201
|
Nappi F, Nappi P, Gambardella I, Avtaar Singh SS. Thromboembolic Disease and Cardiac Thrombotic Complication in COVID-19: A Systematic Review. Metabolites 2022; 12:889. [PMID: 36295791 PMCID: PMC9611930 DOI: 10.3390/metabo12100889] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/10/2022] [Accepted: 09/16/2022] [Indexed: 01/08/2023] Open
Abstract
The coronavirus 2019 pandemic has affected many healthcare systems worldwide. While acute respiratory distress syndrome (ARDS) has been well-documented in COVID-19, there are several cardiovascular complications, such as myocardial infarction, ischaemic stroke, and pulmonary embolism, leading to disability and death. The link between COVID-19 and increasing thrombogenicity potentially occurs due to numerous different metabolic mechanisms, ranging from endothelial damage for direct virus infection, associated excessive formation of neutrophil extracellular traps (NETs), pathogenic activation of the renin-angiotensin-aldosterone system (RAAS), direct myocardial injury, and ischemia induced by respiratory failure, all of which have measurable biomarkers. A search was performed by interrogating three databases (MEDLINE; MEDLINE In-Process and Other Non-Indexed Citations, and EMBASE). Evidence from randomized controlled trials (RCT), prospective series, meta-analyses, and unmatched observational studies were evaluated for the processing of the algorithm and treatment of thromboembolic disease and cardiac thrombotic complications related to COVID-19 during SARS-CoV-2 infection. Studies out with the SARS-Cov-2 infection period and case reports were excluded. A total of 58 studies were included in this analysis. The role of the acute inflammatory response in the propagation of the systemic inflammatory sequelae of the disease plays a major part in determining thromboembolic disease and cardiac thrombotic complication in COVID-19. Some of the mechanisms of activation of these pathways, alongside the involved biomarkers noted in previous studies, are highlighted. Inflammatory response led to thromboembolic disease and cardiac thrombotic complications in COVID-19. NETs play a pivotal role in the pathogenesis of the inflammatory response. Despite moving into the endemic phase of the disease in most countries, thromboembolic complications in COVID-19 remain an entity that substantially impacts the health care system, with long-term effects that remain uncertain. Continuous monitoring and research are required.
Collapse
Affiliation(s)
- Francesco Nappi
- Department of Cardiac Surgery, Centre Cardiologique du Nord, 93200 Saint-Denis, France
| | - Pierluigi Nappi
- Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy
| | - Ivancarmine Gambardella
- Department of Cardiothoracic Surgery, Weill Cornell Medicine–New York Presbyterian Medical Center, New York, NY 10065, USA
| | | |
Collapse
|
202
|
Majaj M, Weckbach LT. Midkine-A novel player in cardiovascular diseases. Front Cardiovasc Med 2022; 9:1003104. [PMID: 36204583 PMCID: PMC9530663 DOI: 10.3389/fcvm.2022.1003104] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/30/2022] [Indexed: 11/18/2022] Open
Abstract
Midkine (MK) is a 13-kDa heparin-binding cytokine and growth factor with anti-apoptotic, pro-angiogenic, pro-inflammatory and anti-infective functions, that enable it to partake in a series of physiological and pathophysiological processes. In the past, research revolving around MK has concentrated on its roles in reproduction and development, tissue protection and repair as well as inflammatory and malignant processes. In the recent few years, MK's implication in a wide scope of cardiovascular diseases has been rigorously investigated. Nonetheless, there is still no broadly accepted consensus on whether MK exerts generally detrimental or favorable effects in cardiovascular diseases. The truth probably resides somewhere in-between and depends on the underlying physiological or pathophysiological condition. It is therefore crucial to thoroughly examine and appraise MK's participation in cardiovascular diseases. In this review, we introduce the MK gene and protein, its multiple receptors and signaling pathways along with its expression in the vascular system and its most substantial functions in cardiovascular biology. Further, we recapitulate the current evidence of MK's expression in cardiovascular diseases, addressing the various sources and modes of MK expression. Moreover, we summarize the most significant implications of MK in cardiovascular diseases with particular emphasis on MK's advantageous and injurious functions, highlighting its ample diagnostic and therapeutic potential. Also, we focus on conflicting roles of MK in a number of cardiovascular diseases and try to provide some clarity and guidance to MK's multifaceted roles. In summary, we aim to pave the way for MK-based diagnostics and therapies that could present promising tools in the diagnosis and treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Marina Majaj
- Walter Brendel Centre for Experimental Medicine, Biomedical Centre, Institute for Cardiovascular Physiology und Pathophysiology, Ludwig-Maximilians-University Munich, Munich, Germany
- Department of Neurology, Heidelberg University Hospital, Heidelberg, Germany
| | - Ludwig T. Weckbach
- Walter Brendel Centre for Experimental Medicine, Biomedical Centre, Institute for Cardiovascular Physiology und Pathophysiology, Ludwig-Maximilians-University Munich, Munich, Germany
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Munich, Germany
- Deutsches Zentrum für Herz-Kreislauf-Forschung e. V, Berlin, Germany
| |
Collapse
|
203
|
Del Vecchio S, Terlizzi C, Pellegrino S, Altobelli GG, Fonti R. What molecular imaging of cancer patients can teach us about COVID-19. EUROPEAN PHYSICAL JOURNAL PLUS 2022; 137:1069. [PMID: 36158866 PMCID: PMC9484336 DOI: 10.1140/epjp/s13360-022-03262-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 09/02/2022] [Indexed: 06/16/2023]
Abstract
COVID-19 pandemic had a great impact on health systems and cancer care worldwide. Patients with cancer who develop COVID-19 are at high risk of severe outcomes and clarifying the determinants of such vulnerability of cancer patients would be of great clinical benefit. While the mechanisms of SARS-CoV-2 infection have been elucidated, the pathogenetic pathways leading to severe manifestations of the disease are largely unknown. Critical manifestations of COVID-19 mainly occur in elderly patients and in patients with serious comorbidities including cancer. Efforts to understand the intersection of pathways between severe manifestations of COVID-19 and cancer may shed light on the pathogenesis of critical illness in COVID-19 patients. Here, we will focus our attention on two major fields of potential intersection between COVID-19 and cancer, namely the dysfunction of immune system and the prothrombotic state that can occur in both COVID-19 and cancer patients, testing whether cancer imaging can provide clues to better understand such interactions.
Collapse
Affiliation(s)
- Silvana Del Vecchio
- Department of Advanced Biomedical Sciences, University of Naples “Federico II”, Naples, Italy
| | - Cristina Terlizzi
- Department of Advanced Biomedical Sciences, University of Naples “Federico II”, Naples, Italy
| | - Sara Pellegrino
- Department of Advanced Biomedical Sciences, University of Naples “Federico II”, Naples, Italy
| | - Giovanna G. Altobelli
- Department of Advanced Biomedical Sciences, University of Naples “Federico II”, Naples, Italy
| | - Rosa Fonti
- Department of Advanced Biomedical Sciences, University of Naples “Federico II”, Naples, Italy
| |
Collapse
|
204
|
Belchamber KBR, Thein OS, Hazeldine J, Grudzinska FS, Faniyi AA, Hughes MJ, Jasper AE, Yip KP, Crowley LE, Lugg ST, Sapey E, Parekh D, Thickett DR, Scott A. Dysregulated Neutrophil Phenotype and Function in Hospitalised Non-ICU COVID-19 Pneumonia. Cells 2022; 11:2901. [PMID: 36139476 PMCID: PMC9496854 DOI: 10.3390/cells11182901] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Rationale: Infection with the SARS-CoV2 virus is associated with elevated neutrophil counts. Evidence of neutrophil dysfunction in COVID-19 is based on transcriptomics or single functional assays. Cell functions are interwoven pathways, and understanding the effect across the spectrum of neutrophil function may identify therapeutic targets. Objectives: Examine neutrophil phenotype and function in 41 hospitalised, non-ICU COVID-19 patients versus 23 age-matched controls (AMC) and 26 community acquired pneumonia patients (CAP). Methods: Isolated neutrophils underwent ex vivo analyses for migration, bacterial phagocytosis, ROS generation, NETosis and receptor expression. Circulating DNAse 1 activity, levels of cfDNA, MPO, VEGF, IL-6 and sTNFRI were measured and correlated to clinical outcome. Serial sampling on day three to five post hospitalization were also measured. The effect of ex vivo PI3K inhibition was measured in a further cohort of 18 COVID-19 patients. Results: Compared to AMC and CAP, COVID-19 neutrophils demonstrated elevated transmigration (p = 0.0397) and NETosis (p = 0.0332), and impaired phagocytosis (p = 0.0036) associated with impaired ROS generation (p < 0.0001). The percentage of CD54+ neutrophils (p < 0.001) was significantly increased, while surface expression of CD11b (p = 0.0014) and PD-L1 (p = 0.006) were significantly decreased in COVID-19. COVID-19 and CAP patients showed increased systemic markers of NETosis including increased cfDNA (p = 0.0396) and impaired DNAse activity (p < 0.0001). The ex vivo inhibition of PI3K γ and δ reduced NET release by COVID-19 neutrophils (p = 0.0129). Conclusions: COVID-19 is associated with neutrophil dysfunction across all main effector functions, with altered phenotype, elevated migration and NETosis, and impaired antimicrobial responses. These changes highlight that targeting neutrophil function may help modulate COVID-19 severity.
Collapse
Affiliation(s)
- Kylie B. R. Belchamber
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK
| | - Onn S. Thein
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK
| | - Jon Hazeldine
- National Institute for Health Research Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital Birmingham, Birmingham B15 2TH, UK
| | - Frances S. Grudzinska
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK
| | - Aduragbemi A. Faniyi
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK
| | - Michael J. Hughes
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK
| | - Alice E. Jasper
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK
| | - Kay Por Yip
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK
| | - Louise E. Crowley
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK
| | - Sebastian T. Lugg
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK
| | - Elizabeth Sapey
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK
- PIONEER HDR-UK Hub in Acute Care, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK
| | - Dhruv Parekh
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK
- NIHR Clinical Research Facility, University Hospitals Birmingham NHS Foundation Trust, Edgbaston, Birmingham B12 2GW, UK
| | - David R. Thickett
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK
| | - Aaron Scott
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
205
|
Loh JT, Teo JKH, Lam KP. Dok3 restrains neutrophil production of calprotectin during TLR4 sensing of SARS-CoV-2 spike protein. Front Immunol 2022; 13:996637. [PMID: 36172386 PMCID: PMC9510782 DOI: 10.3389/fimmu.2022.996637] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/25/2022] [Indexed: 11/27/2022] Open
Abstract
Increased neutrophils and elevated level of circulating calprotectin are hallmarks of severe COVID-19 and they contribute to the dysregulated immune responses and cytokine storm in susceptible patients. However, the precise mechanism controlling calprotectin production during SARS-CoV-2 infection remains elusive. In this study, we showed that Dok3 adaptor restrains calprotectin production by neutrophils in response to SARS-CoV-2 spike (S) protein engagement of TLR4. Dok3 recruits SHP-2 to mediate the de-phosphorylation of MyD88 at Y257, thereby attenuating downstream JAK2-STAT3 signaling and calprotectin production. Blocking of TLR4, JAK2 and STAT3 signaling could prevent excessive production of calprotectin by Dok3-/- neutrophils, revealing new targets for potential COVID-19 therapy. As S protein from SARS-CoV-2 Delta and Omicron variants can activate TLR4-driven calprotectin production in Dok3-/- neutrophils, our study suggests that targeting calprotectin production may be an effective strategy to combat severe COVID-19 manifestations associated with these emerging variants.
Collapse
Affiliation(s)
- Jia Tong Loh
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
- *Correspondence: Jia Tong Loh, ; Kong-Peng Lam,
| | - Joey Kay Hui Teo
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| | - Kong-Peng Lam
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- School of Biological Sciences, College of Science, Nanyang Technological University, Singapore, Singapore
- *Correspondence: Jia Tong Loh, ; Kong-Peng Lam,
| |
Collapse
|
206
|
Leung HHL, Perdomo J, Ahmadi Z, Zheng SS, Rashid FN, Enjeti A, Ting SB, Chong JJH, Chong BH. NETosis and thrombosis in vaccine-induced immune thrombotic thrombocytopenia. Nat Commun 2022; 13:5206. [PMID: 36064843 PMCID: PMC9441824 DOI: 10.1038/s41467-022-32946-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 08/24/2022] [Indexed: 12/22/2022] Open
Abstract
Vaccine-induced immune thrombotic thrombocytopenia (VITT) is a rare yet serious adverse effect of the adenoviral vector vaccines ChAdOx1 nCoV-19 (AstraZeneca) and Ad26.COV2.S (Janssen) against COVID-19. The mechanisms involved in clot formation and thrombocytopenia in VITT are yet to be fully determined. Here we show neutrophils undergoing NETosis and confirm expression markers of NETs in VITT patients. VITT antibodies directly stimulate neutrophils to release NETs and induce thrombus formation containing abundant platelets, neutrophils, fibrin, extracellular DNA and citrullinated histone H3 in a flow microfluidics system and in vivo. Inhibition of NETosis prevents VITT-induced thrombosis in mice but not thrombocytopenia. In contrast, in vivo blockage of FcγRIIa abrogates both thrombosis and thrombocytopenia suggesting these are distinct processes. Our findings indicate that anti-PF4 antibodies activate blood cells via FcγRIIa and are responsible for thrombosis and thrombocytopenia in VITT. Future development of NETosis and FcγRIIa inhibitors are needed to treat VITT and similar immune thrombotic thrombocytopenia conditions more effectively, leading to better patient outcomes. The mechanisms underlying the pathogenesis of vaccine-induced immune thrombotic thrombocytopenia (VITT) remain unclear. Here the authors show that anti-PF4 antibodies are responsible for the activation of platelets and neutrophils, and blockage of FcγRIIa or NETosis in vivo can prevent thrombosis.
