201
|
Yang C, Chen D, Hong X. Estimation of Viscoelastic Properties of Cells Using Acoustic Tweezing Cytometry. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2016; 35:2537-2542. [PMID: 27872412 DOI: 10.7863/ultra.15.10076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 01/13/2016] [Accepted: 03/04/2016] [Indexed: 06/06/2023]
Abstract
OBJECTIVES Recently developed acoustic tweezing cytometry uses ultrasound-responsive targeted microbubbles for biomechanical stimulation of live cells at the subcellular level. The purpose of this research was to estimate the viscoelastic characteristics of cells from the displacements of cell-bound microbubbles in response to ultrasound pulses on acoustic tweezing cytometry. METHODS Microbubbles were bound to NIH/3T3 fibroblasts and ATDC5 cells through an integrin-cytoskeleton linkage. The evolution of microbubble behaviors under irradiation by ultrasound pulses was captured by a high-speed camera and tracked by a customized algorithm. The total damping constant, stiffness, and rigidity of the cells were estimated by fitting the measured temporal displacement profiles to a Kelvin-Voigt-based model. RESULTS The mean maximum displacement of the microbubbles attached to NIH/3T3 fibroblasts was much greater than that for ATDC5 cells. The mean fitted damping constant and stiffness ± SD for ATDC5 cells were 28.16 ± 7.08 mg/s and 0.5041 ± 0.1381 mN/m, respectively, and the values for NIH/3T3 fibroblasts were 13.12 ± 4.23 mg/s and 0.2591 ± 0.0715 mN/m. The rigidity for ATDC5 cells was 331.46 ± 106.50 MPa, whereas that for NIH/3T3 fibroblasts was 117.92 ± 34.83 MPa. CONCLUSIONS The Arg-Gly-Asp-integrin-cytoskeleton system of NIH/3T3 fibroblasts appears to be softer than that of ATDC5 cells. The rigidity of ATDC5 cells was significantly greater than that of NIH/3T3 fibroblasts at the 95% confidence level. This strategy provides a novel way to determine the viscoelastic properties of the live cells.
Collapse
Affiliation(s)
- Chunmei Yang
- Department of Biomedical Engineering, Tianjin University, Tianjin, China
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan USA
| | - Di Chen
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan USA
| | - Xiaowei Hong
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan USA
| |
Collapse
|
202
|
Lourenço T, Grãos M. Modulation of Oligodendrocyte Differentiation by Mechanotransduction. Front Cell Neurosci 2016; 10:277. [PMID: 27965541 PMCID: PMC5126080 DOI: 10.3389/fncel.2016.00277] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 11/18/2016] [Indexed: 01/09/2023] Open
Abstract
Oligodendrocytes (OLs) are responsible for the myelination of axons in the central nervous system (CNS). The differentiation of OLs encompasses several stages, through which cells undergo dramatic biochemical and morphological changes. OL differentiation is modulated by soluble factors (SFs)—such as growth factors and hormones—, known to be essential for each maturation stage. Besides SFs, insoluble factors such as extracellular matrix (ECM) proteins and other microenvironmental elements also play a pivotal role during OL differentiation. Recently, a growing number of studies were published concerning the effect of biophysical properties of the extracellular milieu on OL differentiation and myelination, showing the importance of ECM stiffness and topography, strain forces and spatial constraints. For instance, it was shown in vitro that OL differentiation and maturation is enhanced by substrates within the reported range of stiffness of the brain and that this effect is potentiated by the presence of merosin, whereas the myelination process is influenced by the diameter of axonal-like fibers. In this mini review article, we will discuss the effect of mechanical cues during OL differentiation and the possible molecular mechanisms involved in such regulation.
Collapse
Affiliation(s)
- Tânia Lourenço
- Biocant, Technology Transfer AssociationCantanhede, Portugal; Centre for Neuroscience and Cell Biology (CNC), University of CoimbraCoimbra, Portugal
| | - Mário Grãos
- Biocant, Technology Transfer AssociationCantanhede, Portugal; Centre for Neuroscience and Cell Biology (CNC), University of CoimbraCoimbra, Portugal
| |
Collapse
|
203
|
Local calcium signalling is mediated by mechanosensitive ion channels in mesenchymal stem cells. Biochem Biophys Res Commun 2016; 482:563-568. [PMID: 27856251 DOI: 10.1016/j.bbrc.2016.11.074] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 11/12/2016] [Indexed: 12/16/2022]
Abstract
Mechanical forces are implicated in key physiological processes in stem cells, including proliferation, differentiation and lineage switching. To date, there is an evident lack of understanding of how external mechanical cues are coupled with calcium signalling in stem cells. Mechanical reactions are of particular interest in adult mesenchymal stem cells because of their promising potential for use in tissue remodelling and clinical therapy. Here, single channel patch-clamp technique was employed to search for cation channels involved in mechanosensitivity in mesenchymal endometrial-derived stem cells (hMESCs). Functional expression of native mechanosensitive stretch-activated channels (SACs) and calcium-sensitive potassium channels of different conductances in hMESCs was shown. Single current analysis of stretch-induced channel activity revealed functional coupling of SACs and BK channels in plasma membrane. The combination of cell-attached and inside-out experiments have indicated that highly localized Ca2+ entry via SACs triggers BK channel activity. At the same time, SK channels are not coupled with SACs despite of high calcium sensitivity as compared to BK. Our data demonstrate novel mechanism controlling BK channel activity in native cells. We conclude that SACs and BK channels are clusterized in functional mechanosensitive domains in the plasma membrane of hMESCs. Co-clustering of ion channels may significantly contribute to mechano-dependent calcium signalling in stem cells.
Collapse
|
204
|
Zhuo Y, Choi JS, Marin T, Yu H, Harley BA, Cunningham BT. Quantitative Imaging of Cell Membrane-associated Effective Mass Density Using Photonic Crystal Enhanced Microscopy (PCEM). PROGRESS IN QUANTUM ELECTRONICS 2016. [PMID: 28649149 PMCID: PMC5479321 DOI: 10.1016/j.pquantelec.2016.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Adhesion is a critical cellular process that contributes to migration, apoptosis, differentiation, and division. It is followed by the redistribution of cellular materials at the cell membrane or at the cell-surface interface for cells interacting with surfaces, such as basement membranes. Dynamic and quantitative tracking of changes in cell adhesion mass redistribution is challenging because cells are rapidly moving, inhomogeneous, and nonequilibrium objects, whose physical and mechanical properties are difficult to measure or predict. Here, we report a novel biosensor based microscopy approach termed Photonic Crystal Enhanced Microscopy (PCEM) that enables the movement of cellular materials at the plasma membrane of individual live cells to be dynamically monitored and quantitatively imaged. PCEM utilizes a photonic crystal biosensor surface, which can be coated with arbitrary extracellular matrix materials to facilitate cellular interactions, within a modified brightfield microscope with a low intensity non-coherent light source. Benefiting from the high sensitivity, narrow resonance peak, and tight spatial confinement of the evanescent field atop the photonic crystal biosensor, PCEM enables label-free live cell imaging with high sensitivity and high lateral and axial spatial-resolution, thereby allowing dynamic adhesion phenotyping of single cells without the use of fluorescent tags or stains. We apply PCEM to investigate adhesion and the early stage migration of different types of stem cells and cancer cells. By applying image processing algorithms to analyze the complex spatiotemporal information generated by PCEM, we offer insight into how the plasma membrane of anchorage dependent cells is dynamically organized during cell adhesion. The imaging and analysis results presented here provide a new tool for biologists to gain a deeper understanding of the fundamental mechanisms involved with cell adhesion and concurrent or subsequent migration events.
Collapse
Affiliation(s)
- Yue Zhuo
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Ji Sun Choi
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Thibault Marin
- InstaRecon Inc., 60 Hazelwood Dr, Champaign, IL 61820, USA
| | - Hojeong Yu
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Brendan A. Harley
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Brian T. Cunningham
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
205
|
Rothdiener M, Hegemann M, Uynuk-Ool T, Walters B, Papugy P, Nguyen P, Claus V, Seeger T, Stoeckle U, Boehme KA, Aicher WK, Stegemann JP, Hart ML, Kurz B, Klein G, Rolauffs B. Stretching human mesenchymal stromal cells on stiffness-customized collagen type I generates a smooth muscle marker profile without growth factor addition. Sci Rep 2016; 6:35840. [PMID: 27775041 PMCID: PMC5075785 DOI: 10.1038/srep35840] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 10/05/2016] [Indexed: 12/18/2022] Open
Abstract
Using matrix elasticity and cyclic stretch have been investigated for inducing mesenchymal stromal cell (MSC) differentiation towards the smooth muscle cell (SMC) lineage but not in combination. We hypothesized that combining lineage-specific stiffness with cyclic stretch would result in a significantly increased expression of SMC markers, compared to non-stretched controls. First, we generated dense collagen type I sheets by mechanically compressing collagen hydrogels. Atomic force microscopy revealed a nanoscale stiffness range known to support myogenic differentiation. Further characterization revealed viscoelasticity and stable biomechanical properties under cyclic stretch with >99% viable adherent human MSC. MSCs on collagen sheets demonstrated a significantly increased mRNA but not protein expression of SMC markers, compared to on culture flasks. However, cyclic stretch of MSCs on collagen sheets significantly increased both mRNA and protein expression of α-smooth muscle actin, transgelin, and calponin versus plastic and non-stretched sheets. Thus, lineage-specific stiffness and cyclic stretch can be applied together for inducing MSC differentiation towards SMCs without the addition of recombinant growth factors or other soluble factors. This represents a novel stimulation method for modulating the phenotype of MSCs towards SMCs that could easily be incorporated into currently available methodologies to obtain a more targeted control of MSC phenotype.
