201
|
Brännvall M, Kikovska E, Kirsebom LA. Cross talk between the +73/294 interaction and the cleavage site in RNase P RNA mediated cleavage. Nucleic Acids Res 2004; 32:5418-29. [PMID: 15477392 PMCID: PMC524293 DOI: 10.1093/nar/gkh883] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
To monitor functionally important metal ions and possible cross talk in RNase P RNA mediated cleavage we studied cleavage of substrates, where the 2'OH at the RNase P cleavage site (at -1) and/or at position +73 had been replaced with a 2' amino group (or 2'H). Our data showed that the presence of 2' modifications at these positions affected cleavage site recognition, ground state binding of substrate and/or rate of cleavage. Cleavage of 2' amino substituted substrates at different pH showed that substitution of Mg2+ by Mn2+ (or Ca2+), identity of residues at and near the cleavage site, and addition of C5 protein influenced the frequency of miscleavage at -1 (cleavage at the correct site is referred to as +1). From this we infer that these findings point at effects mediated by protonation/deprotonation of the 2' amino group, i.e. an altered charge distribution, at the site of cleavage. Moreover, our data suggested that the structural architecture of the interaction between the 3' end of the substrate and RNase P RNA influence the charge distribution at the cleavage site as well as the rate of cleavage under conditions where the chemistry is suggested to be rate limiting. Thus, these data provide evidence for cross talk between the +73/294 interaction and the cleavage site in RNase P RNA mediated cleavage. We discuss the role metal ions might play in this cross talk and the likelihood that at least one functionally important metal ion is positioned in the vicinity of, and use the 2'OH at the cleavage site as an inner or outer sphere ligand.
Collapse
Affiliation(s)
- Mathias Brännvall
- Department of Cell and Molecular Biology, Box 596, Biomedical Centre, SE-751 24 Uppsala, Sweden
| | | | | |
Collapse
|
202
|
Day-Storms JJ, Niranjanakumari S, Fierke CA. Ionic interactions between PRNA and P protein in Bacillus subtilis RNase P characterized using a magnetocapture-based assay. RNA (NEW YORK, N.Y.) 2004; 10:1595-608. [PMID: 15337847 PMCID: PMC1370646 DOI: 10.1261/rna.7550104] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Ribonuclease P (RNase P) is a ribonucleoprotein complex that catalyzes the cleavage of the 5' end of precursor tRNA. To characterize the interface between the Bacillus subtilis RNA (PRNA) and protein (P protein) components, the intraholoenzyme KD is determined as a function of ionic strength using a magnetocapture-based assay. Three distinct phases are evident. At low ionic strength, the affinity of PRNA for P protein is enhanced as the ionic strength increases mainly due to stabilization of the PRNA structure by cations. Lithium substitution in lieu of potassium enhances the affinity at low ionic strength, whereas the addition of ATP, known to stabilize the structure of P protein, does not affect the affinity. At high ionic strength, the observed affinity decreases as the ionic strength increases, consistent with disruption of ionic interactions. These data indicate that three to four ions are released on formation of holoenzyme, reflecting the number of ion pairs that occur between the P protein and PRNA. At moderate ionic strength, the two effects balance so that the apparent KD is not dependent on the ionic strength. The KD between the catalytic domain (C domain) and P protein has a similar triphasic dependence on ionic strength. Furthermore, the intraholoenzyme KD is identical to or tighter than that of full-length PRNA, demonstrating that the P protein binds solely to the C domain. Finally, pre-tRNAasp (but not tRNAasp) stabilizes the PRNA*P protein complex, as predicted by the direct interaction between the P protein and pre-tRNA leader.
Collapse
Affiliation(s)
- Jeremy J Day-Storms
- Department of Chemistry, University of Michigan, 930 N. University, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
203
|
Cassano AG, Anderson VE, Harris ME. Analysis of solvent nucleophile isotope effects: evidence for concerted mechanisms and nucleophilic activation by metal coordination in nonenzymatic and ribozyme-catalyzed phosphodiester hydrolysis. Biochemistry 2004; 43:10547-59. [PMID: 15301552 DOI: 10.1021/bi049188f] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Heavy atom isotope effects are a valuable tool for probing chemical and enzymatic reaction mechanisms; yet, they are not widely applied to examine mechanisms of nucleophilic activation. We developed approaches for analyzing solvent (18)O nucleophile isotope effects ((18)k(nuc)) that allow, for the first time, their application to hydrolysis reactions of nucleotides and nucleic acids. Here, we report (18)k(nuc) for phosphodiester hydrolysis catalyzed by Mg(2+) and by the Mg(2+)-dependent RNase P ribozyme and deamination by the Zn(2+)-dependent protein enzyme adenosine deaminase (ADA). Because ADA incorporates a single solvent molecule into the product inosine, this reaction can be used to monitor solvent (18)O/(16)O ratios in complex reaction mixtures. This approach, combined with new methods for analysis of isotope ratios of nucleotide phosphates by whole molecule mass spectrometry, permitted determination of (18)k(nuc) for hydrolysis of thymidine 5'-p-nitrophenyl phosphate and RNA cleavage by the RNase P ribozyme. For ADA, an inverse (18)k(nuc) of 0.986 +/- 0.001 is observed, reflecting coordination of the nucleophile by an active site Zn(2+) ion and a stepwise mechanism. In contrast, the observed (18)k(nuc) for phosphodiester reactions were normal: 1.027 +/- 0.013 and 1.030 +/- 0.012 for the Mg(2+)- and ribozyme-catalyzed reactions, respectively. Such normal effects indicate that nucleophilic attack occurs in the rate-limiting step for these reactions, consistent with concerted mechanisms. However, these magnitudes are significantly less than the (18)k(nuc) observed for nucleophilic attack by hydroxide (1.068 +/- 0.007), indicating a "stiffer" bonding environment for the nucleophile in the transition state. Kinetic analysis of the Mg(2+)-catalyzed reaction indicates that a Mg(2+)-hydroxide complex is the catalytic species; thus, the lower (18)k(nuc), in large part, reflects direct metal ion coordination of the nucleophilic oxygen. A similar value for the RNase P ribozyme catalyzed reaction provides support for nucleophilic activation by metal ion catalysis.
Collapse
Affiliation(s)
- Adam G Cassano
- Center for RNA Molecular Biology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | | | | |
Collapse
|
204
|
Numata T, Ishimatsu I, Kakuta Y, Tanaka I, Kimura M. Crystal structure of archaeal ribonuclease P protein Ph1771p from Pyrococcus horikoshii OT3: an archaeal homolog of eukaryotic ribonuclease P protein Rpp29. RNA (NEW YORK, N.Y.) 2004; 10:1423-32. [PMID: 15317976 PMCID: PMC1370628 DOI: 10.1261/rna.7560904] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2004] [Accepted: 06/01/2004] [Indexed: 05/24/2023]
Abstract
Ribonuclease P (RNase P) is the endonuclease responsible for the removal of 5' leader sequences from tRNA precursors. The crystal structure of an archaeal RNase P protein, Ph1771p (residues 36-127) from hyperthermophilic archaeon Pyrococcus horikoshii OT3 was determined at 2.0 A resolution by X-ray crystallography. The structure is composed of four helices (alpha1-alpha4) and a six-stranded antiparallel beta-sheet (beta1-beta6) with a protruding beta-strand (beta7) at the C-terminal region. The strand beta7 forms an antiparallel beta-sheet by interacting with strand beta4 in a symmetry-related molecule, suggesting that strands beta4 and beta7 could be involved in protein-protein interactions with other RNase P proteins. Structural comparison showed that the beta-barrel structure of Ph1771p has a topological resemblance to those of Staphylococcus aureus translational regulator Hfq and Haloarcula marismortui ribosomal protein L21E, suggesting that these RNA binding proteins have a common ancestor and then diverged to specifically bind to their cognate RNAs. The structure analysis as well as structural comparison suggested two possible RNA binding sites in Ph1771p, one being a concave surface formed by terminal alpha-helices (alpha1-alpha4) and beta-strand beta6, where positively charged residues are clustered. A second possible RNA binding site is at a loop region connecting strands beta2 and beta3, where conserved hydrophilic residues are exposed to the solvent and interact specifically with sulfate ion. These two potential sites for RNA binding are located in close proximity. The crystal structure of Ph1771p provides insight into the structure and function relationships of archaeal and eukaryotic RNase P.
Collapse
Affiliation(s)
- Tomoyuki Numata
- Laboratory of Biochemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, Fukuoka 812-8581, Japan
| | | | | | | | | |
Collapse
|
205
|
Butler MK, Fuerst JA. Comparative analysis of ribonuclease P RNA of the planctomycetes. Int J Syst Evol Microbiol 2004; 54:1333-1344. [PMID: 15280311 DOI: 10.1099/ijs.0.03013-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The planctomycetes, order Planctomycetales, are a distinct phylum of domain Bacteria. Genes encoding the RNA portion of ribonuclease P (RNase P) of some planctomycete members were sequenced and compared with existing database planctomycete sequences. rnpB gene sequences encoding RNase P RNA were generated by a conserved primer PCR strategy for Planctomyces brasiliensis, Planctomyces limnophilus, Pirellula marina, Pirellula staleyi strain ATCC 35122, Isosphaera pallida, one other Isosphaera strain, Gemmata obscuriglobus and three other strains of the Gemmata group. These sequences were aligned against reference bacterial sequences and secondary structures of corresponding RNase P RNAs deduced by a comparative approach. P12 helices were found to be highly variable in length, as were helices P16.1 and P19, when present. RNase P RNA secondary structures of Gemmata isolates were found to have unusual features relative to other planctomycetes, including a long P9 helix and an insert in the P13 helix not found in any other member of domain Bacteria. These unique features are consistent with other unusual properties of this genus, distinguishing it from other bacteria. Phylogenetic analyses indicate that relationships between planctomycetes derived from RNase P RNA are consistent with 16S rRNA-based analyses.
