201
|
Law BYK, Qu YQ, Mok SWF, Liu H, Zeng W, Han Y, Gordillo-Martinez F, Chan WK, Wong KMC, Wong VKW. New perspectives of cobalt tris(bipyridine) system: anti-cancer effect and its collateral sensitivity towards multidrug-resistant (MDR) cancers. Oncotarget 2017; 8:55003-55021. [PMID: 28903398 PMCID: PMC5589637 DOI: 10.18632/oncotarget.18991] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 06/16/2017] [Indexed: 01/08/2023] Open
Abstract
Platinating compounds including cisplatin, carboplatin, and oxaliplatin are common chemotherapeutic agents, however, patients developed resistance to these clinical agents after initial therapeutic treatments. Therefore, different approaches have been applied to identify novel therapeutic agents, molecular mechanisms, and targets for overcoming drug resistance. In this study, we have identified a panel of cobalt complexes that were able to specifically induce collateral sensitivity in taxol-resistant and p53-deficient cancer cells. Consistently, our reported anti-cancer functions of cobalt complexes 1-6 towards multidrug-resistant cancers have suggested the protective and non-toxic properties of cobalt metal-ions based compounds in anti-cancer therapies. As demonstrated in xenograft mouse model, our results also confirmed the identified cobalt complex 2 was able to suppress tumor growth in vivo. The anti-cancer effect of the cobalt complex 2 was further demonstrated to be exerted via the induction of autophagy, cell cycle arrest, and inhibition of cell invasion and P-glycoprotein (P-gp) activity. These data have provided alternative metal ion compounds for targeting drug resistance cancers in chemotherapies.
Collapse
Affiliation(s)
- Betty Yuen Kwan Law
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, P.R. China
| | - Yuan Qing Qu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, P.R. China
| | - Simon Wing Fai Mok
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, P.R. China
| | - Hauwei Liu
- Department of Chemistry, South University of Science and Technology of China, Tangchang Boulevard, Nanshan District, Shenzhen, P.R. China
| | - Wu Zeng
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, P.R. China
| | - Yu Han
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, P.R. China
| | - Flora Gordillo-Martinez
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, P.R. China
| | - Wai-Kit Chan
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, P.R. China
| | - Keith Man-Chung Wong
- Department of Chemistry, South University of Science and Technology of China, Tangchang Boulevard, Nanshan District, Shenzhen, P.R. China
| | - Vincent Kam Wai Wong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, P.R. China
| |
Collapse
|
202
|
Erlotinib Salvage Therapy in Pulmonary Adenocarcinoma Patients With Disease Progression After Previous EGFR-TKI Treatment. Am J Clin Oncol 2017; 39:556-562. [PMID: 24937633 DOI: 10.1097/coc.0000000000000096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Erlotinib is an epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) with promising efficacy in treating pulmonary adenocarcinoma. Treatment choices are few when patients with pulmonary adenocarcinoma have failed both EGFR-TKI and chemotherapy. The purpose of this study was to demonstrate the efficacy of erlotinib as salvage treatment for these nonresponsive patients. METHODS We retrospectively reviewed the chart records of our stage IV pulmonary adenocarcinoma patients who were diagnosed and treated between July 2004 and June 2013. Clinical data, including type of response to treatment, time to disease progression, duration between the end of first-line EGFR-TKI treatment and starting erlotinib treatment, and overall survival time, were collected. RESULTS A total of 98 patients were enrolled, and all had been treated with EGFR-TKI, either as a first-line therapy or following platinum-based chemotherapy; of them, 60 patients had a response to initial EGFR-TKI treatment. All received erlotinib as salvage treatment after their disease had progressed following EGFR-TKI treatment. Ninety-three (93.3%) patients had also received previous platinum-based chemotherapy. The median progression-free survival with erlotinib as salvage treatment for patients with and without a response to front-line EGFR-TKI was 4.9 and 3.4 months (P=0.869), respectively. The progression-free survival with erlotinib treatment in the sensitizing EGFR mutation group was 4.3 months, and in the EGFR wild-type group it was 2.6 months (P=0.22). CONCLUSIONS In pulmonary adenocarcinoma patients who had been heavily treated, erlotinib could still be a choice, regardless of the EGFR mutation status, or whether the patients had responded to previous EGFR-TKI treatment.
Collapse
|
203
|
Chun SY, Kim S, Nam KS. The inhibitory effects of deep-sea water on doxorubicin-induced epithelial-mesenchymal transition. Oncol Rep 2017. [DOI: 10.3892/or.2017.5726] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
204
|
Jayappa KD, Portell CA, Gordon VL, Capaldo BJ, Bekiranov S, Axelrod MJ, Brett LK, Wulfkuhle JD, Gallagher RI, Petricoin EF, Bender TP, Williams ME, Weber MJ. Microenvironmental agonists generate de novo phenotypic resistance to combined ibrutinib plus venetoclax in CLL and MCL. Blood Adv 2017; 1:933-946. [PMID: 29034364 PMCID: PMC5637393 DOI: 10.1182/bloodadvances.2016004176] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 04/10/2017] [Indexed: 12/15/2022] Open
Abstract
De novo resistance and rapid recurrence often characterize responses of B-cell malignancies to ibrutinib (IBR), indicating a need to develop drug combinations that block compensatory survival signaling and give deeper, more durable responses. To identify such combinations, we previously performed a combinatorial drug screen and identified the Bcl-2 inhibitor venetoclax (VEN) as a promising partner for combination with IBR in Mantle Cell Lymphoma (MCL). We have opened a multi-institutional clinical trial to test this combination. However, analysis of primary samples from patients with MCL as well as chronic lymphocytic leukemia (CLL) revealed unexpected heterogeneous de novo resistance even to the IBR+VEN combination. In the current study, we demonstrate that resistance to the combination can be generated by microenvironmental agonists: IL-10, CD40L and, most potently, CpG-oligodeoxynucleotides (CpG-ODN), which is a surrogate for unmethylated DNA and a specific agonist for TLR9 signaling. Incubation with these agonists caused robust activation of NF-κB signaling, especially alternative NF-κB, which led to enhanced expression of the anti-apoptotic proteins Mcl-1, Bcl-xL, and survivin, thus decreasing dependence on Bcl-2. Inhibitors of NF-κB signaling blocked overexpression of these anti-apoptotic proteins and overcame resistance. Inhibitors of Mcl-1, Bcl-xL, or survivin also overcame this resistance, and showed synergistic benefit with the IBR+VEN combination. We conclude that microenvironmental factors, particularly the TLR9 agonist, can generate de novo resistance to the IBR+VEN combination in CLL and MCL cells. This signaling pathway presents targets for overcoming drug resistance induced by extrinsic microenvironmental factors in diverse B-cell malignancies.
Collapse
Affiliation(s)
- Kallesh D Jayappa
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Craig A Portell
- Division of Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, VA, United States
- Cancer Center, University of Virginia, Charlottesville, VA, United States
| | - Vicki L Gordon
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Brian J Capaldo
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, United States
| | - Stefan Bekiranov
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, United States
| | - Mark J Axelrod
- Gilead Sciences, 199 E. Blaine St., Seattle, WA, United States
| | - L Kyle Brett
- Utica Park Clinic, Medical Oncology, 1245 S Utica Ave Suite #100, Tulsa, OK, United States
| | - Julia D Wulfkuhle
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, United States
| | - Rosa I Gallagher
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, United States
| | - Emanuel F Petricoin
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, United States
| | - Timothy P Bender
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, United States
- Beirne B. Carter Center for Immunology Research, Charlottesville, VA, United States
| | - Michael E Williams
- Division of Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, VA, United States
- Cancer Center, University of Virginia, Charlottesville, VA, United States
| | - Michael J Weber
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, United States
- Cancer Center, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
205
|
Shaffer SM, Dunagin MC, Torborg SR, Torre EA, Emert B, Krepler C, Beqiri M, Sproesser K, Brafford PA, Xiao M, Eggan E, Anastopoulos IN, Vargas-Garcia CA, Singh A, Nathanson KL, Herlyn M, Raj A. Rare cell variability and drug-induced reprogramming as a mode of cancer drug resistance. Nature 2017; 546:431-435. [PMID: 28607484 PMCID: PMC5542814 DOI: 10.1038/nature22794] [Citation(s) in RCA: 798] [Impact Index Per Article: 99.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 04/25/2017] [Indexed: 12/18/2022]
Abstract
Therapies targeting signaling molecules mutated in cancers can often have striking short-term effects, but the emergence of resistant cancer cells is a major barrier to full cures1,2. Resistance can result from a secondary mutations3,4, but other times there is no clear genetic cause, raising the possibility of non-genetic rare cell variability5–11. Here, we show that melanoma cells can display profound transcriptional variability at the single cell level that predicts which cells will ultimately resist drug treatment. This variability involves infrequent, semi-coordinated transcription of a number of resistance markers at high levels in a very small percentage of cells. The addition of drug then induces epigenetic reprogramming in these cells, converting the transient transcriptional state to a stably resistant state. This reprogramming begins with a loss of SOX10-mediated differentiation followed by activation of new signaling pathways, partially mediated by activity of Jun-AP-1 and TEAD. Our work reveals the multistage nature of the acquisition of drug resistance and provides a framework for understanding resistance dynamics in single cells. We find that other cell types also exhibit sporadic expression of many of these same marker genes, suggesting the existence of a general rare-cell expression program.
Collapse
Affiliation(s)
- Sydney M Shaffer
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Margaret C Dunagin
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Stefan R Torborg
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Department of Biochemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Eduardo A Torre
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Benjamin Emert
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Genomics and Computational Biology Group, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Clemens Krepler
- The Wistar Institute, Molecular and Cellular Oncogenesis Program, Melanoma Research Center, Philadelphia, Pennsylvania 19104, USA
| | - Marilda Beqiri
- The Wistar Institute, Molecular and Cellular Oncogenesis Program, Melanoma Research Center, Philadelphia, Pennsylvania 19104, USA
| | - Katrin Sproesser
- The Wistar Institute, Molecular and Cellular Oncogenesis Program, Melanoma Research Center, Philadelphia, Pennsylvania 19104, USA
| | - Patricia A Brafford
- The Wistar Institute, Molecular and Cellular Oncogenesis Program, Melanoma Research Center, Philadelphia, Pennsylvania 19104, USA
| | - Min Xiao
- The Wistar Institute, Molecular and Cellular Oncogenesis Program, Melanoma Research Center, Philadelphia, Pennsylvania 19104, USA
| | - Elliott Eggan
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Ioannis N Anastopoulos
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Cesar A Vargas-Garcia
- Electrical and Computer Engineering, University of Delaware, Newark, Delaware 19716, USA
| | - Abhyudai Singh
- Electrical and Computer Engineering, University of Delaware, Newark, Delaware 19716, USA.,Biomedical Engineering, University of Delaware, Newark, Delaware 19716, USA
| | - Katherine L Nathanson
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Meenhard Herlyn
- The Wistar Institute, Molecular and Cellular Oncogenesis Program, Melanoma Research Center, Philadelphia, Pennsylvania 19104, USA
| | - Arjun Raj
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
206
|
Tsunedomi R, Hazama S, Okayama N, Oka M, Nagano H. Rapid and sensitive detection of UGT1A1 polymorphisms associated with irinotecan toxicity by a novel DNA microarray. Cancer Sci 2017; 108:1504-1509. [PMID: 28474802 PMCID: PMC5497725 DOI: 10.1111/cas.13272] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 04/19/2017] [Accepted: 05/01/2017] [Indexed: 12/14/2022] Open
Abstract
Recent developments in the field of human genomics have greatly enhanced the potential for precision and personalized medicine. We have developed a novel DNA microarray, using a 3‐mm square chip coated with diamond‐like carbon to enhance the signal‐to‐background ratio, for use as an in vitro diagnostic tool in precision medicine. To verify the genotyping effectiveness of this newly developed DNA microarray we examined UDP‐glucuronosyltransferase 1A1 (UGT1A1) polymorphisms in DNA extracted from patients with metastatic colorectal cancer. It is established that the polymorphisms of UGT1A1*28 and UGT1A1*6 are significantly associated with severe toxicity induced by the anti‐cancer drug irinotecan. For each sample, the results obtained with the novel microarray platform were compared with those obtained using other, more established, methods, including direct sequencing and the Invader assay. The polymorphisms tested included a single nucleotide substitution (UGT1A1*6) and a TA‐repeat polymorphism (UGT1A1*28), both of which were detected simultaneously and accurately using our method. Moreover, our method required 1.5‐fold less time to assay and 20‐fold less sample than those required by the Invader assay. In summary, our newly developed DNA microarray is more practical than established methods, and is at least as accurate; this will increase the efficiency of polymorphism detection prior to diagnosis and the commencement of treatment, and can feasibly be applied in precision medicine.
