201
|
Kuo AH, Li C, Li J, Huber HF, Nathanielsz PW, Clarke GD. Cardiac remodelling in a baboon model of intrauterine growth restriction mimics accelerated ageing. J Physiol 2017; 595:1093-1110. [PMID: 27988927 PMCID: PMC5309359 DOI: 10.1113/jp272908] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 10/15/2016] [Indexed: 12/15/2022] Open
Abstract
KEY POINTS Rodent models of intrauterine growth restriction (IUGR) successfully identify mechanisms that can lead to short-term and long-term detrimental cardiomyopathies but differences between rodent and human cardiac physiology and placental-fetal development indicate a need for models in precocial species for translation to human development. We developed a baboon model for IUGR studies using a moderate 30% global calorie restriction of pregnant mothers and used cardiac magnetic resonance imaging to evaluate offspring heart function in early adulthood. Impaired diastolic and systolic cardiac function was observed in IUGR offspring with differences between male and female subjects, compared to their respective controls. Aspects of cardiac impairment found in the IUGR offspring were similar to those found in normal controls in a geriatric cohort. Understanding early cardiac biomarkers of IUGR using non-invasive imaging in this susceptible population, especially taking into account sexual dimorphisms, will aid recognition of the clinical presentation, development of biomarkers suitable for use in humans and management of treatment strategies. ABSTRACT Extensive rodent studies have shown that reduced perinatal nutrition programmes chronic cardiovascular disease. To enable translation to humans, we developed baboon offspring cohorts from mothers fed ad libitum (control) or 70% of the control ad libitum diet in pregnancy and lactation, which were growth restricted at birth. We hypothesized that intrauterine growth restriction (IUGR) offspring hearts would show impaired function and a premature ageing phenotype. We studied IUGR baboons (8 male, 8 female, 5.7 years), control offspring (8 male, 8 female, 5.6 years - human equivalent approximately 25 years), and normal elderly (OLD) baboons (6 male, 6 female, mean 15.9 years). Left ventricular (LV) morphology and systolic and diastolic function were evaluated with cardiac MRI and normalized to body surface area. Two-way ANOVA by group and sex (with P < 0.05) indicated ejection fraction, 3D sphericity indices, cardiac index, normalized systolic volume, normalized LV wall thickness, and average filling rate differed by group. Group and sex differences were found for normalized LV wall thickening and normalized myocardial mass, without interactions. Normalized peak LV filling rate and diastolic sphericity index were not correlated in control but strongly correlated in OLD and IUGR baboons. IUGR programming in baboons produces myocardial remodelling, reduces systolic and diastolic function, and results in the emergence of a premature ageing phenotype in the heart. To our knowledge, this is the first demonstration of the specific characteristics of cardiac programming and early life functional decline with ageing in an IUGR non-human primate model. Further studies across the life span will determine progression of cardiac dysfunction.
Collapse
Affiliation(s)
- Anderson H. Kuo
- Department of RadiologyUniversity of Texas Health Science Center at San AntonioSan AntonioTXUSA
| | - Cun Li
- Department of Animal ScienceUniversity of WyomingLaramieWYUSA
| | - Jinqi Li
- Research Imaging InstituteUniversity of Texas Health Science Center at San AntonioSan AntonioTXUSA
| | | | - Peter W. Nathanielsz
- Department of Animal ScienceUniversity of WyomingLaramieWYUSA
- Southwest National Primate CenterSan AntonioTXUSA
| | - Geoffrey D. Clarke
- Department of RadiologyUniversity of Texas Health Science Center at San AntonioSan AntonioTXUSA
- Research Imaging InstituteUniversity of Texas Health Science Center at San AntonioSan AntonioTXUSA
- Southwest National Primate CenterSan AntonioTXUSA
| |
Collapse
|
202
|
Vega RB, Kelly DP. Cardiac nuclear receptors: architects of mitochondrial structure and function. J Clin Invest 2017; 127:1155-1164. [PMID: 28192373 DOI: 10.1172/jci88888] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The adult heart is uniquely designed and equipped to provide a continuous supply of energy in the form of ATP to support persistent contractile function. This high-capacity energy transduction system is the result of a remarkable surge in mitochondrial biogenesis and maturation during the fetal-to-adult transition in cardiac development. Substantial evidence indicates that nuclear receptor signaling is integral to dynamic changes in the cardiac mitochondrial phenotype in response to developmental cues, in response to diverse postnatal physiologic conditions, and in disease states such as heart failure. A subset of cardiac-enriched nuclear receptors serve to match mitochondrial fuel preferences and capacity for ATP production with changing energy demands of the heart. In this Review, we describe the role of specific nuclear receptors and their coregulators in the dynamic control of mitochondrial biogenesis and energy metabolism in the normal and diseased heart.
Collapse
|
203
|
Chong CR, Clarke K, Levelt E. Metabolic Remodeling in Diabetic Cardiomyopathy. Cardiovasc Res 2017; 113:422-430. [PMID: 28177068 PMCID: PMC5412022 DOI: 10.1093/cvr/cvx018] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/02/2017] [Indexed: 02/07/2023] Open
Abstract
Diabetes is a risk factor for heart failure and cardiovascular mortality with specific changes to myocardial metabolism, energetics, structure, and function. The gradual impairment of insulin production and signalling in diabetes is associated with elevated plasma fatty acids and increased myocardial free fatty acid uptake and activation of the transcription factor PPARα. The increased free fatty acid uptake results in accumulation of toxic metabolites, such as ceramide and diacylglycerol, activation of protein kinase C, and elevation of uncoupling protein-3. Insulin signalling and glucose uptake/oxidation become further impaired, and mitochondrial function and ATP production become compromised. Increased oxidative stress also impairs mitochondrial function and disrupts metabolic pathways. The diabetic heart relies on free fatty acids (FFA) as the major substrate for oxidative phosphorylation and is unable to increase glucose oxidation during ischaemia or hypoxia, thereby increasing myocardial injury, especially in ageing female diabetic animals. Pharmacological activation of PPARγ in adipose tissue may lower plasma FFA and improve recovery from myocardial ischaemic injury in diabetes. Not only is the diabetic heart energetically-impaired, it also has early diastolic dysfunction and concentric remodelling. The contractile function of the diabetic myocardium negatively correlates with epicardial adipose tissue, which secretes proinflammatory cytokines, resulting in interstitial fibrosis. Novel pharmacological strategies targeting oxidative stress seem promising in preventing progression of diabetic cardiomyopathy, although clinical evidence is lacking. Metabolic agents that lower plasma FFA or glucose, including PPARγ agonism and SGLT2 inhibition, may therefore be promising options.
Collapse
Affiliation(s)
- Cher-Rin Chong
- 1 Department of Physiology, Anatomy and Genetics, University of Oxford
| | - Kieran Clarke
- 1 Department of Physiology, Anatomy and Genetics, University of Oxford
| | - Eylem Levelt
- 2 Department of Cardiovascular Sciences, University of Leicester, Glenfield Hospital
| |
Collapse
|
204
|
Bergerot C, Davidsen ES, Amaz C, Thibault H, Altman M, Bellaton A, Moulin P, Derumeaux G, Ernande L. Diastolic function deterioration in type 2 diabetes mellitus: predictive factors over a 3-year follow-up. Eur Heart J Cardiovasc Imaging 2017; 19:67-73. [DOI: 10.1093/ehjci/jew331] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 12/21/2016] [Indexed: 12/11/2022] Open
|
205
|
Abstract
PURPOSE OF REVIEW Experimental evidences are strong for a role of long-chain saturated fatty acids in the development of insulin resistance and type 2 diabetes. Ectopic accretion of triglycerides in lean organs is a characteristic of prediabetes and type 2 diabetes and has been linked to end-organ complications. The contribution of disordered dietary fatty acid (DFA) metabolism to lean organ overexposure and lipotoxicity is still unclear, however. DFA metabolism is very complex and very difficult to study in vivo in humans. RECENT FINDINGS We have recently developed a novel imaging method using PET with oral administration of 14-R,S-F-fluoro-6-thia-heptadecanoic acid (FTHA) to quantify organ-specific DFA partitioning. Our studies thus far confirmed impaired storage of DFA per volume of fat mass in abdominal adipose tissues of individuals with prediabetes. They also highlighted the increased channeling of DFA toward the heart, associated with subclinical reduction in cardiac systolic and diastolic function in individuals with prediabetes. SUMMARY In the present review, we summarize previous work on DFA metabolism in healthy and prediabetic states and discuss these in the light of our novel findings using PET imaging of DFA metabolism. We herein provide an integrated view of abnormal organ-specific DFA partitioning in prediabetes in humans.
Collapse
Affiliation(s)
- Christophe Noll
- Division of Endocrinology, Department of Medicine, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | | |
Collapse
|
206
|
Abstract
While mortality rates related to cardiovascular disease (CVD) have decreased over time among adults with HIV, excess risk of CVD in the HIV-infected population may persist despite highly active antiretroviral therapy (HAART) treatment and aggressive CVD risk factor control. Beyond atherosclerotic CVD, recent studies suggest that HIV infection may be associated with left ventricular systolic and diastolic function, interstitial myocardial fibrosis, and increased cardiac fat infiltration. Thus, with the increasing average age of the HIV-infected population, heart failure and arrhythmic disorders may soon rival coronary artery disease as the most prevalent forms of CVD. Finally, the question of whether HIV infection should be considered in clinical risk stratification has never been resolved, and this question has assumed new importance with recent changes to lipid treatment guidelines for prevention of CVD.
Collapse
|
207
|
Bariatric Surgery Ameliorates Diabetic Cardiac Dysfunction by Inhibiting ER Stress in a Diabetic Rat Model. Obes Surg 2016; 27:1324-1334. [DOI: 10.1007/s11695-016-2492-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
208
|
Korinek R, Bartusek K, Starcuk Z. Fast triple-spin-echo Dixon (FTSED) sequence for water and fat imaging. Magn Reson Imaging 2016; 37:164-170. [PMID: 27890779 DOI: 10.1016/j.mri.2016.11.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 11/18/2016] [Accepted: 11/20/2016] [Indexed: 01/01/2023]
Abstract
A number of 'Dixon' techniques based on fast spin echo (FSE) sequence have been proposed and successfully used in many branches of medicine. Some require only one scan, but most of them need multiple scans and long scan times. This article describes a new fast triple-spin-echo Dixon (FTSED) technique suitable for ultra-high field MRI, in which three specific time shifts are introduced in the echo train; thus, three images with defined water-fat phase-differences (0, π, 2π) are encoded in the phase of the acquired images without extreme restrictions upon the echo duration. The water and fat images are then calculated by iterative least-squares estimation method. The sequence was successfully implemented at a 9.4T ultra-high field MRI system and tested on a phantom and a rat.
Collapse
Affiliation(s)
- Radim Korinek
- Institute of Scientific Instruments of the CAS, v. v. i., Czech Republic.
| | - Karel Bartusek
- Institute of Scientific Instruments of the CAS, v. v. i., Czech Republic
| | - Zenon Starcuk
- Institute of Scientific Instruments of the CAS, v. v. i., Czech Republic
| |
Collapse
|
209
|
Petritsch B, Köstler H, Weng AM, Horn M, Gassenmaier T, Kunz AS, Weidemann F, Wanner C, Bley TA, Beer M. Myocardial lipid content in Fabry disease: a combined 1H-MR spectroscopy and MR imaging study at 3 Tesla. BMC Cardiovasc Disord 2016; 16:205. [PMID: 27793097 PMCID: PMC5084400 DOI: 10.1186/s12872-016-0382-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 10/22/2016] [Indexed: 04/11/2023] Open
Abstract
BACKGROUND Fabry disease is characterized by a progressive deposition of sphingolipids in different organ systems, whereby cardiac involvement leads to death. We hypothesize that lysosomal storage of sphingolipids in the heart as occurring in Fabry disease does not reflect in higher cardiac lipid concentrations detectable by 1H magnetic resonance spectroscopy (MRS) at 3 Tesla. METHODS Myocardial lipid content was quantified in vivo by 1H-MRS in 30 patients (12 male, 18 female; 18 patients treated with enzyme replacement therapy) with genetically proven Fabry disease and in 30 healthy controls. The study protocol combined 1H-MRS with cardiac cine imaging and LGE MRI in a single examination. RESULTS Myocardial lipid content was not significantly elevated in Fabry disease (p = 0.225). Left ventricular (LV) mass was significantly higher in patients suffering from Fabry disease compared to controls (p = 0.019). Comparison of patients without signs of myocardial fibrosis in MRI (LGE negative; n = 12) to patients with signs of fibrosis (LGE positive; n = 18) revealed similar myocardial lipid content in both groups (p > 0.05), while the latter showed a trend towards elevated LV mass (p = 0.076). CONCLUSIONS This study demonstrates the potential of lipid metabolic investigation embedded in a comprehensive examination of cardiac morphology and function in Fabry disease. There was no evidence that lysosomal storage of sphingolipids influences cardiac lipid content as measured by 1H-MRS. Finally, the authors share the opinion that a comprehensive cardiac examination including three subsections (LGE; 1H-MRS; T1 mapping), could hold the highest potential for the final assessment of early and late myocardial changes in Fabry disease.
Collapse
Affiliation(s)
- B Petritsch
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080, Würzburg, Germany.
| | - H Köstler
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080, Würzburg, Germany.,University of Würzburg, Comprehensive Heart Failure Center, 97080, Würzburg, Germany
| | - A M Weng
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080, Würzburg, Germany
| | - M Horn
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080, Würzburg, Germany
| | - T Gassenmaier
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080, Würzburg, Germany
| | - A S Kunz
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080, Würzburg, Germany
| | - F Weidemann
- University of Würzburg, Comprehensive Heart Failure Center, 97080, Würzburg, Germany.,Department of Internal Medicine II/Cardiology, Katharinen-Hospital Unna, Obere Husemannstr.2, 59423, Unna, Germany
| | - C Wanner
- Department of Internal Medicine I, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080, Würzburg, Germany
| | - T A Bley
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080, Würzburg, Germany
| | - M Beer
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Albert-Einstein-Allee 23, 89081, Ulm, Germany
| |
Collapse
|
210
|
Zlobine I, Gopal K, Ussher JR. Lipotoxicity in obesity and diabetes-related cardiac dysfunction. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1555-68. [DOI: 10.1016/j.bbalip.2016.02.011] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 02/15/2016] [Indexed: 12/11/2022]
|
211
|
Jørgensen PG, Jensen MT, Biering-Sørensen T, Mogelvang R, Galatius S, Fritz-Hansen T, Rossing P, Vilsbøll T, Jensen JS. Cholesterol remnants and triglycerides are associated with decreased myocardial function in patients with type 2 diabetes. Cardiovasc Diabetol 2016; 15:137. [PMID: 27659241 PMCID: PMC5034540 DOI: 10.1186/s12933-016-0454-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 09/16/2016] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Recently, genetic studies have suggested a causal relationship between cholesterol remnants and ischemic heart disease. We aimed to determine whether cholesterol remnants and its marker, triglyceride levels, are associated with cardiac function as determined by sensitive echocardiographic measures in a population of patients with type 2 diabetes. METHODS Comprehensive echocardiography including 2D-speckle tracking echocardiography was performed on a representative sample of 924 patients with type 2 diabetes-730 of whom were treated with statins. These were recruited from two large secondary care centers. RESULTS In multivariable analyses, triglycerides and cholesterol remnants were not associated with left ventricular ejection fraction, but with subtle measures of systolic function, including global longitudinal strain by speckle tracking and longitudinal displacement by tissue Doppler echocardiography: global longitudinal strain [0.33 % (0.14), p = 0.02 per doubling in cholesterol remnants and 0.28 % (0.13), p = 0.03 per doubling in triglyceride levels] and with longitudinal displacement [-0.25 mm (0.10), p = 0.01 per doubling in cholesterol remnants and -0.25 mm (0.09), p = 0.005 per doubling in triglyceride levels]. Subgroup analyses of patients receiving statin therapy and patients without known heart disease revealed similar results, but the association was not present in patients with known heart disease. CONCLUSION In patients with type 2 diabetes, subtle decrease in left ventricular function is present with increasing levels of cholesterol remnants and triglyceride levels indicating an effect of these on cardiac function that is not detectable by conventional echocardiography.