Collapse
Affiliation(s)
- Miriam Rothdiener
- Siegfried Weller Institute for Trauma Research, BG Trauma Clinic Tuebingen, University of Tuebingen, Germany
| | | | - Tatiana Uynuk-Ool
- Siegfried Weller Institute for Trauma Research, BG Trauma Clinic Tuebingen, University of Tuebingen, Germany
| | - Brandan Walters
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Piruntha Papugy
- Siegfried Weller Institute for Trauma Research, BG Trauma Clinic Tuebingen, University of Tuebingen, Germany
| | - Phong Nguyen
- Siegfried Weller Institute for Trauma Research, BG Trauma Clinic Tuebingen, University of Tuebingen, Germany
| | - Valentin Claus
- Siegfried Weller Institute for Trauma Research, BG Trauma Clinic Tuebingen, University of Tuebingen, Germany
| | - Tanja Seeger
- Center for Medical Research, Medical University Clinic II, University of Tuebingen, Germany
| | - Ulrich Stoeckle
- Clinic for Trauma and Restorative Surgery, BG Trauma Clinic Tuebingen, University of Tuebingen, Germany
| | - Karen A. Boehme
- Department of Orthopaedic Surgery, University of Tuebingen, Germany
| | | | - Jan P. Stegemann
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Melanie L. Hart
- Department of Orthopedics and Trauma Surgery, Albert-Ludwigs-University, Freiburg, Germany
| | - Bodo Kurz
- Department of Anatomy, Christian-Albrechts-University, Kiel, Germany
| | - Gerd Klein
- Center for Medical Research, Medical University Clinic II, University of Tuebingen, Germany
| | - Bernd Rolauffs
- Department of Orthopedics and Trauma Surgery, Albert-Ludwigs-University, Freiburg, Germany
| |
Collapse
|
206
|
Holle AW, McIntyre AJ, Kehe J, Wijesekara P, Young JL, Vincent LG, Engler AJ. High content image analysis of focal adhesion-dependent mechanosensitive stem cell differentiation. Integr Biol (Camb) 2016; 8:1049-1058. [PMID: 27723854 PMCID: PMC5079280 DOI: 10.1039/c6ib00076b] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Human mesenchymal stem cells (hMSCs) receive differentiation cues from a number of stimuli, including extracellular matrix (ECM) stiffness. The pathways used to sense stiffness and other physical cues are just now being understood and include proteins within focal adhesions. To rapidly advance the pace of discovery for novel mechanosensitive proteins, we employed a combination of in silico and high throughput in vitro methods to analyze 47 different focal adhesion proteins for cryptic kinase binding sites. High content imaging of hMSCs treated with small interfering RNAs for the top 6 candidate proteins showed novel effects on both osteogenic and myogenic differentiation; Vinculin and SORBS1 were necessary for stiffness-mediated myogenic and osteogenic differentiation, respectively. Both of these proteins bound to MAPK1 (also known as ERK2), suggesting that it plays a context-specific role in mechanosensing for each lineage; validation for these sites was performed. This high throughput system, while specifically built to analyze stiffness-mediated stem cell differentiation, can be expanded to other physical cues to more broadly assess mechanical signaling and increase the pace of sensor discovery.
Collapse
Affiliation(s)
- Andrew W Holle
- Department of Bioengineering, University of California, 9500 Gilman Drive, MC 0695, La Jolla, San Diego, CA, USA.
| | - Alistair J McIntyre
- Department of Bioengineering, University of California, 9500 Gilman Drive, MC 0695, La Jolla, San Diego, CA, USA.
| | - Jared Kehe
- Department of Bioengineering, University of California, 9500 Gilman Drive, MC 0695, La Jolla, San Diego, CA, USA.
| | - Piyumi Wijesekara
- Department of Bioengineering, University of California, 9500 Gilman Drive, MC 0695, La Jolla, San Diego, CA, USA.
| | - Jennifer L Young
- Department of Bioengineering, University of California, 9500 Gilman Drive, MC 0695, La Jolla, San Diego, CA, USA.
| | - Ludovic G Vincent
- Department of Bioengineering, University of California, 9500 Gilman Drive, MC 0695, La Jolla, San Diego, CA, USA.
| | - Adam J Engler
- Department of Bioengineering, University of California, 9500 Gilman Drive, MC 0695, La Jolla, San Diego, CA, USA. and Sanford Consortium for Regenerative Medicine, La Jolla, CA 92093, USA
| |
Collapse
|
207
|
Bokka KK, Jesudason EC, Warburton D, Lubkin SR. Quantifying cellular and subcellular stretches in embryonic lung epithelia under peristalsis: where to look for mechanosensing. Interface Focus 2016; 6:20160031. [PMID: 27708758 DOI: 10.1098/rsfs.2016.0031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Peristalsis begins in the lung as soon as the smooth muscle (SM) forms, and persists until birth. As the prenatal lung is filled with liquid, SM action can, through lumen pressure, deform tissues far from the immediately adjacent tissues. Stretching of embryonic tissues has been shown to have potent morphogenetic effects. We hypothesize that these effects are at work in lung morphogenesis. In order to refine that broad hypothesis in a quantitative framework, we geometrically analyse cell shapes in an epithelial tissue, and individual cell deformations resulting from peristaltic waves that completely occlude the airway. Typical distortions can be very large, with opposite orientations in the stalk and tip regions. Apical distortions are always greater than basal distortions. We give a quantitative estimate of the relationship between length of occluded airway and the resulting tissue stretch in the distal tip. We refine our analysis of cell stresses and strains from peristalsis with a simple mechanical model of deformation of cells within an epithelium, which accounts for basic subcellular geometry and material properties. The model identifies likely stress concentrations near the nucleus and at the apical cell-cell junction. The surprisingly large strains of airway peristalsis may serve to rearrange cells and stimulate other mechanosensitive processes by repeatedly aligning cytoskeletal components and/or breaking and reforming lateral cell-cell adhesions. Stress concentrations between nuclei of adjacent cells may serve as a mechanical control mechanism guiding the alignment of nuclei as an epithelium matures.
Collapse
Affiliation(s)
| | - Edwin C Jesudason
- Paediatric Surgery , University of Liverpool , Liverpool L69 3BX , UK
| | - David Warburton
- Saban Research Institute , 4650 Sunset Boulevard, MS# 35, Los Angeles, CA 90027 , USA
| | | |
Collapse
|
208
|
Zhang T, Gong T, Xie J, Lin S, Liu Y, Zhou T, Lin Y. Softening Substrates Promote Chondrocytes Phenotype via RhoA/ROCK Pathway. ACS APPLIED MATERIALS & INTERFACES 2016; 8:22884-91. [PMID: 27534990 DOI: 10.1021/acsami.6b07097] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Tao Zhang
- State Key Laboratory of Oral
Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P.R. China
| | - Tao Gong
- State Key Laboratory of Oral
Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P.R. China
| | - Jing Xie
- State Key Laboratory of Oral
Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P.R. China
| | - Shiyu Lin
- State Key Laboratory of Oral
Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P.R. China
| | - Yao Liu
- State Key Laboratory of Oral
Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P.R. China
| | - Tengfei Zhou
- State Key Laboratory of Oral
Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P.R. China
| | - Yunfeng Lin
- State Key Laboratory of Oral
Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P.R. China
| |
Collapse
|
209
|
Alapan Y, Younesi M, Akkus O, Gurkan UA. Anisotropically Stiff 3D Micropillar Niche Induces Extraordinary Cell Alignment and Elongation. Adv Healthc Mater 2016; 5:1884-92. [PMID: 27191679 PMCID: PMC4982772 DOI: 10.1002/adhm.201600096] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 03/10/2016] [Indexed: 12/30/2022]
Abstract
A microfabricated pillar substrate is developed to confine, align, and elongate cells, allowing decoupled analysis of stiffness and directionality in 3D. Mesenchymal stem cells and cardiomyocytes are successfully confined in a 3D environment with precisely tunable stiffness anisotropy. It is discovered that anisotropically stiff micropillar substrates provide cellular confinement in 3D, aligning cells in the stiffer direction with extraordinary elongation.
Collapse
Affiliation(s)
- Yunus Alapan
- Mechanical and Aerospace Engineering Department Case, Western Reserve University, Cleveland, OH 44106, USA
| | - Mousa Younesi
- Mechanical and Aerospace Engineering Department Case, Western Reserve University, Cleveland, OH 44106, USA
| | - Ozan Akkus
- Mechanical and Aerospace Engineering Department Case, Western Reserve University, Cleveland, OH 44106, USA. Biomedical Engineering Department, Case Western Reserve University, Cleveland, OH 44106, USA. Department of Orthopedics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Umut A. Gurkan
- Mechanical and Aerospace Engineering Department Case, Western Reserve University, Cleveland, OH 44106, USA. Biomedical Engineering Department, Case Western Reserve University, Cleveland, OH 44106, USA. Department of Orthopedics, Case Western Reserve University, Cleveland, OH 44106, USA. Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH 44106, USA
| |
Collapse
|
210
|
Under Pressure: Mechanical Stress Management in the Nucleus. Cells 2016; 5:cells5020027. [PMID: 27314389 PMCID: PMC4931676 DOI: 10.3390/cells5020027] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/03/2016] [Accepted: 06/06/2016] [Indexed: 12/23/2022] Open
Abstract
Cells are constantly adjusting to the mechanical properties of their surroundings, operating a complex mechanochemical feedback, which hinges on mechanotransduction mechanisms. Whereas adhesion structures have been shown to play a central role in mechanotransduction, it now emerges that the nucleus may act as a mechanosensitive structure. Here, we review recent advances demonstrating that mechanical stress emanating from the cytoskeleton can activate pathways in the nucleus which eventually impact both its structure and the transcriptional machinery.
Collapse
|
211
|
Urquia Edreira ER, Hayrapetyan A, Wolke JGC, Croes HJE, Klymov A, Jansen JA, van den Beucken JJJP. Effect of calcium phosphate ceramic substrate geometry on mesenchymal stromal cell organization and osteogenic differentiation. Biofabrication 2016; 8:025006. [DOI: 10.1088/1758-5090/8/2/025006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
212
|
Abdeen AA, Lee J, Kilian KA. Capturing extracellular matrix properties in vitro: Microengineering materials to decipher cell and tissue level processes. Exp Biol Med (Maywood) 2016; 241:930-8. [PMID: 27075930 PMCID: PMC4950351 DOI: 10.1177/1535370216644532] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Rapid advances in biology have led to the establishment of new fields with tremendous translational potential including regenerative medicine and immunoengineering. One commonality to these fields is the need to extract cells for manipulation in vitro; however, results obtained in laboratory cell culture will often differ widely from observations made in vivo. To more closely emulate native cell biology in the laboratory, designer engineered environments have proved a successful methodology to decipher the properties of the extracellular matrix that govern cellular decision making. Here, we present an overview of matrix properties that affect cell behavior, strategies for recapitulating important parameters in vitro, and examples of how these properties can affect cell and tissue level processes, with emphasis on leveraging these tools for immunoengineering.