Collapse
Affiliation(s)
- Ryouichi Tsunedomi
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Shoichi Hazama
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Japan.,Department of Translational Research and Developmental Therapeutics against Cancer, Yamaguchi University Faculty of Medicine, Ube, Japan
| | - Naoko Okayama
- Department of Clinical Laboratory, Yamaguchi University Hospital, Ube, Japan
| | | | - Hiroaki Nagano
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Japan
| |
Collapse
|
207
|
Tahir SK, Smith ML, Hessler P, Rapp LR, Idler KB, Park CH, Leverson JD, Lam LT. Potential mechanisms of resistance to venetoclax and strategies to circumvent it. BMC Cancer 2017; 17:399. [PMID: 28578655 PMCID: PMC5457565 DOI: 10.1186/s12885-017-3383-5] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 05/24/2017] [Indexed: 11/20/2022] Open
Abstract
Background Venetoclax (ABT-199), a first-in-class orally bioavailable BCL-2-selective inhibitor, was recently approved by the FDA for use in patients with 17p-deleted chronic lymphocytic leukemia who have received prior therapy. It is also being evaluated in numerous clinical trials for treating patients with various hematologic malignancies. As with any targeted cancer therapy, it is critically important to identify potential mechanisms of resistance, both for patient stratification and developing strategies to overcome resistance, either before it develops or as it emerges. Methods In order to gain a more comprehensive insight into the nature of venetoclax resistance mechanisms, we evaluated the changes in the BCL-2 family members at the genetic and expression levels in seven different venetoclax-resistant derived leukemia and lymphoma cell lines. Results Gene and protein expression analyses identified a number of different alterations in the expression of pro- and anti-apoptotic BCL-2 family members. In the resistant derived cells, an increase in either or both the anti-apoptotic proteins BCL-XL or MCL-1, which are not targeted by venetoclax was observed, and either concomitant or exclusive with a decrease in one or more pro-apoptotic proteins. In addition, mutational analysis also revealed a mutation in the BH3 binding groove (F104L) that could potentially interfere with venetoclax-binding. Not all changes may be causally related to venetoclax resistance and may only be an epiphenomenon. For resistant cell lines showing elevations in BCL-XL or MCL-1, strong synergistic cell killing was observed when venetoclax was combined with either BCL-XL- or MCL-1-selective inhibitors, respectively. This highlights the importance of BCL-XL- and MCL-1 as causally contributing to venetoclax resistance. Conclusions Overall our study identified numerous changes in multiple resistant lines; the changes were neither mutually exclusive nor universal across the cell lines tested, thus exemplifying the complexity and heterogeneity of potential resistance mechanisms. Identifying and evaluating their contribution has important implications for both patient selection and the rational development of strategies to overcome resistance. Electronic supplementary material The online version of this article (doi:10.1186/s12885-017-3383-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Stephen K Tahir
- AbbVie Oncology, North Waukegan Road North, Chicago, IL, 60064-6098, USA
| | - Morey L Smith
- AbbVie Oncology, North Waukegan Road North, Chicago, IL, 60064-6098, USA
| | - Paul Hessler
- AbbVie Oncology, North Waukegan Road North, Chicago, IL, 60064-6098, USA
| | - Lisa Roberts Rapp
- AbbVie Oncology, North Waukegan Road North, Chicago, IL, 60064-6098, USA
| | - Kenneth B Idler
- AbbVie Oncology, North Waukegan Road North, Chicago, IL, 60064-6098, USA
| | - Chang H Park
- AbbVie Oncology, North Waukegan Road North, Chicago, IL, 60064-6098, USA
| | - Joel D Leverson
- AbbVie Oncology, North Waukegan Road North, Chicago, IL, 60064-6098, USA
| | - Lloyd T Lam
- AbbVie Oncology, North Waukegan Road North, Chicago, IL, 60064-6098, USA.
| |
Collapse
|
208
|
Chakrabarti S, Michor F. Pharmacokinetics and Drug Interactions Determine Optimum Combination Strategies in Computational Models of Cancer Evolution. Cancer Res 2017; 77:3908-3921. [PMID: 28566331 DOI: 10.1158/0008-5472.can-16-2871] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 02/24/2017] [Accepted: 05/19/2017] [Indexed: 01/30/2023]
Abstract
The identification of optimal drug administration schedules to battle the emergence of resistance is a major challenge in cancer research. The existence of a multitude of resistance mechanisms necessitates administering drugs in combination, significantly complicating the endeavor of predicting the evolutionary dynamics of cancers and optimal intervention strategies. A thorough understanding of the important determinants of cancer evolution under combination therapies is therefore crucial for correctly predicting treatment outcomes. Here we developed the first computational strategy to explore pharmacokinetic and drug interaction effects in evolutionary models of cancer progression, a crucial step towards making clinically relevant predictions. We found that incorporating these phenomena into our multiscale stochastic modeling framework significantly changes the optimum drug administration schedules identified, often predicting nonintuitive strategies for combination therapies. We applied our approach to an ongoing phase Ib clinical trial (TATTON) administering AZD9291 and selumetinib to EGFR-mutant lung cancer patients. Our results suggest that the schedules used in the three trial arms have almost identical efficacies, but slight modifications in the dosing frequencies of the two drugs can significantly increase tumor cell eradication. Interestingly, we also predict that drug concentrations lower than the MTD are as efficacious, suggesting that lowering the total amount of drug administered could lower toxicities while not compromising on the effectiveness of the drugs. Our approach highlights the fact that quantitative knowledge of pharmacokinetic, drug interaction, and evolutionary processes is essential for identifying best intervention strategies. Our method is applicable to diverse cancer and treatment types and allows for a rational design of clinical trials. Cancer Res; 77(14); 3908-21. ©2017 AACR.
Collapse
Affiliation(s)
- Shaon Chakrabarti
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Franziska Michor
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, Massachusetts. .,Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| |
Collapse
|
209
|
Xue G, Kohler R, Tang F, Hynx D, Wang Y, Orso F, Prêtre V, Ritschard R, Hirschmann P, Cron P, Roloff T, Dummer R, Mandalà M, Bichet S, Genoud C, Meyer AG, Muraro MG, Spagnoli GC, Taverna D, Rüegg C, Merghoub T, Massi D, Tang H, Levesque MP, Dirnhofer S, Zippelius A, Hemmings BA, Wicki A. mTORC1/autophagy-regulated MerTK in mutant BRAFV600 melanoma with acquired resistance to BRAF inhibition. Oncotarget 2017; 8:69204-69218. [PMID: 29050198 PMCID: PMC5642473 DOI: 10.18632/oncotarget.18213] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 05/17/2017] [Indexed: 12/19/2022] Open
Abstract
BRAF inhibitors (BRAFi) and the combination therapy of BRAF and MEK inhibitors (MEKi) were recently approved for therapy of metastatic melanomas harbouring the oncogenic BRAFV600 mutation. Although these therapies have shown pronounced therapeutic efficacy, the limited durability of the response indicates an acquired drug resistance that still remains mechanistically poorly understood at the molecular level. We conducted transcriptome gene profiling in BRAFi-treated melanoma cells and identified that Mer tyrosine kinase (MerTK) is specifically upregulated. MerTK overexpression was demonstrated not only in melanomas resistant to BRAFi monotherapy (5 out of 10 samples from melanoma patients) but also in melanoma resistant to BRAFi+MEKi (1 out of 3), although MEKi alone does not affect MerTK. Mechanistically, BRAFi-induced activation of Zeb2 stimulates MerTK in BRAFV600 melanoma through mTORC1-triggered activation of autophagy. Co-targeting MerTK and BRAFV600 significantly reduced tumour burden in xenografted mice, which was pheno-copied by co-inhibition of autophagy and mutant BRAFV600.
Collapse
Affiliation(s)
- Gongda Xue
- Department of Mechanisms of Cancer, Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Reto Kohler
- Department of Mechanisms of Cancer, Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Fengyuan Tang
- Department of Mechanisms of Cancer, Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.,Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Debby Hynx
- Department of Mechanisms of Cancer, Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Yuhua Wang
- Department of Mechanisms of Cancer, Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Francesca Orso
- Molecular Biotechnology Center and Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Vincent Prêtre
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Reto Ritschard
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | | | - Peter Cron
- Department of Mechanisms of Cancer, Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Tim Roloff
- Department of Mechanisms of Cancer, Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Reinhard Dummer
- Department of Dermatology, University Hospital of Zurich, Zurich, Switzerland
| | - Mario Mandalà
- Unit of Clinical and Translational Research, Department of Oncology and Hematology, Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Sandrine Bichet
- Department of Mechanisms of Cancer, Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Christel Genoud
- Department of Mechanisms of Cancer, Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Alexandra G Meyer
- Department of Mechanisms of Cancer, Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Manuele G Muraro
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Giulio C Spagnoli
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Daniela Taverna
- Molecular Biotechnology Center and Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Curzio Rüegg
- Department of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Taha Merghoub
- Ludwig Center for Cancer Immunotherapy, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Daniela Massi
- Division of Pathological Anatomy, Department of Surgery and Translational Medicine, University of Florence, Florence, Italy
| | - Huifang Tang
- Department of Pharmacology, Zhejiang University, School of Basic Medical Sciences, Hangzhou, China
| | - Mitchell P Levesque
- Department of Dermatology, University Hospital of Zurich, Zurich, Switzerland
| | | | - Alfred Zippelius
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Brian A Hemmings
- Department of Mechanisms of Cancer, Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Andreas Wicki
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
210
|
Karachaliou N, Santarpia M, Gonzalez Cao M, Teixido C, Sosa AE, Berenguer J, Rodriguez Capote A, Altavilla G, Rosell R. Anaplastic lymphoma kinase inhibitors in phase I and phase II clinical trials for non-small cell lung cancer. Expert Opin Investig Drugs 2017; 26:713-722. [PMID: 28463570 DOI: 10.1080/13543784.2017.1324572] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
INTRODUCTION Crizotinib is a first-in-class ALK tyrosine kinase inhibitor (TKI), which has proven its superiority over standard platinum-based chemotherapy for the first-line therapy of ALK-rearranged non-small cell lung cancer (NSCLC) patients. The development of acquired resistance to crizotinib represents an ongoing challenge with the central nervous system being one of the most common sites of relapse. Ceritinib and alectinib are approved second-generation ALK TKIs. Several novel ALK inhibitors, more potent and with different selectivity compared to crizotinib, are currently in development. Areas covered: This review will focus on new ALK inhibitors, currently in phase 1 or 2 clinical studies. We will also comment on the mechanisms of resistance to ALK inhibition and the strategies to delay or overcome resistance. Expert opinion: The therapeutic management of ALK-rearranged NSCLC has been greatly improved. Next-generation ALK inhibitors have shown differential potency against ALK rearrangements and ALK resistance mutations. The molecular profile of the tumor at the time of disease progression to crizotinib is crucial for the sequencing of novel ALK TKIs. Ongoing clinical studies will address key issues, including the optimal therapeutic algorithm and whether combinational approaches are more effective than single ALK inhibition for the outcome of ALK-rearranged NSCLC patients.
Collapse
Affiliation(s)
- Niki Karachaliou
- a Institute of Oncology Rosell (IOR), University Hospital Sagrat Cor , Barcelona , Spain
| | - Mariacarmela Santarpia
- b Medical Oncology Unit, Department of Human Pathology 'G. Barresi,' University of Messina , Messina , Italy
| | - Maria Gonzalez Cao
- c Institute of Oncology Rosell (IOR) , Quirón-Dexeus University Institute , Barcelona , Spain
| | - Cristina Teixido
- d Pangaea Oncology , Quirón-Dexeus University Institute , Barcelona , Spain
| | - Aaron E Sosa
- a Institute of Oncology Rosell (IOR), University Hospital Sagrat Cor , Barcelona , Spain
| | - Jordi Berenguer
- d Pangaea Oncology , Quirón-Dexeus University Institute , Barcelona , Spain
| | | | - Giuseppe Altavilla
- b Medical Oncology Unit, Department of Human Pathology 'G. Barresi,' University of Messina , Messina , Italy
| | - Rafael Rosell
- f Germans Trias i Pujol Research Institute , Badalona , Spain.,g Catalan Institute of Oncology , Germans Trias i Pujol University Hospital , Badalona , Spain
| |
Collapse
|
211
|
Benstead-Hume G, Wooller SK, Pearl FMG. 'Big data' approaches for novel anti-cancer drug discovery. Expert Opin Drug Discov 2017; 12:599-609. [PMID: 28462602 DOI: 10.1080/17460441.2017.1319356] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION The development of improved cancer therapies is frequently cited as an urgent unmet medical need. Recent advances in platform technologies and the increasing availability of biological 'big data' are providing an unparalleled opportunity to systematically identify the key genes and pathways involved in tumorigenesis. The discoveries made using these new technologies may lead to novel therapeutic interventions. Areas covered: The authors discuss the current approaches that use 'big data' to identify cancer drivers. These approaches include the analysis of genomic sequencing data, pathway data, multi-platform data, identifying genetic interactions such as synthetic lethality and using cell line data. They review how big data is being used to identify novel drug targets. The authors then provide an overview of the available data repositories and tools being used at the forefront of cancer drug discovery. Expert opinion: Targeted therapies based on the genomic events driving the tumour will eventually inform treatment protocols. However, using a tailored approach to treat all tumour patients may require developing a large repertoire of targeted drugs.
Collapse
Affiliation(s)
- Graeme Benstead-Hume
- a Bioinformatics Group, School of Life Sciences , University of Sussex , Brighton , United Kingdom
| | - Sarah K Wooller
- a Bioinformatics Group, School of Life Sciences , University of Sussex , Brighton , United Kingdom
| | - Frances M G Pearl
- a Bioinformatics Group, School of Life Sciences , University of Sussex , Brighton , United Kingdom
| |
Collapse
|
212
|
Nussinov R, Tsai CJ, Jang H. A New View of Pathway-Driven Drug Resistance in Tumor Proliferation. Trends Pharmacol Sci 2017; 38:427-437. [PMID: 28245913 PMCID: PMC5403593 DOI: 10.1016/j.tips.2017.02.001] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 01/25/2017] [Accepted: 02/01/2017] [Indexed: 12/13/2022]
Abstract
Defeating drug resistance in tumor cell proliferation is challenging. We propose that signaling in cell proliferation takes place via two core pathways, each embodying multiple alternative pathways. We consider drug resistance through an alternative proliferation pathway - within the same or within the other core pathway. Most drug combinations target only one core pathway; blocking both can restrain proliferation. We define core pathways as independent and acting similarly in cell-cycle control, which can explain why their products (e.g., ERK and YAP1) can substitute for each other in resistance. Core pathways can forecast possible resistance because acquired resistance frequently occurs through alternative proliferation pathways. This concept may help to predict the efficacy of drug combinations. The selection of distinct combinations for specific mutated pathways would be guided by clinical diagnosis.
Collapse
Affiliation(s)
- Ruth Nussinov
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Chung-Jung Tsai
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Hyunbum Jang
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| |
Collapse
|
213
|
Genome-Wide Screen Reveals sec21 Mutants of Saccharomyces cerevisiae Are Methotrexate-Resistant. G3-GENES GENOMES GENETICS 2017; 7:1251-1257. [PMID: 28235825 PMCID: PMC5386873 DOI: 10.1534/g3.116.038117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Drug resistance is a consequence of how most modern medicines work. Drugs exert pressure on cells that causes death or the evolution of resistance. Indeed, highly specific drugs are rendered ineffective by a single DNA mutation. In this study, we apply the drug methotrexate, which is widely used in cancer and rheumatoid arthritis, and perform evolution experiments on Baker's yeast to ask the different ways in which cells become drug resistant. Because of the conserved nature of biological pathways between yeast and man, our results can inform how the same mechanism may operate to render human cells resistant to treatment. Exposure of cells to small molecules and drug therapies imposes a strong selective pressure. As a result, cells rapidly acquire mutations in order to survive. These include resistant variants of the drug target as well as those that modulate drug transport and detoxification. To systematically explore how cells acquire drug resistance in an unbiased manner, rapid cost-effective approaches are required. Methotrexate, as one of the first rationally designed anticancer drugs, has served as a prototypic example of such acquired resistance. Known methotrexate resistance mechanisms include mutations that increase expression of the dihydrofolate reductase (DHFR) target as well as those that maintain function yet reduce the drug's binding affinity. Recent evidence suggests that target-independent, epistatic mutations can also result in resistance to methotrexate. Currently, however, the relative contribution of such unlinked resistance mutations is not well understood. To address this issue, we took advantage of Saccharomyces cerevisiae as a model eukaryotic system that combined with whole-genome sequencing and a rapid screening methodology, allowed the identification of causative mutations that modulate resistance to methotrexate. We found a recurrent missense mutation in SEC21 (orthologous to human COPG1), which we confirmed in 10 de novo methotrexate-resistant strains. This sec21 allele (S96L) behaves as a recessive, gain-of-function allele, conferring methotrexate resistance that is abrogated by the presence of a wild-type copy of SEC21 These observations indicate that the Sec21p/COPI transport complex has previously uncharacterized roles in modulating methotrexate stress.