Collapse
Affiliation(s)
- Halina H L Leung
- Haematology Research Unit, School of Clinical Medicine, St George and Sutherland Campus, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Jose Perdomo
- Haematology Research Unit, School of Clinical Medicine, St George and Sutherland Campus, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Zohra Ahmadi
- Haematology Research Unit, School of Clinical Medicine, St George and Sutherland Campus, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Shiying S Zheng
- Haematology Research Unit, School of Clinical Medicine, St George and Sutherland Campus, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia.,New South Wales Health Pathology, Sydney, NSW, Australia
| | - Fairooj N Rashid
- Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia.,Centre for Heart Research, Westmead Institute for Medical Research, University of Sydney, Sydney, NSW, Australia
| | - Anoop Enjeti
- Calvary Mater Hospital, Wallsend, NSW, Australia.,University of Newcastle, Callaghan, NSW, Australia
| | - Stephen B Ting
- Department of Haematology, Eastern Health and Monash University, Melbourne, VIC, Australia
| | - James J H Chong
- Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia.,Centre for Heart Research, Westmead Institute for Medical Research, University of Sydney, Sydney, NSW, Australia.,Department of Cardiology, Westmead Hospital, Sydney, NSW, Australia
| | - Beng H Chong
- Haematology Research Unit, School of Clinical Medicine, St George and Sutherland Campus, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia. .,New South Wales Health Pathology, Sydney, NSW, Australia.
| |
Collapse
|
207
|
Ketenci S, Uygar Kalaycı M, Dündar B, Duranay R, Şükrü Aynacıoğlu A. Elevated serum midkine levels in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infected patients. Int Immunopharmacol 2022; 110:108939. [PMID: 35717836 PMCID: PMC9181266 DOI: 10.1016/j.intimp.2022.108939] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 01/08/2023]
Abstract
BACKGROUND The coronavirus disease-2019 (COVID-19) pandemic has caused important health, economic, social, and cultural problems worldwide. Recent findings demonstrate an excessive cytokine release during the disease development, especially in the seriously life-threatening form of COVID-19. Among other chemokines and cytokines that are released in high amounts at the infection site of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), midkine (MK), which is a potent pro-inflammatory growth factor/ cytokine, can be also overexpressed and contribute to the pathophysiological process in patients infected with SARS-CoV-2. MATERIALS AND METHOD Serum was collected from 87 intensive care unit (ICU) patients that are COVID-19 positive and 50 healthy volunteers in the control group with a negative PCR test and without disease symptoms. Circulating MK concentration was measured by enzyme-linked immunosorbent assay (ELISA). RESULTS COVID-19 patients had a significantly higher serum MK concentration compared to non-COVID-19 control subjects (1892.8 ± 1615.8 pg/mL versus 680.7 ± 907.6 pg/mL, respectively; P < 0.001). The cut-off MK concentration was 716.7 pg/ mL, with the sensitivity and specificity of 75.9 % and 76.0 %, respectively. The area under the receiver operating characteristic (ROC) curve of MK was = 0.827. Our findings showed that circulating MK levels are significantly increased in SARS-CoV-2 infected patients. CONCLUSION We suggest that MK is involved in the pathogenesis of COVID-19 and may be a part of hypercytokinaemia. Therefore, MK may serve as a supporting biomarker in the diagnosis of COVID-19, and blocking MK actions or its targets may attenuate the inflammatory process and the severity of the disease.
Collapse
Affiliation(s)
- Sema Ketenci
- Istanbul Atlas University, Faculty of Medicine, Department of Medical Pharmacology, Istanbul, Turkey
| | - M. Uygar Kalaycı
- Istanbul Atlas University, Faculty of Medicine, Department of General Surgery, Istanbul, Turkey
| | - Bağnu Dündar
- Istanbul Atlas University, Faculty of Medicine, Department of Biochemistry, Istanbul, Turkey
| | - Recep Duranay
- Istanbul Atlas University, Faculty of Engineering, Computer Engineering, Istanbul, Turkey
| | - A. Şükrü Aynacıoğlu
- Istanbul Atlas University, Faculty of Medicine, Department of Medical Pharmacology, Istanbul, Turkey,Corresponding author at: Istanbul Atlas University, Anadolu Cad. No: 40, Kağıthane, 34408 Istanbul, Turkey
| |
Collapse
|
208
|
Butt A, Erkan D, Lee AI. COVID-19 and antiphospholipid antibodies. Best Pract Res Clin Haematol 2022; 35:101402. [PMID: 36494152 PMCID: PMC9568270 DOI: 10.1016/j.beha.2022.101402] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 12/14/2022]
Abstract
Antiphospholipid syndrome and the coagulopathy of COVID-19 share many pathophysiologic features, including endotheliopathy, hypercoagulability, and activation of platelets, complement pathways, and neutrophil extracellular traps, all acting in concert via a model of immunothrombosis. Antiphospholipid antibody production in COVID-19 is common, with 50% of COVID-19 patients being positive for lupus anticoagulant in some studies, and with non-Sapporo criteria antiphospholipid antibodies being prevalent as well. The biological significance of antiphospholipid antibodies in COVID-19 is uncertain, as such antibodies are usually transient, and studies examining clinical outcomes in COVID-19 patients with and without antiphospholipid antibodies have yielded conflicting results. In this review, we explore the biology of antiphospholipid antibodies in COVID-19 and other infections and discuss mechanisms of thrombogenesis in antiphospholipid syndrome and parallels with COVID-19 coagulopathy. In addition, we review the existing literature on safety of COVID-19 vaccination in patients with antiphospholipid antibodies and antiphospholipid syndrome.
Collapse
Affiliation(s)
- Ayesha Butt
- Section of Hematology, Department of Medicine, Yale School of Medicine, 333 Cedar St., New Haven, CT, 06520, USA.
| | - Doruk Erkan
- Barbara Volcker Center for Women and Rheumatic Diseases, Hospital for Special Surgery and Weill Cornell Medicine, 535 E. 70th St., 6th floor, New York, NY, 10021, USA.
| | - Alfred Ian Lee
- Section of Hematology, Department of Medicine, Yale School of Medicine, 333 Cedar St., New Haven, CT, 06520, USA.
| |
Collapse
|
209
|
Huang J, Hong W, Wan M, Zheng L. Molecular mechanisms and therapeutic target of NETosis in diseases. MedComm (Beijing) 2022; 3:e162. [PMID: 36000086 PMCID: PMC9390875 DOI: 10.1002/mco2.162] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/03/2022] [Accepted: 07/07/2022] [Indexed: 12/13/2022] Open
Abstract
Evidence shows that neutrophils can protect the host against pathogens in multiple ways, including the formation and release of neutrophil extracellular traps (NETs). NETs are web-like structures composed of fibers, DNA, histones, and various neutrophil granule proteins. NETs can capture and kill pathogens, including bacteria, viruses, fungi, and protozoa. The process of NET formation is called NETosis. According to whether they depend on nicotinamide adenine dinucleotide phosphate (NADPH), NETosis can be divided into two categories: "suicidal" NETosis and "vital" NETosis. However, NET components, including neutrophil elastase, myeloperoxidase, and cell-free DNA, cause a proinflammatory response and potentially severe diseases. Compelling evidence indicates a link between NETs and the pathogenesis of a number of diseases, including sepsis, systemic lupus erythematosus, rheumatoid arthritis, small-vessel vasculitis, inflammatory bowel disease, cancer, COVID-19, and others. Therefore, targeting the process and products of NETosis is critical for treating diseases linked with NETosis. Researchers have discovered that several NET inhibitors, such as toll-like receptor inhibitors and reactive oxygen species scavengers, can prevent uncontrolled NET development. This review summarizes the mechanism of NETosis, the receptors associated with NETosis, the pathology of NETosis-induced diseases, and NETosis-targeted therapy.
Collapse
Affiliation(s)
- Jiayu Huang
- Laboratory of Aging Research and Cancer Drug TargetState Key Laboratory of BiotherapyNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengduChina
| | - Weiqi Hong
- Laboratory of Aging Research and Cancer Drug TargetState Key Laboratory of BiotherapyNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengduChina
| | - Meihua Wan
- Department of Integrated Traditional Chinese and Western MedicineWest China HospitalSichuan UniversityChengduSichuanChina
| | - Limin Zheng
- Guangdong Province Key Laboratory of Pharmaceutical Functional GenesMOE Key Laboratory of Gene Function and RegulationSchool of Life SciencesSun Yat‐Sen UniversityGuangzhouChina
- State Key Laboratory of Oncology in Southern ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐Sen University Cancer CenterGuangzhouChina
| |
Collapse
|
210
|
Han T, Tang H, Lin C, Shen Y, Yan D, Tang X, Guo D. Extracellular traps and the role in thrombosis. Front Cardiovasc Med 2022; 9:951670. [PMID: 36093130 PMCID: PMC9452724 DOI: 10.3389/fcvm.2022.951670] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/05/2022] [Indexed: 11/13/2022] Open
Abstract
Thrombotic complications pose serious health risks worldwide. A significant change in our understanding of the pathophysiology of thrombosis has occurred since the discovery of extracellular traps (ETs) and their prothrombotic properties. As a result of immune cells decondensing chromatin into extracellular fibers, ETs promote thrombus formation by acting as a scaffold that activates platelets and coagulates them. The involvement of ETs in thrombosis has been reported in various thrombotic conditions including deep vein thrombosis (DVT), pulmonary emboli, acute myocardial infarction, aucte ischemic stroke, and abdominal aortic aneurysms. This review summarizes the existing evidence of ETs in human and animal model thrombi. The authors described studies showing the existence of ETs in venous or arterial thrombi. In addition, we studied potential novel therapeutic opportunities related to the resolution or prevention of thrombosis by targeting ETs.
Collapse
|
211
|
Knopf J, Sjöwall J, Frodlund M, Hinkula J, Herrmann M, Sjöwall C. NET Formation in Systemic Lupus Erythematosus: Changes during the COVID-19 Pandemic. Cells 2022; 11:cells11172619. [PMID: 36078028 PMCID: PMC9455008 DOI: 10.3390/cells11172619] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/19/2022] [Accepted: 08/21/2022] [Indexed: 11/17/2022] Open
Abstract
The severity of the coronavirus disease in 2019 (COVID-19) is strongly linked to a dysregulated immune response. This fuels the fear of severe disease in patients with autoimmune disorders continuously using immunosuppressive/immunomodulating medications. One complication of COVID-19 is thromboembolism caused by intravascular aggregates of neutrophil extracellular traps (NETs) occluding the affected vessels. Like COVID-19, systemic lupus erythematosus (SLE) is characterized by, amongst others, an increased risk of thromboembolism. An imbalance between NET formation and clearance is suggested to play a prominent role in exacerbating autoimmunity and disease severity. Serologic evidence of exposure to SARS-CoV-2 has a minor impact on the SLE course in a Swedish cohort reportedly. Herein, we assessed NET formation in patients from this cohort by neutrophil elastase (NE) activity and the presence of cell-free DNA, MPO-DNA, and NE-DNA complexes and correlated the findings to the clinical parameters. The presence of NE-DNA complexes and NE activity differed significantly in pre-pandemic versus pandemic serum samples. The latter correlated significantly with the hemoglobin concentration, blood cell counts, and complement protein 3 and 4 levels in the pre-pandemic but only with the leukocyte count and neutrophil levels in the pandemic serum samples. Taken together, our data suggest a change, especially in the NE activity independent of exposure to SARS-CoV-2.