Collapse
Affiliation(s)
- Amr A Abdeen
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Junmin Lee
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Kristopher A Kilian
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
213
|
Le NNT, Zorn S, Schmitt SK, Gopalan P, Murphy WL. Hydrogel arrays formed via differential wettability patterning enable combinatorial screening of stem cell behavior. Acta Biomater 2016; 34:93-103. [PMID: 26386315 PMCID: PMC4794413 DOI: 10.1016/j.actbio.2015.09.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 09/03/2015] [Accepted: 09/15/2015] [Indexed: 01/12/2023]
Abstract
Here, we have developed a novel method for forming hydrogel arrays using surfaces patterned with differential wettability. Our method for benchtop array formation is suitable for enhanced-throughput, combinatorial screening of biochemical and biophysical cues from chemically defined cell culture substrates. We demonstrated the ability to generate these arrays without the need for liquid handling systems and screened the combinatorial effects of substrate stiffness and immobilized cell adhesion peptide concentration on human mesenchymal stem cell (hMSC) behavior during short-term 2-dimensional cell culture. Regardless of substrate stiffness, hMSC initial cell attachment, spreading, and proliferation were linearly correlated with immobilized CRGDS peptide concentration. Increasing substrate stiffness also resulted in increased hMSC initial cell attachment, spreading, and proliferation; however, examination of the combinatorial effects of CRGDS peptide concentration and substrate stiffness revealed potential interplay between these distinct substrate signals. Maximal hMSC proliferation seen on substrates with either high stiffness or high CRGDS peptide concentration suggests that some baseline level of cytoskeletal tension was required for hMSC proliferation on hydrogel substrates and that multiple substrate signals could be engineered to work in synergy to promote mechanosensing and regulate cell behavior. STATEMENT OF SIGNIFICANCE Our novel array formation method using surfaces patterned with differential wettability offers the advantages of benchtop array formation for 2-dimensional cell cultures and enhanced-throughput screening without the need for liquid handling systems. Hydrogel arrays formed via our method are suitable for screening the influence of chemical (e.g. cell adhesive ligands) and physical (stiffness, size, shape, and thickness) substrate properties on stem cell behavior. The arrays are also fully compatible with commercially available micro-array add-on systems, which allows for simultaneous control of the insoluble and soluble cell culture environment. This study used hydrogel arrays to demonstrate that synergy between cell adhesion and mechanosensing can be used to regulate hMSC behavior.
Collapse
Affiliation(s)
- Ngoc Nhi T Le
- Materials Science Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Stefan Zorn
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Samantha K Schmitt
- Materials Science Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Padma Gopalan
- Materials Science Program, University of Wisconsin-Madison, Madison, WI, USA; Department of Material Science and Engineering, University of Wisconsin-Madison, Madison, WI, USA; Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - William L Murphy
- Materials Science Program, University of Wisconsin-Madison, Madison, WI, USA; Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA; Department of Material Science and Engineering, University of Wisconsin-Madison, Madison, WI, USA; Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
214
|
Chang FC, Tsao CT, Lin A, Zhang M, Levengood SL, Zhang M. PEG-chitosan hydrogel with tunable stiffness for study of drug response of breast cancer cells. Polymers (Basel) 2016; 8:112. [PMID: 27595012 PMCID: PMC5004991 DOI: 10.3390/polym8040112] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 03/21/2016] [Indexed: 01/23/2023] Open
Abstract
Mechanical properties of the extracellular matrix have a profound effect on the behavior of anchorage-dependent cells. However, the mechanisms that define the effects of matrix stiffness on cell behavior remains unclear. Therefore, the development and fabrication of synthetic matrices with well-defined stiffness is invaluable for studying the interactions of cells with their biophysical microenvironment in vitro. We demonstrate a methoxypolyethylene glycol (mPEG)-modified chitosan hydrogel network where hydrogel stiffness can be easily modulated under physiological conditions by adjusting the degree of mPEG grafting onto chitosan (PEGylation). We show that the storage modulus of the hydrogel increases as PEGylation decreases and the gels exhibit instant self-recovery after deformation. Breast cancer cells cultured on the stiffest hydrogels adopt a more malignant phenotype with increased resistance to doxorubicin as compared with cells cultured on tissue culture polystyrene or Matrigel. This work demonstrates the utility of mPEG-modified chitosan hydrogel, with tunable mechanical properties, as an improved replacement of conventional culture system for in vitro characterization of breast cancer cell phenotype and evaluation of cancer therapies.
Collapse
Affiliation(s)
- Fei-Chien Chang
- Department of Materials Science and Engineering, University of Washington, 302L Roberts Hall, Seattle, WA 98195, USA; (F.-C.C.); (C.-T.T.); (A.L.); (S.L.L.)
| | - Ching-Ting Tsao
- Department of Materials Science and Engineering, University of Washington, 302L Roberts Hall, Seattle, WA 98195, USA; (F.-C.C.); (C.-T.T.); (A.L.); (S.L.L.)
| | - Anqi Lin
- Department of Materials Science and Engineering, University of Washington, 302L Roberts Hall, Seattle, WA 98195, USA; (F.-C.C.); (C.-T.T.); (A.L.); (S.L.L.)
| | - Mengying Zhang
- Department of Molecular Engineering and Science Institute, University of Washington, Seattle, WA 98195, USA;
| | - Sheeny Lan Levengood
- Department of Materials Science and Engineering, University of Washington, 302L Roberts Hall, Seattle, WA 98195, USA; (F.-C.C.); (C.-T.T.); (A.L.); (S.L.L.)
| | - Miqin Zhang
- Department of Materials Science and Engineering, University of Washington, 302L Roberts Hall, Seattle, WA 98195, USA; (F.-C.C.); (C.-T.T.); (A.L.); (S.L.L.)
| |
Collapse
|
215
|
Uzer G, Thompson WR, Sen B, Xie Z, Yen SS, Miller S, Bas G, Styner M, Rubin CT, Judex S, Burridge K, Rubin J. Cell Mechanosensitivity to Extremely Low-Magnitude Signals Is Enabled by a LINCed Nucleus. Stem Cells 2016; 33:2063-76. [PMID: 25787126 DOI: 10.1002/stem.2004] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 01/19/2015] [Accepted: 02/19/2015] [Indexed: 12/21/2022]
Abstract
A cell's ability to recognize and adapt to the physical environment is central to its survival and function, but how mechanical cues are perceived and transduced into intracellular signals remains unclear. In mesenchymal stem cells (MSCs), high-magnitude substrate strain (HMS, ≥2%) effectively suppresses adipogenesis via induction of focal adhesion (FA) kinase (FAK)/mTORC2/Akt signaling generated at FAs. Physiologic systems also rely on a persistent barrage of low-level signals to regulate behavior. Exposing MSC to extremely low-magnitude mechanical signals (LMS) suppresses adipocyte formation despite the virtual absence of substrate strain (<0.001%), suggesting that LMS-induced dynamic accelerations can generate force within the cell. Here, we show that MSC response to LMS is enabled through mechanical coupling between the cytoskeleton and the nucleus, in turn activating FAK and Akt signaling followed by FAK-dependent induction of RhoA. While LMS and HMS synergistically regulated FAK activity at the FAs, LMS-induced actin remodeling was concentrated at the perinuclear domain. Preventing nuclear-actin cytoskeleton mechanocoupling by disrupting linker of nucleoskeleton and cytoskeleton (LINC) complexes inhibited these LMS-induced signals as well as prevented LMS repression of adipogenic differentiation, highlighting that LINC connections are critical for sensing LMS. In contrast, FAK activation by HMS was unaffected by LINC decoupling, consistent with signal initiation at the FA mechanosome. These results indicate that the MSC responds to its dynamic physical environment not only with "outside-in" signaling initiated by substrate strain, but vibratory signals enacted through the LINC complex enable matrix independent "inside-inside" signaling.
Collapse
Affiliation(s)
- Gunes Uzer
- Department of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - William R Thompson
- School of Physical Therapy, Indiana University, Indianapolis, Indiana, USA
| | - Buer Sen
- Department of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Zhihui Xie
- Department of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Sherwin S Yen
- Department of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Sean Miller
- Department of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Guniz Bas
- Department of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Maya Styner
- Department of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Clinton T Rubin
- Department of Biomedical Engineering, State University of New York, Stony Brook, New York, USA
| | - Stefan Judex
- Department of Biomedical Engineering, State University of New York, Stony Brook, New York, USA
| | - Keith Burridge
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Janet Rubin
- Department of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
216
|
Lin X, Shi Y, Cao Y, Liu W. Recent progress in stem cell differentiation directed by material and mechanical cues. ACTA ACUST UNITED AC 2016; 11:014109. [PMID: 26836059 DOI: 10.1088/1748-6041/11/1/014109] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Stem cells play essential roles in tissue regeneration in vivo via specific lineage differentiation induced by environmental factors. In the past, biochemical signals were the focus of induced stem cell differentiation. As reported by Engler et al (2006 Cell 126 677-89), biophysical signal mediated stem cell differentiation could also serve as an important inducer. With the advancement of material science, it becomes a possible strategy to generate active biophysical signals for directing stem cell fate through specially designed material microstructures. In the past five years, significant progress has been made in this field, and these designed biophysical signals include material elasticity/rigidity, micropatterned structure, extracellular matrix (ECM) coated materials, material transmitted extracellular mechanical force etc. A large number of investigations involved material directed differentiation of mesenchymal stem cells, neural stem/progenitor cells, adipose derived stem cells, hematopoietic stem/progenitor cells, embryonic stem cells and other cells. Hydrogel based materials were commonly used to create varied mechanical properties via modifying the ratio of different components, crosslinking levels, matrix concentration and conjugation with other components. Among them, polyacrylamide (PAM) and polydimethylsiloxane (PDMS) hydrogels remained the major types of material. Specially designed micropatterning was not only able to create a unique topographical surface to control cell shape, alignment, cell-cell and cell-matrix contact for basic stem cell biology study, but also could be integrated with 3D bioprinting to generate micropattered 3D structure and thus to induce stem cell based tissue regeneration. ECM coating on a specific topographical structure was capable of inducing even more specific and potent stem cell differentiation along with soluble factors and mechanical force. The article overviews the progress of the past five years in this particular field.
Collapse
Affiliation(s)
- Xunxun Lin
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Rd, People's Republic of China. Shanghai Key Laboratory of Tissue Engineering Research, National Tissue Engineering Center of China, Shanghai, People's Republic of China
| | | | | | | |
Collapse
|
217
|
Hannezo E, Coucke A, Joanny JF. Interplay of migratory and division forces as a generic mechanism for stem cell patterns. Phys Rev E 2016; 93:022405. [PMID: 26986360 DOI: 10.1103/physreve.93.022405] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Indexed: 06/05/2023]
Abstract
In many adult tissues, stem cells and differentiated cells are not homogeneously distributed: stem cells are arranged in periodic "niches," and differentiated cells are constantly produced and migrate out of these niches. In this article, we provide a general theoretical framework to study mixtures of dividing and actively migrating particles, which we apply to biological tissues. We show in particular that the interplay between the stresses arising from active cell migration and stem cell division give rise to robust stem cell patterns. The instability of the tissue leads to spatial patterns which are either steady or oscillating in time. The wavelength of the instability has an order of magnitude consistent with the biological observations. We also discuss the implications of these results for future in vitro and in vivo experiments.
