201
|
Jung Y, Kim J, Jang H, Kim G, Kwon YW. Strategy of Patient-Specific Therapeutics in Cardiovascular Disease Through Single-Cell RNA Sequencing. Korean Circ J 2022; 53:1-16. [PMID: 36627736 PMCID: PMC9834554 DOI: 10.4070/kcj.2022.0295] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/15/2022] [Indexed: 12/24/2022] Open
Abstract
Recently, single cell RNA sequencing (scRNA-seq) technology has enabled the discovery of novel or rare subtypes of cells and their characteristics. This technique has advanced unprecedented biomedical research by enabling the profiling and analysis of the transcriptomes of single cells at high resolution and throughput. Thus, scRNA-seq has contributed to recent advances in cardiovascular research by the generation of cell atlases of heart and blood vessels and the elucidation of mechanisms involved in cardiovascular development and diseases. This review summarizes the overall workflow of the scRNA-seq technique itself and key findings in the cardiovascular development and diseases based on the previous studies. In particular, we focused on how the single-cell sequencing technology can be utilized in clinical field and precision medicine to treat specific diseases.
Collapse
Affiliation(s)
- Yunseo Jung
- Strategic Center of Cell and Bio Therapy for Heart, Diabetes & Cancer, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Juyeong Kim
- Department of Medicine, Seoul National University College of Medicine, Seoul National University, Seoul, Korea
| | - Howon Jang
- Department of Medicine, Seoul National University College of Medicine, Seoul National University, Seoul, Korea
| | - Gwanhyeon Kim
- Department of Medicine, Seoul National University College of Medicine, Seoul National University, Seoul, Korea
| | - Yoo-Wook Kwon
- Strategic Center of Cell and Bio Therapy for Heart, Diabetes & Cancer, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea.,Department of Medicine, Seoul National University College of Medicine, Seoul National University, Seoul, Korea
| |
Collapse
|
202
|
Proteomic Insights into Cardiac Fibrosis: From Pathophysiological Mechanisms to Therapeutic Opportunities. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248784. [PMID: 36557919 PMCID: PMC9781843 DOI: 10.3390/molecules27248784] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022]
Abstract
Cardiac fibrosis is a common pathophysiologic process in nearly all forms of heart disease which refers to excessive deposition of extracellular matrix proteins by cardiac fibroblasts. Activated fibroblasts are the central cellular effectors in cardiac fibrosis, and fibrotic remodelling can cause several cardiac dysfunctions either by reducing the ejection fraction due to a stiffened myocardial matrix, or by impairing electric conductance. Recently, there is a rising focus on the proteomic studies of cardiac fibrosis for pathogenesis elucidation and potential biomarker mining. This paper summarizes the current knowledge of molecular mechanisms underlying cardiac fibrosis, discusses the potential of imaging and circulating biomarkers available to recognize different phenotypes of this lesion, reviews the currently available and potential future therapies that allow individualized management in reversing progressive fibrosis, as well as the recent progress on proteomic studies of cardiac fibrosis. Proteomic approaches using clinical specimens and animal models can provide the ability to track pathological changes and new insights into the mechanisms underlining cardiac fibrosis. Furthermore, spatial and cell-type resolved quantitative proteomic analysis may also serve as a minimally invasive method for diagnosing cardiac fibrosis and allowing for the initiation of prophylactic treatment.
Collapse
|
203
|
Langa P, Wolska BM, Solaro RJ. The Hippo Signaling Pathway as a Drug Target in Familial Dilated Cardiomyopathy. INTERNATIONAL JOURNAL OF DRUG DISCOVERY AND PHARMACOLOGY 2022; 1:4. [PMID: 38818406 PMCID: PMC11139043 DOI: 10.53941/ijddp.v1i1.189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
We focus here on the Hippo pathway in the hierarchical sensing and modulation of the mechanical state of the adult heart in health and disease. The Hippo pathway interrogates the micro-environment of cardiac myocytes providing surveillance of the mechanical state with engagement of signaling pathways critical to homeostasis of cardiac development, remodeling, and function and vulnerable to pathologies. Our discussion centers on Hippo signaling in the altered mechanical state instigated by variants of genes expressing mutant sarcomere proteins that trigger a progression to dilated cardiomyopathy (familial DCM). There is an unmet need for therapies in DCM. Recent progress in the discovery of small molecules that target Hippo signaling and are intended for use in cardiac disorders provides leads for modifying Hippo in DCM. As we emphasize, identifying useful targets in DCM requires in depth understanding of cell specific Hippo signaling in the cardiac micro-environment.
Collapse
Affiliation(s)
- Paulina Langa
- Department of Physiology and Biophysics and the Center for Cardiovascular Research,University of Illinois at Chicago, Chicago, IL,USA
| | - Beata M. Wolska
- Department of Physiology and Biophysics and the Center for Cardiovascular Research,University of Illinois at Chicago, Chicago, IL,USA
- Department of Medicine, Division of Cardiology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - R. John Solaro
- Department of Physiology and Biophysics and the Center for Cardiovascular Research,University of Illinois at Chicago, Chicago, IL,USA
| |
Collapse
|
204
|
Viveiros A, Noyce RS, Gheblawi M, Colombo D, Bilawchuk LM, Clemente-Casares X, Marchant DJ, Kassiri Z, Del Nonno F, Evans DH, Oudit GY. SARS-CoV-2 infection downregulates myocardial ACE2 and potentiates cardiac inflammation in humans and hamsters. Am J Physiol Heart Circ Physiol 2022; 323:H1262-H1269. [PMID: 36367689 PMCID: PMC9705018 DOI: 10.1152/ajpheart.00578.2022] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Myocardial pathologies resulting from SARS-CoV-2 infections are consistently rising with mounting case rates and reinfections; however, the precise global burden is largely unknown and will have an unprecedented impact. Understanding the mechanisms of COVID-19-mediated cardiac injury is essential toward the development of cardioprotective agents that are urgently needed. Assessing novel therapeutic strategies to tackle COVID-19 necessitates an animal model that recapitulates human disease. Here, we sought to compare SARS-CoV-2-infected animals with patients with COVID-19 to identify common mechanisms of cardiac injury. Two-month-old hamsters were infected with either the ancestral (D614) or Delta variant (B.1.617.2) of SARS-CoV-2 for 2 days, 7 days, and/or 14 days. We measured viral RNA and cytokine expression at the earlier time points to capture the initial stages of infection in the lung and heart. We assessed myocardial angiotensin-converting enzyme 2 (ACE2), the entry receptor for the SARS-CoV-2 virus, and cardioprotective enzyme, as well as markers for inflammatory cell infiltration in the hamster hearts at days 7 and 14. In parallel, human hearts were stained for ACE2, viral nucleocapsid, and inflammatory cells. Indeed, we identify myocardial ACE2 downregulation and myeloid cell burden as common events in both hamsters and humans infected with SARS-CoV-2, and we propose targeting downstream ACE2 downregulation as a therapeutic avenue that warrants clinical investigation.NEW & NOTEWORTHY Cardiac manifestations of COVID-19 in humans are mirrored in the SARS-CoV-2 hamster model, recapitulating myocardial damage, ACE2 downregulation, and a consistent pattern of immune cell infiltration independent of viral dose and variant. Therefore, the hamster model is a valid approach to study therapeutic strategies for COVID-19-related heart disease.
Collapse
Affiliation(s)
- Anissa Viveiros
- 1Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada,2Mazankowski Alberta Heart Institute, University of
Alberta, Edmonton, Alberta, Canada
| | - Ryan S. Noyce
- 3Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada,4Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Mahmoud Gheblawi
- 1Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Daniele Colombo
- 5Pathology Unit, IRCCS Istituto Nazionale per le Malattie
Infettive “Lazzaro Spallanzani”, Rome, Italy
| | - Leanne M. Bilawchuk
- 3Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada,4Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Xavier Clemente-Casares
- 4Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - David J. Marchant
- 3Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada,4Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Zamaneh Kassiri
- 1Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Franca Del Nonno
- 5Pathology Unit, IRCCS Istituto Nazionale per le Malattie
Infettive “Lazzaro Spallanzani”, Rome, Italy
| | - David H. Evans
- 3Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada,4Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Gavin Y. Oudit
- 1Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada,2Mazankowski Alberta Heart Institute, University of
Alberta, Edmonton, Alberta, Canada,6Division of Cardiology, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
205
|
Dewing JM, Saunders V, O’Kelly I, Wilson DI. Defining cardiac cell populations and relative cellular composition of the early fetal human heart. PLoS One 2022; 17:e0259477. [PMID: 36449524 PMCID: PMC9710754 DOI: 10.1371/journal.pone.0259477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/08/2022] [Indexed: 12/03/2022] Open
Abstract
While the adult human heart is primarily composed of cardiomyocytes, fibroblasts, endothelial and smooth muscle cells, the cellular composition during early development remains largely unknown. Reliable identification of fetal cardiac cell types using protein markers is critical to understand cardiac development and delineate the cellular composition of the developing human heart. This is the first study to use immunohistochemistry (IHC), flow cytometry and RT-PCR analyses to investigate the expression and specificity of commonly used cardiac cell markers in the early human fetal heart (8-12 post-conception weeks). The expression of previously reported protein markers for the detection of cardiomyocytes (Myosin Heavy Chain (MHC) and cardiac troponin I (cTnI), fibroblasts (DDR2, THY1, Vimentin), endothelial cells (CD31) and smooth muscle cells (α-SMA) were assessed. Two distinct populations of cTnI positive cells were identified through flow cytometry, with MHC positive cardiomyocytes showing high cTnI expression (cTnIHigh) while MHC negative non-myocytes showed lower cTnI expression (cTnILow). cTnI expression in non-myocytes was further confirmed by IHC and RT-PCR analyses, suggesting troponins are not cardiomyocyte-specific and may play distinct roles in non-muscle cells during early development. Vimentin (VIM) was expressed in cultured ventricular fibroblast populations and flow cytometry revealed VIMHigh and VIMLow cell populations in the fetal heart. MHC positive cardiomyocytes were VIMLow whilst CD31 positive endothelial cells were VIMHigh. Using markers investigated within this study, we characterised fetal human cardiac populations and estimate that 75-80% of fetal cardiac cells are cardiomyocytes and are MHC+/cTnIHigh/VIMLow, whilst non-myocytes comprise 20-25% of total cells and are MHC-/cTnILow/VIMHigh, with CD31+ endothelial cells comprising ~9% of this population. These findings show distinct differences from those reported for adult heart.
Collapse
Affiliation(s)
- Jennifer M. Dewing
- Institute for Developmental Sciences, School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- * E-mail:
| | - Vinay Saunders
- Institute for Developmental Sciences, School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Ita O’Kelly
- Institute for Developmental Sciences, School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Immunocore Ltd, Abingdon, Oxford, United Kingdom
| | - David I. Wilson
- Institute for Developmental Sciences, School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
206
|
Xu L, Fan Y, Wang J, Shi R. Dysfunctional intercellular communication and metabolic signaling pathways in thin endometrium. Front Physiol 2022; 13:1050690. [PMID: 36505055 PMCID: PMC9729336 DOI: 10.3389/fphys.2022.1050690] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/14/2022] [Indexed: 11/25/2022] Open
Abstract
Background: The endometrial thickness is a key factor for successful implantation. Thin endometrium is associated with lower implantation rate and pregnancy rate. Lacking of a better understanding for the cellular and molecular mechanisms of thin endometrium, managing patients with thin endometrium still represents a major challenge for clinicians. Methods: In this study, we combined four single-cell RNA sequencing (scRNA-seq) and one bulk sequencing (bulk-seq) data for thin endometrium to perform an integrated analysis for endometrial cells in proliferating phase. Cell proportion and differentially expressed genes (DEGs) were analyzed to determine the disease-specific cell type and signaling pathways. The cell-cell communication among cell types were inferred by "CellChat" to illustrate the differential intercellular communication under normal and thin endometrium conditions. GSEA and GSVA were applied to identify dysfunctional signals and metabolic pathways before and after thin endometrium. Results: Integration of scRNA-seq identified eight cell types. The proportion of stromal cells showed a significant difference between normal and thin endometrial tissue. The DEGs in diverse cell types revealed enriched pathways in a cell-specific manner. Aberrant cell-cell signaling transduction was found in almost all cell types, especially in immune cells and epithelial cells. Furthermore, dysfunctional metabolic signaling pathways were induced in a cell-type dependent way. The down-regulation of carbohydrate metabolism and nucleotide metabolism was observed and the energy metabolism switch was indicated. Conclusion: Conclusively, we discover dysfunctional signals and metabolic pathways in thin endometrium, providing insight into mechanisms and therapeutic strategies for the atrophic endometrium.
Collapse
Affiliation(s)
- Liang Xu
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yingying Fan
- Department of Obstetrics and Gynecology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jianjun Wang
- Department of Obstetrics and Gynecology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China,*Correspondence: Jianjun Wang, ; Rui Shi,
| | - Rui Shi
- Department of Obstetrics and Gynecology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China,*Correspondence: Jianjun Wang, ; Rui Shi,
| |
Collapse
|
207
|
Faber JW, Wüst RCI, Dierx I, Hummelink JA, Kuster DWD, Nollet E, Moorman AFM, Sánchez-Quintana D, van der Wal AC, Christoffels VM, Jensen B. Equal force generation potential of trabecular and compact wall ventricular cardiomyocytes. iScience 2022; 25:105393. [PMID: 36345331 PMCID: PMC9636041 DOI: 10.1016/j.isci.2022.105393] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/20/2022] [Accepted: 10/14/2022] [Indexed: 11/09/2022] Open
Abstract
Trabecular myocardium makes up most of the ventricular wall of the human embryo. A process of compaction in the fetal period presumably changes ventricular wall morphology by converting ostensibly weaker trabecular myocardium into stronger compact myocardium. Using developmental series of embryonic and fetal humans, mice and chickens, we show ventricular morphogenesis is driven by differential rates of growth of trabecular and compact layers rather than a process of compaction. In mouse, fetal cardiomyocytes are relatively weak but adult cardiomyocytes from the trabecular and compact layer show an equally large force generating capacity. In fetal and adult humans, trabecular and compact myocardium are not different in abundance of immunohistochemically detected vascular, mitochondrial and sarcomeric proteins. Similar findings are made in human excessive trabeculation, a congenital malformation. In conclusion, trabecular and compact myocardium is equally equipped for force production and their proportions are determined by differential growth rates rather than by compaction.
Collapse
Affiliation(s)
- Jaeike W Faber
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centres, Amsterdam, the Netherlands
| | - Rob C I Wüst
- Laboratory for Myology, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Inge Dierx
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centres, Amsterdam, the Netherlands
| | - Janneke A Hummelink
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centres, Amsterdam, the Netherlands
| | - Diederik W D Kuster
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centres, Amsterdam, the Netherlands
| | - Edgar Nollet
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centres, Amsterdam, the Netherlands
| | - Antoon F M Moorman
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centres, Amsterdam, the Netherlands
| | | | - Allard C van der Wal
- Department of Pathology, Amsterdam University Medical Centres, Amsterdam, the Netherlands
| | - Vincent M Christoffels
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centres, Amsterdam, the Netherlands
| | - Bjarke Jensen
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centres, Amsterdam, the Netherlands
| |
Collapse
|
208
|
Levin MG, Tsao NL, Singhal P, Liu C, Vy HMT, Paranjpe I, Backman JD, Bellomo TR, Bone WP, Biddinger KJ, Hui Q, Dikilitas O, Satterfield BA, Yang Y, Morley MP, Bradford Y, Burke M, Reza N, Charest B, Judy RL, Puckelwartz MJ, Hakonarson H, Khan A, Kottyan LC, Kullo I, Luo Y, McNally EM, Rasmussen-Torvik LJ, Day SM, Do R, Phillips LS, Ellinor PT, Nadkarni GN, Ritchie MD, Arany Z, Cappola TP, Margulies KB, Aragam KG, Haggerty CM, Joseph J, Sun YV, Voight BF, Damrauer SM. Genome-wide association and multi-trait analyses characterize the common genetic architecture of heart failure. Nat Commun 2022; 13:6914. [PMID: 36376295 PMCID: PMC9663424 DOI: 10.1038/s41467-022-34216-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/17/2022] [Indexed: 11/16/2022] Open
Abstract
Heart failure is a leading cause of cardiovascular morbidity and mortality. However, the contribution of common genetic variation to heart failure risk has not been fully elucidated, particularly in comparison to other common cardiometabolic traits. We report a multi-ancestry genome-wide association study meta-analysis of all-cause heart failure including up to 115,150 cases and 1,550,331 controls of diverse genetic ancestry, identifying 47 risk loci. We also perform multivariate genome-wide association studies that integrate heart failure with related cardiac magnetic resonance imaging endophenotypes, identifying 61 risk loci. Gene-prioritization analyses including colocalization and transcriptome-wide association studies identify known and previously unreported candidate cardiomyopathy genes and cellular processes, which we validate in gene-expression profiling of failing and healthy human hearts. Colocalization, gene expression profiling, and Mendelian randomization provide convergent evidence for the roles of BCKDHA and circulating branch-chain amino acids in heart failure and cardiac structure. Finally, proteome-wide Mendelian randomization identifies 9 circulating proteins associated with heart failure or quantitative imaging traits. These analyses highlight similarities and differences among heart failure and associated cardiovascular imaging endophenotypes, implicate common genetic variation in the pathogenesis of heart failure, and identify circulating proteins that may represent cardiomyopathy treatment targets.