Collapse
Affiliation(s)
- Peter Godsk Jørgensen
- Department of Cardiology, Herlev and Gentofte Hospital, University of Copenhagen, Kildegårdsvej 28, 2900, Hellerup, Denmark. .,Faculty of Health Sciences, Institute of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen N, Denmark.
| | - Magnus Thorsten Jensen
- Department of Cardiology, Herlev and Gentofte Hospital, University of Copenhagen, Kildegårdsvej 28, 2900, Hellerup, Denmark
| | - Tor Biering-Sørensen
- Department of Cardiology, Herlev and Gentofte Hospital, University of Copenhagen, Kildegårdsvej 28, 2900, Hellerup, Denmark
| | - Rasmus Mogelvang
- Department of Cardiology, Herlev and Gentofte Hospital, University of Copenhagen, Kildegårdsvej 28, 2900, Hellerup, Denmark
| | - Søren Galatius
- Department of Cardiology, Herlev and Gentofte Hospital, University of Copenhagen, Kildegårdsvej 28, 2900, Hellerup, Denmark
| | - Thomas Fritz-Hansen
- Department of Cardiology, Herlev and Gentofte Hospital, University of Copenhagen, Kildegårdsvej 28, 2900, Hellerup, Denmark
| | - Peter Rossing
- Faculty of Health Sciences, Institute of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen N, Denmark.,Steno Diabetes Center, Niels Steensens Vej 2-2, 2820, Gentofte, Denmark.,Faculty of Health, Aarhus University, Nordre Ringgade 1, 8000, Aarhus C, Denmark
| | - Tina Vilsbøll
- Faculty of Health Sciences, Institute of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen N, Denmark.,Center for Diabetes Research, Herlev and Gentofte Hospital, University of Copenhagen, Kildegårdsvej 28, 2900, Hellerup, Denmark
| | - Jan Skov Jensen
- Department of Cardiology, Herlev and Gentofte Hospital, University of Copenhagen, Kildegårdsvej 28, 2900, Hellerup, Denmark.,Faculty of Health Sciences, Institute of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen N, Denmark
| |
Collapse
|
212
|
Dutour A, Abdesselam I, Ancel P, Kober F, Mrad G, Darmon P, Ronsin O, Pradel V, Lesavre N, Martin JC, Jacquier A, Lefur Y, Bernard M, Gaborit B. Exenatide decreases liver fat content and epicardial adipose tissue in patients with obesity and type 2 diabetes: a prospective randomized clinical trial using magnetic resonance imaging and spectroscopy. Diabetes Obes Metab 2016; 18:882-91. [PMID: 27106272 DOI: 10.1111/dom.12680] [Citation(s) in RCA: 180] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 04/11/2016] [Accepted: 04/20/2016] [Indexed: 12/24/2022]
Abstract
AIM To conduct a prospective randomized trial to investigate the effect of glucagon-like peptide-1 (GLP-1) analogues on ectopic fat stores. METHODS A total of 44 obese subjects with type 2 diabetes uncontrolled on oral antidiabetic drugs were randomly assigned to receive exenatide or reference treatment according to French guidelines. Epicardial adipose tissue (EAT), myocardial triglyceride content (MTGC), hepatic triglyceride content (HTGC) and pancreatic triglyceride content (PTGC) were assessed 45 min after a standardized meal with 3T magnetic resonance imaging and proton magnetic resonance spectroscopy before and after 26 weeks of treatment. RESULTS The study population had a mean glycated haemoglobin (HbA1c) level of 7.5 ± 0.2% and a mean body mass index of 36.1 ± 1.1 kg/m(2) . Ninety five percent had hepatic steatosis at baseline (HTGC ≥ 5.6%). Exenatide and reference treatment led to a similar improvement in HbA1c (-0.7 ± 0.3% vs. -0.7 ± 0.4%; p = 0.29), whereas significant weight loss was observed only in the exenatide group (-5.5 ± 1.2 kg vs. -0.2 ± 0.8 kg; p = 0.001 for the difference between groups). Exenatide induced a significant reduction in EAT (-8.8 ± 2.1%) and HTGC (-23.8 ± 9.5%), compared with the reference treatment (EAT: -1.2 ± 1.6%, p = 0.003; HTGC: +12.5 ± 9.6%, p = 0.007). No significant difference was observed in other ectopic fat stores, PTGC or MTGC. In the group treated with exenatide, reductions in liver fat and EAT were not associated with homeostatic model assessment of insulin resistance index, adiponectin, HbA1c or fructosamin change, but were significantly related to weight loss (r = 0.47, p = 0.03, and r = 0.50, p = 0.018, respectively). CONCLUSION Our data indicate that exenatide is an effective treatment to reduce liver fat content and epicardial fat in obese patients with type 2 diabetes, and these effects are mainly weight loss dependent.
Collapse
Affiliation(s)
- A Dutour
- Inserm U1062, Inra U1260, Faculté de Médecine, 13385, Marseille, France
- Aix Marseille Université, Marseille, France
- Department of Endocrinology, Metabolic Diseases and Nutrition, Pole Endo, Marseille, France
| | - I Abdesselam
- Inserm U1062, Inra U1260, Faculté de Médecine, 13385, Marseille, France
- Aix Marseille Université, Marseille, France
- Centre de Résonance Magnétique Biologique et Médicale, CNRS UMR 7339, Marseille, France
| | - P Ancel
- Inserm U1062, Inra U1260, Faculté de Médecine, 13385, Marseille, France
- Aix Marseille Université, Marseille, France
| | - F Kober
- Aix Marseille Université, Marseille, France
- Centre de Résonance Magnétique Biologique et Médicale, CNRS UMR 7339, Marseille, France
| | - G Mrad
- Inserm U1062, Inra U1260, Faculté de Médecine, 13385, Marseille, France
| | - P Darmon
- Inserm U1062, Inra U1260, Faculté de Médecine, 13385, Marseille, France
- Aix Marseille Université, Marseille, France
- Department of Endocrinology, Metabolic Diseases and Nutrition, Pole Endo, Marseille, France
| | - O Ronsin
- Department of Endocrinology, Metabolic Diseases and Nutrition, Pole Endo, Marseille, France
| | - V Pradel
- Aix Marseille Université, Marseille, France
- Statistics Department, Assistance Publique Hôpitaux Marseille, CHU Sainte Marguerite, Marseille, France
| | - N Lesavre
- Aix Marseille Université, Marseille, France
- Centre d'investigation Clinique, 1409, Assistance Publique Hôpitaux de Marseille, CHU Nord, Marseille, France
| | - J C Martin
- Inserm U1062, Inra U1260, Faculté de Médecine, 13385, Marseille, France
- Aix Marseille Université, Marseille, France
| | - A Jacquier
- Aix Marseille Université, Marseille, France
- Centre de Résonance Magnétique Biologique et Médicale, CNRS UMR 7339, Marseille, France
- Radiology Department, CHU La Timone, Marseille, France
| | - Y Lefur
- Aix Marseille Université, Marseille, France
- Centre de Résonance Magnétique Biologique et Médicale, CNRS UMR 7339, Marseille, France
| | - M Bernard
- Aix Marseille Université, Marseille, France
- Centre de Résonance Magnétique Biologique et Médicale, CNRS UMR 7339, Marseille, France
| | - B Gaborit
- Inserm U1062, Inra U1260, Faculté de Médecine, 13385, Marseille, France
- Aix Marseille Université, Marseille, France
- Department of Endocrinology, Metabolic Diseases and Nutrition, Pole Endo, Marseille, France
| |
Collapse
|
213
|
Left ventricular remodelling changes without concomitant loss of myocardial fat after long-term dietary intervention. Int J Cardiol 2016; 216:92-6. [DOI: 10.1016/j.ijcard.2016.04.050] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 04/06/2016] [Accepted: 04/10/2016] [Indexed: 12/22/2022]
|
214
|
Di Meo S, Reed TT, Venditti P, Victor VM. Role of ROS and RNS Sources in Physiological and Pathological Conditions. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:1245049. [PMID: 27478531 PMCID: PMC4960346 DOI: 10.1155/2016/1245049] [Citation(s) in RCA: 854] [Impact Index Per Article: 94.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 05/04/2016] [Accepted: 05/23/2016] [Indexed: 12/19/2022]
Abstract
There is significant evidence that, in living systems, free radicals and other reactive oxygen and nitrogen species play a double role, because they can cause oxidative damage and tissue dysfunction and serve as molecular signals activating stress responses that are beneficial to the organism. Mitochondria have been thought to both play a major role in tissue oxidative damage and dysfunction and provide protection against excessive tissue dysfunction through several mechanisms, including stimulation of opening of permeability transition pores. Until recently, the functional significance of ROS sources different from mitochondria has received lesser attention. However, the most recent data, besides confirming the mitochondrial role in tissue oxidative stress and protection, show interplay between mitochondria and other ROS cellular sources, so that activation of one can lead to activation of other sources. Thus, it is currently accepted that in various conditions all cellular sources of ROS provide significant contribution to processes that oxidatively damage tissues and assure their survival, through mechanisms such as autophagy and apoptosis.
Collapse
Affiliation(s)
- Sergio Di Meo
- Dipartimento di Biologia, Università di Napoli “Federico II”, 80126 Napoli, Italy
| | - Tanea T. Reed
- Department of Chemistry, Eastern Kentucky University, Richmond, KY 40475, USA
| | - Paola Venditti
- Dipartimento di Biologia, Università di Napoli “Federico II”, 80126 Napoli, Italy
| | - Victor Manuel Victor
- Service of Endocrinology, University Hospital Dr. Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), 46010 Valencia, Spain
| |
Collapse
|
215
|
Levelt E, Pavlides M, Banerjee R, Mahmod M, Kelly C, Sellwood J, Ariga R, Thomas S, Francis J, Rodgers C, Clarke W, Sabharwal N, Antoniades C, Schneider J, Robson M, Clarke K, Karamitsos T, Rider O, Neubauer S. Ectopic and Visceral Fat Deposition in Lean and Obese Patients With Type 2 Diabetes. J Am Coll Cardiol 2016; 68:53-63. [PMID: 27364051 PMCID: PMC4925621 DOI: 10.1016/j.jacc.2016.03.597] [Citation(s) in RCA: 150] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Revised: 03/27/2016] [Accepted: 03/29/2016] [Indexed: 01/14/2023]
Abstract
BACKGROUND Type 2 diabetes (T2D) and obesity are associated with nonalcoholic fatty liver disease, cardiomyopathy, and cardiovascular mortality. Both show stronger links between ectopic and visceral fat deposition, and an increased cardiometabolic risk compared with subcutaneous fat. OBJECTIVES This study investigated whether lean patients (Ln) with T2D exhibit increased ectopic and visceral fat deposition and whether these are linked to cardiac and hepatic changes. METHODS Twenty-seven obese patients (Ob) with T2D, 15 Ln-T2D, and 12 normal-weight control subjects were studied. Subjects underwent cardiac computed tomography, cardiac magnetic resonance imaging (MRI), proton and phosphorus MR spectroscopy, and multiparametric liver MR, including hepatic proton MRS, T1- and T2*-mapping yielding "iron-corrected T1" [cT1]. RESULTS Diabetes, with or without obesity, was associated with increased myocardial triglyceride content (p = 0.01), increased hepatic triglyceride content (p = 0.04), and impaired myocardial energetics (p = 0.04). Although cardiac structural changes, steatosis, and energetics were similar between the T2D groups, epicardial fat (p = 0.04), hepatic triglyceride (p = 0.01), and insulin resistance (p = 0.03) were higher in Ob-T2D. Epicardial fat, hepatic triglyceride, and insulin resistance correlated negatively with systolic strain and diastolic strain rates, which were only significantly impaired in Ob-T2D (p < 0.001 and p = 0.006, respectively). Fibroinflammatory liver disease (elevated cT1) was only evident in Ob-T2D patients. cT1 correlated with hepatic and epicardial fat (p < 0.001 and p = 0.01, respectively). CONCLUSIONS Irrespective of body mass index, diabetes is related to significant abnormalities in cardiac structure, energetics, and cardiac and hepatic steatosis. Obese patients with T2D show a greater propensity for ectopic and visceral fat deposition.
Collapse
Affiliation(s)
- Eylem Levelt
- University of Oxford Centre for Clinical Magnetic Resonance Research, Radcliffe Department of Medicine, Division of Cardiovascular Medicine, Oxford, United Kingdom; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Michael Pavlides
- University of Oxford Centre for Clinical Magnetic Resonance Research, Radcliffe Department of Medicine, Division of Cardiovascular Medicine, Oxford, United Kingdom; Translational Gastroenterology Unit, University of Oxford, Oxford, United Kingdom
| | | | - Masliza Mahmod
- University of Oxford Centre for Clinical Magnetic Resonance Research, Radcliffe Department of Medicine, Division of Cardiovascular Medicine, Oxford, United Kingdom
| | | | - Joanna Sellwood
- University of Oxford Centre for Clinical Magnetic Resonance Research, Radcliffe Department of Medicine, Division of Cardiovascular Medicine, Oxford, United Kingdom
| | - Rina Ariga
- University of Oxford Centre for Clinical Magnetic Resonance Research, Radcliffe Department of Medicine, Division of Cardiovascular Medicine, Oxford, United Kingdom
| | - Sheena Thomas
- Division of Cardiovascular Medicine, University of Oxford, Oxford, United Kingdom
| | - Jane Francis
- University of Oxford Centre for Clinical Magnetic Resonance Research, Radcliffe Department of Medicine, Division of Cardiovascular Medicine, Oxford, United Kingdom
| | - Christopher Rodgers
- University of Oxford Centre for Clinical Magnetic Resonance Research, Radcliffe Department of Medicine, Division of Cardiovascular Medicine, Oxford, United Kingdom
| | - William Clarke
- University of Oxford Centre for Clinical Magnetic Resonance Research, Radcliffe Department of Medicine, Division of Cardiovascular Medicine, Oxford, United Kingdom
| | - Nikant Sabharwal
- Cardiology Department, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | | | - Jurgen Schneider
- University of Oxford Centre for Clinical Magnetic Resonance Research, Radcliffe Department of Medicine, Division of Cardiovascular Medicine, Oxford, United Kingdom
| | - Matthew Robson
- University of Oxford Centre for Clinical Magnetic Resonance Research, Radcliffe Department of Medicine, Division of Cardiovascular Medicine, Oxford, United Kingdom
| | - Kieran Clarke
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Theodoros Karamitsos
- University of Oxford Centre for Clinical Magnetic Resonance Research, Radcliffe Department of Medicine, Division of Cardiovascular Medicine, Oxford, United Kingdom
| | - Oliver Rider
- University of Oxford Centre for Clinical Magnetic Resonance Research, Radcliffe Department of Medicine, Division of Cardiovascular Medicine, Oxford, United Kingdom
| | - Stefan Neubauer
- University of Oxford Centre for Clinical Magnetic Resonance Research, Radcliffe Department of Medicine, Division of Cardiovascular Medicine, Oxford, United Kingdom; Perspectum Diagnostics Ltd., Oxford, United Kingdom.
| |
Collapse
|
216
|
Petritsch B, Köstler H, Gassenmaier T, Kunz AS, Bley TA, Horn M. An investigation into potential gender-specific differences in myocardial triglyceride content assessed by 1H-Magnetic Resonance Spectroscopy at 3Tesla. J Int Med Res 2016; 44:585-91. [PMID: 27091860 PMCID: PMC5536690 DOI: 10.1177/0300060515603884] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 08/10/2015] [Indexed: 12/04/2022] Open
Abstract
Objective Over the past decade, myocardial triglyceride content has become an accepted biomarker for chronic metabolic and cardiac disease. The purpose of this study was to use proton (hydrogen 1)-magnetic resonance spectroscopy (1H-MRS) at 3Tesla (3 T) field strength to assess potential gender-related differences in myocardial triglyceride content in healthy individuals. Methods Cardiac MR imaging was performed to enable accurate voxel placement and obtain functional and morphological information. Double triggered (i.e., ECG and respiratory motion gating) 1H-MRS was used to quantify myocardial triglyceride levels for each gender. Two-sample t-test and Mann-Whitney U-test were used for statistical analyses. Results In total, 40 healthy volunteers (22 male, 18 female; aged >18 years and age matched) were included in the study. Median myocardial triglyceride content was 0.28% (interquartile range [IQR] 0.17–0.42%) in male and 0.24% (IQR 0.14–0.45%) in female participants, and no statistically significant difference was observed between the genders. Furthermore, no gender-specific difference in ejection fraction was observed, although on average, male participants presented with a higher mean ± SD left ventricular mass (136.3 ± 25.2 g) than female participants (103.9 ± 16.1 g). Conclusions The study showed that 1H-MRS is a capable, noninvasive tool for acquisition of myocardial triglyceride metabolites. Myocardial triglyceride concentration was shown to be unrelated to gender in this group of healthy volunteers.