Collapse
Affiliation(s)
- Margaret K Butler
- Department of Microbiology and Parasitology, School of Molecular and Microbial Sciences, University of Queensland, Brisbane, Queensland 4072, Australia
| | - John A Fuerst
- Department of Microbiology and Parasitology, School of Molecular and Microbial Sciences, University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
206
|
Takagi H, Watanabe M, Kakuta Y, Kamachi R, Numata T, Tanaka I, Kimura M. Crystal structure of the ribonuclease P protein Ph1877p from hyperthermophilic archaeon Pyrococcus horikoshii OT3. Biochem Biophys Res Commun 2004; 319:787-94. [PMID: 15184052 DOI: 10.1016/j.bbrc.2004.05.055] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2004] [Indexed: 11/24/2022]
Abstract
Ribonuclease P (RNase P) is a ribonucleoprotein complex involved in the processing of pre-tRNA. Protein Ph1877p is one of essential components of the hyperthermophilic archaeon Pyrococcus horikoshii OT3 RNase P [Biochem. Biophys. Res. Commun. 306 (2003) 666]. The crystal structure of Ph1877p was determined at 1.8A by X-ray crystallography and refined to a crystallographic R factor of 22.96% (Rfree of 26.77%). Ph1877p forms a TIM barrel structure, consisting of ten alpha-helices and seven beta-strands, and has the closest similarity to the TIM barrel domain of Escherichia coli cytosine deaminase with a root-mean square deviation of 3.0A. The protein Ph1877p forms an oblate ellipsoid, approximate dimensions being 45Ax43Ax39A, and the electrostatic representation indicated the presence of several clusters of positively charged amino acids present on the molecular surface. We made use of site-directed mutagenesis to assess the role of twelve charged amino acids, Lys42, Arg68, Arg87, Arg90, Asp98, Arg107, His114, Lys123, Lys158, Arg176, Asp180, and Lys196 related to the RNase P activity. Individual mutations of Arg90, Arg107, Lys123, Arg176, and Lys196 by Ala resulted in reconstituted particles with reduced enzymatic activities (32-48%) as compared with that reconstituted RNase P by wild-type Ph1877p. The results presented here provide an initial step for definite understanding of how archaeal and eukaryotic RNase Ps mediate substrate recognition and process 5'-leader sequence of pre-tRNA.
Collapse
Affiliation(s)
- Hisanori Takagi
- Laboratory of Biochemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, Fukuoka 812-8581, Japan
| | | | | | | | | | | | | |
Collapse
|
207
|
Kim K, Trang P, Umamoto S, Hai R, Liu F. RNase P ribozyme inhibits cytomegalovirus replication by blocking the expression of viral capsid proteins. Nucleic Acids Res 2004; 32:3427-34. [PMID: 15220469 PMCID: PMC443536 DOI: 10.1093/nar/gkh660] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2004] [Revised: 05/08/2004] [Accepted: 06/02/2004] [Indexed: 11/12/2022] Open
Abstract
By linking a guide sequence to the catalytic RNA subunit of RNase P (M1 RNA), we constructed a functional ribozyme (M1GS RNA) that targets the overlapping mRNA region of two human cytomegalovirus (HCMV) capsid proteins, the capsid scaffolding protein (CSP) and assemblin, which are essential for viral capsid formation. The ribozyme efficiently cleaved the target mRNA sequence in vitro. Moreover, a reduction of >85% in the expression of CSP and assemblin and a reduction of 4000-fold in viral growth were observed in the HCMV-infected cells that expressed the functional ribozyme. In contrast, there was no significant reduction in viral gene expression and growth in virus-infected cells that either did not express the ribozyme or produced a 'disabled' ribozyme carrying mutations that abolished its catalytic activity. Characterization of the effects of the ribozyme on the HCMV lytic replication cycle further indicates that the expression of the functional ribozyme specifically inhibits the expression of CSP and assemblin, and consequently blocks viral capsid formation and growth. Our results provide the direct evidence that RNase P ribozymes can be used as an effective gene-targeting agent for antiviral applications, including abolishing HCMV growth by blocking the expression of the virus-encoded capsid proteins.
Collapse
Affiliation(s)
- Kihoon Kim
- Program in Infectious Diseases and Immunity, Program in Comparative Biochemistry, School of Public Health, 140 Warren Hall, University of California, Berkeley, CA 94720, USA
| | | | | | | | | |
Collapse
|
208
|
Müller UF, Bartel DP. Substrate 2'-hydroxyl groups required for ribozyme-catalyzed polymerization. ACTA ACUST UNITED AC 2004; 10:799-806. [PMID: 14522050 DOI: 10.1016/s1074-5521(03)00171-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A polymerase ribozyme has been generated that uses nucleoside triphosphates to elongate an RNA primer by the successive addition of nucleotides complementary to an RNA template. Its polymerization is accurate, with an average error rate less than 3%, and it is general in terms of the sequence and the length of the primer and template RNAs. To begin to understand how the substrate contacts contribute to this accurate and general activity, we investigated which primer and template 2'-hydroxyl groups are involved in substrate recognition. We identified eight positions where 2'-deoxy substitutions can influence polymerization kinetics. All eight are within five nucleotides of the primer 3' terminus. Some, but not all, of the 2'-deoxy effects appear to be sequence dependent. These results begin to build a picture of how the polymerase ribozyme recognizes its substrates.
Collapse
Affiliation(s)
- Ulrich F Müller
- Whitehead Institute, 9 Cambridge Center, Cambridge, MA 02142, USA
| | | |
Collapse
|
209
|
Pavesi G, Mauri G, Stefani M, Pesole G. RNAProfile: an algorithm for finding conserved secondary structure motifs in unaligned RNA sequences. Nucleic Acids Res 2004; 32:3258-69. [PMID: 15199174 PMCID: PMC434454 DOI: 10.1093/nar/gkh650] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2004] [Revised: 04/05/2004] [Accepted: 05/21/2004] [Indexed: 11/13/2022] Open
Abstract
The recent interest sparked due to the discovery of a variety of functions for non-coding RNA molecules has highlighted the need for suitable tools for the analysis and the comparison of RNA sequences. Many trans-acting non-coding RNA genes and cis-acting RNA regulatory elements present motifs, conserved both in structure and sequence, that can be hardly detected by primary sequence analysis alone. We present an algorithm that takes as input a set of unaligned RNA sequences expected to share a common motif, and outputs the regions that are most conserved throughout the sequences, according to a similarity measure that takes into account both the sequence of the regions and the secondary structure they can form according to base-pairing and thermodynamic rules. Only a single parameter is needed as input, which denotes the number of distinct hairpins the motif has to contain. No further constraints on the size, number and position of the single elements comprising the motif are required. The algorithm can be split into two parts: first, it extracts from each input sequence a set of candidate regions whose predicted optimal secondary structure contains the number of hairpins given as input. Then, the regions selected are compared with each other to find the groups of most similar ones, formed by a region taken from each sequence. To avoid exhaustive enumeration of the search space and to reduce the execution time, a greedy heuristic is introduced for this task. We present different experiments, which show that the algorithm is capable of characterizing and discovering known regulatory motifs in mRNA like the iron responsive element (IRE) and selenocysteine insertion sequence (SECIS) stem-loop structures. We also show how it can be applied to corrupted datasets in which a motif does not appear in all the input sequences, as well as to the discovery of more complex motifs in the non-coding RNA.
Collapse
Affiliation(s)
- Giulio Pavesi
- Department of Computer Science and Communication-(D.I.Co.), University of Milan, Via Comelico 39, 20135 Milan, Italy
| | | | | | | |
Collapse
|
210
|
Zhu J, Trang P, Kim K, Zhou T, Deng H, Liu F. Effective inhibition of Rta expression and lytic replication of Kaposi's sarcoma-associated herpesvirus by human RNase P. Proc Natl Acad Sci U S A 2004; 101:9073-8. [PMID: 15184661 PMCID: PMC428475 DOI: 10.1073/pnas.0403164101] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2004] [Indexed: 11/18/2022] Open
Abstract
Ribonuclease P (RNase P) complexed with external guide sequence (EGS) represents a nucleic acid-based gene interference approach to knock-down gene expression. Unlike other strategies, such as antisense oligonucleotides, ribozymes, and RNA interference, the RNase P-based technology is unique because a custom-designed EGS molecule can bind to any complementary mRNA sequence and recruit intracellular RNase P for specific degradation of the target mRNA. In this study, we demonstrate that the RNase P-based strategy is effective in blocking gene expression and growth of Kaposi's sarcoma (KS)-associated herpesvirus (KSHV), the causative agent of the leading AIDS-associated neoplasms, such as KS and primary-effusion lymphoma. We constructed 2'-O-methyl-modified EGS molecules that target the mRNA encoding KSHV immediate-early transcription activator Rta, and we administered them directly to human primary-effusion lymphoma cells infected with KSHV. A reduction of 90% in Rta expression and a reduction of approximately 150-fold in viral growth were observed in cells treated with a functional EGS. In contrast, a reduction of <10% in the Rta expression and viral growth was found in cells that were either not treated with an EGS or that were treated with a disabled EGS containing mutations that preclude recognition by RNase P. Our study provides direct evidence that EGSs are highly effective in inhibiting KSHV gene expression and growth. Exogenous administration of chemically modified EGSs in inducing RNase P-mediated cleavage represents an approach for inhibiting specific gene expression and for treating human diseases, including KSHV-associated tumors.
Collapse
Affiliation(s)
- Jiaming Zhu
- Program in Infectious Diseases, School of Public Health, 140 Warren Hall, University of California, Berkeley, CA 94720, USA
| | | | | | | | | | | |
Collapse
|
211
|
Zou H, Lee J, Kilani AF, Kim K, Trang P, Kim J, Liu F. Engineered RNase P ribozymes increase their cleavage activities and efficacies in inhibiting viral gene expression in cells by enhancing the rate of cleavage and binding of the target mRNA. J Biol Chem 2004; 279:32063-70. [PMID: 15169770 DOI: 10.1074/jbc.m403059200] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Engineered RNase P ribozymes are promising gene-targeting agents that can be used in both basic research and clinical applications. We have previously selected ribozyme variants for their activity in cleaving an mRNA substrate from a pool of ribozymes containing randomized sequences. In this study, one of the variants was used to target the mRNA encoding thymidine kinase (TK) of herpes simplex virus 1 (HSV-1). The variant exhibited enhanced cleavage and substrate binding and was at least 30 times more efficient in cleaving TK mRNA in vitro than the ribozyme derived from the wild type sequence. Our results provide the first direct evidence to suggest that a point mutation at nucleotide 95 of RNase P catalytic RNA from Escherichia coli (G(95) --> U(95)) increases the rate of cleavage, whereas another mutation at nucleotide 200 (A(200) --> C(200)) enhances substrate binding of the ribozyme. A reduction of about 99% in TK expression was observed in cells expressing the variant, whereas a 70% reduction was found in cells expressing the ribozyme derived from the wild type sequence. Thus, the RNase P ribozyme variant is highly effective in inhibiting HSV-1 gene expression. Our study demonstrates that ribozyme variants increase their cleavage activity and efficacy in blocking gene expression in cells through enhanced substrate binding and rate of cleavage. These results also provide insights into the mechanism of how RNase P ribozymes efficiently cleave an mRNA substrate and, furthermore, facilitate the development of highly active RNase P ribozymes for gene-targeting applications.
