201
|
Tavares LP, Peh HY, Tan WSD, Pahima H, Maffia P, Tiligada E, Levi-Schaffer F. Granulocyte-targeted therapies for airway diseases. Pharmacol Res 2020; 157:104881. [PMID: 32380052 PMCID: PMC7198161 DOI: 10.1016/j.phrs.2020.104881] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 04/27/2020] [Indexed: 12/24/2022]
Abstract
The average respiration rate for an adult is 12-20 breaths per minute, which constantly exposes the lungs to allergens and harmful particles. As a result, respiratory diseases, which includes asthma, chronic obstructive pulmonary disease (COPD) and acute lower respiratory tract infections (LTRI), are a major cause of death worldwide. Although asthma, COPD and LTRI are distinctly different diseases with separate mechanisms of disease progression, they do share a common feature - airway inflammation with intense recruitment and activation of granulocytes and mast cells. Neutrophils, eosinophils, basophils, and mast cells are crucial players in host defense against pathogens and maintenance of lung homeostasis. Upon contact with harmful particles, part of the pulmonary defense mechanism is to recruit these cells into the airways. Despite their protective nature, overactivation or accumulation of granulocytes and mast cells in the lungs results in unwanted chronic airway inflammation and damage. As such, understanding the bright and the dark side of these leukocytes in lung physiology paves the way for the development of therapies targeting this important mechanism of disease. Here we discuss the role of granulocytes in respiratory diseases and summarize therapeutic strategies focused on granulocyte recruitment and activation in the lungs.
Collapse
Affiliation(s)
- Luciana P Tavares
- ImmuPhar - Immunopharmacology Section Committee of International Union of Basic and Clinical Pharmacology (IUPHAR); Pulmonary and Critical Care Medicine Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Hong Yong Peh
- ImmuPhar - Immunopharmacology Section Committee of International Union of Basic and Clinical Pharmacology (IUPHAR); Pulmonary and Critical Care Medicine Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, 16 Medical Drive, 117600, Singapore
| | - Wan Shun Daniel Tan
- ImmuPhar - Immunopharmacology Section Committee of International Union of Basic and Clinical Pharmacology (IUPHAR); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, 16 Medical Drive, 117600, Singapore
| | - Hadas Pahima
- ImmuPhar - Immunopharmacology Section Committee of International Union of Basic and Clinical Pharmacology (IUPHAR); Pharmacology and Experimental Therapeutics Unit, School of Pharmacy, Institute for Drug Research, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Pasquale Maffia
- ImmuPhar - Immunopharmacology Section Committee of International Union of Basic and Clinical Pharmacology (IUPHAR); Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom; Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom; Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Ekaterini Tiligada
- ImmuPhar - Immunopharmacology Section Committee of International Union of Basic and Clinical Pharmacology (IUPHAR); Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Francesca Levi-Schaffer
- ImmuPhar - Immunopharmacology Section Committee of International Union of Basic and Clinical Pharmacology (IUPHAR); Pharmacology and Experimental Therapeutics Unit, School of Pharmacy, Institute for Drug Research, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
202
|
Hvidtfeldt M, Sverrild A, Backer V, Porsbjerg C. Airway hyperresponsiveness to mannitol improves in both type 2 high and type 2 low asthma after specialist management. J Asthma 2020; 58:1221-1228. [PMID: 32519918 DOI: 10.1080/02770903.2020.1780255] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
OBJECTIVES Type 2 low (T2-low) asthma is reported to respond less to anti-inflammatory treatment compared with Type 2 high (T2-high) asthma. Airway hyperresponsiveness (AHR) to mannitol, a marker of airway mast cell activation, may be indicative of response to treatment in patients with T2-low disease. We investigated whether AHR to mannitol improves in patients with T2-low asthma after specialist management. METHODS Patients with asthma or suspected asthma, referred to our specialist outpatient clinic, were enrolled consecutively and assessed with FeNO, asthma control, blood eosinophils, mannitol and methacholine tests and induced sputum. T2-low asthma was defined in patients with FeNO < 25ppb and sputum eosinophils < 3% and blood eosinophils < 300µl-1 at inclusion. Patients with asthma and AHR to mannitol (PD15 ≤ 635 mg) were followed and reassessed after 12 months of specialist management. RESULTS Thirty-two patients (Females: 56%, age: 22 years (15-59)) were followed. Fourteen (44%) with T2-high and 18 (56%) with T2-low asthma. Baseline AHR to mannitol was comparable: Gmean PD15: 150 mg (95% CI 61-368) and 214 mg (95% CI 106-432) for T2-high and T2-low asthma respectively (P = 0.51). Both groups improved equally: Gmean PD15: 488 mg (95% CI 311-767) and 507 mg (95% CI 345-746); corresponding to a doubling-dose of: 3.00 (95% CI 1.58-5.74, P = 0.003) and 2.28 (95% CI 1.47-3.53, P = 0.001) respectively. There were no concomitant improvements in AHR to methacholine. CONCLUSION Patients with asthma and AHR to mannitol improve similarly in responsiveness to mannitol after 12 months of specialist management regardless of Type 2 inflammatory biomarker levels. Mechanisms driving AHR in T2-low asthma need to be further elucidated.
Collapse
Affiliation(s)
| | - Asger Sverrild
- Respiratory Research Unit, Bispebjerg Hospital, Copenhagen, Denmark.,Department of Respiratory Medicine, Bispebjerg Hospital, Copenhagen, Denmark
| | - Vibeke Backer
- Center for Physical Activity Research, Rigshospitalet, Copenhagen, Denmark
| | - Celeste Porsbjerg
- Respiratory Research Unit, Bispebjerg Hospital, Copenhagen, Denmark.,Department of Respiratory Medicine, Bispebjerg Hospital, Copenhagen, Denmark
| |
Collapse
|
203
|
Kardas G, Kuna P, Panek M. Biological Therapies of Severe Asthma and Their Possible Effects on Airway Remodeling. Front Immunol 2020; 11:1134. [PMID: 32625205 PMCID: PMC7314989 DOI: 10.3389/fimmu.2020.01134] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 05/11/2020] [Indexed: 12/14/2022] Open
Abstract
Asthma is a chronic and heterogenic respiratory tract disorder with a high global prevalence. The underlying chronic inflammatory process and airway remodeling (AR) contribute to the symptomatology of the disease. The most severely ill asthma patients may now be treated using a variety of monoclonal antibodies aiming key inflammatory cytokines involved in asthma pathogenesis. Although clinical data shows much beneficial effects of biological therapies in terms of reduction of exacerbation rates, improvement of lung functions, asthma control and patients' quality of life, little is known on the effects of these monoclonal antibodies on AR—a key clinical trait of long-term asthma management. In this review, the authors summarize the data on the proven effects of monoclonal antibodies in asthma on AR. To date, in terms of reversing AR, the mostly studied was omalizumab. However, some studies also addressed this clinical issue in context of other severe asthma biological therapies (mepolizumab, benralizumab, tralokinumab). Still, data on effects of particular biological therapies on AR in severe asthma are incomplete and require further studies. According to the American Thoracic Society research recommendations, future research shall focus on AR in asthma and improve drugs targeting AR, including the available and future monoclonal antibodies.
Collapse
Affiliation(s)
- Grzegorz Kardas
- Clinic of Internal Medicine, Asthma and Allergy, Medical University of Lodz, Łódz, Poland
| | - Piotr Kuna
- Clinic of Internal Medicine, Asthma and Allergy, Medical University of Lodz, Łódz, Poland
| | - Michał Panek
- Clinic of Internal Medicine, Asthma and Allergy, Medical University of Lodz, Łódz, Poland
| |
Collapse
|
204
|
Hynes GM, Hinks TSC. The role of interleukin-17 in asthma: a protective response? ERJ Open Res 2020; 6:00364-2019. [PMID: 32494573 PMCID: PMC7248344 DOI: 10.1183/23120541.00364-2019] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/04/2020] [Indexed: 02/06/2023] Open
Abstract
While there now exist effective treatments for type 2 high, eosinophilic asthma, there are no specific therapies for 40–50% of people with asthma with other phenotypes, which result from poorly understood underlying pathological mechanisms. One such pathology is neutrophilic inflammation, which has been associated with interleukin (IL)-17 family cytokines. Human genetic studies identified IL-17 polymorphisms associated with asthma; in murine models of allergic airways disease, IL-17A contributes to airway hyperresponsiveness, and in humans, elevated airway IL-17A levels are repeatedly observed in severe asthma. However, the directionality of this association is unknown, and the assumption that IL-17 cytokines drive disease pathology remains speculative. Here, we explore the evidence underlying the relationship between IL-17 and asthma, we review lessons learned from investigating IL-17 in other inflammatory diseases, and discuss the possibility that IL-17 may even be protective in asthma rather than pathogenic. We also critically examine the newly proposed paradigm of a reciprocal relationship between type 2 and type 17 airways inflammation. In summary, we suggest an association between IL-17 and asthma, but research is needed examining the diverse functions of these cytokines, their longitudinal stability, their response to clinical interventions, and for mechanistic studies determining whether they are protective or pathogenic. IL-17 cytokines have been implicated in neutrophilic asthma by genetic, murine and human data. Here, previous studies are critiqued and the assumption their dominant role is pathogenic rather than protective of airway epithelial barrier integrity is challenged.http://bit.ly/3axB4Zs
Collapse
Affiliation(s)
- Gareth M Hynes
- Respiratory Medicine Unit and National Institute for Health Research Oxford Biomedical Research Centre, Nuffield Dept of Medicine, Experimental Medicine, University of Oxford, Oxford, UK
| | - Timothy S C Hinks
- Respiratory Medicine Unit and National Institute for Health Research Oxford Biomedical Research Centre, Nuffield Dept of Medicine, Experimental Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
205
|
Hynes G, Pavord ID. Targeted biologic therapy for asthma. Br Med Bull 2020; 133:16-35. [PMID: 32318701 DOI: 10.1093/bmb/ldaa004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 02/04/2020] [Accepted: 02/09/2020] [Indexed: 01/20/2023]
Abstract
BACKGROUND Asthma is a common and potentially serious condition affecting 300 million people worldwide. For many years, we have relied on a one-size-fits-all approach to its management, using corticosteroids and bronchodilators for all symptomatic patients. However, with more recent advances, it has become clear that asthma is a heterogeneous condition with multiple different underlying pathways. Understanding the different subtypes will be a key to giving us the ability to intervene in a targeted way to personalize care for patients with asthma. SOURCES OF DATA Key published literature, guidelines and trials from clinicaltrials.gov. AREAS OF AGREEMENT The most widely studied of these subtypes is T2 high eosinophilic asthma, for which there are an increasing number of biologic therapies available. T2 high asthma is associated with the cytokines interleukin (IL)-4, IL-5 and IL-13, for each of which biologics have been developed. AREAS OF CONTROVERSY It is currently unclear which of the available biologics provides superior efficacy. It is also unclear how to select which biologic for which patient. GROWING POINTS Head-to-head trials of the available T2 biologics will be important to determine superiority, and a suggested order for trialling biologics. Going further than this, we would like to see further analyses of available biologics to allow us to predict responders from non-responders in advance of administering therapy. AREAS TIMELY FOR DEVELOPING RESEARCH Non-eosinophilic T2 low asthma is an area that is under-researched and for which there are few treatments available. It is likely that there are different subtypes in this category of asthma and unravelling what these are will be crucial to developing effective treatments.