Collapse
Affiliation(s)
- Bernhard Petritsch
- Department of Diagnostic and Interventional Radiology, University Hospital of Würzburg, Würzburg, Germany
| | - Herbert Köstler
- Department of Diagnostic and Interventional Radiology, University Hospital of Würzburg, Würzburg, Germany
| | - Tobias Gassenmaier
- Department of Diagnostic and Interventional Radiology, University Hospital of Würzburg, Würzburg, Germany
| | - Andreas S Kunz
- Department of Diagnostic and Interventional Radiology, University Hospital of Würzburg, Würzburg, Germany
| | - Thorsten A Bley
- Department of Diagnostic and Interventional Radiology, University Hospital of Würzburg, Würzburg, Germany
| | - Michael Horn
- Department of Diagnostic and Interventional Radiology, University Hospital of Würzburg, Würzburg, Germany
| |
Collapse
|
217
|
Sai E, Shimada K, Yokoyama T, Hiki M, Sato S, Hamasaki N, Maruyama M, Morimoto R, Miyazaki T, Fujimoto S, Tamura Y, Aoki S, Watada H, Kawamori R, Daida H. Myocardial triglyceride content in patients with left ventricular hypertrophy: comparison between hypertensive heart disease and hypertrophic cardiomyopathy. Heart Vessels 2016; 32:166-174. [PMID: 27142065 DOI: 10.1007/s00380-016-0844-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Accepted: 04/22/2016] [Indexed: 12/29/2022]
Abstract
Proton magnetic resonance spectroscopy (1H-MRS) enables the assessment of myocardial triglyceride (TG) content, which is reported to be associated with cardiac dysfunction and morphology accompanied by metabolic disorder and cardiac hemodynamic status. The clinical usefulness of myocardial TG content measurements in patients with left ventricular hypertrophy (LVH) has not been fully investigated. We examined whether myocardial TG content assessed by 1H-MRS was useful for diagnosis in patients with LVH. To quantify myocardial TG content, we conducted 1H-MRS in 35 subjects with LVH. Left ventricular function was measured by cardiac magnetic resonance imaging. Patients were assigned to a hypertensive heart disease (HHD, n = 10) or hypertrophic cardiomyopathy (HCM, n = 25) group based on the histology and/or late gadolinium enhancement pattern. The myocardial TG content was significantly higher in the HHD group than in the HCM group (2.14 ± 1.29 vs. 1.09 ± 0.72 %, P < 0.001). Myocardial TG content were significantly and negatively correlated with LV mass (r = -0.41, P < 0.04) and stroke volume (r = -0.64, P < 0.05) in the HCM group and HHD group, respectively. In a multivariate analysis, LV mass volume and diagnosis of HCM or HHD were independent factors of the myocardial TG content. The results suggest that myocardial metabolism may differ between HCM and HHD patients and that measurement of myocardial TG content by 1H-MRS may be useful for evaluating the myocardial metabolic features of LVH.
Collapse
Affiliation(s)
- Eiryu Sai
- Department of Cardiovascular Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo Bunkyo-ku, Tokyo, Japan
| | - Kazunori Shimada
- Department of Cardiovascular Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo Bunkyo-ku, Tokyo, Japan.
- Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| | - Takayuki Yokoyama
- Department of Cardiovascular Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo Bunkyo-ku, Tokyo, Japan
| | - Makoto Hiki
- Department of Cardiovascular Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo Bunkyo-ku, Tokyo, Japan
| | - Shuji Sato
- Department of Radiology, Juntendo University Hospital, Tokyo, Japan
| | - Nozomi Hamasaki
- Department of Radiology, Juntendo University Hospital, Tokyo, Japan
| | - Masaki Maruyama
- Department of Cardiovascular Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo Bunkyo-ku, Tokyo, Japan
| | - Ryoko Morimoto
- Department of Cardiovascular Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo Bunkyo-ku, Tokyo, Japan
| | - Tetsuro Miyazaki
- Department of Cardiovascular Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo Bunkyo-ku, Tokyo, Japan
| | - Shinichiro Fujimoto
- Department of Cardiovascular Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo Bunkyo-ku, Tokyo, Japan
| | - Yoshifumi Tamura
- Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shigeki Aoki
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hirotaka Watada
- Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ryuzo Kawamori
- Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hiroyuki Daida
- Department of Cardiovascular Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo Bunkyo-ku, Tokyo, Japan
- Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
218
|
Wolf P, Winhofer Y, Krssak M, Smajis S, Harreiter J, Kosi-Trebotic L, Fürnsinn C, Anderwald CH, Baumgartner-Parzer S, Trattnig S, Luger A, Krebs M. Suppression of plasma free fatty acids reduces myocardial lipid content and systolic function in type 2 diabetes. Nutr Metab Cardiovasc Dis 2016; 26:387-392. [PMID: 27118107 DOI: 10.1016/j.numecd.2016.03.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Revised: 02/25/2016] [Accepted: 03/10/2016] [Indexed: 11/25/2022]
Abstract
BACKGROUND AND AIM Type 2 diabetes (T2DM) is closely associated with the development of heart failure, which might be related with impaired substrate metabolism and accumulation of myocardial lipids (MYCL). The aim of this study was to investigate the impact of an acute pharmacological inhibition of adipose tissue lipolysis leading to reduced availability of circulating FFA on MYCL and heart function in T2DM. METHODS AND RESULTS 8 patients with T2DM (Age: 56 ± 11; BMI: 28 ± 3.5 kg/m(2); HbA1c: 7.29 ± 0.88%) were investigated on two study days in random order. Following administration of Acipimox or Placebo MYCL and heart function were measured by (1)H-magnetic-resonance-spectroscopy and tomography at baseline, at 2 and at 6 h. Acipimox reduced circulating FFA by -69% (p < 0.001), MYCL by -39 ± 41% (p < 0.001) as well as systolic heart function (Ejection Fraction (EF): -13 ± 8%, p = 0.025; Cardiac Index: -16 ± 15%, p = 0.063 compared to baseline). Changes in plasma FFA concentrations strongly correlated with changes in MYCL (r = 0.707; p = 0.002) and EF (r = 0.651; p = 0.006). Diastolic heart function remained unchanged. CONCLUSIONS Our results indicate, that inhibition of adipose tissue lipolysis is associated with a rapid depletion of MYCL-stores and reduced systolic heart function in T2DM. These changes were comparable to those previously found in insulin sensitive controls. MYCL thus likely serve as a readily available energy source to cope with short-time changes in FFA availability.
Collapse
Affiliation(s)
- P Wolf
- Medical University of Vienna, Department of Internal Medicine III, Division of Endocrinology and Metabolism, Vienna, Austria
| | - Y Winhofer
- Medical University of Vienna, Department of Internal Medicine III, Division of Endocrinology and Metabolism, Vienna, Austria.
| | - M Krssak
- Medical University of Vienna, Department of Internal Medicine III, Division of Endocrinology and Metabolism, Vienna, Austria; Medical University of Vienna, Department of Biomedical Imaging and Image-guided Therapy, Centre of Excellence - High Field MR, Vienna, Austria
| | - S Smajis
- Medical University of Vienna, Department of Internal Medicine III, Division of Endocrinology and Metabolism, Vienna, Austria
| | - J Harreiter
- Medical University of Vienna, Department of Internal Medicine III, Division of Endocrinology and Metabolism, Vienna, Austria
| | - L Kosi-Trebotic
- Medical University of Vienna, Department of Internal Medicine III, Division of Endocrinology and Metabolism, Vienna, Austria
| | - C Fürnsinn
- Medical University of Vienna, Department of Internal Medicine III, Division of Endocrinology and Metabolism, Vienna, Austria
| | - C-H Anderwald
- Medical University of Vienna, Department of Internal Medicine III, Division of Endocrinology and Metabolism, Vienna, Austria; Metabolic Unit, Institute of Biomedical Engineering, National Research Council, Padova, Italy; Medical Direction, Specialized Hospital Complex Agathenhof, A-9322 Micheldorf, Austria
| | - S Baumgartner-Parzer
- Medical University of Vienna, Department of Internal Medicine III, Division of Endocrinology and Metabolism, Vienna, Austria
| | - S Trattnig
- Medical University of Vienna, Department of Biomedical Imaging and Image-guided Therapy, Centre of Excellence - High Field MR, Vienna, Austria
| | - A Luger
- Medical University of Vienna, Department of Internal Medicine III, Division of Endocrinology and Metabolism, Vienna, Austria
| | - M Krebs
- Medical University of Vienna, Department of Internal Medicine III, Division of Endocrinology and Metabolism, Vienna, Austria
| |
Collapse
|
219
|
de Heer P, Bizino MB, Lamb HJ, Webb AG. Parameter optimization for reproducible cardiac 1 H-MR spectroscopy at 3 Tesla. J Magn Reson Imaging 2016; 44:1151-1158. [PMID: 27016265 DOI: 10.1002/jmri.25254] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 03/08/2016] [Indexed: 11/11/2022] Open
Abstract
PURPOSE To optimize data acquisition parameters in cardiac proton MR spectroscopy, and to evaluate the intra- and intersession variability in myocardial triglyceride content. MATERIALS AND METHODS Data acquisition parameters at 3 Tesla (T) were optimized and reproducibility measured using, in total, 49 healthy subjects. The signal-to-noise-ratio (SNR) and the variance in metabolite amplitude between averages were measured for: (i) global versus local power optimization; (ii) static magnetic field (B0 ) shimming performed during free-breathing or within breathholds; (iii) post R-wave peak measurement times between 50 and 900 ms; (iv) without respiratory compensation, with breathholds and with navigator triggering; and (v) frequency selective excitation, Chemical Shift Selective (CHESS) and Multiply Optimized Insensitive Suppression Train (MOIST) water suppression techniques. Using the optimized parameters intra- and intersession myocardial triglyceride content reproducibility was measured. Two cardiac proton spectra were acquired with the same parameters and compared (intrasession reproducibility) after which the subject was removed from the scanner and placed back in the scanner and a third spectrum was acquired which was compared with the first measurement (intersession reproducibility). RESULTS Local power optimization increased SNR on average by 22% compared with global power optimization (P = 0.0002). The average linewidth was not significantly different for pencil beam B0 shimming using free-breathing or breathholds (19.1 Hz versus 17.5 Hz; P = 0.15). The highest signal stability occurred at a cardiac trigger delay around 240 ms. The mean amplitude variation was significantly lower for breathholds versus free-breathing (P = 0.03) and for navigator triggering versus free-breathing (P = 0.03) as well as for navigator triggering versus breathhold (P = 0.02). The mean residual water signal using CHESS (1.1%, P = 0.01) or MOIST (0.7%, P = 0.01) water suppression was significantly lower than using frequency selective excitation water suppression (7.0%). Using the optimized parameters an intrasession limits of agreement of the myocardial triglyceride content of -0.11% to +0.04%, and an intersession of -0.15% to +0.9%, were achieved. The coefficient of variation was 5% for the intrasession reproducibility and 6.5% for the intersession reproducibility. CONCLUSION Using approaches designed to optimize SNR and minimize the variation in inter-average signal intensities and frequencies/phases, a protocol was developed to perform cardiac MR spectroscopy on a clinical 3T system with high reproducibility. J. Magn. Reson. Imaging 2016;44:1151-1158.
Collapse
Affiliation(s)
- Paul de Heer
- C.J. Gorter Center for High Field MR, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Maurice B Bizino
- Department of Radiology, Leiden University, Medical Center, Leiden, the Netherlands
| | - Hildo J Lamb
- Department of Radiology, Leiden University, Medical Center, Leiden, the Netherlands
| | - Andrew G Webb
- C.J. Gorter Center for High Field MR, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
220
|
Taegtmeyer H, Young ME, Lopaschuk GD, Abel ED, Brunengraber H, Darley-Usmar V, Des Rosiers C, Gerszten R, Glatz JF, Griffin JL, Gropler RJ, Holzhuetter HG, Kizer JR, Lewandowski ED, Malloy CR, Neubauer S, Peterson LR, Portman MA, Recchia FA, Van Eyk JE, Wang TJ. Assessing Cardiac Metabolism: A Scientific Statement From the American Heart Association. Circ Res 2016; 118:1659-701. [PMID: 27012580 DOI: 10.1161/res.0000000000000097] [Citation(s) in RCA: 206] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In a complex system of interrelated reactions, the heart converts chemical energy to mechanical energy. Energy transfer is achieved through coordinated activation of enzymes, ion channels, and contractile elements, as well as structural and membrane proteins. The heart's needs for energy are difficult to overestimate. At a time when the cardiovascular research community is discovering a plethora of new molecular methods to assess cardiac metabolism, the methods remain scattered in the literature. The present statement on "Assessing Cardiac Metabolism" seeks to provide a collective and curated resource on methods and models used to investigate established and emerging aspects of cardiac metabolism. Some of those methods are refinements of classic biochemical tools, whereas most others are recent additions from the powerful tools of molecular biology. The aim of this statement is to be useful to many and to do justice to a dynamic field of great complexity.
Collapse
|
221
|
Brittain EL, Talati M, Fessel JP, Zhu H, Penner N, Calcutt MW, West JD, Funke M, Lewis GD, Gerszten RE, Hamid R, Pugh ME, Austin ED, Newman JH, Hemnes AR. Fatty Acid Metabolic Defects and Right Ventricular Lipotoxicity in Human Pulmonary Arterial Hypertension. Circulation 2016; 133:1936-44. [PMID: 27006481 DOI: 10.1161/circulationaha.115.019351] [Citation(s) in RCA: 177] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 03/18/2016] [Indexed: 11/16/2022]
Abstract
BACKGROUND The mechanisms of right ventricular (RV) failure in pulmonary arterial hypertension (PAH) are poorly understood. Abnormalities in fatty acid (FA) metabolism have been described in experimental models of PAH, but systemic and myocardial FA metabolism has not been studied in human PAH. METHODS AND RESULTS We used human blood, RV tissue, and noninvasive imaging to characterize multiple steps in the FA metabolic pathway in PAH subjects and controls. Circulating free FAs and long-chain acylcarnitines were elevated in PAH patients versus controls. Human RV long-chain FAs were increased and long-chain acylcarnitines were markedly reduced in PAH versus controls. With the use of proton magnetic resonance spectroscopy, in vivo myocardial triglyceride content was elevated in human PAH versus controls (1.4±1.3% triglyceride versus 0.22±0.11% triglyceride, P=0.02). Ceramide, a mediator of lipotoxicity, was increased in PAH RVs versus controls. Using an animal model of heritable PAH, we demonstrated reduced FA oxidation via failure of palmitoylcarnitine to stimulate oxygen consumption in the PAH RV. CONCLUSIONS Abnormalities in FA metabolism can be detected in the blood and myocardium in human PAH and are associated with in vivo cardiac steatosis and lipotoxicity. Murine data suggest that lipotoxicity may arise from reduction in FA oxidation.