Collapse
Affiliation(s)
- Michael G Levin
- Division of Cardiovascular Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
| | - Noah L Tsao
- Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Pankhuri Singhal
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Chang Liu
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Ha My T Vy
- The Charles Bronfman Institute of Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ishan Paranjpe
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Tiffany R Bellomo
- Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - William P Bone
- Genomics and Computational Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kiran J Biddinger
- Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Qin Hui
- Emory University School of Public Health, Atlanta, GA, USA
- Atlanta VA Health Care System, Decatur, GA, USA
| | - Ozan Dikilitas
- Departments of Internal Medicine and Cardiovascular Medicine, and Mayo Clinician-Investigator Training Program, Mayo Clinic, Rochester, MN, USA
| | | | - Yifan Yang
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael P Morley
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yuki Bradford
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Megan Burke
- Division of Cardiovascular Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nosheen Reza
- Division of Cardiovascular Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Brian Charest
- Massachusetts Veterans Epidemiology Research and Information Center, VA Boston Healthcare System, Boston, MA, USA
| | - Renae L Judy
- Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Megan J Puckelwartz
- Department of Pharmacology, Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Hakon Hakonarson
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Atlas Khan
- Division of Nephrology, Department of Medicine, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Leah C Kottyan
- Department of Pediatrics, Division of Human Genetics and Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Iftikhar Kullo
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Yuan Luo
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Elizabeth M McNally
- Center for Genetic Medicine, Bluhm Cardiovascular Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Laura J Rasmussen-Torvik
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Sharlene M Day
- Division of Cardiovascular Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ron Do
- The Charles Bronfman Institute for Personalized Medicine, BioMe Phenomics Center, and Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lawrence S Phillips
- Atlanta VA Health Care System, Decatur, GA, USA
- Division of Endocrinology, Emory University School of Medicine, Atlanta, GA, USA
| | - Patrick T Ellinor
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center and Cardiac Arrhythmia Service, Massachusetts General Hospital, Boston, MA, USA
| | - Girish N Nadkarni
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marylyn D Ritchie
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Institute for Biomedical Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Zoltan Arany
- Division of Cardiovascular Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Thomas P Cappola
- Division of Cardiovascular Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kenneth B Margulies
- Division of Cardiovascular Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Krishna G Aragam
- Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Christopher M Haggerty
- Department of Translational Data Science and Informatics and Heart Institute, Geisinger, Danville, PA, USA
| | - Jacob Joseph
- Massachusetts Veterans Epidemiology Research and Information Center, VA Boston Healthcare System, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yan V Sun
- Emory University School of Public Health, Atlanta, GA, USA
- Atlanta VA Health Care System, Decatur, GA, USA
| | - Benjamin F Voight
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Institute of Translational Medicine and Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Scott M Damrauer
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA.
- Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
209
|
Abplanalp WT, Tucker N, Dimmeler S. Single-cell technologies to decipher cardiovascular diseases. Eur Heart J 2022; 43:4536-4547. [PMID: 35265972 PMCID: PMC9659476 DOI: 10.1093/eurheartj/ehac095] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/30/2022] [Accepted: 02/15/2022] [Indexed: 12/14/2022] Open
Abstract
Cardiovascular disease remains the leading cause of death worldwide. A deeper understanding of the multicellular composition and molecular processes may help to identify novel therapeutic strategies. Single-cell technologies such as single-cell or single-nuclei RNA sequencing provide expression profiles of individual cells and allow for dissection of heterogeneity in tissue during health and disease. This review will summarize (i) how these novel technologies have become critical for delineating mechanistic drivers of cardiovascular disease, particularly, in humans and (ii) how they might serve as diagnostic tools for risk stratification or individualized therapy. The review will further discuss technical pitfalls and provide an overview of publicly available human and mouse data sets that can be used as a resource for research.
Collapse
Affiliation(s)
- Wesley Tyler Abplanalp
- Institute for Cardiovascular Regeneration, Centre of Molecular Medicine, Goethe University Frankfurt, Theodor Stern Kai 7, 60590 Frankfurt, Germany
- German Center for Cardiovascular Research DZHK, Partner site Frankfurt Rhine-Main, Berlin, Germany
- Cardiopulmonary Institute, Goethe University Frankfurt, Frankfurt, Germany
| | - Nathan Tucker
- Masonic Medical Research Institute, Utica, NY, USA
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Boston, MA, USA
| | - Stefanie Dimmeler
- Institute for Cardiovascular Regeneration, Centre of Molecular Medicine, Goethe University Frankfurt, Theodor Stern Kai 7, 60590 Frankfurt, Germany
- German Center for Cardiovascular Research DZHK, Partner site Frankfurt Rhine-Main, Berlin, Germany
- Cardiopulmonary Institute, Goethe University Frankfurt, Frankfurt, Germany
| |
Collapse
|
210
|
Ricketts SN, Qian L. The heart of cardiac reprogramming: The cardiac fibroblasts. J Mol Cell Cardiol 2022; 172:90-99. [PMID: 36007393 DOI: 10.1016/j.yjmcc.2022.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/29/2022] [Accepted: 08/13/2022] [Indexed: 12/14/2022]
Abstract
Cardiovascular disease is the leading cause of death worldwide, outpacing pulmonary disease, infectious disease, and all forms of cancer. Myocardial infarction (MI) dominates cardiovascular disease, contributing to four out of five cardiovascular related deaths. Following MI, patients suffer adverse and irreversible myocardial remodeling associated with cardiomyocyte loss and infiltration of fibrotic scar tissue. Current therapies following MI only mitigate the cardiac physiological decline rather than restore damaged myocardium function. Direct cardiac reprogramming is one strategy that has promise in repairing injured cardiac tissue by generating new, functional cardiomyocytes from cardiac fibroblasts (CFs). With the ectopic expression of transcription factors, microRNAs, and small molecules, CFs can be reprogrammed into cardiomyocyte-like cells (iCMs) that display molecular signatures, structures, and contraction abilities similar to endogenous cardiomyocytes. The in vivo induction of iCMs following MI leads to significant reduction in fibrotic cardiac remodeling and improved heart function, indicating reprogramming is a viable option for repairing damaged heart tissue. Recent work has illustrated different methods to understand the mechanisms driving reprogramming, in an effort to improve the efficiency of iCM generation and create an approach translational into clinic. This review will provide an overview of CFs and describe different in vivo reprogramming methods.
Collapse
Affiliation(s)
- Shea N Ricketts
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Li Qian
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
211
|
Calcagno DM, Taghdiri N, Ninh VK, Mesfin JM, Toomu A, Sehgal R, Lee J, Liang Y, Duran JM, Adler E, Christman KL, Zhang K, Sheikh F, Fu Z, King KR. Single-cell and spatial transcriptomics of the infarcted heart define the dynamic onset of the border zone in response to mechanical destabilization. NATURE CARDIOVASCULAR RESEARCH 2022; 1:1039-1055. [PMID: 39086770 PMCID: PMC11290420 DOI: 10.1038/s44161-022-00160-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 10/03/2022] [Indexed: 08/02/2024]
Abstract
The border zone (BZ) of the infarcted heart is a geographically complex and biologically enigmatic interface separating poorly perfused infarct zones (IZs) from remote zones (RZs). The cellular and molecular mechanisms of myocardial BZs are not well understood because microdissection inevitably combines them with uncontrolled amounts of RZs and IZs. Here, we use single-cell/nucleus RNA sequencing, spatial transcriptomics and multiplexed RNA fluorescence in situ hybridization to redefine the BZ based on cardiomyocyte transcriptomes. BZ1 (Nppa + Xirp2 -) forms a hundreds-of-micrometer-thick layer of morphologically intact cells adjacent to RZs that are detectable within an hour of injury. Meanwhile, BZ2 (Nppa + Xirp2 +) forms a near-single-cell-thick layer of morphologically distorted cardiomyocytes at the IZ edge that colocalize with matricellular protein-expressing myofibroblasts and express predominantly mechanotransduction genes. Surprisingly, mechanical injury alone is sufficient to induce BZ genes. We propose a 'loss of neighbor' hypothesis to explain how ischemic cell death mechanically destabilizes the BZ to induce its transcriptional response.
Collapse
Affiliation(s)
- D. M. Calcagno
- Department of Bioengineering, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA
- These authors contributed equally: D.M. Calcagno, N. Taghdiri
| | - N. Taghdiri
- Department of Bioengineering, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA
- These authors contributed equally: D.M. Calcagno, N. Taghdiri
| | - V. K. Ninh
- Division of Cardiology and Cardiovascular Institute, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - J. M. Mesfin
- Department of Bioengineering, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA
| | - A. Toomu
- Department of Bioengineering, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA
| | - R. Sehgal
- Department of Bioengineering, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA
| | - J. Lee
- Department of Bioengineering, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA
| | - Y. Liang
- Division of Cardiology and Cardiovascular Institute, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - J. M. Duran
- Division of Cardiology and Cardiovascular Institute, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - E. Adler
- Division of Cardiology and Cardiovascular Institute, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - K. L. Christman
- Department of Bioengineering, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA
| | - K. Zhang
- Department of Bioengineering, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA
| | - F. Sheikh
- Division of Cardiology and Cardiovascular Institute, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Z. Fu
- Department of Bioengineering, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA
| | - K. R. King
- Department of Bioengineering, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA
- Division of Cardiology and Cardiovascular Institute, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
212
|
Chou EL, Chaffin M, Simonson B, Pirruccello JP, Akkad AD, Nekoui M, Cardenas CLL, Bedi KC, Nash C, Juric D, Stone JR, Isselbacher EM, Margulies KB, Klattenhoff C, Ellinor PT, Lindsay ME. Aortic Cellular Diversity and Quantitative Genome-Wide Association Study Trait Prioritization Through Single-Nuclear RNA Sequencing of the Aneurysmal Human Aorta. Arterioscler Thromb Vasc Biol 2022; 42:1355-1374. [PMID: 36172868 PMCID: PMC9613617 DOI: 10.1161/atvbaha.122.317953] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 09/16/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND Mural cells in ascending aortic aneurysms undergo phenotypic changes that promote extracellular matrix destruction and structural weakening. To explore this biology, we analyzed the transcriptional features of thoracic aortic tissue. METHODS Single-nuclear RNA sequencing was performed on 13 samples from human donors, 6 with thoracic aortic aneurysm, and 7 without aneurysm. Individual transcriptomes were then clustered based on transcriptional profiles. Clusters were used for between-disease differential gene expression analyses, subcluster analysis, and analyzed for intersection with genetic aortic trait data. RESULTS We sequenced 71 689 nuclei from human thoracic aortas and identified 14 clusters, aligning with 11 cell types, predominantly vascular smooth muscle cells (VSMCs) consistent with aortic histology. With unbiased methodology, we found 7 vascular smooth muscle cell and 6 fibroblast subclusters. Differentially expressed genes analysis revealed a vascular smooth muscle cell group accounting for the majority of differential gene expression. Fibroblast populations in aneurysm exhibit distinct behavior with almost complete disappearance of quiescent fibroblasts. Differentially expressed genes were used to prioritize genes at aortic diameter and distensibility genome-wide association study loci highlighting the genes JUN, LTBP4 (latent transforming growth factor beta-binding protein 1), and IL34 (interleukin 34) in fibroblasts, ENTPD1, PDLIM5 (PDZ and LIM domain 5), ACTN4 (alpha-actinin-4), and GLRX in vascular smooth muscle cells, as well as LRP1 in macrophage populations. CONCLUSIONS Using nuclear RNA sequencing, we describe the cellular diversity of healthy and aneurysmal human ascending aorta. Sporadic aortic aneurysm is characterized by differential gene expression within known cellular classes rather than by the appearance of novel cellular forms. Single-nuclear RNA sequencing of aortic tissue can be used to prioritize genes at aortic trait loci.