Collapse
Affiliation(s)
- Gareth Hynes
- Respiratory Medicine Unit and Oxford Respiratory NIHR BRC, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - Ian D Pavord
- Respiratory Medicine Unit and Oxford Respiratory NIHR BRC, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
| |
Collapse
|
206
|
Promises and challenges of biologics for severe asthma. Biochem Pharmacol 2020; 179:114012. [PMID: 32389637 DOI: 10.1016/j.bcp.2020.114012] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 05/01/2020] [Indexed: 12/23/2022]
Abstract
Patients with severe asthma that remain uncontrolled incur significant medical burden and healthcare costs. Severe asthma is a heterogeneous airway disorder with complex pathophysiological mechanisms which can be broadly divided into type 2 (T2)-high and T2-low inflammatory pathways. Recent advances in asthma therapeutics with the advent of biologics have heralded an era of promising targeted therapy in this group of patients. The current available biologics, including anti-IgE mAb, anti-IL-5/IL-5R mAb and anti-IL-4Rα mAb, mainly target patients with an asthma endotype characterised by T2-high inflammation. While they have delivered positive outcomes in terms of reduction in exacerbations, improving lung function and quality of life, as well as reducing the dependence on oral corticosteroids, they have not functioned as the "panacea" as a significant proportion of patients do not respond completely to these targeted therapies. In addition, there is a lack of markers that can predict treatment response and clinicians are guided only by subjective asthma symptom scores. Suboptimal treatment response is common for individual patients. There has also been a dearth of effective targeted therapy for patients with T2-low asthma and treatment options remain limited for these patients. There is a pipeline of newer biologics targeting cytokines that operate at the interface between innate and adaptive immunity (e.g. IL-17A, thymic stromal lymphopoietin (TSLP), IL-25, IL-33, IL-32 and IL-36γ) with potential of modifying and reducing the severity of asthma. This commentary provides an overview of treatment with the current biologics and highlights the limitations, challenges and unmet needs in clinical management. We also summarise up-and-coming potential targets and therapeutic biologics for severe asthma.
Collapse
|
207
|
Bronchial Asthma: Current Trends in Treatment. ACTA MEDICA MARTINIANA 2020. [DOI: 10.2478/acm-2020-0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Asthma is a heterogenous disease which pathophysiology is still poorly understood. Asthma was traditionally divided into allergic (extrinsic) and non-allergic (intrinsic) types, while patients with allergic type responded better to corticosteroids. Since 2013 the definition of asthma has changed. Recently, better insight into clinical consi -derations and underlying inflammatory phenotypes has been gained. Defining these phenotypes has already led to more specific clinical trials and, therefore, to more personalized and successfully targeted therapy. For future, much more effort is put in identifying new phenotype-specific biomarkers which could be helpful in stratification of heterogeneous patients with asthma.
Collapse
|
208
|
Han XA, Jie HY, Wang JH, Zhang XM, Wang J, Yu CX, Zhang JL, He J, Chen JQ, Lai KF, Sun EW. Necrostatin-1 Ameliorates Neutrophilic Inflammation in Asthma by Suppressing MLKL Phosphorylation to Inhibiting NETs Release. Front Immunol 2020; 11:666. [PMID: 32391007 PMCID: PMC7194114 DOI: 10.3389/fimmu.2020.00666] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 03/24/2020] [Indexed: 11/26/2022] Open
Abstract
Neutrophilic inflammation occurs during asthma exacerbation, and especially, in patients with steroid-refractory asthma, but the underlying mechanisms are poorly understood. Recently, a significant accumulation of neutrophil extracellular traps (NETs) in the airways of neutrophilic asthma has been documented, suggesting that NETs may play an important role in the pathogenesis. In this study, we firstly demonstrated that NETs could induce human airway epithelial cell damage in vitro. In a mouse asthmatic model of neutrophil-dominated airway inflammation, we found that NETs were markedly increased in bronchoalveolar lavage (BAL), and the formation of NETs exacerbated the airway inflammation. Additionally, a small-molecule drug necrostatin-1 (Nec-1) shown to inhibit NETs formation was found to alleviate the neutrophil-dominated airway inflammation. Nec-1 reduced total protein concentration, myeloperoxidase activity, and the levels of inflammatory cytokines in BAL. Finally, further experiments proved that the inhibition of Nec-1 on NETs formation might be related to its ability to inhibiting mixed lineage kinase domain-like (MLKL) phosphorylation and perforation. Together, these results document that NETs are closely associated with the pathogenesis of neutrophilic asthma and inhibition of the formation of NETs by Nec-1 may be a new therapeutic strategy to ameliorate neutrophil-dominated airway inflammation.
Collapse
Affiliation(s)
- X A Han
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - H Y Jie
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - J H Wang
- Department of Respiratory and Critical Care Medicine, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - X M Zhang
- Department of Respiratory and Critical Care Medicine, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Jun Wang
- Department of Respiration, Nan Fang Hospital, Southern Medical University, Guangzhou, China
| | - C X Yu
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - J L Zhang
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - J He
- Department of Rheumatology and Immunology, Peking University Shenzhen Hospital, Shenzhen, China
| | - J Q Chen
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - K F Lai
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical College, Guangzhou, China
| | - E W Sun
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
209
|
Choy DF, Arron JR. Beyond type 2 cytokines in asthma - new insights from old clinical trials. Expert Opin Ther Targets 2020; 24:463-475. [PMID: 32223656 DOI: 10.1080/14728222.2020.1744567] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Introduction: Human asthma is a heterogeneous disorder on molecular, pathological, and clinical levels. The paradigm of asthma as an allergic process driven by type 2 cytokines and mediators has led to targeted biologic therapies resulting in some clinical benefit in patient subsets. However, some patient subsets and clinical manifestations do not benefit from these interventions, thus redefining unmet needs. Clinical studies of type 2 directed therapies have identified new targets under investigation in clinical development; these include epithelial alarmins, non-type 2 cytokines, cytokine receptor signaling, mast cells and neuroinflammation.Areas covered: We consider lessons learned concerning asthma pathogenesis from observational studies and clinical trials of biologic agents that target type 2 mediators. We also provide a perspective on emerging therapeutic hypotheses to target processes independent of or orthogonal to type 2 inflammation in asthma.Expert opinion: Type 2 inflammation is continuous, not discrete, and is likely a modifier of underlying dysregulated airway physiology. Non-type 2 inflammatory mediators (e.g., IL17, IL6, IFNs), microbiome, alarmins (e.g., TSLP, IL33), mast cells and sensory neurons may represent orthogonal targets to type 2 mediators. There is a need to better match targets and outcome measures in biologically defined patient populations to appropriately test hypotheses in the clinic.
Collapse
|
210
|
Abstract
PURPOSE OF REVIEW Children with poor asthma control despite maximal maintenance therapy have problematic severe asthma (PSA). A step-wise approach including objective adherence monitoring and a detailed multidisciplinary team assessment to identify modifiable factors contributing to poor control is needed prior to considering therapy escalation. Pathophysiological phenotyping in those with true severe therapy-resistant asthma (STRA) and the current array of add-on therapies will be discussed. RECENT FINDINGS Adherence monitoring using electronic devices has shown that only 20-30% of children with PSA have STRA and need additional therapies. Omalizumab and mepolizumab are licensed for children with STRA aged 6 years and older. Although robust safety and efficacy data, with reduced exacerbations, are available for omalizumab, biomarkers predicting response to treatment are lacking. Paediatric safety data are available for mepolizumab, but efficacy data are unknown for those aged 6-11 years and minimal for those 12 years and older. A sub-group of children with STRA have neutrophilia, but the clinical significance and contribution to disease severity remains uncertain. SUMMARY Most children with PSA have steroid sensitive disease which improves with adherence to maintenance inhaled corticosteroids. Add-on therapies are only needed for the minority with STRA. Paediatric efficacy data of novel biologics and biomarkers that identify the optimal add-on for each child are lacking. If we are to progress toward individualized therapy for STRA, pragmatic clinical trials of biologics in accurately phenotyped children are needed.
Collapse
|
211
|
Abstract
PURPOSE OF REVIEW The aim of this review is to emphasize the role of neutrophils in patients with occupational asthma. This review facilitates a better understanding, accurate diagnosis, and proper management of asthmatic reactions provoked at the workplace. RECENT FINDINGS Increased recruitment and infiltration of neutrophils are found in patients with occupational asthma. Activated neutrophils release several mediators including pro-inflammatory cytokines and extracellular traps, leading to stimulation of airway epithelium and other inflammatory cells. SUMMARY New insights into neutrophils in the pathogenesis of occupational asthma may provide a novel approach to the individual patient with occupational asthma.
Collapse
|
212
|
Davies ER, Perotin JM, Kelly JFC, Djukanovic R, Davies DE, Haitchi HM. Involvement of the epidermal growth factor receptor in IL-13-mediated corticosteroid-resistant airway inflammation. Clin Exp Allergy 2020; 50:672-686. [PMID: 32096290 PMCID: PMC7317751 DOI: 10.1111/cea.13591] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/12/2020] [Accepted: 02/19/2020] [Indexed: 01/08/2023]
Abstract
BACKGROUND Effective treatment for severe asthma is a significant unmet need. While eosinophilic inflammation caused by type 2 cytokines is responsive to corticosteroid and biologic therapies, many severe asthmatics exhibit corticosteroid-unresponsive mixed granulocytic inflammation. OBJECTIVE Here, we tested the hypothesis that the pro-allergic cytokine, IL-13, can drive both corticosteroid-sensitive and corticosteroid-resistant responses. RESULTS By integration of in vivo and in vitro models of IL-13-driven inflammation, we identify a role for the epidermal growth factor receptor (EGFR/ERBB1) as a mediator of corticosteroid-unresponsive inflammation and bronchial hyperresponsiveness driven by IL-13. Topological data analysis using human epithelial transcriptomic data from the U-BIOPRED cohort identified severe asthma groups with features consistent with the presence of IL-13 and EGFR/ERBB activation, with involvement of distinct EGFR ligands. Our data suggest that IL-13 may play a dual role in severe asthma: on the one hand driving pathologic corticosteroid-refractory mixed granulocytic inflammation, but on the other hand underpinning beneficial epithelial repair responses, which may confound responses in clinical trials. CONCLUSION AND CLINICAL RELEVANCE Detailed dissection of those molecular pathways that are downstream of IL-13 and utilize the ERBB receptor and ligand family to drive corticosteroid-refractory inflammation should enhance the development of new treatments that target this sub-phenotype(s) of severe asthma, where there is an unmet need.