Collapse
Affiliation(s)
- Evan L Brittain
- From Division of Cardiovascular Medicine, Vanderbilt University School of Medicine, Nashville, TN (E.L.B.); Vanderbilt Translational and Clinical Cardiovascular Center, Vanderbilt University Medical Center, Nashville, TN (E.L.B.); Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, TN (M.T., J.P.F., N.P., J.D.W., M.F., M.E.P., J.H.N., A.R.H.); Vanderbilt University Institute of Imaging Science, Nashville, TN (H.Z.); Department of Biochemistry; Vanderbilt University, Nashville, TN (M.W.C.); Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston (D.G.L., R.E.G.); Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston (G.D.L., R.E.G.); Broad Institute of MIT and Harvard, Cambridge, MA (R.E.G.); Division of Medical Genetics and Genomic Medicine, Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN (R.H.); and Division of Allergy, Immunology and Pulmonary Medicine, Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN (E.D.A.).
| | - Megha Talati
- From Division of Cardiovascular Medicine, Vanderbilt University School of Medicine, Nashville, TN (E.L.B.); Vanderbilt Translational and Clinical Cardiovascular Center, Vanderbilt University Medical Center, Nashville, TN (E.L.B.); Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, TN (M.T., J.P.F., N.P., J.D.W., M.F., M.E.P., J.H.N., A.R.H.); Vanderbilt University Institute of Imaging Science, Nashville, TN (H.Z.); Department of Biochemistry; Vanderbilt University, Nashville, TN (M.W.C.); Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston (D.G.L., R.E.G.); Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston (G.D.L., R.E.G.); Broad Institute of MIT and Harvard, Cambridge, MA (R.E.G.); Division of Medical Genetics and Genomic Medicine, Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN (R.H.); and Division of Allergy, Immunology and Pulmonary Medicine, Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN (E.D.A.)
| | - Joshua P Fessel
- From Division of Cardiovascular Medicine, Vanderbilt University School of Medicine, Nashville, TN (E.L.B.); Vanderbilt Translational and Clinical Cardiovascular Center, Vanderbilt University Medical Center, Nashville, TN (E.L.B.); Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, TN (M.T., J.P.F., N.P., J.D.W., M.F., M.E.P., J.H.N., A.R.H.); Vanderbilt University Institute of Imaging Science, Nashville, TN (H.Z.); Department of Biochemistry; Vanderbilt University, Nashville, TN (M.W.C.); Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston (D.G.L., R.E.G.); Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston (G.D.L., R.E.G.); Broad Institute of MIT and Harvard, Cambridge, MA (R.E.G.); Division of Medical Genetics and Genomic Medicine, Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN (R.H.); and Division of Allergy, Immunology and Pulmonary Medicine, Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN (E.D.A.)
| | - He Zhu
- From Division of Cardiovascular Medicine, Vanderbilt University School of Medicine, Nashville, TN (E.L.B.); Vanderbilt Translational and Clinical Cardiovascular Center, Vanderbilt University Medical Center, Nashville, TN (E.L.B.); Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, TN (M.T., J.P.F., N.P., J.D.W., M.F., M.E.P., J.H.N., A.R.H.); Vanderbilt University Institute of Imaging Science, Nashville, TN (H.Z.); Department of Biochemistry; Vanderbilt University, Nashville, TN (M.W.C.); Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston (D.G.L., R.E.G.); Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston (G.D.L., R.E.G.); Broad Institute of MIT and Harvard, Cambridge, MA (R.E.G.); Division of Medical Genetics and Genomic Medicine, Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN (R.H.); and Division of Allergy, Immunology and Pulmonary Medicine, Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN (E.D.A.)
| | - Niki Penner
- From Division of Cardiovascular Medicine, Vanderbilt University School of Medicine, Nashville, TN (E.L.B.); Vanderbilt Translational and Clinical Cardiovascular Center, Vanderbilt University Medical Center, Nashville, TN (E.L.B.); Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, TN (M.T., J.P.F., N.P., J.D.W., M.F., M.E.P., J.H.N., A.R.H.); Vanderbilt University Institute of Imaging Science, Nashville, TN (H.Z.); Department of Biochemistry; Vanderbilt University, Nashville, TN (M.W.C.); Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston (D.G.L., R.E.G.); Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston (G.D.L., R.E.G.); Broad Institute of MIT and Harvard, Cambridge, MA (R.E.G.); Division of Medical Genetics and Genomic Medicine, Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN (R.H.); and Division of Allergy, Immunology and Pulmonary Medicine, Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN (E.D.A.)
| | - M Wade Calcutt
- From Division of Cardiovascular Medicine, Vanderbilt University School of Medicine, Nashville, TN (E.L.B.); Vanderbilt Translational and Clinical Cardiovascular Center, Vanderbilt University Medical Center, Nashville, TN (E.L.B.); Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, TN (M.T., J.P.F., N.P., J.D.W., M.F., M.E.P., J.H.N., A.R.H.); Vanderbilt University Institute of Imaging Science, Nashville, TN (H.Z.); Department of Biochemistry; Vanderbilt University, Nashville, TN (M.W.C.); Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston (D.G.L., R.E.G.); Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston (G.D.L., R.E.G.); Broad Institute of MIT and Harvard, Cambridge, MA (R.E.G.); Division of Medical Genetics and Genomic Medicine, Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN (R.H.); and Division of Allergy, Immunology and Pulmonary Medicine, Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN (E.D.A.)
| | - James D West
- From Division of Cardiovascular Medicine, Vanderbilt University School of Medicine, Nashville, TN (E.L.B.); Vanderbilt Translational and Clinical Cardiovascular Center, Vanderbilt University Medical Center, Nashville, TN (E.L.B.); Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, TN (M.T., J.P.F., N.P., J.D.W., M.F., M.E.P., J.H.N., A.R.H.); Vanderbilt University Institute of Imaging Science, Nashville, TN (H.Z.); Department of Biochemistry; Vanderbilt University, Nashville, TN (M.W.C.); Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston (D.G.L., R.E.G.); Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston (G.D.L., R.E.G.); Broad Institute of MIT and Harvard, Cambridge, MA (R.E.G.); Division of Medical Genetics and Genomic Medicine, Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN (R.H.); and Division of Allergy, Immunology and Pulmonary Medicine, Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN (E.D.A.)
| | - Mitch Funke
- From Division of Cardiovascular Medicine, Vanderbilt University School of Medicine, Nashville, TN (E.L.B.); Vanderbilt Translational and Clinical Cardiovascular Center, Vanderbilt University Medical Center, Nashville, TN (E.L.B.); Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, TN (M.T., J.P.F., N.P., J.D.W., M.F., M.E.P., J.H.N., A.R.H.); Vanderbilt University Institute of Imaging Science, Nashville, TN (H.Z.); Department of Biochemistry; Vanderbilt University, Nashville, TN (M.W.C.); Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston (D.G.L., R.E.G.); Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston (G.D.L., R.E.G.); Broad Institute of MIT and Harvard, Cambridge, MA (R.E.G.); Division of Medical Genetics and Genomic Medicine, Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN (R.H.); and Division of Allergy, Immunology and Pulmonary Medicine, Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN (E.D.A.)
| | - Gregory D Lewis
- From Division of Cardiovascular Medicine, Vanderbilt University School of Medicine, Nashville, TN (E.L.B.); Vanderbilt Translational and Clinical Cardiovascular Center, Vanderbilt University Medical Center, Nashville, TN (E.L.B.); Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, TN (M.T., J.P.F., N.P., J.D.W., M.F., M.E.P., J.H.N., A.R.H.); Vanderbilt University Institute of Imaging Science, Nashville, TN (H.Z.); Department of Biochemistry; Vanderbilt University, Nashville, TN (M.W.C.); Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston (D.G.L., R.E.G.); Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston (G.D.L., R.E.G.); Broad Institute of MIT and Harvard, Cambridge, MA (R.E.G.); Division of Medical Genetics and Genomic Medicine, Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN (R.H.); and Division of Allergy, Immunology and Pulmonary Medicine, Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN (E.D.A.)
| | - Robert E Gerszten
- From Division of Cardiovascular Medicine, Vanderbilt University School of Medicine, Nashville, TN (E.L.B.); Vanderbilt Translational and Clinical Cardiovascular Center, Vanderbilt University Medical Center, Nashville, TN (E.L.B.); Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, TN (M.T., J.P.F., N.P., J.D.W., M.F., M.E.P., J.H.N., A.R.H.); Vanderbilt University Institute of Imaging Science, Nashville, TN (H.Z.); Department of Biochemistry; Vanderbilt University, Nashville, TN (M.W.C.); Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston (D.G.L., R.E.G.); Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston (G.D.L., R.E.G.); Broad Institute of MIT and Harvard, Cambridge, MA (R.E.G.); Division of Medical Genetics and Genomic Medicine, Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN (R.H.); and Division of Allergy, Immunology and Pulmonary Medicine, Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN (E.D.A.)
| | - Rizwan Hamid
- From Division of Cardiovascular Medicine, Vanderbilt University School of Medicine, Nashville, TN (E.L.B.); Vanderbilt Translational and Clinical Cardiovascular Center, Vanderbilt University Medical Center, Nashville, TN (E.L.B.); Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, TN (M.T., J.P.F., N.P., J.D.W., M.F., M.E.P., J.H.N., A.R.H.); Vanderbilt University Institute of Imaging Science, Nashville, TN (H.Z.); Department of Biochemistry; Vanderbilt University, Nashville, TN (M.W.C.); Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston (D.G.L., R.E.G.); Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston (G.D.L., R.E.G.); Broad Institute of MIT and Harvard, Cambridge, MA (R.E.G.); Division of Medical Genetics and Genomic Medicine, Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN (R.H.); and Division of Allergy, Immunology and Pulmonary Medicine, Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN (E.D.A.)
| | - Meredith E Pugh
- From Division of Cardiovascular Medicine, Vanderbilt University School of Medicine, Nashville, TN (E.L.B.); Vanderbilt Translational and Clinical Cardiovascular Center, Vanderbilt University Medical Center, Nashville, TN (E.L.B.); Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, TN (M.T., J.P.F., N.P., J.D.W., M.F., M.E.P., J.H.N., A.R.H.); Vanderbilt University Institute of Imaging Science, Nashville, TN (H.Z.); Department of Biochemistry; Vanderbilt University, Nashville, TN (M.W.C.); Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston (D.G.L., R.E.G.); Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston (G.D.L., R.E.G.); Broad Institute of MIT and Harvard, Cambridge, MA (R.E.G.); Division of Medical Genetics and Genomic Medicine, Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN (R.H.); and Division of Allergy, Immunology and Pulmonary Medicine, Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN (E.D.A.)
| | - Eric D Austin
- From Division of Cardiovascular Medicine, Vanderbilt University School of Medicine, Nashville, TN (E.L.B.); Vanderbilt Translational and Clinical Cardiovascular Center, Vanderbilt University Medical Center, Nashville, TN (E.L.B.); Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, TN (M.T., J.P.F., N.P., J.D.W., M.F., M.E.P., J.H.N., A.R.H.); Vanderbilt University Institute of Imaging Science, Nashville, TN (H.Z.); Department of Biochemistry; Vanderbilt University, Nashville, TN (M.W.C.); Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston (D.G.L., R.E.G.); Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston (G.D.L., R.E.G.); Broad Institute of MIT and Harvard, Cambridge, MA (R.E.G.); Division of Medical Genetics and Genomic Medicine, Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN (R.H.); and Division of Allergy, Immunology and Pulmonary Medicine, Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN (E.D.A.)
| | - John H Newman
- From Division of Cardiovascular Medicine, Vanderbilt University School of Medicine, Nashville, TN (E.L.B.); Vanderbilt Translational and Clinical Cardiovascular Center, Vanderbilt University Medical Center, Nashville, TN (E.L.B.); Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, TN (M.T., J.P.F., N.P., J.D.W., M.F., M.E.P., J.H.N., A.R.H.); Vanderbilt University Institute of Imaging Science, Nashville, TN (H.Z.); Department of Biochemistry; Vanderbilt University, Nashville, TN (M.W.C.); Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston (D.G.L., R.E.G.); Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston (G.D.L., R.E.G.); Broad Institute of MIT and Harvard, Cambridge, MA (R.E.G.); Division of Medical Genetics and Genomic Medicine, Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN (R.H.); and Division of Allergy, Immunology and Pulmonary Medicine, Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN (E.D.A.)
| | - Anna R Hemnes
- From Division of Cardiovascular Medicine, Vanderbilt University School of Medicine, Nashville, TN (E.L.B.); Vanderbilt Translational and Clinical Cardiovascular Center, Vanderbilt University Medical Center, Nashville, TN (E.L.B.); Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, TN (M.T., J.P.F., N.P., J.D.W., M.F., M.E.P., J.H.N., A.R.H.); Vanderbilt University Institute of Imaging Science, Nashville, TN (H.Z.); Department of Biochemistry; Vanderbilt University, Nashville, TN (M.W.C.); Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston (D.G.L., R.E.G.); Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston (G.D.L., R.E.G.); Broad Institute of MIT and Harvard, Cambridge, MA (R.E.G.); Division of Medical Genetics and Genomic Medicine, Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN (R.H.); and Division of Allergy, Immunology and Pulmonary Medicine, Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN (E.D.A.)
| |
Collapse
|
222
|
Carley AN, Lewandowski ED. Triacylglycerol turnover in the failing heart. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1492-9. [PMID: 26993578 DOI: 10.1016/j.bbalip.2016.03.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 03/08/2016] [Accepted: 03/09/2016] [Indexed: 12/20/2022]
Abstract
No longer regarded as physiologically inert the endogenous triacylglyceride (TAG) pool within the cardiomyocyte is now recognized to play a dynamic role in metabolic regulation. Beyond static measures of content, the relative rates of interconversion among acyl intermediates are more closely linked to dynamic processes of physiological function in normal and diseased hearts, with the potential for both adaptive and maladaptive contributions. Indeed, multiple inefficiencies in cardiac metabolism have been identified in the decompensated, hypertrophied and failing heart. Among the intracellular responses to physiological, metabolic and pathological stresses, TAG plays a central role in the balance of lipid handling and signaling mechanisms. TAG dynamics are profoundly altered from normal in both diabetic and pathologically stressed hearts. More than just expansion or contraction of the stored lipid pool, the turnover rates of TAG are sensitive to and compete against other enzymatic pathways, anabolic and catabolic, for reactive acyl-CoA units. The rates of TAG synthesis and lipolysis thusly affect multiple components of cardiomyocyte function, including energy metabolism, cell signaling, and enzyme activation, as well as the regulation of gene expression in both normal and diseased states. This review examines the multiple etiologies and metabolic consequences of the failing heart and the central role of lipid storage dynamics in the pathogenic process. This article is part of a Special Issue entitled: Heart Lipid Metabolism edited by G.D. Lopaschuk.
Collapse
Affiliation(s)
- Andrew N Carley
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL, United States
| | | |
Collapse
|
223
|
Wolf P, Winhofer Y, Smajis S, Jankovic D, Anderwald CH, Trattnig S, Luger A, Krebs M, Krššák M. Pericardial- Rather than Intramyocardial Fat Is Independently Associated with Left Ventricular Systolic Heart Function in Metabolically Healthy Humans. PLoS One 2016; 11:e0151301. [PMID: 26967641 PMCID: PMC4788448 DOI: 10.1371/journal.pone.0151301] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 02/25/2016] [Indexed: 11/18/2022] Open
Abstract
Background Obesity is a major risk factor to develop heart failure, in part due to possible lipotoxic effects of increased intramyocardial (MYCL) and/or local or paracrine effects of pericardial (PERI) lipid accumulation. Recent evidence suggests that MYCL is highly dynamic and might rather be a surrogate marker for disturbed energy metabolism than the underlying cause of cardiac dysfunction. On the other hand, PERI might contribute directly by mechanic and paracrine effects. Therefore, we hypothesized that PERI rather than MYCL is associated with myocardial function. Methods To avoid potential confounding of metabolic disease 31 metabolically healthy subjects (age: 29±10yrs; BMI: 23±3kg/m2) were investigated using 1H-magnetic resonance spectroscopy and imaging. MYCL and PERI, as well as systolic and diastolic left ventricular heart function were assessed. Additionally, anthropometric data and parameters of glucose and lipid metabolism were analyzed. Correlation analysis was performed using Pearson’s correlation coefficient. Linear regression model was used to show individual effects of PERI and MYCL on myocardial functional parameters. Results Correlation analysis with parameters of systolic heart function revealed significant associations for PERI (Stroke Volume (SV): R = -0.513 p = 0.001; CardiacIndex (CI): R = -0.442 p = 0.014), but not for MYCL (SV: R = -0.233; p = 0.207; CI: R = -0.130; p = 0.484). No significant correlations were found for E/A ratio as a parameter of diastolic heart function. In multiple regression analysis CI was negatively predicted by PERI, whereas no impact of MYCL was observed in direct comparison. Conclusions Cardiac fat depots impact left ventricular heart function in a metabolically healthy population. Direct comparison of different lipid stores revealed that PERI is a more important predictor than MYCL for altered myocardial function.
