaubeck
- Max Planck Institute of Neurobiology, Department of Neuroimmunology, Martinsried, Germany
| | - Ilias Lagkouvardos
- Technische Universität München, Junior Research Group Microbial Bioinformatics, ZIEL – Institute for Food and Health, Freising-Weihenstephan, Germany
- Technische Universität München, ZIEL – Institute for Food & Health, Freising-Weihenstephan, Germany
| | - Andreas Blesl
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Stephanie Heinzlmeir
- Technische Universität München, Chair of Proteomics and Bioanalytics, Freising-Weihenstephan, Germany
- Technische Universität München, Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), Freising-Weihenstephan, Germany
| | - Hannes Hahne
- Technische Universität München, Chair of Proteomics and Bioanalytics, Freising-Weihenstephan, Germany
- OmicScouts GmbH, Freising, Germany
| | - Thomas Clavel
- Technische Universität München, ZIEL – Institute for Food & Health, Freising-Weihenstephan, Germany
- RWTH University Hospital, Institute of Medical Microbiology, Functional Microbiome Research Group, Aachen, Germany
| | - Suchita Panda
- Vall d'Hebron Research Institute, Digestive Research Unit, Barcelona, Spain
| | - Christina Ludwig
- Technische Universität München, Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), Freising-Weihenstephan, Germany
| | - Bernhard Kuster
- Technische Universität München, Chair of Proteomics and Bioanalytics, Freising-Weihenstephan, Germany
- Technische Universität München, Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), Freising-Weihenstephan, Germany
| | | | - Patrizia Kump
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Dirk Haller
- Technische Universität München, Chair of Nutrition and Immunology, Freising-Weihenstephan, Germany
- Technische Universität München, ZIEL – Institute for Food & Health, Freising-Weihenstephan, Germany
| | - Gabriele Hörmannsperger
- Technische Universität München, Chair of Nutrition and Immunology, Freising-Weihenstephan, Germany
| |
Collapse
|
230
|
Molecular profiling of mucosal tissue associated microbiota in patients manifesting acute exacerbations and remission stage of ulcerative colitis. World J Microbiol Biotechnol 2018; 34:76. [PMID: 29796862 DOI: 10.1007/s11274-018-2449-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 04/18/2018] [Indexed: 12/22/2022]
Abstract
Dysbiosis of intestinal microflora has been postulated in ulcerative colitis (UC), which is characterized by imbalance of mucosal tissue associated bacterial communities. However, the specific changes in mucosal microflora during different stages of UC are still unknown. The aim of the current study was to investigate the changes in mucosal tissue associated microbiota during acute exacerbations and remission stages of UC. The mucosal microbiota associated with colon biopsy of 12 patients suffering from UC (exacerbated stage) and the follow-up samples from the same patients (remission stage) as well as non-IBD subjects was studied using 16S rRNA gene-based sequencing and quantitative PCR. The total bacterial count in patients suffering from exacerbated phase of UC was observed to be two fold lower compared to that of the non-IBD subjects (p = 0.0049, Wilcox on matched-pairs signed rank tests). Bacterial genera including Stenotrophomonas, Parabacteroides, Elizabethkingia, Pseudomonas, Micrococcus, Ochrobactrum and Achromobacter were significantly higher in abundance during exacerbated phase of UC as compared to remission phase. The alterations in bacterial diversity with an increase in the abnormal microbial communities signify the extent of dysbiosis in mucosal microbiota in patients suffering from UC. Our study helps in identifying the specific genera dominating the microbiota during the disease and thus lays a basis for further investigation of the possible role of these bacteria in pathogenesis of UC.
Collapse
|
231
|
Raduolovic K, Mak'Anyengo R, Kaya B, Steinert A, Niess JH. Injections of Lipopolysaccharide into Mice to Mimic Entrance of Microbial-derived Products After Intestinal Barrier Breach. J Vis Exp 2018. [PMID: 29782025 DOI: 10.3791/57610] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The intestinal epithelial barrier separates the host from the microbiota that is normally tolerated or ignored. The breach of this barrier results in the entrance of bacteria or bacteria-derived products into the host, accessing the host circulation and inner organs leading to the uncontrolled inflammation as observed in patients with inflammatory bowel disease (IBD), that are characterized by an increased intestinal epithelial permeability. To mimic the entrance of bacterial-derived compounds into the host, an endotoxemia model has been adopted in which lipopolysaccharide (LPS), a component of the outer cell wall of Gram-negative bacteria, were injected into mice. In this study, a sublethal dose of LPS was intraperitoneally injected and the mice were subsequently monitored for 8 h using a disease score. Furthermore, the expression levels of the inflammatory cytokines Il6, Il1b, and Tnfa were analyzed in the spleen, liver and colon by qPCR at different time points post LPS injection. This model could be useful for the studies involving investigation of immune responses after the invasion of microorganisms or bacterial-derived products caused by a barrier breach of body surfaces.