Collapse
Affiliation(s)
- Edouard Hannezo
- Physicochimie Curie (Institut Curie/CNRS-UMR 168/UPMC), Institut Curie, Centre de Recherche, PSL Research University, 26 rue d'Ulm, 75248 Paris Cedex 05, France
- Cavendish Laboratory, 19 JJ Thompson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Alice Coucke
- Physicochimie Curie (Institut Curie/CNRS-UMR 168/UPMC), Institut Curie, Centre de Recherche, PSL Research University, 26 rue d'Ulm, 75248 Paris Cedex 05, France
- Laboratoire de Physique Théorique, CNRS-UMR 8549, Ecole Normale Supérieure, 24 Rue Lhomond, 75005 Paris, France
- Biologie Computationnelle et Quantitative, CNRS-UMR 7238, Sorbonne Universités, UPMC Paris 06, France
| | - Jean-François Joanny
- Physicochimie Curie (Institut Curie/CNRS-UMR 168/UPMC), Institut Curie, Centre de Recherche, PSL Research University, 26 rue d'Ulm, 75248 Paris Cedex 05, France
- ESPCI Paris-Tech, 10 rue Vauquelin, 75005 Paris, France
| |
Collapse
|
218
|
Abstract
Mechanoresponses in mesenchymal stem cells (MSCs) guide both differentiation and function. In this review, we focus on advances in0 our understanding of how the cytoplasmic cytoskeleton, nuclear envelope and nucleoskeleton, which are connected via LINC (Linker of Nucleoskeleton and Cytoskeleton) complexes, are emerging as an integrated dynamic signaling platform to regulate MSC mechanobiology. This dynamic interconnectivity affects mechanical signaling and transfer of signals into the nucleus. In this way, nuclear and LINC-mediated cytoskeletal connectivity play a critical role in maintaining mechanical signaling that affects MSC fate by serving as both mechanosensory and mechanoresponsive structures. We review disease and age related compromises of LINC complexes and nucleoskeleton that contribute to the etiology of musculoskeletal diseases. Finally we invite the idea that acquired dysfunctions of LINC might be a contributing factor to conditions such as aging, microgravity and osteoporosis and discuss potential mechanical strategies to modulate LINC connectivity to combat these conditions.
Collapse
|
219
|
Iacovacci V, Ricotti L, Menciassi A, Dario P. The bioartificial pancreas (BAP): Biological, chemical and engineering challenges. Biochem Pharmacol 2016; 100:12-27. [DOI: 10.1016/j.bcp.2015.08.107] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 08/26/2015] [Indexed: 01/05/2023]
|
220
|
Lee MS, La WG, Park E, Yang HS. Synergetic effect of 3,4-dihydroxy-l-phenylalanine-modified poly(lactic-co-glycolic acid) nanopatterned patch with fibroblast growth factor-2 for skin wound regeneration. J Biomed Mater Res B Appl Biomater 2015; 105:594-604. [DOI: 10.1002/jbm.b.33574] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 11/04/2015] [Accepted: 11/09/2015] [Indexed: 12/31/2022]
Affiliation(s)
- Min Suk Lee
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine; Dankook University; Cheonan 330-714 Republic of Korea
| | - Wan-Geun La
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine; Dankook University; Cheonan 330-714 Republic of Korea
| | - Esther Park
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine; Dankook University; Cheonan 330-714 Republic of Korea
| | - Hee Seok Yang
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine; Dankook University; Cheonan 330-714 Republic of Korea
| |
Collapse
|
221
|
Kim K, Ossipova O, Sokol SY. Neural crest specification by inhibition of the ROCK/Myosin II pathway. Stem Cells 2015; 33:674-85. [PMID: 25346532 DOI: 10.1002/stem.1877] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 08/13/2014] [Accepted: 09/13/2014] [Indexed: 01/14/2023]
Abstract
Neural crest is a population of multipotent progenitor cells that form at the border of neural and non-neural ectoderm in vertebrate embryos, and undergo epithelial-mesenchymal transition and migration. According to the traditional view, the neural crest is specified in early embryos by signaling molecules including BMP, FGF, and Wnt proteins. Here, we identify a novel signaling pathway leading to neural crest specification, which involves Rho-associated kinase (ROCK) and its downstream target nonmuscle Myosin II. We show that ROCK inhibitors promote differentiation of human embryonic stem cells (hESCs) into neural crest-like progenitors (NCPs) that are characterized by specific molecular markers and ability to differentiate into multiple cell types, including neurons, chondrocytes, osteocytes, and smooth muscle cells. Moreover, inhibition of Myosin II was sufficient for generating NCPs at high efficiency. Whereas Myosin II has been previously implicated in the self-renewal and survival of hESCs, we demonstrate its role in neural crest development during ESC differentiation. Inhibition of this pathway in Xenopus embryos expanded neural crest in vivo, further indicating that neural crest specification is controlled by ROCK-dependent Myosin II activity. We propose that changes in cell morphology in response to ROCK and Myosin II inhibition initiate mechanical signaling leading to neural crest fates.
Collapse
Affiliation(s)
- Kyeongmi Kim
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | | |
Collapse
|
222
|
Spagnol ST, Lin WC, Booth EA, Ladoux B, Lazarus HM, Dahl KN. Early Passage Dependence of Mesenchymal Stem Cell Mechanics Influences Cellular Invasion and Migration. Ann Biomed Eng 2015; 44:2123-31. [PMID: 26581348 DOI: 10.1007/s10439-015-1508-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 11/11/2015] [Indexed: 02/06/2023]
Abstract
The cellular structures and mechanical properties of human mesenchymal stem cells (hMSCs) vary significantly during culture and with differentiation. Previously, studies to measure mechanics have provided divergent results using different quantitative parameters and mechanical models of deformation. Here, we examine hMSCs prepared for clinical use and subject them to mechanical testing conducive to the relevant deformability associated with clinical injection procedures. Micropipette aspiration of hMSCs shows deformation as a viscoelastic fluid, with little variation from cell to cell within a population. After two passages, hMSCs deform as viscoelastic solids. Further, for clinical applicability during stem cell migration in vivo, we investigated the ability of hMSCs to invade into micropillar arrays of increasing confinement from 12 to 8 μm spacing between adjacent micropillars. We find that hMSC samples with reduced deformability and cells that are more solid-like with passage are more easily able to enter the micropillar arrays. Increased cell fluidity is an advantage for injection procedures and optimization of cell selection based on mechanical properties may enhance efficacy of injected hMSC populations. However, the ability to invade and migrate within tight interstitial spaces appears to be increased with a more solidified cytoskeleton, likely from increased force generation and contractility. Thus, there may be a balance between optimal injection survival and in situ tissue invasion.
Collapse
Affiliation(s)
- Stephen T Spagnol
- Department of Chemical Engineering, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA, 15213, USA
| | - Wei-Chun Lin
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Elizabeth A Booth
- Department of Chemical Engineering, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA, 15213, USA
| | - Benoit Ladoux
- Institut Jacques Monod (IJM), CNRS UMR 7592 & Université Paris Diderot, Paris, France
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Hillard M Lazarus
- Division of Hematology and Oncology, Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Kris Noel Dahl
- Department of Chemical Engineering, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA, 15213, USA.
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA.
| |
Collapse
|
223
|
Dupont S. Role of YAP/TAZ in cell-matrix adhesion-mediated signalling and mechanotransduction. Exp Cell Res 2015; 343:42-53. [PMID: 26524510 DOI: 10.1016/j.yexcr.2015.10.034] [Citation(s) in RCA: 347] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 10/29/2015] [Indexed: 12/12/2022]
Abstract
Signalling from the extracellular matrix (ECM) is a fundamental cellular input that sustains proliferation, opposes cell death and regulates differentiation. Through integrins, cells perceive both the chemical composition and physical properties of the ECM. In particular, cell behaviour is profoundly influenced by the mechanical elasticity or stiffness of the ECM, which regulates the ability of cells to develop forces through their contractile actomyosin cytoskeleton and to mature focal adhesions. This mechanosensing ability affects fundamental cellular functions, such that alterations of ECM stiffness is nowadays considered not a simple consequence of pathology, but a causative input driving aberrant cell behaviours. We here discuss recent advances on how mechanical signals intersect nuclear transcription and in particular the activity of YAP/TAZ transcriptional coactivators, known downstream transducers of the Hippo pathway and important effectors of ECM mechanical cues.
Collapse
Affiliation(s)
- Sirio Dupont
- Department of Molecular Medicine, University of Padua Medical School, via Bassi 58/B, 35131 Padua, Italy.
| |
Collapse
|
224
|
A Parallel-Plate Flow Chamber for Mechanical Characterization of Endothelial Cells Exposed to Laminar Shear Stress. Cell Mol Bioeng 2015; 9:127-138. [PMID: 28989541 DOI: 10.1007/s12195-015-0424-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Shear stresses induced by laminar fluid flow are essential to properly recapitulate the physiological microenvironment experienced by endothelial cells (ECs). ECs respond to these stresses via mechanotransduction by modulating their phenotype and biomechanical characteristics, which can be characterized by Atomic Force Microscopy (AFM). Parallel Plate Flow Chambers (PPFCs) apply unidirectional laminar fluid flow to EC monolayers in vitro. Since ECs in sealed PPFCs are inaccessible to AFM probes, cone-and-plate viscometers (CPs) are commonly used to apply shear stress. This paper presents a comparison of the efficacies of both methods. Computational Fluid Dynamic simulation and validation testing using EC responses as a metric have indicated limitations in the use of CPs to apply laminar shear stress. Monolayers subjected to laminar fluid flow in a PPFC respond by increasing cortical stiffness, elongating, and aligning filamentous actin in the direction of fluid flow to a greater extent than CP devices. Limitations using CP devices to provide laminar flow across an EC monolayer suggest they are better suited when studying EC response for disturbed flow conditions. PPFC platforms allow for exposure of ECs to laminar fluid flow conditions, recapitulating cellular biomechanical behaviors, whereas CP platforms allow for mechanical characterization of ECs under secondary flow.
Collapse
|
225
|
Mechanosensitivity of integrin adhesion complexes: role of the consensus adhesome. Exp Cell Res 2015; 343:7-13. [PMID: 26515553 DOI: 10.1016/j.yexcr.2015.10.025] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 10/23/2015] [Indexed: 12/17/2022]
Abstract
Cell and tissue stiffness have been known to contribute to both developmental and pathological signalling for some time, but the underlying mechanisms remain elusive. Integrins and their associated adhesion signalling complexes (IACs), which form a nexus between the cell cytoskeleton and the extracellular matrix, act as a key force sensing and transducing unit in cells. Accordingly, there has been much interest in obtaining a systems-level understanding of IAC composition. Proteomic approaches have revealed the complexity of IACs and identified a large number of components that are regulated by cytoskeletal force. Here we review the function of the consensus adhesome, an assembly of core IAC proteins that emerged from a meta-analysis of multiple proteomic datasets, in the context of mechanosensing. As IAC components have been linked to a variety of diseases involved with rigidity sensing, the field is now in a position to define the mechanosensing function of individual IAC proteins and elucidate their mechanisms of action.
Collapse
|
226
|
Abstract
Mechanical stimuli are known to be potent regulators of the form and function of cells and organisms. Although biological regulation has classically been understood in terms of principles from solution biochemistry, advancements in many fields have led to the development of a suite of techniques that are able to reveal the interplay between mechanical loading and changes in the biochemical properties of proteins in systems ranging from single molecules to living organisms. Here, we review these techniques and highlight the emergence of a new molecular-scale understanding of the mechanisms mediating the detection and response of cells to mechanical stimuli, a process termed mechanotransduction. Specifically, we focus on the role of subcellular adhesion structures in sensing the stiffness of the surrounding environment because this process is pertinent to applications in tissue engineering as well the onset of several mechanosensitive disease states, including cancer.
