201
|
Ma Z, Shuai Y, Gao X, Wen X, Ji J. Circular RNAs in the tumour microenvironment. Mol Cancer 2020; 19:8. [PMID: 31937318 PMCID: PMC6958568 DOI: 10.1186/s12943-019-1113-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 12/02/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) are a new class of endogenous non-coding RNAs (ncRNAs) widely expressed in eukaryotic cells. Mounting evidence has highlighted circRNAs as critical regulators of various tumours. More importantly, circRNAs have been revealed to recruit and reprogram key components involved in the tumour microenvironment (TME), and mediate various signaling pathways, thus affecting tumourigenesis, angiogenesis, immune response, and metastatic progression. In this review, we briefly introduce the biogenesis, characteristics and classification of circRNAs, and describe various mechanistic models of circRNAs. Further, we provide the first systematic overview of the interplay between circRNAs and cellular/non-cellular counterparts of the TME and highlight the potential of circRNAs as prospective biomarkers or targets in cancer clinics. Finally, we discuss the biological mechanisms through which the circRNAs drive development of resistance, revealing the mystery of circRNAs in drug resistance of tumours. SHORT CONCLUSION Deep understanding the emerging role of circRNAs and their involvements in the TME may provide potential biomarkers and therapeutic targets for cancer patients. The combined targeting of circRNAs and co-activated components in the TME may achieve higher therapeutic efficiency and become a new mode of tumour therapy in the future.
Collapse
Affiliation(s)
- Zhonghua Ma
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital & Institute, Beijing, People's Republic of China.,Department of Gastrointestinal Surgery, Peking University Cancer Hospital, Beijing, People's Republic of China
| | - You Shuai
- Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Xiangyu Gao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital & Institute, Beijing, People's Republic of China.,Department of Gastrointestinal Surgery, Peking University Cancer Hospital, Beijing, People's Republic of China
| | - Xianzi Wen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital & Institute, Beijing, People's Republic of China
| | - Jiafu Ji
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital & Institute, Beijing, People's Republic of China. .,Department of Gastrointestinal Surgery, Peking University Cancer Hospital, Beijing, People's Republic of China.
| |
Collapse
|
202
|
Human Gastrointestinal Organoid Models for Studying Microbial Disease and Cancer. Curr Top Microbiol Immunol 2020; 430:55-75. [PMID: 32889597 DOI: 10.1007/82_2020_223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
One of the major discoveries in stem cell research in the past decade embraces the development of "organs in a dish," also known as "organoids." Organoids are three-dimensional cellular structures derived from primary stem cells of different organ-specific cell types which are capable of self-renewal and maintenance of the parental lineages. Researchers have developed in vitro organoid models to mimic in vivo host-microbial interactions and disease. In this review, we focus on the use of gastrointestinal organoids as models of microbial disease and cancer.
Collapse
|
203
|
Wu SY, Chiang CS. Distinct Role of CD11b +Ly6G -Ly6C - Myeloid-Derived Cells on the Progression of the Primary Tumor and Therapy-Associated Recurrent Brain Tumor. Cells 2019; 9:cells9010051. [PMID: 31878276 PMCID: PMC7016541 DOI: 10.3390/cells9010051] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/18/2019] [Accepted: 12/20/2019] [Indexed: 02/07/2023] Open
Abstract
Myeloid-derived cells have been implicated as playing essential roles in cancer therapy, particularly in cancer immunotherapy. Most studies have focused on either CD11b+Ly6G+Ly6C+ granulocytic or polymorphonuclear myeloid-derived suppressor cells (G-MDSCs or PMN-MDSCs) or CD11b+Ly6G−Ly6C+ monocytic MDSCs (M-MDSCs), for which clear roles have been established. On the other hand, CD11b+Ly6G−Ly6C− myeloid-derived cells (MDCs) have been less well studied. Here, the CD11b-diphtheria toxin receptor (CD11b-DTR) transgenic mouse model was used to evaluate the role of CD11b+ myeloid-derived cells in chemotherapy for an orthotopic murine astrocytoma, ALTS1C1. Using this transgenic mouse model, two injections of diphtheria toxin (DT) could effectively deplete CD11b+Ly6G−Ly6C− MDCs while leaving CD11b+Ly6G+Ly6C+ PMN-MDSCs and CD11b+Ly6G−Ly6C+ M-MDSCs intact. Depletion of CD11b+Ly6G−Ly6C− MDCs in mice bearing ALTS1C1-tk tumors and receiving ganciclovir (GCV) prolonged the mean survival time for mice from 30.7 to 37.8 days, but not the controls, while the effectiveness of temozolomide was enhanced. Mechanistically, depletion of CD11b+Ly6G−Ly6C− MDCs blunted therapy-induced increases in tumor-associated macrophages (TAMs) and compromised therapy-elicited angiogenesis. Collectively, our findings suggest that CD11b+Ly6G−Ly6C− MDCs could be manipulated to enhance the efficacy of chemotherapy for brain tumors. However, our study also cautions that the timing of any MDC manipulation may be critical to achieve the best therapeutic result.
Collapse
Affiliation(s)
- Sheng-Yan Wu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 101 Sec. 2, Kuang-Fu Road, Hsinchu 30013, Taiwan;
| | - Chi-Shiun Chiang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 101 Sec. 2, Kuang-Fu Road, Hsinchu 30013, Taiwan;
- Institute of Nuclear Engineering and Science, National Tsing Hua University, Hsinchu 30013, Taiwan
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
- Correspondence: ; Tel.: +886-3-573-3168
| |
Collapse
|
204
|
Liu X, Xu J, Zhang B, Liu J, Liang C, Meng Q, Hua J, Yu X, Shi S. The reciprocal regulation between host tissue and immune cells in pancreatic ductal adenocarcinoma: new insights and therapeutic implications. Mol Cancer 2019; 18:184. [PMID: 31831007 PMCID: PMC6909567 DOI: 10.1186/s12943-019-1117-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 12/03/2019] [Indexed: 02/08/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer-related death and is one of the most difficult-to-treat cancers. Surgical resection and adjuvant therapy have limited effects on the overall survival of PDAC patients. PDAC exhibits an immunosuppressive microenvironment, the immune response predicts survival, and activation of immune system has the potential to produce an efficacious PDAC therapy. However, chimeric antigen receptor T (CAR-T) cell immunotherapy and immune checkpoint blockade (ICB), which have produced unprecedented clinical benefits in a variety of different cancers, produce promising results in only some highly selected patients with PDAC. This lack of efficacy may be because existing immunotherapies mainly target the interactions between cancer cells and immune cells. However, PDAC is characterized by an abundant tumor stroma that includes a heterogeneous mixture of immune cells, fibroblasts, endothelial cells, neurons and some molecular events. Immune cells engage in extensive and dynamic crosstalk with stromal components in the tumor tissue in addition to tumor cells, which subsequently impacts tumor suppression or promotion to a large extent. Therefore, exploration of the interactions between the stroma and immune cells may offer new therapeutic opportunities for PDAC. In this review, we discuss how infiltrating immune cells influence PDAC development and explore the contributions of complex components to the immune landscape of tumor tissue. The roles of stromal constituents in immune modulation are emphasized. We also predict potential therapeutic strategies to target signals in the immune network in the abundant stromal microenvironment of PDAC.
Collapse
Affiliation(s)
- Xiaomeng Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
| | - Jin Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
| | - Bo Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
| | - Jiang Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
| | - Chen Liang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
| | - Qingcai Meng
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
| | - Jie Hua
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
| | - Si Shi
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
| |
Collapse
|
205
|
Thyagarajan A, Alshehri MSA, Miller KLR, Sherwin CM, Travers JB, Sahu RP. Myeloid-Derived Suppressor Cells and Pancreatic Cancer: Implications in Novel Therapeutic Approaches. Cancers (Basel) 2019; 11:1627. [PMID: 31652904 PMCID: PMC6893814 DOI: 10.3390/cancers11111627] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/07/2019] [Accepted: 10/18/2019] [Indexed: 12/18/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains a devastating human malignancy with poor prognosis and low survival rates. Several cellular mechanisms have been linked with pancreatic carcinogenesis and also implicated in inducing tumor resistance to known therapeutic regimens. Of various factors, immune evasion mechanisms play critical roles in tumor progression and impeding the efficacy of cancer therapies including PDAC. Among immunosuppressive cell types, myeloid-derived suppressor cells (MDSCs) have been extensively studied and demonstrated to not only support PDAC development but also hamper the anti-tumor immune responses elicited by therapeutic agents. Notably, recent efforts have been directed in devising novel approaches to target MDSCs to limit their effects. Multiple strategies including immune-based approaches have been explored either alone or in combination with therapeutic agents to target MDSCs in preclinical and clinical settings of PDAC. The current review highlights the roles and mechanisms of MDSCs as well as the implications of this immunomodulatory cell type as a potential target to improve the efficacy of therapeutic regimens for PDAC.
Collapse
Affiliation(s)
- Anita Thyagarajan
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine Wright State University, Dayton, OH 45435, USA.
| | - Mamdouh Salman A Alshehri
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine Wright State University, Dayton, OH 45435, USA.
- Department of Pharmacology and Toxicology, Pharmacy College, Taibah University, Medina 42353, Saudi Arabia.
| | - Kelly L R Miller
- Department of Internal Medicine, Boonshoft School of Medicine Wright State University, Dayton, OH 45435, USA.
| | - Catherine M Sherwin
- Department of Pediatrics, Boonshoft School of Medicine Wright State University/Dayton Children's Hospital, Dayton, OH 45404, USA.
| | - Jeffrey B Travers
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine Wright State University, Dayton, OH 45435, USA.
- Dayton Veteran's Administration Medical Center, Dayton, OH 45435, USA.
| | - Ravi P Sahu
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine Wright State University, Dayton, OH 45435, USA.
| |
Collapse
|
206
|
Cholesterol Esterification Enzyme Inhibition Enhances Antitumor Effects of Human Chimeric Antigen Receptors Modified T Cells. J Immunother 2019; 41:45-52. [PMID: 29252915 DOI: 10.1097/cji.0000000000000207] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Chimeric antigen receptor-modified T cell (CART) therapy has been demonstrated to have significant effect on hematologic tumor in patients. However, many persistent obstacles and challenges still limit the application. It is known that CD8 T cells are a key component of antitumor immunity. An avasimibe-induced inhibition of cholesterol esterification has been shown to improve the antitumor response of CD8 T cells in mice. In this study, using human CD19-directed CART cells as effector cells and CD19-overexpressing K562 cells as target cells, we detected whether cholesterol acyltransferase inhibition by avasimibe can enhance the antitumor effect of human CART cells. After avasimibe treatment, the infection rate was dropped by up to 50% (P<0.05). The cytotoxic effect of CART cells was significantly increased than the control group in a dose-dependent manner. Moreover, the level of secreted interferon-γ increased in almost half of the cases (P<0.05); the ratio of CD8CD4 T cells was increased among the total T cells and the CART cells in some of cases (P<0.05). Our study suggests that inhibition of cholesterol acyltransferase can promote the antitumor effect of CART cells, and provides a new option for a combination therapy by regulating T-cell metabolism to enhance antitumor effects.
Collapse
|
207
|
Jurcak N, Zheng L. Signaling in the microenvironment of pancreatic cancer: Transmitting along the nerve. Pharmacol Ther 2019; 200:126-134. [PMID: 31047906 PMCID: PMC6626552 DOI: 10.1016/j.pharmthera.2019.04.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 04/25/2019] [Indexed: 12/17/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDA) is a dismal malignant disease with the lowest stage-combined overall survival rate compared to any other cancer type. PDA has a unique tumor microenvironment (TME) comprised of a dense desmoplastic reaction comprising over two-thirds of the total tumor volume. The TME is comprised of cellular and acellular components that all orchestrate different signaling mechanisms together to promote tumorigenesis and disease progression. Particularly, the neural portion of the TME has recently been appreciated in PDA progression. Neural remodeling and perineural invasion (PNI), the neoplastic invasion of tumor cells into nerves, are common adverse histological characteristics of PDA associated with a worsened prognosis and increased cancer aggressiveness. The TME undergoes dramatic neural hypertrophy and increased neural density that is associated with many signaling pathways to promote cell invasion. PNI is also considered one of the main routes for cancer recurrence and metastasis after surgical resection, which remains the only current cure for PDA. Recent studies have shown multiple cell types in the TME signal through autocrine and paracrine mechanisms to enhance perineural invasion, pancreatic neural remodeling and disease progression in PDA. This review summarizes the current findings of the signaling mechanisms and cellular and molecular players involved in neural signaling in the TME of PDA.
Collapse
Affiliation(s)
- Noelle Jurcak
- Graduate Program in Cellular and Molecular Medicine, Baltimore, MD 21287, USA; Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287, USA; Department of Oncology, Baltimore, MD 21287, USA
| | - Lei Zheng
- Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287, USA; Department of Oncology, Baltimore, MD 21287, USA; Pancreatic Cancer Precision Medicine Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| |
Collapse
|
208
|
Ding AS, Routkevitch D, Jackson C, Lim M. Targeting Myeloid Cells in Combination Treatments for Glioma and Other Tumors. Front Immunol 2019; 10:1715. [PMID: 31396227 PMCID: PMC6664066 DOI: 10.3389/fimmu.2019.01715] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/09/2019] [Indexed: 02/06/2023] Open
Abstract
Myeloid cells constitute a significant part of the immune system in the context of cancer, exhibiting both immunostimulatory effects, through their role as antigen presenting cells, and immunosuppressive effects, through their polarization to myeloid-derived suppressor cells (MDSCs) and tumor-associated macrophages. While they are rarely sufficient to generate potent anti-tumor effects on their own, myeloid cells have the ability to interact with a variety of immune populations to aid in mounting an appropriate anti-tumor immune response. Therefore, myeloid therapies have gained momentum as a potential adjunct to current therapies such as immune checkpoint inhibitors (ICIs), dendritic cell vaccines, oncolytic viruses, and traditional chemoradiation to enhance therapeutic response. In this review, we outline critical pathways involved in the recruitment of the myeloid population to the tumor microenvironment and in their polarization to immunostimulatory or immunosuppressive phenotypes. We also emphasize existing strategies of modulating myeloid recruitment and polarization to improve anti-tumor immune responses. We then summarize current preclinical and clinical studies that highlight treatment outcomes of combining myeloid targeted therapies with other immune-based and traditional therapies. Despite promising results from reports of limited clinical trials thus far, there remain challenges in optimally harnessing the myeloid compartment as an adjunct to enhancing anti-tumor immune responses. Further large Phase II and ultimately Phase III clinical trials are needed to elucidate the treatment benefit of combination therapies in the fight against cancer.