Collapse
Affiliation(s)
| | | | - Berna Kaya
- Department of Biomedicine, University of Basel
| | | | - Jan Hendrik Niess
- Department of Biomedicine, University of Basel; Division of Gastroenterology and Hepatology, University Hospital of Basel;
| |
Collapse
|
232
|
van de Guchte M, Blottière HM, Doré J. Humans as holobionts: implications for prevention and therapy. MICROBIOME 2018; 6:81. [PMID: 29716650 PMCID: PMC5928587 DOI: 10.1186/s40168-018-0466-8] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 04/23/2018] [Indexed: 05/27/2023]
Abstract
The human gut microbiota is increasingly recognized for its important or even decisive role in health. As it becomes clear that microbiota and host mutually affect and depend on each other in an intimate relationship, a holistic view of the gut microbiota-host association imposes itself. Ideally, a stable state of equilibrium, homeostasis, is maintained and serves health, but signs are that perturbation of this equilibrium beyond the limits of resilience can propel the system into an alternative stable state, a pre-disease state, more susceptible to the development of chronic diseases. The microbiota-host equilibrium of a large and growing proportion of individuals in Western society may represent such a pre-disease state and explain the explosive development of chronic diseases such as inflammatory bowel disease, obesity, and other inflammatory diseases. These diseases themselves represent other alternative stable states again and are therefore hard to cure. The holistic view of the microbiota-host association where feedback loops between microbiota and host are thought to maintain the system in a stable state-be it a healthy, pre-disease, or disease state-implies that integrated approaches, addressing host processes and microbiota, should be used to treat or prevent (pre-)disease.
Collapse
Affiliation(s)
- Maarten van de Guchte
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France.
| | - Hervé M Blottière
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
- MetaGenoPolis, INRA, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Joël Doré
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
- MetaGenoPolis, INRA, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| |
Collapse
|
233
|
Shi L, Han D, Meng L. Recent Advances in the Analysis of Gut Microbiota and their Relationship with Disease. PROCEEDINGS OF THE 2018 8TH INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING AND TECHNOLOGY 2018:112-117. [DOI: 10.1145/3208955.3208970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Affiliation(s)
- Lingling Shi
- College of Life Science, Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin
| | - Dequan Han
- College of Life Science, Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin
| | - Li Meng
- College of Life Science, Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin
| |
Collapse
|
234
|
Martín R, Chain F, Miquel S, Motta JP, Vergnolle N, Sokol H, Langella P. Using murine colitis models to analyze probiotics-host interactions. FEMS Microbiol Rev 2018; 41:S49-S70. [PMID: 28830096 DOI: 10.1093/femsre/fux035] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 06/08/2017] [Indexed: 02/07/2023] Open
Abstract
Probiotics are defined as 'live microorganisms which when administered in adequate amounts confer a health benefit on the host'. So, to consider a microorganism as a probiotic, a demonstrable beneficial effect on the health host should be shown as well as an adequate defined safety status and the capacity to survive transit through the gastrointestinal tract and to storage conditions. In this review, we present an overview of the murine colitis models currently employed to test the beneficial effect of the probiotic strains as well as an overview of the probiotics already tested. Our aim is to highlight both the importance of the adequate selection of the animal model to test the potential probiotic strains and of the value of the knowledge generated by these in vivo tests.