Collapse
Affiliation(s)
- Peter Wolf
- Medical University of Vienna, Department of Internal Medicine III, Division of Endocrinology and Metabolism, Vienna, Austria
| | - Yvonne Winhofer
- Medical University of Vienna, Department of Internal Medicine III, Division of Endocrinology and Metabolism, Vienna, Austria
| | - Sabina Smajis
- Medical University of Vienna, Department of Internal Medicine III, Division of Endocrinology and Metabolism, Vienna, Austria
| | - Draženka Jankovic
- Medical University of Vienna, Department of Internal Medicine III, Division of Endocrinology and Metabolism, Vienna, Austria
- Wilhelminenspital, Department of Internal Medicine I, Division of Oncology, Hematology and Palliative Care, Vienna, Austria
| | - Christian-Heinz Anderwald
- Medical University of Vienna, Department of Internal Medicine III, Division of Endocrinology and Metabolism, Vienna, Austria
- Metabolic Unit, Institute of Biomedical Engineering, National Research Council, Padova, Italy
- Medical Direction, Specialized Hospital Complex Agathenhof, A-9322 Micheldorf, Carinthia, Austria
| | - Siegfried Trattnig
- Medical University of Vienna, Department of Biomedical Imaging and Image-guided Therapy, Centre of Excellence—High Field MR, Vienna, Austria
| | - Anton Luger
- Medical University of Vienna, Department of Internal Medicine III, Division of Endocrinology and Metabolism, Vienna, Austria
| | - Michael Krebs
- Medical University of Vienna, Department of Internal Medicine III, Division of Endocrinology and Metabolism, Vienna, Austria
- * E-mail:
| | - Martin Krššák
- Medical University of Vienna, Department of Internal Medicine III, Division of Endocrinology and Metabolism, Vienna, Austria
- Medical University of Vienna, Department of Biomedical Imaging and Image-guided Therapy, Centre of Excellence—High Field MR, Vienna, Austria
| |
Collapse
|
224
|
Goceri E, Shah ZK, Layman R, Jiang X, Gurcan MN. Quantification of liver fat: A comprehensive review. Comput Biol Med 2016; 71:174-89. [PMID: 26945465 DOI: 10.1016/j.compbiomed.2016.02.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 02/18/2016] [Accepted: 02/19/2016] [Indexed: 12/19/2022]
Abstract
Fat accumulation in the liver causes metabolic diseases such as obesity, hypertension, diabetes or dyslipidemia by affecting insulin resistance, and increasing the risk of cardiac complications and cardiovascular disease mortality. Fatty liver diseases are often reversible in their early stage; therefore, there is a recognized need to detect their presence and to assess its severity to recognize fat-related functional abnormalities in the liver. This is crucial in evaluating living liver donors prior to transplantation because fat content in the liver can change liver regeneration in the recipient and donor. There are several methods to diagnose fatty liver, measure the amount of fat, and to classify and stage liver diseases (e.g. hepatic steatosis, steatohepatitis, fibrosis and cirrhosis): biopsy (the gold-standard procedure), clinical (medical physics based) and image analysis (semi or fully automated approaches). Liver biopsy has many drawbacks: it is invasive, inappropriate for monitoring (i.e., repeated evaluation), and assessment of steatosis is somewhat subjective. Qualitative biomarkers are mostly insufficient for accurate detection since fat has to be quantified by a varying threshold to measure disease severity. Therefore, a quantitative biomarker is required for detection of steatosis, accurate measurement of severity of diseases, clinical decision-making, prognosis and longitudinal monitoring of therapy. This study presents a comprehensive review of both clinical and automated image analysis based approaches to quantify liver fat and evaluate fatty liver diseases from different medical imaging modalities.
Collapse
Affiliation(s)
- Evgin Goceri
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, USA.
| | - Zarine K Shah
- Department of Radiology, Wexner Medical Center, The Ohio State University, Columbus, USA
| | - Rick Layman
- Department of Radiology, Wexner Medical Center, The Ohio State University, Columbus, USA
| | - Xia Jiang
- Department of Radiology, Wexner Medical Center, The Ohio State University, Columbus, USA
| | - Metin N Gurcan
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, USA
| |
Collapse
|
225
|
Lipid metabolism and signaling in cardiac lipotoxicity. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1513-24. [PMID: 26924249 DOI: 10.1016/j.bbalip.2016.02.016] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 02/19/2016] [Accepted: 02/19/2016] [Indexed: 01/01/2023]
Abstract
The heart balances uptake, metabolism and oxidation of fatty acids (FAs) to maintain ATP production, membrane biosynthesis and lipid signaling. Under conditions where FA uptake outpaces FA oxidation and FA sequestration as triacylglycerols in lipid droplets, toxic FA metabolites such as ceramides, diacylglycerols, long-chain acyl-CoAs, and acylcarnitines can accumulate in cardiomyocytes and cause cardiomyopathy. Moreover, studies using mutant mice have shown that dysregulation of enzymes involved in triacylglycerol, phospholipid, and sphingolipid metabolism in the heart can lead to the excess deposition of toxic lipid species that adversely affect cardiomyocyte function. This review summarizes our current understanding of lipid uptake, metabolism and signaling pathways that have been implicated in the development of lipotoxic cardiomyopathy under conditions including obesity, diabetes, aging, and myocardial ischemia-reperfusion. This article is part of a Special Issue entitled: Heart Lipid Metabolism edited by G.D. Lopaschuk.
Collapse
|
226
|
Heier C, Haemmerle G. Fat in the heart: The enzymatic machinery regulating cardiac triacylglycerol metabolism. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1500-12. [PMID: 26924251 DOI: 10.1016/j.bbalip.2016.02.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 02/17/2016] [Accepted: 02/19/2016] [Indexed: 01/22/2023]
Abstract
The heart predominantly utilizes fatty acids (FAs) as energy substrate. FAs that enter cardiomyocytes can be activated and directly oxidized within mitochondria (and peroxisomes) or they can be esterified and intracellularly deposited as triacylglycerol (TAG) often simply referred to as fat. An increase in cardiac TAG can be a signature of the diseased heart and may implicate a minor role of TAG synthesis and breakdown in normal cardiac energy metabolism. Often overlooked, the heart has an extremely high TAG turnover and the transient deposition of FAs within the cardiac TAG pool critically determines the availability of FAs as energy substrate and signaling molecules. We herein review the recent literature regarding the enzymes and co-regulators involved in cardiomyocyte TAG synthesis and catabolism and discuss the interconnection of these metabolic pathways in the normal and diseased heart. This article is part of a Special Issue entitled: Heart Lipid Metabolism edited by G.D. Lopaschuk.
Collapse
Affiliation(s)
- Christoph Heier
- Institute of Molecular Biosciences, University of Graz, Austria
| | | |
Collapse
|
227
|
Larmour S, Chow K, Kellman P, Thompson RB. Characterization of T 1 bias in skeletal muscle from fat in MOLLI and SASHA pulse sequences: Quantitative fat-fraction imaging with T 1 mapping. Magn Reson Med 2016; 77:237-249. [PMID: 26860524 DOI: 10.1002/mrm.26113] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 11/28/2015] [Accepted: 12/12/2015] [Indexed: 12/26/2022]
Abstract
PURPOSE To characterize the effects of fat on commonly used T1 mapping sequences and evaluate a new method of quantitative fat fraction (FF) imaging for low fractions based on the modulation of T1 values by the fat pool. METHODS Bloch equation simulations and phantom and in vivo (skeletal muscle) experiments were used to characterize the response of the modified Look-Locker inversion recovery (MOLLI) and saturation recovery single-shot acquisition (SASHA) T1 mapping sequences to fat-water systems with known FFs (0%-10%) at 1.5T. FFs were measured with single voxel spectroscopy and Dixon imaging methods. A new T1 -based FF imaging method was evaluated using Monte Carlo simulations and phantom and in vivo experiments. RESULTS SASHA and MOLLI had similar T1 dependence on FF, with characteristic under- or overestimation of T1 values as a function of off-resonance frequency (30-70 ms variation in native T1 per 1% FF). FF maps generated from the SASHA method yielded a low variability of ±0.25% for a signal-to-noise ratio of 150:1 in the nonsaturation image, with good agreement with spectroscopy and a performance that is superior to that of Dixon methods at low FFs. CONCLUSION Fat results in negative or positive shifts in native tissue T1 measured with MOLLI and SASHA over a narrow range of off-resonance frequencies; T1 shifts from fat can be used to accurately quantify FF. Magn Reson Med 77:237-249, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sarah Larmour
- Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Kelvin Chow
- Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Peter Kellman
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Richard B Thompson
- Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
228
|
Oray M, Abu Samra K, Ebrahimiadib N, Meese H, Foster CS. Long-term side effects of glucocorticoids. Expert Opin Drug Saf 2016; 15:457-65. [PMID: 26789102 DOI: 10.1517/14740338.2016.1140743] [Citation(s) in RCA: 504] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Glucocorticoids represent the standard therapy for reducing inflammation and immune activation in various diseases. However, as with any potent medication, they are not without side effects. Glucocorticoid-associated side effects may involve most major organ systems. Musculoskeletal, gastrointestinal, cardiovascular, endocrine, neuropsychiatric, dermatologic, ocular, and immunologic side effects are all possible. AREAS COVERED This article analyzes English-language literature and provides an update on the most recent literature regarding side effects of systemic glucocorticoid treatment. EXPERT OPINION The risk/benefit ratio of glucocorticoid therapy can be improved by proper use. Careful monitoring and using appropriate preventive strategies can potentially minimize side effects.
Collapse
Affiliation(s)
- Merih Oray
- a Massachusetts Eye Research and Surgery Institution (MERSI) , Waltham , MA , USA.,b Ocular Immunology and Uveitis Foundation , Waltham , MA , USA.,c Istanbul Faculty of Medicine, Department of Ophthalmology , Istanbul University , Istanbul , Turkey
| | - Khawla Abu Samra
- a Massachusetts Eye Research and Surgery Institution (MERSI) , Waltham , MA , USA.,b Ocular Immunology and Uveitis Foundation , Waltham , MA , USA
| | - Nazanin Ebrahimiadib
- a Massachusetts Eye Research and Surgery Institution (MERSI) , Waltham , MA , USA.,b Ocular Immunology and Uveitis Foundation , Waltham , MA , USA
| | - Halea Meese
- a Massachusetts Eye Research and Surgery Institution (MERSI) , Waltham , MA , USA.,b Ocular Immunology and Uveitis Foundation , Waltham , MA , USA
| | - C Stephen Foster
- a Massachusetts Eye Research and Surgery Institution (MERSI) , Waltham , MA , USA.,b Ocular Immunology and Uveitis Foundation , Waltham , MA , USA.,d Department of Ophthalmology , Harvard Medical School , Boston , MA , USA
| |
Collapse
|
229
|
Improved Cardiac Proton Magnetic Resonance Spectroscopy at 3 T Using High Permittivity Pads. Invest Radiol 2016; 51:134-8. [DOI: 10.1097/rli.0000000000000214] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
230
|
Granér M, Gustavsson S, Nyman K, Siren R, Pentikäinen MO, Lundbom J, Hakkarainen A, Lauerma K, Lundbom N, Borén J, Nieminen MS, Taskinen MR. Biomarkers and prediction of myocardial triglyceride content in non-diabetic men. Nutr Metab Cardiovasc Dis 2016; 26:134-140. [PMID: 26803593 DOI: 10.1016/j.numecd.2015.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 10/01/2015] [Accepted: 11/05/2015] [Indexed: 11/24/2022]
Abstract
BACKGROUND AND AIMS Lipid oversupply to cardiomyocytes or decreased utilization of lipids leads to cardiac steatosis. We aimed to examine the role of different circulating metabolic biomarkers as predictors of myocardial triglyceride (TG) content in non-diabetic men. METHODS AND RESULTS Myocardial and hepatic TG contents were measured with 1.5 T magnetic resonance (MR) spectroscopy, and LV function, visceral adipose tissue (VAT), abdominal subcutaneous tissue (SAT), epicardial and pericardial fat by MR imaging in 76 non-diabetic men. Serum concentration of circulating metabolic biomarkers [adiponectin, leptin, adipocyte-fatty acid binding protein 4 (A-FABP 4), resistin, and lipocalin-2] including β-hydroxybuturate (β-OHB) were measured. Subjects were stratified by tertiles of myocardial TG into low, moderate, and high myocardial TG content groups. Concentrations of β-OHB were lower (p = 0.003) and serum levels of A-FABP 4 were higher (p < 0.001) in the group with high myocardial TG content compared with the group with low myocardial TG content. β-OHB was negatively correlated with myocardial TG content (r = -0.316, p = 0.006), whereas A-FABP 4 was not correlated with myocardial TG content (r = 0.192, p = 0.103). In multivariable analyses β-OHB and plasma glucose levels were the best predictors of myocardial TG content independently of VAT and hepatic TG content. The model explained 58.8% of the variance in myocardial TG content. CONCLUSION Our data showed that β-OHB and fasting glucose were the best predictors of myocardial TG content in non-diabetic men. These data suggest that hyperglycemia and alterations in lipid oxidation may be associated with cardiac steatosis in humans.
Collapse
Affiliation(s)
- M Granér
- Heart and Lung Center, Cardiology, Diabetes and Obesity Research Program, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
| | - S Gustavsson
- Health Metric, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - K Nyman
- HUS Medical Imaging Center, Radiology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - R Siren
- Department of General Practice and Primary Health Care, University of Helsinki and Health Center of City of Helsinki, Helsinki, Finland
| | - M O Pentikäinen
- Heart and Lung Center, Cardiology, Diabetes and Obesity Research Program, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - J Lundbom
- HUS Medical Imaging Center, Radiology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University, Düsseldorf, Germany; German Center for Diabetes Research, Partner Düsseldorf, Germany
| | - A Hakkarainen
- HUS Medical Imaging Center, Radiology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - K Lauerma
- HUS Medical Imaging Center, Radiology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - N Lundbom
- HUS Medical Imaging Center, Radiology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - J Borén
- University of Gothenburg, Gothenburg, Sweden
| | - M S Nieminen
- Heart and Lung Center, Cardiology, Diabetes and Obesity Research Program, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - M-R Taskinen
- Heart and Lung Center, Cardiology, Diabetes and Obesity Research Program, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
231
|
The impacts of obesity on the cardiovascular and renal systems: cascade of events and therapeutic approaches. Curr Hypertens Rep 2016; 17:7. [PMID: 25620635 DOI: 10.1007/s11906-014-0520-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
There is a neglected epidemic of both obesity and metabolic syndrome in industrialized and unindustrialized countries all over the globe. Both conditions are associated with a high incidence of other serious pathologies, such as cardiovascular and renal diseases. In this article, we review the potential underlying mechanisms by which obesity and metabolic syndrome promote hypertension, including changes in cardiovascular-renal physiology induced by leptin, the sympathetic nervous system, the renin-angiotensin-aldosterone system, insulin resistance, free fatty acids, natriuretic peptides, and proinflammatory cytokines. We also discuss the potential underlying mechanisms by which obesity promotes other cardiovascular and renal conditions, as well as available nonpharmacologic and pharmacologic approaches for treating obesity-induced hypertension. The findings presented herein suggest that adipocytes may be a key regulator of cardiovascular and renal function.
Collapse
|
232
|
Fuetterer M, Stoeck CT, Kozerke S. Second-order motion compensated PRESS for cardiac spectroscopy. Magn Reson Med 2016; 77:57-64. [PMID: 26762792 DOI: 10.1002/mrm.26099] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 10/27/2015] [Accepted: 11/28/2015] [Indexed: 11/07/2022]
Abstract
PURPOSE Second-order motion compensation for point-resolved spectroscopy (PRESS) is proposed to allow for robust single-voxel cardiac spectroscopy throughout the entire cardiac cycle and at various heart rates. METHODS Bipolar FID spoiling gradient pairs compensating for first and second-order motion were designed and implemented into a cardiac-triggered PRESS sequence on a clinical MR system. A numerical three-dimensional model of cardiac motion was used to optimize and validate the gradient waveforms. In vivo measurements in healthy volunteers were obtained to assess the signal-to-noise ratio (SNR) and triglyceride-to-water ratio (TG/W). SNR gains and variability of TG/W of the proposed approach were evaluated against a conventional PRESS sequence with optimized gradients. RESULTS The proposed sequence increases the mean SNR by 32% (W) and 23% (TG) on average with significantly lower variability for different trigger delays. The variability of TG/W quantification over the cardiac cycle is significantly decreased with second-order motion compensated PRESS when compared with conventional PRESS with reduced-spoiler gradients (coefficient of variation: 0.1 ± 0.02 versus 0.37 ± 0.26). CONCLUSION Second-order motion compensated PRESS effectively reduces cardiac motion-induced signal degradation during FID spoiling, providing higher SNR and less variability for TG/W quantification. The sequence is considered promising to assess the TG/W modulation during various interventions including pharmacologically induced stress. Magn Reson Med 77:57-64, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Maximilian Fuetterer
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Christian T Stoeck
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland.,Division of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
| | - Sebastian Kozerke
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland.,Division of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
| |
Collapse
|
233
|
Levelt E, Mahmod M, Piechnik SK, Ariga R, Francis JM, Rodgers CT, Clarke WT, Sabharwal N, Schneider JE, Karamitsos TD, Clarke K, Rider OJ, Neubauer S. Relationship Between Left Ventricular Structural and Metabolic Remodeling in Type 2 Diabetes. Diabetes 2016; 65:44-52. [PMID: 26438611 PMCID: PMC4890658 DOI: 10.2337/db15-0627] [Citation(s) in RCA: 166] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 09/24/2015] [Indexed: 12/31/2022]
Abstract
Concentric left ventricular (LV) remodeling is associated with adverse cardiovascular events and is frequently observed in patients with type 2 diabetes mellitus (T2DM). Despite this, the cause of concentric remodeling in diabetes per se is unclear, but it may be related to cardiac steatosis and impaired myocardial energetics. Thus, we investigated the relationship between myocardial metabolic changes and LV remodeling in T2DM. Forty-six nonhypertensive patients with T2DM and 20 matched control subjects underwent cardiovascular magnetic resonance to assess LV remodeling (LV mass-to-LV end diastolic volume ratio), function, tissue characterization before and after contrast using T1 mapping, and (1)H and (31)P magnetic resonance spectroscopy for myocardial triglyceride content (MTG) and phosphocreatine-to-ATP ratio, respectively. When compared with BMI- and blood pressure-matched control subjects, subjects with diabetes were associated with concentric LV remodeling, higher MTG, impaired myocardial energetics, and impaired systolic strain indicating a subtle contractile dysfunction. Importantly, cardiac steatosis independently predicted concentric remodeling and systolic strain. Extracellular volume fraction was unchanged, indicating the absence of fibrosis. In conclusion, cardiac steatosis may contribute to concentric remodeling and contractile dysfunction of the LV in diabetes. Because cardiac steatosis is modifiable, strategies aimed at reducing MTG may be beneficial in reversing concentric remodeling and improving contractile function in the hearts of patients with diabetes.