Collapse
Affiliation(s)
- Elizabeth L. Chou
- Division of Vascular and Endovascular Surgery,
Massachusetts General Hospital, Boston, Massachusetts, USA
- Cardiovascular Research Center, Massachusetts General
Hospital, Boston, Massachusetts, USA
- Cardiovascular Disease Initiative, Broad Institute,
Cambridge, Massachusetts, USA
| | - Mark Chaffin
- Cardiovascular Disease Initiative, Broad Institute,
Cambridge, Massachusetts, USA
- Precision Cardiology Laboratory, The Broad Institute,
Cambridge, MA, USA 02142
| | - Bridget Simonson
- Cardiovascular Disease Initiative, Broad Institute,
Cambridge, Massachusetts, USA
- Precision Cardiology Laboratory, The Broad Institute,
Cambridge, MA, USA 02142
| | - James P. Pirruccello
- Cardiology Division, Massachusetts General Hospital,
Boston, Massachusetts, USA
- Cardiovascular Research Center, Massachusetts General
Hospital, Boston, Massachusetts, USA
- Cardiovascular Disease Initiative, Broad Institute,
Cambridge, Massachusetts, USA
- Precision Cardiology Laboratory, The Broad Institute,
Cambridge, MA, USA 02142
- Demoulas Center for Cardiac Arrhythmias, Massachusetts
General Hospital, Boston, Massachusetts, USA
| | - Amer-Denis Akkad
- Precision Cardiology Laboratory, Bayer US LLC, Cambridge,
MA, USA 02142
| | - Mahan Nekoui
- Cardiovascular Disease Initiative, Broad Institute,
Cambridge, Massachusetts, USA
- Demoulas Center for Cardiac Arrhythmias, Massachusetts
General Hospital, Boston, Massachusetts, USA
| | - Christian Lacks Lino Cardenas
- Cardiology Division, Massachusetts General Hospital,
Boston, Massachusetts, USA
- Cardiovascular Research Center, Massachusetts General
Hospital, Boston, Massachusetts, USA
| | - Kenneth C. Bedi
- Perelman School of Medicine, University of Pennsylvania,
Philadelphia, PA, USA 19104
| | - Craig Nash
- Cardiovascular Disease Initiative, Broad Institute,
Cambridge, Massachusetts, USA
- Precision Cardiology Laboratory, The Broad Institute,
Cambridge, MA, USA 02142
| | - Dejan Juric
- Cancer Center, Massachusetts General Hospital, Boston,
Massachusetts, USA
| | - James R. Stone
- Department of Pathology, Massachusetts General
Hospital, Boston, Massachusetts, USA
| | - Eric M. Isselbacher
- Cardiology Division, Massachusetts General Hospital,
Boston, Massachusetts, USA
- Cardiovascular Research Center, Massachusetts General
Hospital, Boston, Massachusetts, USA
- Thoracic Aortic Center, Massachusetts General Hospital,
Boston, Massachusetts, USA
| | - Kenneth B. Margulies
- Perelman School of Medicine, University of Pennsylvania,
Philadelphia, PA, USA 19104
| | - Carla Klattenhoff
- Precision Cardiology Laboratory, Bayer US LLC, Cambridge,
MA, USA 02142
| | - Patrick T. Ellinor
- Cardiology Division, Massachusetts General Hospital,
Boston, Massachusetts, USA
- Cardiovascular Research Center, Massachusetts General
Hospital, Boston, Massachusetts, USA
- Cardiovascular Disease Initiative, Broad Institute,
Cambridge, Massachusetts, USA
- Precision Cardiology Laboratory, The Broad Institute,
Cambridge, MA, USA 02142
- Demoulas Center for Cardiac Arrhythmias, Massachusetts
General Hospital, Boston, Massachusetts, USA
| | - Mark E. Lindsay
- Cardiology Division, Massachusetts General Hospital,
Boston, Massachusetts, USA
- Cardiovascular Research Center, Massachusetts General
Hospital, Boston, Massachusetts, USA
- Cardiovascular Disease Initiative, Broad Institute,
Cambridge, Massachusetts, USA
- Thoracic Aortic Center, Massachusetts General Hospital,
Boston, Massachusetts, USA
| |
Collapse
|
213
|
Li Z, Yao F, Yu P, Li D, Zhang M, Mao L, Shen X, Ren Z, Wang L, Zhou B. Postnatal state transition of cardiomyocyte as a primary step in heart maturation. Protein Cell 2022; 13:842-862. [PMID: 35394262 PMCID: PMC9237199 DOI: 10.1007/s13238-022-00908-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 01/17/2022] [Indexed: 11/26/2022] Open
Abstract
Postnatal heart maturation is the basis of normal cardiac function and provides critical insights into heart repair and regenerative medicine. While static snapshots of the maturing heart have provided much insight into its molecular signatures, few key events during postnatal cardiomyocyte maturation have been uncovered. Here, we report that cardiomyocytes (CMs) experience epigenetic and transcriptional decline of cardiac gene expression immediately after birth, leading to a transition state of CMs at postnatal day 7 (P7) that was essential for CM subtype specification during heart maturation. Large-scale single-cell analysis and genetic lineage tracing confirm the presence of transition state CMs at P7 bridging immature state and mature states. Silencing of key transcription factor JUN in P1-hearts significantly repressed CM transition, resulting in perturbed CM subtype proportions and reduced cardiac function in mature hearts. In addition, transplantation of P7-CMs into infarcted hearts exhibited cardiac repair potential superior to P1-CMs. Collectively, our data uncover CM state transition as a key event in postnatal heart maturation, which not only provides insights into molecular foundations of heart maturation, but also opens an avenue for manipulation of cardiomyocyte fate in disease and regenerative medicine.
Collapse
Affiliation(s)
- Zheng Li
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, 518057, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
- Key Laboratory of Pluripotent Stem Cells in Cardiac Repair and Regeneration, Chinese Academy of Medical Sciences, Beijing, 100037, China
| | - Fang Yao
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, 518057, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
- Key Laboratory of Pluripotent Stem Cells in Cardiac Repair and Regeneration, Chinese Academy of Medical Sciences, Beijing, 100037, China
| | - Peng Yu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Dandan Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Mingzhi Zhang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Lin Mao
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Xiaomeng Shen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Zongna Ren
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Li Wang
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, 518057, China.
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
- Key Laboratory of Pluripotent Stem Cells in Cardiac Repair and Regeneration, Chinese Academy of Medical Sciences, Beijing, 100037, China.
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, People's Republic of China.
| | - Bingying Zhou
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, 518057, China.
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
- Key Laboratory of Pluripotent Stem Cells in Cardiac Repair and Regeneration, Chinese Academy of Medical Sciences, Beijing, 100037, China.
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, People's Republic of China.
| |
Collapse
|
214
|
Ding S, Zhang X, Qiu H, Wo J, Zhang F, Na J. Non-cardiomyocytes in the heart in embryo development, health, and disease, a single-cell perspective. Front Cell Dev Biol 2022; 10:873264. [PMID: 36393852 PMCID: PMC9661523 DOI: 10.3389/fcell.2022.873264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 10/14/2022] [Indexed: 11/25/2022] Open
Abstract
Recent single-cell atlases of the heart gave unprecedented details about the diversity of cell types and states during heart development in health and disease conditions. Beyond a profiling tool, researchers also use single-cell analyses to dissect the mechanism of diseases in animal models. The new knowledge from these studies revealed that beating cardiomyocytes account for less than 50% of the total heart cell population. In contrast, non-cardiomyocytes (NCMs), such as cardiac fibroblasts, endothelial cells, and immune cells, make up the remaining proportion and have indispensable roles in structural support, homeostasis maintenance, and injury repair of the heart. In this review, we categorize the composition and characteristics of NCMs from the latest single-cell studies of the heart in various contexts and compare the findings from both human samples and mouse models. This information will enrich our understanding of the cellular basis of heart development and diseases and provide insights into the potential therapeutic targets in NCMs to repair the heart.
Collapse
Affiliation(s)
- Shuangyuan Ding
- School of Medicine, Tsinghua University, Beijing, China
- Center for Life Sciences, Tsinghua University and Peking University, Beijing, China
- *Correspondence: Shuangyuan Ding, ; Jie Na,
| | - Xingwu Zhang
- School of Medicine, Tsinghua University, Beijing, China
| | - Hui Qiu
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Jiaoyang Wo
- Center for Life Sciences, Tsinghua University and Peking University, Beijing, China
| | - Fengzhi Zhang
- Central Laboratory, First Hospital of Tsinghua University, Beijing, China
| | - Jie Na
- School of Medicine, Tsinghua University, Beijing, China
- *Correspondence: Shuangyuan Ding, ; Jie Na,
| |
Collapse
|
215
|
Identifying disease-critical cell types and cellular processes by integrating single-cell RNA-sequencing and human genetics. Nat Genet 2022; 54:1479-1492. [PMID: 36175791 PMCID: PMC9910198 DOI: 10.1038/s41588-022-01187-9] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/18/2022] [Indexed: 12/13/2022]
Abstract
Genome-wide association studies provide a powerful means of identifying loci and genes contributing to disease, but in many cases, the related cell types/states through which genes confer disease risk remain unknown. Deciphering such relationships is important for identifying pathogenic processes and developing therapeutics. In the present study, we introduce sc-linker, a framework for integrating single-cell RNA-sequencing, epigenomic SNP-to-gene maps and genome-wide association study summary statistics to infer the underlying cell types and processes by which genetic variants influence disease. The inferred disease enrichments recapitulated known biology and highlighted notable cell-disease relationships, including γ-aminobutyric acid-ergic neurons in major depressive disorder, a disease-dependent M-cell program in ulcerative colitis and a disease-specific complement cascade process in multiple sclerosis. In autoimmune disease, both healthy and disease-dependent immune cell-type programs were associated, whereas only disease-dependent epithelial cell programs were prominent, suggesting a role in disease response rather than initiation. Our framework provides a powerful approach for identifying the cell types and cellular processes by which genetic variants influence disease.
Collapse
|
216
|
Eaton DM, Berretta RM, Lynch JE, Travers JG, Pfeiffer RD, Hulke ML, Zhao H, Hobby ARH, Schena G, Johnson JP, Wallner M, Lau E, Lam MPY, Woulfe KC, Tucker NR, McKinsey TA, Wolfson MR, Houser SR. Sex-specific responses to slow progressive pressure overload in a large animal model of HFpEF. Am J Physiol Heart Circ Physiol 2022; 323:H797-H817. [PMID: 36053749 PMCID: PMC9550571 DOI: 10.1152/ajpheart.00374.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/22/2022]
Abstract
Approximately 50% of all heart failure (HF) diagnoses can be classified as HF with preserved ejection fraction (HFpEF). HFpEF is more prevalent in females compared with males, but the underlying mechanisms are unknown. We previously showed that pressure overload (PO) in male felines induces a cardiopulmonary phenotype with essential features of human HFpEF. The goal of this study was to determine if slow progressive PO induces distinct cardiopulmonary phenotypes in females and males in the absence of other pathological stressors. Female and male felines underwent aortic constriction (banding) or sham surgery after baseline echocardiography, pulmonary function testing, and blood sampling. These assessments were repeated at 2 and 4 mo postsurgery to document the effects of slow progressive pressure overload. At 4 mo, invasive hemodynamic studies were also performed. Left ventricle (LV) tissue was collected for histology, myofibril mechanics, extracellular matrix (ECM) mass spectrometry, and single-nucleus RNA sequencing (snRNAseq). The induced pressure overload (PO) was not different between sexes. PO also induced comparable changes in LV wall thickness and myocyte cross-sectional area in both sexes. Both sexes had preserved ejection fraction, but males had a slightly more robust phenotype in hemodynamic and pulmonary parameters. There was no difference in LV fibrosis and ECM composition between banded male and female animals. LV snRNAseq revealed changes in gene programs of individual cell types unique to males and females after PO. Based on these results, both sexes develop cardiopulmonary dysfunction but the phenotype is somewhat less advanced in females.NEW & NOTEWORTHY We performed a comprehensive assessment to evaluate the effects of slow progressive pressure overload on cardiopulmonary function in a large animal model of heart failure with preserved ejection fraction (HFpEF) in males and females. Functional and structural assessments were performed at the organ, tissue, cellular, protein, and transcriptional levels. This is the first study to compare snRNAseq and ECM mass spectrometry of HFpEF myocardium from males and females. The results broaden our understanding of the pathophysiological response of both sexes to pressure overload. Both sexes developed a robust cardiopulmonary phenotype, but the phenotype was equal or a bit less robust in females.
Collapse
Affiliation(s)
- Deborah M Eaton
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
- Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Remus M Berretta
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
- Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Jacqueline E Lynch
- Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
- Department of Physiology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
- Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
- Department of Pediatrics, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
- CENTRe: Consortium for Environmental and Neonatal Therapeutics Research, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Joshua G Travers
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | | | | | - Huaqing Zhao
- Center for Biostatistics and Epidemiology, Department of Biomedical Education and Data Science, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Alexander R H Hobby
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
- Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Giana Schena
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
- Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Jaslyn P Johnson
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
- Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Markus Wallner
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
- Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
- Division of Cardiology, Medical University of Graz, Graz, Austria
| | - Edward Lau
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Maggie P Y Lam
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Kathleen C Woulfe
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Nathan R Tucker
- Masonic Medical Research Institute, Utica, New York
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Boston, Massachusetts
| | - Timothy A McKinsey
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Marla R Wolfson
- Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
- Department of Physiology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
- Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
- Department of Pediatrics, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
- CENTRe: Consortium for Environmental and Neonatal Therapeutics Research, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Steven R Houser
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
- Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
217
|
Abstract
BACKGROUND Chronic heart failure (CHF) is associated with redox imbalance. Downregulation of Nrf2 (nuclear factor [erythroid-derived 2]-like 2) plays important roles in disrupting myocardial redox homeostasis and mediating sympathetic nerve activity in the setting of CHF. However, it is unclear if circulating extracellular vesicles (EVs) elicit sympathetic excitation in CHF by disrupting central redox homeostasis. We tested the hypothesis that cardiac-derived EVs circulate to the presympathetic rostral ventrolateral medulla and contribute to oxidative stress and sympathetic excitation via EV-enriched microRNA-mediated Nrf2 downregulation. METHODS Data were collected on rats with CHF post-myocardial infarction (MI) and on human subjects with ischemic CHF. EVs were isolated from tissue and plasma, and we determined the miRNAs cargo that related to targeting Nrf2 translation. We tracked the distribution of cardiac-derived EVs using in vitro labeled circulating EVs and cardiac-specific membrane GFP+ transgenic mice. Finally, we tested the impact of exogenously loading of antagomirs to specific Nrf2-related miRNAs on CHF-EV-induced pathophysiological phenotypes in normal rats (eg, sympathetic and cardiac function). RESULTS Nrf2 downregulation in CHF rats was associated with an upregulation of Nrf2-targeting miRNAs, which were abundant in cardiac-derived and circulating EVs from rats and humans. EVs isolated from the brain of CHF rats were also enriched with Nrf2-targeting miRNAs and cardiac-specific miRNAs. Cardiac-derived EVs were taken up by neurons in the rostral ventrolateral medulla. The administration of cardiac-derived and circulating EVs from CHF rats into the rostral ventrolateral medulla of normal rats evoked an increase in renal sympathetic nerve activity and plasma norepinephrine compared with Sham-operated rats, which were attenuated by exogenously preloading CHF-EVs with antagomirs to Nrf2-targeting miRNAs. CONCLUSIONS Cardiac microRNA-enriched EVs from animals with CHF can mediate crosstalk between the heart and the brain in the regulation of sympathetic outflow by targeting the Nrf2/antioxidant signaling pathway. This new endocrine signaling pathway regulating sympathetic outflow in CHF may be exploited for novel therapeutics.
Collapse
Affiliation(s)
- Changhai Tian
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536
| | - Lie Gao
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE 68198
| | - Tara L. Rudebush
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198
| | - Li Yu
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198
| | - Irving H. Zucker
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198
| |
Collapse
|
218
|
Yang F, Wang W, Wang F, Fang Y, Tang D, Huang J, Lu H, Yao J. scBERT as a large-scale pretrained deep language model for cell type annotation of single-cell RNA-seq data. NAT MACH INTELL 2022. [DOI: 10.1038/s42256-022-00534-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
219
|
Comparative Evaluation of Inducible Cre Mouse Models for Fibroblast Targeting in the Healthy and Infarcted Myocardium. Biomedicines 2022; 10:biomedicines10102350. [PMID: 36289614 PMCID: PMC9598630 DOI: 10.3390/biomedicines10102350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/16/2022] [Accepted: 09/17/2022] [Indexed: 11/17/2022] Open
Abstract
Several Cre recombinase transgenic mouse models have been generated for cardiac fibroblast (CF) tracking and heart regulation. However, there is still no consensus on the ideal mouse model to optimally identify and/or regulate these cells. Here, a comparative evaluation of the efficiency and specificity of the indirect reporter Cre-loxP system was carried out in three of the most commonly used fibroblast reporter transgenic mice (Pdgfra-CreERT2, Col1a1-CreERT2 and PostnMCM) under healthy and ischemic conditions, to determine their suitability in in vivo studies of cardiac fibrosis. We demonstrate optimal Cre recombinase activity in CF (but also, although moderate, in endothelial cells (ECs)) derived from healthy and infarcted hearts in the PDGFRa-creERT2 mouse strain. In contrast, no positive reporter signal was found in CF derived from the Col1a1-CreERT2 mice. Finally, in the PostnMCM line, fluorescent reporter expression was specifically detected in activated CF but not in EC, which leads us to conclude that it may be the most reliable model for future studies on cardiovascular disease. Importantly, no lethality or cardiac fibrosis were induced after tamoxifen administration at the established doses, either in healthy or infarcted mice of the three fibroblast reporter lineages. This study lays the groundwork for future efficient in vivo CF tracking and functional analyses.
Collapse
|
220
|
Jin K, Schnell D, Li G, Salomonis N, Prasath VBS, Szczesniak R, Aronow BJ. CellDrift: inferring perturbation responses in temporally sampled single-cell data. Brief Bioinform 2022; 23:bbac324. [PMID: 35998893 PMCID: PMC9487655 DOI: 10.1093/bib/bbac324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/27/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Cells and tissues respond to perturbations in multiple ways that can be sensitively reflected in the alterations of gene expression. Current approaches to finding and quantifying the effects of perturbations on cell-level responses over time disregard the temporal consistency of identifiable gene programs. To leverage the occurrence of these patterns for perturbation analyses, we developed CellDrift (https://github.com/KANG-BIOINFO/CellDrift), a generalized linear model-based functional data analysis method that is capable of identifying covarying temporal patterns of various cell types in response to perturbations. As compared to several other approaches, CellDrift demonstrated superior performance in the identification of temporally varied perturbation patterns and the ability to impute missing time points. We applied CellDrift to multiple longitudinal datasets, including COVID-19 disease progression and gastrointestinal tract development, and demonstrated its ability to identify specific gene programs associated with sequential biological processes, trajectories and outcomes.