Collapse
Affiliation(s)
- Rebeca Martín
- INRA, Commensals and Probiotics-Host Interactions Laboratory, Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Florian Chain
- INRA, Commensals and Probiotics-Host Interactions Laboratory, Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Sylvie Miquel
- Laboratoire Microorganismes: Génome et Environnement (LMGE), UMR CNRS 6023, Université Clermont-Auvergne, 63000 Clermont-Ferrand, France
| | - Jean-Paul Motta
- Department of Biological Science, Inflammation Research Network, University of Calgary, AB T3E 4N1, Canada.,IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, F-31300 Toulouse, France
| | - Nathalie Vergnolle
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, F-31300 Toulouse, France
| | - Harry Sokol
- INRA, Commensals and Probiotics-Host Interactions Laboratory, Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France.,Sorbonne University - Université Pierre et Marie Curie (UPMC), 75252 Paris, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) Equipe de Recherche Labélisée (ERL) 1157, Avenir Team Gut Microbiota and Immunity, 75012 Paris, France.,Department of Gastroenterology, Saint Antoine Hospital, Assistance Publique - Hopitaux de Paris, UPMC, 75012 Paris, France
| | - Philippe Langella
- INRA, Commensals and Probiotics-Host Interactions Laboratory, Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| |
Collapse
|
235
|
Bäuerl C, Collado M, Diaz Cuevas A, Viña J, Pérez Martínez G. Shifts in gut microbiota composition in an APP/PSS1 transgenic mouse model of Alzheimer's disease during lifespan. Lett Appl Microbiol 2018; 66:464-471. [DOI: 10.1111/lam.12882] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 01/11/2018] [Accepted: 02/06/2018] [Indexed: 12/12/2022]
Affiliation(s)
- C. Bäuerl
- Department of Biotechnology; Institute of Agrochemistry and Food Technology; Consejo Superior de Investigaciones Científicas (Spanish National Research Council); Valencia Spain
| | - M.C. Collado
- Department of Biotechnology; Institute of Agrochemistry and Food Technology; Consejo Superior de Investigaciones Científicas (Spanish National Research Council); Valencia Spain
| | - A. Diaz Cuevas
- Central Research Unit-INCLIVA; Faculty of Medicine; University of Valencia; Valencia Spain
| | - J. Viña
- Department of Physiology; Faculty of Medicine; University of Valencia; Valencia Spain
| | - G. Pérez Martínez
- Department of Biotechnology; Institute of Agrochemistry and Food Technology; Consejo Superior de Investigaciones Científicas (Spanish National Research Council); Valencia Spain
| |
Collapse
|
236
|
Sodium Butyrate Inhibits Inflammation and Maintains Epithelium Barrier Integrity in a TNBS-induced Inflammatory Bowel Disease Mice Model. EBioMedicine 2018; 30:317-325. [PMID: 29627390 PMCID: PMC5952406 DOI: 10.1016/j.ebiom.2018.03.030] [Citation(s) in RCA: 366] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 03/23/2018] [Accepted: 03/26/2018] [Indexed: 02/06/2023] Open
Abstract
G Protein Coupled Receptor 109A (GPR109A), which belongs to the G protein coupled receptor family, can be activated by niacin, butyrate, and β-hydroxybutyric acid. Here, we assessed the anti-inflammatory activity of sodium butyrate (SB) on 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis mice, an experimental model that resembles Crohn's disease, and explored the potential mechanism of SB in inflammatory bowel disease (IBD). In vivo, experimental GPR109a-/- and wild-type (WT) mice were administered SB (5g/L) in their drinking water for 6weeks. The mice were then administered TNBS via rectal perfusion to imitate colitis. In vitro, RAW246.7 macrophages, Caco-2 cells, and primary peritoneal macrophages were used to investigate the protective roles of SB on lipopolysaccharide (LPS)-induced inflammatory response and epithelium barrier dysfunction. In vivo, SB significantly ameliorated the inflammatory response and intestinal epithelium barrier dysfunction in TNBS-induced WT mice, but failed to provide a protective effect in TNBS-induced GPR109a-/- mice. In vitro, pre-treatment with SB dramatically inhibited the expression of TNF-α and IL-6 in LPS-induced RAW246.7 macrophages. SB inhibited the LPS-induced phosphorylation of the NF-κB p65 and AKT signaling pathways, but failed to inhibit the phosphorylation of the MAPK signaling pathway. Our data indicated that SB ameliorated the TNBS-induced inflammatory response and intestinal epithelium barrier dysfunction through activating GPR109A and inhibiting the AKT and NF-κB p65 signaling pathways. These findings therefore extend the understanding of GPR109A receptor function and provide a new theoretical basis for treatment of IBD.
Collapse
|
237
|
Koch C, Müller S. Personalized microbiome dynamics – Cytometric fingerprints for routine diagnostics. Mol Aspects Med 2018; 59:123-134. [DOI: 10.1016/j.mam.2017.06.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 06/26/2017] [Accepted: 06/28/2017] [Indexed: 02/06/2023]
|
238
|
Enteric α-defensins on the verge of intestinal immune tolerance and inflammation. Semin Cell Dev Biol 2018; 88:138-146. [PMID: 29355606 DOI: 10.1016/j.semcdb.2018.01.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/12/2018] [Indexed: 12/18/2022]
Abstract
The gut is the biggest immune organ in the body that encloses commensal microbiota which aids in food digestion. Paneth cells, positioned at the frontline of host-microbiota interphase, can modulate the composition of microbiota. Paneth cells achieve this via the delivery of microbicidal substances, among which enteric α-defensins play the primary role. If microbiota is dysregulated, it can impact the function of the local mucosal immune system. Importantly, this system is also exposed to an enormous number of antigens which are derived from the gut-resident microbiota and processed food, and may potentially trigger undesirable local inflammatory responses. To understand the intricate regulations and liaisons between Paneth cells, microbiota and the immune system in this intestinal-specific setting, one must consider their mode of interaction in a wider context of regulatory processes which impose immune tolerance not only to self, but also to microbiota and food-derived antigens. These include, but are not limited to, tolerogenic mechanisms of central tolerance in the thymus and peripheral tolerance in the secondary lymphoid organs, and the intestine itself. Defects in these processes can compromise homeostasis in the intestinal mucosal immunity. In this review, which is focused on tolerance to intestinal antigens and its relevance for the pathogenesis of gut immune diseases, we provide an outline of such multilayered immune control mechanisms and highlight functional links that underpin their cooperative nature.