Collapse
Affiliation(s)
| | | | | | - Michael Lim
- Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, MD, United States
| |
Collapse
|
209
|
Abstract
Tumor-associated macrophages (TAMs) constitute a plastic and heterogeneous cell population of the tumor microenvironment (TME) that can account for up to 50% of some solid neoplasms. Most often, TAMs support disease progression and resistance to therapy by providing malignant cells with trophic and nutritional support. However, TAMs can mediate antineoplastic effects, especially in response to pharmacological agents that boost their phagocytic and oxidative functions. Thus, TAMs and their impact on the overall metabolic profile of the TME have a major influence on tumor progression and resistance to therapy, de facto constituting promising targets for the development of novel anticancer agents. Here, we discuss the metabolic circuitries whereby TAMs condition the TME to support tumor growth and how such pathways can be therapeutically targeted.
Collapse
|
210
|
Halbrook CJ, Pontious C, Kovalenko I, Lapienyte L, Dreyer S, Lee HJ, Thurston G, Zhang Y, Lazarus J, Sajjakulnukit P, Hong HS, Kremer DM, Nelson BS, Kemp S, Zhang L, Chang D, Biankin A, Shi J, Frankel TL, Crawford HC, Morton JP, Pasca di Magliano M, Lyssiotis CA. Macrophage-Released Pyrimidines Inhibit Gemcitabine Therapy in Pancreatic Cancer. Cell Metab 2019; 29:1390-1399.e6. [PMID: 30827862 PMCID: PMC6602533 DOI: 10.1016/j.cmet.2019.02.001] [Citation(s) in RCA: 286] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 12/19/2018] [Accepted: 01/31/2019] [Indexed: 01/04/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDA) is characterized by abundant infiltration of tumor-associated macrophages (TAMs). TAMs have been reported to drive resistance to gemcitabine, a frontline chemotherapy in PDA, though the mechanism of this resistance remains unclear. Profiling metabolite exchange, we demonstrate that macrophages programmed by PDA cells release a spectrum of pyrimidine species. These include deoxycytidine, which inhibits gemcitabine through molecular competition at the level of drug uptake and metabolism. Accordingly, genetic or pharmacological depletion of TAMs in murine models of PDA sensitizes these tumors to gemcitabine. Consistent with this, patients with low macrophage burden demonstrate superior response to gemcitabine treatment. Together, these findings provide insights into the role of macrophages in pancreatic cancer therapy and have potential to inform the design of future treatments. Additionally, we report that pyrimidine release is a general function of alternatively activated macrophage cells, suggesting an unknown physiological role of pyrimidine exchange by immune cells.
Collapse
Affiliation(s)
- Christopher J Halbrook
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Corbin Pontious
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ilya Kovalenko
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Stephan Dreyer
- West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow G61 1QH, UK; Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Ho-Joon Lee
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA; University of Michigan Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Galloway Thurston
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yaqing Zhang
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jenny Lazarus
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Peter Sajjakulnukit
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hanna S Hong
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Daniel M Kremer
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Barbara S Nelson
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Samantha Kemp
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Li Zhang
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - David Chang
- West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow G61 1QH, UK; Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Andrew Biankin
- West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow G61 1QH, UK; Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Jiaqi Shi
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Timothy L Frankel
- University of Michigan Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA; Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Howard C Crawford
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA; University of Michigan Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA; Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jennifer P Morton
- Cancer Research UK, Beatson Institute, Glasgow G61 1BD, UK; Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Marina Pasca di Magliano
- University of Michigan Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA; Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Costas A Lyssiotis
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA; University of Michigan Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA; Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
211
|
Park SM, Youn JI. Role of myeloid-derived suppressor cells in immune checkpoint inhibitor therapy in cancer. Arch Pharm Res 2019; 42:560-566. [PMID: 31147902 DOI: 10.1007/s12272-019-01165-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 05/27/2019] [Indexed: 12/29/2022]
Abstract
Over the past decade, immune checkpoint inhibitor (ICI) therapy has demonstrated improved therapeutic efficacy in a wide range of cancers. However, the benefits are restricted to a small population of patients. Therefore, studies on understanding the mechanisms resistant to ICI therapy and for finding predictive biomarkers for ICI therapy are being actively conducted. Recent studies have demonstrated that myeloid-derived suppressor cells (MDSC) inhibit ICI therapy by various mechanisms, and that the response to ICI therapy can be improved by blocking MDSC activity. Moreover, low level of MDSC in patients with cancer has been shown to be correlated with their good prognosis after ICI treatment, thereby suggesting MDSC as a predictive biomarker in this regard. This review focuses on the roles of MDSC in ICI therapy and their relevant applications.
Collapse
Affiliation(s)
- Su-Myeong Park
- Yonsei Cancer Center, Division of Medical Oncology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Je-In Youn
- Research Institute, ProGen Inc, Seongnam, Gyeonggi-do, 13488, Republic of Korea. .,Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul, Republic of Korea.
| |
Collapse
|
212
|
Wen HJ, Gao S, Wang Y, Ray M, Magnuson MA, Wright CV, Di Magliano MP, Frankel TL, Crawford HC. Myeloid Cell-Derived HB-EGF Drives Tissue Recovery After Pancreatitis. Cell Mol Gastroenterol Hepatol 2019; 8:173-192. [PMID: 31125624 PMCID: PMC6661420 DOI: 10.1016/j.jcmgh.2019.05.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 05/09/2019] [Accepted: 05/14/2019] [Indexed: 12/23/2022]
Abstract
BACKGROUND & AIMS Pancreatitis is a major cause of morbidity and mortality and is a risk factor for pancreatic tumorigenesis. Upon tissue damage, an inflammatory response, made up largely of macrophages, provides multiple growth factors that promote repair. Here, we examine the molecular pathways initiated by macrophages to promote pancreas recovery from pancreatitis. METHODS To induce organ damage, mice were subjected to cerulein-induced experimental pancreatitis and analyzed at various times of recovery. CD11b-DTR mice were used to deplete myeloid cells. Hbegff/f;LysM-Cre mice were used to ablate myeloid cell-derived heparin-binding epidermal growth factor (EGF)-like growth factor (HB-EGF). To ablate EGFR specifically during recovery, pancreatitis was induced in Egfrf/f;Ptf1aFlpO/+;FSF-Rosa26CAG-CreERT2 mice followed by tamoxifen treatment. RESULTS Macrophages infiltrating the pancreas in experimental pancreatitis make high levels of HB-EGF. Both depletion of myeloid cells and ablation of myeloid cell HB-EGF delayed recovery from experimental pancreatitis, resulting from a decrease in cell proliferation and an increase in apoptosis. Mechanistically, ablation of myeloid cell HB-EGF impaired epithelial cell DNA repair, ultimately leading to cell death. Soluble HB-EGF induced EGFR nuclear translocation and methylation of histone H4, facilitating resolution of DNA damage in pancreatic acinar cells in vitro. Consistent with its role as the primary receptor of HB-EGF, in vivo ablation of EGFR from pancreatic epithelium during recovery from pancreatitis resulted in accumulation of DNA damage. CONCLUSIONS By using novel conditional knockout mouse models, we determined that HB-EGF derived exclusively from myeloid cells induces epithelial cell proliferation and EGFR-dependent DNA repair, facilitating pancreas healing after injury.
Collapse
Affiliation(s)
- Hui-Ju Wen
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Shan Gao
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, China
| | - Yin Wang
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Michael Ray
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee
| | - Mark A. Magnuson
- Department of Molecular Physiology and Biophysics, Center for Stem Cell Biology, Vanderbilt University, Nashville, Tennessee
| | | | - Marina Pasca Di Magliano
- Department of Surgery, University of Michigan, Ann Arbor, Michigan,Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan,Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan
| | | | - Howard C. Crawford
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan,Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan,Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan,Correspondence Address correspondence to: Howard Crawford, PhD, University of Michigan, 4304 Rogel Cancer Center, 1500 East Medical Center Drive, SPC 5936, Ann Arbor, Michigan 48109-5936. fax: (734) 647–9654.
| |
Collapse
|
213
|
Crawford HC, Pasca di Magliano M, Banerjee S. Signaling Networks That Control Cellular Plasticity in Pancreatic Tumorigenesis, Progression, and Metastasis. Gastroenterology 2019; 156:2073-2084. [PMID: 30716326 PMCID: PMC6545585 DOI: 10.1053/j.gastro.2018.12.042] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/29/2018] [Accepted: 12/10/2018] [Indexed: 02/06/2023]
Abstract
Pancreatic ductal adenocarcinoma is one of the deadliest cancers, and its incidence on the rise. The major challenges in overcoming the poor prognosis with this disease include late detection and the aggressive biology of the disease. Intratumoral heterogeneity; presence of a robust, reactive, and desmoplastic stroma; and the crosstalk between the different tumor components require complete understanding of the pancreatic tumor biology to better understand the therapeutic challenges posed by this disease. In this review, we discuss the processes involved during tumorigenesis encompassing the inherent plasticity of the transformed cells, development of tumor stroma crosstalk, and enrichment of cancer stem cell population during tumorigenesis.
Collapse
Affiliation(s)
- Howard C Crawford
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan; Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan; Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Marina Pasca di Magliano
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan; Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Sulagna Banerjee
- Department of Surgery, University of Miami School of Medicine, Miami, Florida; Sylvester Cancer Center, University of Miami, Miami, Florida.
| |
Collapse
|
214
|
Balachandran VP, Beatty GL, Dougan SK. Broadening the Impact of Immunotherapy to Pancreatic Cancer: Challenges and Opportunities. Gastroenterology 2019; 156:2056-2072. [PMID: 30660727 PMCID: PMC6486864 DOI: 10.1053/j.gastro.2018.12.038] [Citation(s) in RCA: 315] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/14/2018] [Accepted: 12/05/2018] [Indexed: 02/06/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is projected to become the second deadliest cancer in the United States by 2025, with 5-year survival at less than 10%. In other recalcitrant cancers, immunotherapy has shown unprecedented response rates, including durable remissions after drug discontinuation. However, responses to immunotherapy in PDAC are rare. Accumulating evidence in mice and humans suggests that this remarkable resistance is linked to the complex, dueling role of the immune system in simultaneously promoting and restraining PDAC. In this review, we highlight the rationale that supports pursuing immunotherapy in PDAC, outline the key barriers that limit immunotherapy efficacy, and summarize the primary preclinical and clinical efforts to sensitize PDAC to immunotherapy.
Collapse
Affiliation(s)
- Vinod P Balachandran
- Hepatopancreatobiliary Service, Department of Surgery, David M. Rubenstein Center for Pancreatic Cancer Research, Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, New York.
| | - Gregory L Beatty
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania; Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania.
| | - Stephanie K Dougan
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, and Department of Immunology, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
215
|
Sullivan MR, Danai LV, Lewis CA, Chan SH, Gui DY, Kunchok T, Dennstedt EA, Vander Heiden MG, Muir A. Quantification of microenvironmental metabolites in murine cancers reveals determinants of tumor nutrient availability. eLife 2019; 8:44235. [PMID: 30990168 PMCID: PMC6510537 DOI: 10.7554/elife.44235] [Citation(s) in RCA: 390] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 04/04/2019] [Indexed: 02/06/2023] Open
Abstract
Cancer cell metabolism is heavily influenced by microenvironmental factors, including nutrient availability. Therefore, knowledge of microenvironmental nutrient levels is essential to understand tumor metabolism. To measure the extracellular nutrient levels available to tumors, we utilized quantitative metabolomics methods to measure the absolute concentrations of >118 metabolites in plasma and tumor interstitial fluid, the extracellular fluid that perfuses tumors. Comparison of nutrient levels in tumor interstitial fluid and plasma revealed that the nutrients available to tumors differ from those present in circulation. Further, by comparing interstitial fluid nutrient levels between autochthonous and transplant models of murine pancreatic and lung adenocarcinoma, we found that tumor type, anatomical location and animal diet affect local nutrient availability. These data provide a comprehensive characterization of the nutrients present in the tumor microenvironment of widely used models of lung and pancreatic cancer and identify factors that influence metabolite levels in tumors. In the body, cancer cells can rely on different nutrients than normal cells, and they can use these nutrients in a different way. What cancer cells consume also depends on what is available in their immediate environment. In a tumor, cells grab nutrients from the ‘interstitial’ fluid that surrounds them, but what is present in this liquid may vary within tumors arising in different locations. Understanding what nutrients are ‘on the menu’ in specific tumors would help to target diseased cells while sparing healthy ones, but this knowledge has been difficult to obtain. To investigate this, Sullivan et al. used a technique called mass spectrometry to measure the amounts of 120 nutrients present in the interstitial fluid of mouse pancreas and lung tumors. Different levels of nutrients were found in the two types of tumors, and analyses showed that what was present in the interstitial fluid depended on the type of cancer cells, where the tumor was located, and what the animals ate. This suggests that cancer cells may have different needs because they are limited in what they have access to. It remains to be seen whether the nutrients levels found in mouse tumors are the same as those in humans. Armed with this knowledge, it may then be possible to feed cancer cells grown in the laboratory with the nutrient menu that they would have access to in the body. This could help identify new cancer treatments.