Collapse
Affiliation(s)
- Elizabeth R Davies
- Brooke Laboratories, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Jeanne-Marie Perotin
- Brooke Laboratories, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.,National Institute for Health Research (NIHR) Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Joanne F C Kelly
- Brooke Laboratories, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Ratko Djukanovic
- Brooke Laboratories, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.,National Institute for Health Research (NIHR) Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Donna E Davies
- Brooke Laboratories, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.,National Institute for Health Research (NIHR) Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK.,Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Hans Michael Haitchi
- Brooke Laboratories, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.,National Institute for Health Research (NIHR) Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK.,Institute for Life Sciences, University of Southampton, Southampton, UK
| | | |
Collapse
|
213
|
Liu Z, Chen J, Cheng L, Li H, Liu S, Lou H, Shi J, Sun Y, Wang D, Wang C, Wang X, Wei Y, Wen W, Yang P, Yang Q, Zhang G, Zhang Y, Zhao C, Zhu D, Zhu L, Chen F, Dong Y, Fu Q, Li J, Li Y, Liu C, Liu F, Lu M, Meng Y, Sha J, She W, Shi L, Wang K, Xue J, Yang L, Yin M, Zhang L, Zheng M, Zhou B, Zhang L. Chinese Society of Allergy and Chinese Society of Otorhinolaryngology-Head and Neck Surgery Guideline for Chronic Rhinosinusitis. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2020; 12:176-237. [PMID: 32009319 PMCID: PMC6997287 DOI: 10.4168/aair.2020.12.2.176] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 11/05/2019] [Accepted: 11/13/2019] [Indexed: 02/05/2023]
Abstract
The current document is based on a consensus reached by a panel of experts from the Chinese Society of Allergy and the Chinese Society of Otorhinolaryngology-Head and Neck Surgery, Rhinology Group. Chronic rhinosinusitis (CRS) affects approximately 8% of Chinese adults. The inflammatory and remodeling mechanisms of CRS in the Chinese population differ from those observed in the populations of European descent. Recently, precision medicine has been used to treat inflammation by targeting key biomarkers that are involved in the process. However, there are no CRS guidelines or a consensus available from China that can be shared with the international academia. The guidelines presented in this paper cover the epidemiology, economic burden, genetics and epigenetics, mechanisms, phenotypes and endotypes, diagnosis and differential diagnosis, management, and the current status of CRS in China. These guidelines-with a focus on China-will improve the abilities of clinical and medical staff during the treatment of CRS. Additionally, they will help international agencies in improving the verification of CRS endotypes, mapping of eosinophilic shifts, the identification of suitable biomarkers for endotyping, and predicting responses to therapies. In conclusion, these guidelines will help select therapies, such as pharmacotherapy, surgical approaches and innovative biotherapeutics, which are tailored to each of the individual CRS endotypes.
Collapse
Affiliation(s)
- Zheng Liu
- Department of Otolaryngology Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianjun Chen
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Cheng
- Department of Otorhinolaryngology, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
- International Centre for Allergy Research, Nanjing Medical University, Nanjing, China
| | - Huabin Li
- Department of Otolaryngology, Head and Neck Surgery, Affiliated Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai, China
| | - Shixi Liu
- Department of Otolaryngology, West China Hospital, Sichuan University, Chengdu, China
| | - Hongfei Lou
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Jianbo Shi
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ying Sun
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Dehui Wang
- Department of Otolaryngology, Head and Neck Surgery, Affiliated Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai, China
| | - Chengshuo Wang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Xiangdong Wang
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Yongxiang Wei
- Department of Otolaryngology Head and Neck Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Weiping Wen
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Otorhinolaryngology Hospital, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Pingchang Yang
- Research Center of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Qintai Yang
- Department of Otolaryngology Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Gehua Zhang
- Department of Otolaryngology Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yuan Zhang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
- Department of Allergy, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Changqing Zhao
- Department of Otolaryngology Head and Neck Surgery, The Second Hospital, Shanxi Medical University, Taiyuan, China
| | - Dongdong Zhu
- Department of Otolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Li Zhu
- Department of Otolaryngology Head and Neck Surgery, Peking University Third Hospital, Beijing, China
| | - Fenghong Chen
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yi Dong
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Qingling Fu
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jingyun Li
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Yanqing Li
- Department of Otolaryngology, Head and Neck Surgery, Affiliated Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai, China
| | - Chengyao Liu
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Feng Liu
- Department of Otolaryngology, West China Hospital, Sichuan University, Chengdu, China
| | - Meiping Lu
- Department of Otorhinolaryngology, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Yifan Meng
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Jichao Sha
- Department of Otolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Wenyu She
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
- Department of Allergy, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Lili Shi
- Department of Otolaryngology Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kuiji Wang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Jinmei Xue
- Department of Otolaryngology Head and Neck Surgery, The Second Hospital, Shanxi Medical University, Taiyuan, China
| | - Luoying Yang
- Department of Otolaryngology Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Min Yin
- Department of Otorhinolaryngology, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
- International Centre for Allergy Research, Nanjing Medical University, Nanjing, China
| | - Lichuan Zhang
- Department of Otolaryngology Head and Neck Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Ming Zheng
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Bing Zhou
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China.
| | - Luo Zhang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
- Department of Allergy, Beijing Tongren Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
214
|
Kim YM, Kim H, Lee S, Kim S, Lee JU, Choi Y, Park HW, You G, Kang H, Lee S, Park JS, Park Y, Park HS, Park CS, Lee SW. Airway G-CSF identifies neutrophilic inflammation and contributes to asthma progression. Eur Respir J 2020; 55:13993003.00827-2019. [PMID: 31744834 DOI: 10.1183/13993003.00827-2019] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 11/05/2019] [Indexed: 12/30/2022]
Abstract
Stratification of asthmatic patients based on relevant biomarkers enables the prediction of responsiveness against immune-targeted therapies in patients with asthma. Individualised therapy in patients with eosinophilic asthma has yielded improved clinical outcomes; similar approaches in patients with neutrophilic asthma have yet to be developed. We determined whether colony-stimulating factors (CSFs) in the airway reflect the inflammatory phenotypes of asthma and contribute to disease progression of neutrophilic asthma.We analysed three different mouse models of asthma and assessed cytokine profiles in sputum from human patients with asthma stratified according to inflammatory phenotype. In addition, we evaluated the therapeutic efficacy of various cytokine blockades in a mouse model of neutrophilic asthma.Among the CSFs, airway granulocyte CSF (G-CSF) contributes to airway neutrophilia by promoting neutrophil development in bone marrow and thereby distinguishes neutrophilic inflammation from eosinophilic inflammation in mouse models of asthma. G-CSF is produced by concurrent stimulation of the lung epithelium with interleukin (IL)-17A and tumour necrosis factor (TNF)-α; therefore, dual blockade of upstream stimuli using monoclonal antibodies or genetic deficiency of the cytokines in IL-17A×TNF-α double-knockout mice reduced the serum level of G-CSF, leading to alleviation of neutrophilic inflammation in the airway. In humans, the sputum level of G-CSF can be used to stratify patients with asthma with neutrophil-dominated inflammation.Our results indicated that myelopoiesis-promoting G-CSF and cytokines as the upstream inducing factors are potential diagnostic and therapeutic targets in patients with neutrophilic asthma.
Collapse
Affiliation(s)
- Young-Min Kim
- Dept of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Hyekang Kim
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Republic of Korea.,These authors contributed equally to this work
| | - Seungwon Lee
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Republic of Korea.,These authors contributed equally to this work
| | - Sora Kim
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Jong-Uk Lee
- Dept of Interdisciplinary Program in Biomedical Science Major, Soonchunhyang Graduate School, Bucheon, Republic of Korea
| | - Youngwoo Choi
- Dept of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Han Wook Park
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Gihoon You
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Hansol Kang
- Dept of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Seyoung Lee
- Dept of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Jong-Sook Park
- Division of Allergy and Respiratory Disease, Soonchunhyang University Bucheon Hospital, Bucheon, Republic of Korea
| | - Yunji Park
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Hae-Sim Park
- Dept of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Choon-Sik Park
- Division of Allergy and Respiratory Disease, Soonchunhyang University Bucheon Hospital, Bucheon, Republic of Korea
| | - Seung-Woo Lee
- Dept of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea .,Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Republic of Korea
| |
Collapse
|
215
|
Ouyang S, Liu C, Xiao J, Chen X, Lui AC, Li X. Targeting IL-17A/glucocorticoid synergy to CSF3 expression in neutrophilic airway diseases. JCI Insight 2020; 5:132836. [PMID: 32051346 DOI: 10.1172/jci.insight.132836] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 01/08/2020] [Indexed: 12/15/2022] Open
Abstract
IL-17A plays a critical role in the pathogenesis of steroid-resistant neutrophilic airway inflammation, which is a hallmark of severe asthma and chronic obstructive pulmonary disease (COPD). Through RNA sequencing analysis of transcriptomes of human airway smooth muscle cells treated with IL-17A, dexamethasone (DEX, a synthetic glucocorticoid drug), alone or in combination, we identified a group of genes that are synergistically induced by IL-17A and DEX, including the neutrophil-promoting cytokine CSF3. In type-17 (Th17/IL-17Ahi) preclinical models of neutrophilic severe asthma (acute and chronic) and COPD, although DEX treatment was able to reduce the expression of neutrophil-mobilizing CXCL1 and CXCL2 in lung tissue, CSF3 expression was upregulated by DEX treatment. We found that DEX treatment alone failed to alleviate neutrophilic airway inflammation and pathology, and even exacerbated the disease phenotype when CSF3 was highly induced. Disruption of the IL-17A/DEX synergy by IL-17A inhibition with anti-IL-17A mAb or cyanidin-3-glucoside (C3G, a small-molecule IL-17A blocker) or depletion of CSF3 effectively rendered DEX sensitivity in type-17 preclinical models of neutrophilic airway diseases. Our study elucidates what we believe is a novel mechanism of steroid resistance in type-17 neutrophilic airway inflammation and offers an effective steroid-sparing therapeutic strategy (combined low-dose DEX and C3G) for treating neutrophilic airway diseases.
Collapse
|
216
|
Lebold KM, Jacoby DB, Drake MG. Inflammatory mechanisms linking maternal and childhood asthma. J Leukoc Biol 2020; 108:113-121. [PMID: 32040236 DOI: 10.1002/jlb.3mr1219-338r] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 12/26/2022] Open
Abstract
Asthma is a chronic inflammatory airway disease characterized by airway hyperresponsiveness, inflammation, and remodeling. Asthma often develops during childhood and causes lifelong decrements in lung function and quality of life. Risk factors for childhood asthma are numerous and include genetic, epigenetic, developmental, and environmental factors. Uncontrolled maternal asthma during pregnancy exposes the developing fetus to inflammatory insults, which further increase the risk of childhood asthma independent of genetic predisposition. This review focuses on the role of maternal asthma in the development of asthma in offspring. We will present maternal asthma as a targetable and modifiable risk factor for childhood asthma and discuss the mechanisms by which maternal inflammation increases childhood asthma risk. Topics include how exposure to maternal asthma in utero shapes structural lung development with a special emphasis on airway nerves, how maternal type-2 cytokines such as IL-5 activate the fetal immune system, and how changes in lung and immune cell development inform responses to aero-allergens later in life. Finally, we highlight emerging evidence that maternal asthma establishes a unique "asthma signature" in the airways of children, leading to novel mechanisms of airway hyperreactivity and inflammatory cell responses.
Collapse
Affiliation(s)
- Katie M Lebold
- Division of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, Oregon, USA
| | - David B Jacoby
- Division of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, Oregon, USA
| | - Matthew G Drake
- Division of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, Oregon, USA
| |
Collapse
|
217
|
Louhaichi S, Mlika M, Hamdi B, Hamzaoui K, Hamzaoui A. Sputum IL-26 Is Overexpressed in Severe Asthma and Induces Proinflammatory Cytokine Production and Th17 Cell Generation: A Case-Control Study of Women. J Asthma Allergy 2020; 13:95-107. [PMID: 32099415 PMCID: PMC7006858 DOI: 10.2147/jaa.s229522] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 01/12/2020] [Indexed: 12/16/2022] Open
Abstract
Objective Asthma inflammation is a complex pathway involving numerous mediators. Interleukin-26 (IL-26), a member of the IL-10 cytokine family, is abundant in human airways and induces the production of proinflammatory cytokines. Our aim was to investigate the possible role of IL-26 in severe asthma. We analysed the expression of IL-26 in severe asthma both in peripheral blood and induced sputum. Patients and Methods A total of 50 adult women with severe asthma were recruited and compared to 30 healthy controls (HC). Serum and sputum fluid (SF) levels of IL-26 and IL-17 were defined by ELISA. IL-26 mRNA expression and IL-26 protein were analysed using RT-PCR and Western blot. In vitro, we studied the effect of recombinant IL-26 (rIL-26) and SF-IL-26 on cultured CD4+ T cells and monocytes, comparing patients and controls. Results Concentrations of IL-26 are higher in serum and induced sputum of asthmatic patients than in HC. Moreover, IL-26 protein and mRNA expression were significantly elevated in asthma sputum cells compared to PBMCs. We observed a positive correlation between body mass index (BMI) and sputum fluid IL-26, while the correlation between IL-26 and lung function tests (FEV1% and FEV1/FVC ratio) was negative. IL-17A was highly expressed in SF and correlated positively with IL-26. In patients’ sputum IL-26 and IL-17A were significantly associated with neutrophils. Stimulation of cultured CD4+ T cells with monocytes by recombinant IL-26 promoted the generation of RORγt+ Th17+ cells inducing the production of IL-17A, IL-1β, IL-6 and TNF-α cytokines. IL-26 expressed in SF was biologically active and induced IL-17 secretion in the presence of IL-1β and IL-6 cytokines. Conclusion These findings show that IL-26 is highly produced in asthmatic sputum, induces pro-inflammatory cytokine secretion by monocytes/macrophages, and favours Th17 cell generation. IL-26 thereby appears as a novel pro-inflammatory cytokine, produced locally in the airways that may constitute a promising target to treat asthma inflammatory process.