Collapse
MESH Headings
- Adenosine Triphosphate/metabolism
- Adipose Tissue/metabolism
- Adipose Tissue/pathology
- Adult
- Case-Control Studies
- Coronary Angiography
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- Diabetes Mellitus, Type 2/physiopathology
- Echocardiography
- Female
- Heart/physiopathology
- Humans
- Hypertrophy, Left Ventricular/complications
- Hypertrophy, Left Ventricular/metabolism
- Hypertrophy, Left Ventricular/pathology
- Hypertrophy, Left Ventricular/physiopathology
- Magnetic Resonance Imaging, Cine
- Magnetic Resonance Spectroscopy
- Male
- Middle Aged
- Myocardium/metabolism
- Myocardium/pathology
- Phosphocreatine/metabolism
- Phosphorus Isotopes
- Proton Magnetic Resonance Spectroscopy
- Systole
- Tomography, X-Ray Computed
- Triglycerides/metabolism
- Ventricular Remodeling
Collapse
Affiliation(s)
- Eylem Levelt
- Centre for Clinical Magnetic Resonance Research, Radcliffe Department of Medicine, Division of Cardiovascular Medicine, University of Oxford, Oxford, U.K. Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, U.K
| | - Masliza Mahmod
- Centre for Clinical Magnetic Resonance Research, Radcliffe Department of Medicine, Division of Cardiovascular Medicine, University of Oxford, Oxford, U.K
| | - Stefan K Piechnik
- Centre for Clinical Magnetic Resonance Research, Radcliffe Department of Medicine, Division of Cardiovascular Medicine, University of Oxford, Oxford, U.K
| | - Rina Ariga
- Centre for Clinical Magnetic Resonance Research, Radcliffe Department of Medicine, Division of Cardiovascular Medicine, University of Oxford, Oxford, U.K
| | - Jane M Francis
- Centre for Clinical Magnetic Resonance Research, Radcliffe Department of Medicine, Division of Cardiovascular Medicine, University of Oxford, Oxford, U.K
| | - Christopher T Rodgers
- Centre for Clinical Magnetic Resonance Research, Radcliffe Department of Medicine, Division of Cardiovascular Medicine, University of Oxford, Oxford, U.K
| | - William T Clarke
- Centre for Clinical Magnetic Resonance Research, Radcliffe Department of Medicine, Division of Cardiovascular Medicine, University of Oxford, Oxford, U.K
| | | | - Jurgen E Schneider
- Centre for Clinical Magnetic Resonance Research, Radcliffe Department of Medicine, Division of Cardiovascular Medicine, University of Oxford, Oxford, U.K
| | - Theodoros D Karamitsos
- Centre for Clinical Magnetic Resonance Research, Radcliffe Department of Medicine, Division of Cardiovascular Medicine, University of Oxford, Oxford, U.K. First Department of Cardiology, Aristotle University, Thessaloniki, Greece
| | - Kieran Clarke
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, U.K
| | - Oliver J Rider
- Centre for Clinical Magnetic Resonance Research, Radcliffe Department of Medicine, Division of Cardiovascular Medicine, University of Oxford, Oxford, U.K
| | - Stefan Neubauer
- Centre for Clinical Magnetic Resonance Research, Radcliffe Department of Medicine, Division of Cardiovascular Medicine, University of Oxford, Oxford, U.K.
| |
Collapse
|
234
|
Broussard JL, Nelson MD, Kolka CM, Bediako IA, Paszkiewicz RL, Smith L, Szczepaniak EW, Stefanovski D, Szczepaniak LS, Bergman RN. Rapid development of cardiac dysfunction in a canine model of insulin resistance and moderate obesity. Diabetologia 2016; 59:197-207. [PMID: 26376797 PMCID: PMC5310691 DOI: 10.1007/s00125-015-3767-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 08/26/2015] [Indexed: 12/30/2022]
Abstract
AIMS/HYPOTHESIS The worldwide incidence of obesity and diabetes continues to rise at an alarming rate. A major cause of the morbidity and mortality associated with obesity and diabetes is heart disease, yet the mechanisms that lead to cardiovascular complications remain unclear. METHODS We performed cardiac MRI to assess left ventricular morphology and function during the development of moderate obesity and insulin resistance in a well-established canine model (n = 26). To assess the influence of dietary fat composition, we randomised animals to a traditional lard diet (rich in saturated and monounsaturated fat; n = 12), a salmon oil diet (rich in polyunsaturated fat; n = 8) or a control diet (n = 6). RESULTS High-fat feeding with lard increased body weight and fasting insulin and markedly reduced insulin sensitivity. Lard feeding also significantly reduced left ventricular function, evidenced by a worsening of circumferential strain and impairment in left ventricular torsion. High-fat feeding with salmon oil increased body weight; however, salmon oil feeding did not impair insulin sensitivity or cardiac function. CONCLUSIONS/INTERPRETATION These data emphasise the importance of dietary fat composition on both metabolic and cardiac function, and have important implications for the relationship between diet and health.
Collapse
Affiliation(s)
- Josiane L Broussard
- Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA
| | - Michael D Nelson
- Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Cathryn M Kolka
- Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA
| | - Isaac Asare Bediako
- Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA
| | - Rebecca L Paszkiewicz
- Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA
| | - Laura Smith
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Edward W Szczepaniak
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Darko Stefanovski
- Department of Clinical Studies, New Bolton Center, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
| | - Lidia S Szczepaniak
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Richard N Bergman
- Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA.
| |
Collapse
|
235
|
León LE, Rani S, Fernandez M, Larico M, Calligaris SD. Subclinical Detection of Diabetic Cardiomyopathy with MicroRNAs: Challenges and Perspectives. J Diabetes Res 2016; 2016:6143129. [PMID: 26770988 PMCID: PMC4684873 DOI: 10.1155/2016/6143129] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 07/17/2015] [Accepted: 07/26/2015] [Indexed: 02/08/2023] Open
Abstract
The prevalence of cardiac diabetic diseases has been increased around the world, being the most common cause of death and disability among diabetic patients. In particular, diabetic cardiomyopathy is characterized with a diastolic dysfunction and cardiac remodelling without signs of hypertension and coronary artery diseases. In an early stage, it is an asymptomatic disease; however, clinical studies demonstrate that diabetic myocardia are more vulnerable to injury derived by acute myocardial infarct and are the worst prognosis for rehabilitation. Currently, biochemical and imaging diagnostic methods are unable to detect subclinical manifestation of the disease (prior to diastolic dysfunction). In this review, we elaborately discuss the current scientific evidences to propose circulating microRNAs as promising biomarkers for early detection of diabetic cardiomyopathy and, then, to identify patients at high risk of diabetic cardiomyopathy development. Moreover, here we summarise the research strategies to identify miRNAs as potential biomarkers, present limitations, challenges, and future perspectives.
Collapse
Affiliation(s)
- Luis E. León
- Centro de Genética y Genómica, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, 7710162 Santiago, Chile
| | - Sweta Rani
- Regenerative Medicine Institute (REMEDI), National University of Ireland, Galway, Ireland
| | | | | | - Sebastián D. Calligaris
- Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, 7710162 Santiago, Chile
- *Sebastián D. Calligaris:
| |
Collapse
|
236
|
Howard LC, Liu CY, Purdy JB, Walter P, Bluemke DA, Hadigan C. Lipolytic Rate Associated With Intramyocardial Lipid in an HIV Cohort Without Increased Lipolysis. J Clin Endocrinol Metab 2016; 101:151-6. [PMID: 26555936 PMCID: PMC4701849 DOI: 10.1210/jc.2015-3058] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Individuals with HIV have an elevated risk for developing cardiovascular disease compared to controls, particularly in relationship to abnormal deposition of lipid within various body compartments. Dysregulation of lipolysis may contribute to abnormal deposition of lipid in non-adipose tissues such as the heart, leading to untoward health consequences. OBJECTIVE To evaluate potential relationships between rates of whole-body lipolysis and intramyocardial lipid content in HIV-infected subjects compared to healthy controls. DESIGN Cross-sectional study. SETTING National Institutes of Health Clinical Research Center in Bethesda, Maryland. PARTICIPANTS Forty-six HIV-infected adults and 12 controls without known cardiovascular disease. MAIN OUTCOME MEASURE Intramyocardial lipid content quantified by MRI and rates of lipolysis determined using stable isotope tracer techniques. RESULTS We observed a significant positive correlation between the rate of appearance of glycerol and intramyocardial lipid overall (r = 0.323; P = .014) and among the HIV group separately (r = 0.361; P = .014). Multivariate regression analyses including HIV, lipid-lowering therapy, and diabetes identified both rate of appearance of glycerol and age as independent significant predictors of intramyocardial lipid (P = .01 and P = .03, respectively), but these were not significant with inclusion of visceral adipose in the analyses. CONCLUSIONS To our knowledge, this study is among the first in humans to characterize the relationship between lipid deposition in the myocardium and direct measurement of whole-body fatty acid metabolism. Our current findings contribute to the growing understanding of factors that promote myocardial steatosis, such as visceral adiposity, and implicate lipolysis as a potential target for interventions to optimize myocardial health.
Collapse
Affiliation(s)
- Louisa C Howard
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (L.C.H., C.H.), Radiology and Imaging Sciences, Clinical Center (C.-Y.L., D.A.B.), Critical Care Medicine Department (J.B.P.), and National Institute of Diabetes and Digestive and Kidney Diseases (P.W.), National Institutes of Health, Bethesda Maryland 20892
| | - Chia-Ying Liu
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (L.C.H., C.H.), Radiology and Imaging Sciences, Clinical Center (C.-Y.L., D.A.B.), Critical Care Medicine Department (J.B.P.), and National Institute of Diabetes and Digestive and Kidney Diseases (P.W.), National Institutes of Health, Bethesda Maryland 20892
| | - Julia B Purdy
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (L.C.H., C.H.), Radiology and Imaging Sciences, Clinical Center (C.-Y.L., D.A.B.), Critical Care Medicine Department (J.B.P.), and National Institute of Diabetes and Digestive and Kidney Diseases (P.W.), National Institutes of Health, Bethesda Maryland 20892
| | - Peter Walter
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (L.C.H., C.H.), Radiology and Imaging Sciences, Clinical Center (C.-Y.L., D.A.B.), Critical Care Medicine Department (J.B.P.), and National Institute of Diabetes and Digestive and Kidney Diseases (P.W.), National Institutes of Health, Bethesda Maryland 20892
| | - David A Bluemke
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (L.C.H., C.H.), Radiology and Imaging Sciences, Clinical Center (C.-Y.L., D.A.B.), Critical Care Medicine Department (J.B.P.), and National Institute of Diabetes and Digestive and Kidney Diseases (P.W.), National Institutes of Health, Bethesda Maryland 20892
| | - Colleen Hadigan
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (L.C.H., C.H.), Radiology and Imaging Sciences, Clinical Center (C.-Y.L., D.A.B.), Critical Care Medicine Department (J.B.P.), and National Institute of Diabetes and Digestive and Kidney Diseases (P.W.), National Institutes of Health, Bethesda Maryland 20892
| |
Collapse
|
237
|
Schrauwen-Hinderling VB, Kooi ME, Schrauwen P. Mitochondrial Function and Diabetes: Consequences for Skeletal and Cardiac Muscle Metabolism. Antioxid Redox Signal 2016; 24:39-51. [PMID: 25808308 DOI: 10.1089/ars.2015.6291] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
SIGNIFICANCE An early hallmark in the development of type 2 diabetes is the resistance to the effect of insulin in skeletal muscle and in the heart. Since mitochondrial function was found to be diminished in patients with type 2 diabetes, it was suggested that this defect might be involved in the etiology of insulin resistance. Although several hypotheses were suggested, yet unclear is the mechanistic link between these two phenomena. RECENT ADVANCES Herein, we review the evidence for disturbances in mitochondrial function in skeletal muscle and the heart in the diabetic state. Also the mechanisms involved in improving mitochondrial function are considered and, whenever possible, human data is cited. CRITICAL ISSUES Reported evidence shows that interventions that improve skeletal muscle mitochondrial function also improve insulin sensitivity in humans. In the heart, available data from animal studies suggests that enhancement of mitochondrial function can reverse aging-induced changes in heart function, and can be protective against cardiomyopathy and heart failure. FUTURE DIRECTIONS Mitochondria and their functions can be targeted with the aim of improving skeletal muscle insulin sensitivity and cardiac function. However, human clinical intervention studies are needed to fully substantiate the potential of mitochondria as a target to prevent cardiometabolic disease.
Collapse
Affiliation(s)
- Vera B Schrauwen-Hinderling
- 1 Department of Radiology, Maastricht University Medical Center , Maastricht, The Netherlands .,2 Department of Human Biology, Maastricht University Medical Center , Maastricht, The Netherlands .,3 Department of NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Center , Maastricht, The Netherlands
| | - Marianne Eline Kooi
- 1 Department of Radiology, Maastricht University Medical Center , Maastricht, The Netherlands .,3 Department of NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Center , Maastricht, The Netherlands .,4 Department of CARIM School for Cardiovascular Diseases in Maastricht, Maastricht University Medical Center , Maastricht, The Netherlands
| | - Patrick Schrauwen
- 2 Department of Human Biology, Maastricht University Medical Center , Maastricht, The Netherlands .,3 Department of NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Center , Maastricht, The Netherlands
| |
Collapse
|
238
|
Shaver A, Nichols A, Thompson E, Mallick A, Payne K, Jones C, Manne NDPK, Sundaram S, Shapiro JI, Sodhi K. Role of Serum Biomarkers in Early Detection of Diabetic Cardiomyopathy in the West Virginian Population. Int J Med Sci 2016; 13:161-8. [PMID: 26941576 PMCID: PMC4773280 DOI: 10.7150/ijms.14141] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 01/04/2016] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVES Diabetic cardiomyopathy (DCM) is an established complication of diabetes mellitus. In West Virginia, the especially high incidence of diabetes and heart failure validate the necessity of developing new strategies for earlier detection of DCM. Since most DCM patients remain asymptomatic until the later stages of the disease when the fibrotic complications become irreversible, we aimed to explore biomarkers that can identify early-stage DCM. METHODS The patients were grouped into 4 categories based on clinical diabetic and cardiac parameters: Control, Diabetes (DM), Diastolic dysfunction (DD), and Diabetes with diastolic dysfunction (DM+DD), the last group being the preclinical DCM group. RESULTS Echocardiography images indicated severe diastolic dysfunction in patients with DD+DM and DD compared to DM or control patients. In the DM and DM+DD groups, TNFα, isoprostane, and leptin were elevated compared to control (p<0.05), as were clinical markers HDL, glucose and hemoglobin A1C. Fibrotic markers IGFBP7 and TGF-β followed the same trend. The Control group showed higher beneficial levels of adiponectin and bilirubin, which were reduced in the DM and DM+DD groups (p<0.05). CONCLUSION The results from our study support the clinical application of biomarkers in diagnosing early stage DCM, which will enable attenuation of disease progression prior to the onset of irreversible complications.