Collapse
Affiliation(s)
- Jasmin Knopf
- Department of Internal Medicine 3—Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Correspondence:
| | - Johanna Sjöwall
- Department of Biomedical and Clinical Sciences, Division of Inflammation and Infection/Infectious Diseases, Linköping University, SE-581 85 Linköping, Sweden
| | - Martina Frodlund
- Department of Biomedical and Clinical Sciences, Division of Inflammation and Infection/Rheumatology, Linköping University, SE-581 85 Linköping, Sweden
| | - Jorma Hinkula
- Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology, Linköping University, SE-581 85 Linköping, Sweden
| | - Martin Herrmann
- Department of Internal Medicine 3—Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Christopher Sjöwall
- Department of Biomedical and Clinical Sciences, Division of Inflammation and Infection/Rheumatology, Linköping University, SE-581 85 Linköping, Sweden
| |
Collapse
|
212
|
Sanche S, Cassidy T, Chu P, Perelson AS, Ribeiro RM, Ke R. A simple model of COVID-19 explains disease severity and the effect of treatments. Sci Rep 2022; 12:14210. [PMID: 35988008 PMCID: PMC9392071 DOI: 10.1038/s41598-022-18244-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 08/08/2022] [Indexed: 12/23/2022] Open
Abstract
Considerable effort has been made to better understand why some people suffer from severe COVID-19 while others remain asymptomatic. This has led to important clinical findings; people with severe COVID-19 generally experience persistently high levels of inflammation, slower viral load decay, display a dysregulated type-I interferon response, have less active natural killer cells and increased levels of neutrophil extracellular traps. How these findings are connected to the pathogenesis of COVID-19 remains unclear. We propose a mathematical model that sheds light on this issue by focusing on cells that trigger inflammation through molecular patterns: infected cells carrying pathogen-associated molecular patterns (PAMPs) and damaged cells producing damage-associated molecular patterns (DAMPs). The former signals the presence of pathogens while the latter signals danger such as hypoxia or lack of nutrients. Analyses show that SARS-CoV-2 infections can lead to a self-perpetuating feedback loop between DAMP expressing cells and inflammation, identifying the inability to quickly clear PAMPs and DAMPs as the main contributor to hyperinflammation. The model explains clinical findings and reveal conditions that can increase the likelihood of desired clinical outcome from treatment administration. In particular, the analysis suggest that antivirals need to be administered early during infection to have an impact on disease severity. The simplicity of the model and its high level of consistency with clinical findings motivate its use for the formulation of new treatment strategies.
Collapse
|
213
|
Ousaka D, Nishibori M. Is hemolysis a novel therapeutic target in COVID-19? Front Immunol 2022; 13:956671. [PMID: 36059481 PMCID: PMC9438449 DOI: 10.3389/fimmu.2022.956671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/26/2022] [Indexed: 12/15/2022] Open
Affiliation(s)
- Daiki Ousaka
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Masahiro Nishibori
- Translational Research and Drug Development, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
- *Correspondence: Masahiro Nishibori,
| |
Collapse
|
214
|
Ianniciello A, Attena E, Carpinella G, Uccello A, Mauro C, Russo V. Late Onset Occurrence of Concomitant Myocardial Infarction and Ischemic Stroke in Hospitalized COVID-19 Patient: A Case Report. Int J Gen Med 2022; 15:6621-6626. [PMID: 35996597 PMCID: PMC9392459 DOI: 10.2147/ijgm.s370297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 08/03/2022] [Indexed: 12/02/2022] Open
Abstract
We described the case of a 68-year-old COVID-19 patient with hypertension and dyslipidemia who discontinued the cardiovascular medications during hospitalization and experienced a late onset occurrence of concomitant ST-elevation myocardial infarction and ischemic stroke at resolution of SARS-CoV-2 pneumonia.
Collapse
Affiliation(s)
- Antonio Ianniciello
- Department of Medical Translational Sciences, University of Campania “Luigi Vanvitelli”, Monaldi Hospital, Naples, Italy
| | - Emilio Attena
- Cardiology Unit, Monaldi and Cotugno Hospital, Naples, Italy
| | | | - Ambra Uccello
- Cardiology Unit, Marcianise Hospital, Caserta Health Authority, Caserta, Italy
| | - Ciro Mauro
- Cardiology Unit, Cardarelli Hospital, Naples, Italy
| | - Vincenzo Russo
- Department of Medical Translational Sciences, University of Campania “Luigi Vanvitelli”, Monaldi Hospital, Naples, Italy
| |
Collapse
|
215
|
Nofi CP, Wang P, Aziz M. Chromatin-Associated Molecular Patterns (CAMPs) in sepsis. Cell Death Dis 2022; 13:700. [PMID: 35961978 PMCID: PMC9372964 DOI: 10.1038/s41419-022-05155-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/28/2022] [Accepted: 08/01/2022] [Indexed: 01/21/2023]
Abstract
Several molecular patterns have been identified that recognize pattern recognition receptors. Pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs) are commonly used terminologies to classify molecules originating from pathogen and endogenous molecules, respectively, to heighten the immune response in sepsis. Herein, we focus on a subgroup of endogenous molecules that may be detected as foreign and similarly trigger immune signaling pathways. These chromatin-associated molecules, i.e., chromatin containing nuclear DNA and histones, extracellular RNA, mitochondrial DNA, telomeric repeat-containing RNA, DNA- or RNA-binding proteins, and extracellular traps, may be newly classified as chromatin-associated molecular patterns (CAMPs). Herein, we review the release of CAMPs from cells, their mechanism of action and downstream immune signaling pathways, and targeted therapeutic approaches to mitigate inflammation and tissue injury in inflammation and sepsis.
Collapse
Affiliation(s)
- Colleen P. Nofi
- grid.250903.d0000 0000 9566 0634Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY USA ,Elmezi Graduate School of Molecular Medicine, Manhasset, NY USA ,grid.512756.20000 0004 0370 4759Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY USA
| | - Ping Wang
- grid.250903.d0000 0000 9566 0634Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY USA ,Elmezi Graduate School of Molecular Medicine, Manhasset, NY USA ,grid.512756.20000 0004 0370 4759Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY USA ,grid.512756.20000 0004 0370 4759Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY USA
| | - Monowar Aziz
- grid.250903.d0000 0000 9566 0634Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY USA ,Elmezi Graduate School of Molecular Medicine, Manhasset, NY USA ,grid.512756.20000 0004 0370 4759Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY USA ,grid.512756.20000 0004 0370 4759Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY USA
| |
Collapse
|
216
|
Che H, Stanley K, Jatsenko T, Thienpont B, Vermeesch JR. Expanded knowledge of cell-free DNA biology: potential to broaden the clinical utility. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2022; 3:216-234. [PMID: 39697489 PMCID: PMC11648412 DOI: 10.20517/evcna.2022.21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 12/20/2024]
Abstract
Noninvasive sampling of an individual's body fluids is an easy means to capture circulating cell-free DNA (cfDNA). These small fragments of DNA carry information on the contributing cell's genome, epigenome, and nuclease content. Analysis of cfDNA for the assessment of genetic risk has already revolutionized clinical practice, and a compendium of increasingly higher-resolution approaches based on epigenetic and fragmentomic cfDNA signatures continues to expand. Profiling cfDNA has unlocked a wealth of molecular information that can be translated to the clinic. This review covers the biological characteristics of cfDNA, recent advances in liquid biopsy and the clinical utility of cfDNA.
Collapse
Affiliation(s)
- Huiwen Che
- Department of Human Genetics, Laboratory for Cytogenetics and Genome Research, KU Leuven, Leuven 3000, Belgium
| | - Kate Stanley
- Department of Human Genetics, Laboratory for Cytogenetics and Genome Research, KU Leuven, Leuven 3000, Belgium
| | - Tatjana Jatsenko
- Department of Human Genetics, Laboratory for Cytogenetics and Genome Research, KU Leuven, Leuven 3000, Belgium
| | - Bernard Thienpont
- Department of Human Genetics, Laboratory for Functional Epigenetics, KU Leuven, Leuven 3000, Belgium
| | - Joris Robert Vermeesch
- Department of Human Genetics, Laboratory for Cytogenetics and Genome Research, KU Leuven, Leuven 3000, Belgium
- Center for Human Genetics, University Hospitals Leuven, Leuven 3000, Belgium
| |
Collapse
|
217
|
Microbe capture by splenic macrophages triggers sepsis via T cell-death-dependent neutrophil lifespan shortening. Nat Commun 2022; 13:4658. [PMID: 35945238 PMCID: PMC9361272 DOI: 10.1038/s41467-022-32320-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 07/01/2022] [Indexed: 11/25/2022] Open
Abstract
The mechanisms linking systemic infection to hyperinflammation and immune dysfunction in sepsis are poorly understood. Extracellular histones promote sepsis pathology, but their source and mechanism of action remain unclear. Here, we show that by controlling fungi and bacteria captured by splenic macrophages, neutrophil-derived myeloperoxidase attenuates sepsis by suppressing histone release. In systemic candidiasis, microbial capture via the phagocytic receptor SIGNR1 neutralizes myeloperoxidase by facilitating marginal zone infiltration and T cell death-dependent histone release. Histones and hyphae induce cytokines in adjacent CD169 macrophages including G-CSF that selectively depletes mature Ly6Ghigh neutrophils by shortening their lifespan in favour of immature Ly6Glow neutrophils with a defective oxidative burst. In sepsis patient plasma, these mediators shorten mature neutrophil lifespan and correlate with neutrophil mortality markers. Consequently, high G-CSF levels and neutrophil lifespan shortening activity are associated with sepsis patient mortality. Hence, by exploiting phagocytic receptors, pathogens degrade innate and adaptive immunity through the detrimental impact of downstream effectors on neutrophil lifespan. Hyperinflammation and immune dysfunction are key drivers of immunopathology in sepsis. Here the authors show microbial exploitation of phagocytic receptors is linked to triggering of sepsis and the immune cell mediated reduction in neutrophil life span.
Collapse
|
218
|
Xia Y, Yao RQ, Zhao PY, Tao ZB, Zheng LY, Zhou HT, Yao YM, Song XM. Publication trends of research on COVID-19 and host immune response: A bibliometric analysis. Front Public Health 2022; 10:939053. [PMID: 36003630 PMCID: PMC9394856 DOI: 10.3389/fpubh.2022.939053] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 07/18/2022] [Indexed: 01/08/2023] Open
Abstract
IntroductionAs the first bibliometric analysis of COVID-19 and immune responses, this study will provide a comprehensive overview of the latest research advances. We attempt to summarize the scientific productivity and cooperation across countries and institutions using the bibliometric methodology. Meanwhile, using clustering analysis of keywords, we revealed the evolution of research hotspots and predicted future research focuses, thereby providing valuable information for the follow-up studies.MethodsWe selected publications on COVID-19 and immune response using our pre-designed search strategy. Web of Science was applied to screen the eligible publications for subsequent bibliometric analyses. GraphPad Prism 8.0, VOSviewer, and CiteSpace were applied to analyze the research trends and compared the contributions of countries, authors, institutions, and journals to the global publications in this field.ResultsWe identified 2,200 publications on COVID-19 and immune response published between December 1, 2019, and April 25, 2022, with a total of 3,154 citations. The United States (611), China (353), and Germany (209) ranked the top three in terms of the number of publications, accounting for 53.3% of the total articles. Among the top 15 institutions publishing articles in this area, four were from France, four were from the United States, and three were from China. The journal Frontiers in Immunology published the most articles (178) related to COVID-19 and immune response. Alessandro Sette (31 publications) from the United States were the most productive and influential scholar in this field, whose publications with the most citation frequency (3,633). Furthermore, the development and evaluation of vaccines might become a hotspot in relevant scope.ConclusionsThe United States makes the most indispensable contribution in this field in terms of publication numbers, total citations, and H-index. Although publications from China also take the lead regarding quality and quantity, their international cooperation and preclinical research need to be further strengthened. Regarding the citation frequency and the total number of published articles, the latest research progress might be tracked in the top-ranking journals in this field. By analyzing the chronological order of the appearance of retrieved keywords, we speculated that vaccine-related research might be the novel focus in this field.
Collapse
Affiliation(s)
- Yun Xia
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ren-qi Yao
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese People's Liberation Army General Hospital, Beijing, China
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
- Ren-qi Yao
| | - Peng-yue Zhao
- Department of General Surgery, First Medical Center of the Chinese People's Liberation Army General Hospital, Beijing, China
| | - Zheng-bo Tao
- Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Li-yu Zheng
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese People's Liberation Army General Hospital, Beijing, China
| | - Hui-ting Zhou
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Yong-ming Yao
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese People's Liberation Army General Hospital, Beijing, China
- Yong-ming Yao
| | - Xue-min Song
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China
- *Correspondence: Xue-min Song
| |
Collapse
|
219
|
Elevated NETs and Calprotectin Levels after ChAdOx1 nCoV-19 Vaccination Correlate with the Severity of Side Effects. Vaccines (Basel) 2022; 10:vaccines10081267. [PMID: 36016155 PMCID: PMC9415650 DOI: 10.3390/vaccines10081267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/04/2022] [Accepted: 08/04/2022] [Indexed: 11/17/2022] Open
Abstract
ChAdOx1 nCoV-19 vaccination has been associated with the rare side effect; vaccine-induced immune thrombotic thrombocytopenia (VITT). The mechanism of thrombosis in VITT is associated with high levels of neutrophil extracellular traps (NETs). The present study examines whether key markers for NETosis, such as H3-NETs and calprotectin, as well as syndecan-1 for endotheliopathy, can be used as prognostic factors to predict the severity of complications associated with ChAdOx1 vaccination. Five patients with VITT, 10 with prolonged symptoms and cutaneous hemorrhages but without VITT, and 15 with only brief and mild symptoms after the vaccination were examined. Levels of H3-NETs and calprotectin in the vaccinated individuals were markedly increased in VITT patients compared to vaccinees with milder vaccination-associated symptoms, and a strong correlation (r ≥ 0.745, p < 0.001) was found with severity of vaccination side effects. Syndecan-1 levels were also positively correlated (r = 0.590, p < 0.001) in vaccinees to side effects after ChAdOx1 nCoV-19 vaccination. We hypothesize that the inflammatory markers NETs and calprotectin may be used as confirmatory tests in diagnosing VITT.