Collapse
Affiliation(s)
- Sabrine Louhaichi
- Research Laboratory 19SP02 "Chronic Pulmonary Pathologies: From Genome to Management", Abderrahman Mami Hospital, Ariana, Tunisia.,Medicine Faculty of Tunis, Department of Basic Sciences, Tunis El Manar University, Tunis, Tunisia.,Department of Paediatric and Respiratory Diseases, Abderrahman Mami Hospital, Pavillon B, Ariana, Tunisia
| | - Mona Mlika
- Medicine Faculty of Tunis, Department of Basic Sciences, Tunis El Manar University, Tunis, Tunisia.,Pathology Department, Abderrahman Mami Hospital, Ariana, Tunisia
| | - Besma Hamdi
- Research Laboratory 19SP02 "Chronic Pulmonary Pathologies: From Genome to Management", Abderrahman Mami Hospital, Ariana, Tunisia.,Medicine Faculty of Tunis, Department of Basic Sciences, Tunis El Manar University, Tunis, Tunisia.,Department of Paediatric and Respiratory Diseases, Abderrahman Mami Hospital, Pavillon B, Ariana, Tunisia
| | - Kamel Hamzaoui
- Research Laboratory 19SP02 "Chronic Pulmonary Pathologies: From Genome to Management", Abderrahman Mami Hospital, Ariana, Tunisia.,Medicine Faculty of Tunis, Department of Basic Sciences, Tunis El Manar University, Tunis, Tunisia
| | - Agnès Hamzaoui
- Research Laboratory 19SP02 "Chronic Pulmonary Pathologies: From Genome to Management", Abderrahman Mami Hospital, Ariana, Tunisia.,Medicine Faculty of Tunis, Department of Basic Sciences, Tunis El Manar University, Tunis, Tunisia.,Department of Paediatric and Respiratory Diseases, Abderrahman Mami Hospital, Pavillon B, Ariana, Tunisia
| |
Collapse
|
218
|
McDowell PJ, Heaney LG. Different endotypes and phenotypes drive the heterogeneity in severe asthma. Allergy 2020; 75:302-310. [PMID: 31267562 DOI: 10.1111/all.13966] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 06/05/2019] [Accepted: 06/21/2019] [Indexed: 12/12/2022]
Abstract
The identification of sputum eosinophilia indicating corticosteroid responsiveness in subjects with severe asthma heralded the beginning of phenotyping asthmatic subjects based on airways inflammation. Since then, the heterogeneity of severe asthma has been explored and the importance of immunobiology has come sharply into focus with the identification of the key type-2 cytokine pathways driving eosinophilic inflammation. The development of molecules targeting these type-2 pathways has transformed severe asthma treatment, but necessitates robust clinical evaluation, biomarker profiling and assessment of comorbid factors to identify subjects most likely to benefit from these therapies. It has also become clear that targeting these pathways does not eradicate asthma symptoms and exacerbation risk; further work is needed to clarify underlying non-type-2 mechanisms in severe asthma pathways and possible therapeutic targets. This review addresses progress to date in clinical assessment and management of severe asthma and some of the challenges and unmet needs in severe asthma to achieve the goal of delivering individualized patient care.
Collapse
Affiliation(s)
- P. Jane McDowell
- Centre for Experimental Medicine Queen's University Belfast Belfast UK
| | - Liam G. Heaney
- Centre for Experimental Medicine Queen's University Belfast Belfast UK
| |
Collapse
|
219
|
Sze E, Bhalla A, Nair P. Mechanisms and therapeutic strategies for non-T2 asthma. Allergy 2020; 75:311-325. [PMID: 31309578 DOI: 10.1111/all.13985] [Citation(s) in RCA: 164] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 06/10/2019] [Accepted: 06/26/2019] [Indexed: 12/27/2022]
Abstract
Non-T2 asthma is traditionally defined as asthma without features of T2 asthma. The definition is arbitrary and is generally based on the presence of neutrophils in sputum, or the absence (or normal levels) of eosinophils or other T2 markers in sputum (paucigranulocytic), airway biopsies or in blood. This definition may be imprecise as we gain more knowledge from applying transcriptomics and proteomics to blood and airway samples. The prevalence of non-T2 asthma is also difficult to estimate as most studies are cross-sectional and influenced by concomitant treatment with glucocorticosteroids, and by the presence of recognized or unrecognized airway infections. No specific therapies have shown any clinical benefits in patients with asthma that is associated with a non-T2 inflammatory process. It remains to be seen if such an endotype truly exists and to identify treatments to target that endotype. Meanwhile, identifying intense airway neutrophilia as an indicator of airway infection and airway hyperresponsiveness as an indicator of smooth muscle dysfunction, and treating them appropriately, and not increasing glucocorticosteroids in patients who do not have obvious T2 inflammation, seem reasonable.
Collapse
Affiliation(s)
- Eric Sze
- New Territories West Cluster Tuen Mun Hospital Tuen Mun Hong Kong
- St Joseph's Healthcare & Department of Medicine Firestone Institute for Respiratory Health, McMaster University Hamilton Ontario Canada
| | - Anurag Bhalla
- St Joseph's Healthcare & Department of Medicine Firestone Institute for Respiratory Health, McMaster University Hamilton Ontario Canada
| | - Parameswaran Nair
- St Joseph's Healthcare & Department of Medicine Firestone Institute for Respiratory Health, McMaster University Hamilton Ontario Canada
| |
Collapse
|
220
|
Abstract
There are multiple proinflammatory pathways in the pathogenesis of asthma. These include both innate and adaptive inflammation, in addition to inflammatory and physiologic responses mediated by eicosanoids. An important component of the innate allergic immune response is ILC2 activated by interleukin (IL)-33, thymic stromal lymphopoietin, and IL-25 to produce IL-5 and IL-13. In terms of the adaptive T-lymphocyte immunity, CD4+ Th2 and IL-17-producing cells are critical in the inflammatory responses in asthma. Last, eicosanoids involved in asthma pathogenesis include prostaglandin D2 and the cysteinyl leukotrienes that promote smooth muscle constriction and inflammation that propagate allergic responses.
Collapse
Affiliation(s)
- R Stokes Peebles
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, VUMC, T-1218 MCN, 1161 21st Avenue South, Nashville, TN 37232-2650, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, VUMC, T-1218 MCN, 1161 21st Avenue South, Nashville, TN 37232-2650, USA.
| | - Mark A Aronica
- Department of Pathobiology, Respiratory Institute, Cleveland Clinic Lerner College of Medicine, CWRU, 9500 Euclid Avenue, NB2-85, Cleveland, OH 44195, USA
| |
Collapse
|
221
|
Desai M, Oppenheimer J, Lang DM. Immunomodulators and Biologics: Beyond Stepped-Care Therapy. Clin Chest Med 2020; 40:179-192. [PMID: 30691711 DOI: 10.1016/j.ccm.2018.10.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This review highlights recent data concerning efficacy and safety of biological agents that are currently approved by Food and Drug Administration (FDA), as well as several agents that will likely soon be FDA approved, for management of properly selected patients with severe persistent asthma that is poorly or not well controlled despite "stepped care" management according to best evidence.
Collapse
Affiliation(s)
- Mauli Desai
- Division of Allergy and Clinical Immunology, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue Box 1089, New York, NY 10029, USA
| | - John Oppenheimer
- Department of Medicine UMDNJ - Rutgers, Pulmonary and Allergy Assoc, 1 Springfield Avenue, Summit, NJ 07901, USA
| | - David M Lang
- Department of Allergy and Clinical Immunology, Cleveland Clinic, Respiratory Institute, 9500 Euclid Avenue - A90, Cleveland, OH 44195, USA.
| |
Collapse
|
222
|
Abstract
PURPOSE OF REVIEW Recent advances in both murine models and clinical research of neutrophilic asthma are improving our understanding on the etiology and pathophysiology of this enigmatic endotype of asthma. We here aim at providing an overview of our current and latest insights on the pathophysiology and treatment of neutrophilic asthma. RECENT FINDINGS Activation of the NLRP3 inflammasome pathway with increased IL-1β has been demonstrated in various studies involving patients with asthma. It has been suggested that type 3 innate lymphoid cells are implicated in the inflammatory cascade leading to neutrophilic inflammation. The role of neutrophil extracellular traps is only at the start of being understood and might be an attractive novel therapeutic target. A diverse panel of nonallergic stimuli, such as cigarette smoke, intensive exercise, cold air or saturated fatty acids, have been linked with neutrophilic airway inflammation. Azithromycin treatment could reduce asthma exacerbations and quality of life in patients with persistent asthma. SUMMARY Research of the last few years has accelerated our insights in mechanisms underlying neutrophilic asthma. This is in stark contrast with the lack of efficacy of different therapies targeting neutrophil chemotaxis and/or signalling cascade, such as IL-17A or CXCR2. Macrolide therapy might be a useful add-on therapy for patients with persistent asthma.
Collapse
|
223
|
Abstract
PURPOSE OF REVIEW Despite advances in our understanding of the obese asthma phenotype, heterogeneity and large gaps in knowledge have hindered significant advances in directed interventions. RECENT FINDINGS Obesity is associated with poorer asthma-related outcomes and increased risk of progression to severe asthma. Obese asthma is associated with variability in the expression of inflammatory markers, lung function impairments, and response to conventional and biologic therapies. In addition, traditional asthma biomarkers are not as reliable in obese patients. Several mechanistic pathways that uniquely impact asthma in obesity have been identified. Pathways involving innate lymphoid cells (ILC) type 2 (ILC-2) cells, surfactant protein-A, cell division control protein (CDC)42, interleukin (IL)-6, IL-17, and IL-33 are likely causal inflammatory pathways. Obesity also confounds lung function parameters making accurate diagnosis more challenging. As such, personalized asthma therapies directed towards obese asthma endotypes remain elusive. SUMMARY Obesity confounds traditional asthma biomarkers and lung function measurements, thus defining obese asthma endotypes remains challenging. Novel pathways are being identified and hold promise for future targeted therapies. However, we are in dire need of updated guidelines regarding asthma diagnosis in obese patients and the development of biomarkers that more accurately identify specific endotypes.