Collapse
|
239
|
Reinoso Webb C, den Bakker H, Koboziev I, Jones-Hall Y, Rao Kottapalli K, Ostanin D, Furr KL, Mu Q, Luo XM, Grisham MB. Differential Susceptibility to T Cell-Induced Colitis in Mice: Role of the Intestinal Microbiota. Inflamm Bowel Dis 2018; 24:361-379. [PMID: 29361089 PMCID: PMC6176899 DOI: 10.1093/ibd/izx014] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Indexed: 12/12/2022]
Abstract
One of the best characterized mouse models of the inflammatory bowel diseases (IBD; Crohn's disease, ulcerative colitis) is the CD4+CD45RBhigh T cell transfer model of chronic colitis. Following our relocation to Texas Tech University Health Sciences Center (TTUHSC), we observed a dramatic reduction in the incidence of moderate-to-severe colitis from a 16-year historical average of 90% at Louisiana State University Health Sciences Center (LSUHSC) to <30% at TTUHSC. We hypothesized that differences in the commensal microbiota at the 2 institutions may account for the differences in susceptibility to T cell-induced colitis. Using bioinformatic analyses of 16S rRNA amplicon sequence data, we quantified and compared the major microbial populations in feces from healthy and colitic mice housed at the 2 institutions. We found that the bacterial composition differed greatly between mice housed at LSUHSC vs TTUHSC. We identified several genera strongly associated with, and signficantly overrepresented in high responding RAG-/- mice housed at LSUHSC. In addition, we found that colonization of healthy TTUHSC RAG-/- mice with feces obtained from healthy or colitic RAG-/- mice housed at LSUHSC transferred susceptibility to T cell-induced colitis such that the recipients developed chronic colitis with incidence and severity similar to mice generated at LSUHSC. Finally, we found that the treatment of mice with preexisting colitis with antibiotics remarkably attenuated disease. Taken together, our data demonstrate that specific microbial communities determine disease susceptibility and that manipulation of the intestinal microbiota alters the induction and/or perpetuation of chronic colitis.
Collapse
Affiliation(s)
- Cynthia Reinoso Webb
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX
| | | | - Iurii Koboziev
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX
| | - Yava Jones-Hall
- Department of Comparative Pathobiology, Purdue University College of Veterinary Medicine, West Lafayette, IN
| | | | - Dmitry Ostanin
- Immunology Discovery, Translational Research and Development, Bristol Myers Squibb, Princeton, NJ
| | - Kathryn L Furr
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX
| | - Qinghui Mu
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA
| | - Xin M Luo
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA
| | - Matthew B Grisham
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX,Correspondence address. Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, 3601 4th Street STOP 6591, Lubbock, Texas 79430-6591. E-mail:
| |
Collapse
|
240
|
Miao X, Xiao B, Shui S, Yang J, Huang R, Dong J. Metabolomics analysis of serum reveals the effect of Danggui Buxue Tang on fatigued mice induced by exhausting physical exercise. J Pharm Biomed Anal 2018; 151:301-309. [PMID: 29413978 DOI: 10.1016/j.jpba.2018.01.028] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 01/12/2018] [Accepted: 01/15/2018] [Indexed: 02/07/2023]
Abstract
Danggui Buxue Tang (DBT), believed to invigorate 'Qi' (vital energy) and nourish 'Blood' (body circulation), is a traditional Chinese medicine formula. In this study, a metabolomics approach with gas chromatography coupled to mass spectrometry combined with pattern recognition was adopted to investigate the underlying mechanism of the antifatigue effect of DBT on fatigue of mice induced by weight-loaded forced swimming. Fourteen endogenous metabolites, up-regulated or down-regulated, were identified in the model mice by analysis tools of partial least-squares discriminant analysis (PLS-DA) and XCMS online software. Furthermore, the metabolites were reversed by DBT treatment, offering evidence for the antifatigue effect. In addition, intervention of DBT changed the levels of biochemical parameters. DBT showed obvious efficacy on the fatigued mice possibly by regulating the pathways of phenylalanine, tyrosine and tryptophan metabolism, glycine, serine, and threonine metabolism, glyoxylate and dicarboxylate metabolism, pyruvate metabolism, and TCA cycle. This study demonstrated that DBT has a good antifatigue effect and that metabolomics is a powerful means to gain insights into the therapeutic effect of traditional Chinese medicine formulas.