Collapse
|
220
|
Wu L, Tian X, Du H, Liu X, Wu H. Bioinformatics Analysis of LGR4 in Colon Adenocarcinoma as Potential Diagnostic Biomarker, Therapeutic Target and Promoting Immune Cell Infiltration. Biomolecules 2022; 12:1081. [PMID: 36008975 PMCID: PMC9406187 DOI: 10.3390/biom12081081] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/31/2022] [Accepted: 08/01/2022] [Indexed: 12/24/2022] Open
Abstract
Colon adenocarcinoma is one of the tumors with the highest mortality rate, and tumorigenesis or development of colon adenocarcinoma is the major reason leading to patient death. However, the molecular mechanism and biomarker to predict tumor progression are currently unclear. With the goal of understanding the molecular mechanism and tumor progression, we utilized the TCGA database to identify differentially expressed genes. After identifying the differentially expressed genes among colon adenocarcinoma tissues with different expression levels of LGR4 and normal tissue, protein-protein interaction, gene ontology, pathway enrichment, gene set enrichment analysis, and immune cell infiltration analysis were conducted. Here, the top 10 hub genes, i.e., ALB, F2, APOA2, CYP1A1, SPRR2B, APOA1, APOB, CYP3A4, SST, and GCG, were identified, and relative correlation analysis was conducted. Kaplan-Meier analysis revealed that higher expression of LGR4 correlates with overall survival of colon adenocarcinoma patients, although expression levels of LGR4 in normal tissues are higher than in tumor tissues. Further functional analysis demonstrated that higher expression of LGR4 in colon adenocarcinoma may be linked to up-regulate metabolism-related pathways, for example, the cholesterol biosynthesis pathway. These results were confirmed by gene set enrichment analysis. Immune cell infiltration analysis clearly showed that the infiltration percentage of T cells was significantly higher than other immune cells, and TIMER analysis revealed a positive correlation between T-cell infiltration and LGR4 expression. Finally, COAD cancer cells, Caco-2, were employed to be incubated with squalene and 25-hydroxycholesterol-3-sulfate, and relative experimental results confirmed that the cholesterol biosynthesis pathway involved in modulating the proliferation of COAD tumorigenesis. Our investigation revealed that LGR4 can be an emerging diagnostic and prognostic biomarker for colon adenocarcinoma by affecting metabolism-related pathways.
Collapse
Affiliation(s)
- Lijuan Wu
- Department of Gastroenterology, the First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Xiaoxiao Tian
- Department of Gastroenterology, the First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Hao Du
- Department of Orthopedic, the First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Xiaomin Liu
- Department of Gastroenterology, the First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Haigang Wu
- School of Life Sciences, Henan University, Kaifeng 475000, China
| |
Collapse
|
221
|
Falcinelli E, Petito E, Gresele P. The role of platelets, neutrophils and endothelium in COVID-19 infection. Expert Rev Hematol 2022; 15:727-745. [PMID: 35930267 DOI: 10.1080/17474086.2022.2110061] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION COVID-19 is associated to an increased risk of thrombosis, as a result of a complex process that involves the activation of vascular and circulating cells, the release of soluble inflammatory and thrombotic mediators and blood clotting activation. AREAS COVERED This article reviews the pathophysiological role of platelets, neutrophils and the endothelium, and of their interactions, in the thrombotic complications of COVID-19 patients, and the current and future therapeutic approaches targeting these cell types. EXPERT OPINION Virus-induced platelet, neutrophil and endothelial cell changes are crucial triggers of the thrombotic complications and of the adverse evolution of COVID-19. Both the direct interaction with the virus and the associated cytokine storm concur to trigger cell activation in a classical thromboinflammatory vicious circle. Although heparin has proven to be an effective prophylactic and therapeutic weapon for the prevention and treatment of COVID-19-associated thrombosis, it acts downstream of the cascade of events triggered by SARS-CoV-2. The identification of specific molecular targets interrupting the thromboinflammatory cascade upstream, and more specifically acting either on the interaction of SARS-CoV-2 with blood and vascular cells or on the specific signalling mechanisms associated with their COVID-19-associated activation, might theoretically offer greater protection with potentially lesser side effects.
Collapse
Affiliation(s)
- E Falcinelli
- Section of Internal and Cardiovascular Medicine, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - E Petito
- Section of Internal and Cardiovascular Medicine, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - P Gresele
- Section of Internal and Cardiovascular Medicine, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| |
Collapse
|
222
|
Hanson PJ, Liu-Fei F, Ng C, Minato TA, Lai C, Hossain AR, Chan R, Grewal B, Singhera G, Rai H, Hirota J, Anderson DR, Radio SJ, McManus BM. Characterization of COVID-19-associated cardiac injury: evidence for a multifactorial disease in an autopsy cohort. J Transl Med 2022; 102:814-825. [PMID: 35437316 PMCID: PMC9015288 DOI: 10.1038/s41374-022-00783-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 03/20/2022] [Accepted: 03/22/2022] [Indexed: 11/09/2022] Open
Abstract
As the coronavirus disease 2019 (COVID-19) pandemic evolves, much evidence implicates the heart as a critical target of injury in patients. The mechanism(s) of cardiac involvement has not been fully elucidated, although evidence of direct virus-mediated injury, thromboembolism with ischemic complications, and cytokine storm has been reported. We examined suggested mechanisms of COVID-19-associated heart failure in 21 COVID-19-positive decedents, obtained through standard autopsy procedure, compared to clinically matched controls and patients with various etiologies of viral myocarditis. We developed a custom tissue microarray using regions of pathological interest and interrogated tissues via immunohistochemistry and in situ hybridization. Severe acute respiratory syndrome coronavirus 2 was detected in 16/21 patients, in cardiomyocytes, the endothelium, interstitial spaces, and percolating adipocytes within the myocardium. Virus detection typically corresponded with troponin depletion and increased cleaved caspase-3. Indirect mechanisms of injury-venous and arterial thromboses with associated vasculitis including a mixed inflammatory infiltrate-were also observed. Neutrophil extracellular traps (NETs) were present in the myocardium of all COVID-19 patients, regardless of injury degree. Borderline myocarditis (inflammation without associated myocyte injury) was observed in 19/21 patients, characterized by a predominantly mononuclear inflammatory infiltrate. Edema, inflammation of percolating adipocytes, lymphocytic aggregates, and large septal masses of inflammatory cells and platelets were observed as defining features, and myofibrillar damage was evident in all patients. Collectively, COVID-19-associated cardiac injury was multifactorial, with elevated levels of NETs and von Willebrand factor as defining features of direct and indirect viral injury.
Collapse
Affiliation(s)
- Paul J. Hanson
- UBC Centre for Heart Lung Innovation, Vancouver, BC, Canada,UBC Department of Pathology and Laboratory Medicine, Vancouver, BC, Canada
| | | | - Coco Ng
- UBC Centre for Heart Lung Innovation, Vancouver, BC, Canada
| | | | - Chi Lai
- UBC Department of Pathology and Laboratory Medicine, Vancouver, BC, Canada,Department of Pathology and Laboratory Medicine, Providence Health Care – St. Paul's Hospital, Vancouver, BC, Canada
| | | | - Rebecca Chan
- Department of Pathology and Laboratory Medicine, Providence Health Care – St. Paul's Hospital, Vancouver, BC, Canada
| | - Bobby Grewal
- Department of Pathology and Laboratory Medicine, Providence Health Care – St. Paul's Hospital, Vancouver, BC, Canada
| | - Gurpreet Singhera
- UBC Department of Pathology and Laboratory Medicine, Vancouver, BC, Canada
| | - Harpreet Rai
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Jeremy Hirota
- Department of Biology, University of Waterloo, N2L 3G1, Waterloo, ON, Canada,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, L8S 4K1, Hamilton, ON, Canada,McMaster Immunology Research Centre, McMaster University, L8S 4K1, Hamilton, ON, Canada,Firestone Institute for Respiratory Health – Division of Respirology, Department of Medicine, McMaster University, L8N 4A6, Hamilton, ON, Canada
| | - Daniel R. Anderson
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Stanley J. Radio
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Bruce M. McManus
- UBC Centre for Heart Lung Innovation, Vancouver, BC, Canada,UBC Department of Pathology and Laboratory Medicine, Vancouver, BC, Canada,PROOF Centre of Excellence, Vancouver, BC, Canada
| |
Collapse
|
223
|
Darmarajan T, Paudel KR, Candasamy M, Chellian J, Madheswaran T, Sakthivel LP, Goh BH, Gupta PK, Jha NK, Devkota HP, Gupta G, Gulati M, Singh SK, Hansbro PM, Oliver BGG, Dua K, Chellappan DK. Autoantibodies and autoimmune disorders in SARS-CoV-2 infection: pathogenicity and immune regulation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:54072-54087. [PMID: 35657545 PMCID: PMC9163295 DOI: 10.1007/s11356-022-20984-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/17/2022] [Indexed: 04/16/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is an infectious disease associated with the respiratory system caused by the SARS-CoV-2 virus. The aim of this review article is to establish an understanding about the relationship between autoimmune conditions and COVID-19 infections. Although majority of the population have been protected with vaccines against this virus, there is yet a successful curative medication for this disease. The use of autoimmune medications has been widely considered to control the infection, thus postulating possible relationships between COVID-19 and autoimmune diseases. Several studies have suggested the correlation between autoantibodies detected in patients and the severity of the COVID-19 disease. Studies have indicated that the SARS-CoV-2 virus can disrupt the self-tolerance mechanism of the immune system, thus triggering autoimmune conditions. This review discusses the current scenario and future prospects of promising therapeutic strategies that may be employed to regulate such autoimmune conditions.
Collapse
Affiliation(s)
- Thiviya Darmarajan
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Subang Jaya, Bandar Sunway, Selangor, Malaysia
| | - Keshav Raj Paudel
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, 2007, Australia
| | - Mayuren Candasamy
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Jestin Chellian
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Thiagarajan Madheswaran
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Lakshmana Prabu Sakthivel
- Department of Pharmaceutical Technology, University College of Engineering (BIT Campus), Anna University, Tiruchirappalli, 620024, India
| | - Bey Hing Goh
- Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor Darul Ehsan, 47500, Malaysia
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Piyush Kumar Gupta
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Knowledge Park III, Greater Noida, 201310, Uttar Pradesh, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Knowledge Park III, Greater Noida, 201310, Uttar Pradesh, India
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, 140413, India
- Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun, 248007, India
| | - Hari Prasad Devkota
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto City, Kumamoto, 862-0973, Japan
- Program for Leading Graduate Schools, Health Life Science: Interdisciplinary and Glocal Oriented (HIGO) Program, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Jaipur, India
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara, Punjab, India
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Sydney, NSW, 2007, Australia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara, Punjab, India
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Sydney, NSW, 2007, Australia
| | - Philip Michael Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, 2007, Australia
| | - Brian Gregory George Oliver
- School of Life Sciences, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Sydney, NSW, 2007, Australia
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia.
| |
Collapse
|
224
|
Vahdat S. A review of pathophysiological mechanism, diagnosis, and treatment of thrombosis risk associated with COVID-19 infection. IJC HEART & VASCULATURE 2022; 41:101068. [PMID: 35677840 PMCID: PMC9163146 DOI: 10.1016/j.ijcha.2022.101068] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/14/2022] [Accepted: 05/31/2022] [Indexed: 01/08/2023]
Abstract
Severe coronavirus (COVID-19) infection has been reportedly associated with a high risk of thromboembolism. Developing macrovascular thrombotic complications, including myocardial injury/infarction, venous thromboembolism, and stroke have been observed in one-third of severe COVID-19 hospitalized patients, leading to an increase in mortality and morbidity. The diagnosis of COVID-19 associated coagulopathy may be challenging because there are close similarities between pulmonary embolism and severe COVID-19 disease. Therefore, a critical step in improving the clinical outcome of patients with hospitalized COVID-19 is the recognition of coagulation abnormalities and the identification of patients with poor prognoses, prophylactic guidance, or antithrombotic therapy. Prescribing anticoagulants in all patients hospitalized with COVID-19 and 2-6 weeks post-hospital discharge in the absence of contraindications is recommended by most consensus documents published on behalf of professional societies. However, a decision on some variable factors such as intensity and duration of anticoagulation may be made based on an individual case and needs future randomized trial studies. Regarding little information on this subject, this study aims to review how inflammation and thrombosis are related to COVID-19 patients, discuss the types of thrombosis in these patients, and summarize the diagnosis and treatment of thrombosis in COVID19 patients.