Collapse
|
224
|
Siddiqui S, Denlinger LC, Fowler SJ, Akuthota P, Shaw DE, Heaney LG, Brown L, Castro M, Winders TA, Kraft M, Wagers S, Peters MC, Pavord ID, Walker S, Jarjour NN. Unmet Needs in Severe Asthma Subtyping and Precision Medicine Trials. Bridging Clinical and Patient Perspectives. Am J Respir Crit Care Med 2020; 199:823-829. [PMID: 30726120 DOI: 10.1164/rccm.201809-1817pp] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Salman Siddiqui
- 1 National Institute for Health Research (NIHR) Respiratory Biomedical Research Centre, College of Life Sciences, University of Leicester, Leicester, United Kingdom
| | - Loren C Denlinger
- 2 Allergy, Pulmonary, and Critical Care Division, Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Stephen J Fowler
- 3 Division of Infection, Immunity, and Respiratory Medicine, School of Biological Sciences, The University of Manchester and NIHR Biomedical Research Centre, Manchester University National Health Service Foundation Trust, Manchester, United Kingdom
| | - Praveen Akuthota
- 4 Pulmonary Division, Department of Medicine, University of California-San Diego, La Jolla, California
| | - Dominick E Shaw
- 5 NIHR Biomedical Research Centre, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Liam G Heaney
- 6 Centre for Experimental Medicine, Queens University Belfast, Belfast, United Kingdom
| | - Louise Brown
- 7 Medical Research Council Clinical Trials Unit at University College London, Institute of Clinical Trials and Methodology, London, United Kingdom
| | - Mario Castro
- 8 Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Tonya A Winders
- 9 Allergy and Asthma Network, Global Allergy and Asthma Patient Platform, Vienna, Austria
| | - Monica Kraft
- 10 Department of Medicine, University of Arizona College of Medicine, Tucson, Arizona
| | | | - Michael C Peters
- 12 Division of Pulmonary and Critical Care Medicine, Department of Medicine and the Cardiovascular Research Institute, University of California San Francisco, San Francisco, California
| | - Ian D Pavord
- 13 Respiratory Medicine Unit, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom; and
| | - Samantha Walker
- 14 Asthma UK and Edinburgh University, Edinburgh, United Kingdom
| | - Nizar N Jarjour
- 2 Allergy, Pulmonary, and Critical Care Division, Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
225
|
Zwicky P, Unger S, Becher B. Targeting interleukin-17 in chronic inflammatory disease: A clinical perspective. J Exp Med 2020; 217:e20191123. [PMID: 31727781 DOI: 10.1084/jem_20191123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/26/2019] [Accepted: 10/08/2019] [Indexed: 01/05/2025] Open
Abstract
Chronic inflammatory diseases like psoriasis, Crohn's disease (CD), multiple sclerosis (MS), rheumatoid arthritis (RA), and others are increasingly recognized as disease entities, where dysregulated cytokines contribute substantially to tissue-specific inflammation. A dysregulation in the IL-23/IL-17 axis can lead to inflammation of barrier tissues, whereas its role in internal organ inflammation remains less clear. Here we discuss the most recent developments in targeting IL-17 for the treatment of chronic inflammation in preclinical models and in patients afflicted with chronic inflammatory diseases.
Collapse
Affiliation(s)
- Pascale Zwicky
- Institute of Experimental Immunology, Department of Inflammation Research, University of Zurich, Zurich, Switzerland
| | - Susanne Unger
- Institute of Experimental Immunology, Department of Inflammation Research, University of Zurich, Zurich, Switzerland
| | - Burkhard Becher
- Institute of Experimental Immunology, Department of Inflammation Research, University of Zurich, Zurich, Switzerland
| |
Collapse
|
226
|
Ramsahai JM, Hansbro PM, Wark PAB. Mechanisms and Management of Asthma Exacerbations. Am J Respir Crit Care Med 2020; 199:423-432. [PMID: 30562041 DOI: 10.1164/rccm.201810-1931ci] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Acute asthma remains an important medical emergency, the most frequent cause of acute admissions in children and a major source of morbidity for adults with asthma. In all ages with asthma, the presence of exacerbations is an important defining characteristic of asthma severity. In this review, we assess the epidemiology of acute asthma, the triggers of acute exacerbations, and the mechanisms that underlie these exacerbations. We also assess current treatments that prevent exacerbations, with an emphasis on the role of type 2 airway inflammation in the context of acute exacerbations and the novel treatments that effectively target this. Finally we review current management strategies of the exacerbations themselves.
Collapse
Affiliation(s)
- J Michael Ramsahai
- 1 Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia.,2 Division of Respiratory Medicine, Department of Medicine, University of Calgary and Alberta Health Services, Calgary, Alberta, Canada; and
| | - Philip M Hansbro
- 1 Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia.,3 Centre for Inflammation, Centenary Institute and University of Technology Sydney, Sydney, New South Wales, Australia
| | - Peter A B Wark
- 1 Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia
| |
Collapse
|
227
|
Kalchiem-Dekel O, Yao X, Levine SJ. Meeting the Challenge of Identifying New Treatments for Type 2-Low Neutrophilic Asthma. Chest 2020; 157:26-33. [PMID: 31525357 PMCID: PMC6965689 DOI: 10.1016/j.chest.2019.08.2192] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/27/2019] [Accepted: 08/30/2019] [Indexed: 12/28/2022] Open
Key Words
- apo, apolipoprotein
- balf, bronchoalveolar lavage fluid
- bet, bromodomain and extraterminal
- cxcl, c-x-c motif chemokine ligand
- cxcr, c-x-c motif chemokine receptor
- dnazyme, deoxyribozyme
- g-csf, granulocyte-colony stimulating factor
- gm-csf, granulocyte/monocyte colony-stimulating factor
- hmsc, human mesenchymal stem cell
- ifn, interferon
- il, interleukin
- ilc, innate lymphoid cell
- lxa4, lipoxin a4
- netosis, neutrophil extracellular trap cell death
- nlrp, nucleotide-binding oligomerization domain, leucine-rich repeat, and pyrin domain-containing protein
- rorγt, retinoic acid-related orphan receptor γ, thymus specific
- tbet, t box expressed in t cells
- th1, th2, helper t cell type 1, type 2
- tnf, tumor necrosis factor
- saa, serum amyloid a
Collapse
Affiliation(s)
- Or Kalchiem-Dekel
- Laboratory of Asthma and Lung Inflammation, Pulmonary Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Xianglan Yao
- Laboratory of Asthma and Lung Inflammation, Pulmonary Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Stewart J Levine
- Laboratory of Asthma and Lung Inflammation, Pulmonary Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD.
| |
Collapse
|
228
|
Ryu G, Bae JS, Kim JH, Kim EH, Lyu L, Chung YJ, Mo JH. Role of IL-17A in Chronic Rhinosinusitis With Nasal Polyp. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2020; 12:507-522. [PMID: 32141263 PMCID: PMC7061155 DOI: 10.4168/aair.2020.12.3.507] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/19/2020] [Accepted: 01/22/2020] [Indexed: 12/19/2022]
Abstract
Purpose Th17-associated inflammation is increased in chronic rhinosinusitis with nasal polyp (CRSwNP), and is associated with disease severity and steroid resistance. Overexpressed interleukin (IL)-17A affects CRSwNP by tissue remodeling, eosinophilic accumulation, and neutrophilic infiltration. We aimed to identify the role of IL-17A in CRSwNP and to evaluate the effects of anti-IL-17A blocking antibody on nasal polyp (NP) formation using a murine NP model. Moreover, we sought to investigate whether the inhibition of mechanistic target of the rapamycin (mTOR) signal pathway could suppress IL-17A expression and NP formation. Methods Human sinonasal tissues from control subjects and patients with chronic rhinosinusitis (CRS) were analyzed using immunohistochemistry (IHC) and immunofluorescence staining. The effects of IL-17A neutralizing antibody and rapamycin were evaluated in a murine NP model. Mouse samples were analyzed using IHC, quantitative real-time polymerase chain reaction, and enzyme-linked immunosorbent assay. Results IL-17A+ inflammatory cells were significantly increased in number in NP from patients with CRSwNP compared to that in uncinate process tissues from control subjects and patients with CRS without NP or CRSwNP. CD68+ M1 macrophages dominantly expressed IL-17A, followed by neutrophils and T helper cells, in NP tissues. Neutralization of IL-17A effectively reduced the number of NPs, inflammatory cytokines, and IL-17A-producing cells, including M1 macrophages. Inhibition of IL-17A via the mTOR pathway using rapamycin also attenuated NP formation and inflammation in the murine NP model. Conclusions IL-17A possibly plays a role in the pathogenesis of CRSwNP, the major cellular source being M1 macrophage in NP tissues. Targeting IL-17A directly or indirectly may be an effective therapeutic strategy for CRSwNP.
Collapse
Affiliation(s)
- Gwanghui Ryu
- Department of Otorhinolaryngology-Head and Neck Surgery, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Jun Sang Bae
- Department of Otorhinolaryngology, Dankook University College of Medicine, Cheonan, Korea.,Beckman Laser Institute Korea, Dankook University College of Medicine, Cheonan, Korea
| | - Ji Hye Kim
- Department of Otorhinolaryngology, Dankook University College of Medicine, Cheonan, Korea.,Beckman Laser Institute Korea, Dankook University College of Medicine, Cheonan, Korea
| | - Eun Hee Kim
- Department of Otorhinolaryngology, Dankook University College of Medicine, Cheonan, Korea.,Beckman Laser Institute Korea, Dankook University College of Medicine, Cheonan, Korea
| | - Lele Lyu
- Department of Otorhinolaryngology, Dankook University College of Medicine, Cheonan, Korea.,Beckman Laser Institute Korea, Dankook University College of Medicine, Cheonan, Korea
| | - Young Jun Chung
- Department of Otorhinolaryngology, Dankook University College of Medicine, Cheonan, Korea.,Beckman Laser Institute Korea, Dankook University College of Medicine, Cheonan, Korea
| | - Ji Hun Mo
- Department of Otorhinolaryngology, Dankook University College of Medicine, Cheonan, Korea.,Beckman Laser Institute Korea, Dankook University College of Medicine, Cheonan, Korea.
| |
Collapse
|
229
|
Gohy S, Hupin C, Ladjemi MZ, Hox V, Pilette C. Key role of the epithelium in chronic upper airways diseases. Clin Exp Allergy 2019; 50:135-146. [PMID: 31746062 DOI: 10.1111/cea.13539] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 11/15/2019] [Accepted: 11/15/2019] [Indexed: 12/18/2022]
Abstract
The respiratory epithelium of the upper airways is a first-line defence against inhaled irritants, pathogens and allergens. It ensures a physical barrier provided by apical junctions and mucociliary clearance to avoid excessive activation of the immune system. The epithelium also forms a chemical and immunological barrier, extensively equipped to protect the airways against external aggressions before the adaptive immune system is required. Under normal circumstances, the epithelium is capable of recovering rapidly after damage. This manuscript reviews these main properties of the upper airway epithelium as well as its reported impairments in chronic inflammatory diseases. The knowledge on normal epithelial functions and their dysregulation in upper airway diseases should help to design new epithelial-targeted treatments.