Collapse
Affiliation(s)
- Kang Jin
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Biomedical Informatics, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Daniel Schnell
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Guangyuan Li
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Biomedical Informatics, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Nathan Salomonis
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Biomedical Informatics, University of Cincinnati, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, OH 45256, USA
| | - V B Surya Prasath
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Biomedical Informatics, University of Cincinnati, Cincinnati, OH 45229, USA
- Department of Electrical Engineering and Computer Science, University of Cincinnati, OH 45256, USA
| | - Rhonda Szczesniak
- Division of Biostatistics and Epidemiology, Cincinnati Children’s Hospital Medical Center, OH 45229, USA
| | - Bruce J Aronow
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Biomedical Informatics, University of Cincinnati, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, OH 45256, USA
- Department of Electrical Engineering and Computer Science, University of Cincinnati, OH 45256, USA
| |
Collapse
|
221
|
Resident cardiac macrophages: Heterogeneity and function in health and disease. Immunity 2022; 55:1549-1563. [PMID: 36103852 DOI: 10.1016/j.immuni.2022.08.009] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/09/2022] [Accepted: 08/12/2022] [Indexed: 12/20/2022]
Abstract
Understanding tissue macrophage biology has become challenging in recent years due the ever-increasing complexity in macrophage-subset identification and functional characterization. This is particularly important within the myocardium, as we have come to understand that macrophages play multifaceted roles in cardiac health and disease, and heart disease remains the leading cause of death worldwide. Here, we review recent progress in the field, focusing on resident cardiac macrophage heterogeneity, origins, and functions at steady state and after injury. We stratify resident cardiac macrophage functions by the ability of macrophages to either directly influence cardiac physiology or indirectly influence cardiac physiology through orchestrating multi-cellular communication with cardiomyocytes and stromal and immune populations.
Collapse
|
222
|
Subramanian A, Zakeri P, Mousa M, Alnaqbi H, Alshamsi FY, Bettoni L, Damiani E, Alsafar H, Saeys Y, Carmeliet P. Angiogenesis goes computational - The future way forward to discover new angiogenic targets? Comput Struct Biotechnol J 2022; 20:5235-5255. [PMID: 36187917 PMCID: PMC9508490 DOI: 10.1016/j.csbj.2022.09.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/09/2022] [Accepted: 09/09/2022] [Indexed: 11/26/2022] Open
Abstract
Multi-omics technologies are being increasingly utilized in angiogenesis research. Yet, computational methods have not been widely used for angiogenic target discovery and prioritization in this field, partly because (wet-lab) vascular biologists are insufficiently familiar with computational biology tools and the opportunities they may offer. With this review, written for vascular biologists who lack expertise in computational methods, we aspire to break boundaries between both fields and to illustrate the potential of these tools for future angiogenic target discovery. We provide a comprehensive survey of currently available computational approaches that may be useful in prioritizing candidate genes, predicting associated mechanisms, and identifying their specificity to endothelial cell subtypes. We specifically highlight tools that use flexible, machine learning frameworks for large-scale data integration and gene prioritization. For each purpose-oriented category of tools, we describe underlying conceptual principles, highlight interesting applications and discuss limitations. Finally, we will discuss challenges and recommend some guidelines which can help to optimize the process of accurate target discovery.
Collapse
Affiliation(s)
- Abhishek Subramanian
- Laboratory of Angiogenesis & Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Angiogenesis & Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Pooya Zakeri
- Laboratory of Angiogenesis & Vascular Heterogeneity, Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Centre for Brain and Disease Research, Flanders Institute for Biotechnology (VIB), Leuven, Belgium
- Department of Neurosciences and Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Mira Mousa
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Halima Alnaqbi
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Fatima Yousif Alshamsi
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Leo Bettoni
- Laboratory of Angiogenesis & Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Angiogenesis & Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Ernesto Damiani
- Robotics and Intelligent Systems Institute, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Habiba Alsafar
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Yvan Saeys
- Data Mining and Modelling for Biomedicine Group, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Peter Carmeliet
- Laboratory of Angiogenesis & Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Angiogenesis & Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium
- Laboratory of Angiogenesis & Vascular Heterogeneity, Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| |
Collapse
|
223
|
Interpretable machine learning of action potential duration restitution kinetics in single-cell models of atrial cardiomyocytes. J Electrocardiol 2022; 74:137-145. [PMID: 36223672 DOI: 10.1016/j.jelectrocard.2022.09.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/28/2022] [Accepted: 09/19/2022] [Indexed: 12/13/2022]
Abstract
Action potential duration (APD) restitution curve and its maximal slope (Smax) reflect single cell-level dynamic instability for inducing chaotic heart rhythms. However, conventional parameter sensitivity analysis often fails to describe nonlinear relationships between ion channel parameters and electrophysiological phenotypes, such as Smax. We explored the parameter-phenotype mapping in a population of 5000 single-cell atrial cell models through interpretable machine learning (ML) approaches. Parameter sensitivity analyses could explain the linear relationships between parameters and electrophysiological phenotypes, including APD90, resting membrane potential, Vmax, refractory period, and APD/calcium alternans threshold, but not for Smax. However, neural network models had better prediction performance for Smax. To interpret the ML model, we evaluated the parameter importance at the global and local levels by computing the permutation feature importance and the local interpretable model-agnostic explanations (LIME) values, respectively. Increases in ICaL, INCX, and IKr, and decreases in IK1, Ib,Cl, IKur, ISERCA, and Ito are correlated with higher Smax values. The LIME algorithm determined that INaK plays a significant role in determining Smax as well as Ito and IKur. The atrial cardiomyocyte population was hierarchically clustered into three distinct groups based on the LIME values and the single-cell simulation confirmed that perturbations in INaK resulted in different behaviors of APD restitution curves in three clusters. Our combined top-down interpretable ML and bottom-up mechanistic simulation approaches uncovered the role of INaK in heterogeneous behaviors of Smax in the atrial cardiomyocyte population.
Collapse
|
224
|
Sun M, Chen Z, Song Y, Zhang B, Yang J, Tan H. PLXND1-mediated calcium dyshomeostasis impairs endocardial endothelial autophagy in atrial fibrillation. Front Physiol 2022; 13:960480. [PMID: 36017337 PMCID: PMC9395636 DOI: 10.3389/fphys.2022.960480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/14/2022] [Indexed: 11/26/2022] Open
Abstract
Left atrial appendage (LAA) thrombus detachment resulting in intracranial embolism is a major complication of atrial fibrillation (AF). Endocardial endothelial cell (EEC) injury leads to thrombosis, whereas autophagy protects against EEC dysfunction. However, the role and underlying mechanisms of autophagy in EECs during AF have not been elucidated. In this study, we isolated EECs from AF model mice and observed reduced autophagic flux and intracellular calcium concentrations in EECs from AF mice. In addition, we detected an increased expression of the mechanosensitive protein PLXND1 in the cytomembranes of EECs. PLXND1 served as a scaffold protein to bind with ORAI1 and further decreased ORAI1-mediated calcium influx. The decrease in the calcium influx-mediated phosphorylation of CAMK2 is associated with the inhibition of autophagy, which results in EEC dysfunction in AF. Our study demonstrated that the change in PLXND1 expression contributes to intracellular calcium dyshomeostasis, which inhibits autophagy flux and results in EEC dysfunction in AF. This study provides a potential intervention target for EEC dysfunction to prevent and treat intracardiac thrombosis in AF and its complications.
Collapse
Affiliation(s)
- Mengjia Sun
- Institute of Cardiovascular Diseases of PLA, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- Department of Cardiology, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhen Chen
- Institute of Cardiovascular Diseases of PLA, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- Department of Cardiology, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yuanbin Song
- Institute of Cardiovascular Diseases of PLA, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- Department of Cardiology, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Bo Zhang
- Institute of Cardiovascular Diseases of PLA, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- Department of Cardiology, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jie Yang
- Institute of Cardiovascular Diseases of PLA, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- Department of Cardiology, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- *Correspondence: Jie Yang, ; Hu Tan,
| | - Hu Tan
- Institute of Cardiovascular Diseases of PLA, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- Department of Cardiology, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- *Correspondence: Jie Yang, ; Hu Tan,
| |
Collapse
|
225
|
Ma WF, Turner AW, Gancayco C, Wong D, Song Y, Mosquera JV, Auguste G, Hodonsky CJ, Prabhakar A, Ekiz HA, van der Laan SW, Miller CL. PlaqView 2.0: A comprehensive web portal for cardiovascular single-cell genomics. Front Cardiovasc Med 2022; 9:969421. [PMID: 36003902 PMCID: PMC9393487 DOI: 10.3389/fcvm.2022.969421] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/21/2022] [Indexed: 11/13/2022] Open
Abstract
Single-cell RNA-seq (scRNA-seq) is a powerful genomics technology to interrogate the cellular composition and behaviors of complex systems. While the number of scRNA-seq datasets and available computational analysis tools have grown exponentially, there are limited systematic data sharing strategies to allow rapid exploration and re-analysis of single-cell datasets, particularly in the cardiovascular field. We previously introduced PlaqView, an open-source web portal for the exploration and analysis of published atherosclerosis single-cell datasets. Now, we introduce PlaqView 2.0 (www.plaqview.com), which provides expanded features and functionalities as well as additional cardiovascular single-cell datasets. We showcase improved PlaqView functionality, backend data processing, user-interface, and capacity. PlaqView brings new or improved tools to explore scRNA-seq data, including gene query, metadata browser, cell identity prediction, ad hoc RNA-trajectory analysis, and drug-gene interaction prediction. PlaqView serves as one of the largest central repositories for cardiovascular single-cell datasets, which now includes data from human aortic aneurysm, gene-specific mouse knockouts, and healthy references. PlaqView 2.0 brings advanced tools and high-performance computing directly to users without the need for any programming knowledge. Lastly, we outline steps to generalize and repurpose PlaqView's framework for single-cell datasets from other fields.
Collapse
Affiliation(s)
- Wei Feng Ma
- Medical Scientist Training Program, University of Virginia, Charlottesville, VA, United States
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, United States
| | - Adam W. Turner
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, United States
| | - Christina Gancayco
- Research Computing, University of Virginia, Charlottesville, VA, United States
| | - Doris Wong
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, United States
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, United States
| | - Yipei Song
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, United States
- Department of Computer Engineering, University of Virginia, Charlottesville, VA, United States
| | - Jose Verdezoto Mosquera
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, United States
- Research Computing, University of Virginia, Charlottesville, VA, United States
| | - Gaëlle Auguste
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, United States
| | - Chani J. Hodonsky
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, United States
| | - Ajay Prabhakar
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, United States
| | - H. Atakan Ekiz
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Gülbahçe, Turkey
| | - Sander W. van der Laan
- Central Diagnostics Laboratory, Division Laboratories, Pharmacy, and Biomedical Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Clint L. Miller
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, United States
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, United States
- Department of Public Health Sciences, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
226
|
Abstract
PURPOSE OF REVIEW Cardiovascular diseases are the leading cause of death worldwide, largely due to the limited regenerative capacity of the adult human heart. In contrast, teleost zebrafish hearts possess natural regeneration capacity by proliferation of pre-existing cardiomyocytes after injury. Hearts of mice can regenerate if injured in a few days after birth, which coincides with the transient capacity for cardiomyocyte proliferation. This review tends to elaborate the roles and mechanisms of Wnt/β-catenin signaling in heart development and regeneration in mammals and non-mammalian vertebrates. RECENT FINDINGS Studies in zebrafish, mice, and human embryonic stem cells demonstrate the binary effect for Wnt/β-catenin signaling during heart development. Both Wnts and Wnt antagonists are induced in multiple cell types during cardiac development and injury repair. In this review, we summarize composites of the Wnt signaling pathway and their different action routes, followed by the discussion of their involvements in cardiac specification, proliferation, and patterning. We provide overviews about canonical and non-canonical Wnt activity during heart homeostasis, remodeling, and regeneration. Wnt/β-catenin signaling exhibits biphasic and antagonistic effects on cardiac specification and differentiation depending on the stage of embryogenesis. Inhibition of Wnt signaling is beneficial for cardiac wound healing and functional recovery after injury. Understanding of the roles and mechanisms of Wnt signaling pathway in injured animal hearts will contribute to the development of potential therapeutics for human diseased hearts.
Collapse
Affiliation(s)
- Dongliang Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Molecular Medicine, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Jianjian Sun
- Shanghai Key Laboratory of Regulatory Biology, Institute of Molecular Medicine, School of Life Sciences, East China Normal University, Shanghai, 200241, China.,Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510100, Guangdong, China
| | - Tao P Zhong
- Shanghai Key Laboratory of Regulatory Biology, Institute of Molecular Medicine, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
227
|
York NS, Sanchez-Arias JC, McAdam ACH, Rivera JE, Arbour LT, Swayne LA. Mechanisms underlying the role of ankyrin-B in cardiac and neurological health and disease. Front Cardiovasc Med 2022; 9:964675. [PMID: 35990955 PMCID: PMC9386378 DOI: 10.3389/fcvm.2022.964675] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
The ANK2 gene encodes for ankyrin-B (ANKB), one of 3 members of the ankyrin family of proteins, whose name is derived from the Greek word for anchor. ANKB was originally identified in the brain (B denotes “brain”) but has become most widely known for its role in cardiomyocytes as a scaffolding protein for ion channels and transporters, as well as an interacting protein for structural and signaling proteins. Certain loss-of-function ANK2 variants are associated with a primarily cardiac-presenting autosomal-dominant condition with incomplete penetrance and variable expressivity characterized by a predisposition to supraventricular and ventricular arrhythmias, arrhythmogenic cardiomyopathy, congenital and adult-onset structural heart disease, and sudden death. Another independent group of ANK2 variants are associated with increased risk for distinct neurological phenotypes, including epilepsy and autism spectrum disorders. The mechanisms underlying ANKB's roles in cells in health and disease are not fully understood; however, several clues from a range of molecular and cell biological studies have emerged. Notably, ANKB exhibits several isoforms that have different cell-type–, tissue–, and developmental stage– expression profiles. Given the conservation within ankyrins across evolution, model organism studies have enabled the discovery of several ankyrin roles that could shed important light on ANKB protein-protein interactions in heart and brain cells related to the regulation of cellular polarity, organization, calcium homeostasis, and glucose and fat metabolism. Along with this accumulation of evidence suggesting a diversity of important ANKB cellular functions, there is an on-going debate on the role of ANKB in disease. We currently have limited understanding of how these cellular functions link to disease risk. To this end, this review will examine evidence for the cellular roles of ANKB and the potential contribution of ANKB functional variants to disease risk and presentation. This contribution will highlight the impact of ANKB dysfunction on cardiac and neuronal cells and the significance of understanding the role of ANKB variants in disease.
Collapse
Affiliation(s)
- Nicole S. York
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | | | - Alexa C. H. McAdam
- Department of Medical Genetics, University of British Columbia, Victoria, BC, Canada
| | - Joel E. Rivera
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Laura T. Arbour
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Medical Genetics, University of British Columbia, Victoria, BC, Canada
- *Correspondence: Laura T. Arbour
| | - Leigh Anne Swayne
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Cellular and Physiological Sciences and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Leigh Anne Swayne
| |
Collapse
|
228
|
Abstract
PURPOSE OF REVIEW The cardiac immune landscape dynamically changes in response to aging, hemodynamic stress, and myocardial injury. Here, we highlight key cardiac immune cell types, their role in reshaping the cellular landscape and promoting tissue remodeling following cardiac insults, and how understanding of these processes uncovers novel disease mechanisms that contribute to cardiac pathology. RECENT FINDINGS Distinct subsets of cardiac macrophages reside within the heart and exhibit divergent functions in response to myocardial injury. Parsing cardiac macrophages based on developmental origin has served as a valuable approach to define functionally divergent populations of reparative (embryonic-derived, tissue resident) and inflammatory (monocyte-derived, recruited) cardiac macrophages. Single-cell transcriptomics and elucidation of the effector mechanisms that orchestrate macrophage functions has provided new and therapeutically tractable insights into the pathogenesis of numerous cardiac diseases. The immune landscape of the heart is dynamic and represents an important mediator of disease pathogenesis across an array of cardiac pathology. Elucidation of mechanisms that drive inflammatory monocyte/macrophage recruitment, activation, and effector responses may lead to the identification of new therapeutic targets.