Collapse
|
225
|
Liana P, Liberty IA, Murti K, Hafy Z, Salim EM, Zulkarnain M, Umar TP. A systematic review on neutrophil extracellular traps and its prognostication role in COVID-19 patients. Immunol Res 2022; 70:449-460. [PMID: 35604493 PMCID: PMC9125547 DOI: 10.1007/s12026-022-09293-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/10/2022] [Indexed: 12/15/2022]
Abstract
Neutrophil extracellular traps (NETs) are extracellular webs composed of neutrophil granular and nuclear elements. Because of the potentially dangerous amplification circuit between inflammation and tissue damage, NETs are becoming one of the investigated components in the current Coronavirus Disease 2019 (COVID-19) pandemic. The purpose of this systematic review is to summarize studies on the role of NETs in determining the prognosis of COVID-19 patients. The study used six databases: PubMed, Science Direct, EBSCOHost, Europe PMC, ProQuest, and Scopus. This literature search was implemented until October 31, 2021. The search terms were determined specifically for each databases, generally included the Neutrophil Extracellular Traps, COVID-19, and prognosis. The Newcastle Ottawa Scale (NOS) was then used to assess the risk of bias. Ten studies with a total of 810 participants were chosen based on the attainment of the prerequisite. Two were of high quality, seven were of moderate quality, and the rest were of low quality. The majority of studies compared COVID-19 to healthy control. Thrombosis was observed in three studies, while four studies recorded the need for mechanical ventilation. In COVID-19 patients, the early NETs concentration or the evolving NETs degradations can predict patient mortality. Based on their interactions with inflammatory and organ dysfunction markers, it is concluded that NETs play a significant role in navigating the severity of COVID-19 patients and thus impacting their prognosis.
Collapse
Affiliation(s)
- Phey Liana
- Department of Clinical Pathology, Faculty of Medicine, Universitas Sriwijaya/Dr Mohammad Hoesin General Hospital, Palembang, Indonesia
- Biomedicine Doctoral Program, Faculty of Medicine, Universitas Sriwijaya, Palembang, Indonesia
| | - Iche Andriyani Liberty
- Department of Public Health and Community Medicine, Universitas Sriwijaya, Palembang, Indonesia
| | - Krisna Murti
- Department of Anatomic Pathology, Faculty of Medicine, Universitas Sriwijaya, Dr. Moh. Ali Street RSMH complex, Palembang, South Sumatera Indonesia
| | - Zen Hafy
- Biomedical Department, Faculty of Medicine, Universitas Sriwijaya, Palembang, Indonesia
| | - Eddy Mart Salim
- Division of Allergy and Immunology, Department of Internal Medicine, Faculty of Medicine, Universitas Sriwijaya/Dr, Mohammad Hoesin General Hospital, Palembang, Indonesia
| | - Mohammad Zulkarnain
- Department of Public Health and Community Medicine, Universitas Sriwijaya, Palembang, Indonesia
| | - Tungki Pratama Umar
- Medical Profession Program, Faculty of Medicine, Sriwijaya University, Palembang, Indonesia
| |
Collapse
|
226
|
Frame D, Scappaticci GB, Braun TM, Maliarik M, Sisson TH, Pipe SW, Lawrence DA, Richardson PG, Holinstat M, Hyzy RC, Kaul DR, Gregg KS, Lama VN, Yanik GA. Defibrotide Therapy for SARS-CoV-2 ARDS. Chest 2022; 162:346-355. [PMID: 35413279 PMCID: PMC8993696 DOI: 10.1016/j.chest.2022.03.046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/23/2022] [Accepted: 03/31/2022] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND SARS-CoV-2-related ARDS is associated with endothelial dysfunction and profound dysregulation of the thrombotic-fibrinolytic pathway. Defibrotide is a polyanionic compound with fibrinolytic, antithrombotic, and antiinflammatory properties. RESEARCH QUESTION What is the safety and tolerability of defibrotide in patients with severe SARS-CoV-2 infections? STUDY DESIGN AND METHODS We report a prospective, open-label, single-center safety trial of defibrotide for the management of SARS-CoV-2-related ARDS. Eligible participants were 18 years of age or older with clinical and radiographic signs of ARDS, no signs of active bleeding, a serum D-dimer of more than twice upper limit of normal, and positive polymerase chain reaction-based results for SARS-CoV-2. Defibrotide (6.25 mg/kg/dose IV q6h) was administered for a planned 7-day course, with serum D-dimer levels and respiratory function monitored daily during therapy. RESULTS Twelve patients (median age, 63 years) were treated, with 10 patients receiving mechanical ventilation and 6 receiving vasopressor support at study entry. The median D-dimer was 3.25 μg/ml (range, 1.33-12.3) at study entry. The median duration of therapy was 7 days. No hemorrhagic or thrombotic complications occurred during therapy. No other adverse events attributable to defibrotide were noted. Four patients met the day 7 pulmonary response parameter, all four showing a decrease in serum D-dimer levels within the initial 72 h of defibrotide therapy. Three patients died of progressive pulmonary disease 11, 17, and 34 days after study entry. Nine patients (75%) remain alive 64 to 174 days after initiation of defibrotide. Day 30 all-cause mortality was 17% (95% CI, 0%-35%). All patients with a baseline Pao2 to Fio2 ratio of ≥ 125 mm Hg survived, whereas the three patients with a baseline Pao2 to Fio2 ratio of < 125 mm Hg died. INTERPRETATION The use of defibrotide for management of SARS-CoV-2-related ARDS proved safe and tolerable. No hemorrhagic or thrombotic complications were reported during therapy, with promising outcomes in a patient population with a historically high mortality rate. TRIAL REGISTRY ClinicalTrials.gov; No.: NCT04530604; URL: www. CLINICALTRIALS gov.
Collapse
Affiliation(s)
- David Frame
- Blood and Marrow Transplant Program, Michigan Medicine, Ann Arbor, MI; Department of Clinical Pharmacy, Michigan Medicine, Ann Arbor, MI
| | - Gianni B Scappaticci
- Blood and Marrow Transplant Program, Michigan Medicine, Ann Arbor, MI; Department of Clinical Pharmacy, Michigan Medicine, Ann Arbor, MI
| | - Thomas M Braun
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI
| | - Mary Maliarik
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Michigan Medicine, Ann Arbor, MI
| | - Thomas H Sisson
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Michigan Medicine, Ann Arbor, MI
| | - Steven W Pipe
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, Michigan Medicine, Ann Arbor, MI
| | - Daniel A Lawrence
- Department of Cardiovascular Medicine, Department of Internal Medicine, Michigan Medicine, Ann Arbor, MI
| | - Paul G Richardson
- Division of Hematologic Malignancies, Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Michael Holinstat
- Division of Pharmacology, University of Michigan Medical School, Ann Arbor, MI
| | - Robert C Hyzy
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Michigan Medicine, Ann Arbor, MI
| | - Daniel R Kaul
- Division of Infectious Disease, Department of Internal Medicine, Michigan Medicine, Ann Arbor, MI
| | - Kevin S Gregg
- Division of Infectious Disease, Department of Internal Medicine, Michigan Medicine, Ann Arbor, MI
| | - Vibha N Lama
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Michigan Medicine, Ann Arbor, MI
| | - Gregory A Yanik
- Blood and Marrow Transplant Program, Michigan Medicine, Ann Arbor, MI; Division of Pediatric Hematology-Oncology, Department of Pediatrics, Michigan Medicine, Ann Arbor, MI.
| |
Collapse
|
227
|
Wienkamp AK, Erpenbeck L, Rossaint J. Platelets in the NETworks interweaving inflammation and thrombosis. Front Immunol 2022; 13:953129. [PMID: 35979369 PMCID: PMC9376363 DOI: 10.3389/fimmu.2022.953129] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/07/2022] [Indexed: 12/18/2022] Open
Abstract
Platelets are well characterized for their indispensable role in primary hemostasis to control hemorrhage. Research over the past years has provided a substantial body of evidence demonstrating that platelets also participate in host innate immunity. The surface expression of pattern recognition receptors, such as TLR2 and TLR4, provides platelets with the ability to sense bacterial products in their environment. Platelet α-granules contain microbicidal proteins, chemokines and growth factors, which upon release may directly engage pathogens and/or contribute to inflammatory signaling. Additionally, platelet interactions with neutrophils enhance neutrophil activation and are often crucial to induce a sufficient immune response. In particular, platelets can activate neutrophils to form neutrophil extracellular traps (NETs). This specific neutrophil effector function is characterized by neutrophils expelling chromatin fibres decorated with histones and antimicrobial proteins into the extracellular space where they serve to trap and kill pathogens. Until now, the mechanisms and signaling pathways between platelets and neutrophils inducing NET formation are still not fully characterized. NETs were also detected in thrombotic lesions in several disease backgrounds, pointing towards a role as an interface between neutrophils, platelets and thrombosis, also known as immunothrombosis. The negatively charged DNA within NETs provides a procoagulant surface, and in particular NET-derived proteins may directly activate platelets. In light of the current COVID-19 pandemic, the topic of immunothrombosis has become more relevant than ever, as a majority of COVID-19 patients display thrombi in the lung capillaries and other vascular beds. Furthermore, NETs can be found in the lung and other tissues and are associated with an increased mortality. Here, virus infiltration may lead to a cytokine storm that potently activates neutrophils and leads to massive neutrophil infiltration into the lung and NET formation. The resulting NETs presumably activate platelets and coagulation factors, further contributing to the subsequent emergence of microthrombi in pulmonary capillaries. In this review, we will discuss the interplay between platelets and NETs and the potential of this alliance to influence the course of inflammatory diseases. A better understanding of the underlying molecular mechanisms and the identification of treatment targets is of utmost importance to increase patients’ survival and improve the clinical outcome.
Collapse
Affiliation(s)
- Ann-Katrin Wienkamp
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Luise Erpenbeck
- Department of Dermatology, University Hospital Münster, Münster, Germany
| | - Jan Rossaint
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
- *Correspondence: Jan Rossaint,
| |
Collapse
|
228
|
Jonigk D, Werlein C, Acker T, Aepfelbacher M, Amann KU, Baretton G, Barth P, Bohle RM, Büttner A, Büttner R, Dettmeyer R, Eichhorn P, Elezkurtaj S, Esposito I, Evert K, Evert M, Fend F, Gaßler N, Gattenlöhner S, Glatzel M, Göbel H, Gradhand E, Hansen T, Hartmann A, Heinemann A, Heppner FL, Hilsenbeck J, Horst D, Kamp JC, Mall G, Märkl B, Ondruschka B, Pablik J, Pfefferle S, Quaas A, Radbruch H, Röcken C, Rosenwald A, Roth W, Rudelius M, Schirmacher P, Slotta-Huspenina J, Smith K, Sommer L, Stock K, Ströbel P, Strobl S, Titze U, Weirich G, Weis J, Werner M, Wickenhauser C, Wiech T, Wild P, Welte T, von Stillfried S, Boor P. Organ manifestations of COVID-19: what have we learned so far (not only) from autopsies? Virchows Arch 2022; 481:139-159. [PMID: 35364700 PMCID: PMC8975445 DOI: 10.1007/s00428-022-03319-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/22/2022] [Accepted: 03/25/2022] [Indexed: 01/08/2023]
Abstract
The use of autopsies in medicine has been declining. The COVID-19 pandemic has documented and rejuvenated the importance of autopsies as a tool of modern medicine. In this review, we discuss the various autopsy techniques, the applicability of modern analytical methods to understand the pathophysiology of COVID-19, the major pathological organ findings, limitations or current studies, and open questions. This article summarizes published literature and the consented experience of the nationwide network of clinical, neuro-, and forensic pathologists from 27 German autopsy centers with more than 1200 COVID-19 autopsies. The autopsy tissues revealed that SARS-CoV-2 can be found in virtually all human organs and tissues, and the majority of cells. Autopsies have revealed the organ and tissue tropism of SARS-CoV-2, and the morphological features of COVID-19. This is characterized by diffuse alveolar damage, combined with angiocentric disease, which in turn is characterized by endothelial dysfunction, vascular inflammation, (micro-) thrombosis, vasoconstriction, and intussusceptive angiogenesis. These findings explained the increased pulmonary resistance in COVID-19 and supported the recommendations for antithrombotic treatment in COVID-19. In contrast, in extra-respiratory organs, pathological changes are often nonspecific and unclear to which extent these changes are due to direct infection vs. indirect/secondary mechanisms of organ injury, or a combination thereof. Ongoing research using autopsies aims at answering questions on disease mechanisms, e.g., focusing on variants of concern, and future challenges, such as post-COVID conditions. Autopsies are an invaluable tool in medicine and national and international interdisciplinary collaborative autopsy-based research initiatives are essential.