Collapse
Affiliation(s)
- Andrew S LaCroix
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708;
| | - Katheryn E Rothenberg
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708;
| | - Brenton D Hoffman
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708;
| |
Collapse
|
227
|
Lee JH, Park HK, Kim KS. Intrinsic and extrinsic mechanical properties related to the differentiation of mesenchymal stem cells. Biochem Biophys Res Commun 2015; 473:752-7. [PMID: 26403968 DOI: 10.1016/j.bbrc.2015.09.081] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 09/13/2015] [Indexed: 01/07/2023]
Abstract
Diverse intrinsic and extrinsic mechanical factors have a strong influence on the regulation of stem cell fate. In this work, we examined recent literature on the effects of mechanical environments on stem cells, especially on differentiation of mesenchymal stem cells (MSCs). We provide a brief review of intrinsic mechanical properties of single MSC and examined the correlation between the intrinsic mechanical property of MSC and the differentiation ability. The effects of extrinsic mechanical factors relevant to the differentiation of MSCs were considered separately. The effect of nanostructure and elasticity of the matrix on the differentiation of MSCs were summarized. Finally, we consider how the extrinsic mechanical properties transfer to MSCs and then how the effects on the intrinsic mechanical properties affect stem cell differentiation.
Collapse
Affiliation(s)
- Jin-Ho Lee
- School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Hun-Kuk Park
- Department of Biomedical Engineering, College of Medicine, Kyung Hee University, Seoul, Republic of Korea; Healthcare Industry Research Institute, Kyung Hee University, Seoul, Republic of Korea; Program of Medical Engineering, Kyung Hee University, Seoul, Republic of Korea
| | - Kyung Sook Kim
- Department of Biomedical Engineering, College of Medicine, Kyung Hee University, Seoul, Republic of Korea; Program of Medical Engineering, Kyung Hee University, Seoul, Republic of Korea.
| |
Collapse
|
228
|
Tai IC, Wang YH, Chen CH, Chuang SC, Chang JK, Ho ML. Simvastatin enhances Rho/actin/cell rigidity pathway contributing to mesenchymal stem cells' osteogenic differentiation. Int J Nanomedicine 2015; 10:5881-94. [PMID: 26451103 PMCID: PMC4590348 DOI: 10.2147/ijn.s84273] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Recent studies have indicated that statins induce osteogenic differentiation both in vitro and in vivo. The molecular mechanism of statin-stimulated osteogenesis is unknown. Activation of RhoA signaling increases cytoskeletal tension, which plays a crucial role in the osteogenic differentiation of mesenchymal stem cells. We thus hypothesized that RhoA signaling is involved in simvastatin-induced osteogenesis in bone marrow mesenchymal stem cells. We found that although treatment with simvastatin shifts localization of RhoA protein from the membrane to the cytosol, the treatment still activates RhoA dose-dependently because it reduces the association with RhoGDIα. Simvastatin also increased the expression of osteogenic proteins, density of actin filament, the number of focal adhesions, and cellular tension. Furthermore, disrupting actin cytoskeleton or decreasing cell rigidity by using chemical agents reduced simvastatin-induced osteogenic differentiation. In vivo study also confirms that density of actin filament is increased in simvastatin-induced ectopic bone formation. Our study is the first to demonstrate that maintaining intact actin cytoskeletons and enhancing cell rigidity are crucial in simvastatin-induced osteogenesis. The results suggested that simvastatin, which is an osteoinductive factor and acts by increasing actin filament organization and cell rigidity combined with osteoconductive biomaterials, may benefit stem-cell-based bone regeneration.
Collapse
Affiliation(s)
- I-Chun Tai
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan ; Department of Physiology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan ; Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yao-Hsien Wang
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chung-Hwan Chen
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan ; Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Shu-Chun Chuang
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Je-Ken Chang
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan ; Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan ; Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan
| | - Mei-Ling Ho
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan ; Department of Physiology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan ; Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan ; Department of Marine Biotechnology and Resources, National Sun Yat-sen UniVersity, Kaohsiung, Taiwan
| |
Collapse
|
229
|
Zhang Y, Gordon A, Qian W, Chen W. Engineering nanoscale stem cell niche: direct stem cell behavior at cell-matrix interface. Adv Healthc Mater 2015. [PMID: 26222885 DOI: 10.1002/adhm.201500351] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Biophysical cues on the extracellular matrix (ECM) have proven to be significant regulators of stem cell behavior and evolution. Understanding the interplay of these cells and their extracellular microenvironment is critical to future tissue engineering and regenerative medicine, both of which require a means of controlled differentiation. Research suggests that nanotopography, which mimics the local, nanoscale, topographic cues within the stem cell niche, could be a way to achieve large-scale proliferation and control of stem cells in vitro. This Progress Report reviews the history and contemporary advancements of this technology, and pays special attention to nanotopographic fabrication methods and the effect of different nanoscale patterns on stem cell response. Finally, it outlines potential intracellular mechanisms behind this response.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Mechanical and Aerospace Engineering; New York University; Brooklyn NY 11201 USA
| | - Andrew Gordon
- Department of Mechanical and Aerospace Engineering; New York University; Brooklyn NY 11201 USA
| | - Weiyi Qian
- Department of Mechanical and Aerospace Engineering; New York University; Brooklyn NY 11201 USA
| | - Weiqiang Chen
- Department of Mechanical and Aerospace Engineering; New York University; Brooklyn NY 11201 USA
| |
Collapse
|
230
|
Laiva AL, Venugopal JR, Navaneethan B, Karuppuswamy P, Ramakrishna S. Biomimetic approaches for cell implantation to the restoration of infarcted myocardium. Nanomedicine (Lond) 2015; 10:2907-30. [PMID: 26371367 DOI: 10.2217/nnm.15.124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Compelling evidences accumulated over the years have proven stem cells as a promising source for regenerative medicine. However, the inadequacy with the design of delivery modalities has prolonged the research in realizing an ideal cell-based approach for the regeneration of infarcted myocardium. Currently, some modest improvements in cardiac function have been documented in clinical trials with stem cell treatments, although regenerating a fully functional myocardium remains a dream for cardiac surgeons. This review provides an overview on the significance of stem cell therapy, the current attempts to resolve the drawbacks with the cell implantation approach and the various stratagems adopted with electrospun hybrid nanofibers for implementation in myocardial regenerative therapy.
Collapse
Affiliation(s)
- Ashang Luwang Laiva
- Center for Nanofibers & Nanotechnology, Nanoscience & Nanotechnology Initiative, Department of Mechanical Engineering, Faculty of Engineering, National University of Singapore, Block E3, #05-12, 2 Engineering Drive 3, Singapore 117576.,Amity Institute of Nanotechnology, Amity University, Noida, UP, India
| | - Jayarama Reddy Venugopal
- Center for Nanofibers & Nanotechnology, Nanoscience & Nanotechnology Initiative, Department of Mechanical Engineering, Faculty of Engineering, National University of Singapore, Block E3, #05-12, 2 Engineering Drive 3, Singapore 117576
| | - Balchandar Navaneethan
- Center for Nanofibers & Nanotechnology, Nanoscience & Nanotechnology Initiative, Department of Mechanical Engineering, Faculty of Engineering, National University of Singapore, Block E3, #05-12, 2 Engineering Drive 3, Singapore 117576
| | - Priyadharsini Karuppuswamy
- Center for Nanofibers & Nanotechnology, Nanoscience & Nanotechnology Initiative, Department of Mechanical Engineering, Faculty of Engineering, National University of Singapore, Block E3, #05-12, 2 Engineering Drive 3, Singapore 117576
| | - Seeram Ramakrishna
- Center for Nanofibers & Nanotechnology, Nanoscience & Nanotechnology Initiative, Department of Mechanical Engineering, Faculty of Engineering, National University of Singapore, Block E3, #05-12, 2 Engineering Drive 3, Singapore 117576
| |
Collapse
|
231
|
McAndrews KM, Kim MJ, Lam TY, McGrail DJ, Dawson MR. Architectural and mechanical cues direct mesenchymal stem cell interactions with crosslinked gelatin scaffolds. Tissue Eng Part A 2015; 20:3252-60. [PMID: 24873687 DOI: 10.1089/ten.tea.2013.0753] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Naturally derived biomaterials have emerged as modulators of cell function and tissue substitutes. Here, we developed crosslinked glutaraldehyde (GTA) scaffolds for the expansion and differentiation of mesenchymal stem cells (MSCs). The mechanical and architectural properties of the scaffolds were altered by varying the concentration of gelatin and GTA. Higher GTA concentrations were associated with an increase in more confined pores and osteogenic differentiation. In addition, myogenic potential varied with crosslinking degree, although bulk mechanical properties were unaltered. Correlation analysis revealed that ALP activity of differentiated MSCs on higher gelatin concentration scaffolds was dependent on traditional effectors, including environment elasticity and spread area. In contrast, the differentiation capacity of cells cultured on lower gelatin concentration scaffolds did not correlate with these factors, instead it was dependent on the hydrated pore structure. These results suggest that scaffold composition can determine what factors direct differentiation and may have critical implications for biomaterial design.