Collapse
Affiliation(s)
- Xiaoyao Miao
- Institute of Radiation Medicine, Academy of Military Medical Sciences, Beijing 100850, China
| | - Bingkun Xiao
- Institute of Radiation Medicine, Academy of Military Medical Sciences, Beijing 100850, China
| | - Sufang Shui
- Institute of Radiation Medicine, Academy of Military Medical Sciences, Beijing 100850, China
| | - Jianyun Yang
- Institute of Radiation Medicine, Academy of Military Medical Sciences, Beijing 100850, China
| | - Rongqing Huang
- Institute of Radiation Medicine, Academy of Military Medical Sciences, Beijing 100850, China.
| | - Junxing Dong
- Institute of Radiation Medicine, Academy of Military Medical Sciences, Beijing 100850, China.
| |
Collapse
|
241
|
Gorkiewicz G, Moschen A. Gut microbiome: a new player in gastrointestinal disease. Virchows Arch 2018; 472:159-172. [PMID: 29243124 PMCID: PMC5849673 DOI: 10.1007/s00428-017-2277-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 11/28/2017] [Accepted: 11/29/2017] [Indexed: 02/07/2023]
Abstract
The gastrointestinal (GI) tract harbors a diverse and host-specific gut microbial community. Whereas host-microbe interactions are based on homeostasis and mutualism, the microbiome also contributes to disease development. In this review, we summarize recent findings connecting the GI microbiome with GI disease. Starting with a description of biochemical factors shaping microbial compositions in each gut segment along the longitudinal axis, improved histological techniques enabling high resolution visualization of the spatial microbiome structure are highlighted. Subsequently, inflammatory and neoplastic diseases of the esophagus, stomach, and small and large intestines are discussed and the respective changes in microbiome compositions summarized. Finally, approaches aiming to restore disturbed microbiome compositions thereby promoting health are discussed.
Collapse
Affiliation(s)
- Gregor Gorkiewicz
- Institute of Pathology, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria
| | - Alexander Moschen
- Christian Doppler Laboratory for Mucosal Immunology & Division of Internal Medicine I, Department of Medicine, Medical University Innsbruck, Peter-Mayr-Strasse 1, 6020 Innsbruck, Austria
| |
Collapse
|
242
|
Quraishi MN, Critchlow T, Bhala N, Sharma N, Iqbal T. Faecal transplantation for IBD management-pitfalls and promises. Br Med Bull 2017; 124:181-190. [PMID: 29140453 DOI: 10.1093/bmb/ldx040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 11/03/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND Faecal microbiota transplantation (FMT) as a potential treatment for inflammatory bowel disease (IBD) is an area of active current research, having been stimulated by the remarkable efficacy of FMT in treatment of Clostridium difficile-associated colitis. SOURCES OF DATA This review is based on data from numerous case series on FMT in IBD since 1989 and results of four RCTs in ulcerative colitis (UC); three fully published. AREAS OF AGREEMENT Early signals of short to medium-term efficacy of FMT for UC are promising. AREAS OF CONTROVERSY Methodology, underlying mechanisms and questions regarding safety of FMT remain controversial. GROWING POINTS Many trials of FMT in adults and children are currently recruiting. AREAS TIMELY FOR DEVELOPING RESEARCH Future trials of FMT will likely revisit Crohn's disease and patients undergoing pouch surgery. Advances in microbial culture complementing genetic sequencing and investigations into the virome and mycobiome in IBD will be of great future interest.