Collapse
|
214
|
Yamaoka T, Ohmori T, Ohba M, Arata S, Murata Y, Kusumoto S, Ando K, Ishida H, Ohnishi T, Sasaki Y. Distinct Afatinib Resistance Mechanisms Identified in Lung Adenocarcinoma Harboring an EGFR Mutation. Mol Cancer Res 2017; 15:915-928. [DOI: 10.1158/1541-7786.mcr-16-0482] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 12/21/2016] [Accepted: 03/07/2017] [Indexed: 11/16/2022]
|
215
|
Pillai K, Akhter J, Morris DL. Super Aqueous Solubility of Albendazole in β-Cyclodextrin for Parenteral Application in Cancer therapy. J Cancer 2017; 8:913-923. [PMID: 28529602 PMCID: PMC5436242 DOI: 10.7150/jca.17301] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 11/10/2016] [Indexed: 11/10/2022] Open
Abstract
Poor aqueous solubility of anticancer drug, albendazole (ABZ), prevents parenteral application. Here, we demonstrate how to increase the aqueous solubility of ABZ to 6- 8 mg/ml using sulfobutylether - β-cyclodextrin (SBE-β-CD) or Hydroxypropyl- β-cyclodextrin (HP- β-CD) by manipulation of complexation parameters such as the physical state of ABZ (ionized in acetic acid), the concentration of ionised ABZ, agitation time and temperature. Solubility was first examined with suspension of excess ABZ powder in cyclodextrin (CD) solutions at pH (2.3, 4.0 & 7.0), subsequently with excess ionised ABZ [ABZ] at pH. 2.3 with the determination of optimal quantity of [ABZ] use for maximal complexation. Complexation time, temperature effect, stability of formulation, with in vitro and in vivo cytotoxicity of [ABZ]-SBE-β-CD was assessed. Suspended ABZ formulation at pH 2.3 showed maximum solubilisation of 2.29 & 1.72 mg/ml, whilst excess addition of [ABZ] showed poor complexation (1.26 & 1.20 mg/ml) in SBE-β-CD & HP- β-CD, respectively. The addition of 8.0 mg/ml and 7.0 mg/ml of [ABZ] to 40% CD solutions at 25ºC showed maximum complexation with SBE-β-CD & HP- β-CD, respectively, at three days, with 2 weeks stability. [ABZ] complexed with SBE-β-CD showed potent cytotoxicity (in vitro & in vivo) in ovarian tumour cells. Hence, the current method may be used for solubilising ABZ for parenteral use.
Collapse
Affiliation(s)
- Krishna Pillai
- Department of Surgery, University of New South Wales, St. George Hospital, Kogarah, NSW, Australia
| | - Javed Akhter
- Department of Surgery, University of New South Wales, St. George Hospital, Kogarah, NSW, Australia
| | - David Lawson Morris
- Department of Surgery, University of New South Wales, St. George Hospital, Kogarah, NSW, Australia
| |
Collapse
|
216
|
Fei H, Zhou Y, Li R, Yang M, Ma J, Wang F. HBXIP, a binding protein of HBx, regulates maintenance of the G2/M phase checkpoint induced by DNA damage and enhances sensitivity to doxorubicin-induced cytotoxicity. Cell Cycle 2017; 16:468-476. [PMID: 28103177 PMCID: PMC5351928 DOI: 10.1080/15384101.2017.1281482] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 01/02/2017] [Accepted: 01/05/2017] [Indexed: 12/12/2022] Open
Abstract
To maintain the integrity of the genome, cells need to detect and repair DNA damage before they complete cell division. Hepatitis B x-interacting protein (HBXIP), a binding protein of HBx (Hepatitis B virus × protein), is aberrantly overexpressed in human cancer cells and show to promote cell proliferation and inhibit apoptosis. The present study is designed to investigate the role of HBXIP on the DNA damage response. Our results show that HBXIP acts as an important regulator of G2/M checkpoint in response to DNA damage. HBXIP knockdown increases phospho-histone H2AX expression and foci formation after treatment with ionizing radiation (IR). HBXIP regulates the ATM-Chk2 pathway following DNA damage. Depletion of HBXIP abrogates IR-induced G2/M cell cycle checkpoints, accompanying decrease the expression of phospho-Cdc25C, phospho-Cdc2 (Tyr15) and p27. We also show that downregulation of HBXIP expression sensitizes cancer cells to chemotherapy, as evidenced by an increase in apoptosis and cleavage of caspase-3 and caspase-9. Our data suggest that HBXIP can function as a mediator protein for DNA damage response signals to activate the G2/M checkpoint to maintain genome integrity and prevent cell death.
Collapse
Affiliation(s)
- Hongrong Fei
- School of Pharmacology, Taishan Medical University, Taian, P.R. China
| | - Yunsheng Zhou
- Department of Radiation Oncology, Central Hospital of Taian, Taian, P.R. China
| | - Ruotong Li
- School of Life Sciences, Taishan Medical University, Chang Cheng Road, Taian, P.R. China
| | - Mingfeng Yang
- Key Laboratory of Brain Microcirculation in Universities of Shandong, Taishan Medical University, Taian, P.R. China
| | - Jian Ma
- School of Pharmacology, Taishan Medical University, Taian, P.R. China
| | - Fengze Wang
- School of Life Sciences, Taishan Medical University, Chang Cheng Road, Taian, P.R. China
- Key Laboratory of Brain Microcirculation in Universities of Shandong, Taishan Medical University, Taian, P.R. China
| |
Collapse
|
217
|
Bergamo A, Pelillo C, Chambery A, Sava G. Influence of components of tumour microenvironment on the response of HCT-116 colorectal cancer to the ruthenium-based drug NAMI-A. J Inorg Biochem 2017; 168:90-97. [DOI: 10.1016/j.jinorgbio.2016.11.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 11/22/2016] [Accepted: 11/30/2016] [Indexed: 12/30/2022]
|
218
|
Goyal L, Saha SK, Liu LY, Siravegna G, Leshchiner I, Ahronian LG, Lennerz JK, Vu P, Deshpande V, Kambadakone A, Mussolin B, Reyes S, Henderson L, Sun JE, Van Seventer EE, Gurski JM, Baltschukat S, Schacher-Engstler B, Barys L, Stamm C, Furet P, Ryan DP, Stone JR, Iafrate AJ, Getz G, Porta DG, Tiedt R, Bardelli A, Juric D, Corcoran RB, Bardeesy N, Zhu AX. Polyclonal Secondary FGFR2 Mutations Drive Acquired Resistance to FGFR Inhibition in Patients with FGFR2 Fusion-Positive Cholangiocarcinoma. Cancer Discov 2017; 7:252-263. [PMID: 28034880 PMCID: PMC5433349 DOI: 10.1158/2159-8290.cd-16-1000] [Citation(s) in RCA: 389] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 12/21/2016] [Accepted: 12/27/2016] [Indexed: 12/16/2022]
Abstract
Genetic alterations in the fibroblast growth factor receptor (FGFR) pathway are promising therapeutic targets in many cancers, including intrahepatic cholangiocarcinoma (ICC). The FGFR inhibitor BGJ398 displayed encouraging efficacy in patients with FGFR2 fusion-positive ICC in a phase II trial, but the durability of response was limited in some patients. Here, we report the molecular basis for acquired resistance to BGJ398 in three patients via integrative genomic characterization of cell-free circulating tumor DNA (cfDNA), primary tumors, and metastases. Serial analysis of cfDNA demonstrated multiple recurrent point mutations in the FGFR2 kinase domain at progression. Accordingly, biopsy of post-progression lesions and rapid autopsy revealed marked inter- and intralesional heterogeneity, with different FGFR2 mutations in individual resistant clones. Molecular modeling and in vitro studies indicated that each mutation led to BGJ398 resistance and was surmountable by structurally distinct FGFR inhibitors. Thus, polyclonal secondary FGFR2 mutations represent an important clinical resistance mechanism that may guide the development of future therapeutic strategies.Significance: We report the first genetic mechanisms of clinical acquired resistance to FGFR inhibition in patients with FGFR2 fusion-positive ICC. Our findings can inform future strategies for detecting resistance mechanisms and inducing more durable remissions in ICC and in the wide variety of cancers where the FGFR pathway is being explored as a therapeutic target. Cancer Discov; 7(3); 252-63. ©2016 AACR.See related commentary by Smyth et al., p. 248This article is highlighted in the In This Issue feature, p. 235.
Collapse
MESH Headings
- Adult
- Antineoplastic Agents/therapeutic use
- Bile Duct Neoplasms/drug therapy
- Bile Duct Neoplasms/genetics
- Bile Duct Neoplasms/pathology
- Cell Cycle Proteins
- Cholangiocarcinoma/drug therapy
- Cholangiocarcinoma/genetics
- Cholangiocarcinoma/pathology
- Circulating Tumor DNA/genetics
- Drug Resistance, Neoplasm/genetics
- Female
- Gene Fusion
- Humans
- Male
- Membrane Transport Proteins
- Middle Aged
- Mutation
- Phenylurea Compounds/therapeutic use
- Pyrimidines/therapeutic use
- Receptor, Fibroblast Growth Factor, Type 2/antagonists & inhibitors
- Receptor, Fibroblast Growth Factor, Type 2/chemistry
- Receptor, Fibroblast Growth Factor, Type 2/genetics
- Receptor, Fibroblast Growth Factor, Type 3/chemistry
- Receptor, Fibroblast Growth Factor, Type 3/metabolism
- Transcription Factor TFIIIA/genetics
Collapse
Affiliation(s)
- Lipika Goyal
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts
| | - Supriya K Saha
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts
| | - Leah Y Liu
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts
| | - Giulia Siravegna
- Candiolo Cancer Institute-FPO, IRCCS, Candiolo, Torino, Italy
- Department of Oncology, University of Torino, Torino, Italy
- Fondazione Italiana per la Ricerca sul Cancro (FIRC) Institute of Molecular Oncology (IFOM), Milano, Italy
| | - Ignaty Leshchiner
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts
| | - Leanne G Ahronian
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts
| | - Jochen K Lennerz
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
| | - Phuong Vu
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts
| | - Vikram Deshpande
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
| | - Avinash Kambadakone
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts
| | | | - Stephanie Reyes
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts
| | - Laura Henderson
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts
| | - Jiaoyuan Elisabeth Sun
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts
| | - Emily E Van Seventer
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts
| | - Joseph M Gurski
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts
| | - Sabrina Baltschukat
- Novartis Institutes for BioMedical Research, Oncology Translational Research, Basel, Switzerland
| | | | - Louise Barys
- Novartis Institutes for BioMedical Research, Oncology Translational Research, Basel, Switzerland
| | - Christelle Stamm
- Novartis Institutes for BioMedical Research, Oncology Translational Research, Basel, Switzerland
| | - Pascal Furet
- Novartis Institutes for BioMedical Research, Global Discovery Chemistry, Basel, Switzerland
| | - David P Ryan
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts
| | - James R Stone
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
| | - A John Iafrate
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
| | - Gad Getz
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts
| | - Diana Graus Porta
- Novartis Institutes for BioMedical Research, Oncology Translational Research, Basel, Switzerland
| | - Ralph Tiedt
- Novartis Institutes for BioMedical Research, Oncology Translational Research, Basel, Switzerland
| | - Alberto Bardelli
- Candiolo Cancer Institute-FPO, IRCCS, Candiolo, Torino, Italy
- Department of Oncology, University of Torino, Torino, Italy
| | - Dejan Juric
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts
| | - Ryan B Corcoran
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts.
| | - Nabeel Bardeesy
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts.
| | - Andrew X Zhu
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
219
|
Cheng L, Yang Q, Li C, Dai L, Yang Y, Wang Q, Ding Y, Zhang J, Liu L, Zhang S, Fan P, Hu X, Xiang R, Yu D, Wei Y, Deng H. DDA1, a novel oncogene, promotes lung cancer progression through regulation of cell cycle. J Cell Mol Med 2017; 21:1532-1544. [PMID: 28211159 PMCID: PMC5542901 DOI: 10.1111/jcmm.13084] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 12/07/2016] [Indexed: 02/05/2023] Open
Abstract
Lung cancer is globally widespread and associated with high morbidity and mortality. DDA1 (DET1 and DDB1 associated 1) was first discovered and registered in the GenBank database by our colleagues. DDA1, an evolutionarily conserved gene, might have significant functions. Recent reports have demonstrated that DDA1 is linked to the ubiquitin–proteasome pathway and facilitates the degradation of target proteins. However, the function of DDA1 in lung cancer was previously unknown. This study aimed to investigate whether DDA1 contributes to tumorigenesis and progression of lung cancer. We found that the expression of DDA1 in normal lung cells and tissue was significantly lower than that in lung cancer and was associated with poor prognosis. DDA1 overexpression promoted proliferation of lung tumour cells and facilitated cell cycle progression in vitro and subcutaneous xenograft tumour progression in vivo. Mechanistically, this was associated with the regulation of S phase and cyclins including cyclin D1/D3/E1. These results indicate that DDA1 promotes lung cancer progression, potentially through promoting cyclins and cell cycle progression. Therefore, DDA1 may be a potential novel target for lung cancer treatment, and a biomarker for tumour prognosis.