Collapse
Affiliation(s)
- Sophie Gohy
- Pole of Pneumology, ENT and Dermatology, Université catholique de Louvain (UCL), Brussels, Belgium.,Department of Pneumology, Cliniques universitaires, Brussels, Belgium
| | - Cloé Hupin
- Pole of Pneumology, ENT and Dermatology, Université catholique de Louvain (UCL), Brussels, Belgium
| | - Maha Zohra Ladjemi
- Institut Cochin, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Valérie Hox
- Department of Otorhinolaryngology, Cliniques universitaires, Brussels, Belgium
| | - Charles Pilette
- Pole of Pneumology, ENT and Dermatology, Université catholique de Louvain (UCL), Brussels, Belgium.,Department of Pneumology, Cliniques universitaires, Brussels, Belgium
| |
Collapse
|
230
|
IL-13 and IL-4, but not IL-5 nor IL-17A, induce hyperresponsiveness in isolated human small airways. J Allergy Clin Immunol 2019; 145:808-817.e2. [PMID: 31805312 DOI: 10.1016/j.jaci.2019.10.037] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 10/22/2019] [Accepted: 10/31/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Specific inflammatory pathways are indicated to contribute to severe asthma, but their individual involvement in the development of airway hyperresponsiveness remains unexplored. OBJECTIVE This experimental study in human small bronchi aimed to provide insight into which of the type 2 and type 17 cytokines cause hyperresponsiveness of airway smooth muscle. METHODS Explanted small bronchi isolated from human lung tissue and human airway smooth muscle cells were treated for 2 and 1 day(s), respectively, with 100 ng/mL of IL-4, IL-5, IL-13, or IL-17A, and contractile responses, Ca2+ mobilization, and receptor expression were assessed. RESULTS Treatment with IL-13 increased the potency of histamine, carbachol, and leukotriene D4 as contractile agonists. IL-4, but not IL-5 or IL-17A, also increased the potency of histamine. In human airway smooth muscle cells, IL-13 and IL-4, but not IL-5 and IL-17A, enhanced the histamine-induced Ca2+ mobilization that was accompanied with increased mRNA expression of histamine H1 and cysteinyl leukotriene CysLT1 receptors. RNA sequencing of isolated bronchi confirmed the IL-13-mediated upregulation of H1 and CysLT1 receptors, without showing an alteration of muscarinic M3 receptors. Dexamethasone had no effects on IL-13-induced hyperresponsiveness in human bronchi, the increased Ca2+ mobilization, or the enhanced receptor expression. In contrast, antagonism of the common receptor for IL-13 and IL-4 by the biologic dupilumab prevented the effects of both IL-13 and IL-4 in human bronchi and human airway smooth muscle cells. CONCLUSIONS The glucocorticoid-insensitive hyperrresponsiveness in isolated human airways induced by IL-13 and IL-4 provides further evidence that the IL-4Rα pathway should be targeted as a new strategy for the treatment of airway hyperresponsiveness in asthma.
Collapse
|
231
|
Abstract
Over the last few decades, advances in our understanding of microbial ecology have allowed us to appreciate the important role of microbial communities in maintaining human health. While much of this research has focused on gut microbes, microbial communities in other body sites and from the environment are increasingly recognized in human disease. Here, we discuss recent advances in our understanding of host-microbiota interactions in the development and manifestation of asthma focusing on three distinct microbial compartments. First, environmental microbes originating from house dust, pets, and farm animals have been linked to asthma pathogenesis, which is often connected to their production of bioactive molecules such as lipopolysaccharide. Second, respiratory microbial communities, including newly appreciated populations of microbes in the lung have been associated with allergic airway inflammation. Current evidence suggests that the presence of particular microbes, especially Streptococcus, Haemophilus, and Morexella species within the airway may shape local immune responses and alter the severity and manifestations of airway inflammation. Third, the gut microbiota has been implicated in both experimental models and clinical studies in predisposing to asthma. There appears to be a "critical window" of colonization that occurs during early infancy in which gut microbial communities shape immune maturation and confer susceptibility to allergic airway inflammation. The mechanisms by which gut microbial communities influence lung immune responses and physiology, the "gut-lung axis," are still being defined but include the altered differentiation of immune cell populations important in asthma and the local production of metabolites that affect distal sites. Together, these findings suggest an intimate association of microbial communities with host immune development and the development of allergic airway inflammation. Improved understanding of these relationships raises the possibility of microbiota-directed therapies to improve or prevent asthma.
Collapse
Affiliation(s)
- Aaron Ver Heul
- Division of Allergy and Immunology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Joseph Planer
- Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Andrew L Kau
- Division of Allergy and Immunology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
- Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
232
|
Hinks TSC, Hoyle RD, Gelfand EW. CD8 + Tc2 cells: underappreciated contributors to severe asthma. Eur Respir Rev 2019; 28:28/154/190092. [PMID: 31748421 PMCID: PMC6887553 DOI: 10.1183/16000617.0092-2019] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 07/26/2019] [Indexed: 01/22/2023] Open
Abstract
The complexity of asthma is underscored by the number of cell types and mediators implicated in the pathogenesis of this heterogeneous syndrome. Type 2 CD4+ T-cells (Th2) and more recently, type 2 innate lymphoid cells dominate current descriptions of asthma pathogenesis. However, another important source of these type 2 cytokines, especially interleukin (IL)-5 and IL-13, are CD8+ T-cells, which are increasingly proposed to play an important role in asthma pathogenesis, because they are abundant and are comparatively insensitive to corticosteroids. Many common triggers of asthma exacerbations are mediated via corticosteroid-resistant pathways involving neutrophils and CD8+ T-cells. Extensive murine data reveal the plasticity of CD8+ T-cells and their capacity to enhance airway inflammation and airway dysfunction. In humans, Tc2 cells are predominant in fatal asthma, while in stable state, severe eosinophilic asthma is associated with greater numbers of Tc2 than Th2 cells in blood, bronchoalveolar lavage fluid and bronchial biopsies. Tc2 cells strongly express CRTH2, the receptor for prostaglandin D2, the cysteinyl leukotriene receptor 1 and the leukotriene B4 receptor. When activated, these elicit Tc2 cell chemotaxis and production of chemokines and type 2 and other cytokines, resulting directly or indirectly in eosinophil recruitment and survival. These factors position CD8+ Tc2 cells as important and underappreciated effector cells contributing to asthma pathogenesis. Here, we review recent advances and new insights in understanding the pro-asthmatic functions of CD8+ T-cells in eosinophilic asthma, especially corticosteroid-resistant asthma, and the molecular mechanisms underlying their pathologic effector function. Alongside Th2 and ILC2 cells, CD8+ T-cells are a cellular source of type 2 cytokines. We review recent findings and insights into the pathologic effector functions of type 2 CD8+ T-cells in eosinophilic asthma, especially steroid-resistant disease.http://bit.ly/2KbVGL2
Collapse
Affiliation(s)
- Timothy S C Hinks
- Respiratory Medicine Unit and National Institute for Health Research (NIHR) Oxford Biomedical Research Centre (BRC), Nuffield Dept of Medicine Experimental Medicine, University of Oxford, Oxford, UK
| | - Ryan D Hoyle
- Respiratory Medicine Unit and National Institute for Health Research (NIHR) Oxford Biomedical Research Centre (BRC), Nuffield Dept of Medicine Experimental Medicine, University of Oxford, Oxford, UK
| | - Erwin W Gelfand
- Division of Cell Biology, Dept of Pediatrics, National Jewish Health, Denver, CO, USA
| |
Collapse
|
233
|
Aberumand B, Ellis AK. Asthma and the Biologics Revolution, Part 2: Failures and the Future Potential. CURRENT TREATMENT OPTIONS IN ALLERGY 2019. [DOI: 10.1007/s40521-019-00233-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
234
|
Narendra D, Blixt J, Hanania NA. Immunological biomarkers in severe asthma. Semin Immunol 2019; 46:101332. [PMID: 31735516 DOI: 10.1016/j.smim.2019.101332] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 10/21/2019] [Indexed: 12/13/2022]
Abstract
Severe asthma is heterogeneous in its clinical presentation, underlying pathophysiology, course and response to therapy. Clinical and physiological assessment of severe asthma is often inadequate in predicting underlying disease mechanisms and or response to medications. With the emergence of novel targeted therapies in severe asthma, the need for reproducible, easily measured biomarkers became obvious but only few are currently available for clinical use. These biomarkers along with the clinical presentation of the patient play an important role in identifying phenotypes and endotypes, predicting the clinical course and prognosis and improving the precision therapeutic approach to asthma.
Collapse
Affiliation(s)
- Dharani Narendra
- Section of Pulmonary and Critical Care Medicine, Baylor College of Medicine, Houston, Texas, United States
| | - John Blixt
- Section of Pulmonary and Critical Care Medicine, Baylor College of Medicine, Houston, Texas, United States
| | - Nicola A Hanania
- Section of Pulmonary and Critical Care Medicine, Baylor College of Medicine, Houston, Texas, United States.
| |
Collapse
|
235
|
Lung Microbiome in Asthma: Current Perspectives. J Clin Med 2019; 8:jcm8111967. [PMID: 31739446 PMCID: PMC6912699 DOI: 10.3390/jcm8111967] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 11/12/2019] [Indexed: 12/20/2022] Open
Abstract
A growing body of evidence implicates the human microbiome as a potentially influential player actively engaged in shaping the pathogenetic processes underlying the endotypes and phenotypes of chronic respiratory diseases, particularly of the airways. In this article, we specifically review current evidence on the characteristics of lung microbiome, and specifically the bacteriome, the modes of interaction between lung microbiota and host immune system, the role of the “lung–gut axis”, and the functional effects thereof on asthma pathogenesis. We also attempt to explore the possibilities of therapeutic manipulation of the microbiome, aiming at the establishment of asthma prevention strategies and the optimization of asthma treatment.
Collapse
|
236
|
Patel DF, Peiró T, Bruno N, Vuononvirta J, Akthar S, Puttur F, Pyle CJ, Suveizdytė K, Walker SA, Singanayagam A, Carlin LM, Gregory LG, Lloyd CM, Snelgrove RJ. Neutrophils restrain allergic airway inflammation by limiting ILC2 function and monocyte-dendritic cell antigen presentation. Sci Immunol 2019; 4:eaax7006. [PMID: 31704734 PMCID: PMC7613621 DOI: 10.1126/sciimmunol.aax7006] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 09/24/2019] [Indexed: 12/16/2022]
Abstract
Neutrophil mobilization, recruitment, and clearance must be tightly regulated as overexuberant neutrophilic inflammation is implicated in the pathology of chronic diseases, including asthma. Efforts to target neutrophils therapeutically have failed to consider their pleiotropic functions and the implications of disrupting fundamental regulatory pathways that govern their turnover during homeostasis and inflammation. Using the house dust mite (HDM) model of allergic airway disease, we demonstrate that neutrophil depletion unexpectedly resulted in exacerbated T helper 2 (TH2) inflammation, epithelial remodeling, and airway resistance. Mechanistically, this was attributable to a marked increase in systemic granulocyte colony-stimulating factor (G-CSF) concentrations, which are ordinarily negatively regulated in the periphery by transmigrated lung neutrophils. Intriguingly, we found that increased G-CSF augmented allergic sensitization in HDM-exposed animals by directly acting on airway type 2 innate lymphoid cells (ILC2s) to elicit cytokine production. Moreover, increased systemic G-CSF promoted expansion of bone marrow monocyte progenitor populations, which resulted in enhanced antigen presentation by an augmented peripheral monocyte-derived dendritic cell pool. By modeling the effects of neutrophil depletion, our studies have uncovered previously unappreciated roles for G-CSF in modulating ILC2 function and antigen presentation. More broadly, they highlight an unexpected regulatory role for neutrophils in limiting TH2 allergic airway inflammation.