Collapse
Affiliation(s)
- Jesus Jimenez
- Center for Cardiovascular Research, Cardiovascular Division, Department of Medicine, Washington University School of Medicine, 660 South Euclid Campus, Box 8086, St. Louis, MT, 63110, USA
| | - Kory J Lavine
- Center for Cardiovascular Research, Cardiovascular Division, Department of Medicine, Washington University School of Medicine, 660 South Euclid Campus, Box 8086, St. Louis, MT, 63110, USA.
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
229
|
Hill MC, Kadow ZA, Long H, Morikawa Y, Martin TJ, Birks EJ, Campbell KS, Nerbonne J, Lavine K, Wadhwa L, Wang J, Turaga D, Adachi I, Martin JF. Integrated multi-omic characterization of congenital heart disease. Nature 2022; 608:181-191. [PMID: 35732239 PMCID: PMC10405779 DOI: 10.1038/s41586-022-04989-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 06/16/2022] [Indexed: 11/09/2022]
Abstract
The heart, the first organ to develop in the embryo, undergoes complex morphogenesis that when defective results in congenital heart disease (CHD). With current therapies, more than 90% of patients with CHD survive into adulthood, but many suffer premature death from heart failure and non-cardiac causes1. Here, to gain insight into this disease progression, we performed single-nucleus RNA sequencing on 157,273 nuclei from control hearts and hearts from patients with CHD, including those with hypoplastic left heart syndrome (HLHS) and tetralogy of Fallot, two common forms of cyanotic CHD lesions, as well as dilated and hypertrophic cardiomyopathies. We observed CHD-specific cell states in cardiomyocytes, which showed evidence of insulin resistance and increased expression of genes associated with FOXO signalling and CRIM1. Cardiac fibroblasts in HLHS were enriched in a low-Hippo and high-YAP cell state characteristic of activated cardiac fibroblasts. Imaging mass cytometry uncovered a spatially resolved perivascular microenvironment consistent with an immunodeficient state in CHD. Peripheral immune cell profiling suggested deficient monocytic immunity in CHD, in agreement with the predilection in CHD to infection and cancer2. Our comprehensive phenotyping of CHD provides a roadmap towards future personalized treatments for CHD.
Collapse
MESH Headings
- Bone Morphogenetic Protein Receptors/metabolism
- Cardiomyopathy, Dilated/genetics
- Cardiomyopathy, Dilated/immunology
- Cardiomyopathy, Dilated/metabolism
- Cardiomyopathy, Dilated/pathology
- Cardiomyopathy, Hypertrophic/genetics
- Cardiomyopathy, Hypertrophic/immunology
- Cardiomyopathy, Hypertrophic/metabolism
- Cardiomyopathy, Hypertrophic/pathology
- Disease Progression
- Fibroblasts/metabolism
- Fibroblasts/pathology
- Forkhead Transcription Factors/metabolism
- Heart Defects, Congenital/genetics
- Heart Defects, Congenital/immunology
- Heart Defects, Congenital/metabolism
- Heart Defects, Congenital/pathology
- Humans
- Hypoplastic Left Heart Syndrome/genetics
- Hypoplastic Left Heart Syndrome/immunology
- Hypoplastic Left Heart Syndrome/metabolism
- Hypoplastic Left Heart Syndrome/pathology
- Image Cytometry
- Insulin Resistance
- Monocytes/immunology
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Phenotype
- RNA-Seq
- Signal Transduction/genetics
- Single-Cell Analysis
- Tetralogy of Fallot/genetics
- Tetralogy of Fallot/immunology
- Tetralogy of Fallot/metabolism
- Tetralogy of Fallot/pathology
- YAP-Signaling Proteins/metabolism
Collapse
Affiliation(s)
- Matthew C Hill
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Zachary A Kadow
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA
| | - Hali Long
- Interdepartmental Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX, USA
| | | | - Thomas J Martin
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Emma J Birks
- Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Kenneth S Campbell
- Department of Physiology, University of Kentucky, Lexington, KY, USA
- Division of Cardiovascular Medicine, University of Kentucky, Lexington, KY, USA
| | - Jeanne Nerbonne
- Center for Cardiovascular Research, Departmental of Medicine, Cardiovascular Division, Washington University School of Medicine, St Louis, MO, USA
| | - Kory Lavine
- Center for Cardiovascular Research, Departmental of Medicine, Cardiovascular Division, Washington University School of Medicine, St Louis, MO, USA
| | - Lalita Wadhwa
- Section of Cardiothoracic Surgery, Department of Surgery, Baylor College of Medicine, Houston, Texas, USA
| | - Jun Wang
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Diwakar Turaga
- Section of Critical Care Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Iki Adachi
- Section of Cardiothoracic Surgery, Department of Surgery, Baylor College of Medicine, Houston, Texas, USA
| | - James F Martin
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA.
- Interdepartmental Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX, USA.
- Texas Heart Institute, Houston, TX, USA.
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA.
- Center for Organ Repair and Renewal, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
230
|
Chaffin M, Papangeli I, Simonson B, Akkad AD, Hill MC, Arduini A, Fleming SJ, Melanson M, Hayat S, Kost-Alimova M, Atwa O, Ye J, Bedi KC, Nahrendorf M, Kaushik VK, Stegmann CM, Margulies KB, Tucker NR, Ellinor PT. Single-nucleus profiling of human dilated and hypertrophic cardiomyopathy. Nature 2022; 608:174-180. [PMID: 35732739 DOI: 10.1038/s41586-022-04817-8] [Citation(s) in RCA: 188] [Impact Index Per Article: 62.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/27/2022] [Indexed: 12/22/2022]
Abstract
Heart failure encompasses a heterogeneous set of clinical features that converge on impaired cardiac contractile function1,2 and presents a growing public health concern. Previous work has highlighted changes in both transcription and protein expression in failing hearts3,4, but may overlook molecular changes in less prevalent cell types. Here we identify extensive molecular alterations in failing hearts at single-cell resolution by performing single-nucleus RNA sequencing of nearly 600,000 nuclei in left ventricle samples from 11 hearts with dilated cardiomyopathy and 15 hearts with hypertrophic cardiomyopathy as well as 16 non-failing hearts. The transcriptional profiles of dilated or hypertrophic cardiomyopathy hearts broadly converged at the tissue and cell-type level. Further, a subset of hearts from patients with cardiomyopathy harbour a unique population of activated fibroblasts that is almost entirely absent from non-failing samples. We performed a CRISPR-knockout screen in primary human cardiac fibroblasts to evaluate this fibrotic cell state transition; knockout of genes associated with fibroblast transition resulted in a reduction of myofibroblast cell-state transition upon TGFβ1 stimulation for a subset of genes. Our results provide insights into the transcriptional diversity of the human heart in health and disease as well as new potential therapeutic targets and biomarkers for heart failure.
Collapse
Affiliation(s)
- Mark Chaffin
- Precision Cardiology Laboratory and the Cardiovascular Disease Initiative, The Broad Institute, Cambridge, MA, USA
| | - Irinna Papangeli
- Precision Cardiology Laboratory, Bayer US LLC, Cambridge, MA, USA
| | - Bridget Simonson
- Precision Cardiology Laboratory and the Cardiovascular Disease Initiative, The Broad Institute, Cambridge, MA, USA
| | - Amer-Denis Akkad
- Precision Cardiology Laboratory, Bayer US LLC, Cambridge, MA, USA
| | - Matthew C Hill
- Precision Cardiology Laboratory and the Cardiovascular Disease Initiative, The Broad Institute, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Alessandro Arduini
- Precision Cardiology Laboratory and the Cardiovascular Disease Initiative, The Broad Institute, Cambridge, MA, USA
| | - Stephen J Fleming
- Precision Cardiology Laboratory and the Cardiovascular Disease Initiative, The Broad Institute, Cambridge, MA, USA
- Data Sciences Platform, The Broad Institute, Cambridge, MA, USA
| | - Michelle Melanson
- Center for the Development of Therapeutics, The Broad Institute, Cambridge, MA, USA
| | - Sikander Hayat
- Precision Cardiology Laboratory, Bayer US LLC, Cambridge, MA, USA
| | - Maria Kost-Alimova
- Center for the Development of Therapeutics, The Broad Institute, Cambridge, MA, USA
| | - Ondine Atwa
- Precision Cardiology Laboratory and the Cardiovascular Disease Initiative, The Broad Institute, Cambridge, MA, USA
| | - Jiangchuan Ye
- Precision Cardiology Laboratory and the Cardiovascular Disease Initiative, The Broad Institute, Cambridge, MA, USA
| | - Kenneth C Bedi
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Matthias Nahrendorf
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Center for Systems Biology, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Virendar K Kaushik
- Center for the Development of Therapeutics, The Broad Institute, Cambridge, MA, USA
| | | | - Kenneth B Margulies
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Patrick T Ellinor
- Precision Cardiology Laboratory and the Cardiovascular Disease Initiative, The Broad Institute, Cambridge, MA, USA.
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA.
- Demoulas Center for Cardiac Arrhythmias, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
231
|
Kuppe C, Ramirez Flores RO, Li Z, Hayat S, Levinson RT, Liao X, Hannani MT, Tanevski J, Wünnemann F, Nagai JS, Halder M, Schumacher D, Menzel S, Schäfer G, Hoeft K, Cheng M, Ziegler S, Zhang X, Peisker F, Kaesler N, Saritas T, Xu Y, Kassner A, Gummert J, Morshuis M, Amrute J, Veltrop RJA, Boor P, Klingel K, Van Laake LW, Vink A, Hoogenboezem RM, Bindels EMJ, Schurgers L, Sattler S, Schapiro D, Schneider RK, Lavine K, Milting H, Costa IG, Saez-Rodriguez J, Kramann R. Spatial multi-omic map of human myocardial infarction. Nature 2022; 608:766-777. [PMID: 35948637 PMCID: PMC9364862 DOI: 10.1038/s41586-022-05060-x] [Citation(s) in RCA: 311] [Impact Index Per Article: 103.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 06/29/2022] [Indexed: 02/01/2023]
Abstract
Myocardial infarction is a leading cause of death worldwide1. Although advances have been made in acute treatment, an incomplete understanding of remodelling processes has limited the effectiveness of therapies to reduce late-stage mortality2. Here we generate an integrative high-resolution map of human cardiac remodelling after myocardial infarction using single-cell gene expression, chromatin accessibility and spatial transcriptomic profiling of multiple physiological zones at distinct time points in myocardium from patients with myocardial infarction and controls. Multi-modal data integration enabled us to evaluate cardiac cell-type compositions at increased resolution, yielding insights into changes of the cardiac transcriptome and epigenome through the identification of distinct tissue structures of injury, repair and remodelling. We identified and validated disease-specific cardiac cell states of major cell types and analysed them in their spatial context, evaluating their dependency on other cell types. Our data elucidate the molecular principles of human myocardial tissue organization, recapitulating a gradual cardiomyocyte and myeloid continuum following ischaemic injury. In sum, our study provides an integrative molecular map of human myocardial infarction, represents an essential reference for the field and paves the way for advanced mechanistic and therapeutic studies of cardiac disease.
Collapse
Affiliation(s)
- Christoph Kuppe
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Medical Faculty, Aachen, Germany
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - Ricardo O Ramirez Flores
- Institute for Computational Biomedicine, Heidelberg University, Faculty of Medicine, Heidelberg University Hospital, Bioquant, Heidelberg, Germany
- Informatics for Life, Heidelberg, Germany
| | - Zhijian Li
- Institute for Computational Genomics, RWTH Aachen University, Medical Faculty, Aachen, Germany
- Joint Research Center for Computational Biomedicine, RWTH Aachen University Hospital, Aachen, Germany
| | - Sikander Hayat
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - Rebecca T Levinson
- Institute for Computational Biomedicine, Heidelberg University, Faculty of Medicine, Heidelberg University Hospital, Bioquant, Heidelberg, Germany
- Informatics for Life, Heidelberg, Germany
- Department of General Internal Medicine and Psychosomatics, Heidelberg University Hospital, Heidelberg, Germany
| | - Xian Liao
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - Monica T Hannani
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Medical Faculty, Aachen, Germany
- Institute for Computational Biomedicine, Heidelberg University, Faculty of Medicine, Heidelberg University Hospital, Bioquant, Heidelberg, Germany
| | - Jovan Tanevski
- Institute for Computational Biomedicine, Heidelberg University, Faculty of Medicine, Heidelberg University Hospital, Bioquant, Heidelberg, Germany
- Department of Knowledge Technologies, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Florian Wünnemann
- Institute for Computational Biomedicine, Heidelberg University, Faculty of Medicine, Heidelberg University Hospital, Bioquant, Heidelberg, Germany
| | - James S Nagai
- Institute for Computational Genomics, RWTH Aachen University, Medical Faculty, Aachen, Germany
- Joint Research Center for Computational Biomedicine, RWTH Aachen University Hospital, Aachen, Germany
| | - Maurice Halder
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - David Schumacher
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - Sylvia Menzel
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - Gideon Schäfer
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - Konrad Hoeft
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - Mingbo Cheng
- Institute for Computational Genomics, RWTH Aachen University, Medical Faculty, Aachen, Germany
- Joint Research Center for Computational Biomedicine, RWTH Aachen University Hospital, Aachen, Germany
| | - Susanne Ziegler
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - Xiaoting Zhang
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - Fabian Peisker
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - Nadine Kaesler
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Medical Faculty, Aachen, Germany
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - Turgay Saritas
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Medical Faculty, Aachen, Germany
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - Yaoxian Xu
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - Astrid Kassner
- Erich and Hanna Klessmann Institute for Cardiovascular Research and Development, Clinic for Thoracic and Cardiovascular Surgery, Heart and Diabetes Center NRW, Bad Oeynhausen, Germany
| | - Jan Gummert
- Heart and Diabetes Center, North Rhine-Westphalia, Bad Oeynhausen, Germany
| | - Michiel Morshuis
- Heart and Diabetes Center, North Rhine-Westphalia, Bad Oeynhausen, Germany
| | - Junedh Amrute
- Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Rogier J A Veltrop
- Institute for Molecular Cardiovascular Research IMCAR, RWTH Aachen University, Medical Faculty, Aachen, Germany
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Peter Boor
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, Medical Faculty, Aachen, Germany
- Department of Pathology, RWTH Aachen University, Aachen, Germany
| | - Karin Klingel
- Cardiopathology, Institute for Pathology and Neuropathology, University Hospital Tübingen, Tübingen, Germany
| | - Linda W Van Laake
- Department of Cardiology, Regenerative Medicine Center and Circulatory Health Lab, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Aryan Vink
- Department of Pathology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Remco M Hoogenboezem
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Eric M J Bindels
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Leon Schurgers
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Medical Faculty, Aachen, Germany
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Susanne Sattler
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Denis Schapiro
- Institute for Computational Biomedicine, Heidelberg University, Faculty of Medicine, Heidelberg University Hospital, Bioquant, Heidelberg, Germany
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Rebekka K Schneider
- Institute of Cell and Tumor Biology, RWTH Aachen University, Medical Faculty, Aachen, Germany
- Oncode Institute, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Kory Lavine
- Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Hendrik Milting
- Erich and Hanna Klessmann Institute for Cardiovascular Research and Development, Clinic for Thoracic and Cardiovascular Surgery, Heart and Diabetes Center NRW, Bad Oeynhausen, Germany
| | - Ivan G Costa
- Institute for Computational Genomics, RWTH Aachen University, Medical Faculty, Aachen, Germany
- Joint Research Center for Computational Biomedicine, RWTH Aachen University Hospital, Aachen, Germany
| | - Julio Saez-Rodriguez
- Institute for Computational Biomedicine, Heidelberg University, Faculty of Medicine, Heidelberg University Hospital, Bioquant, Heidelberg, Germany.