Collapse
Affiliation(s)
- Lin Cheng
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qianmei Yang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Can Li
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lei Dai
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yang Yang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qingnan Wang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yu Ding
- Core Facility of West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Junfeng Zhang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lei Liu
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shuang Zhang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ping Fan
- Huaxi Biobank, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xun Hu
- Huaxi Biobank, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Rong Xiang
- Department of Immunology, Nankai University School of Medicine, Tianjin, China
| | - Dechao Yu
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuquan Wei
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hongxin Deng
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
220
|
Resistance to mTORC1 Inhibitors in Cancer Therapy: From Kinase Mutations to Intratumoral Heterogeneity of Kinase Activity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:1726078. [PMID: 28280521 PMCID: PMC5322438 DOI: 10.1155/2017/1726078] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 01/22/2017] [Indexed: 01/19/2023]
Abstract
Targeting mTORC1 has been thoroughly explored in cancer therapy. Following encouraging preclinical studies, mTORC1 inhibitors however failed to provide substantial benefits in cancer patients. Several resistance mechanisms have been identified including mutations of mTOR and activation of alternate proliferation pathways. Moreover, emerging evidence discloses intratumoral heterogeneity of mTORC1 activity that further contributes to a reduced anticancer efficacy of mTORC1 inhibitors. Genetic heterogeneity as well as heterogeneous conditions of the tumor environment such as hypoxia profoundly modifies mTORC1 activity in tumors and hence influences the response of tumors to mTORC1 inhibitors. Intriguingly, the heterogeneity of mTORC1 activity also occurs towards its substrates at the single cell level, as mutually exclusive pattern of activation of mTORC1 downstream effectors has been reported in tumors. After briefly describing mTORC1 biology and the use of mTORC1 inhibitors in patients, this review will give an overview on concepts of resistance to mTORC1 inhibition in cancer with a particular focus on intratumoral heterogeneity of mTORC1 activity.
Collapse
|
221
|
Schmukler E, Wolfson E, Elazar Z, Kloog Y, Pinkas-Kramarski R. Continuous treatment with FTS confers resistance to apoptosis and affects autophagy. PLoS One 2017; 12:e0171351. [PMID: 28151959 PMCID: PMC5289601 DOI: 10.1371/journal.pone.0171351] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 01/19/2017] [Indexed: 12/26/2022] Open
Abstract
High percentage of human cancers involves alteration or mutation in Ras proteins, including the most aggressive malignancies, such as lung, colon and pancreatic cancers. FTS (Salirasib) is a farnesylcysteine mimetic, which acts as a functional Ras inhibitor, and was shown to exert anti-tumorigenic effects in vitro and in vivo. Previously, we have demonstrated that short-term treatment with FTS also induces protective autophagy in several cancer cell lines. Drug resistance is frequently observed in cancer cells exposed to prolonged treatment, and is considered a major cause for therapy inefficiency. Therefore, in the present study, we examined the effect of a prolonged treatment with FTS on drug resistance of HCT-116 human colon cancer cells, and the involvement of autophagy in this process. We found that cells grown in the presence of FTS for 6 months have become resistant to FTS-induced cell growth inhibition and cell death. Furthermore, we discovered that the resistant cells exhibit altered autophagy, reduced apoptosis and changes in Ras-related signaling pathways following treatment with FTS. Moreover we found that while FTS induces an apoptosis-related cleavage of p62, the FTS-resistant cells were more resistant to apoptosis and p62 cleavage.
Collapse
Affiliation(s)
- Eran Schmukler
- Department of Neurobiology. Tel-Aviv University, Ramat-Aviv, Israel
| | - Eya Wolfson
- Department of Neurobiology. Tel-Aviv University, Ramat-Aviv, Israel
| | - Zvulun Elazar
- Department of Biological Chemistry; The Weizmann Institute of Science; Rehovot, Israel
| | - Yoel Kloog
- Department of Neurobiology. Tel-Aviv University, Ramat-Aviv, Israel
| | | |
Collapse
|
222
|
Lin JJ, Riely GJ, Shaw AT. Targeting ALK: Precision Medicine Takes on Drug Resistance. Cancer Discov 2017; 7:137-155. [PMID: 28122866 PMCID: PMC5296241 DOI: 10.1158/2159-8290.cd-16-1123] [Citation(s) in RCA: 385] [Impact Index Per Article: 48.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 12/13/2016] [Accepted: 12/14/2016] [Indexed: 12/14/2022]
Abstract
Anaplastic lymphoma kinase (ALK) is a validated molecular target in several ALK-rearranged malignancies, including non-small cell lung cancer. However, the clinical benefit of targeting ALK using tyrosine kinase inhibitors (TKI) is almost universally limited by the emergence of drug resistance. Diverse mechanisms of resistance to ALK TKIs have now been discovered, and these basic mechanisms are informing the development of novel therapeutic strategies to overcome resistance in the clinic. In this review, we summarize the current successes and challenges of targeting ALK. SIGNIFICANCE Effective long-term treatment of ALK-rearranged cancers requires a mechanistic understanding of resistance to ALK TKIs so that rational therapies can be selected to combat resistance. This review underscores the importance of serial biopsies in capturing the dynamic therapeutic vulnerabilities within a patient's tumor and offers a perspective into the complexity of on-target and off-target ALK TKI resistance mechanisms. Therapeutic strategies that can successfully overcome, and potentially prevent, these resistance mechanisms will have the greatest impact on patient outcome. Cancer Discov; 7(2); 137-55. ©2017 AACR.
Collapse
Affiliation(s)
- Jessica J Lin
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| | - Gregory J Riely
- Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College, New York, New York
| | - Alice T Shaw
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts.
| |
Collapse
|
223
|
Torquato HFV, Goettert MI, Justo GZ, Paredes-Gamero EJ. Anti-Cancer Phytometabolites Targeting Cancer Stem Cells. Curr Genomics 2017; 18:156-174. [PMID: 28367074 PMCID: PMC5345336 DOI: 10.2174/1389202917666160803162309] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 12/24/2015] [Accepted: 12/28/2015] [Indexed: 12/13/2022] Open
Abstract
Medicinal plants are a plentiful source of bioactive molecules with much structural diversity. In cancer treatment, molecules obtained from plants represent an attractive alternative to other treatments because several plant-derived compounds have exhibited lower toxicity and higher selectivity against cancer cells. In this review, we focus on the possible application of bioactive molecules obtained from plants against more primitive cell populations in cancers, cancer stem cells. Cancer stem cells are present in several kinds of tumors and are responsible for recurrences and metastases. Common anti-cancer drugs exhibit lower effectiveness against cancer stem cells because of their biological features. However, recently discovered natural phytometabolites exert cytotoxic effects on this rare population of cells in cancers. Therefore, this review presents the latest research on promising compounds from plants that can act as antitumor drugs and that mainly affect stem cell populations in cancers.
Collapse
Affiliation(s)
- Heron F V Torquato
- Departamento de Bioquímica, Universidade Federal de São Paulo (Campus São Paulo), São Paulo, Brazil
| | - Márcia I Goettert
- Programa de Pós-Graduação em Biotecnologia, Centro Universitário Univates, Rio Grande do Sul, Brazil
| | - Giselle Z Justo
- Departamento de Bioquímica, Universidade Federal de São Paulo (Campus São Paulo), São Paulo, Brazil;; Departamento de Ciências Biológicas (Campus Diadema), Universidade Federal de São Paulo, São Paulo, Brazil
| | - Edgar J Paredes-Gamero
- Departamento de Bioquímica, Universidade Federal de São Paulo (Campus São Paulo), São Paulo, Brazil;; Centro Interdisciplinar de Investigação Bioquímica, Universidade de Mogi das Cruzes, São Paulo, Brazil
| |
Collapse
|
224
|
Li Y, Xu X, Zhang X, Li Y, Zhang Z, Gu Z. Tumor-Specific Multiple Stimuli-Activated Dendrimeric Nanoassemblies with Metabolic Blockade Surmount Chemotherapy Resistance. ACS NANO 2017; 11:416-429. [PMID: 28005335 DOI: 10.1021/acsnano.6b06161] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Chemotherapy resistance remains a serious impediment to successful antitumor therapy around the world. However, existing chemotherapeutic approaches are difficult to cope with the notorious multidrug resistance in clinical treatment. Herein, we developed tumor-specific multiple stimuli-activated dendrimeric nanoassemblies with a metabolic blockade to completely combat both physiological barriers and cellular factors of multidrug resistance. With a sophisticated molecular and supramolecular engineering, this type of tumor-specific multiple stimuli-activated nanoassembly based on dendrimeric prodrugs can hierarchically break through the sequential physiological barriers of drug resistance, including stealthy dendritic PEGylated corona to optimize blood transportation, robust nanostructures for efficient tumor passive targeting and accumulation, enzyme-activated tumor microenvironment targeted to deepen tumor penetration and facilitate cellular uptake, cytoplasmic redox-sensitive disintegration for sufficient release of encapsulated agents, and lysosome acid-triggered nucleus delivery of antitumor drugs. In the meantime, we proposed a versatile tactic of a tumor-specific metabolism blockade for provoking several pathways (ATP restriction, apoptotic activation, and anti-apoptotic inhibition) to restrain multiple cellular factors of drug resistance. The highly efficient antitumor activity to drug-resistant MCF-7R tumor in vitro and in vivo supports this design and strongly defeats both physiological barriers and cellular factors of chemotherapy resistance. This work sets up an innovative dendrimeric nanosystem to surmount multidrug resistance, contributing to the development of a comprehensive nanoparticulate strategy for future clinical applications.
Collapse
Affiliation(s)
- Yachao Li
- National Engineering Research Center for Biomaterials, Sichuan University , Chengdu, Sichuan 610064, P.R. China
| | - Xianghui Xu
- National Engineering Research Center for Biomaterials, Sichuan University , Chengdu, Sichuan 610064, P.R. China
| | - Xiao Zhang
- National Engineering Research Center for Biomaterials, Sichuan University , Chengdu, Sichuan 610064, P.R. China
| | - Yunkun Li
- National Engineering Research Center for Biomaterials, Sichuan University , Chengdu, Sichuan 610064, P.R. China
| | - Zhijun Zhang
- National Engineering Research Center for Biomaterials, Sichuan University , Chengdu, Sichuan 610064, P.R. China
| | - Zhongwei Gu
- National Engineering Research Center for Biomaterials, Sichuan University , Chengdu, Sichuan 610064, P.R. China
- College of Materials Science and Engineering, Nanjing Tech University , Nanjing, Jiangsu 210009, P.R. China
| |
Collapse
|
225
|
Cheeseman M, Chessum NEA, Rye CS, Pasqua AE, Tucker M, Wilding B, Evans LE, Lepri S, Richards M, Sharp SY, Ali S, Rowlands M, O’Fee L, Miah A, Hayes A, Henley AT, Powers M, te Poele R, De Billy E, Pellegrino L, Raynaud F, Burke R, van Montfort RLM, Eccles SA, Workman P, Jones K. Discovery of a Chemical Probe Bisamide (CCT251236): An Orally Bioavailable Efficacious Pirin Ligand from a Heat Shock Transcription Factor 1 (HSF1) Phenotypic Screen. J Med Chem 2017; 60:180-201. [PMID: 28004573 PMCID: PMC6014687 DOI: 10.1021/acs.jmedchem.6b01055] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Indexed: 12/20/2022]
Abstract
Phenotypic screens, which focus on measuring and quantifying discrete cellular changes rather than affinity for individual recombinant proteins, have recently attracted renewed interest as an efficient strategy for drug discovery. In this article, we describe the discovery of a new chemical probe, bisamide (CCT251236), identified using an unbiased phenotypic screen to detect inhibitors of the HSF1 stress pathway. The chemical probe is orally bioavailable and displays efficacy in a human ovarian carcinoma xenograft model. By developing cell-based SAR and using chemical proteomics, we identified pirin as a high affinity molecular target, which was confirmed by SPR and crystallography.
Collapse
Affiliation(s)
- Matthew
D. Cheeseman
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Nicola E. A. Chessum
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Carl S. Rye
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - A. Elisa Pasqua
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Michael
J. Tucker
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Birgit Wilding
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Lindsay E. Evans
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Susan Lepri
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Meirion Richards
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Swee Y. Sharp
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Salyha Ali
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
- Division
of Structural Biology at The Institute of
Cancer Research, London SW7 3RP, United Kingdom
| | - Martin Rowlands
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Lisa O’Fee
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Asadh Miah
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Angela Hayes
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Alan T. Henley
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Marissa Powers
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Robert te Poele
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Emmanuel De Billy
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Loredana Pellegrino
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Florence Raynaud
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Rosemary Burke
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Rob L. M. van Montfort
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
- Division
of Structural Biology at The Institute of
Cancer Research, London SW7 3RP, United Kingdom
| | - Suzanne A. Eccles
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Paul Workman
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Keith Jones
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| |
Collapse
|
226
|
Rho JK, Lee IY, Choi YJ, Choi CM, Hur JY, Koh JS, Lee J, Suh BC, Song HJ, Salgaonkar P, Lee J, Lee J, Jung DS, Kim SY, Woo DC, Baek IJ, Lee JY, Ha CH, Sung YH, Kim JK, Kim WS, Song JS, Kim CH, Bivona TG, Lee JC. Superior Efficacy and Selectivity of Novel Small-Molecule Kinase Inhibitors of T790M-Mutant EGFR in Preclinical Models of Lung Cancer. Cancer Res 2017; 77:1200-1211. [PMID: 28082405 DOI: 10.1158/0008-5472.can-16-2432] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 11/15/2016] [Accepted: 12/07/2016] [Indexed: 01/29/2023]
Abstract
The clinical utility of approved EGFR small-molecule kinase inhibitors is plagued both by toxicity against wild-type EGFR and by metastatic progression in the central nervous system, a disease sanctuary site. Here, we report the discovery and preclinical efficacy of GNS-1486 and GNS-1481, two novel small-molecule EGFR kinase inhibitors that are selective for T790M-mutant isoforms of EGFR. Both agents were effective in multiple mouse xenograft models of human lung adenocarcinoma (T790M-positive or -negative), exhibiting less activity against wild-type EGFR than existing approved EGFR kinase inhibitors (including osimertinib). In addition, GNS-1486 showed superior potency against intracranial metastasis of EGFR-mutant lung adenocarcinoma. Our results offer a preclinical proof of concept for new EGFR kinase inhibitors with the potential to improve therapeutic index and efficacy against brain metastases in patients. Cancer Res; 77(5); 1200-11. ©2017 AACR.