Collapse
Affiliation(s)
- Hua Zou
- Program in Infectious Diseases and Immunity, Program in Comparative, Biochemistry, School of Public Health, University of California, Berkeley, 94720, USA
| | | | | | | | | | | | | |
Collapse
|
212
|
Paushkin SV, Patel M, Furia BS, Peltz SW, Trotta CR. Identification of a human endonuclease complex reveals a link between tRNA splicing and pre-mRNA 3' end formation. Cell 2004; 117:311-21. [PMID: 15109492 DOI: 10.1016/s0092-8674(04)00342-3] [Citation(s) in RCA: 188] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2003] [Revised: 02/19/2004] [Accepted: 02/19/2004] [Indexed: 11/24/2022]
Abstract
tRNA splicing is a fundamental process required for cell growth and division. The first step in tRNA splicing is the removal of introns catalyzed in yeast by the tRNA splicing endonuclease. The enzyme responsible for intron removal in mammalian cells is unknown. We present the identification and characterization of the human tRNA splicing endonuclease. This enzyme consists of HsSen2, HsSen34, HsSen15, and HsSen54, homologs of the yeast tRNA endonuclease subunits. Additionally, we identified an alternatively spliced isoform of SEN2 that is part of a complex with unique RNA endonuclease activity. Surprisingly, both human endonuclease complexes are associated with pre-mRNA 3' end processing factors. Furthermore, siRNA-mediated depletion of SEN2 exhibited defects in maturation of both pre-tRNA and pre-mRNA. These findings demonstrate a link between pre-tRNA splicing and pre-mRNA 3' end formation, suggesting that the endonuclease subunits function in multiple RNA-processing events.
Collapse
Affiliation(s)
- Sergey V Paushkin
- PTC Therapeutics, 100 Corporate Court, South Plainfield, NJ 07080, USA
| | | | | | | | | |
Collapse
|
213
|
Abstract
RNase P, a tRNA processing enzyme, contains both RNA and protein subunits. M1 RNA, the catalytic RNA subunit of RNase P from Escherichia coli, recognizes its target RNA substrate mainly on the basis of its structure and cleaves a double stranded RNA helix at the 5' end that resembles the acceptor stem and T-stem structure of its natural tRNA substrate. Accordingly, a guide sequence (GS) can be covalently attached to the M1 RNA to generate a sequence specific ribozyme, M1GS RNA. M1GS ribozyme can target any mRNA sequence of choice that is complementary to its guide sequence. Recent studies have shown that M1GS ribozymes efficiently cleave the mRNAs of herpes simplex virus 1 and human cytomegalovirus, and the BCR-ABL oncogenic mRNA in vitro and effectively reduce the expression of these mRNAs in cultured cells. Moreover, an in vitro selection scheme has been developed to select for M1 GS ribozyme variants with more efficient catalytic activity in cleaving mRNAs. When expressed in cultured cells, these selected ribozymes also show an enhance ability to inhibit viral gene expression and growth. These recent results demonstrate the feasibility of developing the M1GS ribozyme-based technology as a promising gene targeting approach for basic research and clinical therapeutic application.
Collapse
Affiliation(s)
- Phong Trang
- Program in Infectious Diseases and Immunity, Program in Comparative Biochemistry, School of Public Health, 140 Warren Hall, University of California, Berkeley, CA 94720, USA
| | | | | |
Collapse
|
214
|
Dittmar KA, Mobley EM, Radek AJ, Pan T. Exploring the regulation of tRNA distribution on the genomic scale. J Mol Biol 2004; 337:31-47. [PMID: 15001350 DOI: 10.1016/j.jmb.2004.01.024] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2003] [Revised: 12/30/2003] [Accepted: 01/13/2004] [Indexed: 11/15/2022]
Abstract
Though up to 20% of the total RNA in bacterial cells is tRNA, the regulation of tRNA distribution on the genomic level remains unclear. tRNA distribution is governed by four processes: transcription, processing of precursor tRNA, degradation of precursor tRNA and degradation of mature tRNA. To elucidate the relationship between these processes in the regulation of tRNA production, the relative tRNA distribution was measured using a microarray specifically designed for tRNA. We developed a procedure that selectively labels 3'-CCA-containing RNAs with the fluorophores Cy3 or Cy5. The labeled tRNAs were then hybridized to microarrays printed with complementary DNA probes. The regulation of tRNA distribution in Bacillus subtilis was explored for a wild-type strain and a mutant strain with significantly decreased levels of RNase P, the enzyme required for the 5' maturation of all tRNA. The strains were either grown under a variety of conditions at doubling times ranging from 0.1 to 2.2 doublings per hour to investigate growth-related changes in the tRNA abundance or treated with the transcriptional inhibitor rifampicin to analyze mature tRNA degradation. Our results confirm that transcription and processing contribute significantly to the distribution of the 35 tRNA species in B.subtilis, and suggest a role for the degradation of precursor tRNA. Mature tRNA degradation occurs with little specificity for individual tRNA species and on the hour time-scale, indicating that degradation of mature tRNA plays only a minor role in the regulation of tRNA distribution. Aside from transcription, the final tRNA distribution appears to be derived from a balance between processing and precursor degradation activities.
Collapse
Affiliation(s)
- Kimberly A Dittmar
- Department of Biochemistry and Molecular Biology, University of Chicago, 920 E. 58th Street, Chicago, IL 60637-1432, USA
| | | | | | | |
Collapse
|
215
|
Winkler WC, Nahvi A, Roth A, Collins JA, Breaker RR. Control of gene expression by a natural metabolite-responsive ribozyme. Nature 2004; 428:281-6. [PMID: 15029187 DOI: 10.1038/nature02362] [Citation(s) in RCA: 676] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2003] [Accepted: 01/19/2004] [Indexed: 01/21/2023]
Abstract
Most biological catalysts are made of protein; however, eight classes of natural ribozymes have been discovered that catalyse fundamental biochemical reactions. The central functions of ribozymes in modern organisms support the hypothesis that life passed through an 'RNA world' before the emergence of proteins and DNA. We have identified a new class of ribozymes that cleaves the messenger RNA of the glmS gene in Gram-positive bacteria. The ribozyme is activated by glucosamine-6-phosphate (GlcN6P), which is the metabolic product of the GlmS enzyme. Additional data indicate that the ribozyme serves as a metabolite-responsive genetic switch that represses the glmS gene in response to rising GlcN6P concentrations. These findings demonstrate that ribozyme switches may have functioned as metabolite sensors in primitive organisms, and further suggest that modern cells retain some of these ancient genetic control systems.
Collapse
Affiliation(s)
- Wade C Winkler
- Department of Molecular, Cellular and Developmental Biology, Yale University, PO Box 208103, New Haven, Connecticut 06520-8103, USA
| | | | | | | | | |
Collapse
|
216
|
Barrera A, Pan T. Interaction of the Bacillus subtilis RNase P with the 30S ribosomal subunit. RNA (NEW YORK, N.Y.) 2004; 10:482-492. [PMID: 14970393 PMCID: PMC1370943 DOI: 10.1261/rna.5163104] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2003] [Accepted: 11/14/2003] [Indexed: 05/24/2023]
Abstract
Ribonuclease P (RNase P) is a ribozyme required for the 5' maturation of all tRNA. RNase P and the ribosome are the only known ribozymes conserved in all organisms. We set out to determine whether this ribonucleoprotein enzyme interacts with other cellular components, which may imply other functions for this conserved ribozyme. Incubation of the Bacillus subtilis RNase P holoenzyme with fractionated B. subtilis cellular extracts and purified ribosomal subunits results in the formation of a gel-shifted complex with the 30S ribosomal subunit at a binding affinity of approximately 40 nM in 0.1 M NH(4)Cl and 10 mM MgCl(2). The complex does not form with the RNase P RNA alone and is disrupted by a mRNA mimic polyuridine, but is stable in the presence of high concentrations of mature tRNA. Endogenous RNase P can also be detected in the 30S ribosomal fraction. Cleavage of a pre-tRNA substrate by the RNase P holoenzyme remains the same in the presence of the 30S ribosome, but the cleavage of an artificial non-tRNA substrate is inhibited eightfold. Hydroxyl radical protection and chemical modification identify several protected residues located in a highly conserved region in the RNase P RNA. A single mutation within this region significantly reduces binding, providing strong support on the specificity of the RNase P-30S ribosome complex. Our results also suggest that the dimeric form of the RNase P is primarily involved in 30S ribosome binding. We discuss several models on a potential function of the RNase P-30S ribosome complex.
Collapse
Affiliation(s)
- Alessandra Barrera
- Department of Biochemistry & Molecular Biology, University of Chicago, Chicago, Illinois 60637, USA
| | | |
Collapse
|
217
|
Kim K, Umamoto S, Trang P, Hai R, Liu F. Intracellular expression of engineered RNase P ribozymes effectively blocks gene expression and replication of human cytomegalovirus. RNA (NEW YORK, N.Y.) 2004; 10:438-47. [PMID: 14970389 PMCID: PMC1370939 DOI: 10.1261/rna.5178404] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2003] [Accepted: 11/07/2003] [Indexed: 05/24/2023]
Abstract
A ribozyme (M1GS RNA) constructed from the catalytic RNA subunit of RNase P from Escherichia coli was used to target the overlapping region of two human cytomegalovirus (HCMV) mRNAs, which encode for the viral essential protease (PR) and capsid assembly proteins (AP), respectively. The results show a reduction of >80% in the expression levels of PR and AP and an inhibition of approximately 2000-fold of viral growth in cells that stably expressed the ribozyme. In comparison, <10% reduction in the expression of the targets and viral growth was found in cells that either did not express the ribozyme or produced a "disabled" ribozyme carrying mutations that abolished its catalytic activity. Examination of replication of the virus in the ribozyme-expressing cells indicates that packaging of the viral genomic DNA into capsids is blocked, and suggests that the antiviral effects are because the ribozyme specifically inhibits the AP and PR expression and, consequently, abolishes viral capsid formation and growth. Our results show that RNase P ribozymes are highly effective in blocking HCMV growth by targeting the PR and AP mRNAs and demonstrate the feasibility to use these ribozymes in gene therapy for antiviral applications.