Collapse
Affiliation(s)
- Dhiren F Patel
- Inflammation Repair and Development, National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK
| | - Teresa Peiró
- Inflammation Repair and Development, National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK
- Departamento de Enfermería, Universidad de Valencia, Valencia 46010, Spain
| | - Nicoletta Bruno
- Inflammation Repair and Development, National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK
| | - Juho Vuononvirta
- Inflammation Repair and Development, National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK
| | - Samia Akthar
- Inflammation Repair and Development, National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK
| | - Franz Puttur
- Inflammation Repair and Development, National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK
| | - Chloe J Pyle
- Inflammation Repair and Development, National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK
| | - Kornelija Suveizdytė
- Inflammation Repair and Development, National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK
| | - Simone A Walker
- Inflammation Repair and Development, National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK
| | - Aran Singanayagam
- Inflammation Repair and Development, National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK
| | - Leo M Carlin
- Cancer Research UK Beatson Institute, Garscube Estate, Glasgow G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Glasgow G61 1QH, UK
| | - Lisa G Gregory
- Inflammation Repair and Development, National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK
| | - Clare M Lloyd
- Inflammation Repair and Development, National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK
| | - Robert J Snelgrove
- Inflammation Repair and Development, National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK.
| |
Collapse
|
237
|
Gibson PG, Foster PS. Neutrophilic asthma: welcome back! Eur Respir J 2019; 54:54/5/1901846. [PMID: 31699782 DOI: 10.1183/13993003.01846-2019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 09/18/2019] [Indexed: 11/05/2022]
Affiliation(s)
- Peter G Gibson
- Dept of Respiratory and Sleep Medicine, John Hunter Hospital, New Lambton Heights, Australia .,Priority Research Centre for Healthy Lungs, The University of Newcastle, Callaghan, Australia
| | - Paul S Foster
- Priority Research Centre for Healthy Lungs, The University of Newcastle, Callaghan, Australia
| |
Collapse
|
238
|
Martin RJ, Bel EH, Pavord ID, Price D, Reddel HK. Defining severe obstructive lung disease in the biologic era: an endotype-based approach. Eur Respir J 2019; 54:1900108. [PMID: 31515397 PMCID: PMC6917363 DOI: 10.1183/13993003.00108-2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 08/19/2019] [Indexed: 11/05/2022]
Abstract
Severe obstructive lung disease, which encompasses asthma, chronic obstructive pulmonary disease (COPD) or features of both, remains a considerable global health problem and burden on healthcare resources. However, the clinical definitions of severe asthma and COPD do not reflect the heterogeneity within these diagnoses or the potential for overlap between them, which may lead to inappropriate treatment decisions. Furthermore, most studies exclude patients with diagnoses of both asthma and COPD. Clinical definitions can influence clinical trial design and are both influenced by, and influence, regulatory indications and treatment recommendations. Therefore, to ensure its relevance in the era of targeted biologic therapies, the definition of severe obstructive lung disease must be updated so that it includes all patients who could benefit from novel treatments and for whom associated costs are justified. Here, we review evolving clinical definitions of severe obstructive lung disease and evaluate how these have influenced trial design by summarising eligibility criteria and primary outcomes of phase III randomised controlled trials of biologic therapies. Based on our findings, we discuss the advantages of a phenotype- and endotype-based approach to select appropriate populations for future trials that may influence regulatory approvals and clinical practice, allowing targeted biologic therapies to benefit a greater proportion and range of patients. This calls for co-ordinated efforts between investigators, pharmaceutical developers and regulators to ensure biologic therapies reach their full potential in the management of severe obstructive lung disease.
Collapse
Affiliation(s)
- Richard J Martin
- National Jewish Health and the University of Colorado, Denver, CO, USA
| | - Elisabeth H Bel
- Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| | - Ian D Pavord
- Respiratory Medicine Unit and NIHR Oxford Respiratory BRC, Nuffield Dept of Medicine, University of Oxford, Oxford, UK
| | - David Price
- Observational and Pragmatic Research Institute, Singapore
- Centre of Academic Primary Care, University of Aberdeen, Aberdeen, UK
| | - Helen K Reddel
- Woolcock Institute of Medical Research, University of Sydney, Sydney, Australia
| |
Collapse
|
239
|
Varricchi G, Marone G, Spadaro G, Russo M, Granata F, Genovese A, Marone G. Novel Biological Therapies in Severe Asthma: Targeting the Right Trait. Curr Med Chem 2019; 26:2801-2822. [PMID: 29318959 DOI: 10.2174/0929867325666180110094542] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 11/09/2017] [Accepted: 11/09/2017] [Indexed: 12/23/2022]
Abstract
Asthma is a heterogeneous disease characterized by chronic airway inflammation that results in a wide spectrum of clinical manifestations. Patients with severe asthma represent a substantial share of consumption of healthcare resources and hospitalization. Moreover, these patients are at risk of increased morbidity and mortality. Recently, several phenotypes and endotypes of asthma have been identified. The identification of specific subtypes of asthma is fundamental for optimizing the clinical benefit of novel treatments. Although in most patients the disease can be controlled by some combination of pharmacologic agents, in some 5-10% of patients the disease remains uncontrolled. Several monoclonal antibodies (mAbs) targeting pathogenetic molecules (e.g., IgE, IL-5, IL- 5Rα, IL-4, IL-13, TSLP) are currently available or under development for the treatment of different forms of severe type 2 asthma. The identification of diagnostic and predictive biomarkers (e.g., IgE, blood eosinophil count, FeNO, periostin, etc.) has revolutioned the field of targeted therapy in severe asthma. Monoclonal antibodies targeting Th2-driven inflammation are generally safe in adult patients with moderate-to-severe asthma. The long-term safety of these biologics is a relevant issue that should be addressed. Unfortunately, little is known about non-type 2 asthma. Further studies are needed to identify biomarkers to guide targeted therapies of different forms of non-type 2 asthma.
Collapse
Affiliation(s)
- Gilda Varricchi
- Department of Translational Medical Sciences (DISMET), University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy
| | - Giancarlo Marone
- Department of Public Health, University of Naples Federico II, Naples, Italy.,Monaldi Hospital, Naples, Italy
| | - Giuseppe Spadaro
- Department of Translational Medical Sciences (DISMET), University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy
| | - Michele Russo
- Department of Translational Medical Sciences (DISMET), University of Naples Federico II, Naples, Italy
| | - Francescopaolo Granata
- Department of Translational Medical Sciences (DISMET), University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy
| | - Arturo Genovese
- Department of Translational Medical Sciences (DISMET), University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences (DISMET), University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy.,Institute of Experimental Endocrinology and Oncology "Gaetano Salvatore", National Research Council (CNR), Naples, Italy
| |
Collapse
|
240
|
Wang RS, Croteau-Chonka DC, Silverman EK, Loscalzo J, Weiss ST, Hall KT. Pharmacogenomics and Placebo Response in a Randomized Clinical Trial in Asthma. Clin Pharmacol Ther 2019; 106:1261-1267. [PMID: 31557306 DOI: 10.1002/cpt.1646] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 09/21/2019] [Indexed: 12/24/2022]
Abstract
Genetic variation may differentially modify drug and placebo treatment effects in randomized clinical trials. In asthma, although lung function and asthma control improvements are commonplace with placebo, pharmacogenomics of placebo vs. drug response remains unexamined. In a genomewide association study of subjective and objective outcomes with placebo treatment in Childhood Asthma Management Program of nedocromil/budesonide vs. placebo (N = 604), effect estimates for lead single nucleotide polymorphisms (SNPs) were compared across arms. The coughing/wheezing lead SNP, rs2392165 (β = 0.94; P = 1.10E-07) mapped to BBS9, a gene implicated in lung development that contains a lung function expression quantitative trait locus. The effect was attenuated with budesonide (Pinteraction = 1.48E-07), but not nedocromil (Pinteraction = 0.06). The lead forced vital capacity SNP, rs12930749 (β = -5.80; P = 1.47E-06), mapped to KIAA0556, a locus genomewide associated with respiratory diseases. The rs12930749 effect was attenuated with budesonide (Pinteraction = 1.32E-02) and nedocromil (Pinteraction = 1.09E-02). Pharmacogenomic analysis revealed differential effects with placebo and drug treatment that could potentially guide precision drug development in asthma.
Collapse
Affiliation(s)
- Rui-Sheng Wang
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Damien C Croteau-Chonka
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Edwin K Silverman
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - J Loscalzo
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Scott T Weiss
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Kathryn T Hall
- Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
241
|
Lou H, Wang C, Zhang L. Endotype-driven precision medicine in chronic rhinosinusitis. Expert Rev Clin Immunol 2019; 15:1171-1183. [PMID: 31600458 DOI: 10.1080/1744666x.2020.1679626] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Hongfei Lou
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
| | - Chengshuo Wang
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
| | - Luo Zhang
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
- Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
242
|
Athari SS. Targeting cell signaling in allergic asthma. Signal Transduct Target Ther 2019; 4:45. [PMID: 31637021 PMCID: PMC6799822 DOI: 10.1038/s41392-019-0079-0] [Citation(s) in RCA: 194] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 09/03/2019] [Accepted: 09/15/2019] [Indexed: 02/08/2023] Open
Abstract
Asthma is chronic inflammation of the airways characterized by airway hyper-responsiveness, wheezing, cough, and dyspnea. Asthma affects >350 million people worldwide. The Th2 immune response is a major contributor to the pathophysiology of asthma. Targeted therapy modulating cell signaling pathways can be a powerful strategy to design new drugs to treat asthma. The potential molecular pathways that can be targeted include IL-4-IL-13-JAK-STAT-MAP kinases, adiponectin-iNOS-NF-κB, PGD2-CRTH2, IFNs-RIG, Wnt/β-catenin-FAM13A, FOXC1-miR-PI3K/AKT, JNK-Gal-7, Nrf2-ROS, Foxp3-RORγt, CysLTR, AMP, Fas-FasL, PTHrP/PPARγ, PAI-1, FcɛRI-LAT-SLP-76, Tim-3-Gal-9, TLRs-MyD88, PAR2, and Keap1/Nrf2/ARE. Therapeutic drugs can be designed to target one or more of these pathways to treat asthma.
Collapse
Affiliation(s)
- Seyyed Shamsadin Athari
- Department of Immunology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
243
|
Theofani E, Semitekolou M, Morianos I, Samitas K, Xanthou G. Targeting NLRP3 Inflammasome Activation in Severe Asthma. J Clin Med 2019; 8:jcm8101615. [PMID: 31590215 PMCID: PMC6833007 DOI: 10.3390/jcm8101615] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/24/2019] [Accepted: 09/26/2019] [Indexed: 12/20/2022] Open
Abstract
Severe asthma (SA) is a chronic lung disease characterized by recurring symptoms of reversible airflow obstruction, airway hyper-responsiveness (AHR), and inflammation that is resistant to currently employed treatments. The nucleotide-binding oligomerization domain-like Receptor Family Pyrin Domain Containing 3 (NLRP3) inflammasome is an intracellular sensor that detects microbial motifs and endogenous danger signals and represents a key component of innate immune responses in the airways. Assembly of the NLRP3 inflammasome leads to caspase 1-dependent release of the pro-inflammatory cytokines IL-1β and IL-18 as well as pyroptosis. Accumulating evidence proposes that NLRP3 activation is critically involved in asthma pathogenesis. In fact, although NLRP3 facilitates the clearance of pathogens in the airways, persistent NLRP3 activation by inhaled irritants and/or innocuous environmental allergens can lead to overt pulmonary inflammation and exacerbation of asthma manifestations. Notably, administration of NLRP3 inhibitors in asthma models restrains AHR and pulmonary inflammation. Here, we provide an overview of the pathophysiology of SA, present molecular mechanisms underlying aberrant inflammatory responses in the airways, summarize recent studies pertinent to the biology and functions of NLRP3, and discuss the role of NLRP3 in the pathogenesis of asthma. Finally, we contemplate the potential of targeting NLRP3 as a novel therapeutic approach for the management of SA.