Collapse
Affiliation(s)
- Mark R Sullivan
- Koch Institute for Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| | - Laura V Danai
- Koch Institute for Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, United States.,Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, United States
| | - Caroline A Lewis
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, United States
| | - Sze Ham Chan
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, United States
| | - Dan Y Gui
- Koch Institute for Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| | - Tenzin Kunchok
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, United States
| | - Emily A Dennstedt
- Koch Institute for Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| | - Matthew G Vander Heiden
- Koch Institute for Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, United States.,Dana-Farber Cancer Institute, Boston, United States
| | - Alexander Muir
- Koch Institute for Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, United States.,Ben May Department for Cancer Research, University of Chicago, Chicago, United States
| |
Collapse
|
216
|
Pastaki Khoshbin A, Eskian M, Keshavarz-Fathi M, Rezaei N. Roles of Myeloid-Derived Suppressor Cells in Cancer Metastasis: Immunosuppression and Beyond. Arch Immunol Ther Exp (Warsz) 2019; 67:89-102. [PMID: 30386868 DOI: 10.1007/s00005-018-0531-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 10/08/2018] [Indexed: 12/23/2022]
Abstract
Metastasis is the direst face of cancer, and it is not a feature solely dependent on cancer cells; however, a complex interaction between cancer cells and host causes this process. Investigating the mechanisms of metastasis can lead to its control. Myeloid-derived suppressor cells (MDSCs) are key components of tumor microenvironment that favor cancer progression. These cells result from altered myelopoiesis in response to the presence of tumor. The most recognized function of MDSCs is suppressing anti-tumor immune responses. Strikingly, these cells are among important players in cancer dissemination and metastasis. They can exert their effect on metastatic process by affecting anti-cancer immunity, epithelial-mesenchymal transition, cancer stem cell formation, angiogenesis, establishing premetastatic niche, and supporting cancer cell survival and growth in metastatic sites. In this article, we review and discuss the mechanisms by which MDSCs contribute to cancer metastasis.
Collapse
Affiliation(s)
- Amin Pastaki Khoshbin
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa Eskian
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Dr Qarib St, Keshavarz Blvd, Tehran, 14194, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mahsa Keshavarz-Fathi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Dr Qarib St, Keshavarz Blvd, Tehran, 14194, Iran
- Breast Cancer Association (BrCA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Dr Qarib St, Keshavarz Blvd, Tehran, 14194, Iran.
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Sheffield, UK.
| |
Collapse
|
217
|
Lankadasari MB, Mukhopadhyay P, Mohammed S, Harikumar KB. TAMing pancreatic cancer: combat with a double edged sword. Mol Cancer 2019; 18:48. [PMID: 30925924 PMCID: PMC6441154 DOI: 10.1186/s12943-019-0966-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 02/21/2019] [Indexed: 12/11/2022] Open
Abstract
Among all the deadly cancers, pancreatic cancer ranks seventh in mortality. The absence of any grave symptoms coupled with the unavailability of early prognostic and diagnostic markers make the disease incurable in most of the cases. This leads to a late diagnosis, where the disease would have aggravated and thus, incurable. Only around 20% of the cases present the early disease diagnosis. Surgical resection is the prime option available for curative local disease but in the case of advanced cancer, chemotherapy is the standard treatment modality although the patients end up with drug resistance and severe side effects. Desmoplasia plays a very important role in chemoresistance associated with pancreatic cancer and consists of a thick scar tissue around the tumor comprised of different cell populations. The interplay between this heterogenous population in the tumor microenvironment results in sustained tumor growth and metastasis. Accumulating evidences expose the crucial role played by the tumor-associated macrophages in pancreatic cancer and this review briefly presents the origin from their parent lineage and the importance in maintaining tumor hallmarks. Finally we have tried to address their role in imparting chemoresistance and the therapeutic interventions leading to reduced tumor burden.
Collapse
Affiliation(s)
- Manendra Babu Lankadasari
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala State, 695014, India.,Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Pramiti Mukhopadhyay
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala State, 695014, India.,Present address: Graduate School of Biomedical Sciences, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Sabira Mohammed
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala State, 695014, India.,Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Kuzhuvelil B Harikumar
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala State, 695014, India.
| |
Collapse
|
218
|
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is predicted to become the second most common cause of cancer-related death in the United States by 2030. So far surgery remains the only curative option for pancreatic cancer, but fewer than 20% of patients have surgically resectable disease. Furthermore, pancreatic cancer exhibits a remarkable resistance to established therapeutic options, including chemotherapy, radiotherapy, and targeted therapy, because pancreatic cancer exhibits numerous mechanisms of resistance like genetic and epigenetic alterations and a complex and dense tumor microenvironment. The tumor microenvironment is populated with different types of immune cells that play a critical role in therapy resistance, tumor progression, and carcinogenesis. Cancer immunotherapy has now been recognized as the fourth pillar of cancer care and a number of preclinical and clinical studies have been conducted for pancreatic cancer. Targeting and modulating the tumor immune microenvironment could not only switch the immune system toward anti-cancer, but also may improve sensitivity toward established chemotherapy. In this review, we discuss both preclinical and clinical studies on pancreatic cancer immunotherapy with natural killer cells, dendritic cells, and chimeric antigen receptor T cells. Furthermore, we summarize strategies for reprogramming the tumor immune microenvironment by targeting macrophages and stromal cell factors in pancreatic cancer. The development of systemic therapies is essential for improving the outcomes of pancreatic cancer patients, and cancer immunotherapy would improve effectiveness of other established therapeutic options, which might together improve the prognosis of pancreatic tumors.
Collapse
|
219
|
Jiang J, Zhou H, Ni C, Hu X, Mou Y, Huang D, Yang L. Immunotherapy in pancreatic cancer: New hope or mission impossible? Cancer Lett 2019; 445:57-64. [DOI: 10.1016/j.canlet.2018.10.045] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 09/29/2018] [Accepted: 10/10/2018] [Indexed: 12/17/2022]
|
220
|
POLE Score: a comprehensive profiling of programmed death 1 ligand 1 expression in pancreatic ductal adenocarcinoma. Oncotarget 2019; 10:1572-1588. [PMID: 30899426 PMCID: PMC6422186 DOI: 10.18632/oncotarget.26705] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 01/19/2019] [Indexed: 01/19/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) being characterized by a pronounced stromal compartment is commonly diagnosed at an advanced stage limiting curative treatment options. Although therapeutical targeting of immune checkpoint regulators like programmed death 1 ligand 1 (PD-L1) represent a promising approach that substantially improved survival of several highly aggressive malignancies, convincing indicators for response prediction are still lacking for PDAC which might be attributed to the insufficient characterization of PD-L1 status. Therefore, we investigated PD-L1 expression by immunohistochemistry in a well characterized cohort of 59 PDAC and 18 peritumoral tissues. Despite the histopathological homogeneity within our cohort, tumor tissues exhibited a great heterogeneity regarding PD-L1 expression. Considering distinct PD-L1 expression patterns, we established the novel POLE Score that incorporates overall PD-L1 expression (P), cellular Origin of PD-L1 (O), PD-L1 level in tumor-associated Lymph follicles (L) and Enumerated local PD-L1 distribution (E). We show that tumoral PD-L1 expression is higher compared to peritumoral areas. Furthermore, POLE Score parameters correlated with overall survival, tumor grade, Ki67 status, local proximity of tumor cells and particular stroma composition. For the first time, we demonstrate that PD-L1 is mostly expressed by stroma and rarely by tumor cells in PDAC. Moreover, our in situ analyses on serial tissue sections and in vitro data suggest that PD-L1 is prominently expressed by tumor-associated macrophages. In conclusion, POLE Score represents a comprehensive characterization of PD-L1 expression in tumor and stroma compartment and might provide the basis for improved patient stratification in future clinical trials on PD-1/PD-L1 targeting therapies in PDAC.
Collapse
|
221
|
Liu J, Jiang W, Zhao K, Wang H, Zhou T, Bai W, Wang X, Zhao T, Huang C, Gao S, Qin T, Yu W, Yang B, Li X, Fu D, Tan W, Yang S, Ren H, Hao J. Tumoral EHF predicts the efficacy of anti-PD1 therapy in pancreatic ductal adenocarcinoma. J Exp Med 2019; 216:656-673. [PMID: 30733283 PMCID: PMC6400540 DOI: 10.1084/jem.20180749] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 11/05/2018] [Accepted: 12/18/2018] [Indexed: 12/12/2022] Open
Abstract
EHF transcriptionally inhibits the expressions of TGFβ1 and GM-CSF to decrease T reg cell and MDSC accumulation, making it a promising biomarker to evaluate the immune microenvironment in PDAC. EHF overexpression may improve the efficacy of checkpoint immunotherapy in PDAC. Pancreatic ductal adenocarcinoma (PDAC) is a highly immune-suppressive tumor with a low response rate to single checkpoint blockade therapy. ETS homologous factor (EHF) is a tumor suppressor in PDAC. Here, we report a novel function of EHF in pancreatic cancer immune microenvironment editing and efficacy prediction for anti-PD1 therapy. Our findings support that the deficiency of tumoral EHF induced the accumulation of regulatory T (T reg) cells and myeloid-derived suppressor cells (MDSCs) and a decrease in the number of tumor-infiltrating CD8+ T cells. Mechanistically, EHF deficiency induced the conversion and expansion of T reg cells and MDSCs through inhibiting tumor TGFβ1 and GM-CSF secretion. EHF suppressed the transcription of TGFB1 and CSF2 by directly binding to their promoters. Mice bearing EHF overexpression tumors exhibited significantly better response to anti-PD1 therapy than those with control tumors. Our findings delineate the immunosuppressive mechanism of EHF deficiency in PDAC and highlight that EHF overexpression may improve PDAC checkpoint immunotherapy.
Collapse
Affiliation(s)
- Jing Liu
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Department of Breast Oncoplastic Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, China
| | - Wenna Jiang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, China
| | - Kaili Zhao
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Hongwei Wang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Tianxing Zhou
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Weiwei Bai
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Xiuchao Wang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Tiansuo Zhao
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Chongbiao Huang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Song Gao
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Tai Qin
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Wenwen Yu
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Bo Yang
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Xin Li
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Danqi Fu
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Wei Tan
- Biosion, Inc., Jiangsu, China
| | - Shengyu Yang
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA
| | - He Ren
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Jihui Hao
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| |
Collapse
|
222
|
Mu W, Wang Z, Zöller M. Ping-Pong-Tumor and Host in Pancreatic Cancer Progression. Front Oncol 2019; 9:1359. [PMID: 31921628 PMCID: PMC6927459 DOI: 10.3389/fonc.2019.01359] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 11/18/2019] [Indexed: 12/12/2022] Open
Abstract
Metastasis is the main cause of high pancreatic cancer (PaCa) mortality and trials dampening PaCa mortality rates are not satisfying. Tumor progression is driven by the crosstalk between tumor cells, predominantly cancer-initiating cells (CIC), and surrounding cells and tissues as well as distant organs, where tumor-derived extracellular vesicles (TEX) are of major importance. A strong stroma reaction, recruitment of immunosuppressive leukocytes, perineural invasion, and early spread toward the peritoneal cavity, liver, and lung are shared with several epithelial cell-derived cancer, but are most prominent in PaCa. Here, we report on the state of knowledge on the PaCIC markers Tspan8, alpha6beta4, CD44v6, CXCR4, LRP5/6, LRG5, claudin7, EpCAM, and CD133, which all, but at different steps, are engaged in the metastatic cascade, frequently via PaCIC-TEX. This includes the contribution of PaCIC markers to TEX biogenesis, targeting, and uptake. We then discuss PaCa-selective features, where feedback loops between stromal elements and tumor cells, including distorted transcription, signal transduction, and metabolic shifts, establish vicious circles. For the latter particularly pancreatic stellate cells (PSC) are responsible, furnishing PaCa to cope with poor angiogenesis-promoted hypoxia by metabolic shifts and direct nutrient transfer via vesicles. Furthermore, nerves including Schwann cells deliver a large range of tumor cell attracting factors and Schwann cells additionally support PaCa cell survival by signaling receptor binding. PSC, tumor-associated macrophages, and components of the dysplastic stroma contribute to perineural invasion with signaling pathway activation including the cholinergic system. Last, PaCa aggressiveness is strongly assisted by the immune system. Although rich in immune cells, only immunosuppressive cells and factors are recovered in proximity to tumor cells and hamper effector immune cells entering the tumor stroma. Besides a paucity of immunostimulatory factors and receptors, immunosuppressive cytokines, myeloid-derived suppressor cells, regulatory T-cells, and M2 macrophages as well as PSC actively inhibit effector cell activation. This accounts for NK cells of the non-adaptive and cytotoxic T-cells of the adaptive immune system. We anticipate further deciphering the molecular background of these recently unraveled intermingled phenomena may turn most lethal PaCa into a curatively treatable disease.
Collapse
Affiliation(s)
- Wei Mu
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Wei Mu
| | - Zhe Wang
- Department of Oncology, The First Affiliated Hospital of Guangdong, Pharmaceutical University, Guangzhou, China
| | - Margot Zöller
- Department of Oncology, The First Affiliated Hospital of Guangdong, Pharmaceutical University, Guangzhou, China
| |
Collapse
|
223
|
Neesse A, Bauer CA, Öhlund D, Lauth M, Buchholz M, Michl P, Tuveson DA, Gress TM. Stromal biology and therapy in pancreatic cancer: ready for clinical translation? Gut 2019; 68:159-171. [PMID: 30177543 DOI: 10.1136/gutjnl-2018-316451] [Citation(s) in RCA: 244] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 08/05/2018] [Accepted: 08/06/2018] [Indexed: 12/12/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDA) is notoriously aggressive and hard to treat. The tumour microenvironment (TME) in PDA is highly dynamic and has been found to promote tumour progression, metastasis niche formation and therapeutic resistance. Intensive research of recent years has revealed an incredible heterogeneity and complexity of the different components of the TME, including cancer-associated fibroblasts, immune cells, extracellular matrix components, tumour vessels and nerves. It has been hypothesised that paracrine interactions between neoplastic epithelial cells and TME compartments may result in either tumour-promoting or tumour-restraining consequences. A better preclinical understanding of such complex and dynamic network systems is required to develop more powerful treatment strategies for patients. Scientific activity and the number of compelling findings has virtually exploded during recent years. Here, we provide an update of the most recent findings in this area and discuss their translational and clinical implications for basic scientists and clinicians alike.