Collapse
Affiliation(s)
- Kihoon Kim
- Program in Infectious Diseases and Immunity, School of Public Health, University of California, Berkeley, California 94720, USA
| | | | | | | | | |
Collapse
|
218
|
Han LY, Cai CZ, Lo SL, Chung MCM, Chen YZ. Prediction of RNA-binding proteins from primary sequence by a support vector machine approach. RNA (NEW YORK, N.Y.) 2004; 10:355-68. [PMID: 14970381 PMCID: PMC1370931 DOI: 10.1261/rna.5890304] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2003] [Accepted: 10/06/2003] [Indexed: 05/20/2023]
Abstract
Elucidation of the interaction of proteins with different molecules is of significance in the understanding of cellular processes. Computational methods have been developed for the prediction of protein-protein interactions. But insufficient attention has been paid to the prediction of protein-RNA interactions, which play central roles in regulating gene expression and certain RNA-mediated enzymatic processes. This work explored the use of a machine learning method, support vector machines (SVM), for the prediction of RNA-binding proteins directly from their primary sequence. Based on the knowledge of known RNA-binding and non-RNA-binding proteins, an SVM system was trained to recognize RNA-binding proteins. A total of 4011 RNA-binding and 9781 non-RNA-binding proteins was used to train and test the SVM classification system, and an independent set of 447 RNA-binding and 4881 non-RNA-binding proteins was used to evaluate the classification accuracy. Testing results using this independent evaluation set show a prediction accuracy of 94.1%, 79.3%, and 94.1% for rRNA-, mRNA-, and tRNA-binding proteins, and 98.7%, 96.5%, and 99.9% for non-rRNA-, non-mRNA-, and non-tRNA-binding proteins, respectively. The SVM classification system was further tested on a small class of snRNA-binding proteins with only 60 available sequences. The prediction accuracy is 40.0% and 99.9% for snRNA-binding and non-snRNA-binding proteins, indicating a need for a sufficient number of proteins to train SVM. The SVM classification systems trained in this work were added to our Web-based protein functional classification software SVMProt, at http://jing.cz3.nus.edu.sg/cgi-bin/svmprot.cgi. Our study suggests the potential of SVM as a useful tool for facilitating the prediction of protein-RNA interactions.
Collapse
Affiliation(s)
- Lian Yi Han
- Department of Computational Science, National University of Singapore, Singapore 117543
| | | | | | | | | |
Collapse
|
219
|
Xiao Y, Pavlov V, Gill R, Bourenko T, Willner I. Lighting Up Biochemiluminescence by the Surface Self-Assembly of DNA-Hemin Complexes. Chembiochem 2004; 5:374-9. [PMID: 14997531 DOI: 10.1002/cbic.200300794] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yi Xiao
- Institute of Chemistry and The Farkas Center for Light-Induced Processes, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | | | | | |
Collapse
|
220
|
Abstract
The VS ribozyme is the largest nucleolytic ribozyme, for which there is no crystal structure to date. The ribozyme consists of five helical sections, organized by two three-way junctions. The global structure has been determined by solution methods, particularly FRET. The substrate stem-loop binds into a cleft formed between two helices, while making a loop-loop contact with another section of the ribozyme. The scissile phosphate makes a close contact with an internal loop (the A730 loop), the probable active site of the ribozyme. This loop contains a particularly critical nucleotide A756. Most changes to this nucleotide lead to three-orders of magnitude slower cleavage, and the Watson-Crick edge is especially important. NAIM experiments indicate that a protonated base is required at this position for the ligation reaction. A756 is thus a strong candidate for nucleobase participation in the catalytic chemistry.
Collapse
Affiliation(s)
- David M J Lilley
- Cancer Research UK Nucleic Acid Structure Research Group, Department of Biochemistry, The University of Dundee, Dundee DD1 5EH, UK.
| |
Collapse
|
221
|
Dubrovsky EB, Dubrovskaya VA, Levinger L, Schiffer S, Marchfelder A. Drosophila RNase Z processes mitochondrial and nuclear pre-tRNA 3' ends in vivo. Nucleic Acids Res 2004; 32:255-62. [PMID: 14715923 PMCID: PMC373292 DOI: 10.1093/nar/gkh182] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Although correct tRNA 3' ends are crucial for protein biosynthesis, generation of mature tRNA 3' ends in eukaryotes is poorly understood and has so far only been investigated in vitro. We report here for the first time that eukaryotic tRNA 3' end maturation is catalysed by the endonuclease RNase Z in vivo. Silencing of the JhI-1 gene (RNase Z homolog) in vivo with RNAi in Drosophila S2 cultured cells causes accumulation of nuclear and mitochondrial pre-tRNAs, suggesting that JhI-1 encodes both forms of the tRNA 3' endonuclease RNase Z, and establishing its biological role in endonucleolytic tRNA 3' end processing. In addition our data show that in vivo 5' processing of nuclear and mitochondrial pre-tRNAs occurs before 3' processing.
Collapse
|
222
|
Boomershine WP, McElroy CA, Tsai HY, Wilson RC, Gopalan V, Foster MP. Structure of Mth11/Mth Rpp29, an essential protein subunit of archaeal and eukaryotic RNase P. Proc Natl Acad Sci U S A 2003; 100:15398-403. [PMID: 14673079 PMCID: PMC307579 DOI: 10.1073/pnas.2535887100] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have determined the solution structure of Mth11 (Mth Rpp29), an essential subunit of the RNase P enzyme from the archaebacterium Methanothermobacter thermoautotrophicus (Mth). RNase P is a ubiquitous ribonucleoprotein enzyme primarily responsible for cleaving the 5' leader sequence during maturation of tRNAs in all three domains of life. In eubacteria, this enzyme is made up of two subunits: a large RNA ( approximately 120 kDa) responsible for mediating catalysis, and a small protein cofactor ( approximately 15 kDa) that modulates substrate recognition and is required for efficient in vivo catalysis. In contrast, multiple proteins are associated with eukaryotic and archaeal RNase P, and these proteins exhibit no recognizable homology to the conserved bacterial protein subunit. In reconstitution experiments with recombinantly expressed and purified protein subunits, we found that Mth Rpp29, a homolog of the Rpp29 protein subunit from eukaryotic RNase P, is an essential protein component of the archaeal holoenzyme. Consistent with its role in mediating protein-RNA interactions, we report that Mth Rpp29 is a member of the oligonucleotide/oligosaccharide binding fold family. In addition to a structured beta-barrel core, it possesses unstructured N- and C-terminal extensions bearing several highly conserved amino acid residues. To identify possible RNA contacts in the protein-RNA complex, we examined the interaction of the 11-kDa protein with the full 100-kDa Mth RNA subunit by using NMR chemical shift perturbation. Our findings represent a critical step toward a structural model of the RNase P holoenzyme from archaebacteria and higher organisms.
Collapse
|
223
|
Persson T, Cuzic S, Hartmann RK. Catalysis by RNase P RNA: unique features and unprecedented active site plasticity. J Biol Chem 2003; 278:43394-401. [PMID: 12904300 DOI: 10.1074/jbc.m305939200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Metal ions are essential cofactors for precursor tRNA (ptRNA) processing by bacterial RNase P. The ribose 2'-OH at nucleotide (nt) -1 of ptRNAs is known to contribute to positioning of catalytic Me2+. To investigate the catalytic process, we used ptRNAs with single 2'-deoxy (2'-H), 2'-amino (2'-N), or 2'-fluoro (2'-F) modifications at the cleavage site (nt -1). 2' modifications had small (2.4-7.7-fold) effects on ptRNA binding to E. coli RNase P RNA in the ground state, decreasing substrate affinity in the order 2'-OH > 2'-F > 2'-N > 2'-H. Effects on the rate of the chemical step (about 10-fold for 2'-F, almost 150-fold for 2'-H and 2'-N) were much stronger, and, except for the 2'-N modification, resembled strikingly those observed in the Tetrahymena ribozyme-catalyzed reaction at corresponding position. Mn2+ rescued cleavage of the 2'-N but also the 2'-H-modified ptRNA, arguing against a direct metal ion coordination at this location. Miscleavage between nt -1 and -2 was observed for the 2'-N-ptRNA at low pH (further influenced by the base identities at nt -1 and +73), suggesting repulsion of a catalytic metal ion due to protonation of the amino group. Effects caused by the 2'-N modification at nt -1 of the substrate allowed us to substantiate a mechanistic difference in phosphodiester hydrolysis catalyzed by Escherichia coli RNase P RNA and the Tetrahymena ribozyme: a metal ion binds next to the 2' substituent at nt -1 in the reaction catalyzed by RNase P RNA, but not at the corresponding location in the Tetrahymena ribozyme reaction.
Collapse
Affiliation(s)
- Tina Persson
- Universität zu Lübeck, Institut für Biochemie, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| | | | | |
Collapse
|
224
|
Sidote DJ, Hoffman DW. NMR Structure of an Archaeal Homologue of Ribonuclease P Protein Rpp29. Biochemistry 2003; 42:13541-50. [PMID: 14622001 DOI: 10.1021/bi030170z] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A protein component of the Archaeoglobus fulgidus RNase P was expressed in Escherichia coli, purified, and structurally characterized using multidimensional NMR methods. The dominant structural feature of this 11 kDa protein is a sheet of six antiparallel beta-strands, wrapped around a core of conserved hydrophobic amino acids. Amide proton exchange and (15)N relaxation rate data provide evidence that the first 16 residues of the protein, located before the start of the first beta-strand, and the last 24 residues, located past the end of the last beta-strand, are relatively flexible; this contrasts with the relatively rigid and well-defined structure of the beta-sheet. Amino acid sequence comparisons among a diverse set of species indicate that the A. fulgidus protein is homologous to the human RNase P protein Rpp29, yeast RNase P protein Pop4, and a known archaeal RNase P protein from Methanobacter thermoautotrophicus; conserved hydrophobic residues indicate that the homologous protein in each of these species contains a similar beta-sheet structure. Conserved surface residues located in the loop connecting strands beta2 and beta3, the loop connecting strands beta4 and beta5, and in the flexible N- and C-terminal tails are most likely to have specific interactions with the RNA and other proteins of RNase P. The structural model of an RNase P protein component provided by the present work provides an essential step toward eventually understanding the overall architecture of this complex enzyme and the mechanism by which it performs its functions.