Collapse
Affiliation(s)
- M N Quraishi
- Department of Gastroenterology, Queen Elizabeth Hospital Birmingham, Mindelsohn Way, Birmingham B15 2TH, UK
| | - T Critchlow
- Department of Gastroenterology, Queen Elizabeth Hospital Birmingham, Mindelsohn Way, Birmingham B15 2TH, UK
| | - N Bhala
- Department of Gastroenterology, Queen Elizabeth Hospital Birmingham, Mindelsohn Way, Birmingham B15 2TH, UK
| | - N Sharma
- Department of Gastroenterology, Heart of England NHS Foundation Trust, Bordesley Green East, Birmingham B9 5SS, UK
| | - T Iqbal
- Department of Gastroenterology, Queen Elizabeth Hospital Birmingham, Mindelsohn Way, Birmingham B15 2TH, UK
| |
Collapse
|
243
|
Sheng L, Jena PK, Hu Y, Liu HX, Nagar N, Kalanetra KM, French SW, French SW, Mills DA, Wan YJY. Hepatic inflammation caused by dysregulated bile acid synthesis is reversible by butyrate supplementation. J Pathol 2017; 243:431-441. [PMID: 28892150 DOI: 10.1002/path.4983] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 08/14/2017] [Accepted: 09/06/2017] [Indexed: 12/16/2022]
Abstract
Dysregulated bile acid (BA) synthesis or reduced farnesoid X receptor (FXR) levels are found in patients having metabolic diseases, autoimmune hepatitis, and liver cirrhosis or cancer. The objective of this study was to establish the relationship between butyrate and dysregulated BA synthesis-induced hepatitis as well as the effect of butyrate in reversing the liver pathology. Wild-type (WT) and FXR knockout (KO) male mice were placed on a control (CD) or western diet (WD) for 15 months. In the presence or absence of butyrate supplementation, feces obtained from 15-month-old WD-fed FXR KO mice, which had severe hepatitis and liver tumors, were transplanted to 7-month-old WD-fed FXR KO for 3 months. Hepatic phenotypes, microbiota profile, and BA composition were analyzed. Butyrate-generating bacteria and colonic butyrate concentration were reduced due to FXR inactivation and further reduced by WD intake. In addition, WD-fed FXR KO male mice had the highest concentration of hepatic β-muricholic acid (β-MCA) and bacteria-generated deoxycholic acid (DCA) accompanied by serious hepatitis. Moreover, dysregulated BA and reduced SCFA signaling co-existed in both human liver cancers and WD-fed FXR KO mice. Microbiota transplantation using butyrate-deficient feces derived from 15-month-old WD-fed FXR KO mice increased hepatic lymphocyte numbers as well as hepatic β-MCA and DCA concentrations. Furthermore, butyrate supplementation reduced hepatic β-MCA as well as DCA and eliminated hepatic lymphocyte infiltration. In conclusion, reduced butyrate contributes to the development of hepatitis in the FXR KO mouse model. In addition, butyrate reverses dysregulated BA synthesis and its associated hepatitis. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Lili Sheng
- Department of Medical Pathology and Laboratory Medicine, University of California, Davis, Sacramento, CA, USA
| | - Prasant Kumar Jena
- Department of Medical Pathology and Laboratory Medicine, University of California, Davis, Sacramento, CA, USA
| | - Ying Hu
- Department of Medical Pathology and Laboratory Medicine, University of California, Davis, Sacramento, CA, USA
| | - Hui-Xin Liu
- Department of Medical Pathology and Laboratory Medicine, University of California, Davis, Sacramento, CA, USA
| | - Nidhi Nagar
- Department of Medical Pathology and Laboratory Medicine, University of California, Davis, Sacramento, CA, USA.,Department of Biological Sciences, California State University, East Bay, Hayward, CA, USA
| | - Karen M Kalanetra
- Department of Food Science and Technology, Department of Viticulture and Enology, University of California, Davis, CA, USA
| | | | - Samuel Wheeler French
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - David A Mills
- Department of Food Science and Technology, Department of Viticulture and Enology, University of California, Davis, CA, USA
| | - Yu-Jui Yvonne Wan
- Department of Medical Pathology and Laboratory Medicine, University of California, Davis, Sacramento, CA, USA
| |
Collapse
|
244
|
Gong D, Yu X, Wang L, Kong L, Gong X, Dong Q. Exclusive Enteral Nutrition Induces Remission in Pediatric Crohn's Disease via Modulation of the Gut Microbiota. BIOMED RESEARCH INTERNATIONAL 2017; 2017:8102589. [PMID: 29124070 PMCID: PMC5662815 DOI: 10.1155/2017/8102589] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 08/22/2017] [Accepted: 09/12/2017] [Indexed: 02/07/2023]
Abstract
Exclusive enteral nutrition (EEN) has been proven to be effective and safe in treating pediatric Crohn's disease (CD). EEN induces pediatric CD remission possibly through three pathways: (1) direct anti-inflammatory effects, (2) improved epithelial barrier function, and (3) modulation of the gut microbiota. Recent studies have demonstrated that modulation of the gut microbiota plays a major role in EEN-induced remission. Variations of microbial components, which directly influence the diversity and metabolic functions of the gut microbiota, are closely associated with the immunological conditions of the gut and the susceptibility to diseases. The reduction of proinflammatory microbial components and harmful microbial metabolites after EEN treatment greatly decreases the inflammatory injuries of the gut.