Collapse
Affiliation(s)
- Albrecht Neesse
- Department of Gastroenterology and Gastrointestinal Oncology, University Medicine Goettingen, Goettingen, Germany
| | - Christian Alexander Bauer
- Department of Gastroenterology, Endocrinology, Metabolism and Infectiology, University Hospital Marburg, UKGM, Philipps University Marburg, Marburg, Germany
| | - Daniel Öhlund
- Department of Radiation Sciences, Umeå University, Umeå, Sweden.,Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Matthias Lauth
- Department of Medicine, Philipps University, Center for Tumour and Immune Biology, Marburg, Germany
| | - Malte Buchholz
- Department of Gastroenterology, Endocrinology, Metabolism and Infectiology, University Hospital Marburg, UKGM, Philipps University Marburg, Marburg, Germany
| | - Patrick Michl
- Department of Internal Medicine I, Martin, Luther University Halle-Wittenberg, Halle, Germany
| | - David A Tuveson
- Lustgarten Foundation Designated Pancreatic Cancer Research Lab at Cold Spring Harbor Laboratory, New York, USA
| | - Thomas M Gress
- Department of Gastroenterology, Endocrinology, Metabolism and Infectiology, University Hospital Marburg, UKGM, Philipps University Marburg, Marburg, Germany
| |
Collapse
|
224
|
Shen J, Zhao W, Ju Z, Wang L, Peng Y, Labrie M, Yap TA, Mills GB, Peng G. PARPi Triggers the STING-Dependent Immune Response and Enhances the Therapeutic Efficacy of Immune Checkpoint Blockade Independent of BRCAness. Cancer Res 2018; 79:311-319. [PMID: 30482774 DOI: 10.1158/0008-5472.can-18-1003] [Citation(s) in RCA: 413] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 08/13/2018] [Accepted: 11/20/2018] [Indexed: 01/05/2023]
Abstract
PARP inhibitors (PARPi) have shown remarkable therapeutic efficacy against BRCA1/2-mutant cancers through a synthetic lethal interaction. PARPi exert their therapeutic effects mainly through the blockade of ssDNA damage repair, which leads to the accumulation of toxic DNA double-strand breaks specifically in cancer cells with DNA repair deficiency (BCRAness), including those harboring BRCA1/2 mutations. Here we show that PARPi-mediated modulation of the immune response contributes to their therapeutic effects independently of BRCA1/2 mutations. PARPi promoted accumulation of cytosolic DNA fragments because of unresolved DNA lesions, which in turn activated the DNA-sensing cGAS-STING pathway and stimulated production of type I IFNs to induce antitumor immunity independent of BRCAness. These effects of PARPi were further enhanced by immune checkpoint blockade. Overall, these results provide a mechanistic rationale for using PARPi as immunomodulatory agents to harness the therapeutic efficacy of immune checkpoint blockade. SIGNIFICANCE: This work uncovers the mechanism behind the clinical efficacy of PARPi in patients with both BRCA-wild-type and BRCA-mutant tumors and provides a rationale for combining PARPi with immunotherapy in patients with cancer.
Collapse
Affiliation(s)
- Jianfeng Shen
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Wei Zhao
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Zhenlin Ju
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lulu Wang
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yang Peng
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Marilyne Labrie
- Department of Cell, Developmental & Cancer Biology, Oregon Health and Science University Knight Cancer Institute, Portland, Oregon
| | - Timothy A Yap
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Gordon B Mills
- Department of Cell, Developmental & Cancer Biology, Oregon Health and Science University Knight Cancer Institute, Portland, Oregon.
| | - Guang Peng
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
225
|
Xiao W, Ibrahim ML, Redd PS, Klement JD, Lu C, Yang D, Savage NM, Liu K. Loss of Fas Expression and Function Is Coupled with Colon Cancer Resistance to Immune Checkpoint Inhibitor Immunotherapy. Mol Cancer Res 2018; 17:420-430. [PMID: 30429213 DOI: 10.1158/1541-7786.mcr-18-0455] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 08/09/2018] [Accepted: 11/07/2018] [Indexed: 12/28/2022]
Abstract
Despite the remarkable efficacy of immune checkpoint inhibitor (ICI) immunotherapy in various types of human cancers, colon cancer, except for the approximately 4% microsatellite-instable (MSI) colon cancer, does not respond to ICI immunotherapy. ICI acts through activating CTLs that use the Fas-FasL pathway as one of the two effector mechanisms to suppress tumor. Cancer stem cells are often associated with resistance to therapy including immunotherapy, but the functions of Fas in colon cancer apoptosis and colon cancer stem cells are currently conflicting and highly debated. We report here that decreased Fas expression is coupled with a subset of CD133+CD24lo colon cancer cells in vitro and in vivo. Consistent of the lower Fas expression level, this subset of CD133+CD24loFaslo colon cancer cells exhibits decreased sensitivity to FasL-induced apoptosis. Furthermore, FasL selectively enriches CD133+CD24loFaslo colon cancer cells. CD133+CD24loFaslo colon cancer cells exhibit increased lung colonization potential in experimental metastatic mouse models and decreased sensitivity to tumor-specific CTL adoptive transfer and ICI immunotherapies. Interestingly, FasL challenge selectively enriched this subset of colon cancer cells in microsatellite-stable (MSS) but not in the MSI human colon cancer cell lines. Consistent with the downregulation of Fas expression in CD133+CD24lo cells, lower Fas expression level is significantly correlated with decreased survival in patients with human colon cancer. IMPLICATIONS: Our data determine that CD133+CD24loFaslo colon cancer cells are capable to evade Fas-FasL cytotoxicity of tumor-reactive CTLs and targeting this subset of colon cancer cells is potentially an effective approach to suppress colon cancer immune evasion.
Collapse
Affiliation(s)
- Wei Xiao
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, Georgia
| | - Mohammed L Ibrahim
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, Georgia.,Georgia Cancer Center, Medical College of Georgia, Augusta, Georgia
| | - Priscilla S Redd
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, Georgia.,Georgia Cancer Center, Medical College of Georgia, Augusta, Georgia.,Charlie Norwood VA Medical Center, Augusta, Georgia
| | - John D Klement
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, Georgia.,Georgia Cancer Center, Medical College of Georgia, Augusta, Georgia.,Charlie Norwood VA Medical Center, Augusta, Georgia
| | - Chunwan Lu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, Georgia.,Georgia Cancer Center, Medical College of Georgia, Augusta, Georgia.,Charlie Norwood VA Medical Center, Augusta, Georgia
| | - Dafeng Yang
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, Georgia.,Charlie Norwood VA Medical Center, Augusta, Georgia
| | - Natasha M Savage
- Department of Pathology, Medical College of Georgia, Augusta, Georgia
| | - Kebin Liu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, Georgia. .,Georgia Cancer Center, Medical College of Georgia, Augusta, Georgia.,Charlie Norwood VA Medical Center, Augusta, Georgia
| |
Collapse
|
226
|
Abstract
Pancreatic cancer is characterized by an extensive fibroinflammatory reaction that includes immune cells, fibroblasts, extracellular matrix, vascular and lymphatic vessels, and nerves. Overwhelming evidence indicates that the pancreatic cancer microenvironment regulates cancer initiation, progression, and maintenance. Pancreatic cancer treatment has progressed little over the past several decades, and the prognosis remains one of the worst for any cancer. The contribution of the microenvironment to carcinogenesis is a key area of research, offering new potential targets for treating the disease. Here, we explore the composition of the pancreatic cancer stroma, discuss the network of interactions between different components, and describe recent attempts to target the stroma therapeutically. We also discuss current areas of active research related to the tumor microenvironment.
Collapse
Affiliation(s)
- Yaqing Zhang
- Department of Surgery, University of Michigan, Ann Arbor, Michigan 48109, USA;
| | - Howard C Crawford
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109, USA.,Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Marina Pasca di Magliano
- Department of Surgery, University of Michigan, Ann Arbor, Michigan 48109, USA; .,Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, USA.,Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
227
|
Huber V, Vallacchi V, Fleming V, Hu X, Cova A, Dugo M, Shahaj E, Sulsenti R, Vergani E, Filipazzi P, De Laurentiis A, Lalli L, Di Guardo L, Patuzzo R, Vergani B, Casiraghi E, Cossa M, Gualeni A, Bollati V, Arienti F, De Braud F, Mariani L, Villa A, Altevogt P, Umansky V, Rodolfo M, Rivoltini L. Tumor-derived microRNAs induce myeloid suppressor cells and predict immunotherapy resistance in melanoma. J Clin Invest 2018; 128:5505-5516. [PMID: 30260323 DOI: 10.1172/jci98060] [Citation(s) in RCA: 190] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 09/20/2018] [Indexed: 12/11/2022] Open
Abstract
The accrual of myeloid-derived suppressor cells (MDSCs) represents a major obstacle to effective immunotherapy in cancer patients, but the mechanisms underlying this process in the human setting remain elusive. Here, we describe a set of microRNAs (miR-146a, miR-155, miR-125b, miR-100, let-7e, miR-125a, miR-146b, miR-99b) that are associated with MDSCs and resistance to treatment with immune checkpoint inhibitors in melanoma patients. The miRs were identified by transcriptional analyses as being responsible for the conversion of monocytes into MDSCs (CD14+HLA-DRneg cells) mediated by melanoma extracellular vesicles (EVs) and were shown to recreate MDSC features upon transfection. In melanoma patients, these miRs were increased in circulating CD14+ monocytes, plasma, and tumor samples, where they correlated with the myeloid cell infiltrate. In plasma, their baseline levels clustered with the clinical efficacy of CTLA-4 or programmed cell death protein 1 (PD-1) blockade. Hence, MDSC-related miRs represent an indicator of MDSC activity in cancer patients and a potential blood marker of a poor immunotherapy outcome.
Collapse
Affiliation(s)
- Veronica Huber
- Unit of Immunotherapy of Human Tumors, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Viviana Vallacchi
- Unit of Immunotherapy of Human Tumors, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Viktor Fleming
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, and Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Heidelberg, Germany
| | - Xiaoying Hu
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, and Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Heidelberg, Germany
| | - Agata Cova
- Unit of Immunotherapy of Human Tumors, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | | | - Eriomina Shahaj
- Unit of Immunotherapy of Human Tumors, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Roberta Sulsenti
- Unit of Immunotherapy of Human Tumors, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Elisabetta Vergani
- Unit of Immunotherapy of Human Tumors, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Paola Filipazzi
- Unit of Immunotherapy of Human Tumors, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Angela De Laurentiis
- Unit of Immunotherapy of Human Tumors, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Luca Lalli
- Unit of Immunotherapy of Human Tumors, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | | | - Roberto Patuzzo
- Melanoma and Sarcoma Surgery Unit, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Barbara Vergani
- Microscopy and Image Analysis Consortium, Università degli Studi di Milano-Bicocca, Monza, Italy
| | - Elena Casiraghi
- Department of Computer Science "Giovanni Degli Antoni," Università degli Studi di Milano, Milan, Italy
| | - Mara Cossa
- Molecular Pathology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Ambra Gualeni
- Molecular Pathology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Valentina Bollati
- EPIGET-Epidemiology, Epigenetics and Toxicology Lab, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | | | | | - Luigi Mariani
- Medical Statistics, Biometry and Bioinformatics, Unit of Clinical Epidemiology and Trial Organization, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Antonello Villa
- Microscopy and Image Analysis Consortium, Università degli Studi di Milano-Bicocca, Monza, Italy
| | - Peter Altevogt
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, and Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Heidelberg, Germany
| | - Viktor Umansky
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, and Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Heidelberg, Germany
| | - Monica Rodolfo
- Unit of Immunotherapy of Human Tumors, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Licia Rivoltini
- Unit of Immunotherapy of Human Tumors, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Nazionale dei Tumori di Milano, Milan, Italy
| |
Collapse
|
228
|
Bernard V, Semaan A, Huang J, San Lucas FA, Mulu FC, Stephens BM, Guerrero PA, Huang Y, Zhao J, Kamyabi N, Sen S, Scheet PA, Taniguchi CM, Kim MP, Tzeng CW, Katz MH, Singhi AD, Maitra A, Alvarez HA. Single-Cell Transcriptomics of Pancreatic Cancer Precursors Demonstrates Epithelial and Microenvironmental Heterogeneity as an Early Event in Neoplastic Progression. Clin Cancer Res 2018; 25:2194-2205. [PMID: 30385653 DOI: 10.1158/1078-0432.ccr-18-1955] [Citation(s) in RCA: 273] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 09/18/2018] [Accepted: 10/29/2018] [Indexed: 12/21/2022]
Abstract
PURPOSE Early detection of pancreatic ductal adenocarcinoma (PDAC) remains elusive. Precursor lesions of PDAC, specifically intraductal papillary mucinous neoplasms (IPMNs), represent a bona fide pathway to invasive neoplasia, although the molecular correlates of progression remain to be fully elucidated. Single-cell transcriptomics provides a unique avenue for dissecting both the epithelial and microenvironmental heterogeneities that accompany multistep progression from noninvasive IPMNs to PDAC. EXPERIMENTAL DESIGN Single-cell RNA sequencing was performed through droplet-based sequencing on 5,403 cells from 2 low-grade IPMNs (LGD-IPMNs), 2 high-grade IPMNs (HGD-IPMN), and 2 PDACs (all surgically resected). RESULTS Analysis of single-cell transcriptomes revealed heterogeneous alterations within the epithelium and the tumor microenvironment during the progression of noninvasive dysplasia to invasive cancer. Although HGD-IPMNs expressed many core signaling pathways described in PDAC, LGD-IPMNs harbored subsets of single cells with a transcriptomic profile that overlapped with invasive cancer. Notably, a proinflammatory immune component was readily seen in low-grade IPMNs, composed of cytotoxic T cells, activated T-helper cells, and dendritic cells, which was progressively depleted during neoplastic progression, accompanied by infiltration of myeloid-derived suppressor cells. Finally, stromal myofibroblast populations were heterogeneous and acquired a previously described tumor-promoting and immune-evading phenotype during invasive carcinogenesis. CONCLUSIONS This study demonstrates the ability to perform high-resolution profiling of the transcriptomic changes that occur during multistep progression of cystic PDAC precursors to cancer. Notably, single-cell analysis provides an unparalleled insight into both the epithelial and microenvironmental heterogeneities that accompany early cancer pathogenesis and might be a useful substrate to identify targets for cancer interception.See related commentary by Hernandez-Barco et al., p. 2027.