Collapse
Affiliation(s)
- David J Sidote
- Department of Chemistry and Biochemistry, Institute for Cellular and Molecular Biology, University of Texas, Austin, Texas 78712, USA
| | | |
Collapse
|
225
|
Choi JM, Park EY, Kim JH, Chang SK, Cho Y. Probing the functional importance of the hexameric ring structure of RNase PH. J Biol Chem 2003; 279:755-64. [PMID: 14573594 DOI: 10.1074/jbc.m309628200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RNase PH is a phosphate-dependent exoribonuclease that catalyzes the removal of nucleotides at the 3' end of the tRNA precursor, leading to the release of nucleoside diphosphate, and generates the CCA end during the maturation process. The 1.9-A crystal structures of the apo and the phosphate-bound forms of RNase PH from Pseudomonas aeruginosa reveal a monomeric RNase PH with an alpha/beta-fold tightly associated into a hexameric ring structure in the form of a trimer of dimers. A five ion pair network, Glu-63-Arg-74-Asp-116-Arg-77-Asp-118 and an ion-pair Glu-26-Arg-69 that are positioned symmetrically in the trimerization interface play critical roles in the formation of a hexameric ring. Single or double mutations of Arg-69, Arg-74, or Arg-77 in these ion pairs leads to the dissociation of the RNase PH hexamer into dimers without perturbing the overall monomeric structure. The dissociated RNase PH dimer completely lost its binding affinity and catalytic activity against a precursor tRNA. Our structural and mutational analyses of RNase PH demonstrate that the hexameric ring formation is a critical feature for the function of members of the RNase PH family.
Collapse
Affiliation(s)
- Jung Min Choi
- National Creative Research Initiative Center for Structural Biology and Department of Life Science, Pohang University of Science and Technology, Hyo-ja dong, San31, Pohang, KyungBook 790-784, South Korea
| | | | | | | | | |
Collapse
|
226
|
Abstract
Ribonuclease P (RNase P) is an essential enzyme that processes the 5' leader sequence of precursor tRNA. Eubacterial RNase P is an RNA enzyme, while its eukaryotic counterpart acts as catalytic ribonucleoprotein, consisting of RNA and numerous protein subunits. To study the latter form, we reconstitute human RNase P activity, demonstrating that the subunits H1 RNA, Rpp21, and Rpp29 are sufficient for 5' cleavage of precursor tRNA. The reconstituted RNase P precisely delineates its cleavage sites in various substrates and hydrolyzes the phosphodiester bond. Rpp21 and Rpp29 facilitate catalysis by H1 RNA, which seems to require a phylogenetically conserved pseudoknot structure for function. Unexpectedly, Rpp29 forms a catalytic complex with M1 RNA of E. coli RNase P. The results uncover the core components of eukaryotic RNase P, reveal its evolutionary origin in translation, and provide a paradigm for studying RNA-based catalysis by other nuclear and nucleolar ribonucleoprotein enzymes.
Collapse
Affiliation(s)
- Hagit Mann
- Department of Molecular Biology, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | | | | | | | | |
Collapse
|
227
|
Abstract
The 5'-end maturation of tRNAs is catalyzed by the ribonucleoprotein enzyme ribonuclease P (RNase P) in all organisms. Here we provide, for the first time, a comprehensive overview on the representation of individual RNase P protein homologs within the Eukarya and Archaea. Most eukaryotes have homologs for all four protein subunits (Pop4, Rpp1, Pop5 and Rpr2) present in the majority of Archaea. Pop4 is the only RNase P protein subunit identifiable in all Eukarya and Archaea with available genome sequences. Remarkably, there is no structural homology between bacterial and archaeal-eukaryotic RNase P proteins. The simplest interpretation is that RNase P has an 'RNA-alone' origin and progenitors of Bacteria and Archaea diverged very early in evolution and then pursued completely different strategies in the recruitment of protein subunits during the transition from the 'RNA-alone' to the 'RNA-protein' state of the enzyme.
Collapse
Affiliation(s)
- Enno Hartmann
- Institut für Biologie, Universität zu Lübeck, Ratzeburger Allee 160, D-23538, Lübeck, Germany.
| | | |
Collapse
|
228
|
Zou H, Lee J, Umamoto S, Kilani AF, Kim J, Trang P, Zhou T, Liu F. Engineered RNase P ribozymes are efficient in cleaving a human cytomegalovirus mRNA in vitro and are effective in inhibiting viral gene expression and growth in human cells. J Biol Chem 2003; 278:37265-74. [PMID: 12867424 DOI: 10.1074/jbc.m303531200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
By using an in vitro selection procedure, we have previously isolated RNase P ribozyme variants that efficiently cleave an mRNA sequence in vitro. In this study, a ribozyme variant was used to target the overlapping region of the mRNAs encoding human cytomegalovirus (HCMV) major transcription regulatory proteins IE1 and IE2. The variant is about 90 times more efficient in cleaving the IE1/IE2 mRNA sequence in vitro than the ribozyme derived from the wild type RNase P ribozyme. Our results provide the first direct evidence that a point mutation at nucleotide position 80 of RNase P catalytic RNA from Escherichia coli (U80--> C80) increases the rate of chemical cleavage, and another mutation at nucleotide position 188 (C188--> U188) enhances substrate binding of the ribozyme. Moreover, the variant is more effective in inhibiting viral IE1 and IE2 expression and growth in HCMV-infected cells than the wild type ribozyme. A reduction of about 99% in the expression level of IE1 and IE2 and a reduction of 10,000-fold in viral growth were observed in cells that expressed the variant. In contrast, a reduction of less than 10% in IE1/IE2 expression and viral growth was observed in cells that either did not express the ribozyme or produced a catalytically inactive ribozyme mutant. Thus, engineered RNase P ribozyme variants are highly effective in inhibiting HCMV gene expression and growth. These results also demonstrate the feasibility of engineering highly effective RNase P ribozymes for gene targeting applications, including anti-HCMV gene therapy.
Collapse
Affiliation(s)
- Hua Zou
- Program in Infectious Diseases and Immunity, School of Public Health, University of California, Berkeley, California 94720, USA
| | | | | | | | | | | | | | | |
Collapse
|
229
|
Pellegrini O, Nezzar J, Marchfelder A, Putzer H, Condon C. Endonucleolytic processing of CCA-less tRNA precursors by RNase Z in Bacillus subtilis. EMBO J 2003; 22:4534-43. [PMID: 12941704 PMCID: PMC202377 DOI: 10.1093/emboj/cdg435] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In contrast to Escherichia coli, where the 3' ends of tRNAs are primarily generated by exoribonucleases, maturation of the 3' end of tRNAs is catalysed by an endoribonuclease, known as RNase Z (or 3' tRNase), in many eukaryotic and archaeal systems. RNase Z cleaves tRNA precursors 3' to the discriminator base. Here we show that this activity, previously unsuspected in bacteria, is encoded by the yqjK gene of Bacillus subtilis. Decreased yqjK expression leads to an accumulation of a population of B.subtilis tRNAs in vivo, none of which have a CCA motif encoded in their genes, and YqjK cleaves tRNA precursors with the same specificity as plant RNase Z in vitro. We have thus renamed the gene rnz. A CCA motif downstream of the discriminator base inhibits RNase Z activity in vitro, with most of the inhibition due to the first C residue. Lastly, tRNAs with long 5' extensions are poor substrates for cleavage, suggesting that for some tRNAs, processing of the 5' end by RNase P may have to precede RNase Z cleavage.
Collapse
Affiliation(s)
- Olivier Pellegrini
- CNRS UPR 9073, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | | | | | | | | |
Collapse
|
230
|
Ishii R, Nureki O, Yokoyama S. Crystal structure of the tRNA processing enzyme RNase PH from Aquifex aeolicus. J Biol Chem 2003; 278:32397-404. [PMID: 12746447 DOI: 10.1074/jbc.m300639200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RNase PH is one of the exoribonucleases that catalyze the 3' end processing of tRNA in bacteria. RNase PH removes nucleotides following the CCA sequence of tRNA precursors by phosphorolysis and generates mature tRNAs with amino acid acceptor activity. In this study, we determined the crystal structure of Aquifex aeolicus RNase PH bound with a phosphate, a co-substrate, in the active site at 2.3-A resolution. RNase PH has the typical alpha/beta fold, which forms a hexameric ring structure as a trimer of dimers. This ring structure resembles that of the polynucleotide phosphorylase core domain homotrimer, another phosphorolytic exoribonuclease. Four amino acid residues, Arg-86, Gly-124, Thr-125, and Arg-126, of RNase PH are involved in the phosphate-binding site. Mutational analyses of these residues showed their importance in the phosphorolysis reaction. A docking model with the tRNA acceptor stem suggests how RNase PH accommodates substrate RNAs.
Collapse
Affiliation(s)
- Ryohei Ishii
- Department of Biophysics and Biochemistry, Graduate School of Science, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | |
Collapse
|
231
|
Abstract
Ribonuclease P (RNase P) is a ubiquitous ribonucleoprotein complex responsible for the biosynthesis of tRNA. This enzyme from Escherichia coli contains a catalytic RNA subunit (M1 ribozyme) and a protein subunit (C5 cofactor). M1 ribozyme cleaves an RNA helix that resembles the acceptor stem and T-stem structure of its natural tRNA substrate. When covalently linked with a guide sequence, M1 RNA can be engineered into a sequence-specific endonuclease, M1GS ribozyme, which can cleave any target RNA sequences that base pair with the guide sequence. Recent studies indicate that M1GS ribozymes efficiently cleave the mRNAs of herpes simplex virus 1, human cytomegalovirus, and cancer causing BCR-ABL proteins in vitro and effectively inhibit the expression of these mRNAs in cultured cells. Moreover, RNase P ribozyme variants that are more active than the wild type M1 RNA can be generated using in vitro selection procedures and the selected variants are also more effective in inhibiting gene expression in cultured cells. These results demonstrate that engineered RNase P ribozymes represent a novel class of promising gene-targeting agents for applications in both basic research and clinical therapy. This review discusses the principle underlying M1GS-mediated gene inactivation and methodologies involved in effective M1GS construction, expression in vivo and emerging prospects of this technology for gene therapy.