Collapse
Affiliation(s)
- Jin Kyung Rho
- Asan Institute for Life Sciences, Asan Medical Center, College of Medicine, University of Ulsan, Seoul, Korea. .,Department of Convergence Medicine, Asan Medical Center, College of Medicine, University of Ulsan, Seoul, Korea.,Department of Pulmonology and Critical Care Medicine, Asan Medical Center, College of Medicine, University of Ulsan, Seoul, Korea
| | | | - Yun Jung Choi
- Asan Institute for Life Sciences, Asan Medical Center, College of Medicine, University of Ulsan, Seoul, Korea.,Department of Pulmonology and Critical Care Medicine, Asan Medical Center, College of Medicine, University of Ulsan, Seoul, Korea
| | - Chang-Min Choi
- Department of Pulmonology and Critical Care Medicine, Asan Medical Center, College of Medicine, University of Ulsan, Seoul, Korea.,Department of Oncology, Asan Medical Center, College of Medicine, University of Ulsan, Seoul, Korea
| | - Jae-Young Hur
- Asan Institute for Life Sciences, Asan Medical Center, College of Medicine, University of Ulsan, Seoul, Korea.,Department of Pulmonology and Critical Care Medicine, Asan Medical Center, College of Medicine, University of Ulsan, Seoul, Korea
| | | | | | | | | | | | | | | | | | - Sang-Yeob Kim
- Asan Institute for Life Sciences, Asan Medical Center, College of Medicine, University of Ulsan, Seoul, Korea.,Department of Convergence Medicine, Asan Medical Center, College of Medicine, University of Ulsan, Seoul, Korea
| | - Dong-Cheol Woo
- Asan Institute for Life Sciences, Asan Medical Center, College of Medicine, University of Ulsan, Seoul, Korea.,Department of Convergence Medicine, Asan Medical Center, College of Medicine, University of Ulsan, Seoul, Korea
| | - In-Jeoung Baek
- Asan Institute for Life Sciences, Asan Medical Center, College of Medicine, University of Ulsan, Seoul, Korea.,Department of Convergence Medicine, Asan Medical Center, College of Medicine, University of Ulsan, Seoul, Korea
| | - Joo-Yong Lee
- Asan Institute for Life Sciences, Asan Medical Center, College of Medicine, University of Ulsan, Seoul, Korea.,Department of Convergence Medicine, Asan Medical Center, College of Medicine, University of Ulsan, Seoul, Korea
| | - Chang Hoon Ha
- Asan Institute for Life Sciences, Asan Medical Center, College of Medicine, University of Ulsan, Seoul, Korea.,Department of Convergence Medicine, Asan Medical Center, College of Medicine, University of Ulsan, Seoul, Korea
| | - Young Hoon Sung
- Asan Institute for Life Sciences, Asan Medical Center, College of Medicine, University of Ulsan, Seoul, Korea.,Department of Convergence Medicine, Asan Medical Center, College of Medicine, University of Ulsan, Seoul, Korea
| | - Jeong Kon Kim
- Department of Radiology, Research Institute of Radiology, Asan Medical Center, College of Medicine, University of Ulsan, Seoul, Korea
| | - Woo Sung Kim
- Department of Pulmonology and Critical Care Medicine, Asan Medical Center, College of Medicine, University of Ulsan, Seoul, Korea
| | - Joon Seon Song
- Department of Pathology, Asan Medical Center, College of Medicine, University of Ulsan, Seoul, Korea
| | - Cheol Hyeon Kim
- Department of Internal Medicine, Korea Cancer Center Hospital, Seoul, Korea
| | - Trever G Bivona
- Department of Medicine, University of California San Francisco, San Francisco, California. .,Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| | - Jae Cheol Lee
- Department of Oncology, Asan Medical Center, College of Medicine, University of Ulsan, Seoul, Korea.
| |
Collapse
|
227
|
Gough A, Stern AM, Maier J, Lezon T, Shun TY, Chennubhotla C, Schurdak ME, Haney SA, Taylor DL. Biologically Relevant Heterogeneity: Metrics and Practical Insights. SLAS DISCOVERY 2017; 22:213-237. [PMID: 28231035 DOI: 10.1177/2472555216682725] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Heterogeneity is a fundamental property of biological systems at all scales that must be addressed in a wide range of biomedical applications, including basic biomedical research, drug discovery, diagnostics, and the implementation of precision medicine. There are a number of published approaches to characterizing heterogeneity in cells in vitro and in tissue sections. However, there are no generally accepted approaches for the detection and quantitation of heterogeneity that can be applied in a relatively high-throughput workflow. This review and perspective emphasizes the experimental methods that capture multiplexed cell-level data, as well as the need for standard metrics of the spatial, temporal, and population components of heterogeneity. A recommendation is made for the adoption of a set of three heterogeneity indices that can be implemented in any high-throughput workflow to optimize the decision-making process. In addition, a pairwise mutual information method is suggested as an approach to characterizing the spatial features of heterogeneity, especially in tissue-based imaging. Furthermore, metrics for temporal heterogeneity are in the early stages of development. Example studies indicate that the analysis of functional phenotypic heterogeneity can be exploited to guide decisions in the interpretation of biomedical experiments, drug discovery, diagnostics, and the design of optimal therapeutic strategies for individual patients.
Collapse
Affiliation(s)
- Albert Gough
- 1 Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA.,2 University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA, USA
| | - Andrew M Stern
- 1 Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA.,2 University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA, USA
| | - John Maier
- 3 Department of Family Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Timothy Lezon
- 1 Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA.,2 University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA, USA
| | - Tong-Ying Shun
- 2 University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA, USA
| | - Chakra Chennubhotla
- 1 Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA.,2 University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA, USA
| | - Mark E Schurdak
- 1 Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA.,2 University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA, USA.,4 University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Steven A Haney
- 5 Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, USA
| | - D Lansing Taylor
- 1 Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA.,2 University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA, USA.,4 University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| |
Collapse
|
228
|
Colmegna B, Morosi L, D'Incalci M. Molecular and Pharmacological Mechanisms of Drug Resistance:An Evolving Paradigm. Handb Exp Pharmacol 2017; 249:1-12. [PMID: 28332049 DOI: 10.1007/164_2017_20] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The high heterogeneity and genomic instability of malignant tumors explains why even responsive tumors contain cell clones that are resistant for many possible mechanisms involving intracellular drug inactivation, low uptake or high efflux of anticancer drugs from cancer cells, qualitative or quantitative changes in the drug target. Many tumors, however, are resistant because of insufficient exposure to anticancer drugs, due to pharmacokinetic reasons and inefficient and heterogeneous tumor drug distribution, related to a deficient vascularization and high interstitial pressure. Finally, resistance can be related to the activation of anti-apoptotic and cell survival pathways by cancer cells and often enhanced by tumor microenvironment.
Collapse
Affiliation(s)
- Benedetta Colmegna
- Department of Oncology, IRCCS 'Mario Negri', Institute for Pharmacological Research, 20145, Milan, Italy
| | - Lavinia Morosi
- Department of Oncology, IRCCS 'Mario Negri', Institute for Pharmacological Research, 20145, Milan, Italy
| | - Maurizio D'Incalci
- Department of Oncology, IRCCS 'Mario Negri', Institute for Pharmacological Research, 20145, Milan, Italy.
| |
Collapse
|
229
|
Rohrbach TD, Jones RB, Hicks PH, Weaver AN, Cooper TS, Eustace NJ, Yang ES, Jarboe JS, Anderson JC, Willey CD. MARCKS phosphorylation is modulated by a peptide mimetic of MARCKS effector domain leading to increased radiation sensitivity in lung cancer cell lines. Oncol Lett 2016; 13:1216-1222. [PMID: 28454237 PMCID: PMC5403188 DOI: 10.3892/ol.2016.5550] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 09/27/2016] [Indexed: 12/24/2022] Open
Abstract
Lung cancer is the leading cause of cancer-associated mortality in the United States. Kinase hyperactivation is a known mechanism of tumorigenesis. The phosphorylation status of the plasma membrane-associated protein myristoylated alanine rich C-kinase substrate (MARCKS) effector domain (ED) was previously established as being important in the sensitivity of lung cancer to radiation. Specifically, when MARCKS ED was in a non-phosphorylated state, lung cancer cells were more susceptible to ionizing radiation and experienced prolonged double-strand DNA breaks. Additional studies demonstrated that the phosphorylation status of MARCKS ED is important for gene expression and in vivo tumor growth. The present study used a peptide mimetic of MARCKS ED as a therapeutic intervention to modulate MARCKS phosphorylation. Culturing A549, H1792 and H1975 lung cancer cell lines with the MARCKS ED peptide led to reduced levels of phosphorylated MARCKS and phosphorylated Akt serine/threonine kinase 1. Further investigation demonstrated that the peptide therapy was able to reduce lung cancer cell proliferation and increase radiation sensitivity. In addition, the MARCKS peptide therapy was able to prolong double-strand DNA breaks following ionizing radiation exposure. The results of the present study demonstrate that a peptide mimetic of MARCKS ED is able to modulate MARCKS phosphorylation, leading to an increase in sensitivity to radiation.
Collapse
Affiliation(s)
- Timothy D Rohrbach
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL 35249, USA
| | - Robert B Jones
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL 35249, USA
| | - Patricia H Hicks
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL 35249, USA
| | - Alice N Weaver
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL 35249, USA
| | - Tiffiny S Cooper
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL 35249, USA
| | - Nicholas J Eustace
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL 35249, USA
| | - Eddy S Yang
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL 35249, USA
| | - John S Jarboe
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL 35249, USA
| | - Joshua C Anderson
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL 35249, USA
| | - Christopher D Willey
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL 35249, USA
| |
Collapse
|
230
|
DeBouganin Diabody Fusion Protein Overcomes Drug Resistance to ADCs Comprised of Anti-Microtubule Agents. Molecules 2016; 21:molecules21121741. [PMID: 27999336 PMCID: PMC6273041 DOI: 10.3390/molecules21121741] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 12/09/2016] [Accepted: 12/12/2016] [Indexed: 12/15/2022] Open
Abstract
Antibody drug conjugates (ADC), comprised of highly potent small molecule payloads chemically conjugated to a full-length antibody, represent a growing class of therapeutic agents. The targeting of cytotoxic payloads via the specificity and selectivity of the antibody has led to substantial clinical benefits. However, ADC potency can be altered by mechanisms of resistance such as overexpression of efflux pumps or anti-apoptotic proteins. DeBouganin is a de-immunized variant of bouganin, a ribosome-inactivating protein (RIP) that blocks protein synthesis, thereby leading to apoptosis. When conjugated to trastuzumab (T-deB), deBouganin was more potent than ado-trastuzumab-emtansine (T-DM1) and unaffected by resistance mechanisms to which DM1 is susceptible. To further highlight the differentiating mechanism of action of deBouganin, HCC1419 and BT-474 tumor cells that survived T-DM1 or trastuzumab-MMAE (T-MMAE) treatment were treated with an anti-HER2 C6.5 diabody–deBouganin fusion protein or T-deB. C6.5 diabody–deBouganin and T-deB were potent against HCC1419 and BT-474 cells that were resistant to T-DM1 or T-MMAE killing. The resistant phenotype involved MDR pumps, Bcl-2 family members, and the presence of additional unknown pathways. Overall, the data suggest that deBouganin is effective against tumor cell resistance mechanisms selected in response to ADCs composed of anti-microtubule payloads.
Collapse
|
231
|
Abstract
The development of antibody drug conjugates has provided enhanced potency to tumor-targeting antibodies by the addition of highly potent payloads. In the case of trastuzumab-DM1 (T-DM1), approved for the treatment of metastatic breast cancer, the addition of mertansine (DM1) to trastuzumab substantially increased progression-free survival. Despite these improvements, most patients eventually relapse due to complex mechanisms of resistance often associated with small molecule chemotherapeutics. Therefore, identifying payloads with different mechanisms of action (MOA) is critical for increasing the efficacy of targeted therapeutics and ultimately improving patient outcomes. To evaluate payloads with different MOA, deBouganin, a deimmunized plant toxin that inhibits protein synthesis, was conjugated to trastuzumab and compared with T-DM1 both in vitro and in vivo. The trastuzumab-deBouganin conjugate (T-deB) demonstrated greater potency in vitro against most cells lines with high levels of Her2 expression. In addition, T-deB, unlike T-DM1, was unaffected by inhibitors of multidrug resistance, Bcl-2-mediated resistance, or Her2-Her3 dimerization. Contrary to T-DM1 that showed only minimal cytotoxicity, T-deB was highly potent in vitro against tumor cells with cancer stem cell properties. Overall, the results demonstrate the potency and efficacy of deBouganin and emphasize the importance of using payloads with different MOAs. The data suggest that deBouganin could be a highly effective against tumor cell phenotypes not being addressed by current antibody drug conjugate formats and thereby provide prolonged clinical benefit.
Collapse
|
232
|
Cardone L. Biocomputing drug repurposing toward targeted therapies. Aging (Albany NY) 2016; 8:2609-2610. [PMID: 27920407 PMCID: PMC5191858 DOI: 10.18632/aging.101135] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 11/29/2016] [Indexed: 11/25/2022]
Affiliation(s)
- Luca Cardone
- Department of Research, Advanced Diagnostic, and Technological Innovation, Regina Elena National Cancer Institute - IRCCS, 00144 Rome, Italy
| |
Collapse
|
233
|
Rapid emergence and mechanisms of resistance by U87 glioblastoma cells to doxorubicin in an in vitro tumor microfluidic ecology. Proc Natl Acad Sci U S A 2016; 113:14283-14288. [PMID: 27911816 DOI: 10.1073/pnas.1614898113] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In vitro prediction of the probable rapid emergence of resistance to a drug in tumors could act to winnow out potential candidates for further costly development. We have developed a microfluidic device consisting of ∼500 hexagonal microcompartments that provides a complex ecology with wide ranges of drug and nutrient gradients and local populations. This ecology of a fragmented metapopulation induced the drug resistance in stage IV U87 glioblastoma cells to doxorubicin in 7 d. Exome and transcriptome sequencing of the resistant cells identified mutations and differentially expressed genes. Gene ontology and pathway analyses of the genes identified showed that they were functionally relevant to the established mechanisms of doxorubicin action. Specifically, we identified (i) a frame-shift insertion in the filamin-A gene, which regulates the influx and efflux of topoisomerase II poisons; (ii) the overexpression of aldo-keto reductase enzymes, which convert doxorubicin into doxorubicinol; and (iii) activation of NF-κB via alterations in the nucleotide-binding oligomerization domain (NOD)-like receptor signaling pathway from mutations in three genes (CARD6, NSD1, and NLRP13) and the overexpression of inflammatory cytokines. Functional experiments support the in silico analyses and, together, demonstrate the effects of these genetic changes. Our findings suggest that, given the rapid evolution of resistance and the focused response, this technology could act as a rapid screening modality for genetic aberrations leading to resistance to chemotherapy as well as counter selection of drugs unlikely to be successful ultimately.