Collapse
Affiliation(s)
- Vincent Bernard
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas
- Sheikh Ahmed Pancreatic Cancer Research Center, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Alexander Semaan
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Sheikh Ahmed Pancreatic Cancer Research Center, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jonathan Huang
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Sheikh Ahmed Pancreatic Cancer Research Center, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - F Anthony San Lucas
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Feven C Mulu
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Sheikh Ahmed Pancreatic Cancer Research Center, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Bret M Stephens
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Sheikh Ahmed Pancreatic Cancer Research Center, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Paola A Guerrero
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Sheikh Ahmed Pancreatic Cancer Research Center, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yanqing Huang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jun Zhao
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Sheikh Ahmed Pancreatic Cancer Research Center, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Nabiollah Kamyabi
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Sheikh Ahmed Pancreatic Cancer Research Center, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Subrata Sen
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Paul A Scheet
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Cullen M Taniguchi
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michael P Kim
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ching-Wei Tzeng
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Matthew H Katz
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Aatur D Singhi
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Anirban Maitra
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Sheikh Ahmed Pancreatic Cancer Research Center, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hector A Alvarez
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
229
|
Zhang Y, Bush X, Yan B, Chen JA. Gemcitabine nanoparticles promote antitumor immunity against melanoma. Biomaterials 2018; 189:48-59. [PMID: 30388589 DOI: 10.1016/j.biomaterials.2018.10.022] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 10/17/2018] [Accepted: 10/19/2018] [Indexed: 01/06/2023]
Abstract
Myeloid-derived suppressor cells (MDSCs) promote tumor-mediated immunosuppression and cancer progression. Gemcitabine (Gem) is a MDSC-depleting chemotherapeutic agent; however, its clinical use is hampered by its drug resistance and inefficient in vivo delivery. Here we describe a strategy to formulate a Gem analogue gemcitabine monophosphate (GMP) into a lipid-coated calcium phosphate (LCP) nanoparticle, and investigate its antitumor immunity and therapeutic effects after systemic administrations. In the syngeneic mouse model of B16F10 melanoma, compared with free Gem, the LCP-formulated GMP (LCP-GMP) significantly induced apoptosis and reduced immunosuppression in the tumor microenvironment (TME). LCP-GMP effectively depleted MDSCs and regulatory T cells, and skewed macrophage polarization towards the antitumor M1 phenotype in the TME, leading to enhanced CD8+ T-cell immune response and profound tumor growth inhibition. Thus, engineering the in vivo delivery of MDSC-depleting agents using nanotechnology could substantially modulate immunosuppressive TME and boost T-cell immune response for enhanced antitumor efficacy.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA.
| | - Xin Bush
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Bingfang Yan
- James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Justin A Chen
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| |
Collapse
|
230
|
Abbruzzese JL, Andersen DK, Borrebaeck CA, Chari ST, Costello E, Cruz-Monserrate Z, Eibl G, Engleman EG, Fisher WE, Habtezion A, Kim SK, Korc M, Logsdon C, Lyssiotis CA, Pandol SJ, Rustgi A, Wolfe BM, Zheng L, Powers AC. The Interface of Pancreatic Cancer With Diabetes, Obesity, and Inflammation: Research Gaps and Opportunities: Summary of a National Institute of Diabetes and Digestive and Kidney Diseases Workshop. Pancreas 2018; 47:516-525. [PMID: 29702529 PMCID: PMC6361376 DOI: 10.1097/mpa.0000000000001037] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A workshop on "The Interface of Pancreatic Cancer with Diabetes, Obesity, and Inflammation: Research Gaps and Opportunities" was held by the National Institute of Diabetes and Digestive and Kidney Diseases on October 12, 2017. The purpose of the workshop was to explore the relationship and possible mechanisms of the increased risk of pancreatic ductal adenocarcinoma (PDAC) related to diabetes, the role of altered intracellular energy metabolism in PDAC, the mechanisms and biomarkers of diabetes caused by PDAC, the mechanisms of the increased risk of PDAC associated with obesity, and the role of inflammatory events and mediators as contributing causes of the development of PDAC. Workshop faculty reviewed the state of the current knowledge in these areas and made recommendations for future research efforts. Further knowledge is needed to elucidate the basic mechanisms contributing to the role of hyperinsulinemia, hyperglycemia, adipokines, and acute and chronic inflammatory events on the development of PDAC.
Collapse
Affiliation(s)
- James L. Abbruzzese
- Division of Medical Oncology, Department of Medicine, Duke University, Durham, NC
| | - Dana K. Andersen
- Division of Digestive Diseases and Nutrition, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | | | - Suresh T. Chari
- Division of Gastroenterology, Department of Medicine, Mayo Clinic, Rochester, MN
| | - Eithne Costello
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Zobeida Cruz-Monserrate
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Ohio State University, Columbus, OH
| | - Guido Eibl
- Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles
| | - Edgar G. Engleman
- Departments of Pathology and Medicine, Stanford University, Palo Alto, CA
| | | | - Aida Habtezion
- Division of Gastroenterology, Department of Medicine, Stanford University, Palo Alto, CA
| | - Seung K. Kim
- Departments of Developmental Biology and Internal Medicine, Stanford University, Palo Alto, CA
| | - Murray Korc
- Department of Medicine, Indiana University Simon Cancer Center, Indianapolis, IN
| | - Craig Logsdon
- Departments of Cancer Biology and Gastrointestinal Medical Oncology, MD Anderson Cancer Center, Houston, TX
| | - Costas A. Lyssiotis
- Division of Gastroenterology, Departments of Molecular and Integrative Physiology and Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Stephen J. Pandol
- Department of Medicine and Biomedical Sciences, Cedars Sinai Medical Center
- Department of Medicine, University of California at Los Angeles, Los Angeles, CA
| | - Anil Rustgi
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Bruce M. Wolfe
- Department of Surgery, Oregon Health and Science University, Portland, OR
| | - Lei Zheng
- Departments of Oncology and Surgery, Johns Hopkins University, Baltimore, MD
| | - Alvin C. Powers
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center
- Department of Molecular Physiology & Biophysics, Vanderbilt University, VA Tennessee Valley Healthcare, Nashville, TN
| |
Collapse
|
231
|
Leal AS, Liby KT. Murine Models of Pancreatitis Leading to the Development of Pancreatic Cancer. ACTA ACUST UNITED AC 2018; 83:e48. [PMID: 30325112 DOI: 10.1002/cpph.48] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Chronic or repeated episodes of acute pancreatic inflammation, or pancreatitis, are risk factors for the development of pancreatic cancer. Pancreatic cancer is characterized by a strong fibro-inflammatory tumor microenvironment. In pancreatitis, the same fibro-inflammatory reaction is observed concurrently with a loss of normal pancreatic cells. Mouse models are commonly employed to study the progression of pancreatitis and pancreatic cancer, with genetic and pharmacological tools used to elucidate cellular and acellular interactions within pancreatic tumors. Described in this article is a protocol for using KrasG12D ; Pdx1-Cre (KC) mice stimulated with caerulein, a small oligopeptide that increases secretion of digestive enzymes, as a model for pancreatitis. KRAS is mutated in 90-95% of the tumors in patients with pancreatic cancer. The combination of this mutation with an inflammatory stimulus accelerates the development of pancreatic cancer. The protocol detailed in this report follows the progression of disease in KC mice from pancreatic intraepithelial neoplasias to invasive pancreatic adenocarcinoma. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Ana S Leal
- Michigan State University, Department of Pharmacology & Toxicology, East Lansing, Michigan
| | - Karen T Liby
- Michigan State University, Department of Pharmacology & Toxicology, East Lansing, Michigan
| |
Collapse
|
232
|
Gong J, Hendifar A, Tuli R, Chuang J, Cho M, Chung V, Li D, Salgia R. Combination systemic therapies with immune checkpoint inhibitors in pancreatic cancer: overcoming resistance to single-agent checkpoint blockade. Clin Transl Med 2018; 7:32. [PMID: 30294755 PMCID: PMC6174117 DOI: 10.1186/s40169-018-0210-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Accepted: 09/24/2018] [Indexed: 12/16/2022] Open
Abstract
Immune checkpoint inhibitors have demonstrated broad single-agent antitumor activity and a favorable safety profile that render them attractive agents to combine with other systemic anticancer therapies. Pancreatic cancer has been fairly resistant to monotherapy blockade of programmed cell death protein 1 receptor, programmed death ligand 1, and cytotoxic T-lymphocyte associated protein 4. However, there is a growing body of preclinical evidence to support the rational combination of checkpoint inhibitors and various systemic therapies in pancreatic cancer. Furthermore, early clinical evidence has begun to support the feasibility and efficacy of checkpoint inhibitor-based combination therapy in advanced pancreatic cancer. Despite accumulating preclinical and clinical data, there remains several questions as to the optimal dosing and timing of administration of respective agents, toxicity of combination strategies, and mechanisms by which immune resistance to single-agent checkpoint blockade are overcome. Further development of biomarkers is also important in the advancement of combination systemic therapies incorporating checkpoint blockade in pancreatic cancer. Results from an impressive number of ongoing prospective clinical trials are eagerly anticipated and will seek to validate the viability of combination immuno-oncology strategies in pancreatic cancer.
Collapse
Affiliation(s)
- Jun Gong
- Department of Gastrointestinal Malignancies, Cedars-Sinai Medical Center, 8700 Beverly Blvd, AC 1042C, Los Angeles, CA, 90048, USA
| | - Andrew Hendifar
- Department of Gastrointestinal Malignancies, Cedars-Sinai Medical Center, 8700 Beverly Blvd, AC 1042C, Los Angeles, CA, 90048, USA
| | - Richard Tuli
- Department of Radiation Oncology, Cedars-Sinai Medical Center, 8700 Beverly Blvd, AC 1023, Los Angeles, CA, 90048, USA
| | - Jeremy Chuang
- Department of Internal Medicine, Harbor-UCLA Medical Center, 1000 W Carson St, Box 400, Torrance, CA, 90509, USA
| | - May Cho
- Department of Internal Medicine, Division of Hematology and Oncology, UC Davis Comprehensive Cancer Center, 4501 X Street, Ste 3016, Sacramento, CA, 95817, USA
| | - Vincent Chung
- Department of Medical Oncology, City of Hope National Medical Center, 1500 E Duarte Rd, Bldg 51, Duarte, CA, 91010, USA
| | - Daneng Li
- Department of Medical Oncology, City of Hope National Medical Center, 1500 E Duarte Rd, Bldg 51, Duarte, CA, 91010, USA
| | - Ravi Salgia
- Medical Oncology and Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Building 51, Room 101, 1500 E Duarte St, Duarte, CA, 91010, USA.
| |
Collapse
|
233
|
Cheung PF, Neff F, Neander C, Bazarna A, Savvatakis K, Liffers ST, Althoff K, Lee CL, Moding EJ, Kirsch DG, Saur D, Bazhin AV, Trajkovic-Arsic M, Heikenwalder MF, Siveke JT. Notch-Induced Myeloid Reprogramming in Spontaneous Pancreatic Ductal Adenocarcinoma by Dual Genetic Targeting. Cancer Res 2018; 78:4997-5010. [PMID: 29844119 DOI: 10.1158/0008-5472.can-18-0052] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 04/20/2018] [Accepted: 05/22/2018] [Indexed: 11/16/2022]
Abstract
Despite advances in our understanding of the genetics of pancreatic ductal adenocarcinoma (PDAC), the efficacy of therapeutic regimens targeting aberrant signaling pathways remains highly limited. Therapeutic strategies are greatly hampered by the extensive desmoplasia that comprises heterogeneous cell populations. Notch signaling is a contentious pathway exerting opposite roles in tumorigenesis depending on cellular context. Advanced model systems are needed to gain more insights into complex signaling in the multilayered tumor microenvironment. In this study, we employed a dual recombinase-based in vivo strategy to modulate Notch signaling specifically in myeloid cells to dissect the tumorigenic role of Notch in PDAC stroma. Pancreas-specific KrasG12D activation and loss of Tp53 was induced using a Pdx1-Flp transgene, whereas Notch signaling was genetically targeted using a myeloid-targeting Lyz2-Cre strain for either activation of Notch2-IC or deletion of Rbpj. Myeloid-specific Notch activation significantly decreased tumor infiltration by protumorigenic M2 macrophages in spontaneous endogenous PDAC, which translated into significant survival benefit. Further characterization revealed upregulated antigen presentation and cytotoxic T effector phenotype upon Notch-induced M2 reduction. This approach is the first proof of concept for genetic targeting and reprogramming of myeloid cells in a complex disease model of PDAC and provides evidence for a regulatory role of Notch signaling in intratumoral immune phenotypes.Significance: This study provides insight into the role of myeloid-dependent NOTCH signaling in PDAC and accentuates the need to dissect differential roles of signaling pathways in different cellular components within the tumor microenvironment. Cancer Res; 78(17); 4997-5010. ©2018 AACR.