Collapse
Affiliation(s)
- Stephen M L Raj
- Division of Infectious Diseases, School of Public Health, University of California, Berkeley, CA 94720, USA
| | | |
Collapse
|
232
|
Kouzuma Y, Mizoguchi M, Takagi H, Fukuhara H, Tsukamoto M, Numata T, Kimura M. Reconstitution of archaeal ribonuclease P from RNA and four protein components. Biochem Biophys Res Commun 2003; 306:666-73. [PMID: 12810070 DOI: 10.1016/s0006-291x(03)01034-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Ribonuclease P (RNase P) is an endonuclease responsible for generating the 5(') end of matured tRNA molecules. A homology search of the hyperthermophilic archaeon Pyrococcus horikoshii OT3 genome database revealed that the four genes, PH1481, PH1601, PH1771, and PH1877, have a significant homology to those encoding RNase P protein subunits, hpop5, Rpp21, Rpp29, and Rpp30, of human, respectively. These genes were expressed in Escherichia coli cells, and the resulting proteins Ph1481p, Ph1601p, Ph1771p, and Ph1877p were purified to apparent homogeneity in a set of column chromatographies. The four proteins were characterized in terms of their capability to bind the cognate RNase P RNA from P. horikoshii. All four proteins exhibited the binding activity to the RNase P RNA. In vitro reconstitution of four putative RNase P proteins with the in vitro transcripted P. horikoshii RNase P RNA revealed that three proteins Ph1481p, Ph1601p, and Ph1771p, and RNase P RNA are minimal components for the RNase P activity. However, addition of the fourth protein Ph1877p strongly stimulated enzymatic activity, indicating that all four proteins and RNase P RNA are essential for optimal RNase P activity. The present data will pave the way for the elucidation of the reaction mechanism for archaeal as well as eukaryotic RNase P.
Collapse
MESH Headings
- Animals
- Archaeal Proteins/chemistry
- Archaeal Proteins/genetics
- Archaeal Proteins/metabolism
- Base Sequence
- Endoribonucleases/chemistry
- Endoribonucleases/genetics
- Endoribonucleases/isolation & purification
- Endoribonucleases/metabolism
- Escherichia coli Proteins
- Humans
- Molecular Sequence Data
- Nucleic Acid Conformation
- Protein Binding
- Protein Subunits/genetics
- Protein Subunits/metabolism
- Pyrococcus/enzymology
- Pyrococcus/genetics
- RNA, Archaeal/chemistry
- RNA, Archaeal/metabolism
- RNA, Catalytic/chemistry
- RNA, Catalytic/genetics
- RNA, Catalytic/isolation & purification
- RNA, Catalytic/metabolism
- RNA, Transfer, Tyr/chemistry
- RNA, Transfer, Tyr/metabolism
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Ribonuclease P
- Ribonucleoproteins/genetics
- Ribonucleoproteins/isolation & purification
- Ribonucleoproteins/metabolism
Collapse
Affiliation(s)
- Yoshiaki Kouzuma
- Laboratory of Biochemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Hakozaki 6-10-1, Higashi-ku, 812-8581, Fukuoka, Japan
| | | | | | | | | | | | | |
Collapse
|
233
|
Tekos A, Prodromaki E, Papadimou E, Pavlidou D, Tsambaos D, Drainas D. Aminoglycosides suppress tRNA processing in human epidermal keratinocytes in vitro. Skin Pharmacol Physiol 2003; 16:252-8. [PMID: 12784065 DOI: 10.1159/000070848] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2002] [Indexed: 11/19/2022]
Abstract
The ever-growing resistance of pathogens to antibiotics and the lack of potent antibacterial drugs constitute major problems in the treatment of infectious diseases. Thus, the better understanding of the mode of action of antibiotics at the molecular level is of essential importance. Accumulating evidence points towards RNA as being a crucial target of antibacterial and antiviral drugs. Interestingly, aminoglycosides, one of the most important families of antibiotics, apart from their inhibitory effect on ribosome function, reportedly interfere with various RNA molecules and in vitro suppress the proliferation of human keratinocytes. In this study we investigated the effect of the aminoglycosides neomycin B, paromomycin, tobramycin and gentamycin on ribonuclease P activity from normal human epidermal keratinocytes. All aminoglycosides tested revealed a dose-dependent inhibition of tRNA maturation, which was reduced by increasing Mg(2+) ion concentrations, indicating competition of the cationic aminoglycosides with magnesium ions required for catalysis. Our in vitro findings suggest that the inhibitory effects of aminoglycosides on tRNA processing may be implicated in the mechanisms of their antiproliferative action on human epidermal keratinocytes.
Collapse
Affiliation(s)
- A Tekos
- Department of Biochemistry, School of Medicine, University of Patras, Patras, Greece
| | | | | | | | | | | |
Collapse
|
234
|
Kazantsev AV, Krivenko AA, Harrington DJ, Carter RJ, Holbrook SR, Adams PD, Pace NR. High-resolution structure of RNase P protein from Thermotoga maritima. Proc Natl Acad Sci U S A 2003; 100:7497-502. [PMID: 12799461 PMCID: PMC164615 DOI: 10.1073/pnas.0932597100] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The structure of RNase P protein from the hyperthermophilic bacterium Thermotoga maritima was determined at 1.2-A resolution by using x-ray crystallography. This protein structure is from an ancestral-type RNase P and bears remarkable similarity to the recently determined structures of RNase P proteins from bacteria that have the distinct, Bacillus type of RNase P. These two types of protein span the extent of bacterial RNase P diversity, so the results generalize the structure of the bacterial RNase P protein. The broad phylogenetic conservation of structure and distribution of potential RNA-binding elements in the RNase P proteins indicate that all of these homologous proteins bind to their cognate RNAs primarily by interaction with the phylogenetically conserved core of the RNA. The protein is found to dimerize through an extensive, well-ordered interface. This dimerization may reflect a mechanism of thermal stability of the protein before assembly with the RNA moiety of the holoenzyme.
Collapse
Affiliation(s)
- Alexei V Kazantsev
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309-0347, USA
| | | | | | | | | | | | | |
Collapse
|
235
|
Langkjaer RB, Casaregola S, Ussery DW, Gaillardin C, Piskur J. Sequence analysis of three mitochondrial DNA molecules reveals interesting differences among Saccharomyces yeasts. Nucleic Acids Res 2003; 31:3081-91. [PMID: 12799436 PMCID: PMC162263 DOI: 10.1093/nar/gkg423] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2003] [Revised: 04/11/2003] [Accepted: 04/11/2003] [Indexed: 11/13/2022] Open
Abstract
The complete sequences of mitochondrial DNA (mtDNA) from the two budding yeasts Saccharomyces castellii and Saccharomyces servazzii, consisting of 25 753 and 30 782 bp, respectively, were analysed and compared to Saccharomyces cerevisiae mtDNA. While some of the traits are very similar among Saccharomyces yeasts, others have highly diverged. The two mtDNAs are much more compact than that of S.cerevisiae and contain fewer introns and intergenic sequences, although they have almost the same coding potential. A few genes contain group I introns, but group II introns, otherwise found in S.cerevisiae mtDNA, are not present. Surprisingly, four genes (ATP6, COX2, COX3 and COB) in the mtDNA of S.servazzii contain, in total, five +1 frameshifts. mtDNAs of S.castellii, S.servazzii and S.cerevisiae contain all genes on the same strand, except for one tRNA gene. On the other hand, the gene order is very different. Several gene rearrangements have taken place upon separation of the Saccharomyces lineages, and even a part of the transcription units have not been preserved. It seems that the mechanism(s) involved in the generation of the rearrangements has had to ensure that all genes stayed encoded by the same DNA strand.
Collapse
MESH Headings
- Base Sequence
- DNA, Intergenic
- DNA, Mitochondrial/chemistry
- DNA, Mitochondrial/genetics
- Endodeoxyribonucleases/metabolism
- Endoribonucleases/genetics
- Gene Order
- Genes, rRNA
- Introns
- Mitochondrial Proteins/genetics
- Molecular Sequence Data
- Open Reading Frames
- RNA/chemistry
- RNA/metabolism
- RNA, Catalytic/genetics
- RNA, Mitochondrial
- RNA, Transfer/genetics
- Repetitive Sequences, Nucleic Acid
- Ribonuclease P
- Saccharomyces/genetics
- Saccharomyces cerevisiae/genetics
- Sequence Analysis, DNA
- Species Specificity
- Transcription Initiation Site
- Transcription, Genetic
Collapse
Affiliation(s)
- R B Langkjaer
- BioCentrum-DTU, Technical University of Denmark, Building 301, DK-2800 Kgl. Lyngby, Denmark
| | | | | | | | | |
Collapse
|
236
|
Zahler NH, Christian EL, Harris ME. Recognition of the 5' leader of pre-tRNA substrates by the active site of ribonuclease P. RNA (NEW YORK, N.Y.) 2003; 9:734-45. [PMID: 12756331 PMCID: PMC1370440 DOI: 10.1261/rna.5220703] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2003] [Accepted: 03/13/2003] [Indexed: 05/20/2023]
Abstract
The bacterial tRNA processing enzyme ribonuclease P (RNase P) is a ribonucleoprotein composed of a approximately 400 nucleotide RNA and a smaller protein subunit. It has been established that RNase P RNA contacts the mature tRNA portion of pre-tRNA substrates, whereas RNase P protein interacts with the 5' leader sequence. However, specific interactions with substrate nucleotides flanking the cleavage site have not previously been defined. Here we provide evidence for an interaction between a conserved adenosine, A248 in the Escherichia coli ribozyme, and N(-1), the substrate nucleotide immediately 5' of the cleavage site. Specifically, mutations at A248 result in miscleavage of substrates containing a 2' deoxy modification at N(-1). Compensatory mutations at N(-1) restore correct cleavage in both the RNA-alone and holoenzyme reactions, and also rescue defects in binding thermodynamics caused by A248 mutation. Analysis of pre-tRNA leader sequences in Bacteria and Archaea reveals a conserved preference for U at N(-1), suggesting that an interaction between A248 and N(-1) is common among RNase P enzymes. These results provide the first direct evidence for RNase P RNA interactions with the substrate cleavage site, and show that RNA and protein cooperate in leader sequence recognition.