Collapse
Affiliation(s)
- Kathleen M McAndrews
- 1 School of Chemical and Biomolecular Engineering, Georgia Institute of Technology , Atlanta, Georgia
| | | | | | | | | |
Collapse
|
232
|
Chen Y, Zeng D, Ding L, Li XL, Liu XT, Li WJ, Wei T, Yan S, Xie JH, Wei L, Zheng QS. Three-dimensional poly-(ε-caprolactone) nanofibrous scaffolds directly promote the cardiomyocyte differentiation of murine-induced pluripotent stem cells through Wnt/β-catenin signaling. BMC Cell Biol 2015; 16:22. [PMID: 26335746 PMCID: PMC4558999 DOI: 10.1186/s12860-015-0067-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 08/21/2015] [Indexed: 12/26/2022] Open
Abstract
Background Environmental factors are important for stem cell lineage specification, and increasing evidence indicates that the nanoscale geometry/topography of the extracellular matrix (ECM) directs stem cell fate. Recently, many three-dimensional (3D) biomimetic nanofibrous scaffolds resembling many characteristics of the native ECM have been used in stem cell-based myocardial tissue engineering. However, the biophysical role and underlying mechanism of 3D nanofibrous scaffolds in cardiomyocyte differentiation of induced pluripotent stem cells (iPSCs) remain unclear. Results Here, we fabricated a 3D poly-(ε-caprolactone) (PCL) nanofibrous scaffold using the electrospinning method and verified its nanotopography and porous structure by scanning electron microscopy. We seeded murine iPSCs (miPSCs) directly on the 3D PCL nanofibrous scaffold and initiated non-directed, spontaneous differentiation using the monolayer method. After the 3D PCL nanofibrous scaffold was gelatin coated, it was suitable for monolayer miPSC cultivation and cardiomyocyte differentiation. At day 15 of differentiation, miPSCs differentiated into functional cardiomyocytes on the 3D PCL nanofibrous scaffold as evidenced by positive immunostaining of cardiac-specific proteins including cardiac troponin T (cTnT) and myosin light chain 2a (MLC2a). In addition, flow cytometric analysis of cTnT-positive cells and cardiac-specific gene and protein expression of cTnT and sarcomeric alpha actinin (α-actinin) demonstrated that the cardiomyocyte differentiation of miPSCs was more efficient on the 3D PCL nanofibrous scaffold than on normal tissue culture plates (TCPs). Furthermore, early inhibition of Wnt/β-catenin signaling by the selective antagonist Dickkopf-1 significantly reduced the activity of Wnt/β-catenin signaling and decreased the cardiomyocyte differentiation of miPSCs cultured on the 3D PCL nanofibrous scaffold, while the early activation of Wnt/β-catenin signaling by CHIR99021 further increased the cardiomyocyte differentiation of miPSCs. Conclusion These results indicated that the electrospun 3D PCL nanofibrous scaffolds directly promoted the cardiomyocyte differentiation of miPSCs, which was mediated by the activation of the Wnt/β-catenin signaling during the early period of differentiation. These findings highlighted the biophysical role of 3D nanofibrous scaffolds during the cardiomyocyte differentiation of miPSCs and revealed its underlying mechanism involving Wnt/β-catenin signaling, which will be helpful in guiding future stem cell- and scaffold-based myocardium bioengineering. Electronic supplementary material The online version of this article (doi:10.1186/s12860-015-0067-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yan Chen
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, 1 Xinsi Road, Xi'an, 710038, China.,Department of Emergency, Chinese PLA No.401 Hospital, 22 Minjiang Road, Qingdao, 266071, China
| | - Di Zeng
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, 1 Xinsi Road, Xi'an, 710038, China
| | - Lu Ding
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, 1 Xinsi Road, Xi'an, 710038, China
| | - Xiao-Li Li
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, 1 Xinsi Road, Xi'an, 710038, China
| | - Xiong-Tao Liu
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, 1 Xinsi Road, Xi'an, 710038, China
| | - Wen-Ju Li
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, 1 Xinsi Road, Xi'an, 710038, China
| | - Ting Wei
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, 1 Xinsi Road, Xi'an, 710038, China
| | - Song Yan
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, 1 Xinsi Road, Xi'an, 710038, China
| | - Jiang-Hui Xie
- Department of Emergency, Chinese PLA No.401 Hospital, 22 Minjiang Road, Qingdao, 266071, China
| | - Li Wei
- Department of Cardiology, Chinese PLA No.401 Hospital, 22 Minjiang Road, Qingdao, 266071, China
| | - Qiang-Sun Zheng
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, 1 Xinsi Road, Xi'an, 710038, China.
| |
Collapse
|
233
|
Geng Y, Wang Z. Review of cellular mechanotransduction on micropost substrates. Med Biol Eng Comput 2015; 54:249-71. [PMID: 26245253 DOI: 10.1007/s11517-015-1343-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Accepted: 07/07/2015] [Indexed: 01/09/2023]
Abstract
As physical entities, living cells can sense and respond to various stimulations within and outside the body through cellular mechanotransduction. Any deviation in cellular mechanotransduction will not only undermine the orchestrated regulation of mechanical responses, but also lead to the breakdown of their physiological function. Therefore, a quantitative study of cellular mechanotransduction needs to be conducted both in experiments and in computational simulations to investigate the underlying mechanisms of cellular mechanotransduction. In this review, we present an overview of the current knowledge and significant progress in cellular mechanotransduction via micropost substrates. In the aspect of experimental studies, we summarize significant experimental progress and place an emphasis on the coupled relationship among cellular spreading, focal adhesion and contractility as well as the influence of substrate properties on force-involved cellular behaviors. In the other aspect of computational investigations, we outline a coupled framework including the biochemically motivated stress fiber model and thermodynamically motivated adhesion model and present their predicted biomechanical responses and then compare predicted simulation results with experimental observations to further explore the mechanisms of cellular mechanotransduction. At last, we discuss the future perspectives both in experimental technologies and in computational models, as well as facing challenges in the area of cellular mechanotransduction.
Collapse
Affiliation(s)
- Yuxu Geng
- State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing, 400030, China
| | - Zhanjiang Wang
- State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing, 400030, China.
| |
Collapse
|
234
|
Roybal KT, Mace EM, Mantell JM, Verkade P, Orange JS, Wülfing C. Early Signaling in Primary T Cells Activated by Antigen Presenting Cells Is Associated with a Deep and Transient Lamellal Actin Network. PLoS One 2015; 10:e0133299. [PMID: 26237050 PMCID: PMC4523204 DOI: 10.1371/journal.pone.0133299] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 06/25/2015] [Indexed: 01/21/2023] Open
Abstract
Cellular signaling transduction critically depends on molecular interactions that are in turn governed by dynamic subcellular distributions of the signaling system components. Comprehensive insight into signal transduction requires an understanding of such distributions and cellular structures driving them. To investigate the activation of primary murine T cells by antigen presenting cells (APC) we have imaged more than 60 signaling intermediates during T cell stimulation with microscopy across resolution limits. A substantial number of signaling intermediates associated with a transient, wide, and actin-associated lamellum extending from an interdigitated T cell:APC interface several micrometers into the T cell, as characterized in detail here. By mapping the more than 60 signaling intermediates onto the spatiotemporal features of cell biological structures, the lamellum and other ones previously described, we also define distinct spatial and temporal characteristics of T cell signal initiation, amplification, and core signaling in the activation of primary T cells by APCs. These characteristics differ substantially from ones seen when T cells are activated using common reductionist approaches.
Collapse
Affiliation(s)
- Kole T. Roybal
- Department of Immunology, UT Southwestern Medical Center, Dallas, Texas, United States of America
| | - Emily M. Mace
- Children's Hospital of Philadelphia Abramson Research Center, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Judith M. Mantell
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Paul Verkade
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Jordan S. Orange
- Children's Hospital of Philadelphia Abramson Research Center, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Christoph Wülfing
- Department of Immunology, UT Southwestern Medical Center, Dallas, Texas, United States of America
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, Texas, United States of America
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
- * E-mail:
| |
Collapse
|
235
|
Ireland RG, Simmons CA. Human Pluripotent Stem Cell Mechanobiology: Manipulating the Biophysical Microenvironment for Regenerative Medicine and Tissue Engineering Applications. Stem Cells 2015; 33:3187-96. [DOI: 10.1002/stem.2105] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 06/16/2015] [Accepted: 06/30/2015] [Indexed: 12/11/2022]
Affiliation(s)
- Ronald G. Ireland
- Institute of Biomaterials and Biomedical Engineering, University of Toronto; Toronto Ontario Canada
| | - Craig A. Simmons
- Institute of Biomaterials and Biomedical Engineering, University of Toronto; Toronto Ontario Canada
- Department of Mechanical and Industrial Engineering; University of Toronto; Toronto Ontario Canada
| |
Collapse
|
236
|
Two-Aperture Microfluidic Probes as Flow Dipole: Theory and Applications. Sci Rep 2015; 5:11943. [PMID: 26169160 PMCID: PMC4500946 DOI: 10.1038/srep11943] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 05/26/2015] [Indexed: 11/09/2022] Open
Abstract
A microfluidic probe (MFP) is a mobile channel-less microfluidic system under which a fluid is injected from an aperture into an open space, hydrodynamically confined by a surrounding fluid, and entirely re-aspirated into a second aperture. Various MFPs have been developed, and have been used for applications ranging from surface patterning of photoresists to local perfusion of organotypic tissue slices. However, the hydrodynamic and mass transfer properties of the flow under the MFP have not been analyzed, and the flow parameters are adjusted empirically. Here, we present an analytical model describing the key transport properties in MFP operation, including the dimensions of the hydrodynamic flow confinement (HFC) area, diffusion broadening, and shear stress as a function of: (i) probe geometry (ii) aspiration-to-injection flow rate ratio (iii) gap between MFP and substrate and (iv) reagent diffusivity. Analytical results and scaling laws were validated against numerical simulations and experimental results from published data. These results will be useful to guide future MFP design and operation, notably to control the MFP "brush stroke" while preserving shear-sensitive cells and tissues.
Collapse
|
237
|
Scianna M. An extended Cellular Potts Model analyzing a wound healing assay. Comput Biol Med 2015; 62:33-54. [DOI: 10.1016/j.compbiomed.2015.04.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 03/13/2015] [Accepted: 04/06/2015] [Indexed: 02/04/2023]
|
238
|
Wang J, Zhang Y, Zhang N, Wang C, Herrler T, Li Q. An updated review of mechanotransduction in skin disorders: transcriptional regulators, ion channels, and microRNAs. Cell Mol Life Sci 2015; 72:2091-106. [PMID: 25681865 PMCID: PMC11113187 DOI: 10.1007/s00018-015-1853-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 01/22/2015] [Accepted: 02/09/2015] [Indexed: 12/13/2022]
Abstract
INTRODUCTION The skin is constantly exposed and responds to a wide range of biomechanical cues. The mechanobiology of skin has already been known and applied by clinicians long before the fundamental molecular mechanisms of mechanotransduction are elucidated. MATERIALS AND METHODS Despite increasing knowledge on the mediators of biomechanical signaling such as mitogen-associated protein kinases, Rho GTPases or FAK-ERK pathways, the key elements of mechano-responses transcription factors, and mechano-sensors remain unclear. Recently, canonical biochemical components of Hippo and Wnt signaling pathway YAP and β-catenin were found to exhibit undefined mechanical sensitivity. Mechanical forces were identified to be the dominant regulators of YAP/TAZ activity in a multicellular context. Furthermore, different voltage or ligand sensitive ion channels in the cell membrane exhibited their mechanical sensitivity as mechano-sensors. Additionally, a large number of microRNAs have been confirmed to regulate cellular behavior and contribute to various skin disorders under mechanical stimuli. Mechanosensitive (MS) microRNAs could not only be activated by distinct mechanical force pattern, but also responsively target MS sensors such as e-cadherin and cytoskeleton constituent RhoA. CONCLUSION Thus, a comprehensive understanding of this regulatory network of cutaneous mechanotransduction will facilitate the development of novel approaches to wound healing, hypertrophic scar formation, skin regeneration, and the progression or initiation of skin diseases.