Collapse
Affiliation(s)
- Phyllis F Cheung
- Division of Solid Tumor Translational Oncology, West German Cancer Center, University Hospital Essen, Essen, Germany.,German Cancer Consortium (DKTK, partner site Essen) and German Cancer Research Center, DKFZ, Heidelberg, Germany
| | - Florian Neff
- Division of Solid Tumor Translational Oncology, West German Cancer Center, University Hospital Essen, Essen, Germany.,German Cancer Consortium (DKTK, partner site Essen) and German Cancer Research Center, DKFZ, Heidelberg, Germany
| | - Christian Neander
- Division of Solid Tumor Translational Oncology, West German Cancer Center, University Hospital Essen, Essen, Germany.,German Cancer Consortium (DKTK, partner site Essen) and German Cancer Research Center, DKFZ, Heidelberg, Germany
| | - Anna Bazarna
- Division of Solid Tumor Translational Oncology, West German Cancer Center, University Hospital Essen, Essen, Germany.,German Cancer Consortium (DKTK, partner site Essen) and German Cancer Research Center, DKFZ, Heidelberg, Germany
| | - Konstantinos Savvatakis
- Division of Solid Tumor Translational Oncology, West German Cancer Center, University Hospital Essen, Essen, Germany.,German Cancer Consortium (DKTK, partner site Essen) and German Cancer Research Center, DKFZ, Heidelberg, Germany
| | - Sven-Thorsten Liffers
- Division of Solid Tumor Translational Oncology, West German Cancer Center, University Hospital Essen, Essen, Germany.,German Cancer Consortium (DKTK, partner site Essen) and German Cancer Research Center, DKFZ, Heidelberg, Germany
| | - Kristina Althoff
- Division of Solid Tumor Translational Oncology, West German Cancer Center, University Hospital Essen, Essen, Germany.,German Cancer Consortium (DKTK, partner site Essen) and German Cancer Research Center, DKFZ, Heidelberg, Germany
| | - Chang-Lung Lee
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - Everett J Moding
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - David G Kirsch
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - Dieter Saur
- German Cancer Consortium (DKTK, partner site Essen) and German Cancer Research Center, DKFZ, Heidelberg, Germany.,Medical Department, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Alexandr V Bazhin
- Department of General, Visceral and Transplant Surgery, Ludwig-Maximilians University, Munich, Germany.,German Caner Consortium (DKTK), Partner Site Munich, Germany
| | - Marija Trajkovic-Arsic
- Division of Solid Tumor Translational Oncology, West German Cancer Center, University Hospital Essen, Essen, Germany.,German Cancer Consortium (DKTK, partner site Essen) and German Cancer Research Center, DKFZ, Heidelberg, Germany
| | | | - Jens T Siveke
- Division of Solid Tumor Translational Oncology, West German Cancer Center, University Hospital Essen, Essen, Germany. .,German Cancer Consortium (DKTK, partner site Essen) and German Cancer Research Center, DKFZ, Heidelberg, Germany.,Medical Department, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| |
Collapse
|
234
|
Abstract
OPINION STATEMENT Managing patients with metastatic pancreatic adenocarcinoma (mPDA) is a challenging proposition for any treating oncologist. Although the potency of first-line therapies has improved with the approvals of FOLFIRINOX and gemcitabine plus nab-paclitaxel, many patients are unable to derive significant benefit from later lines of therapy upon progression. Enrollment on clinical trials remains among the best options for patients with mPDA in all lines of therapy. At our institution, we routinely check for microsatellite instability (MSI-H) and perform next-generation sequencing (NGS) at the time of diagnosis in all good performance status mPDA patients. Although MSI-H status is only found in 1% of patients with mPDA, given pembrolizumab's tissue-agnostic approval for MSI-H tumors in later-line settings, it is a viable option when deciding on subsequent lines of therapy. Any use of immune therapy in mPDA is investigational outside the MSI-H setting. NGS can identify BRCA or other DNA damage response (DDR) defects in patients which can predict sensitivity to platinum-based therapies and influence choice of both initial and later lines of therapy. It can also identify rare actionable genomic alterations such as HER2 (2%) and TRK fusions (0.1%) and offer patients the option of enrollment on clinical trials with agents targeting these or other identified alterations. We believe enrolling mPDA patients on clinical trials with immune-modulating agents is critical to determine if there are other patient subsets, outside of the MSI-H setting, who would benefit from these approaches. Immunotherapy's general tolerability and potential to generate durable responses make it particularly appealing for mPDA patients. Although single-modality immunotherapy such as checkpoint inhibitors or vaccines have not demonstrated efficacy in this disease, combinatorial strategies targeting unique aspects of PDA including the tumor microenvironment and desmoplastic stroma have shown preclinical or early-phase success. Validating these treatments with later-phase prospective studies is essential to making immunotherapy a routine component of the treatment armamentarium for mPDA patients.
Collapse
Affiliation(s)
- Satya Das
- Division of Hematology and Oncology, Department of Internal Medicine, Vanderbilt University Medical Center, 2220 Pierce Avenue, 777 Preston Research Building, Nashville, TN, 37232, USA.
| | - Jordan Berlin
- Division of Hematology and Oncology, Department of Internal Medicine, Vanderbilt University Medical Center, 2220 Pierce Avenue, 777 Preston Research Building, Nashville, TN, 37232, USA
| | - Dana Cardin
- Division of Hematology and Oncology, Department of Internal Medicine, Vanderbilt University Medical Center, 2220 Pierce Avenue, 777 Preston Research Building, Nashville, TN, 37232, USA
| |
Collapse
|
235
|
Kabacaoglu D, Ciecielski KJ, Ruess DA, Algül H. Immune Checkpoint Inhibition for Pancreatic Ductal Adenocarcinoma: Current Limitations and Future Options. Front Immunol 2018; 9:1878. [PMID: 30158932 PMCID: PMC6104627 DOI: 10.3389/fimmu.2018.01878] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/30/2018] [Indexed: 12/16/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), as the most frequent form of pancreatic malignancy, still is associated with a dismal prognosis. Due to its late detection, most patients are ineligible for surgery, and chemotherapeutic options are limited. Tumor heterogeneity and a characteristic structure with crosstalk between the cancer/malignant cells and an abundant tumor microenvironment (TME) make PDAC a very challenging puzzle to solve. Thus far, targeted therapies have failed to substantially improve the overall survival of PDAC patients. Immune checkpoint inhibition, as an emerging therapeutic option in cancer treatment, shows promising results in different solid tumor types and hematological malignancies. However, PDAC does not respond well to immune checkpoint inhibitors anti-programmed cell death protein 1 (PD-1) or anti-cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) alone or in combination. PDAC with its immune-privileged nature, starting from the early pre-neoplastic state, appears to escape from the antitumor immune response unlike other neoplastic entities. Different mechanisms how cancer cells achieve immune-privileged status have been hypothesized. Among them are decreased antigenicity and impaired immunogenicity via both cancer cell-intrinsic mechanisms and an augmented immunosuppressive TME. Here, we seek to shed light on the recent advances in both bench and bedside investigation of immunotherapeutic options for PDAC. Furthermore, we aim to compile recent data about how PDAC adopts immune escape mechanisms, and how these mechanisms might be exploited therapeutically in combination with immune checkpoint inhibitors, such as PD-1 or CTLA-4 antibodies.
Collapse
Affiliation(s)
| | | | | | - Hana Algül
- Internal Medicine II, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| |
Collapse
|
236
|
Lanfranca MP, Lazarus J, Shao X, Nathan H, Di Magliano MP, Zou W, Piert M, Frankel TL. Tracking Macrophage Infiltration in a Mouse Model of Pancreatic Cancer with the Positron Emission Tomography Tracer [11C]PBR28. J Surg Res 2018; 232:570-577. [PMID: 30463776 DOI: 10.1016/j.jss.2018.07.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 06/26/2018] [Accepted: 07/10/2018] [Indexed: 01/03/2023]
Abstract
BACKGROUND The tumor microenvironment of pancreatic ductal adenocarcinoma (PDAC) contains abundant immunosuppressive tumor-associated macrophages. High level of infiltration is associated with poor outcome and is thought to represent a major roadblock to lymphocyte-based immunotherapy. Efforts to block macrophage infiltration have been met with some success, but noninvasive means to track tumor-associated macrophagess in PDAC are lacking. Translocator protein (TSPO) is a mitochondrial membrane receptor which is upregulated in activated macrophages. We sought to identify if a radiotracer-labeled cognate ligand could track macrophages in PDAC. MATERIALS AND METHODS A murine PDAC cell line was established from a transgenic mouse with pancreas-specific mutations in KRAS and p53. After confirming lack of endogenous TSPO expression, tumors were established in syngeneic mice. A radiolabeled TSPO-specific ligand ([11C] peripheral benzodiazepine receptor [PBR]28) was delivered intravenously, and tumor uptake was assessed by autoradiography, ex vivo, or micro-positron emission tomography imaging. RESULTS Resected tumors contained abundant macrophages as determined by immunohistochemistry and flow cytometry. Immunoblotting revealed murine macrophages expressed TSPO with increasing concentration on activation and polarization. Autoradiography of resected tumors confirmed [11C]PBR28 uptake, and whole mount sections demonstrated the ability to localize tumors. To confirm the findings were macrophage specific, experiments were repeated in CD11b-deficient mice, and the radiotracer uptake was diminished. Micro-positron emission tomography imaging validated radiotracer uptake and tumor localization in a clinically applicable manner. CONCLUSIONS As new immunotherapeutics reshape the PDAC microenvironment, tools are needed to better measure and track immune cell subsets. We have demonstrated the potential to measure changes in macrophage infiltration in PDAC using [11C]PBR28.
Collapse
Affiliation(s)
| | - Jenny Lazarus
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Xia Shao
- Department of Radiology, University of Michigan, Ann Arbor, Michigan
| | - Hari Nathan
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | | | - Weiping Zou
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Morand Piert
- Department of Radiology, University of Michigan, Ann Arbor, Michigan
| | | |
Collapse
|
237
|
Halbrook CJ, Pasca di Magliano M, Lyssiotis CA. Tumor cross-talk networks promote growth and support immune evasion in pancreatic cancer. Am J Physiol Gastrointest Liver Physiol 2018; 315. [PMID: 29543507 PMCID: PMC6109710 DOI: 10.1152/ajpgi.00416.2017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In the event of an injury, normal tissues exit quiescent homeostasis and rapidly engage a complex stromal and immune program. These tissue repair responses are hijacked and become dysregulated in carcinogenesis to form a growth-supportive tumor microenvironment. In pancreatic ductal adenocarcinoma (PDA), which remains one of the deadliest major cancers, the microenvironment is a key driver of tumor maintenance that impedes many avenues of therapy. In this review, we outline recent efforts made to uncover the microenvironmental cross-talk mechanisms that support pancreatic cancer cells, and we detail the strategies that have been undertaken to help overcome these barriers.
Collapse
Affiliation(s)
- Christopher J. Halbrook
- 1Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Marina Pasca di Magliano
- 2Department of Surgery, University of Michigan, Ann Arbor, Michigan,3Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Costas A. Lyssiotis
- 1Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan,3Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan,4Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
238
|
Barua S, Solis L, Parra ER, Uraoka N, Jiang M, Wang H, Rodriguez-Canales J, Wistuba I, Maitra A, Sen S, Rao A. A Functional Spatial Analysis Platform for Discovery of Immunological Interactions Predictive of Low-Grade to High-Grade Transition of Pancreatic Intraductal Papillary Mucinous Neoplasms. Cancer Inform 2018; 17:1176935118782880. [PMID: 30013304 PMCID: PMC6043922 DOI: 10.1177/1176935118782880] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 05/11/2018] [Indexed: 01/20/2023] Open
Abstract
Intraductal papillary mucinous neoplasms (IPMNs), critical precursors of the devastating tumor pancreatic ductal adenocarcinoma (PDAC), are poorly understood in the pancreatic cancer community. Researchers have shown that IPMN patients with high-grade dysplasia have a greater risk of subsequent development of PDAC in the remnant pancreas than do patients with low-grade dysplasia. In this study, we built a computational prediction model that encapsulates the spatial cellular interactions in IPMNs that play key roles in the transformation of low-grade IPMN cysts to high-grade cysts en route to PDAC. Using multiplex immunofluorescent images of IPMN cysts, we adopted algorithms from spatial statistics and functional data analysis to create metrics that summarize the spatial interactions in IPMNs. We showed that an ensemble of models learned using these spatial metrics can robustly predict, with high accuracy, (1) the dysplasia grade (low vs high grade) and (2) the risk of a low-grade cyst progressing to a high-grade cyst. We obtained high classification accuracies on both tasks, with areas under the curve of 0.81 (95% confidence interval: 0.71-0.9) for task 1 and 0.81 (95% confidence interval: 0.7-0.94) for task 2. To the best of our knowledge, this is the first application of an ensemble machine learning approach for discovering critical cellular spatial interactions in IPMNs using imaging data. We envision that our work can be used as a risk assessment tool for patients diagnosed with IPMNs and facilitate greater understanding and investigation of the cellular interactions that cause transition of IPMNs to PDAC.