Collapse
Affiliation(s)
- Adam Shaver
- 1. Department of Medicine Joan C. Edwards School of Medicine, Marshall University
| | - Alexandra Nichols
- 1. Department of Medicine Joan C. Edwards School of Medicine, Marshall University
| | | | - Amrita Mallick
- 1. Department of Medicine Joan C. Edwards School of Medicine, Marshall University
| | - Kristen Payne
- 1. Department of Medicine Joan C. Edwards School of Medicine, Marshall University
| | - Chris Jones
- 2. Department of Cardiology, Marshall University
| | | | - Shanmuga Sundaram
- 1. Department of Medicine Joan C. Edwards School of Medicine, Marshall University
| | - Joseph I Shapiro
- 1. Department of Medicine Joan C. Edwards School of Medicine, Marshall University
| | - Komal Sodhi
- 4. Department of Surgery and Pharmacology, Marshall University, USA
| |
Collapse
|
239
|
Wei J, Nelson MD, Szczepaniak EW, Smith L, Mehta PK, Thomson LEJ, Berman DS, Li D, Bairey Merz CN, Szczepaniak LS. Myocardial steatosis as a possible mechanistic link between diastolic dysfunction and coronary microvascular dysfunction in women. Am J Physiol Heart Circ Physiol 2016; 310:H14-9. [PMID: 26519031 PMCID: PMC4865076 DOI: 10.1152/ajpheart.00612.2015] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 10/27/2015] [Indexed: 11/22/2022]
Abstract
Women with coronary microvascular dysfunction (CMD) and no obstructive coronary artery disease (CAD) have increased rates of heart failure with preserved ejection fraction (HFpEF). The mechanisms of HFpEF are not well understood. Ectopic fat deposition in the myocardium, termed myocardial steatosis, is frequently associated with diastolic dysfunction in other metabolic diseases. We investigated the prevalence of myocardial steatosis and diastolic dysfunction in women with CMD and subclinical HFpEF. In 13 women, including eight reference controls and five women with CMD and evidence of subclinical HFpEF (left ventricular end-diastolic pressure >12 mmHg), we measured myocardial triglyceride content (TG) and diastolic function, by proton magnetic resonance spectroscopy and magnetic resonance tissue tagging, respectively. When compared with reference controls, women with CMD had higher myocardial TG content (0.83 ± 0.12% vs. 0.43 ± 0.06%; P = 0.025) and lower diastolic circumferential strain rate (168 ± 12 vs. 217 ± 15%/s; P = 0.012), with myocardial TG content correlating inversely with diastolic circumferential strain rate (r = -0.779; P = 0.002). This study provides proof-of-concept that myocardial steatosis may play an important mechanistic role in the development of diastolic dysfunction in women with CMD and no obstructive CAD. Detailed longitudinal studies are warranted to explore specific treatment strategies targeting myocardial steatosis and its effect on diastolic function.
Collapse
Affiliation(s)
- Janet Wei
- Barbra Streisand Women's Heart Center, Cedars-Sinai Heart Institute, Los Angeles, California;
| | - Michael D Nelson
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California; and
| | - Edward W Szczepaniak
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California; and
| | - Laura Smith
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California; and
| | - Puja K Mehta
- Barbra Streisand Women's Heart Center, Cedars-Sinai Heart Institute, Los Angeles, California
| | - Louise E J Thomson
- S. Mark Taper Foundation Imaging Center, Cedars-Sinai Medical Center, Los Angeles, California
| | - Daniel S Berman
- S. Mark Taper Foundation Imaging Center, Cedars-Sinai Medical Center, Los Angeles, California
| | - Debiao Li
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California; and
| | - C Noel Bairey Merz
- Barbra Streisand Women's Heart Center, Cedars-Sinai Heart Institute, Los Angeles, California
| | - Lidia S Szczepaniak
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California; and
| |
Collapse
|
240
|
Felício JS, Koury CC, Carvalho CT, Abrahão Neto JF, Miléo KB, Arbage TP, Silva DD, de Oliveira AF, Peixoto AS, Figueiredo AB, Ribeiro Dos Santos ÂKC, Yamada ES, Zanella MT. Present Insights on Cardiomyopathy in Diabetic Patients. Curr Diabetes Rev 2016; 12:384-395. [PMID: 26364799 PMCID: PMC5101638 DOI: 10.2174/1573399812666150914120529] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 08/27/2015] [Accepted: 09/14/2015] [Indexed: 12/22/2022]
Abstract
The pathogenesis of diabetic cardiomyopathy (DCM) is partially understood and is likely to be multifactorial, involving metabolic disturbances, hypertension and cardiovascular autonomic neuropathy (CAN). Therefore, an important need remains to further delineate the basic mechanisms of diabetic cardiomyopathy and to apply them to daily clinical practice. We attempt to detail some of these underlying mechanisms, focusing in the clinical features and management. The novelty of this review is the role of CAN and reduction of blood pressure descent during sleep in the development of DCM. Evidence has suggested that CAN might precede left ventricular hypertrophy and diastolic dysfunction in normotensive patients with type 2 diabetes, serving as an early marker for the evaluation of preclinical cardiac abnormalities. Additionally, a prospective study demonstrated that an elevation of nocturnal systolic blood pressure and a loss of nocturnal blood pressure fall might precede the onset of abnormal albuminuria and cardiovascular events in hypertensive normoalbuminuric patients with type 2 diabetes. Therefore, existing microalbuminuria could imply the presence of myocardium abnormalities. Considering that DCM could be asymptomatic for a long period and progress to irreversible cardiac damage, early recognition and treatment of the preclinical cardiac abnormalities are essential to avoid severe cardiovascular outcomes. In this sense, we recommend that all type 2 diabetic patients, especially those with microalbuminuria, should be regularly submitted to CAN tests, Ambulatory Blood Pressure Monitoring and echocardiography, and treated for any abnormalities in these tests in the attempt of reducing cardiovascular morbidity and mortality.
Collapse
Affiliation(s)
- João Soares Felício
- Hospital Universitário João de Barros Barreto - Universidade Federal do Pará, Mundurucus Street, 4487 - Postal Code: 66073-000 - Guamá - Belém - PA - Brazil.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
241
|
Drobny M, Sedivy P, Dezortova M, Wagnerova D, Hajek M. Influence of breathing on the measurement of lipids in the myocardium by ¹H MR spectroscopy. Physiol Res 2015; 64:S403-9. [PMID: 26680674 DOI: 10.33549/physiolres.933148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The myocardium examination by MR spectroscopy is very challenging due to movements caused by the cardiac rhythm and breathing. The aim of the study was to investigate the influence of breathing on the quantitative measurement of lipid/water ratios in different groups of volunteers and different measuring protocols. We examined the lipid content of myocardium at 3T using the proton single voxel spectroscopy. Three protocols (free breathing, breath hold and the use of respiratory navigator) controlled by ECG were used for the examination of 42 adult volunteers including 14 free divers. Spectra were evaluated using jMRUI software. An average content of lipids in the healthy interventricular septum, gained by all protocols was equal to 0.6 %, which is in agreement with other published data. Based on the quality of examinations and the highest technical success, the best protocol seems to be the one containing a respiratory navigator since it is more acceptable by patients. Based on our results and the literature data we can conclude that MR spectroscopy is able to distinguish patients from controls only if their myocardial lipid content is higher than 1.6 % (mean value of lipids plus two standard deviations).
Collapse
Affiliation(s)
- M Drobny
- MR-Unit, Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
| | | | | | | | | |
Collapse
|
242
|
Lyngbakken MN, Omland T, Nordstrand N, Norseth J, Hjelmesæth J, Hofsø D. Effect of weight loss on subclinical myocardial injury: A clinical trial comparing gastric bypass surgery and intensive lifestyle intervention. Eur J Prev Cardiol 2015; 23:874-80. [PMID: 26656071 DOI: 10.1177/2047487315618796] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 11/03/2015] [Indexed: 01/13/2023]
Abstract
AIMS To investigate the effect of weight loss induced by bariatric surgery and intensive lifestyle intervention on levels of circulating high-sensitivity cardiac troponin I. METHODS AND RESULTS We measured high-sensitivity cardiac troponin I concentrations pre- and 12 months post-intervention in 136 subjects with morbid obesity participating in a controlled clinical trial comparing the effect of intensive lifestyle intervention vs. Roux-en-Y gastric bypass. At baseline median (interquartile range) high-sensitivity cardiac troponin I levels were 2.40 (1.28-3.95) ng/L in the bariatric surgery group and 2.35 (1.38-4.40) ng/L in the intensive lifestyle intervention group (p = 0.736). The high-sensitivity cardiac troponin I concentration in a normal-weight control group was 0.90 (0.60-2.13) ng/L. During 12 months of follow-up, high-sensitivity cardiac troponin I decreased significantly more in the bariatric surgery group than in the intensive lifestyle intervention group (0.80 (0-1.80) vs. 0.15 (-0.50 to 1.00) ng/L; p = 0.002). In a multivariate logistic regression model, surgery emerged as a predictor of reduction in high-sensitivity cardiac troponin I levels (odds ratio 2.32; 95% confidence intervals 1.03-5.22; p = 0.041) independent of age, gender and other possible confounding baseline variables. In subsequent multivariate analyses, reductions in body weight and triglycerides emerged as possible mediators of reduction in circulating levels of high-sensitivity cardiac troponin I. CONCLUSION In patients with morbid obesity, bariatric surgery was associated with a significantly greater reduction in high-sensitivity cardiac troponin I, an index of subclinical myocardial injury, than intensive lifestyle intervention. The reduction appeared to be mediated by reductions in body weight and serum triglycerides. This suggests that weight loss following bariatric surgery may reduce cardiometabolic stress and subsequent risk of heart failure.
Collapse
Affiliation(s)
- Magnus N Lyngbakken
- K.G. Jebsen Cardiac Research Centre, Institute of Clinical Medicine, University of Oslo, Norway Division of Medicine, Akershus University Hospital, Norway
| | - Torbjørn Omland
- K.G. Jebsen Cardiac Research Centre, Institute of Clinical Medicine, University of Oslo, Norway Division of Medicine, Akershus University Hospital, Norway
| | | | - Jon Norseth
- Department of Medical Biochemistry, Vestre Viken Hospital Trust, Norway
| | - Jøran Hjelmesæth
- Morbid Obesity Centre, Vestfold Hospital Trust, Norway Department of Endocrinology, Morbid Obesity and Preventive Medicine, Institute of Clinical Medicine, University of Oslo, Norway
| | - Dag Hofsø
- Morbid Obesity Centre, Vestfold Hospital Trust, Norway
| |
Collapse
|
243
|
Hay J, Wittmeier K, MacIntosh A, Wicklow B, Duhamel T, Sellers E, Dean H, Ready E, Berard L, Kriellaars D, Shen GX, Gardiner P, McGavock J. Physical activity intensity and type 2 diabetes risk in overweight youth: a randomized trial. Int J Obes (Lond) 2015; 40:607-14. [PMID: 26617254 DOI: 10.1038/ijo.2015.241] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 08/13/2015] [Indexed: 11/09/2022]
Abstract
BACKGROUND The chronic effects of high-intensity endurance training on metabolic health outcomes in overweight adolescents remains poorly understood. OBJECTIVE To test the hypothesis that high-intensity endurance training (ET) is superior to moderate-intensity ET for improving risk factors for type 2 diabetes in overweight adolescents. DESIGN AND METHODS In this randomized trial, 106 overweight and obese adolescents (15.2 years; 76% female; 62% Caucasian) were randomly assigned to high-intensity ET (70-85% of heart rate reserve, n=38), moderate-intensity ET (40-55% heart rate reserve; n=32) or control for 6 months (n=36). The primary and secondary outcome measures were insulin sensitivity assessed using a frequently sampled intravenous glucose tolerance test and hepatic triglyceride content with magnetic resonance spectroscopy. Exploratory outcomes were cardiorespiratory fitness, physical activity and MRI and dual x-ray absorptiometry-derived measures of adiposity. RESULTS The study had 96% retention and attendance was 61±21% and 55±24% in the high- and moderate-intensity ET arms. Intention-to-treat analyses revealed that, at follow-up, insulin sensitivity was not different between high-intensity (-1.0 mU kg(-1) min(-1); 95% confidence interval (CI): -1.6, +1.4 mU kg(-1) min(-1)) and moderate-intensity (+0.26 mU kg(-1) min(-1); 95% CI: -1.3, +1.8 mU kg(-1) min(-1)) ET arms compared with controls (interaction, P=0.97). Similarly, hepatic triglyceride at follow-up was not different in high-intensity (-1.7% fat/water (F/W); 95% CI: -7.0, +3.6% F/W) and moderate-intensity (-0.40% FW; 95% CI: -6.0, +5.3% F/W) ET compared with controls. Both high intensity (+4.4 ml per kg-FFM (fat-free mass) per minute; 95% CI: 1.7, 7.1 ml kg-FFM(-1) min(-1)) and moderate intensity (+4.4 ml kg-FFM(-1) min(-1); 95% CI: 1.6, 7.3 ml kg-FFM(-1) min(-1)) increased cardiorespiratory fitness, relative to controls (interaction P<0.001). CONCLUSIONS ET improves cardiorespiratory fitness among obese adolescents; however, owing to lack of compliance, the influence of exercise intensity on insulin sensitivity and hepatic triglycerides remains unclear.
Collapse
Affiliation(s)
- J Hay
- Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada.,Department of Pediatrics and Child Health, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada.,Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg, Manitoba, Canada
| | - K Wittmeier
- Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada.,Department of Pediatrics and Child Health, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - A MacIntosh
- Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - B Wicklow
- Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada.,Department of Pediatrics and Child Health, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - T Duhamel
- Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg, Manitoba, Canada.,Health, Leisure and Human Performance Research Institute, Winnipeg, Manitoba, Canada.,Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada.,Institute of Cardiovascular Sciences, St. Boniface Research Centre, Winnipeg, Manitoba, Canada
| | - E Sellers
- Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada.,Department of Pediatrics and Child Health, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - H Dean
- Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada.,Department of Pediatrics and Child Health, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - E Ready
- Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg, Manitoba, Canada.,Health, Leisure and Human Performance Research Institute, Winnipeg, Manitoba, Canada
| | - L Berard
- Diabetes Research Group, Health Sciences Centre of Winnipeg, Winnipeg, Manitoba, Canada
| | - D Kriellaars
- Faculty of Medical Rehabilitation, University of Manitoba, Winnipeg, Manitoba, Canada
| | - G X Shen
- Diabetes Research Group, Health Sciences Centre of Winnipeg, Winnipeg, Manitoba, Canada
| | - P Gardiner
- Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg, Manitoba, Canada.,Health, Leisure and Human Performance Research Institute, Winnipeg, Manitoba, Canada.,Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - J McGavock
- Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada.,Department of Pediatrics and Child Health, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada.,Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg, Manitoba, Canada.,Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
244
|
Bando YK, Murohara T. Heart Failure as a Comorbidity of Diabetes: Role of Dipeptidyl Peptidase 4. J Atheroscler Thromb 2015; 23:147-54. [PMID: 26607352 DOI: 10.5551/jat.33225] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Heart failure is a primary cause of death worldwide, and it is notable that heart failure patients exhibit a high incidence of diabetes. On the other hand, comorbid diabetes significantly worsens the prognosis of heart failure, even independently of complicated coronary artery disease.To date, heart failure caused by diabetes has been designated as "diabetic cardiomyopathy (DMC)," and a recent cohort study of the large-scale (1.9 million people) research platform of linked electronic medical records in UK (CALIBER registry) demonstrated that heart failure and peripheral arterial disease are the most common initial manifestations of cardiovascular disease in type 2 diabetes. The underlying pathophysiology has been characterized as microvasculopathy, myocardial hypertrophy, and cardiac fibrosis; however, these evidences are mostly obtained under a preclinical setting, and its clinical application on DMC in terms of its diagnosis and therapeutic intervention yet has reached practical. Our group has focused on and clarified the molecular mechanisms underlying DMC both in preclinical and clinical settings and has found the primary role of "dipeptidyl peptidase-4 (DPP4)" in the pathogenesis of diabetic microvasculopathy in the heart. Moreover, there are evidences implicating the potent role of circulating DPP4 activity in the diagnosis of diastolic heart failure. The present review aimed to review the current comprehension regarding diabetes and heart failure and discuss the therapeutic and diagnostic roles of DPP4.