Collapse
Affiliation(s)
- Jing Wang
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,
| | | | | | | | | | | |
Collapse
|
239
|
The role of the microenvironment on the fate of adult stem cells. SCIENCE CHINA-LIFE SCIENCES 2015; 58:639-48. [PMID: 25985755 DOI: 10.1007/s11427-015-4865-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 04/02/2015] [Indexed: 12/13/2022]
Abstract
Adult stem cells (SCs) exist in all tissues that promote tissue growth, regeneration, and healing throughout life. The SC niche in which they reside provides signals that direct them to proliferate, differentiate, or remain dormant; these factors include neighboring cells, the extracellular matrix, soluble molecules, and physical stimuli. In disease and aging states, stable or transitory changes in the microenvironment can directly cause SC activation or inhibition in tissue healing as well as functional regulation. Here, we discuss the microenvironmental regulation of the behavior of SC and focus on plasticity approaches by which various environmental factors can enhance the function of SCs and more effectively direct the fate of SCs.
Collapse
|
240
|
Zeng Y, Yi J, Wan Z, Liu K, Song P, Chau A, Wang F, Chang Z, Han W, Zheng W, Chen YH, Xiong C, Liu W. Substrate stiffness regulates B-cell activation, proliferation, class switch, and T-cell-independent antibody responses in vivo. Eur J Immunol 2015; 45:1621-34. [PMID: 25756957 DOI: 10.1002/eji.201444777] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 01/30/2015] [Accepted: 03/06/2015] [Indexed: 12/17/2022]
Abstract
B cells use B-cell receptors (BCRs) to sense antigens that are usually presented on substrates with different stiffness. However, it is not known how substrate stiffness affects B-cell proliferation, class switch, and in vivo antibody responses. We addressed these questions using polydimethylsiloxane (PDMS) substrates with different stiffness (20 or 1100 kPa). Live cell imaging experiments suggested that antigens on stiffer substrates more efficiently trigger the synaptic accumulation of BCR and phospho-Syk molecules compared with antigens on softer substrates. In vitro expansion of mouse primary B cells shows different preferences for substrate stiffness when stimulated by different expansion stimuli. LPS equally drives B-cell proliferation on stiffer or softer substrates. Anti-CD40 antibodies enhance B-cell proliferation on stiffer substrates, while antigens enhance B-cell proliferation on softer substrates through a mechanism involving the enhanced phosphorylation of PI3K, Akt, and FoxO1. In vitro class switch differentiation of B cells prefers softer substrates. Lastly, NP67-Ficoll on softer substrates accounted for an enhanced antibody response in vivo. Thus, substrate stiffness regulates B-cell activation, proliferation, class switch, and T cell independent antibody responses in vivo, suggesting its broad application in manipulating the fate of B cells in vitro and in vivo.
Collapse
Affiliation(s)
- Yingyue Zeng
- MOE Key Laboratory of Protein Science, School of Life Sciences, Tsinghua University, Beijing, China.,Collaborative Innovation Center for Infectious Diseases, Hangzhou, China
| | - Junyang Yi
- MOE Key Laboratory of Protein Science, School of Life Sciences, Tsinghua University, Beijing, China.,Collaborative Innovation Center for Infectious Diseases, Hangzhou, China
| | - Zhengpeng Wan
- MOE Key Laboratory of Protein Science, School of Life Sciences, Tsinghua University, Beijing, China
| | - Kai Liu
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Ping Song
- College of Engineering, Peking University, Beijing, China
| | - Alicia Chau
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Fei Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Zai Chang
- MOE Key Laboratory of Protein Science, School of Life Sciences, Tsinghua University, Beijing, China
| | - Weidong Han
- Institute of Basic Medicine, Chinese PLA General Hospital, Beijing, China
| | - Wenjie Zheng
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Beijing, China
| | - Ying-Hua Chen
- MOE Key Laboratory of Protein Science, School of Life Sciences, Tsinghua University, Beijing, China
| | - Chunyang Xiong
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.,College of Engineering, Peking University, Beijing, China
| | - Wanli Liu
- MOE Key Laboratory of Protein Science, School of Life Sciences, Tsinghua University, Beijing, China.,Collaborative Innovation Center for Infectious Diseases, Hangzhou, China
| |
Collapse
|
241
|
Wan PX, Wang BW, Wang ZC. Importance of the stem cell microenvironment for ophthalmological cell-based therapy. World J Stem Cells 2015; 7:448-460. [PMID: 25815128 PMCID: PMC4369500 DOI: 10.4252/wjsc.v7.i2.448] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Revised: 09/17/2014] [Accepted: 10/29/2014] [Indexed: 02/06/2023] Open
Abstract
Cell therapy is a promising treatment for diseases that are caused by cell degeneration or death. The cells for clinical transplantation are usually obtained by culturing healthy allogeneic or exogenous tissue in vitro. However, for diseases of the eye, obtaining the adequate number of cells for clinical transplantation is difficult due to the small size of tissue donors and the frequent needs of long-term amplification of cells in vitro, which results in low cell viability after transplantation. In addition, the transplanted cells often develop fibrosis or degrade and have very low survival. Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPS) are also promising candidates for cell therapy. Unfortunately, the differentiation of ESCs can bring immune rejection, tumorigenicity and undesired differentiated cells, limiting its clinical application. Although iPS cells can avoid the risk of immune rejection caused by ES cell differentiation post-transplantation, the low conversion rate, the risk of tumor formation and the potentially unpredictable biological changes that could occur through genetic manipulation hinder its clinical application. Thus, the desired clinical effect of cell therapy is impaired by these factors. Recent research findings recognize that the reason for low survival of the implanted cells not only depends on the seeded cells, but also on the cell microenvironment, which determines the cell survival, proliferation and even reverse differentiation. When used for cell therapy, the transplanted cells need a specific three-dimensional structure to anchor and specific extra cellular matrix components in addition to relevant cytokine signaling to transfer the required information to support their growth. These structures present in the matrix in which the stem cells reside are known as the stem cell microenvironment. The microenvironment interaction with the stem cells provides the necessary homeostasis for cell maintenance and growth. A large number of studies suggest that to explore how to reconstruct the stem cell microenvironment and strengthen its combination with the transplanted cells are key steps to successful cell therapy. In this review, we will describe the interactions of the stem cell microenvironment with the stem cells, discuss the importance of the stem cell microenvironment for cell-based therapy in ocular diseases, and introduce the progress of stem cell-based therapy for ocular diseases.
Collapse
|
242
|
Gobaa S, Hoehnel S, Lutolf MP. Substrate elasticity modulates the responsiveness of mesenchymal stem cells to commitment cues. Integr Biol (Camb) 2015; 7:1135-42. [PMID: 25749492 DOI: 10.1039/c4ib00176a] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fate choices of stem cells are regulated in response to a complex array of biochemical and physical signals from their microenvironmental niche. Whereas the molecular composition and the role of mechanical niche cues have been extensively studied, relatively little is known about how both effectors act in concert to modulate stem cell fate. Here we utilized a recently developed artificial niche microarray platform to investigate whether the stiffness of a cell culture substrate influences how niche signaling factors exert their role on adipogenic differentiation of human mesenchymal stem cells (hMSC). We found that substrate stiffness imposes a strictly non-overlapping range of differentiation, highlighting the dominance of physical over the biochemical factors. At a given stiffness, a significant protein-dependent effect on adipogenic differentiation was observed. Furthermore, we show that synergistic interactions between proteins can also be driven by the substrate stiffness. Our results thus highlight the importance of considering the mechanical properties of a target tissue when investigating biochemical niche signals in vitro.
Collapse
Affiliation(s)
- S Gobaa
- Laboratory of Stem Cell Bioengineering (LSCB), Institute of Bioengineering (IBI), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| | | | | |
Collapse
|
243
|
Mashinchian O, Turner LA, Dalby MJ, Laurent S, Shokrgozar MA, Bonakdar S, Imani M, Mahmoudi M. Regulation of stem cell fate by nanomaterial substrates. Nanomedicine (Lond) 2015; 10:829-47. [DOI: 10.2217/nnm.14.225] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Stem cells are increasingly studied because of their potential to underpin a range of novel therapies, including regenerative strategies, cell type-specific therapy and tissue repair, among others. Bionanomaterials can mimic the stem cell environment and modulate stem cell differentiation and proliferation. New advances in these fields are presented in this review. This work highlights the importance of topography and elasticity of the nano-/micro-environment, or niche, for the initiation and induction of stem cell differentiation and proliferation.
Collapse
Affiliation(s)
- Omid Mashinchian
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine (SATiM), Tehran University of Medical Sciences, PO Box 14177–55469, Tehran, Iran
| | - Lesley-Anne Turner
- Centre for Cell Engineering, Joseph Black Building, Institute of Biomedical & Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, UK
| | - Matthew J Dalby
- Centre for Cell Engineering, Joseph Black Building, Institute of Biomedical & Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, UK
| | - Sophie Laurent
- Department of General, Organic & Biomedical Chemistry, NMR & Molecular Imaging Laboratory, University of Mons, Avenue Maistriau 19, B-7000 Mons, Belgium
- CMMI – Center for Microscopy & Molecular Imaging, Rue Adrienne Bolland, 8, B-6041 Gosselies, Belgium
| | | | - Shahin Bonakdar
- National Cell Bank, Pasteur Institute of Iran, PO Box 13169–43551, Tehran, Iran
| | - Mohammad Imani
- Novel Drug Delivery Systems Department, Iran Polymer & Petrochemical Institute (IPPI), PO Box 14965/115, Tehran, Iran
| | - Morteza Mahmoudi
- Department of Nanotechnology & Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, PO Box 14155–6451, Tehran, Iran
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305–5101, USA
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305–5101, USA
| |
Collapse
|
244
|
On human pluripotent stem cell control: The rise of 3D bioengineering and mechanobiology. Biomaterials 2015; 52:26-43. [PMID: 25818411 DOI: 10.1016/j.biomaterials.2015.01.078] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 12/24/2014] [Accepted: 01/28/2015] [Indexed: 12/11/2022]
Abstract
Human pluripotent stem cells (hPSCs) provide promising resources for regenerating tissues and organs and modeling development and diseases in vitro. To fulfill their promise, the fate, function, and organization of hPSCs need to be precisely regulated in a three-dimensional (3D) environment to mimic cellular structures and functions of native tissues and organs. In the past decade, innovations in 3D culture systems with functional biomaterials have enabled efficient and versatile control of hPSC fate at the cellular level. However, we are just at the beginning of bringing hPSC-based regeneration and development and disease modeling to the tissue and organ levels. In this review, we summarize existing bioengineered culture platforms for controlling hPSC fate and function by regulating inductive mechanical and biochemical cues coexisting in the synthetic cell microenvironment. We highlight recent excitements in developing 3D hPSC-based in vitro tissue and organ models with in vivo-like cellular structures, interactions, and functions. We further discuss an emerging multifaceted mechanotransductive signaling network--with transcriptional coactivators YAP and TAZ at the center stage--that regulate fates and behaviors of mammalian cells, including hPSCs. Future development of 3D biomaterial systems should incorporate dynamically modulated mechanical and chemical properties targeting specific intracellular signaling events leading to desirable hPSC fate patterning and functional tissue formation in 3D.