- Informatics for Life, Heidelberg, Germany.
| | - Rafael Kramann
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Medical Faculty, Aachen, Germany.
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, Medical Faculty, Aachen, Germany.
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
232
|
Boileau E, Li X, Naarmann-de Vries IS, Becker C, Casper R, Altmüller J, Leuschner F, Dieterich C. Full-Length Spatial Transcriptomics Reveals the Unexplored Isoform Diversity of the Myocardium Post-MI. Front Genet 2022; 13:912572. [PMID: 35937994 PMCID: PMC9354982 DOI: 10.3389/fgene.2022.912572] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022] Open
Abstract
We introduce Single-cell Nanopore Spatial Transcriptomics (scNaST), a software suite to facilitate the analysis of spatial gene expression from second- and third-generation sequencing, allowing to generate a full-length near-single-cell transcriptional landscape of the tissue microenvironment. Taking advantage of the Visium Spatial platform, we adapted a strategy recently developed to assign barcodes to long-read single-cell sequencing data for spatial capture technology. Here, we demonstrate our workflow using four short axis sections of the mouse heart following myocardial infarction. We constructed a de novo transcriptome using long-read data, and successfully assigned 19,794 transcript isoforms in total, including clinically-relevant, but yet uncharacterized modes of transcription, such as intron retention or antisense overlapping transcription. We showed a higher transcriptome complexity in the healthy regions, and identified intron retention as a mode of transcription associated with the infarct area. Our data revealed a clear regional isoform switching among differentially used transcripts for genes involved in cardiac muscle contraction and tissue morphogenesis. Molecular signatures involved in cardiac remodeling integrated with morphological context may support the development of new therapeutics towards the treatment of heart failure and the reduction of cardiac complications.
Collapse
Affiliation(s)
- Etienne Boileau
- Section of Bioinformatics and Systems Cardiology, Klaus Tschira Institute for Integrative Computational Cardiology, Heidelberg, Germany
- Department of Internal Medicine III (Cardiology, Angiology, and Pneumology), University Hospital Heidelberg, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research) Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Xue Li
- Department of Internal Medicine III (Cardiology, Angiology, and Pneumology), University Hospital Heidelberg, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research) Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Isabel S Naarmann-de Vries
- Section of Bioinformatics and Systems Cardiology, Klaus Tschira Institute for Integrative Computational Cardiology, Heidelberg, Germany
- Department of Internal Medicine III (Cardiology, Angiology, and Pneumology), University Hospital Heidelberg, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research) Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Christian Becker
- Cologne Center for Genomics (CCG), University of Cologne, Cologne, Germany
| | - Ramona Casper
- Cologne Center for Genomics (CCG), University of Cologne, Cologne, Germany
| | - Janine Altmüller
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Florian Leuschner
- Department of Internal Medicine III (Cardiology, Angiology, and Pneumology), University Hospital Heidelberg, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research) Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Christoph Dieterich
- Section of Bioinformatics and Systems Cardiology, Klaus Tschira Institute for Integrative Computational Cardiology, Heidelberg, Germany
- Department of Internal Medicine III (Cardiology, Angiology, and Pneumology), University Hospital Heidelberg, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research) Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| |
Collapse
|
233
|
Hu B, Lelek S, Spanjaard B, El-Sammak H, Simões MG, Mintcheva J, Aliee H, Schäfer R, Meyer AM, Theis F, Stainier DYR, Panáková D, Junker JP. Origin and function of activated fibroblast states during zebrafish heart regeneration. Nat Genet 2022; 54:1227-1237. [PMID: 35864193 PMCID: PMC7613248 DOI: 10.1038/s41588-022-01129-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 06/09/2022] [Indexed: 12/12/2022]
Abstract
The adult zebrafish heart has a high capacity for regeneration following injury. However, the composition of the regenerative niche has remained largely elusive. Here, we dissected the diversity of activated cell states in the regenerating zebrafish heart based on single-cell transcriptomics and spatiotemporal analysis. We observed the emergence of several transient cell states with fibroblast characteristics following injury, and we outlined the proregenerative function of collagen-12-expressing fibroblasts. To understand the cascade of events leading to heart regeneration, we determined the origin of these cell states by high-throughput lineage tracing. We found that activated fibroblasts were derived from two separate sources: the epicardium and the endocardium. Mechanistically, we determined Wnt signalling as a regulator of the endocardial fibroblast response. In summary, our work identifies specialized activated fibroblast cell states that contribute to heart regeneration, thereby opening up possible approaches to modulating the regenerative capacity of the vertebrate heart. Single-cell RNA sequencing and spatiotemporal analysis of the regenerating zebrafish heart identify transient proregenerative fibroblast-like cells that are derived from the epicardium and the endocardium. Wnt signalling regulates the endocardial fibroblast response.
Collapse
Affiliation(s)
- Bo Hu
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin Institute for Medical Systems Biology, Berlin, Germany
| | - Sara Lelek
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research) partner site, Berlin, Germany
| | - Bastiaan Spanjaard
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin Institute for Medical Systems Biology, Berlin, Germany
| | - Hadil El-Sammak
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,DZHK (German Centre for Cardiovascular Research) partner site Rhine/Main, Frankfurt, Germany
| | - Mariana Guedes Simões
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Janita Mintcheva
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin Institute for Medical Systems Biology, Berlin, Germany
| | - Hananeh Aliee
- Helmholtz Center Munich - German Research Center for Environmental Health, Institute of Computational Biology, Neuherberg, Munich, Germany
| | - Ronny Schäfer
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin Institute for Medical Systems Biology, Berlin, Germany
| | - Alexander M Meyer
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Fabian Theis
- Helmholtz Center Munich - German Research Center for Environmental Health, Institute of Computational Biology, Neuherberg, Munich, Germany
| | - Didier Y R Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,DZHK (German Centre for Cardiovascular Research) partner site Rhine/Main, Frankfurt, Germany
| | - Daniela Panáková
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany. .,DZHK (German Centre for Cardiovascular Research) partner site, Berlin, Germany.
| | - Jan Philipp Junker
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin Institute for Medical Systems Biology, Berlin, Germany. .,DZHK (German Centre for Cardiovascular Research) partner site, Berlin, Germany.
| |
Collapse
|
234
|
Vandewiele F, Pironet A, Jacobs G, Kecskés M, Wegener J, Kerselaers S, Hendrikx L, Verelst J, Philippaert K, Oosterlinck W, Segal A, Van Den Broeck E, Pinto S, Priori SG, Lehnart SE, Nilius B, Voets T, Vennekens R. TRPM4 inhibition by meclofenamate suppresses Ca2+-dependent triggered arrhythmias. Eur Heart J 2022; 43:4195-4207. [PMID: 35822895 DOI: 10.1093/eurheartj/ehac354] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 06/10/2022] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
AIMS Cardiac arrhythmias are a major factor in the occurrence of morbidity and sudden death in patients with cardiovascular disease. Disturbances of Ca2+ homeostasis in the heart contribute to the initiation and maintenance of cardiac arrhythmias. Extrasystolic increases in intracellular Ca2+ lead to delayed afterdepolarizations and triggered activity, which can result in heart rhythm abnormalities. It is being suggested that the Ca2+-activated nonselective cation channel TRPM4 is involved in the aetiology of triggered activity, but the exact contribution and in vivo significance are still unclear. METHODS AND RESULTS In vitro electrophysiological and calcium imaging technique as well as in vivo intracardiac and telemetric electrocardiogram measurements in physiological and pathophysiological conditions were performed. In two distinct Ca2+-dependent proarrhythmic models, freely moving Trpm4-/- mice displayed a reduced burden of cardiac arrhythmias. Looking further into the specific contribution of TRPM4 to the cellular mechanism of arrhythmias, TRPM4 was found to contribute to a long-lasting Ca2+ overload-induced background current, thereby regulating cell excitability in Ca2+ overload conditions. To expand these results, a compound screening revealed meclofenamate as a potent antagonist of TRPM4. In line with the findings from Trpm4-/- mice, 10 µM meclofenamate inhibited the Ca2+ overload-induced background current in ventricular cardiomyocytes and 15 mg/kg meclofenamate suppressed catecholaminergic polymorphic ventricular tachycardia-associated arrhythmias in a TRPM4-dependent manner. CONCLUSION The presented data establish that TRPM4 represents a novel target in the prevention and treatment of Ca2+-dependent triggered arrhythmias.
Collapse
Affiliation(s)
- Frone Vandewiele
- Laboratory of Ion Channel Research, TRP Research Platform Leuven (TRPLe), VIB Center for Brain and Disease, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49 Box 802, BE-3000 Leuven, Belgium
| | - Andy Pironet
- Laboratory of Ion Channel Research, TRP Research Platform Leuven (TRPLe), VIB Center for Brain and Disease, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49 Box 802, BE-3000 Leuven, Belgium
| | - Griet Jacobs
- Laboratory of Ion Channel Research, TRP Research Platform Leuven (TRPLe), VIB Center for Brain and Disease, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49 Box 802, BE-3000 Leuven, Belgium
| | - Miklos Kecskés
- Szentágothai Research Center, University of Pécs, H-7624 Pécs, Hungary
| | - Jörg Wegener
- Heart Research Center Göttingen, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Sara Kerselaers
- Laboratory of Ion Channel Research, TRP Research Platform Leuven (TRPLe), VIB Center for Brain and Disease, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49 Box 802, BE-3000 Leuven, Belgium
| | - Lio Hendrikx
- Laboratory of Ion Channel Research, TRP Research Platform Leuven (TRPLe), VIB Center for Brain and Disease, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49 Box 802, BE-3000 Leuven, Belgium
| | - Joren Verelst
- Laboratory of Ion Channel Research, TRP Research Platform Leuven (TRPLe), VIB Center for Brain and Disease, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49 Box 802, BE-3000 Leuven, Belgium
| | - Koenraad Philippaert
- Laboratory of Ion Channel Research, TRP Research Platform Leuven (TRPLe), VIB Center for Brain and Disease, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49 Box 802, BE-3000 Leuven, Belgium
| | - Wouter Oosterlinck
- Research Unit of Experimental Cardiac Surgery, KU Leuven, Leuven, Belgium
| | - Andrei Segal
- Laboratory of Ion Channel Research, TRP Research Platform Leuven (TRPLe), VIB Center for Brain and Disease, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49 Box 802, BE-3000 Leuven, Belgium
| | - Evy Van Den Broeck
- Laboratory of Ion Channel Research, TRP Research Platform Leuven (TRPLe), VIB Center for Brain and Disease, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49 Box 802, BE-3000 Leuven, Belgium
| | - Silvia Pinto
- Laboratory of Ion Channel Research, TRP Research Platform Leuven (TRPLe), VIB Center for Brain and Disease, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49 Box 802, BE-3000 Leuven, Belgium
| | - Silvia G Priori
- IRCCS ICS Maugeri, University of Pavia, I-27100 Pavia, Italy
| | - Stephan E Lehnart
- Heart Research Center Göttingen, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Bernd Nilius
- Laboratory of Ion Channel Research, TRP Research Platform Leuven (TRPLe), VIB Center for Brain and Disease, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49 Box 802, BE-3000 Leuven, Belgium
| | - Thomas Voets
- Laboratory of Ion Channel Research, TRP Research Platform Leuven (TRPLe), VIB Center for Brain and Disease, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49 Box 802, BE-3000 Leuven, Belgium
| | - Rudi Vennekens
- Laboratory of Ion Channel Research, TRP Research Platform Leuven (TRPLe), VIB Center for Brain and Disease, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49 Box 802, BE-3000 Leuven, Belgium
| |
Collapse
|
235
|
Safabakhsh S, Sar F, Martelotto L, Haegert A, Singhera G, Hanson P, Parker J, Collins C, Rohani L, Laksman Z. Isolating Nuclei From Frozen Human Heart Tissue for Single-Nucleus RNA Sequencing. Curr Protoc 2022; 2:e480. [PMID: 35816165 DOI: 10.1002/cpz1.480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Heart disease is the leading cause of global morbidity and mortality. This is in part because, despite an abundance of animal and in vitro models, it has been a challenge to date to study human heart tissue with sufficient depth and resolution to develop disease-modifying therapies for common cardiac conditions. Single-nucleus RNA sequencing (snRNA-seq) has emerged as a powerful tool capable of analyzing cellular function and signaling in health and disease, and has already contributed to significant advances in areas such as oncology and hematology. Employing snRNA-seq technology on flash-frozen human tissue has the potential to unlock novel disease mechanisms and pathways in any organ. Studying the human heart using snRNA-seq is a key priority for the field of cardiovascular sciences; however, progress to date has been slowed by numerous barriers. One key challenge is the fact that the human heart is very resistant to shearing and stress, making tissue dissociation and nuclear isolation difficult. Here, we describe a tissue dissociation method allowing the efficient and cost-effective isolation of high-quality nuclei from flash-frozen human heart tissue collected in surgical operating rooms. Our protocol addresses the challenge of nuclear isolation from human hearts, enables snRNA-seq of the human heart, and paves the way for an improved understanding of the human heart in health and disease. Ultimately, this will be key to uncovering signaling pathways and networks amenable to therapeutic intervention and the development of novel biomarkers and disease-modifying therapies. © 2022 Wiley Periodicals LLC. Basic Protocol: Human heart tissue dissociation and nuclear isolation for snRNA-seq.
Collapse
Affiliation(s)
- Sina Safabakhsh
- University of British Columbia, Vancouver, British Columbia, Canada
| | - Funda Sar
- Vancouver Prostate Centre, UBC, Vancouver, British Columbia, Canada
| | | | - Anne Haegert
- Vancouver Prostate Centre, UBC, Vancouver, British Columbia, Canada
| | | | | | - Jeremy Parker
- University of British Columbia, Vancouver, British Columbia, Canada
| | - Colin Collins
- Vancouver Prostate Centre, UBC, Vancouver, British Columbia, Canada
| | - Leili Rohani
- University of British Columbia, Vancouver, British Columbia, Canada
| | - Zachary Laksman
- University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
236
|
Elmentaite R, Domínguez Conde C, Yang L, Teichmann SA. Single-cell atlases: shared and tissue-specific cell types across human organs. Nat Rev Genet 2022; 23:395-410. [PMID: 35217821 DOI: 10.1038/s41576-022-00449-w] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2022] [Indexed: 12/12/2022]
Abstract
The development of single-cell and spatial transcriptomics methods was instrumental in the conception of the Human Cell Atlas initiative, which aims to generate an integrated map of all cells across the human body. These technology advances are bringing increasing depth and resolution to maps of human organs and tissues, as well as our understanding of individual human cell types. Commonalities as well as tissue-specific features of primary and supportive cell types across human organs are beginning to emerge from these human tissue maps. In this Review, we highlight key biological insights obtained from cross-tissue studies into epithelial, fibroblast, vascular and immune cells based on single-cell gene expression data in humans and contrast it with mechanisms reported in mice.
Collapse
Affiliation(s)
- Rasa Elmentaite
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | | | - Lu Yang
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Sarah A Teichmann
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK.