Collapse
Affiliation(s)
- Souptik Barua
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Luisa Solis
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Edwin Roger Parra
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Naohiro Uraoka
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mei Jiang
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Huamin Wang
- Department of Anatomical Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jaime Rodriguez-Canales
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ignacio Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anirban Maitra
- Department of Anatomical Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Subrata Sen
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Arvind Rao
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
239
|
Karin M. New insights into the pathogenesis and treatment of non-viral hepatocellular carcinoma: a balancing act between immunosuppression and immunosurveillance. PRECISION CLINICAL MEDICINE 2018; 1:21-28. [PMID: 30687560 PMCID: PMC6333043 DOI: 10.1093/pcmedi/pby005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/21/2018] [Accepted: 05/07/2018] [Indexed: 12/19/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related deaths
worldwide. HCC initiates as a consequence of chronic liver damage and inflammation caused
by hepatitis B and C virus infections, excessive alcohol consumption, or non-alcoholic
fatty liver disease (NAFLD). Until recently, no effective treatments for advanced HCC were
available and the 5-year survival rate had remained below 8% for many years. New insights
into the mechanisms that drive the development of NAFLD-related HCC indicate that loss of
T-cell-mediated immunosurveillance plays a cardinal role in tumor growth and malignant
progression, in addition to previously identified inflammation-driven compensatory
proliferation. Recently completed groundbreaking clinical studies have shown that
treatments that restore antitumor immunity represent a highly effective therapeutic option
for approximately 20% of advanced HCC patients. Understanding the causes of
inflammation-driven immunosuppression and immune system dysfunction in the 80% of patients
who fail to reignite antitumor immunity despite treatment with checkpoint inhibitors
should lead to further and even more dramatic improvements in HCC immunotherapy.
Collapse
Affiliation(s)
- Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, UC San Diego School of Medicine, Department of Pharmacology, 9500 Gilman Drive, La Jolla, CA, USA
| |
Collapse
|
240
|
Morrison AH, Byrne KT, Vonderheide RH. Immunotherapy and Prevention of Pancreatic Cancer. Trends Cancer 2018; 4:418-428. [PMID: 29860986 PMCID: PMC6028935 DOI: 10.1016/j.trecan.2018.04.001] [Citation(s) in RCA: 321] [Impact Index Per Article: 45.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/30/2018] [Accepted: 04/03/2018] [Indexed: 12/16/2022]
Abstract
Pancreatic cancer is the third-leading cause of cancer mortality in the USA, recently surpassing breast cancer. A key component of pancreatic cancer's lethality is its acquired immune privilege, which is driven by an immunosuppressive microenvironment, poor T cell infiltration, and a low mutational burden. Although immunotherapies such as checkpoint blockade or engineered T cells have yet to demonstrate efficacy, a growing body of evidence suggests that orthogonal combinations of these and other strategies could unlock immunotherapy in pancreatic cancer. In this Review article, we discuss promising immunotherapies currently under investigation in pancreatic cancer and provide a roadmap for the development of prevention vaccines for this and other cancers.
Collapse
Affiliation(s)
- Alexander H Morrison
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19014, USA
| | - Katelyn T Byrne
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19014, USA; Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA 19014, USA
| | - Robert H Vonderheide
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19014, USA; Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA 19014, USA; Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19014, USA.
| |
Collapse
|
241
|
Hilmi M, Bartholin L, Neuzillet C. Immune therapies in pancreatic ductal adenocarcinoma: Where are we now? World J Gastroenterol 2018; 24:2137-2151. [PMID: 29853732 PMCID: PMC5974576 DOI: 10.3748/wjg.v24.i20.2137] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/05/2018] [Accepted: 05/18/2018] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers, mostly due to its resistance to treatment. Of these, checkpoint inhibitors (CPI) are inefficient when used as monotherapy, except in the case of a rare subset of tumors harboring microsatellite instability (< 2%). This inefficacy mainly resides in the low immunogenicity and non-inflamed phenotype of PDAC. The abundant stroma generates a hypoxic microenvironment and drives the recruitment of immunosuppressive cells through cancer-associated-fibroblast activation and transforming growth factor β secretion. Several strategies have recently been developed to overcome this immunosuppressive microenvironment. Combination therapies involving CPI aim at increasing tumor immunogenicity and promoting the recruitment and activation of effector T cells. Ongoing studies are therefore exploring the association of CPI with vaccines, oncolytic viruses, MEK inhibitors, cytokine inhibitors, and hypoxia- and stroma-targeting agents. Adoptive T-cell transfer is also under investigation. Moreover, translational studies on tumor tissue and blood, prior to and during treatment may lead to the identification of biomarkers with predictive value for both clinical outcome and response to immunotherapy.
Collapse
Affiliation(s)
- Marc Hilmi
- Service d’Oncologie Médicale, Hôpital Henri Mondor, Assistance Publique-Hôpitaux de Paris, Université Paris Est Créteil, Créteil 94010, France
| | - Laurent Bartholin
- Université de Lyon, Université Claude Bernard Lyon 1, Inserm U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon 69008, France
| | - Cindy Neuzillet
- Service d’Oncologie Médicale, Hôpital Henri Mondor, Assistance Publique-Hôpitaux de Paris, Université Paris Est Créteil, Créteil 94010, France
| |
Collapse
|
242
|
Özkan B, Lim H, Park SG. Immunomodulatory Function of Myeloid-Derived Suppressor Cells during B Cell-Mediated Immune Responses. Int J Mol Sci 2018; 19:E1468. [PMID: 29762501 PMCID: PMC5983618 DOI: 10.3390/ijms19051468] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 05/03/2018] [Accepted: 05/12/2018] [Indexed: 12/20/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) play roles in immune regulation during neoplastic and non-neoplastic inflammatory responses. This immune regulatory function is directed mainly toward T cells. However, MDSCs also regulate other cell populations, including B cells, during inflammatory responses. Indeed, B cells are essential for antibody-mediated immune responses. MDSCs regulate B cell immune responses directly via expression of effector molecules and indirectly by controlling other immune regulatory cells. B cell-mediated immune responses are a major component of the overall immune response; thus, MDSCs play a prominent role in their regulation. Here, we review the current knowledge about MDSC-mediated regulation of B cell responses.
Collapse
Affiliation(s)
- Bilgenaz Özkan
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Korea.
| | - Heejin Lim
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Korea.
| | - Sung-Gyoo Park
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Korea.
| |
Collapse
|
243
|
Candido JB, Morton JP, Bailey P, Campbell AD, Karim SA, Jamieson T, Lapienyte L, Gopinathan A, Clark W, McGhee EJ, Wang J, Escorcio-Correia M, Zollinger R, Roshani R, Drew L, Rishi L, Arkell R, Evans TRJ, Nixon C, Jodrell DI, Wilkinson RW, Biankin AV, Barry ST, Balkwill FR, Sansom OJ. CSF1R + Macrophages Sustain Pancreatic Tumor Growth through T Cell Suppression and Maintenance of Key Gene Programs that Define the Squamous Subtype. Cell Rep 2018; 23:1448-1460. [PMID: 29719257 PMCID: PMC5946718 DOI: 10.1016/j.celrep.2018.03.131] [Citation(s) in RCA: 162] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 01/21/2018] [Accepted: 03/28/2018] [Indexed: 12/11/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is resistant to most therapies including single-agent immunotherapy and has a dense desmoplastic stroma, and most patients present with advanced metastatic disease. We reveal that macrophages are the dominant leukocyte population both in human PDAC stroma and autochthonous models, with an important functional contribution to the squamous subtype of human PDAC. We targeted macrophages in a genetic PDAC model using AZD7507, a potent selective inhibitor of CSF1R. AZD7507 caused shrinkage of established tumors and increased mouse survival in this difficult-to-treat model. Malignant cell proliferation diminished, with increased cell death and an enhanced T cell immune response. Loss of macrophages rewired other features of the TME, with global changes in gene expression akin to switching PDAC subtypes. These changes were markedly different to those elicited when neutrophils were targeted via CXCR2. These results suggest targeting the myeloid cell axis may be particularly efficacious in PDAC, especially with CSF1R inhibitors.
Collapse
MESH Headings
- Adult
- Aniline Compounds/pharmacology
- Animals
- Carcinoma, Pancreatic Ductal/drug therapy
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/immunology
- Carcinoma, Pancreatic Ductal/pathology
- Cell Line, Tumor
- Female
- Heterocyclic Compounds, 2-Ring/pharmacology
- Humans
- Immunity, Cellular/drug effects
- Immunity, Cellular/genetics
- Macrophages/immunology
- Macrophages/pathology
- Male
- Mice
- Models, Immunological
- Neoplasm Proteins/antagonists & inhibitors
- Neoplasm Proteins/genetics
- Neoplasm Proteins/immunology
- Pancreatic Neoplasms/drug therapy
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/immunology
- Pancreatic Neoplasms/pathology
- Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/antagonists & inhibitors
- Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/genetics
- Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/immunology
- T-Lymphocytes/immunology
- T-Lymphocytes/pathology
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Juliana B Candido
- Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Jennifer P Morton
- Cancer Research UK Beatson Institute, Glasgow G61 1BD, UK; Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Peter Bailey
- Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | | | - Saadia A Karim
- Cancer Research UK Beatson Institute, Glasgow G61 1BD, UK
| | | | | | - Aarthi Gopinathan
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK
| | - William Clark
- Cancer Research UK Beatson Institute, Glasgow G61 1BD, UK
| | - Ewan J McGhee
- Cancer Research UK Beatson Institute, Glasgow G61 1BD, UK
| | - Jun Wang
- Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | | | - Raphael Zollinger
- Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Rozita Roshani
- Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Lisa Drew
- Bioscience, Oncology, iMED Biotech Unit, AstraZeneca, Boston, MA, USA
| | - Loveena Rishi
- Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Rebecca Arkell
- Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - T R Jeffry Evans
- Cancer Research UK Beatson Institute, Glasgow G61 1BD, UK; Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Colin Nixon
- Cancer Research UK Beatson Institute, Glasgow G61 1BD, UK
| | - Duncan I Jodrell
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK
| | | | - Andrew V Biankin
- Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Simon T Barry
- Bioscience, Oncology, iMED Biotech Unit, AstraZeneca, Cambridge, UK
| | - Frances R Balkwill
- Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Owen J Sansom
- Cancer Research UK Beatson Institute, Glasgow G61 1BD, UK; Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK.
| |
Collapse
|
244
|
Unger K, Mehta KY, Kaur P, Wang Y, Menon SS, Jain SK, Moonjelly RA, Suman S, Datta K, Singh R, Fogel P, Cheema AK. Metabolomics based predictive classifier for early detection of pancreatic ductal adenocarcinoma. Oncotarget 2018; 9:23078-23090. [PMID: 29796173 PMCID: PMC5955422 DOI: 10.18632/oncotarget.25212] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 04/06/2018] [Indexed: 12/13/2022] Open
Abstract
The availability of robust classification algorithms for the identification of high risk individuals with resectable disease is critical to improving early detection strategies and ultimately increasing survival rates in PC. We leveraged high quality biospecimens with extensive clinical annotations from patients that received treatment at the Medstar-Georgetown University hospital. We used a high resolution mass spectrometry based global tissue profiling approach in conjunction with multivariate analysis for developing a classification algorithm that would predict early stage PC with high accuracy. The candidate biomarkers were annotated using tandem mass spectrometry. We delineated a six metabolite panel that could discriminate early stage PDAC from benign pancreatic disease with >95% accuracy of classification (Specificity = 0.85, Sensitivity = 0.9). Subsequently, we used multiple reaction monitoring mass spectrometry for evaluation of this panel in plasma samples obtained from the same patients. The pattern of expression of these metabolites in plasma was found to be discordant as compared to that in tissue. Taken together, our results show the value of using a metabolomics approach for developing highly predictive panels for classification of early stage PDAC. Future investigations will likely lead to the development of validated biomarker panels with potential for clinical translation in conjunction with CA-19-9 and/or other biomarkers.