Collapse
Affiliation(s)
- Yasuko K Bando
- Department of Cardiology, Nagoya University Graduate School of Medicine
| | | |
Collapse
|
245
|
Chronic cocaine use and its association with myocardial steatosis evaluated by 1H magnetic resonance spectroscopy in African Americans. J Addict Med 2015; 9:31-9. [PMID: 25325298 DOI: 10.1097/adm.0000000000000078] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OBJECTIVES Cardiac steatosis is a manifestation of ectopic fat deposition and is associated with obesity. The impact of chronic cocaine use on obesity measures and on the relationship between obesity measures and cardiac steatosis is not well-characterized. The objectives of this study were to compare obesity measures in chronic cocaine users and nonusers, and to explore which factors, in addition to obesity measures, are associated with myocardial triglyceride in African Americans, using noninvasive magnetic resonance spectroscopy. METHODS Between June 2004 and January 2014, 180 healthy African American adults without HIV infection, hypertension, and diabetes were enrolled in an observational proton magnetic resonance spectroscopy and imaging study investigating factors associated with cardiac steatosis. RESULTS Among these 180 participants, 80 were chronic cocaine users and 100 were nonusers. The median age was 42 (interquartile range, 34-47) years. Obesity measures trended higher in cocaine users than in nonusers. The median myocardial triglyceride was 0.6% (interquartile range, 0.4%-1.1%). Among the factors investigated, years of cocaine use, leptin, and visceral fat were independently associated with myocardial triglyceride. Body mass index and visceral fat, which were significantly associated with myocardial triglyceride in noncocaine users, were not associated with myocardial triglyceride content in cocaine users. CONCLUSIONS This study shows (1) cocaine users may have more fat than nonusers and (2) myocardial triglyceride is independently associated with duration of cocaine use, leptin, and visceral fat in all subjects, whereas leptin and high-density lipoprotein cholesterol, but not visceral fat or body mass index, in cocaine users, suggesting that chronic cocaine use may modify the relationships between obesity measures and myocardial triglyceride.
Collapse
|
246
|
Harmancey R, Haight DL, Watts KA, Taegtmeyer H. Chronic Hyperinsulinemia Causes Selective Insulin Resistance and Down-regulates Uncoupling Protein 3 (UCP3) through the Activation of Sterol Regulatory Element-binding Protein (SREBP)-1 Transcription Factor in the Mouse Heart. J Biol Chem 2015; 290:30947-61. [PMID: 26555260 DOI: 10.1074/jbc.m115.673988] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Indexed: 01/22/2023] Open
Abstract
The risk for heart failure and death after myocardial infarction is abnormally high in diabetic subjects. We and others have shown previously that mitochondrial uncoupling protein 3 (UCP3) improves functional recovery of the rodent heart during reperfusion. Here, we demonstrate that pharmacological induction of hyperinsulinemia in mice down-regulates myocardial UCP3. Decreased UCP3 expression was linked to the development of selective insulin resistance in the heart, characterized by decreased basal activity of Akt but preserved activity of the p44/42 mitogen-activated protein kinase, and overactivation of the sterol regulatory element-binding protein (SREBP)-1-mediated lipogenic program. In cultured myocytes, insulin treatment and SREBP-1 overexpression decreased, whereas SREBP-1 interference increased, peroxisome proliferator-activated receptor-stimulated expression of UCP3. Promoter deletion and site-directed mutagenesis identified three functional sterol regulatory elements in the vicinity of a known complex intronic enhancer. Increased binding of SREBP-1 to this DNA region was confirmed in the heart of hyperinsulinemic mice. In conclusion, we describe a hitherto unknown regulatory mechanism by which insulin inhibits cardiac UCP3 expression through activation of the lipogenic factor SREBP-1. Sustained down-regulation of cardiac UCP3 by hyperinsulinemia may partly explain the poor prognosis of type 2 diabetic patients after myocardial infarction.
Collapse
Affiliation(s)
- Romain Harmancey
- From the Department of Internal Medicine, Division of Cardiology, University of Texas Medical School, University of Texas Health Science Center, Houston, Texas 77030 and the Department of Physiology and Biophysics, Mississippi Center for Obesity Research and Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi 39216-4505
| | - Derek L Haight
- From the Department of Internal Medicine, Division of Cardiology, University of Texas Medical School, University of Texas Health Science Center, Houston, Texas 77030 and
| | - Kayla A Watts
- the Department of Physiology and Biophysics, Mississippi Center for Obesity Research and Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi 39216-4505
| | - Heinrich Taegtmeyer
- From the Department of Internal Medicine, Division of Cardiology, University of Texas Medical School, University of Texas Health Science Center, Houston, Texas 77030 and
| |
Collapse
|
247
|
Noll C, Kunach M, Frisch F, Bouffard L, Dubreuil S, Jean-Denis F, Phoenix S, Cunnane SC, Guérin B, Turcotte EE, Carpentier AC. Seven-Day Caloric and Saturated Fat Restriction Increases Myocardial Dietary Fatty Acid Partitioning in Impaired Glucose-Tolerant Subjects. Diabetes 2015. [PMID: 26224886 DOI: 10.2337/db15-0337] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Subjects with impaired glucose tolerance (IGT) have increased myocardial partitioning of dietary fatty acids (DFAs) with left ventricular dysfunction, both of which are improved by modest weight loss over 1 year induced by lifestyle changes. Here, we determined the effects of a 7-day hypocaloric diet (-500 kcal/day) low in saturated fat (<7% of energy) (LOWCAL study) versus isocaloric with the usual amount saturated fat (∼10% of energy) diet (ISOCAL) on DFA metabolism in subjects with IGT. Organ-specific DFA partitioning and cardiac and hepatic DFA fractional uptake rates were measured in 15 IGT subjects (7 males/8 females) using the oral 14(R,S)-[18F]-fluoro-6-thia-heptadecanoic acid positron emission tomography method after 7 days of an ISOCAL diet versus a LOWCAL diet using a randomized crossover design. The LOWCAL diet led to reductions in weight and postprandial insulin area under the curve. Myocardial DFA partitioning over 6 h was increased after the LOWCAL diet (2.3 ± 0.1 vs. 1.9 ± 0.2 mean standard uptake value, P < 0.04). However, the early (90-120 min) myocardial DFA fractional uptake was unchanged after the LOWCAL diet (0.055 ± 0.025 vs. 0.046 ± 0.009 min(-1), P = 0.7). Liver DFA partitioning was unchanged, but liver fractional uptake of DFA tended to be increased. Very short-term caloric and saturated fat dietary restrictions do not lead to the same changes in organ-specific DFA metabolism as those associated with weight loss in subjects with IGT.
Collapse
Affiliation(s)
- Christophe Noll
- Division of Endocrinology, Department of Medicine, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Margaret Kunach
- Division of Endocrinology, Department of Medicine, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Frédérique Frisch
- Division of Endocrinology, Department of Medicine, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Lucie Bouffard
- Division of Endocrinology, Department of Medicine, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Stéphanie Dubreuil
- Division of Endocrinology, Department of Medicine, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Farrah Jean-Denis
- Division of Endocrinology, Department of Medicine, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Serge Phoenix
- Department of Nuclear Medicine and Radiobiology, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Quebec, Canada
| | - Stephen C Cunnane
- Research Center on Aging, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Brigitte Guérin
- Department of Nuclear Medicine and Radiobiology, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Quebec, Canada
| | - Eric E Turcotte
- Department of Nuclear Medicine and Radiobiology, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Quebec, Canada
| | - André C Carpentier
- Division of Endocrinology, Department of Medicine, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada Department of Nuclear Medicine and Radiobiology, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Quebec, Canada
| |
Collapse
|
248
|
Diaz-Zamudio M, Dey D, LaBounty T, Nelson M, Fan Z, Szczepaniak LS, Hsieh BPC, Rajani R, Berman D, Li D, Dharmakumar R, Hardy WD, Conte AH. Increased pericardial fat accumulation is associated with increased intramyocardial lipid content and duration of highly active antiretroviral therapy exposure in patients infected with human immunodeficiency virus: a 3T cardiovascular magnetic resonance feasibility study. J Cardiovasc Magn Reson 2015; 17:91. [PMID: 26520571 PMCID: PMC4628336 DOI: 10.1186/s12968-015-0193-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 10/09/2015] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The aim of the current study was to examine whether the use of highly active antiretroviral therapy (HAART) in patients with HIV is associated with changes in pericardial fat and myocardial lipid content measured by cardiovascular magnetic resonance (CMR). METHODS In this prospective case-control study, we compared 27 HIV seropositive (+) male subjects receiving HAART to 22 control male subjects without HIV matched for age, ethnicity and body mass index. All participants underwent CMR imaging for determination of pericardial fat [as volume at the level of the origin of the left main coronary artery (LM) and at the right ventricular free wall] and magnetic resonance spectroscopy (MRS) for evaluation of intramyocardial lipid content (% of fat to water in a single voxel at the interventricular septum). All measurements were made by two experienced readers blinded to the clinical history of the study participants. Two-sample t-test, Spearman's correlation coefficient or Pearson's correlation coefficient and multivariable logistic regression were used for statistical analysis. RESULTS Pericardial fat volume at the level of LM origin was higher in HIV (+) subjects (33.4 cm(3) vs. 27.4 cm(3), p = 0.03). On multivariable analysis adjusted for age, Framingham risk score (FRS) and waist/hip ratio, pericardial fat remained significantly associated to HIV-status (OR 1.09, p = 0.047). For both HIV (+) and HIV (-) subjects, pericardial fat volume showed strong correlation with intramyocardial lipid content (r = 0.58, p < 0.0001) and FRS (r = 0.53, p = 0.0002). Among HIV (+) subjects, pericardial fat was significantly higher in patients with lipo-accumulation (37 cm(3) vs. 27.1 cm(3), p = 0.03) and showed significant correlation with duration of both HIV infection (r = 0.5, p = 0.01) and HAART (r = 0.46, p = 0.02). CONCLUSIONS Pericardial fat content is increased in HIV (+) subjects on chronic HAART (>5 years), who demonstrate HAART-related lipo-accumulation and prolonged HIV duration of infection. Further investigation is warranted to determine whether increased pericardial fat is associated with higher cardiovascular risk leading to premature cardiovascular events in this patient population.
Collapse
Affiliation(s)
- Mariana Diaz-Zamudio
- Division of Nuclear Medicine, Department of Imaging & Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | - Damini Dey
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | - Troy LaBounty
- Department of Medicine, Cardiovascular Center, University of Michigan, Ann Arbor, MI, USA.
| | - Michael Nelson
- Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | - Zhaoyang Fan
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | - Lidia S Szczepaniak
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | - Bill Pei-Chin Hsieh
- Division of Nuclear Medicine, Department of Imaging & Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | - Ronak Rajani
- Division of Nuclear Medicine, Department of Imaging & Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | - Daniel Berman
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | - Debiao Li
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | - Rohan Dharmakumar
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | - W David Hardy
- David-Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
| | - Antonio Hernandez Conte
- Department of Anesthesiology, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Suite 8211, Los Angeles, CA, 90048, USA.
| |
Collapse
|
249
|
Heier C, Radner FPW, Moustafa T, Schreiber R, Grond S, Eichmann TO, Schweiger M, Schmidt A, Cerk IK, Oberer M, Theussl HC, Wojciechowski J, Penninger JM, Zimmermann R, Zechner R. G0/G1 Switch Gene 2 Regulates Cardiac Lipolysis. J Biol Chem 2015; 290:26141-50. [PMID: 26350455 PMCID: PMC4646265 DOI: 10.1074/jbc.m115.671842] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Indexed: 12/13/2022] Open
Abstract
The anabolism and catabolism of myocardial triacylglycerol (TAG) stores are important processes for normal cardiac function. TAG synthesis detoxifies and stockpiles fatty acids to prevent lipotoxicity, whereas TAG hydrolysis (lipolysis) remobilizes fatty acids from endogenous storage pools as energy substrates, signaling molecules, or precursors for complex lipids. This study focused on the role of G0/G1 switch 2 (G0S2) protein, which was previously shown to inhibit the principal TAG hydrolase adipose triglyceride lipase (ATGL), in the regulation of cardiac lipolysis. Using wild-type and mutant mice, we show the following: (i) G0S2 is expressed in the heart and regulated by the nutritional status with highest expression levels after re-feeding. (ii) Cardiac-specific overexpression of G0S2 inhibits cardiac lipolysis by direct protein-protein interaction with ATGL. This leads to severe cardiac steatosis. The steatotic hearts caused by G0S2 overexpression are less prone to fibrotic remodeling or cardiac dysfunction than hearts with a lipolytic defect due to ATGL deficiency. (iii) Conversely to the phenotype of transgenic mice, G0S2 deficiency results in a de-repression of cardiac lipolysis and decreased cardiac TAG content. We conclude that G0S2 acts as a potent ATGL inhibitor in the heart modulating cardiac substrate utilization by regulating cardiac lipolysis.
Collapse
Affiliation(s)
- Christoph Heier
- From the Institute of Molecular Biosciences, University of Graz, A-8010 Graz, Austria
| | - Franz P W Radner
- From the Institute of Molecular Biosciences, University of Graz, A-8010 Graz, Austria
| | - Tarek Moustafa
- From the Institute of Molecular Biosciences, University of Graz, A-8010 Graz, Austria, the Laboratory of Experimental and Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine and
| | - Renate Schreiber
- From the Institute of Molecular Biosciences, University of Graz, A-8010 Graz, Austria
| | - Susanne Grond
- From the Institute of Molecular Biosciences, University of Graz, A-8010 Graz, Austria
| | - Thomas O Eichmann
- From the Institute of Molecular Biosciences, University of Graz, A-8010 Graz, Austria
| | - Martina Schweiger
- From the Institute of Molecular Biosciences, University of Graz, A-8010 Graz, Austria
| | - Albrecht Schmidt
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, A-8036 Graz, Austria, and
| | - Ines K Cerk
- From the Institute of Molecular Biosciences, University of Graz, A-8010 Graz, Austria
| | - Monika Oberer
- From the Institute of Molecular Biosciences, University of Graz, A-8010 Graz, Austria
| | - H-Christian Theussl
- the Transgenic Service, Research Institute of Molecular Pathology (IMP), 1030 Vienna, Austria, and the IMBA Institute of Molecular Biotechnology of the Austrian Academy of Sciences, 1030 Vienna, Austria
| | - Jacek Wojciechowski
- the Transgenic Service, Research Institute of Molecular Pathology (IMP), 1030 Vienna, Austria, and the IMBA Institute of Molecular Biotechnology of the Austrian Academy of Sciences, 1030 Vienna, Austria
| | - Josef M Penninger
- the Transgenic Service, Research Institute of Molecular Pathology (IMP), 1030 Vienna, Austria, and the IMBA Institute of Molecular Biotechnology of the Austrian Academy of Sciences, 1030 Vienna, Austria
| | - Robert Zimmermann
- From the Institute of Molecular Biosciences, University of Graz, A-8010 Graz, Austria
| | - Rudolf Zechner
- From the Institute of Molecular Biosciences, University of Graz, A-8010 Graz, Austria,
| |
Collapse
|
250
|
Leon BM, Maddox TM. Diabetes and cardiovascular disease: Epidemiology, biological mechanisms, treatment recommendations and future research. World J Diabetes 2015; 6:1246-1258. [PMID: 26468341 PMCID: PMC4600176 DOI: 10.4239/wjd.v6.i13.1246] [Citation(s) in RCA: 702] [Impact Index Per Article: 70.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Revised: 05/08/2015] [Accepted: 09/18/2015] [Indexed: 02/05/2023] Open
Abstract
The incidence of diabetes mellitus (DM) continues to rise and has quickly become one of the most prevalent and costly chronic diseases worldwide. A close link exists between DM and cardiovascular disease (CVD), which is the most prevalent cause of morbidity and mortality in diabetic patients. Cardiovascular (CV) risk factors such as obesity, hypertension and dyslipidemia are common in patients with DM, placing them at increased risk for cardiac events. In addition, many studies have found biological mechanisms associated with DM that independently increase the risk of CVD in diabetic patients. Therefore, targeting CV risk factors in patients with DM is critical to minimize the long-term CV complications of the disease. This paper summarizes the relationship between diabetes and CVD, examines possible mechanisms of disease progression, discusses current treatment recommendations, and outlines future research directions.
Collapse
|