- Theory of Condensed Matter, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, UK.
| |
Collapse
|
237
|
Zheng Y, Gao W, Zhang Q, Cheng X, Liu Y, Qi Z, Li T. Ferroptosis and Autophagy-Related Genes in the Pathogenesis of Ischemic Cardiomyopathy. Front Cardiovasc Med 2022; 9:906753. [PMID: 35845045 PMCID: PMC9279674 DOI: 10.3389/fcvm.2022.906753] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Obesity plays an important role in type 2 diabetes mellitus (T2DM) and myocardial infarction (MI). Ferroptosis and ferritinophagy are related to metabolic pathways, such as fatty acid metabolism and mitochondrial respiration. We aimed to investigate the ferroptosis- and autophagy-related differentially expressed genes (DEGs) that might be potential targets for MI progression. METHODS GSE116250 was analyzed to obtain DEGs. A Venn diagram was used to obtain the overlapping ferroptosis- and autophagy-related DEGs. The enrichment pathway analysis was performed and the hub genes were obtained. Pivotal miRNAs, transcription factors, and drugs with the hub genes interactions were also predicted. The MI mice model was constructed, and qPCR analysis and single-cell sequencing were used to validate the hub genes. RESULTS Utilizing the limma package and the Venn diagram, 26 ferroptosis-related and 29 autophagy-related DEGs were obtained. The list of ferroptosis-related DEGs was analyzed, which were involved in the cellular response to a toxic substance, cellular oxidant detoxification, and the IL-17 signaling pathway. The list of autophagy-related DEGs was involved in the regulation of autophagy, the regulation of JAK-STAT signaling pathway, and the regulation of MAPK cascade. In the protein-protein interaction network, the hub DEGs, such as IL-6, PTGS2, JUN, NQO1, NOS3, LEPR, NAMPT, CDKN2A, CDKN1A, and Snai1, were obtained. After validation using qPCR analysis in the MI mice model and single-cell sequencing, the 10 hub genes can be the potential targets for MI deterioration. CONCLUSION The screened hub genes, IL-6, PTGS2, JUN, NQO1, NOS3, LEPR, NAMPT, CDKN2A, CDKN1A, and Snai1, may be therapeutic targets for patients with MI and may prevent adverse cardiovascular events.
Collapse
Affiliation(s)
- Yue Zheng
- School of Medicine, Nankai University, Tianjin, China
- Department of Heart Center, The Third Central Hospital of Tianjin, Tianjin, China
- Nankai University Affiliated Third Center Hospital, Nankai University, Tianjin, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
- Artificial Cell Engineering Technology Research Center, Tianjin, China
| | - Wenqing Gao
- School of Medicine, Nankai University, Tianjin, China
- Department of Heart Center, The Third Central Hospital of Tianjin, Tianjin, China
- Nankai University Affiliated Third Center Hospital, Nankai University, Tianjin, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
- Artificial Cell Engineering Technology Research Center, Tianjin, China
| | - Qiang Zhang
- School of Medicine, Nankai University, Tianjin, China
- Department of Heart Center, The Third Central Hospital of Tianjin, Tianjin, China
- Nankai University Affiliated Third Center Hospital, Nankai University, Tianjin, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
- Artificial Cell Engineering Technology Research Center, Tianjin, China
| | - Xian Cheng
- School of Medicine, Nankai University, Tianjin, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
- Artificial Cell Engineering Technology Research Center, Tianjin, China
- Department of Heart Center, The Third Central Clinical College of Tianjin Medical University, Tianjin, China
| | - Yanwu Liu
- School of Medicine, Nankai University, Tianjin, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
- Artificial Cell Engineering Technology Research Center, Tianjin, China
- Department of Heart Center, The Third Central Clinical College of Tianjin Medical University, Tianjin, China
| | - Zhenchang Qi
- School of Medicine, Nankai University, Tianjin, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
- Artificial Cell Engineering Technology Research Center, Tianjin, China
- Department of Heart Center, The Third Central Clinical College of Tianjin Medical University, Tianjin, China
| | - Tong Li
- School of Medicine, Nankai University, Tianjin, China
- Department of Heart Center, The Third Central Hospital of Tianjin, Tianjin, China
- Nankai University Affiliated Third Center Hospital, Nankai University, Tianjin, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
- Artificial Cell Engineering Technology Research Center, Tianjin, China
- Department of Heart Center, The Third Central Clinical College of Tianjin Medical University, Tianjin, China
| |
Collapse
|
238
|
Jiang T, Yang T, Bao Q, Sun W, Yang M, Mao C. Construction of tissue-customized hydrogels from cross-linkable materials for effective tissue regeneration. J Mater Chem B 2022; 10:4741-4758. [PMID: 34812829 DOI: 10.1039/d1tb01935j] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Hydrogels are prevalent scaffolds for tissue regeneration because of their hierarchical architectures along with outstanding biocompatibility and unique rheological and mechanical properties. For decades, researchers have found that many materials (natural, synthetic, or hybrid) can form hydrogels using different cross-linking strategies. Traditional strategies for fabricating hydrogels include physical, chemical, and enzymatical cross-linking methods. However, due to the diverse characteristics of different tissues/organs to be regenerated, tissue-customized hydrogels need to be developed through precisely controlled processes, making the manufacture of hydrogels reliant on novel cross-linking strategies. Thus, hybrid cross-linkable materials are proposed to tackle this challenge through hybrid cross-linking strategies. Here, different cross-linkable materials and their associated cross-linking strategies are summarized. From the perspective of the major characteristics of the target tissues/organs, we critically analyze how different cross-linking strategies are tailored to fit the regeneration of such tissues and organs. To further advance this field, more appropriate cross-linkable materials and cross-linking strategies should be investigated. In addition, some innovative technologies, such as 3D bioprinting, the internet of medical things (IoMT), and artificial intelligence (AI), are also proposed to improve the development of hydrogels for more efficient tissue regeneration.
Collapse
Affiliation(s)
- Tongmeng Jiang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
| | - Tao Yang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
| | - Qing Bao
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
| | - Weilian Sun
- Department of Periodontology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310009, P. R. China.
| | - Mingying Yang
- Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Yuhangtang Road 866, Hangzhou, Zhejiang 310058, P. R. China.
| | - Chuanbin Mao
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019, USA.
| |
Collapse
|
239
|
Yang Y, Wei Z, Xiong C, Qian H. Direct mechanisms of SARS-CoV-2-induced cardiomyocyte damage: an update. Virol J 2022; 19:108. [PMID: 35752810 PMCID: PMC9233758 DOI: 10.1186/s12985-022-01833-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/02/2022] [Indexed: 11/10/2022] Open
Abstract
Myocardial injury induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is reportedly related to disease severity and mortality, attracting attention to exploring relevant pathogenic mechanisms. Limited by insufficient evidence, myocardial injury caused by direct viral invasion of cardiomyocytes (CMs) is not fully understood. Based on recent studies, endosomal dependence can compensate for S protein priming to mediate SARS-CoV-2 infection of CMs, damage the contractile function of CMs, trigger electrical dysfunction, and tip the balance of the renin-angiotensin-aldosterone system to exert a myocardial injury effect. In this review, we shed light on the direct injury caused by SARS-CoV-2 to provide a comprehensive understanding of the cardiac manifestations of coronavirus disease 2019 (COVID-19).
Collapse
Affiliation(s)
- Yicheng Yang
- Center for Pulmonary Vascular Diseases, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases of China, State Key Laboratory of Cardiovascular, Beijing, 100037, China
| | - Zhiyao Wei
- Center for Coronary Heart Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases of China, State Key Laboratory of Cardiovascular, Beijing, 100037, China
| | - Changming Xiong
- Center for Pulmonary Vascular Diseases, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases of China, State Key Laboratory of Cardiovascular, Beijing, 100037, China.
- Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Road, Xicheng District, Beijing, 100037, China.
| | - Haiyan Qian
- Center for Coronary Heart Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases of China, State Key Laboratory of Cardiovascular, Beijing, 100037, China.
- Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Road, Xicheng District, Beijing, 100037, China.
| |
Collapse
|
240
|
Steimle JD, Grisanti Canozo FJ, Park M, Kadow ZA, Samee MAH, Martin JF. Decoding the PITX2-controlled genetic network in atrial fibrillation. JCI Insight 2022; 7:e158895. [PMID: 35471998 PMCID: PMC9221021 DOI: 10.1172/jci.insight.158895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Atrial fibrillation (AF), the most common sustained cardiac arrhythmia and a major risk factor for stroke, often arises through ectopic electrical impulses derived from the pulmonary veins (PVs). Sequence variants in enhancers controlling expression of the transcription factor PITX2, which is expressed in the cardiomyocytes (CMs) of the PV and left atrium (LA), have been implicated in AF predisposition. Single nuclei multiomic profiling of RNA and analysis of chromatin accessibility combined with spectral clustering uncovered distinct PV- and LA-enriched CM cell states. Pitx2-mutant PV and LA CMs exhibited gene expression changes consistent with cardiac dysfunction through cell type-distinct, PITX2-directed, cis-regulatory grammars controlling target gene expression. The perturbed network targets in each CM were enriched in distinct human AF predisposition genes, suggesting combinatorial risk for AF genesis. Our data further reveal that PV and LA Pitx2-mutant CMs signal to endothelial and endocardial cells through BMP10 signaling with pathogenic potential. This work provides a multiomic framework for interrogating the basis of AF predisposition in the PVs of humans.
Collapse
Affiliation(s)
| | | | | | - Zachary A. Kadow
- Program in Developmental Biology, and
- Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas, USA
| | | | - James F. Martin
- Department of Integrative Physiology
- Texas Heart Institute, Houston, Texas, USA
- Center for Organ Repair and Renewal, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
241
|
Zhang X, Qiu H, Zhang F, Ding S. Advances in Single-Cell Multi-Omics and Application in Cardiovascular Research. Front Cell Dev Biol 2022; 10:883861. [PMID: 35733851 PMCID: PMC9207481 DOI: 10.3389/fcell.2022.883861] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/23/2022] [Indexed: 12/30/2022] Open
Abstract
With the development of ever more powerful and versatile high-throughput sequencing techniques and innovative ways to capture single cells, mapping the multicellular tissues at the single-cell level is becoming routine practice. However, it is still challenging to depict the epigenetic landscape of a single cell, especially the genome-wide chromatin accessibility, histone modifications, and DNA methylation. We summarize the most recent methodologies to profile these epigenetic marks at the single-cell level. We also discuss the development and advancement of several multi-omics sequencing technologies from individual cells. Advantages and limitations of various methods to compare and integrate datasets obtained from different sources are also included with specific practical notes. Understanding the heart tissue at single-cell resolution and multi-modal levels will help to elucidate the cell types and states involved in physiological and pathological events during heart development and disease. The rich information produced from single-cell multi-omics studies will also promote the research of heart regeneration and precision medicine on heart diseases.
Collapse
Affiliation(s)
- Xingwu Zhang
- Center for Stem Cell Biology and Regenerative Medicine, School of Medicine, Tsinghua University, Beijing, China
| | - Hui Qiu
- Center for Stem Cell Biology and Regenerative Medicine, School of Medicine, Tsinghua University, Beijing, China
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Fengzhi Zhang
- First Hospital of Tsinghua University, Beijing, China
| | - Shuangyuan Ding
- Center for Stem Cell Biology and Regenerative Medicine, School of Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
242
|
Cardiac fibroblast sub-types in vitro reflect pathological cardiac remodeling in vivo. Matrix Biol Plus 2022; 15:100113. [PMID: 35719864 PMCID: PMC9198323 DOI: 10.1016/j.mbplus.2022.100113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/26/2022] [Accepted: 06/03/2022] [Indexed: 12/03/2022] Open
Abstract
A panel of 12 fibrosis related genes clearly identified heart failure (HF) patients better than measurement of the collagen-related hydroxyproline content. A subcluster enriched for ischemic HF was recognized, but not for diabetes, obesity, or gender. Single-cell transcriptomic analysis of in vitro differentiated mouse cardiac fibroblasts distinguished 6 subpopulations, including a contractile Acta2high precursor population, and Acta2low subpopulations with high production of extracellular matrix molecules. The 12 gene profile identified in HF patients showed highest similarity to the fibroblast subset with the strongest expression of extracellular matrix molecules. Major features of cardiac fibroblast differentiation in heart failure patients, in murine heart disease models, and in cell culture of primary murine cardiac fibroblast are shared.
Many heart diseases are associated with fibrosis, but it is unclear whether different types of heart disease correlate with different subtypes of activated fibroblasts and to which extent such diversity is modeled during in vitro activation of primary cardiac fibroblasts. Analyzing the expression of 82 fibrosis related genes in 65 heart failure (HF) patients, we identified a panel of 12 genes clearly distinguishing HF patients better from healthy controls than measurement of the collagen-related hydroxyproline content. A subcluster enriched in ischemic HF was recognized, but not for diabetes, high BMI, or gender. Single-cell transcriptomic analysis of in vitro activated mouse cardiac fibroblasts distinguished 6 subpopulations, including a contractile Acta2high precursor population, which was predicted by time trajectory analysis to develop into Acta2low subpopulations with high production of extracellular matrix molecules. The 12 gene profile identified in HF patients showed highest similarity to the fibroblast subset with the strongest expression of extracellular matrix molecules. Population markers identified were furthermore able to clearly cluster different disease stages in a murine model for myocardial infarct. These data suggest that major features of cardiac fibroblast activation in heart failure patients, in murine heart disease models, and in cell culture of primary murine cardiac fibroblast are shared.
Collapse
|
243
|
Suku M, Forrester L, Biggs M, Monaghan MG. Resident Macrophages and Their Potential in Cardiac Tissue Engineering. TISSUE ENGINEERING. PART B, REVIEWS 2022; 28:579-591. [PMID: 34088222 PMCID: PMC9242717 DOI: 10.1089/ten.teb.2021.0036] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/26/2021] [Indexed: 01/05/2023]
Abstract
Many facets of tissue engineered models aim at understanding cellular mechanisms to recapitulate in vivo behavior, to study and mimic diseases for drug interventions, and to provide a better understanding toward improving regenerative medicine. Recent and rapid advances in stem cell biology, material science and engineering, have made the generation of complex engineered tissues much more attainable. One such tissue, human myocardium, is extremely intricate, with a number of different cell types. Recent studies have unraveled cardiac resident macrophages as a critical mediator for normal cardiac function. Macrophages within the heart exert phagocytosis and efferocytosis, facilitate electrical conduction, promote regeneration, and remove cardiac exophers to maintain homeostasis. These findings underpin the rationale of introducing macrophages to engineered heart tissue (EHT), to more aptly capitulate in vivo physiology. Despite the lack of studies using cardiac macrophages in vitro, there is enough evidence to accept that they will be key to making EHTs more physiologically relevant. In this review, we explore the rationale and feasibility of using macrophages as an additional cell source in engineered cardiac tissues. Impact statement Macrophages play a critical role in cardiac homeostasis and in disease. Over the past decade, we have come to understand the many vital roles played by cardiac resident macrophages in the heart, including immunosurveillance, regeneration, electrical conduction, and elimination of exophers. There is a need to improve our understanding of the resident macrophage population in the heart in vitro, to better recapitulate the myocardium through tissue engineered models. However, obtaining them in vitro remains a challenge. Here, we discuss the importance of cardiac resident macrophages and potential ways to obtain cardiac resident macrophages in vitro. Finally, we critically discuss their potential in realizing impactful in vitro models of cardiac tissue and their impact in the field.