Collapse
Affiliation(s)
- Danny Jonigk
- Institute of Pathology, Hannover Medical School, Hannover, Germany.
| | | | - Till Acker
- Institute of Neuropathology, University Hospital Giessen and Marburg, Giessen, Germany
| | - Martin Aepfelbacher
- Institute of Medical Microbiology, Virology, and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kerstin U Amann
- Department of Nephropathology, University Hospital Erlangen-Nürnberg, Erlangen, Germany
| | - Gustavo Baretton
- Department of Pathology, University Hospital Dresden, Dresden, Germany
| | - Peter Barth
- Gerhard Domagk Institute of Pathology, University Hospital Münster, Münster, Germany
| | - Rainer M Bohle
- Department of Pathology, University Hospital Saarland Homburg, Homburg, Germany
| | - Andreas Büttner
- Institute of Forensic Medicine, University Medical Center Rostock, Rostock, Germany
| | - Reinhard Büttner
- Department of Pathology, University Hospital Cologne, Cologne, Germany
| | - Reinhard Dettmeyer
- Department of Legal Medicine, University Hospital Giessen and Marburg, Giessen, Germany
| | - Philip Eichhorn
- Department of Pathology, University Hospital Erlangen-Nürnberg, Erlangen, Germany
| | - Sefer Elezkurtaj
- Department of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Irene Esposito
- Department of Pathology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Katja Evert
- Department of Pathology, University Hospital Regensburg, Regensburg, Germany
| | - Matthias Evert
- Department of Pathology, University Hospital Regensburg, Regensburg, Germany
| | - Falko Fend
- Department of Pathology, University Hospital Tübingen, Tübingen, Germany
| | - Nikolaus Gaßler
- Department of Pathology, University Hospital Jena, Jena, Germany
| | - Stefan Gattenlöhner
- Department of Pathology, University Hospital Giessen and Marburg, Giessen, Germany
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Heike Göbel
- Department of Pathology, University Hospital Cologne, Cologne, Germany
| | - Elise Gradhand
- Senckenberg Institute of Pathology, University Hospital Frankfurt, Frankfurt, Germany
| | - Torsten Hansen
- Department of Pathology, University Hospital OWL of the Bielefeld University, Campus Lippe, Detmold, Germany
| | - Arndt Hartmann
- Department of Pathology, University Hospital Erlangen-Nürnberg, Erlangen, Germany
| | - Axel Heinemann
- Department of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Frank L Heppner
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany
- Cluster of Excellence, NeuroCure, Berlin, Germany
| | - Julia Hilsenbeck
- Department of Pathology, University Hospital Dresden, Dresden, Germany
| | - David Horst
- Department of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jan C Kamp
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
| | - Gita Mall
- Department of Legal Medicine, University Hospital Jena, Jena, Germany
| | - Bruno Märkl
- General Pathology and Molecular Diagnostics, University Hospital Augsburg, Augsburg, Germany
| | - Benjamin Ondruschka
- Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jessica Pablik
- Department of Pathology, University Hospital Dresden, Dresden, Germany
| | - Susanne Pfefferle
- Institute of Medical Microbiology, Virology, and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alexander Quaas
- Department of Pathology, University Hospital Cologne, Cologne, Germany
| | - Helena Radbruch
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Christoph Röcken
- Department of Pathology, University Hospital Schleswig-Holstein, Kiel, Germany
| | | | - Wilfried Roth
- Department of Pathology, University Medical Center Mainz, Mainz, Germany
| | - Martina Rudelius
- Institute of Pathology, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Peter Schirmacher
- Department of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Julia Slotta-Huspenina
- Department of Pathology, TUM School of Medicine of Technical University of Munich, Munich, Germany
| | - Kevin Smith
- Senckenberg Institute of Pathology, University Hospital Frankfurt, Frankfurt, Germany
| | - Linna Sommer
- Department of Pathology, University Hospital Dresden, Dresden, Germany
| | - Konrad Stock
- Department of Nephrology, TUM School of Medicine of Technical University of Munich, Munich, Germany
| | - Philipp Ströbel
- Department of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Stephanie Strobl
- Department of Pathology, University Medical Center Mainz, Mainz, Germany
| | - Ulf Titze
- Department of Pathology, University Hospital OWL of the Bielefeld University, Campus Lippe, Detmold, Germany
| | - Gregor Weirich
- Department of Pathology, TUM School of Medicine of Technical University of Munich, Munich, Germany
| | - Joachim Weis
- Department of Neuropathology, University Hospital RWTH Aachen, Aachen, Germany
| | - Martin Werner
- Institute for Surgical Pathology, Medical Center, University of Freiburg, Freiburg, Germany
| | - Claudia Wickenhauser
- Department of Pathology, University Hospital Halle (Saale), Halle (Saale), Germany
| | - Thorsten Wiech
- Department of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Peter Wild
- Senckenberg Institute of Pathology, University Hospital Frankfurt, Frankfurt, Germany
| | - Tobias Welte
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
| | | | - Peter Boor
- Institute of Pathology, University Hospital RWTH Aachen, Aachen, Germany.
- Department of Nephrology and Immunology, University Hospital RWTH Aachen, Aachen, Germany.
| |
Collapse
|
229
|
Beirag N, Kumar C, Madan T, Shamji MH, Bulla R, Mitchell D, Murugaiah V, Neto MM, Temperton N, Idicula-Thomas S, Varghese PM, Kishore U. Human surfactant protein D facilitates SARS-CoV-2 pseudotype binding and entry in DC-SIGN expressing cells, and downregulates spike protein induced inflammation. Front Immunol 2022; 13:960733. [PMID: 35967323 PMCID: PMC9367475 DOI: 10.3389/fimmu.2022.960733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Lung surfactant protein D (SP-D) and Dendritic cell-specific intercellular adhesion molecules-3 grabbing non-integrin (DC-SIGN) are pathogen recognising C-type lectin receptors. SP-D has a crucial immune function in detecting and clearing pulmonary pathogens; DC-SIGN is involved in facilitating dendritic cell interaction with naïve T cells to mount an anti-viral immune response. SP-D and DC-SIGN have been shown to interact with various viruses, including SARS-CoV-2, an enveloped RNA virus that causes COVID-19. A recombinant fragment of human SP-D (rfhSP-D) comprising of α-helical neck region, carbohydrate recognition domain, and eight N-terminal Gly-X-Y repeats has been shown to bind SARS-CoV-2 Spike protein and inhibit SARS-CoV-2 replication by preventing viral entry in Vero cells and HEK293T cells expressing ACE2. DC-SIGN has also been shown to act as a cell surface receptor for SARS-CoV-2 independent of ACE2. Since rfhSP-D is known to interact with SARS-CoV-2 Spike protein and DC-SIGN, this study was aimed at investigating the potential of rfhSP-D in modulating SARS-CoV-2 infection. Coincubation of rfhSP-D with Spike protein improved the Spike Protein: DC-SIGN interaction. Molecular dynamic studies revealed that rfhSP-D stabilised the interaction between DC-SIGN and Spike protein. Cell binding analysis with DC-SIGN expressing HEK 293T and THP- 1 cells and rfhSP-D treated SARS-CoV-2 Spike pseudotypes confirmed the increased binding. Furthermore, infection assays using the pseudotypes revealed their increased uptake by DC-SIGN expressing cells. The immunomodulatory effect of rfhSP-D on the DC-SIGN: Spike protein interaction on DC-SIGN expressing epithelial and macrophage-like cell lines was also assessed by measuring the mRNA expression of cytokines and chemokines. RT-qPCR analysis showed that rfhSP-D treatment downregulated the mRNA expression levels of pro-inflammatory cytokines and chemokines such as TNF-α, IFN-α, IL-1β, IL- 6, IL-8, and RANTES (as well as NF-κB) in DC-SIGN expressing cells challenged by Spike protein. Furthermore, rfhSP-D treatment was found to downregulate the mRNA levels of MHC class II in DC expressing THP-1 when compared to the untreated controls. We conclude that rfhSP-D helps stabilise the interaction between SARS- CoV-2 Spike protein and DC-SIGN and increases viral uptake by macrophages via DC-SIGN, suggesting an additional role for rfhSP-D in SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Nazar Beirag
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Chandan Kumar
- Biomedical Informatics Centre, National Institute for Research in Reproductive and Child Health, ICMR, Mumbai, Maharashtra, India
| | - Taruna Madan
- Department of Innate Immunity, National Institute for Research in Reproductive and Child Health, ICMR, Mumbai, India
| | - Mohamed H. Shamji
- Immunomodulation and Tolerance Group, Allergy and Clinical Immunology, Department of National Heart and Lung Institute and NIHR Biomedical Research Centre, Asthma UK Centre in Allergic Mechanisms of Asthma, Imperial College London, London, United Kingdom
| | - Roberta Bulla
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Daniel Mitchell
- WMS - Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Valarmathy Murugaiah
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Martin Mayora Neto
- Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent and Greenwich, United Kingdom
| | - Nigel Temperton
- Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent and Greenwich, United Kingdom
| | - Susan Idicula-Thomas
- Biomedical Informatics Centre, National Institute for Research in Reproductive and Child Health, ICMR, Mumbai, Maharashtra, India
| | - Praveen M. Varghese
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, United Kingdom
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
- *Correspondence: Praveen M. Varghese, ; Uday Kishore,
| | - Uday Kishore
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, United Kingdom
- Department of Veterinary Medicine, U.A.E. University, Al Ain, United Arab Emirates
- *Correspondence: Praveen M. Varghese, ; Uday Kishore,
| |
Collapse
|
230
|
NETosis and Nucleosome Biomarkers in Septic Shock and Critical COVID-19 Patients: An Observational Study. Biomolecules 2022; 12:biom12081038. [PMID: 36008932 PMCID: PMC9405965 DOI: 10.3390/biom12081038] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 02/04/2023] Open
Abstract
Background: Neutrophil extracellular traps’ (NETs’) formation is a mechanism of defense that neutrophils deploy as an alternative to phagocytosis, to constrain the spread of microorganisms. Aim: The aim was to evaluate biomarkers of NETs’ formation in a patient cohort admitted to intensive care unit (ICU) due to infection. Methods: Forty-six septic shock patients, 22 critical COVID-19 patients and 48 matched control subjects were recruited. Intact nucleosomes containing histone 3.1 (Nu.H3.1), or citrullinated histone H3R8 (Nu.Cit-H3R8), free citrullinated histone (Cit-H3), neutrophil elastase (NE) and myeloperoxidase (MPO) were measured. Results: Significant differences in Nu.H3.1 and NE levels were observed between septic shock and critical COVID-19 subjects as well as with controls (p-values < 0.05). The normalization of nucleosome levels according to the neutrophil count improved the discrimination between septic shock and critical COVID-19 patients. The ratio of Nu.Cit-H3R8 to Nu.H3.1 allowed the determination of nucleosome citrullination degree, presumably by PAD4. Conclusions: H3.1 and Cit-H3R8 nucleosomes appear to be interesting markers of global cell death and neutrophil activation when combined. Nu.H3.1 permits the evaluation of disease severity and differs between septic shock and critical COVID-19 patients, reflecting two distinct potential pathological processes in these conditions.
Collapse
|
231
|
Chen M, Ma Y, Chang W. SARS-CoV-2 and the Nucleus. Int J Biol Sci 2022; 18:4731-4743. [PMID: 35874947 PMCID: PMC9305274 DOI: 10.7150/ijbs.72482] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/20/2022] [Indexed: 11/22/2022] Open
Abstract
The ongoing COVID-19 pandemic is caused by an RNA virus, SARS-CoV-2. The genome of SARS-CoV-2 lacks a nuclear phase in its life cycle and is replicated in the cytoplasm. However, interfering with nuclear trafficking using pharmacological inhibitors greatly reduces virus infection and virus replication of other coronaviruses is blocked in enucleated cells, suggesting a critical role of the nucleus in virus infection. Here, we summarize the alternations of nuclear pathways caused by SARS-CoV-2, including nuclear translocation pathways, innate immune responses, mRNA metabolism, epigenetic mechanisms, DNA damage response, cytoskeleton regulation, and nuclear rupture. We consider how these alternations contribute to virus replication and discuss therapeutic treatments that target these pathways, focusing on small molecule drugs that are being used in clinical studies.
Collapse
Affiliation(s)
- Mengqi Chen
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Yue Ma
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Wakam Chang
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| |
Collapse
|
232
|
Gutman H, Aftalion M, Melamed S, Politi B, Nevo R, Havusha-Laufer S, Achdout H, Gur D, Israely T, Dachir S, Mamroud E, Sagi I, Vagima Y. Matrix Metalloproteinases Expression Is Associated with SARS-CoV-2-Induced Lung Pathology and Extracellular-Matrix Remodeling in K18-hACE2 Mice. Viruses 2022; 14:1627. [PMID: 35893698 PMCID: PMC9332556 DOI: 10.3390/v14081627] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/01/2022] [Accepted: 07/19/2022] [Indexed: 02/04/2023] Open
Abstract
The COVID-19 pandemic caused by the SARS-CoV-2 infection induced lung inflammation characterized by cytokine storm and fulminant immune response of both resident and migrated immune cells, accelerating alveolar damage. In this work we identified members of the matrix metalloprotease (MMPs) family associated with lung extra-cellular matrix (ECM) destruction using K18-hACE2-transgenic mice (K18-hACE2) infected intranasally with SARS-CoV-2. Five days post infection, the lungs exhibited overall alveolar damage of epithelial cells and massive leukocytes infiltration. A substantial pulmonary increase in MMP8, MMP9, and MMP14 in the lungs post SARS-CoV-2 infection was associated with degradation of ECM components including collagen, laminin, and proteoglycans. The process of tissue damage and ECM degradation during SARS-CoV-2 lung infection is suggested to be associated with activity of members of the MMPs family, which in turn may be used as a therapeutic intervention.
Collapse
Affiliation(s)
- Hila Gutman
- Israel Institute for Biological Research, Ness Ziona P.O. Box 19, Israel; (H.G.); (M.A.); (S.M.); (B.P.); (H.A.); (D.G.); (T.I.); (S.D.); (E.M.)