Collapse
Affiliation(s)
- Efthymia Theofani
- Cellular Immunology Laboratory, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Maria Semitekolou
- Cellular Immunology Laboratory, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Ioannis Morianos
- Cellular Immunology Laboratory, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Konstantinos Samitas
- 7th Respiratory Clinic and Asthma Center, 'Sotiria' Athens Chest Hospital, 11527 Athens, Greece
| | - Georgina Xanthou
- Cellular Immunology Laboratory, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece.
| |
Collapse
|
244
|
Rhee CK. Nanotechnology as a savior in asthma management. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:517. [PMID: 31807499 DOI: 10.21037/atm.2019.09.98] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Chin Kook Rhee
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
245
|
Abstract
Asthma is a complex, heterogeneous chronic airway disease with high prevalence of uncontrolled disease. New therapies, including biologics, are now available to treat T2 high asthma. Treatment of T2 low asthma remains a challenge. Asthma guidelines need be to updated to incorporate new therapeutics.
Collapse
Affiliation(s)
- Jenny Huang
- Division of Allergy and Immunology, Department of Pediatrics,Children's Hospital of Michigan, Suite #4022, 4th Floor, 3950 Beaubien Boulevard, Detroit, MI 48201, USA
| | - Milind Pansare
- Division of Allergy and Immunology, Department of Pediatrics, Children's Hospital of Michigan, Pediatric Specialty Center, Wayne State University, Suite # 4018, 4th Floor, 3950 Beaubien Boulevard, Detroit, MI 48201, USA.
| |
Collapse
|
246
|
Diamant Z, Vijverberg S, Alving K, Bakirtas A, Bjermer L, Custovic A, Dahlen S, Gaga M, Gerth van Wijk R, Del Giacco S, Hamelmann E, Heaney LG, Heffler E, Kalayci Ö, Kostikas K, Lutter R, Olin A, Sergejeva S, Simpson A, Sterk PJ, Tufvesson E, Agache I, Seys SF. Toward clinically applicable biomarkers for asthma: An EAACI position paper. Allergy 2019; 74:1835-1851. [PMID: 30953574 DOI: 10.1111/all.13806] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 03/17/2019] [Indexed: 12/13/2022]
Abstract
Inflammation, structural, and functional abnormalities within the airways are key features of asthma. Although these processes are well documented, their expression varies across the heterogeneous spectrum of asthma. Type 2 inflammatory responses are characterized by increased levels of eosinophils, FeNO, and type 2 cytokines in blood and/or airways. Presently, type 2 asthma is the best-defined endotype, typically found in patients with allergic asthma, but surprisingly also in nonallergic patients with (severe) asthma. The etiology of asthma with non-type 2 inflammation is less clear. During the past decade, targeted therapies, including biologicals and small molecules, have been increasingly integrated into treatment strategies of severe asthma. These treatments block specific inflammatory pathways or single mediators. Single or composite biomarkers help to identify patients who will benefit from these treatments. So far, only a few inflammatory biomarkers have been validated for clinical application. The European Academy of Allergy & Clinical Immunology Task Force on Biomarkers in Asthma was initiated to review different biomarker sampling methods and to investigate clinical applicability of new and existing inflammatory biomarkers (point-of-care) to support diagnosis, targeted treatment, and monitoring of severe asthma. Subsequently, we discuss existing and novel targeted therapies for asthma as well as applicable biomarkers.
Collapse
Affiliation(s)
- Zuzana Diamant
- Department of Respiratory Medicine and Allergology Institute for Clinical Science Skane University Hospital Lund Sweden
- Department of Clinical Pharmacy and Pharmacology UMCG and QPS‐NL Groningen The Netherlands
- Department of Respiratory Medicine First Faculty of Medicine Charles University and Thomayer Hospital Prague Czech Republic
| | - Susanne Vijverberg
- Department of Respiratory Medicine Amsterdam UMC University of Amsterdam Amsterdam The Netherlands
| | - Kjell Alving
- Department of Women's and Children's Health Uppsala University Uppsala Sweden
| | - Arzu Bakirtas
- Department of Pediatrics Division of Pediatric Allergy and Asthma Gazi University School of Medicine Ankara Turkey
| | - Leif Bjermer
- Department of Clinical Pharmacy and Pharmacology UMCG and QPS‐NL Groningen The Netherlands
| | - Adnan Custovic
- Section of Paediatrics Department of Medicine Imperial College London London UK
| | - Sven‐Erik Dahlen
- Experimental Asthma and Allergy Research Institute of Environmental Medicine Karolinska Institutet Stockholm Sweden
| | - Mina Gaga
- 7th Respiratory Medicine Department and Asthma Centre Athens Chest Hospital Athens Greece
| | - Roy Gerth van Wijk
- Section of Allergology Department of Internal Medicine Erasmus Medical Center Rotterdam the Netherlands
| | - Stefano Del Giacco
- Department of Medical Sciences and Public Health University of Cagliari Cagliari Italy
| | - Eckard Hamelmann
- Children's Center Protestant Hospital Bethel Bielefeld Germany
- Allergy Center Ruhr University Bochum Bochum Germany
| | - Liam G. Heaney
- Centre for Experimental Medicine, School of MedicineDentistry and Biomedical Sciences, Queen's University Belfast Belfast UK
| | - Enrico Heffler
- Department of Biomedical Sciences Humanitas University Milan Italy
- Personalized Medicine, Asthma and Allergy Humanitas Research Hospital Milan Italy
| | - Ömer Kalayci
- Division of Pediatric Allergy Faculty of Medicine Hacettepe University Ankara Turkey
| | - Konstantinos Kostikas
- Respiratory Medicine Department University of Ioannina Medical School Ioannina Greece
| | - Rene Lutter
- Department of Respiratory Medicine Amsterdam UMC University of Amsterdam Amsterdam The Netherlands
| | - Anna‐Carin Olin
- Section of Occupational and Environmental Medicine Sahlgrenska Academy University of Gothenburg Gothenburg Sweden
| | | | - Angela Simpson
- Division of Infection, Immunity and Respiratory Medicine Faculty of Biology, Medicine and Health Manchester Academic Health Sciences Centre University of Manchester and University Hospital of South Manchester NHS Foundation Trust Manchester UK
| | - Peter J. Sterk
- Department of Respiratory Medicine Amsterdam UMC University of Amsterdam Amsterdam The Netherlands
| | - Ellen Tufvesson
- Department of Clinical Pharmacy and Pharmacology UMCG and QPS‐NL Groningen The Netherlands
| | - Ioana Agache
- Department of Allergy and Clinical Immunology Faculty of Medicine Transylvania University Brasov Brasov Romania
| | - Sven F. Seys
- Allergy and Clinical Immunology Research Group Department of Microbiology, Immunology and Transplantation KU Leuven Leuven Belgium
| |
Collapse
|
247
|
Asthma and psoriasis: What do they have in common? IL-17A! J Allergy Clin Immunol 2019; 144:1169-1171. [PMID: 31557502 DOI: 10.1016/j.jaci.2019.09.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/17/2019] [Accepted: 09/18/2019] [Indexed: 11/24/2022]
|
248
|
Ramakrishnan RK, Al Heialy S, Hamid Q. Role of IL-17 in asthma pathogenesis and its implications for the clinic. Expert Rev Respir Med 2019; 13:1057-1068. [PMID: 31498708 DOI: 10.1080/17476348.2019.1666002] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Introduction: Asthma is a respiratory disorder typically characterized by T-helper type 2 (Th2) inflammation that is mediated by cytokines, including IL-4, IL-5, and IL-13. Pathophysiologically, airway inflammation involving prominent eosinophilia, elevated IgE synthesis, airway hyperresponsiveness, mucus hypersecretion, and airway remodeling manifest clinically in patients as wheezing, breathlessness, chest tightness and episodic coughing. However, the Th2 paradigm falls short in interpreting the full spectrum of asthma severity. Areas covered: Severe asthmatics represent a distinct phenotype with their mixed pattern of neutrophilic-eosinophilic infiltration and glucocorticoid insensitivity making them refractory to currently available therapies. Th17 cells and their signature cytokine, IL-17, have been implicated in the development of severe asthma. Here, we review the contribution of IL-17 in the pathological features of asthma, gathered from both human and animal studies published in Pubmed during the past 10 years, and briefly discuss the clinical implications of targeting IL-17 imbalance in asthmatic patients. Expert opinion: With advancement in our understanding of the role of IL-17 in asthma pathology, it is clear that IL-17 is a targetable pathway which may lead to improvement in clinical symptoms of asthma. However, further elucidation of the complex interactions unfurled by IL-17 is essential in the empirical development of effective therapeutic options for refractory asthmatics.
Collapse
Affiliation(s)
- Rakhee K Ramakrishnan
- College of Medicine, University of Sharjah , Sharjah , United Arab Emirates.,Sharjah Institute for Medical Research, University of Sharjah , Sharjah , United Arab Emirates
| | - Saba Al Heialy
- College of Medicine, Mohammed bin Rashid University of Medicine and Health Sciences , Dubai , United Arab Emirates.,Meakins-Christie Laboratories, Research Institute of the McGill University Healthy Center , Montreal , Quebec , Canada
| | - Qutayba Hamid
- College of Medicine, University of Sharjah , Sharjah , United Arab Emirates.,Meakins-Christie Laboratories, Research Institute of the McGill University Healthy Center , Montreal , Quebec , Canada
| |
Collapse
|
249
|
Lambrecht BN, Hammad H, Fahy JV. The Cytokines of Asthma. Immunity 2019; 50:975-991. [PMID: 30995510 DOI: 10.1016/j.immuni.2019.03.018] [Citation(s) in RCA: 694] [Impact Index Per Article: 115.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/15/2019] [Accepted: 03/18/2019] [Indexed: 01/13/2023]
Abstract
Asthma is a chronic inflammatory airway disease associated with type 2 cytokines interleukin-4 (IL-4), IL-5, and IL-13, which promote airway eosinophilia, mucus overproduction, bronchial hyperresponsiveness (BHR), and immunogloubulin E (IgE) synthesis. However, only half of asthma patients exhibit signs of an exacerbated Type 2 response. "Type 2-low" asthma has different immune features: airway neutrophilia, obesity-related systemic inflammation, or in some cases, few signs of immune activation. Here, we review the cytokine networks driving asthma, placing these in cellular context and incorporating insights from cytokine-targeting therapies in the clinic. We discuss established and emerging paradigms in the context of the growing appreciation of disease heterogeneity and argue that the development of new and improved therapeutics will require understanding the diverse mechanisms underlying the spectrum of asthma pathologies.
Collapse
Affiliation(s)
- Bart N Lambrecht
- Laboratory of Immunoregulation, VIB Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Department of Pulmonary Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands.
| | - Hamida Hammad
- Laboratory of Immunoregulation, VIB Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - John V Fahy
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA; Cardiovascular Research Institute, University of California, San Francisco, San Francisco, USA
| |
Collapse
|
250
|
Affiliation(s)
- Sandra C Christiansen
- From the Division of Rheumatology, Allergy, and Immunology, Department of Medicine, University of California, San Diego (S.C.C., B.L.Z.), and the Medicine Service, San Diego Veterans Affairs Healthcare (B.L.Z.) - both in San Diego
| | - Bruce L Zuraw
- From the Division of Rheumatology, Allergy, and Immunology, Department of Medicine, University of California, San Diego (S.C.C., B.L.Z.), and the Medicine Service, San Diego Veterans Affairs Healthcare (B.L.Z.) - both in San Diego
| |
Collapse
|