Collapse
Affiliation(s)
- Meenakshi Suku
- Department of Mechanical, Manufacturing and Biomedical Engineering, Trinity College Dublin, Dublin, Ireland
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Science Institute, Trinity College Dublin, Dublin, Ireland
- CURAM SFI Research Centre for Medical Devices, National University of Ireland, Galway, Ireland
| | - Lesley Forrester
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Manus Biggs
- CURAM SFI Research Centre for Medical Devices, National University of Ireland, Galway, Ireland
| | - Michael G. Monaghan
- Department of Mechanical, Manufacturing and Biomedical Engineering, Trinity College Dublin, Dublin, Ireland
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Science Institute, Trinity College Dublin, Dublin, Ireland
- CURAM SFI Research Centre for Medical Devices, National University of Ireland, Galway, Ireland
- Advanced Materials for Bioengineering Research (AMBER) Centre, Trinity College Dublin and Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
244
|
Pirruccello JP, Di Achille P, Nauffal V, Nekoui M, Friedman SF, Klarqvist MDR, Chaffin MD, Weng LC, Cunningham JW, Khurshid S, Roselli C, Lin H, Koyama S, Ito K, Kamatani Y, Komuro I, Jurgens SJ, Benjamin EJ, Batra P, Natarajan P, Ng K, Hoffmann U, Lubitz SA, Ho JE, Lindsay ME, Philippakis AA, Ellinor PT. Genetic analysis of right heart structure and function in 40,000 people. Nat Genet 2022; 54:792-803. [PMID: 35697867 PMCID: PMC10313645 DOI: 10.1038/s41588-022-01090-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/26/2022] [Indexed: 01/29/2023]
Abstract
Congenital heart diseases often involve maldevelopment of the evolutionarily recent right heart chamber. To gain insight into right heart structure and function, we fine-tuned deep learning models to recognize the right atrium, right ventricle and pulmonary artery, measuring right heart structures in 40,000 individuals from the UK Biobank with magnetic resonance imaging. Genome-wide association studies identified 130 distinct loci associated with at least one right heart measurement, of which 72 were not associated with left heart structures. Loci were found near genes previously linked with congenital heart disease, including NKX2-5, TBX5/TBX3, WNT9B and GATA4. A genome-wide polygenic predictor of right ventricular ejection fraction was associated with incident dilated cardiomyopathy (hazard ratio, 1.33 per standard deviation; P = 7.1 × 10-13) and remained significant after accounting for a left ventricular polygenic score. Harnessing deep learning to perform large-scale cardiac phenotyping, our results yield insights into the genetic determinants of right heart structure and function.
Collapse
Affiliation(s)
- James P Pirruccello
- Cardiology Division, Massachusetts General Hospital, Boston, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Paolo Di Achille
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Victor Nauffal
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Mahan Nekoui
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Samuel F Friedman
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Marcus D R Klarqvist
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Mark D Chaffin
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Lu-Chen Weng
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jonathan W Cunningham
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Shaan Khurshid
- Cardiology Division, Massachusetts General Hospital, Boston, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Carolina Roselli
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Honghuang Lin
- Framingham Heart Study, Boston University and National Heart, Lung, and Blood Institute, Framingham, MA, USA
- Division of Clinical Informatics, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Satoshi Koyama
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Laboratory for Cardiovascular Genomics and Informatics, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Kaoru Ito
- Laboratory for Cardiovascular Genomics and Informatics, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Yoichiro Kamatani
- Laboratory of Complex Trait Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Issei Komuro
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Sean J Jurgens
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Experimental Cardiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Emelia J Benjamin
- Framingham Heart Study, Boston University and National Heart, Lung, and Blood Institute, Framingham, MA, USA
- Department of Medicine, Cardiology and Preventive Medicine Sections, Boston University School of Medicine, Boston, MA, USA
- Epidemiology Department, Boston University School of Public Health, Boston, MA, USA
| | - Puneet Batra
- Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Pradeep Natarajan
- Cardiology Division, Massachusetts General Hospital, Boston, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | | | - Udo Hoffmann
- Department of Radiology, Harvard Medical School, Boston, MA, USA
- Cardiovascular Imaging Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Steven A Lubitz
- Cardiology Division, Massachusetts General Hospital, Boston, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Demoulas Center for Cardiac Arrhythmias, Massachusetts General Hospital, Boston, MA, USA
| | - Jennifer E Ho
- Harvard Medical School, Boston, MA, USA
- CardioVascular Institute and Division of Cardiology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Mark E Lindsay
- Cardiology Division, Massachusetts General Hospital, Boston, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Thoracic Aortic Center, Massachusetts General Hospital, Boston, MA, USA
| | | | - Patrick T Ellinor
- Cardiology Division, Massachusetts General Hospital, Boston, MA, USA.
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA.
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Demoulas Center for Cardiac Arrhythmias, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
245
|
Chen S, Luo Y, Gao H, Li F, Chen Y, Li J, You R, Hao M, Bian H, Xi X, Li W, Li W, Ye M, Meng Q, Zou Z, Li C, Li H, Zhang Y, Cui Y, Wei L, Chen F, Wang X, Lv H, Hua K, Jiang R, Zhang X. hECA: The cell-centric assembly of a cell atlas. iScience 2022; 25:104318. [PMID: 35602947 PMCID: PMC9114628 DOI: 10.1016/j.isci.2022.104318] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/18/2022] [Accepted: 04/25/2022] [Indexed: 12/04/2022] Open
Abstract
The accumulation of massive single-cell omics data provides growing resources for building biomolecular atlases of all cells of human organs or the whole body. The true assembly of a cell atlas should be cell-centric rather than file-centric. We developed a unified informatics framework for seamless cell-centric data assembly and built the human Ensemble Cell Atlas (hECA) from scattered data. hECA v1.0 assembled 1,093,299 labeled human cells from 116 published datasets, covering 38 organs and 11 systems. We invented three new methods of atlas applications based on the cell-centric assembly: “in data” cell sorting for targeted data retrieval with customizable logic expressions, “quantitative portraiture” for multi-view representations of biological entities, and customizable reference creation for generating references for automatic annotations. Case studies on agile construction of user-defined sub-atlases and “in data” investigation of CAR-T off-targets in multiple organs showed the great potential enabled by the cell-centric ensemble atlas. A unified informatics framework for seamless cell-centric assembly of massive single-cell data Built the general-purpose human Ensemble Cell Atlas (hECA) V1.0 from scattered data Three new methods of applications enabling “in data” cell experiments and portraiture Case studies of agile atlas reconstruction and target therapies side-effect discovery
Collapse
Affiliation(s)
- Sijie Chen
- MOE Key Lab of Bioinformatics, Bioinformatics Division of BNRIST and Department of Automation, Tsinghua University, Beijing 100084, China
| | - Yanting Luo
- MOE Key Lab of Bioinformatics, Bioinformatics Division of BNRIST and Department of Automation, Tsinghua University, Beijing 100084, China
| | - Haoxiang Gao
- MOE Key Lab of Bioinformatics, Bioinformatics Division of BNRIST and Department of Automation, Tsinghua University, Beijing 100084, China
| | - Fanhong Li
- MOE Key Lab of Bioinformatics, Bioinformatics Division of BNRIST and Department of Automation, Tsinghua University, Beijing 100084, China
| | - Yixin Chen
- MOE Key Lab of Bioinformatics, Bioinformatics Division of BNRIST and Department of Automation, Tsinghua University, Beijing 100084, China
| | - Jiaqi Li
- MOE Key Lab of Bioinformatics, Bioinformatics Division of BNRIST and Department of Automation, Tsinghua University, Beijing 100084, China
| | - Renke You
- Fuzhou Institute of Data Technology, Changle, Fuzhou 350200, China
| | - Minsheng Hao
- MOE Key Lab of Bioinformatics, Bioinformatics Division of BNRIST and Department of Automation, Tsinghua University, Beijing 100084, China
| | - Haiyang Bian
- MOE Key Lab of Bioinformatics, Bioinformatics Division of BNRIST and Department of Automation, Tsinghua University, Beijing 100084, China
| | - Xi Xi
- MOE Key Lab of Bioinformatics, Bioinformatics Division of BNRIST and Department of Automation, Tsinghua University, Beijing 100084, China
| | - Wenrui Li
- MOE Key Lab of Bioinformatics, Bioinformatics Division of BNRIST and Department of Automation, Tsinghua University, Beijing 100084, China
| | - Weiyu Li
- Fuzhou Institute of Data Technology, Changle, Fuzhou 350200, China
| | - Mingli Ye
- Fuzhou Institute of Data Technology, Changle, Fuzhou 350200, China
| | - Qiuchen Meng
- MOE Key Lab of Bioinformatics, Bioinformatics Division of BNRIST and Department of Automation, Tsinghua University, Beijing 100084, China
| | - Ziheng Zou
- MOE Key Lab of Bioinformatics, Bioinformatics Division of BNRIST and Department of Automation, Tsinghua University, Beijing 100084, China
| | - Chen Li
- MOE Key Lab of Bioinformatics, Bioinformatics Division of BNRIST and Department of Automation, Tsinghua University, Beijing 100084, China
| | - Haochen Li
- School of Medicine, Tsinghua University, Beijing 100084, China
| | - Yangyuan Zhang
- MOE Key Lab of Bioinformatics, Bioinformatics Division of BNRIST and Department of Automation, Tsinghua University, Beijing 100084, China
| | - Yanfei Cui
- MOE Key Lab of Bioinformatics, Bioinformatics Division of BNRIST and Department of Automation, Tsinghua University, Beijing 100084, China
| | - Lei Wei
- MOE Key Lab of Bioinformatics, Bioinformatics Division of BNRIST and Department of Automation, Tsinghua University, Beijing 100084, China
| | - Fufeng Chen
- Fuzhou Institute of Data Technology, Changle, Fuzhou 350200, China
| | - Xiaowo Wang
- MOE Key Lab of Bioinformatics, Bioinformatics Division of BNRIST and Department of Automation, Tsinghua University, Beijing 100084, China
| | - Hairong Lv
- MOE Key Lab of Bioinformatics, Bioinformatics Division of BNRIST and Department of Automation, Tsinghua University, Beijing 100084, China.,Fuzhou Institute of Data Technology, Changle, Fuzhou 350200, China
| | - Kui Hua
- MOE Key Lab of Bioinformatics, Bioinformatics Division of BNRIST and Department of Automation, Tsinghua University, Beijing 100084, China
| | - Rui Jiang
- MOE Key Lab of Bioinformatics, Bioinformatics Division of BNRIST and Department of Automation, Tsinghua University, Beijing 100084, China
| | - Xuegong Zhang
- MOE Key Lab of Bioinformatics, Bioinformatics Division of BNRIST and Department of Automation, Tsinghua University, Beijing 100084, China.,School of Medicine, Tsinghua University, Beijing 100084, China.,School of Life Sciences, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
246
|
Bachmann JC, Baumgart SJ, Uryga AK, Bosteen MH, Borghetti G, Nyberg M, Herum KM. Fibrotic Signaling in Cardiac Fibroblasts and Vascular Smooth Muscle Cells: The Dual Roles of Fibrosis in HFpEF and CAD. Cells 2022; 11:1657. [PMID: 35626694 PMCID: PMC9139546 DOI: 10.3390/cells11101657] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 12/11/2022] Open
Abstract
Patients with heart failure with preserved ejection fraction (HFpEF) and atherosclerosis-driven coronary artery disease (CAD) will have ongoing fibrotic remodeling both in the myocardium and in atherosclerotic plaques. However, the functional consequences of fibrosis differ for each location. Thus, cardiac fibrosis leads to myocardial stiffening, thereby compromising cardiac function, while fibrotic remodeling stabilizes the atherosclerotic plaque, thereby reducing the risk of plaque rupture. Although there are currently no drugs targeting cardiac fibrosis, it is a field under intense investigation, and future drugs must take these considerations into account. To explore similarities and differences of fibrotic remodeling at these two locations of the heart, we review the signaling pathways that are activated in the main extracellular matrix (ECM)-producing cells, namely human cardiac fibroblasts (CFs) and vascular smooth muscle cells (VSMCs). Although these signaling pathways are highly overlapping and context-dependent, effects on ECM remodeling mainly act through two core signaling cascades: TGF-β and Angiotensin II. We complete this by summarizing the knowledge gained from clinical trials targeting these two central fibrotic pathways.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Kate M. Herum
- Research and Early Development, Novo Nordisk A/S, Novo Nordisk Park, 2760 Maaloev, Denmark; (J.C.B.); (S.J.B.); (A.K.U.); (M.H.B.); (G.B.); (M.N.)
| |
Collapse
|
247
|
Eraslan G, Drokhlyansky E, Anand S, Fiskin E, Subramanian A, Slyper M, Wang J, Van Wittenberghe N, Rouhana JM, Waldman J, Ashenberg O, Lek M, Dionne D, Win TS, Cuoco MS, Kuksenko O, Tsankov AM, Branton PA, Marshall JL, Greka A, Getz G, Segrè AV, Aguet F, Rozenblatt-Rosen O, Ardlie KG, Regev A. Single-nucleus cross-tissue molecular reference maps toward understanding disease gene function. Science 2022; 376:eabl4290. [PMID: 35549429 PMCID: PMC9383269 DOI: 10.1126/science.abl4290] [Citation(s) in RCA: 207] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Understanding gene function and regulation in homeostasis and disease requires knowledge of the cellular and tissue contexts in which genes are expressed. Here, we applied four single-nucleus RNA sequencing methods to eight diverse, archived, frozen tissue types from 16 donors and 25 samples, generating a cross-tissue atlas of 209,126 nuclei profiles, which we integrated across tissues, donors, and laboratory methods with a conditional variational autoencoder. Using the resulting cross-tissue atlas, we highlight shared and tissue-specific features of tissue-resident cell populations; identify cell types that might contribute to neuromuscular, metabolic, and immune components of monogenic diseases and the biological processes involved in their pathology; and determine cell types and gene modules that might underlie disease mechanisms for complex traits analyzed by genome-wide association studies.
Collapse
Affiliation(s)
- Gökcen Eraslan
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Eugene Drokhlyansky
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Shankara Anand
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Evgenij Fiskin
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ayshwarya Subramanian
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Michal Slyper
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jiali Wang
- Department of Ophthalmology, Harvard Medical School, Boston, MA 02115, USA
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
- Medical and Population Genetics Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - John M. Rouhana
- Department of Ophthalmology, Harvard Medical School, Boston, MA 02115, USA
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
- Medical and Population Genetics Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Julia Waldman
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Orr Ashenberg
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Monkol Lek
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Danielle Dionne
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Thet Su Win
- Department of Dermatology, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Michael S. Cuoco
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Olena Kuksenko
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Philip A. Branton
- The Joint Pathology Center Gynecologic/Breast Pathology, Silver Spring, MD 20910, USA
| | | | - Anna Greka
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Gad Getz
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Center for Cancer Research and Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Ayellet V. Segrè
- Department of Ophthalmology, Harvard Medical School, Boston, MA 02115, USA
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
- Medical and Population Genetics Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - François Aguet
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Orit Rozenblatt-Rosen
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
248
|
A cardioimmunologist's toolkit: genetic tools to dissect immune cells in cardiac disease. Nat Rev Cardiol 2022; 19:395-413. [PMID: 35523863 DOI: 10.1038/s41569-022-00701-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/25/2022] [Indexed: 02/06/2023]
Abstract
Cardioimmunology is a field that encompasses the immune cells and pathways that modulate cardiac function in homeostasis and regulate the temporal balance between tissue injury and repair in disease. Over the past two decades, genetic fate mapping and high-dimensional sequencing techniques have defined increasing functional heterogeneity of innate and adaptive immune cell populations in the heart and other organs, revealing a complexity not previously appreciated and challenging established frameworks for the immune system. Given these rapid advances, understanding how to use these tools has become crucial. However, cardiovascular biologists without immunological expertise might not be aware of the strengths and caveats of immune-related tools and how they can be applied to examine the pathogenesis of myocardial diseases. In this Review, we guide readers through case-based examples to demonstrate how tool selection can affect data quality and interpretation and we provide critical analysis of the experimental tools that are currently available, focusing on their use in models of ischaemic heart injury and heart failure. The goal is to increase the use of relevant immunological tools and strategies among cardiovascular researchers to improve the precision, translatability and consistency of future studies of immune cells in cardiac disease.
Collapse
|
249
|
Kanaan R, Medlej-Hashim M, Jounblat R, Pilecki B, Sorensen GL. Microfibrillar-associated protein 4 in health and disease. Matrix Biol 2022; 111:1-25. [DOI: 10.1016/j.matbio.2022.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/04/2022] [Accepted: 05/24/2022] [Indexed: 10/18/2022]
|
250
|
Peng Y, Yang Q, Gao S, Liu Z, Kong W, Bian X, Li Z, Ye J. IL-6 protects cardiomyocytes from oxidative stress at the early stage of LPS-induced sepsis. Biochem Biophys Res Commun 2022; 603:144-152. [DOI: 10.1016/j.bbrc.2022.03.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 03/01/2022] [Indexed: 12/24/2022]
|