- Department of Biological Regulation, Weizmann Institute of Science, Herzel 234, Rehovot P.O. Box 26, Israel;
- Department of Biomolecular Sciences, Weizmann Institute of Science, Herzel 234, Rehovot P.O. Box 26, Israel;
| | - Moshe Aftalion
- Israel Institute for Biological Research, Ness Ziona P.O. Box 19, Israel; (H.G.); (M.A.); (S.M.); (B.P.); (H.A.); (D.G.); (T.I.); (S.D.); (E.M.)
| | - Sharon Melamed
- Israel Institute for Biological Research, Ness Ziona P.O. Box 19, Israel; (H.G.); (M.A.); (S.M.); (B.P.); (H.A.); (D.G.); (T.I.); (S.D.); (E.M.)
| | - Boaz Politi
- Israel Institute for Biological Research, Ness Ziona P.O. Box 19, Israel; (H.G.); (M.A.); (S.M.); (B.P.); (H.A.); (D.G.); (T.I.); (S.D.); (E.M.)
| | - Reinat Nevo
- Department of Biomolecular Sciences, Weizmann Institute of Science, Herzel 234, Rehovot P.O. Box 26, Israel;
| | - Sapir Havusha-Laufer
- Department of Biological Regulation, Weizmann Institute of Science, Herzel 234, Rehovot P.O. Box 26, Israel;
| | - Hagit Achdout
- Israel Institute for Biological Research, Ness Ziona P.O. Box 19, Israel; (H.G.); (M.A.); (S.M.); (B.P.); (H.A.); (D.G.); (T.I.); (S.D.); (E.M.)
| | - David Gur
- Israel Institute for Biological Research, Ness Ziona P.O. Box 19, Israel; (H.G.); (M.A.); (S.M.); (B.P.); (H.A.); (D.G.); (T.I.); (S.D.); (E.M.)
| | - Tomer Israely
- Israel Institute for Biological Research, Ness Ziona P.O. Box 19, Israel; (H.G.); (M.A.); (S.M.); (B.P.); (H.A.); (D.G.); (T.I.); (S.D.); (E.M.)
| | - Shlomit Dachir
- Israel Institute for Biological Research, Ness Ziona P.O. Box 19, Israel; (H.G.); (M.A.); (S.M.); (B.P.); (H.A.); (D.G.); (T.I.); (S.D.); (E.M.)
| | - Emanuelle Mamroud
- Israel Institute for Biological Research, Ness Ziona P.O. Box 19, Israel; (H.G.); (M.A.); (S.M.); (B.P.); (H.A.); (D.G.); (T.I.); (S.D.); (E.M.)
| | - Irit Sagi
- Department of Biological Regulation, Weizmann Institute of Science, Herzel 234, Rehovot P.O. Box 26, Israel;
| | - Yaron Vagima
- Israel Institute for Biological Research, Ness Ziona P.O. Box 19, Israel; (H.G.); (M.A.); (S.M.); (B.P.); (H.A.); (D.G.); (T.I.); (S.D.); (E.M.)
| |
Collapse
|
233
|
Matta B, Battaglia J, Barnes BJ. Detection of neutrophil extracellular traps in patient plasma: method development and validation in systemic lupus erythematosus and healthy donors that carry IRF5 genetic risk. Front Immunol 2022; 13:951254. [PMID: 35958624 PMCID: PMC9360330 DOI: 10.3389/fimmu.2022.951254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/04/2022] [Indexed: 01/21/2023] Open
Abstract
Neutrophil extracellular traps (NETs) are web-like structures extruded by neutrophils after activation or in response to microorganisms. These extracellular structures are decondensed chromatin fibers loaded with antimicrobial granular proteins, peptides, and enzymes. NETs clear microorganisms, thus keeping a check on infections at an early stage, but if dysregulated, may be self-destructive to the body. Indeed, NETs have been associated with autoimmune diseases such as systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), antiphospholipid syndrome (APS), psoriasis, and gout. More recently, increased NETs associate with COVID-19 disease severity. While there are rigorous and reliable methods to quantify NETs from neutrophils via flow cytometry and immunofluorescence, the accurate quantification of NETs in patient plasma or serum remains a challenge. Here, we developed new methodologies for the quantification of NETs in patient plasma using multiplex ELISA and immunofluorescence methodology. Plasma from patients with SLE, non-genotyped healthy controls, and genotyped healthy controls that carry either the homozygous risk or non-risk IRF5-SLE haplotype were used in this study. The multiplex ELISA using antibodies detecting myeloperoxidase (MPO), citrullinated histone H3 (CitH3) and DNA provided reliable detection of NETs in plasma samples from SLE patients and healthy donors that carry IRF5 genetic risk. An immunofluorescence smear assay that utilizes only 1 µl of patient plasma provided similar results and data correlate to multiplex ELISA findings. The immunofluorescence smear assay is a relatively simple, inexpensive, and quantifiable method of NET detection for small volumes of patient plasma.
Collapse
Affiliation(s)
- Bharati Matta
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Jenna Battaglia
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Betsy J. Barnes
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Departments of Molecular Medicine and Pediatrics, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- *Correspondence: Betsy J. Barnes,
| |
Collapse
|
234
|
Ebeyer-Masotta M, Eichhorn T, Weiss R, Lauková L, Weber V. Activated Platelets and Platelet-Derived Extracellular Vesicles Mediate COVID-19-Associated Immunothrombosis. Front Cell Dev Biol 2022; 10:914891. [PMID: 35874830 PMCID: PMC9299085 DOI: 10.3389/fcell.2022.914891] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/08/2022] [Indexed: 12/12/2022] Open
Abstract
Activated platelets and platelet-derived extracellular vesicles (EVs) have emerged as central players in thromboembolic complications associated with severe coronavirus disease 2019 (COVID-19). Platelets bridge hemostatic, inflammatory, and immune responses by their ability to sense pathogens via various pattern recognition receptors, and they respond to infection through a diverse repertoire of mechanisms. Dysregulated platelet activation, however, can lead to immunothrombosis, a simultaneous overactivation of blood coagulation and the innate immune response. Mediators released by activated platelets in response to infection, such as antimicrobial peptides, high mobility group box 1 protein, platelet factor 4 (PF4), and PF4+ extracellular vesicles promote neutrophil activation, resulting in the release of neutrophil extracellular traps and histones. Many of the factors released during platelet and neutrophil activation are positively charged and interact with endogenous heparan sulfate or exogenously administered heparin via electrostatic interactions or via specific binding sites. Here, we review the current state of knowledge regarding the involvement of platelets and platelet-derived EVs in the pathogenesis of immunothrombosis, and we discuss the potential of extracorporeal therapies using adsorbents functionalized with heparin to deplete platelet-derived and neutrophil-derived mediators of immunothrombosis.
Collapse
Affiliation(s)
- Marie Ebeyer-Masotta
- Center for Biomedical Technology, Department for Biomedical Research, University for Continuing Education Krems, Krems, Austria
| | - Tanja Eichhorn
- Center for Biomedical Technology, Department for Biomedical Research, University for Continuing Education Krems, Krems, Austria
| | - René Weiss
- Center for Biomedical Technology, Department for Biomedical Research, University for Continuing Education Krems, Krems, Austria
| | - Lucia Lauková
- Center for Biomedical Technology, Department for Biomedical Research, University for Continuing Education Krems, Krems, Austria
| | - Viktoria Weber
- Center for Biomedical Technology, Department for Biomedical Research, University for Continuing Education Krems, Krems, Austria
| |
Collapse
|
235
|
Landoni G, Zangrillo A, Piersanti G, Scquizzato T, Piemonti L. The effect of reparixin on survival in patients at high risk for in-hospital mortality: a meta-analysis of randomized trials. Front Immunol 2022; 13:932251. [PMID: 35958623 PMCID: PMC9358031 DOI: 10.3389/fimmu.2022.932251] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/28/2022] [Indexed: 12/23/2022] Open
Abstract
Introduction A great number of anti-inflammatory drugs have been suggested in the treatment of SARS-CoV-2 infection. Reparixin, a non-competitive allosteric inhibitor of the CXCL8 (IL-8) receptors C-X-C chemokine receptor type 1 (CXCR1) and C-X-C chemokine receptor type 2 (CXCR2), has already been tried out as a treatment in different critical settings. Due to the contrasting existing literature, we decided to perform the present meta-analysis of randomized controlled trials (RCTs) to investigate the effect of the use of reparixin on survival in patients at high risk for in-hospital mortality. Methods We created a search strategy to include any human RCTs performed with reparixin utilization in patients at high risk for in-hospital mortality, excluding oncological patients. Two trained, independent authors searched PubMed, EMBASE, and the Cochrane Central Register of Controlled Trials (CENTRAL) for appropriate studies. Furthermore, references of review articles and included RCTs were screened to identify more studies. No language restrictions were enforced. To assess the risk of bias of included trials, the Revised Cochrane risk-of-bias tool for randomized trials (RoB 2) was used. Results Overall, six studies were included and involved 406 patients (220 received reparixin and 186 received the comparator). The all-cause mortality in the reparixin group was significantly lower than that in the control group [5/220 (2.3%) in the reparixin group vs. 12/186 (6.5%) in the control group, odds ratio = 0.33 (95% confidence interval 0.12 to 0.96), p-value for effect 0.04, p for heterogeneity 0.20, I2 = 36%]. In addition, no difference in the rate of pneumonia, sepsis, or non-serious infections was shown between the two groups. Conclusion Our meta-analysis of randomized trials suggests that short-term inhibition of CXCL8 activity improved survival in patients at high risk for in-hospital mortality without increasing the risk of infection. Meta-analysis registration PROSPERO, identifier CRD42021254467.
Collapse
Affiliation(s)
- Giovanni Landoni
- Department of Anesthesia and Intensive Care, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
- Faculty of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| | - Alberto Zangrillo
- Department of Anesthesia and Intensive Care, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
- Faculty of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| | - Gioia Piersanti
- Department of Anesthesia and Intensive Care, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Tommaso Scquizzato
- Department of Anesthesia and Intensive Care, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Lorenzo Piemonti
- Faculty of Medicine, Vita-Salute San Raffaele University, Milan, Italy
- Diabetes Research Institute, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
236
|
Carmona-Rivera C, Zhang Y, Dobbs K, Markowitz TE, Dalgard CL, Oler AJ, Claybaugh DR, Draper D, Truong M, Delmonte OM, Licciardi F, Ramenghi U, Crescenzio N, Imberti L, Sottini A, Quaresima V, Fiorini C, Discepolo V, Lo Vecchio A, Guarino A, Pierri L, Catzola A, Biondi A, Bonfanti P, Poli Harlowe MC, Espinosa Y, Astudillo C, Rey-Jurado E, Vial C, de la Cruz J, Gonzalez R, Pinera C, Mays JW, Ng A, Platt A, NIH COVID Autopsy Consortium, COVID STORM Clinicians, Drolet B, Moon J, Cowen EW, Kenney H, Weber SE, Castagnoli R, Magliocco M, Stack MA, Montealegre G, Barron K, Fink DL, Kuhns DB, Hewitt SM, Arkin LM, Chertow DS, Su HC, Notarangelo LD, Kaplan MJ. Multicenter analysis of neutrophil extracellular trap dysregulation in adult and pediatric COVID-19. JCI Insight 2022; 7:160332. [PMID: 35852866 PMCID: PMC9534551 DOI: 10.1172/jci.insight.160332] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/14/2022] [Indexed: 12/02/2022] Open
Abstract
Dysregulation in neutrophil extracellular trap (NET) formation and degradation may play a role in the pathogenesis and severity of COVID-19; however, its role in the pediatric manifestations of this disease, including multisystem inflammatory syndrome in children (MIS-C) and chilblain-like lesions (CLLs), otherwise known as “COVID toes,” remains unclear. Studying multinational cohorts, we found that, in CLLs, NETs were significantly increased in serum and skin. There was geographic variability in the prevalence of increased NETs in MIS-C, in association with disease severity. MIS-C and CLL serum samples displayed decreased NET degradation ability, in association with C1q and G-actin or anti-NET antibodies, respectively, but not with genetic variants of DNases. In adult COVID-19, persistent elevations in NETs after disease diagnosis were detected but did not occur in asymptomatic infection. COVID-19–affected adults displayed significant prevalence of impaired NET degradation, in association with anti-DNase1L3, G-actin, and specific disease manifestations, but not with genetic variants of DNases. NETs were detected in many organs of adult patients who died from COVID-19 complications. Infection with the Omicron variant was associated with decreased NET levels when compared with other SARS-CoV-2 strains. These data support a role for NETs in the pathogenesis and severity of COVID-19 in pediatric and adult patients.