Collapse
Affiliation(s)
- Dawei Gong
- Department of Central Laboratories and Gastroenterology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao 266071, China
| | - Xinjuan Yu
- Department of Central Laboratories and Gastroenterology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao 266071, China
| | - Lili Wang
- Department of Central Laboratories and Gastroenterology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao 266071, China
| | - Lingling Kong
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao 266071, China
| | - Xiaojie Gong
- Department of Emergency Surgery, The Fifth People's Hospital of Jinan, Jinan 250022, China
| | - Quanjiang Dong
- Department of Central Laboratories and Gastroenterology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao 266071, China
| |
Collapse
|
245
|
Hubbard TD, Murray IA, Nichols RG, Cassel K, Podolsky M, Kuzu G, Tian Y, Smith P, Kennett MJ, Patterson AD, Perdew GH. Dietary Broccoli Impacts Microbial Community Structure and Attenuates Chemically Induced Colitis in Mice in an Ah receptor dependent manner. J Funct Foods 2017; 37:685-698. [PMID: 29242716 PMCID: PMC5726276 DOI: 10.1016/j.jff.2017.08.038] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Consumption of broccoli mediates numerous chemo-protective benefits through the intake of phytochemicals, some of which modulate aryl hydrocarbon receptor (AHR) activity. Whether AHR activation is a critical aspect of the therapeutic potential of dietary broccoli is not known. Here we administered isocaloric diets, with or without supplementation of whole broccoli (15% w/w), to congenic mice expressing the high-affinity Ahrb/b or low-affinity Ahrd/d alleles, for 24 days and examined the effects on AHR activity, intestinal microbial community structure, inflammatory status, and response to chemically induced colitis. Cecal microbial community structure and metabolic potential were segregated according to host dietary and AHR status. Dietary broccoli associated with heightened intestinal AHR activity, decreased microbial abundance of the family Erysipelotrichaceae, and attenuation of colitis. In summary, broccoli consumption elicited an enhanced response in ligand-sensitive Ahrb/b mice, demonstrating that in part the beneficial aspects of dietary broccoli upon intestinal health are associated with heightened AHR activity.
Collapse
Affiliation(s)
- Troy D. Hubbard
- Department of Veterinary and Biomedical Sciences and The Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA 16802
| | - Iain A. Murray
- Department of Veterinary and Biomedical Sciences and The Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA 16802
| | - Robert G. Nichols
- Department of Veterinary and Biomedical Sciences and The Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA 16802
| | - Kaitlyn Cassel
- Department of Veterinary and Biomedical Sciences and The Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA 16802
| | - Michael Podolsky
- Department of Veterinary and Biomedical Sciences and The Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA 16802
| | - Guray Kuzu
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802
| | - Yuan Tian
- Department of Veterinary and Biomedical Sciences and The Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA 16802
| | - Phillip Smith
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802
| | - Mary J. Kennett
- Department of Veterinary and Biomedical Sciences and The Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA 16802
| | - Andrew D. Patterson
- Department of Veterinary and Biomedical Sciences and The Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA 16802
| | - Gary H. Perdew
- Department of Veterinary and Biomedical Sciences and The Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA 16802
| |
Collapse
|
246
|
Abstract
A general consensus exists that IBD is associated with compositional and metabolic changes in the intestinal microbiota (dysbiosis). However, a direct causal relationship between dysbiosis and IBD has not been definitively established in humans. Findings from animal models have revealed diverse and context-specific roles of the gut microbiota in health and disease, ranging from protective to pro-inflammatory actions. Moreover, evidence from these experimental models suggest that although gut bacteria often drive immune activation, chronic inflammation in turn shapes the gut microbiota and contributes to dysbiosis. The purpose of this Review is to summarize current associations between IBD and dysbiosis, describe the role of the gut microbiota in the context of specific animal models of colitis, and discuss the potential role of microbiota-focused interventions in the treatment of human IBD. Ultimately, more studies will be needed to define host-microbial relationships relevant to human disease and amenable to therapeutic interventions.
Collapse
Affiliation(s)
- Josephine Ni
- Division of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, 914 BRB II/III, Philadeplhia, Pennsylvania 19104, USA
| | - Gary D Wu
- Division of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, 914 BRB II/III, Philadeplhia, Pennsylvania 19104, USA
| | - Lindsey Albenberg
- Division of Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Vesselin T Tomov
- Division of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, 914 BRB II/III, Philadeplhia, Pennsylvania 19104, USA
| |
Collapse
|
247
|
The gut bacterium and pathobiont Bacteroides vulgatus activates NF-κB in a human gut epithelial cell line in a strain and growth phase dependent manner. Anaerobe 2017; 47:209-217. [DOI: 10.1016/j.anaerobe.2017.06.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 05/17/2017] [Accepted: 06/01/2017] [Indexed: 01/06/2023]
|
248
|
Armbruster NS, Stange EF, Wehkamp J. In the Wnt of Paneth Cells: Immune-Epithelial Crosstalk in Small Intestinal Crohn's Disease. Front Immunol 2017; 8:1204. [PMID: 29018451 PMCID: PMC5622939 DOI: 10.3389/fimmu.2017.01204] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 09/11/2017] [Indexed: 12/27/2022] Open
Abstract
Paneth cells, specialized secretory epithelial cells of the small intestine, play a pivotal role in host defense and regulation of microbiota by producing antimicrobial peptides especially-but not only-the human α-defensin 5 (HD5) and HD6. In small intestinal Crohn's disease (CD) which is an entity of inflammatory bowel diseases, the expression of HD5 and HD6 is specifically compromised leading to a disturbed barrier and change in the microbial community. Different genetically driven but also non-genetic defects associated with small intestinal CD affect different lines of antimicrobial Paneth cell functions. In this review, we focus on the mechanisms and the crosstalk of Paneth cells and bone marrow-derived cells and highlight recent studies about the role of the Wnt signaling pathway in this connection of ileal CD. In summary, different lines of investigations led by us but also now numerous other groups support and reconfirm the proposed classification of this disease entity as Paneth's disease.