Collapse
MESH Headings
- 5' Untranslated Regions/metabolism
- Adenosine/genetics
- Base Sequence
- Binding Sites
- Catalysis
- Conserved Sequence
- Endoribonucleases/chemistry
- Endoribonucleases/metabolism
- Escherichia coli/enzymology
- Escherichia coli Proteins/genetics
- Escherichia coli Proteins/metabolism
- Models, Biological
- Mutation
- RNA Precursors/chemistry
- RNA Precursors/metabolism
- RNA, Archaeal/chemistry
- RNA, Archaeal/metabolism
- RNA, Bacterial/chemistry
- RNA, Bacterial/metabolism
- RNA, Catalytic/chemistry
- RNA, Catalytic/metabolism
- RNA, Transfer/chemistry
- RNA, Transfer/metabolism
- Ribonuclease P
- Sequence Analysis, RNA
- Substrate Specificity
Collapse
Affiliation(s)
- Nathan H Zahler
- Center for RNA Molecular Biology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106-4973, USA
| | | | | |
Collapse
|
237
|
Trang P, Kim K, Zhu J, Liu F. Expression of an RNase P ribozyme against the mRNA encoding human cytomegalovirus protease inhibits viral capsid protein processing and growth. J Mol Biol 2003; 328:1123-35. [PMID: 12729746 DOI: 10.1016/s0022-2836(03)00398-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A sequence-specific ribozyme (M1GS RNA) derived from the catalytic RNA subunit of RNase P from Escherichia coli was used to target the mRNA encoding human cytomegalovirus (HCMV) protease (PR), a viral protein that is responsible for the processing of the viral capsid assembly protein. We showed that the constructed ribozyme cleaved the PR mRNA sequence efficiently in vitro. Moreover, a reduction of about 80% in the expression level of the protease and a reduction of about 100-fold in HCMV growth were observed in cells that expressed the ribozyme stably. In contrast, a reduction of less than 10% in the expression of viral protease and viral growth was observed in cells that either did not express the ribozyme or produced a catalytically inactive ribozyme mutant. Further examination of the antiviral effects of the ribozyme-mediated cleavage of PR mRNA indicates that (1) the proteolytic cleavage of the capsid assembly protein is inhibited significantly, and (2) the packaging of the viral genomic DNA into the CMV capsids is blocked. These observations are consistent with the notion that the protease functions to process the capsid assembly protein and is essential for viral capsid assembly. Moreover, our results indicate that the RNase P ribozyme-mediated cleavage specifically reduces the expression of the protease, but not other viral genes examined. Thus, M1GS ribozyme is highly effective in inhibiting HCMV growth by targeting the PR mRNA and may represent a novel class of general gene-targeting agents for the studies and treatment of infections caused by human viruses, including HCMV.
Collapse
Affiliation(s)
- Phong Trang
- Program in Infectious Diseases and Immunity, Program in Comparative Biochemistry, School of Public Health, University of California, 140 Warren Hall, Berkeley, CA 94720, USA
| | | | | | | |
Collapse
|
238
|
Feltens R, Gossringer M, Willkomm DK, Urlaub H, Hartmann RK. An unusual mechanism of bacterial gene expression revealed for the RNase P protein of Thermus strains. Proc Natl Acad Sci U S A 2003; 100:5724-9. [PMID: 12719542 PMCID: PMC156268 DOI: 10.1073/pnas.0931462100] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The RNase P protein gene (rnpA) completely overlaps the rpmH gene (encoding ribosomal protein L34) out of frame in the thermophilic bacterium Thermus thermophilus. This results in the synthesis of an extended RNase P protein (C5) of 163 aa and, by inference, of 240 aa in the related strain Thermus filiformis. Start codons of rnpA and rpmH, apparently governed by the same ribosome binding site, are separated by only 4 nt, which suggests a regulatory linkage between L34 and C5 translation and, accordingly, between ribosome and RNase P biosynthesis. Within the sequence encoding the N-terminal extensions and downstream of rpmH, several Thermus species exhibit in-frame deletionsinsertions, suggesting relaxed constraints for sequence conservation in this region. Roughly the N-terminal third of T. thermophilus C5 was further shown to be dispensable for RNase P function in vitro by using a precursor tRNA(Gly) substrate from the same organism. Taken together, these data reveal a mode of gene expression that is to our knowledge unprecedented in bacteria.
Collapse
Affiliation(s)
- Ralph Feltens
- Institute für Biochemie and Molekulare Medizin, Universität zu Lübeck, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| | | | | | | | | |
Collapse
|
239
|
Flynn-Charlebois A, Prior TK, Hoadley KA, Silverman SK. In vitro evolution of an RNA-cleaving DNA enzyme into an RNA ligase switches the selectivity from 3'-5' to 2'-5'. J Am Chem Soc 2003; 125:5346-50. [PMID: 12720447 DOI: 10.1021/ja0340331] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Deoxyribozymes that ligate RNA expand the scope of nucleic acid catalysis and allow preparation of site-specifically modified RNAs. Previously, deoxyribozymes that join a 5'-hydroxyl and a 2',3'-cyclic phosphate were identified by in vitro selection from random DNA pools. Here, the alternative strategy of in vitro evolution was used to transform the 8-17 deoxyribozyme that cleaves RNA into a family of DNA enzymes that ligate RNA. The parent 8-17 DNA enzyme cleaves native 3'-5' phosphodiester linkages but not 2'-5' bonds. Surprisingly, the new deoxyribozymes evolved from 8-17 create only 2'-5' linkages. Thus, reversing the direction of the DNA-mediated process from ligation to cleavage also switches the selectivity in forming the new phosphodiester bond. The same change in selectivity was observed upon evolution of the 10-23 RNA-cleaving deoxyribozyme into an RNA ligase. The DNA enzymes previously isolated from random pools also create 2'-5' linkages. Therefore, deoxyribozyme-mediated formation of a non-native 2'-5' phosphodiester linkage from a 5'-hydroxyl and a 2',3'-cyclic phosphate is strongly favored in many different contexts.
Collapse
Affiliation(s)
- Amber Flynn-Charlebois
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | | | | | | |
Collapse
|
240
|
Boomershine WP, Raj MLS, Gopalan V, Foster MP. Preparation of uniformly labeled NMR samples in Escherichia coli under the tight control of the araBAD promoter: expression of an archaeal homolog of the RNase P Rpp29 protein. Protein Expr Purif 2003; 28:246-51. [PMID: 12699688 DOI: 10.1016/s1046-5928(02)00707-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We report the first use of the tightly regulated araBAD promoter for generating uniformly labeled samples for NMR. The araBAD promoter provides a distinct advantage over that of the most commonly used protein overexpression systems in bacteria (e.g., in pET vectors: T7lac), in that it provides much tighter control over basal expression. However, use of araBAD-regulated expression for preparation of uniformly labeled protein samples for NMR is complicated by the fact that glucose (the most commonly used carbon source in defined minimal media) indirectly represses transcription, and thus, cannot be used. After experimenting with alternative media, we found that uniformly labeled NMR samples can be prepared using the highly regulated arabinose-inducible promoter and that suitable yields can be obtained in defined minimal media containing glycerol, not glucose, as the carbon source.
Collapse
|
241
|
Huang W, Flint SJ. Unusual properties of adenovirus E2E transcription by RNA polymerase III. J Virol 2003; 77:4015-24. [PMID: 12634361 PMCID: PMC150658 DOI: 10.1128/jvi.77.7.4015-4024.2003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2002] [Accepted: 12/23/2002] [Indexed: 01/13/2023] Open
Abstract
In adenovirus type 5-infected cells, RNA polymerase III transcription of a gene superimposed on the 5' end of the E2E RNA polymerase II transcription unit produces two small (<100-nucleotide) RNAs that accumulate to low steady-state concentrations (W. Huang, R. Pruzan, and S. J. Flint, Proc. Natl. Acad. Sci. USA 91:1265-1269, 1984). To gain a better understanding of the function of this RNA polymerase III transcription, we have examined the properties of the small E2E RNAs and E2E RNA polymerase III transcription in more detail. The accumulation of cytoplasmic E2E RNAs and the rates of E2E transcription by the two RNA polymerases during the infectious cycle were analyzed by using RNase T(1) protection and run-on transcription assays, respectively. Although the RNA polymerase III transcripts were present at significantly lower concentrations than E2E mRNA throughout the period examined, E2E transcription by RNA polymerase III was found to be at least as efficient as that by RNA polymerase II. The short half-lifes of the small E2E RNAs estimated by using the actinomycin D chase method appear to account for their limited accumulation. The transcription of E2E sequences by RNA polymerase II and III in cells infected by recombinant adenoviruses carrying ectopic E2E-CAT (chloramphenicol transferase) reporter genes with mutations in E2E promoter sequences was also examined. The results of these experiments indicate that recognition of the E2E promoter by the RNA polymerase II transcriptional machinery in infected cells limits transcription by RNA polymerase III, and vice versa. Such transcriptional competition and the properties of E2E RNAs made by RNA polymerase III suggest that the function of this viral RNA polymerase III transcription unit is unusual.
Collapse
Affiliation(s)
- Wenlin Huang
- Department of Molecular Biology, Princeton University, New Jersey 08544-1014, USA
| | | |
Collapse
|
242
|
Puerta-Fernández E, Romero-López C, Barroso-delJesus A, Berzal-Herranz A. Ribozymes: recent advances in the development of RNA tools. FEMS Microbiol Rev 2003; 27:75-97. [PMID: 12697343 DOI: 10.1016/s0168-6445(03)00020-2] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The discovery 20 years ago that some RNA molecules, called ribozymes, are able to catalyze chemical reactions was a breakthrough in biology. Over the last two decades numerous natural RNA motifs endowed with catalytic activity have been described. They all fit within a few well-defined types that respond to a specific RNA structure. The prototype catalytic domain of each one has been engineered to generate trans-acting ribozymes that catalyze the site-specific cleavage of other RNA molecules. On the 20th anniversary of ribozyme discovery we briefly summarize the main features of the different natural catalytic RNAs. We also describe progress towards developing strategies to ensure an efficient ribozyme-based technology, dedicating special attention to the ones aimed to achieve a new generation of therapeutic agents.
Collapse
Affiliation(s)
- Elena Puerta-Fernández
- Instituto de Parasitología y Biomedicina López-Neyra, CSIC, Ventanilla 11, 18001 Granada, Spain
| | | | | | | |
Collapse
|
243
|
Flynn-Charlebois A, Wang Y, Prior TK, Rashid I, Hoadley KA, Coppins RL, Wolf AC, Silverman SK. Deoxyribozymes with 2'-5' RNA ligase activity. J Am Chem Soc 2003; 125:2444-54. [PMID: 12603132 DOI: 10.1021/ja028774y] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In vitro selection was used to identify deoxyribozymes that ligate two RNA substrates. In the ligation reaction, a 2'-5' RNA phosphodiester linkage is created from a 2',3'-cyclic phosphate and a 5'-hydroxyl group. The new Mg(2+)-dependent deoxyribozymes provide 50-60% yield of ligated RNA in overnight incubations at pH 7.5 and 37 degrees C, and they afford 40-50% yield in 1 h at pH 9.0 and 37 degrees C. Various RNA substrate sequences may be joined by simple Watson-Crick covaration of the DNA binding arms that interact with the two RNA substrates. The current deoxyribozymes have some RNA substrate sequence requirements at the nucleotides immediately surrounding the ligation junction (either UAUA GGAA or UAUN GGAA, where the arrow denotes the ligation site and N equals any nucleotide). One of the new deoxyribozymes was used to prepare by ligation the Tetrahymena group I intron RNA P4-P6 domain, a representative structured RNA. Nondenaturing gel electrophoresis revealed that a 2'-5' linkage between nucleotides A233 and G234 of P4-P6 does not disrupt its Mg(2+)-dependent folding (DeltaDeltaG degrees ' < 0.2 kcal/mol). This demonstrates that a 2'-5' linkage does not necessarily interfere with structure in a folded RNA. Therefore, these non-native linkages may be acceptable in modified RNAs when structure/function relationships are investigated. Deoxyribozymes that ligate RNA should be particularly useful for preparing site-specifically modified RNAs for studies of RNA structure, folding, and catalysis.