Collapse
|
245
|
Burghardt I, Lüthen F, Prinz C, Kreikemeyer B, Zietz C, Neumann HG, Rychly J. A dual function of copper in designing regenerative implants. Biomaterials 2015; 44:36-44. [PMID: 25617124 DOI: 10.1016/j.biomaterials.2014.12.022] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 12/11/2014] [Accepted: 12/20/2014] [Indexed: 01/09/2023]
Abstract
The supply of titanium implants which are widely used in orthopaedics with both regenerative and anti-microbial properties will achieve a great progress in bone regeneration. We asked, whether by appropriate concentrations of copper ions it will be possible both to inhibit growth of bacteria and stimulate biological responses in mesenchymal stem cells (MSC). Using titanium material which released galvanically deposited copper at concentrations from 0.3 to 1.75 mM, growth of planktonic Staphylococcus aureus was blocked and more importantly adherent bacteria were cleared from the material surface within 24 h. To test biological responses of human bone marrow derived MSC due to copper ions, we found that copper stimulated the proliferation of MSC in a narrow concentration range around 0.1 mM. Similar copper concentrations enhanced osteogenic differentiation of MSC when cells were cultured in osteogenic differentiation medium. We observed increased activity of alkaline phosphatase (ALP), higher expression of collagen I, osteoprotegerin, osteopontin and finally mineralization of the cells. We conclude that titanium implants that release copper ions can be effective against bacterial infections at higher concentrations of copper near the implant surface and can promote bone regeneration when its concentration becomes lower due to diffusion.
Collapse
Affiliation(s)
- Ines Burghardt
- Laboratory of Cell Biology, Rostock University Medical Center, Schillingallee 69, 18057 Rostock, Germany
| | - Frank Lüthen
- Laboratory of Cell Biology, Rostock University Medical Center, Schillingallee 69, 18057 Rostock, Germany
| | | | - Bernd Kreikemeyer
- Institute of Medical Microbiology, Virology and Hygiene, Rostock University Medical Center, 18057 Rostock, Germany
| | - Carmen Zietz
- Department of Orthopaedics, Biomechanics and Implant Technology Research Laboratory, Rostock University Medical Center, 18057 Rostock, Germany
| | | | - Joachim Rychly
- Laboratory of Cell Biology, Rostock University Medical Center, Schillingallee 69, 18057 Rostock, Germany.
| |
Collapse
|
246
|
Gong T, Lu L, Liu D, Liu X, Zhao K, Chen Y, Zhou S. Dynamically tunable polymer microwells for directing mesenchymal stem cell differentiation into osteogenesis. J Mater Chem B 2015; 3:9011-9022. [DOI: 10.1039/c5tb01682g] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Dynamically tunable geometric microwells have great capacity to regulate the cytoskeletal structure and differentiation of mesenchymal stem cells along adipogenesis and osteogenesis pathways.
Collapse
Affiliation(s)
- Tao Gong
- Key Laboratory of Advanced Technologies of Materials
- Ministry of Education
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Chengdu 610031
| | - Liuxuan Lu
- Key Laboratory of Advanced Technologies of Materials
- Ministry of Education
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Chengdu 610031
| | - Dian Liu
- Key Laboratory of Advanced Technologies of Materials
- Ministry of Education
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Chengdu 610031
| | - Xian Liu
- Key Laboratory of Advanced Technologies of Materials
- Ministry of Education
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Chengdu 610031
| | - Kun Zhao
- Key Laboratory of Advanced Technologies of Materials
- Ministry of Education
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Chengdu 610031
| | - Yuping Chen
- Key Laboratory of Advanced Technologies of Materials
- Ministry of Education
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Chengdu 610031
| | - Shaobing Zhou
- Key Laboratory of Advanced Technologies of Materials
- Ministry of Education
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Chengdu 610031
| |
Collapse
|
247
|
Chen W, Shao Y, Li X, Zhao G, Fu J. Nanotopographical Surfaces for Stem Cell Fate Control: Engineering Mechanobiology from the Bottom. NANO TODAY 2014; 9:759-784. [PMID: 25883674 PMCID: PMC4394389 DOI: 10.1016/j.nantod.2014.12.002] [Citation(s) in RCA: 148] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
During embryogenesis and tissue maintenance and repair in an adult organism, a myriad of stem cells are regulated by their surrounding extracellular matrix (ECM) enriched with tissue/organ-specific nanoscale topographical cues to adopt different fates and functions. Attributed to their capability of self-renewal and differentiation into most types of somatic cells, stem cells also hold tremendous promise for regenerative medicine and drug screening. However, a major challenge remains as to achieve fate control of stem cells in vitro with high specificity and yield. Recent exciting advances in nanotechnology and materials science have enabled versatile, robust, and large-scale stem cell engineering in vitro through developments of synthetic nanotopographical surfaces mimicking topological features of stem cell niches. In addition to generating new insights for stem cell biology and embryonic development, this effort opens up unlimited opportunities for innovations in stem cell-based applications. This review is therefore to provide a summary of recent progress along this research direction, with perspectives focusing on emerging methods for generating nanotopographical surfaces and their applications in stem cell research. Furthermore, we provide a review of classical as well as emerging cellular mechano-sensing and -transduction mechanisms underlying stem cell nanotopography sensitivity and also give some hypotheses in regard to how a multitude of signaling events in cellular mechanotransduction may converge and be integrated into core pathways controlling stem cell fate in response to extracellular nanotopography.
Collapse
Affiliation(s)
- Weiqiang Chen
- Integrated Biosystems and Biomechanics Laboratory, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yue Shao
- Integrated Biosystems and Biomechanics Laboratory, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xiang Li
- Integrated Biosystems and Biomechanics Laboratory, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Gang Zhao
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei 230027, P. R. China
| | - Jianping Fu
- Integrated Biosystems and Biomechanics Laboratory, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
248
|
Canadas RF, Cavalheiro JM, Guerreiro JD, de Almeida MCM, Pollet E, da Silva CL, da Fonseca M, Ferreira FC. Polyhydroxyalkanoates: Waste glycerol upgrade into electrospun fibrous scaffolds for stem cells culture. Int J Biol Macromol 2014; 71:131-40. [DOI: 10.1016/j.ijbiomac.2014.05.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 04/11/2014] [Accepted: 05/02/2014] [Indexed: 12/21/2022]
|
249
|
Reinertsen E, Skinner M, Wu B, Tawil B. Concentration of fibrin and presence of plasminogen affect proliferation, fibrinolytic activity, and morphology of human fibroblasts and keratinocytes in 3D fibrin constructs. Tissue Eng Part A 2014; 20:2860-9. [PMID: 24738616 PMCID: PMC4229906 DOI: 10.1089/ten.tea.2013.0423] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 04/16/2014] [Indexed: 11/13/2022] Open
Abstract
Fibrin is a hemostatic protein found in the clotting cascade. It is used in the operating room to stop bleeding and deliver cells and growth factors to heal wounds. However, formulations of clinically approved fibrin are optimized for hemostasis, and the extent to which biochemical and physical cues in fibrin mediate skin cell behavior is not fully understood nor utilized in the design of biomaterials. To determine if the concentration of fibrinogen and the presence of plasminogen affect cell behavior relevant to wound healing, we fabricated three-dimensional fibrin constructs made from 5, 10, or 20 mg/mL of clinical fibrin or plasminogen-depleted (PD) fibrin. We cultured dermal fibroblasts or epidermal keratinocytes in these constructs. Fibroblasts proliferated similarly in both types of fibrin, but keratinocytes proliferated more in low concentrations of clinical fibrin and less in PD fibrin. Clinical fibrin constructs with fibroblasts were less stiff and degraded faster than PD fibrin constructs with fibroblasts. Similarly, keratinocytes degraded clinical fibrin, but not PD fibrin. Fibroblast spreading varied with fibrin concentration in both types of fibrin. In conclusion, the concentration of fibrinogen and the presence of plasminogen affect fibroblast and keratinocyte proliferation, morphology, and fibrin degradation. Creating materials with heterogeneous regions of fibrin formulations and concentrations could be a novel strategy for controlling the phenotype of encapsulated fibroblasts and keratinocytes, and the subsequent biomechanical properties of the construct. However, other well-investigated aspects of wound healing remain to be utilized in the design of fibrin biomaterials, such as autocrine and paracrine signaling between fibroblasts, keratinocytes, and immune cells.
Collapse
Affiliation(s)
- Erik Reinertsen
- Department of Bioengineering, UCLA School of Engineering , Los Angeles, California
| | | | | | | |
Collapse
|
250
|
Guha Thakurta S, Kraft M, Viljoen HJ, Subramanian A. Enhanced depth-independent chondrocyte proliferation and phenotype maintenance in an ultrasound bioreactor and an assessment of ultrasound dampening in the scaffold. Acta Biomater 2014; 10:4798-4810. [PMID: 25065549 DOI: 10.1016/j.actbio.2014.07.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 07/11/2014] [Accepted: 07/14/2014] [Indexed: 01/20/2023]
Abstract
Chondrocyte-seeded scaffolds were cultured in an ultrasound (US)-assisted bioreactor, which supplied the cells with acoustic energy around resonance frequencies (~5.0 MHz). Polyurethane-polycarbonate (BM), chitosan (CS) and chitosan-n-butanol (CSB) based scaffolds with varying porosities were chosen and the following US regimen was employed: 15 kPa and 60 kPa, 5 min per application and 6 applications per day for 21 days. Non-stimulated scaffolds served as control. For BM scaffolds, US stimulation significantly impacted cell proliferation and depth-independent cell population density compared to controls. The highest COL2A1/COL1A1 ratios and ACAN mRNA were noted on US-treated BM scaffolds compared to controls. A similar trend was noted on US-treated cell-seeded CS and CSB scaffolds, though COL2A1/COL1A1 ratios were significantly lower compared to BM scaffolds. Expression of Sox-9 was also elevated under US and paralleled the COL2A1/COL1A1 ratio. As an original contribution, a simplified mathematical model based on Biot theory was developed to understand the propagation of the incident US wave through the scaffolds and the model analysis was connected to cellular responses. Scaffold architecture influenced the distribution of US field, with the US field being the least attenuated in BM scaffolds, thus coupling more mechanical energy into cells, and leading to increased cellular activity.
Collapse
Affiliation(s)
- Sanjukta Guha Thakurta
- Department of Chemical Engineering, 207L Othmer Hall, University of Nebraska-Lincoln, Lincoln, NE 68588-0643, USA
| | - Mikail Kraft
- Department of Chemical Engineering, 207L Othmer Hall, University of Nebraska-Lincoln, Lincoln, NE 68588-0643, USA
| | - Hendrik J Viljoen
- Department of Chemical Engineering, 207L Othmer Hall, University of Nebraska-Lincoln, Lincoln, NE 68588-0643, USA
| | - Anuradha Subramanian
- Department of Chemical Engineering, 207L Othmer Hall, University of Nebraska-Lincoln, Lincoln, NE 68588-0643, USA.
| |
Collapse
|