Collapse
|
234
|
Kim SM, Roy SG, Chen B, Nguyen TM, McMonigle RJ, McCracken AN, Zhang Y, Kofuji S, Hou J, Selwan E, Finicle BT, Nguyen TT, Ravi A, Ramirez MU, Wiher T, Guenther GG, Kono M, Sasaki AT, Weisman LS, Potma EO, Tromberg BJ, Edwards RA, Hanessian S, Edinger AL. Targeting cancer metabolism by simultaneously disrupting parallel nutrient access pathways. J Clin Invest 2016; 126:4088-4102. [PMID: 27669461 PMCID: PMC5096903 DOI: 10.1172/jci87148] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 08/16/2016] [Indexed: 12/23/2022] Open
Abstract
Oncogenic mutations drive anabolic metabolism, creating a dependency on nutrient influx through transporters, receptors, and macropinocytosis. While sphingolipids suppress tumor growth by downregulating nutrient transporters, macropinocytosis and autophagy still provide cancer cells with fuel. Therapeutics that simultaneously disrupt these parallel nutrient access pathways have potential as powerful starvation agents. Here, we describe a water-soluble, orally bioavailable synthetic sphingolipid, SH-BC-893, that triggers nutrient transporter internalization and also blocks lysosome-dependent nutrient generation pathways. SH-BC-893 activated protein phosphatase 2A (PP2A), leading to mislocalization of the lipid kinase PIKfyve. The concomitant mislocalization of the PIKfyve product PI(3,5)P2 triggered cytosolic vacuolation and blocked lysosomal fusion reactions essential for LDL, autophagosome, and macropinosome degradation. By simultaneously limiting access to both extracellular and intracellular nutrients, SH-BC-893 selectively killed cells expressing an activated form of the anabolic oncogene Ras in vitro and in vivo. However, slower-growing, autochthonous PTEN-deficient prostate tumors that did not exhibit a classic Warburg phenotype were equally sensitive. Remarkably, normal proliferative tissues were unaffected by doses of SH-BC-893 that profoundly inhibited tumor growth. These studies demonstrate that simultaneously blocking parallel nutrient access pathways with sphingolipid-based drugs is broadly effective and cancer selective, suggesting a potential strategy for overcoming the resistance conferred by tumor heterogeneity.
Collapse
Affiliation(s)
- Seong M. Kim
- Department of Developmental and Cell Biology, University of California Irvine (UCI), Irvine, California, USA
| | - Saurabh G. Roy
- Department of Developmental and Cell Biology, University of California Irvine (UCI), Irvine, California, USA
| | - Bin Chen
- Department of Chemistry, Université de Montréal, Montréal, Québec, Canada
| | - Tiffany M. Nguyen
- Department of Developmental and Cell Biology, University of California Irvine (UCI), Irvine, California, USA
| | - Ryan J. McMonigle
- Department of Developmental and Cell Biology, University of California Irvine (UCI), Irvine, California, USA
| | - Alison N. McCracken
- Department of Developmental and Cell Biology, University of California Irvine (UCI), Irvine, California, USA
| | - Yanling Zhang
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Satoshi Kofuji
- Departments of Internal Medicine, Neurosurgery, and Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Jue Hou
- Department of Biomedical Engineering, UCI, Irvine, California, USA
| | - Elizabeth Selwan
- Department of Developmental and Cell Biology, University of California Irvine (UCI), Irvine, California, USA
| | - Brendan T. Finicle
- Department of Developmental and Cell Biology, University of California Irvine (UCI), Irvine, California, USA
| | - Tricia T. Nguyen
- Department of Developmental and Cell Biology, University of California Irvine (UCI), Irvine, California, USA
| | - Archna Ravi
- Department of Developmental and Cell Biology, University of California Irvine (UCI), Irvine, California, USA
| | - Manuel U. Ramirez
- Department of Developmental and Cell Biology, University of California Irvine (UCI), Irvine, California, USA
| | - Tim Wiher
- Department of Developmental and Cell Biology, University of California Irvine (UCI), Irvine, California, USA
| | - Garret G. Guenther
- Department of Developmental and Cell Biology, University of California Irvine (UCI), Irvine, California, USA
| | - Mari Kono
- National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), Bethesda, Maryland, USA
| | - Atsuo T. Sasaki
- Departments of Internal Medicine, Neurosurgery, and Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Lois S. Weisman
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Eric O. Potma
- Department of Biomedical Engineering, UCI, Irvine, California, USA
| | | | - Robert A. Edwards
- Department of Pathology, University of California Irvine School of Medicine, Irvine, California, USA
| | - Stephen Hanessian
- Department of Chemistry, Université de Montréal, Montréal, Québec, Canada
- Department of Pharmaceutical Sciences, UCI, Irvine, California, USA
| | - Aimee L. Edinger
- Department of Developmental and Cell Biology, University of California Irvine (UCI), Irvine, California, USA
| |
Collapse
|
235
|
Füredi A, Tóth S, Szebényi K, Pape VF, Türk D, Kucsma N, Cervenak L, Tóvári J, Szakács G. Identification and Validation of Compounds Selectively Killing Resistant Cancer: Delineating Cell Line–Specific Effects from P-Glycoprotein–Induced Toxicity. Mol Cancer Ther 2016; 16:45-56. [DOI: 10.1158/1535-7163.mct-16-0333-t] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 09/14/2016] [Accepted: 10/06/2016] [Indexed: 11/16/2022]
|
236
|
Abstract
The clinical success of ALK targeted therapy is limited by resistance. To identify rational co-targeting strategies to enhance clinical outcomes, we explored the molecular basis of ALK oncogene dependence in ALK gene rearrangement positive (ALK+) lung adenocarcinoma. We discovered that the RAS-RAF-MEK-ERK pathway is the critical downstream pathway necessary for ALK+ tumor cell survival. Upfront co-targeting of ALK plus MEK enhanced response and forestalled resistance in preclinical ALK+ tumor models, providing rationale for a new approach the treatment of ALK+ patients.
Collapse
Affiliation(s)
- Gorjan Hrustanovic
- a Department of Medicine ; University of California at San Francisco ; San Francisco , CA USA.,b Helen Diller Family Comprehensive Cancer Center; University of California at San Francisco ; San Francisco , CA USA
| | - Trever G Bivona
- a Department of Medicine ; University of California at San Francisco ; San Francisco , CA USA.,b Helen Diller Family Comprehensive Cancer Center; University of California at San Francisco ; San Francisco , CA USA
| |
Collapse
|
237
|
Drug sensitivity of single cancer cells is predicted by changes in mass accumulation rate. Nat Biotechnol 2016; 34:1161-1167. [PMID: 27723727 DOI: 10.1038/nbt.3697] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 08/30/2016] [Indexed: 11/09/2022]
Abstract
Assays that can determine the response of tumor cells to cancer therapeutics could greatly aid the selection of drug regimens for individual patients. However, the utility of current functional assays is limited, and predictive genetic biomarkers are available for only a small fraction of cancer therapies. We found that the single-cell mass accumulation rate (MAR), profiled over many hours with a suspended microchannel resonator, accurately defined the drug sensitivity or resistance of glioblastoma and B-cell acute lymphocytic leukemia cells. MAR revealed heterogeneity in drug sensitivity not only between different tumors, but also within individual tumors and tumor-derived cell lines. MAR measurement predicted drug response using samples as small as 25 μl of peripheral blood while maintaining cell viability and compatibility with downstream characterization. MAR measurement is a promising approach for directly assaying single-cell therapeutic responses and for identifying cellular subpopulations with phenotypic resistance in heterogeneous tumors.
Collapse
|
238
|
Lu S, Jang H, Gu S, Zhang J, Nussinov R. Drugging Ras GTPase: a comprehensive mechanistic and signaling structural view. Chem Soc Rev 2016; 45:4929-52. [PMID: 27396271 PMCID: PMC5021603 DOI: 10.1039/c5cs00911a] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ras proteins are small GTPases, cycling between inactive GDP-bound and active GTP-bound states. Through these switches they regulate signaling that controls cell growth and proliferation. Activating Ras mutations are associated with approximately 30% of human cancers, which are frequently resistant to standard therapies. Over the past few years, structural biology and in silico drug design, coupled with improved screening technology, led to a handful of promising inhibitors, raising the possibility of drugging Ras proteins. At the same time, the invariable emergence of drug resistance argues for the critical importance of additionally honing in on signaling pathways which are likely to be involved. Here we overview current advances in Ras structural knowledge, including the conformational dynamic of full-length Ras in solution and at the membrane, therapeutic inhibition of Ras activity by targeting its active site, allosteric sites, and Ras-effector protein-protein interfaces, Ras dimers, the K-Ras4B/calmodulin/PI3Kα trimer, and targeting Ras with siRNA. To mitigate drug resistance, we propose signaling pathways that can be co-targeted along with Ras and explain why. These include pathways leading to the expression (or activation) of YAP1 and c-Myc. We postulate that these and Ras signaling pathways, MAPK/ERK and PI3K/Akt/mTOR, act independently and in corresponding ways in cell cycle control. The structural data are instrumental in the discovery and development of Ras inhibitors for treating RAS-driven cancers. Together with the signaling blueprints through which drug resistance can evolve, this review provides a comprehensive and innovative master plan for tackling mutant Ras proteins.
Collapse
Affiliation(s)
- Shaoyong Lu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Children’s Medical Center, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200127, China
| | - Hyunbum Jang
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, National Cancer Institute, Frederick, MD 21702, U.S.A
| | - Shuo Gu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Children’s Medical Center, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200127, China
| | - Jian Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Children’s Medical Center, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200127, China
| | - Ruth Nussinov
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, National Cancer Institute, Frederick, MD 21702, U.S.A
- Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Sackler Institute of Molecular Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
239
|
Willis RE. Targeted Cancer Therapy: Vital Oncogenes and a New Molecular Genetic Paradigm for Cancer Initiation Progression and Treatment. Int J Mol Sci 2016; 17:ijms17091552. [PMID: 27649156 PMCID: PMC5037825 DOI: 10.3390/ijms17091552] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 09/05/2016] [Accepted: 09/07/2016] [Indexed: 12/18/2022] Open
Abstract
It has been declared repeatedly that cancer is a result of molecular genetic abnormalities. However, there has been no working model describing the specific functional consequences of the deranged genomic processes that result in the initiation and propagation of the cancer process during carcinogenesis. We no longer need to question whether or not cancer arises as a result of a molecular genetic defect within the cancer cell. The legitimate questions are: how and why? This article reviews the preeminent data on cancer molecular genetics and subsequently proposes that the sentinel event in cancer initiation is the aberrant production of fused transcription activators with new molecular properties within normal tissue stem cells. This results in the production of vital oncogenes with dysfunctional gene activation transcription properties, which leads to dysfunctional gene regulation, the aberrant activation of transduction pathways, chromosomal breakage, activation of driver oncogenes, reactivation of stem cell transduction pathways and the activation of genes that result in the hallmarks of cancer. Furthermore, a novel holistic molecular genetic model of cancer initiation and progression is presented along with a new paradigm for the approach to personalized targeted cancer therapy, clinical monitoring and cancer diagnosis.
Collapse
Affiliation(s)
- Rudolph E Willis
- OncoStem Biotherapeutics LLC, 423 W 127th St., New York, NY 10027, USA.
| |
Collapse
|
240
|
Ailawadhi S, Paulus A, Chanan-Khan A. Preclinical models of Waldenström's macroglobulinemia and drug resistance. Best Pract Res Clin Haematol 2016; 29:169-178. [PMID: 27825463 DOI: 10.1016/j.beha.2016.08.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 08/26/2016] [Indexed: 12/30/2022]
Abstract
Newer therapeutic strategies are emerging in Waldenström's Macroglobulinemia (WM), which has traditionally been an orphan disease diagnosis. Ibrutinib, a Bruton's tyrosine kinase (BTK) inhibitor was FDA-approved in 2015 as the first ever drug for the treatment of WM. This being a targeted therapy, has given rise to increased research into novel agents and pathways that can be exploited for clinical benefit in WM. In order to understand the underlying mechanisms of disease behavior as well as to test the benefit of various drugs, appropriate preclinical models are required. Historically there had been a lack of representative preclinical models in WM, but in recent years this has dramatically changed. This review highlights the currently available preclinical models and data regarding drug resistance pathways in WM. Knowledge from these will certainly help in paving the future course of treatment in this rare disorder which is indolent and yet, so far incurable.
Collapse
Affiliation(s)
- Sikander Ailawadhi
- Mayo Clinic Jacksonville, Division of Hematology and Oncology, United States.
| | - Aneel Paulus
- Mayo Clinic Jacksonville, Department of Cancer Biology and Division of Hematology and Oncology, United States.
| | - Asher Chanan-Khan
- Mayo Clinic Jacksonville, Division of Hematology and Oncology, United States.
| |
Collapse
|
241
|
Wong LH, Sinha S, Bergeron JR, Mellor JC, Giaever G, Flaherty P, Nislow C. Reverse Chemical Genetics: Comprehensive Fitness Profiling Reveals the Spectrum of Drug Target Interactions. PLoS Genet 2016; 12:e1006275. [PMID: 27588687 PMCID: PMC5010250 DOI: 10.1371/journal.pgen.1006275] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 08/03/2016] [Indexed: 01/22/2023] Open
Abstract
The emergence and prevalence of drug resistance demands streamlined strategies to identify drug resistant variants in a fast, systematic and cost-effective way. Methods commonly used to understand and predict drug resistance rely on limited clinical studies from patients who are refractory to drugs or on laborious evolution experiments with poor coverage of the gene variants. Here, we report an integrative functional variomics methodology combining deep sequencing and a Bayesian statistical model to provide a comprehensive list of drug resistance alleles from complex variant populations. Dihydrofolate reductase, the target of methotrexate chemotherapy drug, was used as a model to identify functional mutant alleles correlated with methotrexate resistance. This systematic approach identified previously reported resistance mutations, as well as novel point mutations that were validated in vivo. Use of this systematic strategy as a routine diagnostics tool widens the scope of successful drug research and development. One of the most profound outcomes of fast, reliable genome sequencing is the ability to tailor drug therapy to an individual’s genotype. This ‘personalized’ or ‘precision medicine’ is the realization of a decades-long effort to maximize drug effect and limit unwanted side effects. An undesirable consequence of such targeted therapies, however, is the emergence of drug resistance. This outcome is the result of an evolutionary process where mutations in the drug target render the drug perturbation allow such mutant cells to proliferate. Because of the unbiased, and stochastic nature of the emergence of drug resistance, it is impossible to predict. We developed a test where hundreds of thousands of mutant cells are exposed to a drug simultaneously and those cells that modulate resistance survive. This method is innovative because it partners a high-throughput experimental protocol with a tailored statistical model to identify all mutations that modulate resistance. Finally, we used synthetic biology to re-create these mutations and demonstrate that they were, in fact, bona fide drug-resistant variants. These mutations were further extended and confirmed to also be resistant in the human orthologue. This combined biological-computational approach allows one to identify drug’s degree of resistance to both guide treatments and future drug discovery.