Collapse
Affiliation(s)
- Amber Flynn-Charlebois
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801, USA
| | | | | | | | | | | | | | | |
Collapse
|
244
|
Kalavrizioti D, Vourekas A, Tekos A, Tsagla A, Stathopoulos C, Drainas D. Kinetics of inhibition of ribonuclease P activity by peptidyltransferase inhibitors. Effect of antibiotics on RNase P. Mol Biol Rep 2003; 30:9-14. [PMID: 12688530 DOI: 10.1023/a:1022290110116] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A cell-free system derived from Dictyostelium discoideum has been used to study the kinetics of inhibition of RNase P by puromycin, amicetin and blasticidin S. Detailed kinetic analysis showed that the type of inhibition of RNase P activity by puromycin is simple competitive, whereas the type of inhibition by amicetin and blasticidin S is simple non-competitive. On the basis of Ki values amicetin is stronger inhibitor than puromycin and blasticidin S.
Collapse
Affiliation(s)
- Dimitra Kalavrizioti
- Department of Biochemistry, School of Medicine, University of Patras, 26500 Patras, Greece
| | | | | | | | | | | |
Collapse
|
245
|
Ikawa Y, Tsuda K, Matsumura S, Atsumi S, Inoue T. Putative intermediary stages for the molecular evolution from a ribozyme to a catalytic RNP. Nucleic Acids Res 2003; 31:1488-96. [PMID: 12595557 PMCID: PMC149818 DOI: 10.1093/nar/gkg225] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A hypothetical evolutionary pathway from a ribozyme to a catalytic RNA-protein complex (RNP) is proposed and examined. In this hypothesis for an early phase of molecular evolution, one RNA-RNA interaction in the starting ribozyme is replaced with an RNA-protein interaction via two intermediary stages. At each stage, the original RNA-RNA interaction and a newly introduced RNA-protein interaction are designed to coexist. The catalytic RNPs corresponding to the intermediary stages were constructed by employing the Tetrahymena ribozyme together with molecular modeling. Analyses of the RNPs indicate that the protein can fully replace the original role of the RNA-RNA interaction in the starting ribozyme and that the association of a protein with a ribozyme might be beneficial for improving the ribozymatic activity.
Collapse
Affiliation(s)
- Yoshiya Ikawa
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | | | | | | | | |
Collapse
|
246
|
Schiffer S, Rösch S, Marchfelder A. Recombinant RNase Z does not recognize CCA as part of the tRNA and its cleavage efficieny is influenced by acceptor stem length. Biol Chem 2003; 384:333-42. [PMID: 12715884 DOI: 10.1515/bc.2003.039] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
One of the essential maturation steps to yield functional tRNA molecules is the removal of 3'-trailer sequences by RNase Z. After RNase Z cleavage the tRNA nucleotidyl transferase adds the CCA sequence to the tRNA 3'-terminus, thereby generating the mature tRNA. Here we investigated whether a terminal CCA triplet as 3'-trailer or embedded in a longer 3'-trailer influences cleavage site selection by RNase Z using three activities: a recombinant plant RNase Z, a recombinant archaeal RNase Z and an RNase Z active wheat extract. A trailer of only the CCA trinucleotide is left intact by the wheat extract RNase Z but is removed by the recombinant plant and archaeal enzymes. Thus the CCA triplet is not recognized by the RNase Z enzyme itself, but rather requires cofactors still present in the extract. In addition, we investigated the influence of acceptor stem length on cleavage by RNase Z using variants of wild-type tRNATyr. While the wild type and the variant with 8 base pairs in the acceptor stem were processed efficiently by all three activities, variants with shorter and longer acceptor stems were poor substrates or were not cleaved at all.
Collapse
Affiliation(s)
- Steffen Schiffer
- Molekulare Botanik, Universität Ulm, Albert-Einstein-Allee 11, D-89069 Ulm, Germany
| | | | | |
Collapse
|
247
|
Papadimou E, Pavlidou D, Séraphin B, Tsambaos D, Drainas D. Retinoids inhibit human epidermal keratinocyte RNase P activity. Biol Chem 2003; 384:457-62. [PMID: 12715896 DOI: 10.1515/bc.2003.051] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Ribonuclease P (RNase P) is a ubiquitous and essential enzyme that endonucleolytically cleaves all tRNA precursors to produce the mature 5'-end. We have investigated the effect of synthetic rertinoids (all-trans retinoic acid, acitretin) and arotinoids (Ro 13-7410, Ro 15-0778, Ro, 13-6298 and Ro 15-1570) on RNase P activity isolated for the first time from normal human epidermal keratinocytes (NHEK). All tested compounds but one (Ro 15-1570) revealed a dose-dependent inhibition of RNase P activity, indicating that they may have a direct effect on tRNA biogenesis. Detailed kinetic analysis showed that all retinoids behave as classic competitive inhibitors. On the basis of the Ki values Ro 13-7410 was found to be the strongest inhibitor among all compounds tested.
Collapse
|
248
|
Krasilnikov AS, Yang X, Pan T, Mondragón A. Crystal structure of the specificity domain of ribonuclease P. Nature 2003; 421:760-4. [PMID: 12610630 DOI: 10.1038/nature01386] [Citation(s) in RCA: 172] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2002] [Accepted: 12/16/2002] [Indexed: 11/09/2022]
Abstract
RNase P is the only endonuclease responsible for processing the 5' end of transfer RNA by cleaving a precursor and leading to tRNA maturation. It contains an RNA component and a protein component and has been identified in all organisms. It was one of the first catalytic RNAs identified and the first that acts as a multiple-turnover enzyme in vivo. RNase P and the ribosome are so far the only two ribozymes known to be conserved in all kingdoms of life. The RNA component of bacterial RNase P can catalyse pre-tRNA cleavage in the absence of the RNase P protein in vitro and consists of two domains: a specificity domain and a catalytic domain. Here we report a 3.15-A resolution crystal structure of the 154-nucleotide specificity domain of Bacillus subtilis RNase P. The structure reveals the architecture of this domain, the interactions that maintain the overall fold of the molecule, a large non-helical but well-structured module that is conserved in all RNase P RNA, and the regions that are involved in interactions with the substrate.
Collapse
Affiliation(s)
- Andrey S Krasilnikov
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, Illinois 60208, USA
| | | | | | | |
Collapse
|
249
|
Kufel J, Tollervey D. 3'-processing of yeast tRNATrp precedes 5'-processing. RNA (NEW YORK, N.Y.) 2003; 9:202-8. [PMID: 12554863 PMCID: PMC1370386 DOI: 10.1261/rna.2145103] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2002] [Accepted: 10/21/2002] [Indexed: 05/21/2023]
Abstract
Previous analyses of eukaryotic pre-tRNAs processing have reported that 5'-cleavage by RNase P precedes 3'-maturation. Here we report that in contrast to all other yeast tRNAs analyzed to date, tRNA(Trp) undergoes 3'-maturation prior to 5'-cleavage. Despite its unusual processing pathway, pre-tRNA(Trp) resembles other pre-tRNAs, showing dependence on the essential Lsm proteins for normal processing and efficient association with the yeast La homolog, Lhp1p. tRNA(Trp) is also unusual in not requiring Lhp1p for 3' processing and stability. However, other Lhp1p-independent tRNAs, tRNA(2)(Lys) and tRNA(1)(Ile), follow the normal pathway of 5'-processing prior to 3-processing.
Collapse
Affiliation(s)
- Joanna Kufel
- Wellcome Trust Centre for Cell Biology, King's Buildings, The University of Edinburgh, Edinburgh EH9 3JR, Scotland, UK
| | | |
Collapse
|
250
|
Tsai HY, Masquida B, Biswas R, Westhof E, Gopalan V. Molecular modeling of the three-dimensional structure of the bacterial RNase P holoenzyme. J Mol Biol 2003; 325:661-75. [PMID: 12507471 DOI: 10.1016/s0022-2836(02)01267-6] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Bacterial ribonuclease P (RNase P), an enzyme involved in tRNA maturation, consists of a catalytic RNA subunit and a protein cofactor. Comparative phylogenetic analysis and molecular modeling have been employed to derive secondary and tertiary structure models of the RNA subunits from Escherichia coli (type A) and Bacillus subtilis (type B) RNase P. The tertiary structure of the protein subunit of B.subtilis and Staphylococcus aureus RNase P has recently been determined. However, an understanding of the structure of the RNase P holoenzyme (i.e. the ribonucleoprotein complex) is lacking. We have now used an EDTA-Fe-based footprinting approach to generate information about RNA-protein contact sites in E.coli RNase P. The footprinting data, together with results from other biochemical and biophysical studies, have furnished distance constraints, which in turn have enabled us to build three-dimensional models of both type A and B versions of the bacterial RNase P holoenzyme in the absence and presence of its precursor tRNA substrate. These models are consistent with results from previous studies and provide both structural and mechanistic insights into the functioning of this unique catalytic RNP complex.
Collapse
MESH Headings
- Amino Acid Sequence
- Base Sequence
- Catalytic Domain
- Computer Simulation
- Cysteine/chemistry
- DNA Footprinting
- DNA, Bacterial/genetics
- Edetic Acid
- Endoribonucleases/chemistry
- Endoribonucleases/genetics
- Endoribonucleases/metabolism
- Escherichia coli/enzymology
- Escherichia coli/genetics
- Escherichia coli Proteins
- Evolution, Molecular
- Ferrous Compounds
- Holoenzymes/chemistry
- Holoenzymes/genetics
- Holoenzymes/metabolism
- Hydroxyl Radical/chemistry
- Models, Molecular
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Nucleic Acid Conformation
- Protein Subunits
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Catalytic/chemistry
- RNA, Catalytic/genetics
- RNA, Catalytic/metabolism
- Ribonuclease P
Collapse
Affiliation(s)
- Hsin-Yue Tsai
- Department of Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | |
Collapse
|