Collapse
Affiliation(s)
| | - Eduard F Stange
- Internal Medicine I, University Hospital Tübingen, Tübingen, Germany
| | - Jan Wehkamp
- Internal Medicine I, University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
249
|
Cui M, Xiao H, Li Y, Zhou L, Zhao S, Luo D, Zheng Q, Dong J, Zhao Y, Zhang X, Zhang J, Lu L, Wang H, Fan S. Faecal microbiota transplantation protects against radiation-induced toxicity. EMBO Mol Med 2017; 9:448-461. [PMID: 28242755 PMCID: PMC5376756 DOI: 10.15252/emmm.201606932] [Citation(s) in RCA: 225] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Severe radiation exposure may cause acute radiation syndrome, a possibly fatal condition requiring effective therapy. Gut microbiota can be manipulated to fight against many diseases. We explored whether intestinal microbe transplantation could alleviate radiation‐induced toxicity. High‐throughput sequencing showed that gastrointestinal bacterial community composition differed between male and female mice and was associated with susceptibility to radiation toxicity. Faecal microbiota transplantation (FMT) increased the survival rate of irradiated animals, elevated peripheral white blood cell counts and improved gastrointestinal tract function and intestinal epithelial integrity in irradiated male and female mice. FMT preserved the intestinal bacterial composition and retained mRNA and long non‐coding RNA expression profiles of host small intestines in a sex‐specific fashion. Despite promoting angiogenesis, sex‐matched FMT did not accelerate the proliferation of cancer cells in vivo. FMT might serve as a therapeutic to mitigate radiation‐induced toxicity and improve the prognosis of tumour patients after radiotherapy.
Collapse
Affiliation(s)
- Ming Cui
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Huiwen Xiao
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Yuan Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Lixin Zhou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Pathology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Shuyi Zhao
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Dan Luo
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Qisheng Zheng
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Jiali Dong
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Yu Zhao
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Xin Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Junling Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Lu Lu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Haichao Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.,Department of Emergency Medicine, North Shore University Hospital, Laboratory of Emergency Medicine, the Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Saijun Fan
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| |
Collapse
|
250
|
Clavel T, Neto JCG, Lagkouvardos I, Ramer-Tait AE. Deciphering interactions between the gut microbiota and the immune system via microbial cultivation and minimal microbiomes. Immunol Rev 2017; 279:8-22. [PMID: 28856739 PMCID: PMC5657458 DOI: 10.1111/imr.12578] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The community of microorganisms in the mammalian gastrointestinal tract, referred to as the gut microbiota, influences host physiology and immunity. The last decade of microbiome research has provided significant advancements for the field and highlighted the importance of gut microbes to states of both health and disease. Novel molecular techniques have unraveled the tremendous diversity of intestinal symbionts that potentially influence the host, many proof-of-concept studies have demonstrated causative roles of gut microbial communities in various pathologies, and microbiome-based approaches are beginning to be implemented in the clinic for diagnostic purposes or for personalized treatments. However, several challenges for the field remain: purely descriptive reports outnumbering mechanistic studies and slow translation of experimental results obtained in animal models into the clinics. Moreover, there is a dearth of knowledge regarding how gut microbes, including novel species that have yet to be identified, impact host immune responses. The sheer complexity of the gut microbial ecosystem makes it difficult, in part, to fully understand the microbiota-host networks that regulate immunity. In the present manuscript, we review key findings on the interactions between gut microbiota members and the immune system. Because culturing microbes allows performing functional studies, we have emphasized the impact of specific taxa or communities thereof. We also highlight underlying molecular mechanisms and discuss opportunities to implement minimal microbiome-based strategies.
Collapse
Affiliation(s)
- Thomas Clavel
- Institute of Medical Microbiology, RWTH University Hospital, Aachen, Germany
| | - João Carlos Gomes Neto
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Ilias Lagkouvardos
- ZIEL Institute for Food and Health, Core Facility Microbiome/NGS, Technical University of Munich, Germany
| | - Amanda E. Ramer-Tait
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
| |
Collapse
|