Collapse
Affiliation(s)
- Lai H. Wong
- Department of Pharmaceutical Sciences, University of British Columbia, Vancouver, Canada
| | - Sunita Sinha
- Department of Pharmaceutical Sciences, University of British Columbia, Vancouver, Canada
| | - Julien R. Bergeron
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | | | - Guri Giaever
- Department of Pharmaceutical Sciences, University of British Columbia, Vancouver, Canada
| | - Patrick Flaherty
- Department of Mathematics and Statistics, University of Massachusetts, Amherst, Massachusetts, United States of America
- * E-mail: (PF); (CN)
| | - Corey Nislow
- Department of Pharmaceutical Sciences, University of British Columbia, Vancouver, Canada
- * E-mail: (PF); (CN)
| |
Collapse
|
242
|
Abstract
Background The advance in targeted therapy has greatly increased the effectiveness of clinical cancer therapy and reduced the cytotoxicity of treatments to normal cells. However, patients still suffer from cancer relapse due to the occurrence of drug resistance. It is of great need to explore potential combinatorial drug therapy since individual drug alone may not be sufficient to inhibit continuous activation of cancer-addicted genes or pathways. The DREAM challenge has confirmed the potentiality of computational methods for predicting synergistic drug combinations, while the prediction accuracy can be further improved. Methods Based on previous reports, we hypothesized the similarity in biological functions or genes perturbed by two drugs can determine their synergistic effects. To test the feasibility of the hypothesis, we proposed three scoring systems: co-gene score, co-GS score, and co-gene/GS score, measuring the similarities in genes with significant expressional changes, enriched gene sets, and significantly changed genes within an enriched gene sets between a pair of drugs, respectively. Performances of these scoring systems were evaluated by the probabilistic c-index (PC-index) devised by the DREAM consortium. We also applied the proposed method to the Connectivity Map dataset to explore more potential synergistic drug combinations. Results Using a gold standard derived by the DREAM consortium, we confirmed the prediction power of the three scoring systems (all P-values < 0.05). The co-gene/GS score achieved the best prediction of drug synergy (PC-index = 0.663, P-value < 0.0001), outperforming all methods proposed during DREAM challenge. Furthermore, a binary classification test showed that co-gene/GS scoring was highly accurate and specific. Since our method is constructed on a gene set-based analysis, in addition to synergy prediction, it provides insights into the functional relevance of drug combinations and the underlying mechanisms by which drugs achieve synergy. Conclusions Here we proposed a novel and simple method to predict and investigate drug synergy, and validated its efficacy to accurately predict synergistic drug combinations and to comprehensively explore their underlying mechanisms. The method is widely applicable to expression profiles of other drug treatments and is expected to accelerate the realization of precision cancer treatment. Electronic supplementary material The online version of this article (doi:10.1186/s12918-016-0310-3) contains supplementary material, which is available to authorized users.
Collapse
|
243
|
Serra-Musach J, Mateo F, Capdevila-Busquets E, de Garibay GR, Zhang X, Guha R, Thomas CJ, Grueso J, Villanueva A, Jaeger S, Heyn H, Vizoso M, Pérez H, Cordero A, Gonzalez-Suarez E, Esteller M, Moreno-Bueno G, Tjärnberg A, Lázaro C, Serra V, Arribas J, Benson M, Gustafsson M, Ferrer M, Aloy P, Pujana MÀ. Cancer network activity associated with therapeutic response and synergism. Genome Med 2016; 8:88. [PMID: 27553366 PMCID: PMC4995628 DOI: 10.1186/s13073-016-0340-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 08/01/2016] [Indexed: 12/14/2022] Open
Abstract
Background Cancer patients often show no or only modest benefit from a given therapy. This major problem in oncology is generally attributed to the lack of specific predictive biomarkers, yet a global measure of cancer cell activity may support a comprehensive mechanistic understanding of therapy efficacy. We reasoned that network analysis of omic data could help to achieve this goal. Methods A measure of “cancer network activity” (CNA) was implemented based on a previously defined network feature of communicability. The network nodes and edges corresponded to human proteins and experimentally identified interactions, respectively. The edges were weighted proportionally to the expression of the genes encoding for the corresponding proteins and relative to the number of direct interactors. The gene expression data corresponded to the basal conditions of 595 human cancer cell lines. Therapeutic responses corresponded to the impairment of cell viability measured by the half maximal inhibitory concentration (IC50) of 130 drugs approved or under clinical development. Gene ontology, signaling pathway, and transcription factor-binding annotations were taken from public repositories. Predicted synergies were assessed by determining the viability of four breast cancer cell lines and by applying two different analytical methods. Results The effects of drug classes were associated with CNAs formed by different cell lines. CNAs also differentiate target families and effector pathways. Proteins that occupy a central position in the network largely contribute to CNA. Known key cancer-associated biological processes, signaling pathways, and master regulators also contribute to CNA. Moreover, the major cancer drivers frequently mediate CNA and therapeutic differences. Cell-based assays centered on these differences and using uncorrelated drug effects reveals novel synergistic combinations for the treatment of breast cancer dependent on PI3K-mTOR signaling. Conclusions Cancer therapeutic responses can be predicted on the basis of a systems-level analysis of molecular interactions and gene expression. Fundamental cancer processes, pathways, and drivers contribute to this feature, which can also be exploited to predict precise synergistic drug combinations. Electronic supplementary material The online version of this article (doi:10.1186/s13073-016-0340-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jordi Serra-Musach
- Breast Cancer and Systems Biology Lab, Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), Gran via 199, L'Hospitalet del Llobregat, Barcelona, 08908, Catalonia, Spain
| | - Francesca Mateo
- Breast Cancer and Systems Biology Lab, Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), Gran via 199, L'Hospitalet del Llobregat, Barcelona, 08908, Catalonia, Spain
| | - Eva Capdevila-Busquets
- Joint IRB-BSC-CRG Program in Computational Biology, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, Barcelona, 08028, Catalonia, Spain
| | - Gorka Ruiz de Garibay
- Breast Cancer and Systems Biology Lab, Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), Gran via 199, L'Hospitalet del Llobregat, Barcelona, 08908, Catalonia, Spain
| | - Xiaohu Zhang
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, 9800 Medical Center Dr. Rockville, Bethesda, MD, 20850, USA
| | - Raj Guha
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, 9800 Medical Center Dr. Rockville, Bethesda, MD, 20850, USA
| | - Craig J Thomas
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, 9800 Medical Center Dr. Rockville, Bethesda, MD, 20850, USA
| | - Judit Grueso
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology (VHIO), Cellex Center, Natzaret 115-117, Barcelona, 08035, Catalonia, Spain
| | - Alberto Villanueva
- Breast Cancer and Systems Biology Lab, Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), Gran via 199, L'Hospitalet del Llobregat, Barcelona, 08908, Catalonia, Spain
| | - Samira Jaeger
- Joint IRB-BSC-CRG Program in Computational Biology, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, Barcelona, 08028, Catalonia, Spain
| | - Holger Heyn
- Cancer Epigenetics and Biology Program (PEBC), IDIBELL, Gran via 199, L'Hospitalet del Llobregat, Barcelona, 08908, Catalonia, Spain
| | - Miguel Vizoso
- Cancer Epigenetics and Biology Program (PEBC), IDIBELL, Gran via 199, L'Hospitalet del Llobregat, Barcelona, 08908, Catalonia, Spain
| | - Hector Pérez
- Cancer Epigenetics and Biology Program (PEBC), IDIBELL, Gran via 199, L'Hospitalet del Llobregat, Barcelona, 08908, Catalonia, Spain
| | - Alex Cordero
- Cancer Epigenetics and Biology Program (PEBC), IDIBELL, Gran via 199, L'Hospitalet del Llobregat, Barcelona, 08908, Catalonia, Spain
| | - Eva Gonzalez-Suarez
- Cancer Epigenetics and Biology Program (PEBC), IDIBELL, Gran via 199, L'Hospitalet del Llobregat, Barcelona, 08908, Catalonia, Spain
| | - Manel Esteller
- Cancer Epigenetics and Biology Program (PEBC), IDIBELL, Gran via 199, L'Hospitalet del Llobregat, Barcelona, 08908, Catalonia, Spain.,Department of Physiological Sciences II, School of Medicine, University of Barcelona, Feixa Llarga s/n, L'Hospitalet del Llobregat, Barcelona, 08908, Catalonia, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluís Companys 23, Barcelona, 08010, Catalonia, Spain
| | - Gema Moreno-Bueno
- Department of Biochemistry, Autonomous University of Madrid (UAM), Biomedical Research Institute "Alberto Sols" (Spanish National Research Council (CSIC)-UAM), Hospital La Paz Institute for Health Research (IdiPAZ), Arzobispo Morcillo 4, Madrid, 28029, Spain.,MD Anderson International Foundation, Arturo Soria 270, Madrid, 28033, Spain
| | - Andreas Tjärnberg
- The Centre for Individualized Medicine, Department of Clinical and Experimental Medicine, Linköping University, Linköping, 58183, Sweden
| | - Conxi Lázaro
- Hereditary Cancer Program, ICO, IDIBELL, Gran via 199, L'Hospitalet del Llobregat, Barcelona, 08908, Catalonia, Spain
| | - Violeta Serra
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology (VHIO), Cellex Center, Natzaret 115-117, Barcelona, 08035, Catalonia, Spain
| | - Joaquín Arribas
- Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluís Companys 23, Barcelona, 08010, Catalonia, Spain.,Preclinical Research Program, VHIO, Cellex Center, Natzaret 115-117, Barcelona, 08035, Catalonia, Spain.,Department of Biochemistry and Molecular Biology, Medical School Building M, Autonomous University of Barcelona, Bellaterra, 08193, Catalonia, Spain
| | - Mikael Benson
- The Centre for Individualized Medicine, Department of Clinical and Experimental Medicine, Linköping University, Linköping, 58183, Sweden
| | - Mika Gustafsson
- The Centre for Individualized Medicine, Department of Clinical and Experimental Medicine, Linköping University, Linköping, 58183, Sweden
| | - Marc Ferrer
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, 9800 Medical Center Dr. Rockville, Bethesda, MD, 20850, USA.
| | - Patrick Aloy
- Joint IRB-BSC-CRG Program in Computational Biology, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, Barcelona, 08028, Catalonia, Spain. .,Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluís Companys 23, Barcelona, 08010, Catalonia, Spain.
| | - Miquel Àngel Pujana
- Breast Cancer and Systems Biology Lab, Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), Gran via 199, L'Hospitalet del Llobregat, Barcelona, 08908, Catalonia, Spain.
| |
Collapse
|
244
|
Acquisition of a single EZH2 D1 domain mutation confers acquired resistance to EZH2-targeted inhibitors. Oncotarget 2016; 6:32646-55. [PMID: 26360609 PMCID: PMC4741719 DOI: 10.18632/oncotarget.5066] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 08/20/2015] [Indexed: 12/20/2022] Open
Abstract
Although targeted therapies have revolutionized cancer treatment, overcoming acquired resistance remains a major clinical challenge. EZH2 inhibitors (EZH2i), EPZ-6438 and GSK126, are currently in the early stages of clinical evaluation and the first encouraging signs of efficacy have recently emerged in the clinic. To anticipate mechanisms of resistance to EZH2i, we used a forward genetic platform combining a mutagenesis screen with next generation sequencing technology and identified a hotspot of secondary mutations in the EZH2 D1 domain (Y111 and I109). Y111D mutation within the WT or A677G EZH2 allele conferred robust resistance to both EPZ-6438 and GSK126, but it only drove a partial resistance within the Y641F allele. EZH2 mutants required histone methyltransferase (HMT) catalytic activity and the polycomb repressive complex 2 (PRC2) components, SUZ12 and EED, to drive drug resistance. Furthermore, D1 domain mutations not only blocked the ability of EZH2i to bind to WT and A677G mutant, but also abrogated drug binding to the Y641F mutant. These data provide the first cellular validation of the mechanistic model underpinning the oncogenic function of WT and mutant EZH2. Importantly, our findings suggest that acquired-resistance to EZH2i may arise in WT and mutant EZH2 patients through a single mutation that remains targetable by second generation EZH2i.
Collapse
|
245
|
Steiner I, Stojanovic N, Bolje A, Brozovic A, Polancec D, Ambriovic-Ristov A, Stojkovic MR, Piantanida I, Eljuga D, Kosmrlj J, Osmak M. Discovery of 'click' 1,2,3-triazolium salts as potential anticancer drugs. Radiol Oncol 2016; 50:280-8. [PMID: 27679544 PMCID: PMC5024658 DOI: 10.1515/raon-2016-0027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 03/17/2016] [Indexed: 12/16/2022] Open
Abstract
Background In order to increase the effectiveness of cancer treatment, new compounds with potential anticancer activities are synthesized and screened. Here we present the screening of a new class of compounds, 1-(2-picolyl)-, 4-(2-picolyl)-, 1-(2-pyridyl)-, and 4-(2-pyridyl)-3-methyl-1,2,3-triazolium salts and ‘parent’ 1,2,3-triazole precursors. Methods Cytotoxic activity of new compounds was determined by spectrophotometric MTT assay on several tumour and one normal cell line. Effect of the selected compound to bind double stranded DNA (ds DNA) was examined by testing its influence on thermal stability of calf thymus DNA while its influence on cell cycle was determined by flow cytometric analysis. Generation of reactive oxygen species (ROS) was determined by addition of specific substrate 5-(and-6)-chloromethyl-2’,7’-dichlorodihydrofluorescein diacetate, acetyl ester (CM-H2DCFDA). Results Parent triazoles were largely inactive, while some of the triazolium salts were highly cytotoxic for HeLa cells. Triazolium salts exhibited high cell-type dependent cytotoxicity against different tumour cells. Selected compound (4-(4-methoxyphenyl)-3-methyl-1-(2-picolyl)-1H-1,2,3-triazolium hexafluorophosphate(V) (2b) was significantly more cytotoxic against tumour cells than to normal cells, with very high therapeutic index 7.69 for large cell lung carcinoma H460 cells. Additionally, this compound was similarly cytotoxic against parent laryngeal carcinoma HEp-2 cells and their drug resistant 7T subline, suggesting the potential of this compound in treatment of drug resistant cancers. Compound 2b arrested cells in the G1 phase of the cell cycle. It did not bind ds DNA, but induced ROS in treated cells, which further triggered cell death. Conclusions Our results suggest that the ‘click’ triazolium salts are worthy of further investigation as anti-cancer agents.