Collapse
Affiliation(s)
- Keith Unger
- MedStar Georgetown University Hospital, Washington, DC, United States of America
| | - Khyati Y Mehta
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, United States of America
| | - Prabhjit Kaur
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, United States of America
| | - Yiwen Wang
- Department of Biostatistics and Biomathematics, Georgetown University Medical Center, Washington, DC, United States of America
| | - Smrithi S Menon
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, United States of America
| | - Shreyans K Jain
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, United States of America
| | - Rose A Moonjelly
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, United States of America
| | - Shubhankar Suman
- Departments of Biochemistry and Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Kamal Datta
- Departments of Biochemistry and Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Rajbir Singh
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, United States of America
| | - Paul Fogel
- Unité MéDIAN, UMR CNRS 6237 MEDYC, Université de Reims, Reims, France
| | - Amrita K Cheema
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, United States of America.,Departments of Biochemistry and Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC, United States of America
| |
Collapse
|
245
|
Iorio V, Rosati A, D’Auria R, De Marco M, Marzullo L, Basile A, Festa M, Pascale M, Remondelli P, Capunzo M, Sala G, Damiani V, Amodio G, Di Nicola M, Lattanzio R, Turco MC, De Laurenzi V. Combined effect of anti-BAG3 and anti-PD-1 treatment on macrophage infiltrate, CD8 + T cell number and tumour growth in pancreatic cancer. Gut 2018; 67:780-782. [PMID: 28801350 PMCID: PMC5868239 DOI: 10.1136/gutjnl-2017-314225] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 07/26/2017] [Accepted: 07/29/2017] [Indexed: 01/01/2023]
Affiliation(s)
- Vittoria Iorio
- Biouniversa srl, c/o University of Salerno, Montoro, Avellino, Italy,Department of Medicine, Surgery and Dentistry, Schola Medica Salernitana, University of Salerno, Baronissi, Salerno, Italy
| | - Alessandra Rosati
- Biouniversa srl, c/o University of Salerno, Montoro, Avellino, Italy,Department of Medicine, Surgery and Dentistry, Schola Medica Salernitana, University of Salerno, Baronissi, Salerno, Italy
| | - Raffaella D’Auria
- Biouniversa srl, c/o University of Salerno, Montoro, Avellino, Italy,Department of Medicine, Surgery and Dentistry, Schola Medica Salernitana, University of Salerno, Baronissi, Salerno, Italy
| | - Margot De Marco
- Biouniversa srl, c/o University of Salerno, Montoro, Avellino, Italy,Department of Medicine, Surgery and Dentistry, Schola Medica Salernitana, University of Salerno, Baronissi, Salerno, Italy
| | - Liberato Marzullo
- Biouniversa srl, c/o University of Salerno, Montoro, Avellino, Italy,Department of Medicine, Surgery and Dentistry, Schola Medica Salernitana, University of Salerno, Baronissi, Salerno, Italy
| | - Anna Basile
- Biouniversa srl, c/o University of Salerno, Montoro, Avellino, Italy,Department of Medicine, Surgery and Dentistry, Schola Medica Salernitana, University of Salerno, Baronissi, Salerno, Italy
| | - Michelina Festa
- Biouniversa srl, c/o University of Salerno, Montoro, Avellino, Italy,Department of Pharmacy, Division of Biomedicine ‘A Leone’, University of Salerno, Fisciano, Salerno, Italy
| | - Maria Pascale
- Biouniversa srl, c/o University of Salerno, Montoro, Avellino, Italy,Department of Pharmacy, Division of Biomedicine ‘A Leone’, University of Salerno, Fisciano, Salerno, Italy
| | - Paolo Remondelli
- Department of Medicine, Surgery and Dentistry, Schola Medica Salernitana, University of Salerno, Baronissi, Salerno, Italy
| | - Mario Capunzo
- Department of Medicine, Surgery and Dentistry, Schola Medica Salernitana, University of Salerno, Baronissi, Salerno, Italy
| | - Gianluca Sala
- Department of Medicine and Biotechnology, University G d’Annunzio and CeSI-MeT, Chieti, Italy
| | - Verena Damiani
- Department of Medicine and Biotechnology, University G d’Annunzio and CeSI-MeT, Chieti, Italy
| | - Giuseppina Amodio
- Department of Medicine, Surgery and Dentistry, Schola Medica Salernitana, University of Salerno, Baronissi, Salerno, Italy
| | - Marta Di Nicola
- Department of Medicine and Biotechnology, University G d’Annunzio and CeSI-MeT, Chieti, Italy
| | - Rossano Lattanzio
- Department of Medicine and Biotechnology, University G d’Annunzio and CeSI-MeT, Chieti, Italy
| | - Maria Caterina Turco
- Biouniversa srl, c/o University of Salerno, Montoro, Avellino, Italy,Department of Medicine, Surgery and Dentistry, Schola Medica Salernitana, University of Salerno, Baronissi, Salerno, Italy
| | - Vincenzo De Laurenzi
- Biouniversa srl, c/o University of Salerno, Montoro, Avellino, Italy,Department of Medicine and Biotechnology, University G d’Annunzio and CeSI-MeT, Chieti, Italy
| |
Collapse
|
246
|
Lan J, Li R, Yin LM, Deng L, Gui J, Chen BQ, Zhou L, Meng MB, Huang QR, Mo XM, Wei YQ, Lu B, Dicker A, Xue JX, Lu Y. Targeting Myeloid-derived Suppressor Cells and Programmed Death Ligand 1 Confers Therapeutic Advantage of Ablative Hypofractionated Radiation Therapy Compared With Conventional Fractionated Radiation Therapy. Int J Radiat Oncol Biol Phys 2018; 101:74-87. [PMID: 29619980 DOI: 10.1016/j.ijrobp.2018.01.071] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 12/13/2017] [Accepted: 01/22/2018] [Indexed: 02/05/2023]
Abstract
PURPOSE Ablative hypofractionated radiation therapy (AHFRT) presents a therapeutic advantage compared with conventional fractionated radiation therapy (CFRT) for primary and oligometastatic cancers. However, the underlying mechanisms remain largely unknown. In the present study, we compared the immune alterations in response to AHFRT versus CFRT and examined the significance of immune regulations contributing to the efficacy of AHFRT. METHODS AND MATERIALS We established subcutaneous tumors using syngeneic lung cancer and melanoma cells in both immunocompetent and immunocompromised mice and treated them with AHFRT and CFRT under the same biologically equivalent dose. RESULTS Compared with CFRT, AHFRT significantly inhibited tumor growth in immunocompetent, but not immunocompromised, mice. On the cellular level, AHFRT reduced the recruitment of myeloid-derived suppressor cells (MDSCs) into tumors and decreased the expression of programmed death-ligand 1 (PD-L1) on those cells, which unlashed the cytotoxicity of CD8+ T cells. Through the downregulation of vascular endothelial growth factor (VEGF), AHFRT inhibited VEGF/VEGF receptor signaling, which was essential for MDSC recruitment. When combined with anti-PD-L1 antibody, AHFRT presented with greater efficacy in controlling tumor growth and improving mouse survival. By altering immune regulation, AHFRT, but not CFRT, significantly delayed the growth of secondary tumors implanted outside the irradiation field. CONCLUSIONS Targeting MDSC recruitment and enhancing antitumor immunity are crucial for the therapeutic efficacy of AHFRT. When combined with anti-PD-L1 immunotherapy, AHFRT was more potent for cancer treatment.
Collapse
Affiliation(s)
- Jie Lan
- Department of Thoracic Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Rui Li
- Department of Thoracic Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Li-Mei Yin
- Department of Thoracic Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Lei Deng
- Department of Thoracic Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jun Gui
- Department of Biomedical Sciences, Mari Lowe Center for Comparative Oncology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Bao-Qing Chen
- Department of Thoracic Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Lin Zhou
- Department of Thoracic Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Mao-Bin Meng
- Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Qiao-Rong Huang
- Laboratory of Stem Cell Biology, West China Hospital, Sichuan University, Chengdu, China
| | - Xian-Ming Mo
- Laboratory of Stem Cell Biology, West China Hospital, Sichuan University, Chengdu, China
| | - Yu-Quan Wei
- Department of Thoracic Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Bo Lu
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Adam Dicker
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Jian-Xin Xue
- Department of Thoracic Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
| | - You Lu
- Department of Thoracic Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
247
|
Johnson BA, Yarchoan M, Lee V, Laheru DA, Jaffee EM. Strategies for Increasing Pancreatic Tumor Immunogenicity. Clin Cancer Res 2018; 23:1656-1669. [PMID: 28373364 DOI: 10.1158/1078-0432.ccr-16-2318] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 01/23/2017] [Accepted: 01/27/2017] [Indexed: 12/15/2022]
Abstract
Immunotherapy has changed the standard of care for multiple deadly cancers, including lung, head and neck, gastric, and some colorectal cancers. However, single-agent immunotherapy has had little effect in pancreatic ductal adenocarcinoma (PDAC). Increasing evidence suggests that the PDAC microenvironment is comprised of an intricate network of signals between immune cells, PDAC cells, and stroma, resulting in an immunosuppressive environment resistant to single-agent immunotherapies. In this review, we discuss differences between immunotherapy-sensitive cancers and PDAC, the complex interactions between PDAC stroma and suppressive tumor-infiltrating cells that facilitate PDAC development and progression, the immunologic targets within these complex networks that are druggable, and data supporting combination drug approaches that modulate multiple PDAC signals, which should lead to improved clinical outcomes. Clin Cancer Res; 23(7); 1656-69. ©2017 AACRSee all articles in this CCR Focus section, "Pancreatic Cancer: Challenge and Inspiration."
Collapse
Affiliation(s)
- Burles A Johnson
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, Maryland
| | - Mark Yarchoan
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, Maryland
| | - Valerie Lee
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, Maryland
| | - Daniel A Laheru
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, Maryland
| | - Elizabeth M Jaffee
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, Maryland. .,Department of Pathology, Sidney Kimmel Comprehensive Cancer Center, Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
248
|
Schofield HK, Zeller J, Espinoza C, Halbrook CJ, del Vecchio A, Magnuson B, Fabo T, Daylan AEC, Kovalenko I, Lee HJ, Yan W, Feng Y, Karim SA, Kremer DM, Kumar-Sinha C, Lyssiotis CA, Ljungman M, Morton JP, Galbán S, Fearon ER, Pasca di Magliano M. Mutant p53R270H drives altered metabolism and increased invasion in pancreatic ductal adenocarcinoma. JCI Insight 2018; 3:97422. [PMID: 29367463 PMCID: PMC5821189 DOI: 10.1172/jci.insight.97422] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 12/19/2017] [Indexed: 12/13/2022] Open
Abstract
Pancreatic cancer is characterized by nearly universal activating mutations in KRAS. Among other somatic mutations, TP53 is mutated in more than 75% of human pancreatic tumors. Genetically engineered mice have proven instrumental in studies of the contribution of individual genes to carcinogenesis. Oncogenic Kras mutations occur early during pancreatic carcinogenesis and are considered an initiating event. In contrast, mutations in p53 occur later during tumor progression. In our model, we recapitulated the order of mutations of the human disease, with p53 mutation following expression of oncogenic Kras. Further, using an inducible and reversible expression allele for mutant p53, we inactivated its expression at different stages of carcinogenesis. Notably, the function of mutant p53 changes at different stages of carcinogenesis. Our work establishes a requirement for mutant p53 for the formation and maintenance of pancreatic cancer precursor lesions. In tumors, mutant p53 becomes dispensable for growth. However, it maintains the altered metabolism that characterizes pancreatic cancer and mediates its malignant potential. Further, mutant p53 promotes epithelial-mesenchymal transition (EMT) and cancer cell invasion. This work generates new mouse models that mimic human pancreatic cancer and expands our understanding of the role of p53 mutation, common in the majority of human malignancies.
Collapse
Affiliation(s)
- Heather K. Schofield
- Department of Surgery
- Program in Cellular and Molecular Biology
- Medical Scientist Training Program
| | | | | | | | | | - Brian Magnuson
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Tania Fabo
- Harvard University, Cambridge, Massachusetts, USA
| | | | | | - Ho-Joon Lee
- Department of Molecular and Integrative Physiology, and
| | | | | | - Saadia A. Karim
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| | | | | | - Costas A. Lyssiotis
- Department of Molecular and Integrative Physiology, and
- Comprehensive Cancer Center
| | - Mats Ljungman
- Comprehensive Cancer Center
- Department of Radiation Oncology
- Department of Environmental Health Sciences
| | - Jennifer P. Morton
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| | | | - Eric R. Fearon
- Department of Internal Medicine
- Comprehensive Cancer Center
- Department of Human Genetics, and
| | - Marina Pasca di Magliano
- Department of Surgery
- Program in Cellular and Molecular Biology
- Comprehensive Cancer Center
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
249
|
Beatty GL, Eghbali S, Kim R. Deploying Immunotherapy in Pancreatic Cancer: Defining Mechanisms of Response and Resistance. Am Soc Clin Oncol Educ Book 2017; 37:267-278. [PMID: 28561678 DOI: 10.1200/edbk_175232] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The immune reaction to pancreatic ductal adenocarcinoma (PDAC) is a strong prognostic determinant of clinical outcomes and may be a promising therapeutic target. We use multiplex immunohistochemistry to illustrate distinct patterns of T-cell and myeloid cell infiltration seen in PDAC that have therapeutic implications and discuss the current state of immunotherapy in this disease. Based on collective findings from clinical and preclinical studies, two conceptual models have emerged for applying immunotherapy in PDAC that involve (1) restoring elements of T-cell immunosurveillance and (2) redirecting myeloid cells to condition tumors with increased sensitivity to cytotoxic therapies. Overall, the success of immunotherapy in PDAC will most likely rely on strategic combinations of therapies that are informed by well-designed correlative analyses that consider the spatial heterogeneity of immune responses detected in malignant tissues.
Collapse
Affiliation(s)
- Gregory L Beatty
- From the Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA; Department of Medicine, Division of Hematology-Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Shabnam Eghbali
- From the Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA; Department of Medicine, Division of Hematology-Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Rebecca Kim
- From the Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA; Department of Medicine, Division of Hematology-Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
250
|
Zhang Y, Yan W, Mathew E, Kane KT, Brannon A, Adoumie M, Vinta A, Crawford HC, Pasca di Magliano M. Epithelial-Myeloid cell crosstalk regulates acinar cell plasticity and pancreatic remodeling in mice. eLife 2017; 6:27388. [PMID: 28980940 PMCID: PMC5690281 DOI: 10.7554/elife.27388] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 10/04/2017] [Indexed: 12/14/2022] Open
Abstract
Dedifferentiation of acini to duct-like cells occurs during the physiologic damage response in the pancreas, but this process can be co-opted by oncogenic Kras to drive carcinogenesis. Myeloid cells infiltrate the pancreas during the onset of pancreatic cancer, and promote carcinogenesis. Here, we show that the function of infiltrating myeloid cells is regulated by oncogenic Kras expressed in epithelial cells. In the presence of oncogenic Kras, myeloid cells promote acinar dedifferentiation and carcinogenesis. Upon inactivation of oncogenic Kras, myeloid cells promote re-differentiation of acinar cells, remodeling of the fibrotic stroma and tissue repair. Intriguingly, both aspects of myeloid cell activity depend, at least in part, on activation of EGFR/MAPK signaling, with different subsets of ligands and receptors in different target cells promoting carcinogenesis or repair, respectively. Thus, the cross-talk between epithelial cells and infiltrating myeloid cells determines the balance between tissue repair and carcinogenesis in the pancreas.
Collapse
Affiliation(s)
- Yaqing Zhang
- Department of Surgery, University of Michigan, Ann Arbor, United States
| | - Wei Yan
- Department of Surgery, University of Michigan, Ann Arbor, United States.,Department of Pathology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Esha Mathew
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, United States
| | - Kevin T Kane
- Department of Surgery, University of Michigan, Ann Arbor, United States
| | - Arthur Brannon
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, United States.,Medical Scientist Training Program, University of Michigan, Ann Arbor, United States
| | - Maeva Adoumie
- College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, United States
| | - Alekya Vinta
- College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, United States
| | - Howard C Crawford
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, United States.,Department of Internal Medicine, University of Michigan, Ann Arbor, United States.,Comprehensive Cancer Center, University of Michigan, Ann Arbor, United States
| | - Marina Pasca di Magliano
- Department of Surgery, University of Michigan, Ann Arbor, United States.,Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, United States.,Comprehensive Cancer Center, University of Michigan, Ann Arbor, United States.,Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, United States
| |
Collapse
|