Collapse
Affiliation(s)
- Ivana Steiner
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | | | - Aljosa Bolje
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Slovenia
| | - Anamaria Brozovic
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Denis Polancec
- Department for Translational Medicine, Children's Hospital Srebrnjak, Zagreb, Croatia
| | | | | | - Ivo Piantanida
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Zagreb, Croatia
| | - Domagoj Eljuga
- Department for Oncoplastic and Reconstructive Surgery, University Hospital for Tumors, University Clinical Hospital Centre Sisters of Mercy, Zagreb, Croatia
| | - Janez Kosmrlj
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Slovenia
| | - Maja Osmak
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| |
Collapse
|
246
|
Kim SM, Kim H, Yun MR, Kang HN, Pyo KH, Park HJ, Lee JM, Choi HM, Ellinghaus P, Ocker M, Paik S, Kim HR, Cho BC. Activation of the Met kinase confers acquired drug resistance in FGFR-targeted lung cancer therapy. Oncogenesis 2016; 5:e241. [PMID: 27429073 PMCID: PMC5399172 DOI: 10.1038/oncsis.2016.48] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 05/30/2016] [Accepted: 06/06/2016] [Indexed: 12/11/2022] Open
Abstract
Aberrant fibroblast growth factor receptor (FGFR) activation/expression is a common feature in lung cancer (LC). In this study, we evaluated the antitumor activity of and the mechanisms underlying acquired resistance to two potent selective FGFR inhibitors, AZD4547 and BAY116387, in LC cell lines. The antitumor activity of AZD4547 and BAY1163877 was screened in 24 LC cell lines, including 5 with FGFR1 amplification. Two cell lines containing FGFR1 amplifications, H1581 and DMS114, were sensitive to FGFR inhibitors (IC50<250 nm). Clones of FGFR1-amplified H1581 cells resistant to AZD4547 or BAY116387 (H1581AR and H1581BR cells, respectively) were established. Receptor tyrosine kinase (RTK) array and immunoblotting analyses showed strong overexpression and activation of Met in H1581AR/BR cells, compared with that in the parental cells. Gene set enrichment analysis against the Kyoto Encyclopedia of Genes and Genomes (KEGG) database showed that cytokine-cytokine receptor interaction pathways were significantly enriched in H1581AR/BR cells, with Met contributing significantly to the core enrichment. Genomic DNA quantitative PCR and fluorescent in situ hybridization analyses showed MET amplification in H1581AR, but not in H1581BR, cells. Met amplification drives acquired resistance to AZD4547 in H1581AR cells by activating ErbB3. Combination treatment with FGFR inhibitors and an anaplastic lymphoma kinase (ALK)/Met inhibitor, crizotinib, or Met-specific short interfering RNA (siRNA) synergistically inhibited cell proliferation in both H1581AR and H1581BR cells. Conversely, ectopic expression of Met in H1581 cells conferred resistance to AZD4547 and BAY1163877. Acquired resistance to FGFR inhibitors not only altered cellular morphology, but also promoted migration and invasion of resistant clones, in part by inducing epithelial-to-mesenchymal transition. Taken together, our data suggest that Met activation is sufficient to bypass dependency on FGFR signaling. Concurrent inhibition of the Met and FGFR pathways may have synergistic clinical benefits when targeting FGFR-dependent LC.
Collapse
Affiliation(s)
- S-M Kim
- JE-UK Institute for Cancer Research, JEUK Co., Ltd., Gumi, Kyungbuk, Korea
| | - H Kim
- JE-UK Institute for Cancer Research, JEUK Co., Ltd., Gumi, Kyungbuk, Korea
| | - M R Yun
- JE-UK Institute for Cancer Research, JEUK Co., Ltd., Gumi, Kyungbuk, Korea
| | - H N Kang
- JE-UK Institute for Cancer Research, JEUK Co., Ltd., Gumi, Kyungbuk, Korea
| | - K-H Pyo
- JE-UK Institute for Cancer Research, JEUK Co., Ltd., Gumi, Kyungbuk, Korea
| | - H J Park
- JE-UK Institute for Cancer Research, JEUK Co., Ltd., Gumi, Kyungbuk, Korea
| | - J M Lee
- JE-UK Institute for Cancer Research, JEUK Co., Ltd., Gumi, Kyungbuk, Korea
| | - H M Choi
- JE-UK Institute for Cancer Research, JEUK Co., Ltd., Gumi, Kyungbuk, Korea
| | - P Ellinghaus
- Bayer Pharma AG, Global Drug Discovery, Wuppertal, Germany
| | - M Ocker
- Bayer Pharma AG, Global Drug Discovery, Wuppertal, Germany
| | - S Paik
- Division of Pathology NSABP, Pittsburgh, PA, USA
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - H R Kim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - B C Cho
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
247
|
COPS5 amplification and overexpression confers tamoxifen-resistance in ERα-positive breast cancer by degradation of NCoR. Nat Commun 2016; 7:12044. [PMID: 27375289 PMCID: PMC4932188 DOI: 10.1038/ncomms12044] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 05/24/2016] [Indexed: 12/22/2022] Open
Abstract
Oestrogen receptor α (ERα) antagonists are used in endocrine therapies for ERα-positive (ERα+) breast cancer patients. Unfortunately the clinical benefit is limited due to intrinsic and acquired drug resistance. Here using integrated genomic and functional studies, we report that amplification and/or overexpression of COPS5 (CSN5/JAB1) confers resistance to tamoxifen. Amplification and overexpression of COPS5, a catalytic subunit of the COP9 complex, is present in about 9% of the ERα+ primary breast cancer and more frequently (86.7%, 26/30) in tamoxifen-refractory tumours. Overexpression of COPS5, through its isopeptidase activity, leads to ubiquitination and proteasome-mediated degradation of NCoR, a key corepressor for ERα and tamoxifen-mediated suppression of ERα target genes. Importantly, COPS5 overexpression causes tamoxifen-resistance in preclinical breast cancer models in vitro and in vivo. We also demonstrate that genetic inhibition of the isopeptidase activity of COPS5 is sufficient to re-sensitize the resistant breast cancer cells to tamoxifen-treatment, offering a potential therapeutic approach for endocrine-resistant breast cancer patients. The corepressor NCoR is required for tamoxifen-mediated ERα-dependent transcriptional repression. Here, the authors show that COPS5 confers tamoxifen-resistance through the degradation of NCOR, the recruitment of the co-activator PCAF to ERα binding sites and the subsequent ERα transcriptional activity.
Collapse
|
248
|
Stern AM, Schurdak ME, Bahar I, Berg JM, Taylor DL. A Perspective on Implementing a Quantitative Systems Pharmacology Platform for Drug Discovery and the Advancement of Personalized Medicine. JOURNAL OF BIOMOLECULAR SCREENING 2016; 21:521-34. [PMID: 26962875 PMCID: PMC4917453 DOI: 10.1177/1087057116635818] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Drug candidates exhibiting well-defined pharmacokinetic and pharmacodynamic profiles that are otherwise safe often fail to demonstrate proof-of-concept in phase II and III trials. Innovation in drug discovery and development has been identified as a critical need for improving the efficiency of drug discovery, especially through collaborations between academia, government agencies, and industry. To address the innovation challenge, we describe a comprehensive, unbiased, integrated, and iterative quantitative systems pharmacology (QSP)-driven drug discovery and development strategy and platform that we have implemented at the University of Pittsburgh Drug Discovery Institute. Intrinsic to QSP is its integrated use of multiscale experimental and computational methods to identify mechanisms of disease progression and to test predicted therapeutic strategies likely to achieve clinical validation for appropriate subpopulations of patients. The QSP platform can address biological heterogeneity and anticipate the evolution of resistance mechanisms, which are major challenges for drug development. The implementation of this platform is dedicated to gaining an understanding of mechanism(s) of disease progression to enable the identification of novel therapeutic strategies as well as repurposing drugs. The QSP platform will help promote the paradigm shift from reactive population-based medicine to proactive personalized medicine by focusing on the patient as the starting and the end point.
Collapse
Affiliation(s)
- Andrew M. Stern
- Department of Computational and Systems Biology, Pittsburgh, PA, USA
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA, USA
| | - Mark E. Schurdak
- Department of Computational and Systems Biology, Pittsburgh, PA, USA
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA, USA
- The University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Ivet Bahar
- Department of Computational and Systems Biology, Pittsburgh, PA, USA
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA, USA
- The University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Jeremy M. Berg
- Department of Computational and Systems Biology, Pittsburgh, PA, USA
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA, USA
- University of Pittsburgh Institute for Personalized Medicine, Pittsburgh, PA, USA
| | - D. Lansing Taylor
- Department of Computational and Systems Biology, Pittsburgh, PA, USA
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA, USA
- The University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| |
Collapse
|
249
|
Adem BF, Bastos NRA, Dias F, Teixeira AL, Medeiros R. miRNAs: mediators of ErbB family targeted therapy resistance. Pharmacogenomics 2016; 17:1175-1187. [PMID: 27359187 DOI: 10.2217/pgs-2016-0038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The ErbB/HER tyrosine kinase receptors family plays a key regulatory role in different cellular processes by activating several signaling pathways. In different tumor types, mutations or overexpression of the ErbB family members are a common feature, which led to the development of targeted therapies against this receptors. Although with this kind of treatment we are heading to a more personalized medicine, the development of acquired resistance is still an issue, therefore, several studies focused on discovering the mechanisms behind it. More recently, miRNAs have been described as important mediators of acquired resistance, specifically, acquired resistance to ErbB family targeted therapies. Ultimately, miRNA-based therapeutics using exosomes as a drug delivery model can revolutionize today's approach of cancer treatment.
Collapse
Affiliation(s)
- Bárbara Filipa Adem
- Molecular Oncology & Viral Pathology Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Rua Dr António Bernardino de Almeida, 4200-072 Porto, Portugal.,FMUP, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Nuno Ricardo Alves Bastos
- Molecular Oncology & Viral Pathology Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Rua Dr António Bernardino de Almeida, 4200-072 Porto, Portugal.,FMUP, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Francisca Dias
- Molecular Oncology & Viral Pathology Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Rua Dr António Bernardino de Almeida, 4200-072 Porto, Portugal.,ICBAS, Abel Salazar Biomedical Sciences Institute, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.,LPCC, Research Department Portuguese League Against Cancer (NRNorte), Estrada Interior da Circunvalação 6657, 4200 Porto, Portugal
| | - Ana Luísa Teixeira
- Molecular Oncology & Viral Pathology Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Rua Dr António Bernardino de Almeida, 4200-072 Porto, Portugal.,LPCC, Research Department Portuguese League Against Cancer (NRNorte), Estrada Interior da Circunvalação 6657, 4200 Porto, Portugal
| | - Rui Medeiros
- Molecular Oncology & Viral Pathology Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Rua Dr António Bernardino de Almeida, 4200-072 Porto, Portugal.,ICBAS, Abel Salazar Biomedical Sciences Institute, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.,LPCC, Research Department Portuguese League Against Cancer (NRNorte), Estrada Interior da Circunvalação 6657, 4200 Porto, Portugal.,CEBIMED, Health Sciences of Fernando Pessoa University, Rua Carlos da Maia 296, 4200-150 Porto, Portugal
| |
Collapse
|
250
|
Wei SJ, Chee S, Yurlova L, Lane D, Verma C, Brown C, Ghadessy F. Avoiding drug resistance through extended drug target interfaces: a case for stapled peptides. Oncotarget 2016; 7:32232-46. [PMID: 27057630 PMCID: PMC5078010 DOI: 10.18632/oncotarget.8572] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 03/18/2016] [Indexed: 11/25/2022] Open
Abstract
Cancer drugs often fail due to the emergence of clinical resistance. This can manifest through mutations in target proteins that selectively exclude drug binding whilst retaining aberrant function. A priori knowledge of resistance-inducing mutations is therefore important for both drug design and clinical surveillance. Stapled peptides represent a novel class of antagonists capable of inhibiting therapeutically relevant protein-protein interactions. Here, we address the important question of potential resistance to stapled peptide inhibitors. HDM2 is the critical negative regulator of p53, and is often overexpressed in cancers that retain wild-type p53 function. Interrogation of a large collection of randomly mutated HDM2 proteins failed to identify point mutations that could selectively abrogate binding by a stapled peptide inhibitor (PM2). In contrast, the same interrogation methodology has previously uncovered point mutations that selectively inhibit binding by Nutlin, the prototypical small molecule inhibitor of HDM2. Our results demonstrate both the high level of structural p53 mimicry employed by PM2 to engage HDM2, and the potential resilience of stapled peptide antagonists to mutations in target proteins. This inherent feature could reduce clinical resistance should this class of drugs enter the clinic.
Collapse
Affiliation(s)
- Siau Jia Wei
- P53 Laboratory (A*STAR), #06-04/05 Neuros, 138648, Singapore
| | - Sharon Chee
- P53 Laboratory (A*STAR), #06-04/05 Neuros, 138648, Singapore
| | | | - David Lane
- P53 Laboratory (A*STAR), #06-04/05 Neuros, 138648, Singapore
| | - Chandra Verma
- Bioinformatics Institute (A*STAR), 07-01 Matrix, 138671, Singapore
- School of Biological Sciences, Nanyang Technological University, 637551, Singapore
- Department of Biological Sciences, National University of Singapore, 117543, Singapore
| | | | - Farid Ghadessy
- P53 Laboratory (A*STAR), #06-04/05 Neuros, 138648, Singapore
| |
Collapse
|