Collapse
Affiliation(s)
- Carmelo Carmona-Rivera
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
| | - Yu Zhang
- Human Immunological Diseases Section, Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID); and
| | | | | | - Clifton L. Dalgard
- Department of Anatomy, Physiology & Genetics, School of Medicine, and the American Genome Center, Uniformed Services University of the Health Sciences (USUHS), Bethesda, Maryland, USA
| | - Andrew J. Oler
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, NIAID, NIH, Bethesda, Maryland, USA
| | - Dillon R. Claybaugh
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
| | | | | | | | | | - Ugo Ramenghi
- Department of Public Health and Pediatric Sciences and
| | - Nicoletta Crescenzio
- Pediatric Hematology, “Regina Margherita” Children Hospital, University of Turin, Turin, Italy
| | - Luisa Imberti
- Centro di Ricerca Emato-oncologica AIL, Diagnostic Department, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Alessandra Sottini
- Centro di Ricerca Emato-oncologica AIL, Diagnostic Department, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Virginia Quaresima
- Centro di Ricerca Emato-oncologica AIL, Diagnostic Department, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Chiara Fiorini
- Centro di Ricerca Emato-oncologica AIL, Diagnostic Department, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Valentina Discepolo
- Department of Translational Medical Sciences, Pediatric Section, University of Naples Federico II, Naples, Italy
| | - Andrea Lo Vecchio
- Department of Translational Medical Sciences, Pediatric Section, University of Naples Federico II, Naples, Italy
| | - Alfredo Guarino
- Department of Translational Medical Sciences, Pediatric Section, University of Naples Federico II, Naples, Italy
| | - Luca Pierri
- Department of Translational Medical Sciences, Pediatric Section, University of Naples Federico II, Naples, Italy
| | - Andrea Catzola
- Department of Translational Medical Sciences, Pediatric Section, University of Naples Federico II, Naples, Italy
| | - Andrea Biondi
- Department of Pediatrics, University of Milano-Bicocca, European Reference Network (ERN) PaedCan, EuroBloodNet, MetabERN, Fondazione MBBM/Ospedale San Gerardo, Monza, Italy
| | - Paolo Bonfanti
- Department of Infectious Diseases, San Gerardo Hospital–University of Milano-Bicocca, Monza, Italy
| | - Maria C. Poli Harlowe
- Programa de Inmunogenética e Inmunología Traslacional, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
- Hospital Roberto del Rio, Santiago, Chile
| | | | | | - Emma Rey-Jurado
- Programa de Inmunogenética e Inmunología Traslacional, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
| | - Cecilia Vial
- Facultad de Medicina Clínica Alemana Universidad del Desarrollo, Programa Hantavirus, Instituto de Ciencias e Innovación en Medicina, Santiago, Chile
| | - Javiera de la Cruz
- Programa de Inmunogenética e Inmunología Traslacional, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
| | - Ricardo Gonzalez
- Pediatric Intensive Care Unit, Hospital Exequiel Gonzalez Cortés, Santiago, Chile
| | - Cecilia Pinera
- Infectious Diseases Unit, Hospital Dr. Exequiel González Cortés, Región Metropolitana, Chile
- Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Jacqueline W. Mays
- National Institute of Dental and Craniofacial Research (NIDCR), NIH, Bethesda, Maryland, USA
| | - Ashley Ng
- Department of Dermatology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Andrew Platt
- Emerging Pathogens Section, Critical Care Medicine Department, Clinical Center, and Laboratory of Immunoregulation, NIAID, NIH, Bethesda, Maryland, USA
| | | | | | - Beth Drolet
- Department of Dermatology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - John Moon
- Department of Dermatology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | | | | | | | | | - Mary Magliocco
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, NIAID; and
| | - Michael A. Stack
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, NIAID; and
| | - Gina Montealegre
- Division of Clinical Research, NIAID, NIH, Bethesda, Maryland, USA
| | - Karyl Barron
- Division of Clinical Research, NIAID, NIH, Bethesda, Maryland, USA
| | - Danielle L. Fink
- Applied/Developmental Research Directorate, Frederick and National Laboratory for Cancer Research, National Cancer Institute (NCI), NIH, Frederick, Maryland, USA
| | - Douglas B. Kuhns
- Applied/Developmental Research Directorate, Frederick and National Laboratory for Cancer Research, National Cancer Institute (NCI), NIH, Frederick, Maryland, USA
| | - Stephen M. Hewitt
- Laboratory of Pathology, Center for Cancer Research, NCI, NIH, Bethesda, Maryland, USA
| | - Lisa M. Arkin
- Department of Dermatology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Daniel S. Chertow
- Emerging Pathogens Section, Critical Care Medicine Department, Clinical Center, and Laboratory of Immunoregulation, NIAID, NIH, Bethesda, Maryland, USA
| | - Helen C. Su
- Human Immunological Diseases Section, Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID); and
| | | | - Mariana J. Kaplan
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
| |
Collapse
|
237
|
Cao Z, Huang D, Tang C, Zeng M, Hu X. PFKL, a novel regulatory node for NOX2-dependent oxidative burst and NETosis. J Zhejiang Univ Sci B 2022; 23:607-612. [PMID: 35794690 PMCID: PMC9264108 DOI: 10.1631/jzus.b2101029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Zhaohui Cao
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang 421001, China.,The Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Di Huang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang 421001, China.,The Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Cifei Tang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang 421001, China.,The Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Min Zeng
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang 421001, China.,The Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Xiaobo Hu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang 421001, China. .,The Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, Hengyang Medical School, University of South China, Hengyang 421001, China.
| |
Collapse
|
238
|
Pfister H. Neutrophil Extracellular Traps and Neutrophil-Derived Extracellular Vesicles: Common Players in Neutrophil Effector Functions. Diagnostics (Basel) 2022; 12:diagnostics12071715. [PMID: 35885618 PMCID: PMC9323717 DOI: 10.3390/diagnostics12071715] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/07/2022] [Accepted: 07/12/2022] [Indexed: 02/06/2023] Open
Abstract
Neutrophil granulocytes are a central component of the innate immune system. In recent years, they have gained considerable attention due to newly discovered biological effector functions and their involvement in various pathological conditions. They have been shown to trigger mechanisms that can either promote or inhibit the development of autoimmunity, thrombosis, and cancer. One mechanism for their modulatory effect is the release of extracellular vesicles (EVs), that trigger appropriate signaling pathways in immune cells and other target cells. In addition, activated neutrophils can release bactericidal DNA fibers decorated with proteins from neutrophil granules (neutrophil extracellular traps, NETs). While NETs are very effective in limiting pathogens, they can also cause severe damage if released in excess or cleared inefficiently. Since NETs and EVs share a variety of neutrophil molecules and initially act in the same microenvironment, differential biochemical and functional analysis is particularly challenging. This review focuses on the biochemical and functional parallels and the extent to which the overlapping spectrum of effector molecules has an impact on biological and pathological effects.
Collapse
Affiliation(s)
- Heiko Pfister
- Munich Biomarker Research Center, Institute of Laboratory Medicine, German Heart Center Munich, Technical University Munich, D-80636 Munich, Germany
| |
Collapse
|
239
|
Sung PS, Yang SP, Peng YC, Sun CP, Tao MH, Hsieh SL. CLEC5A and TLR2 are critical in SARS-CoV-2-induced NET formation and lung inflammation. J Biomed Sci 2022; 29:52. [PMID: 35820906 PMCID: PMC9277873 DOI: 10.1186/s12929-022-00832-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/27/2022] [Indexed: 12/20/2022] Open
Abstract
Background Coronavirus-induced disease 19 (COVID-19) infects more than three hundred and sixty million patients worldwide, and people with severe symptoms frequently die of acute respiratory distress syndrome (ARDS). Recent studies indicated that excessive neutrophil extracellular traps (NETs) contributed to immunothrombosis, thereby leading to extensive intravascular coagulopathy and multiple organ dysfunction. Thus, understanding the mechanism of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-induced NET formation would be helpful to reduce thrombosis and prevent ARDS in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Methods We incubated SARS-CoV-2 with neutrophils in the presence or absence of platelets to observe NET formation. We further isolated extracellular vesicles from COVID-19 patients' sera (COVID-19-EVs) to examine their ability to induce NET formation. Results We demonstrated that antagonistic mAbs against anti-CLEC5A mAb and anti-TLR2 mAb can inhibit COVID-19-EVs-induced NET formation, and generated clec5a−/−/tlr2−/− mice to confirm the critical roles of CLEC5A and TLR2 in SARS-CoV-2-induced lung inflammation in vivo. We found that virus-free extracellular COVID-19 EVs induced robust NET formation via Syk-coupled C-type lectin member 5A (CLEC5A) and TLR2. Blockade of CLEC5A inhibited COVID-19 EVs-induced NETosis, and simultaneous blockade of CLEC5A and TLR2 further suppressed SARS-CoV-2-induced NETosis in vitro. Moreover, thromboinflammation was attenuated dramatically in clec5a−/−/tlr2−/− mice. Conclusions This study demonstrates that SARS-CoV-2-activated platelets produce EVs to enhance thromboinflammation via CLEC5A and TLR2, and highlight the importance of CLEC5A and TLR2 as therapeutic targets to reduce the risk of ARDS in COVID-19 patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12929-022-00832-z.
Collapse
Affiliation(s)
- Pei-Shan Sung
- Genomics Research Center, Academia Sinica, 128 Academia Road, Sec. 2, Nankang, Taipei, 115, Taiwan
| | - Shao-Ping Yang
- Genomics Research Center, Academia Sinica, 128 Academia Road, Sec. 2, Nankang, Taipei, 115, Taiwan
| | - Yu-Chun Peng
- Genomics Research Center, Academia Sinica, 128 Academia Road, Sec. 2, Nankang, Taipei, 115, Taiwan
| | - Cheng-Pu Sun
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Mi-Hwa Tao
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Shie-Liang Hsieh
- Genomics Research Center, Academia Sinica, 128 Academia Road, Sec. 2, Nankang, Taipei, 115, Taiwan. .,Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan. .,Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan. .,Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
240
|
Casting a wide NET: an update on uncontrolled NETosis in response to COVID-19 infection. Clin Sci (Lond) 2022; 136:1047-1052. [PMID: 35791847 PMCID: PMC9264284 DOI: 10.1042/cs20220039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/13/2022] [Accepted: 06/17/2022] [Indexed: 12/15/2022]
Abstract
Abstract
Dysregulation of neutrophil extracellular trap (NET) formation has been shown to mediate disease pathology in multiple viral infections, including SARS-CoV-2. At the beginning of COVID-19 pandemic, Thierry and Roch wrote a perspective on the mechanisms by which severe SARS-CoV-2 infection may lead to uncontrolled NET formation that leads to acute respiratory distress syndrome (ARDS), systemic vascular permeability, and end organ damage. In this commentary, the progress that has been made in regards to the ideas postulated by the perspective will be discussed, with a focus on the therapeutics that target NET formation.
Collapse
|
241
|
Woller SC, Stevens SM, Bledsoe JR, Fazili M, Lloyd JF, Snow GL, Horne BD. Biomarker derived risk scores predict venous thromboembolism and major bleeding among patients with COVID-19. Res Pract Thromb Haemost 2022; 6:e12765. [PMID: 35873221 PMCID: PMC9301476 DOI: 10.1002/rth2.12765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 05/21/2022] [Accepted: 06/19/2022] [Indexed: 12/15/2022] Open
Abstract
Background Venous thromboembolism (VTE) risk is increased in patients with COVID-19 infection. Understanding which patients are likely to develop VTE may inform pharmacologic VTE prophylaxis decision making. The hospital-associated venous thromboembolism-Intermountain Risk Score (HA-VTE IMRS) and the hospital-associated major bleeding-Intermountain Risk Score (HA-MB IMRS) are risk scores predictive of VTE and bleeding that were derived from only patient age and data found in the complete blood count (CBC) and basic metabolic panel (BMP). Objectives We assessed the HA-VTE IMRS and HA-MB IMRS for predictiveness of 90-day VTE and major bleeding, respectively, among patients diagnosed with COVID-19, and further investigated if adding D-dimer improved these predictions. We also reported 30-day outcomes. Patients/Methods We identified 5047 sequential patients with a laboratory confirmed diagnosis of COVID-19 and a CBC and BMP between 2 days before and 7 days following the diagnosis of COVID-19 from March 12, 2020, to February 28, 2021. We calculated the HA-VTE IMRS and the HA-MB IMRS for all patients. We assessed the added predictiveness of D-dimer obtained within 48 hours of the COVID test. Results The HA-VTE IMRS yielded a c-statistic of 0.70 for predicting 90-day VTE and adding D-dimer improved the c-statistic to 0.764 with the corollary sensitivity/specificity/positive/negative predictive values of 49.4%/75.7%/6.7%/97.7% and 58.8%/76.2%/10.9%/97.4%, respectively. Among hospitalized and ambulatory patients separately, the HA-VTE IMRS performed similarly. The HA-MB IMRS predictiveness for 90-day major bleeding yielded a c-statistic of 0.64. Conclusion The HA-VTE IMRS and HA-MB IMRS predict 90- and 30-day VTE and major bleeding among COVID-19 patients. Adding D-dimer improved the predictiveness of the HA-VTE IMRS for VTE.
Collapse
Affiliation(s)
- Scott C. Woller
- Department of MedicineIntermountain Medical Center, Intermountain HealthcareMurrayUtahUSA
- Department of Internal MedicineUniversity of Utah School of MedicineSalt Lake CityUtahUSA
| | - Scott M. Stevens
- Department of MedicineIntermountain Medical Center, Intermountain HealthcareMurrayUtahUSA
- Department of Internal MedicineUniversity of Utah School of MedicineSalt Lake CityUtahUSA
| | - Joseph R. Bledsoe
- Department of Emergency Medicine, Intermountain Medical CenterIntermountain HealthcareMurrayUtahUSA
- Stanford UniversityStanfordCaliforniaUSA
| | - Masarret Fazili
- Department of MedicineIntermountain Medical Center, Intermountain HealthcareMurrayUtahUSA
| | - James F. Lloyd
- Department of InformaticsIntermountain Medical Center, Intermountain HealthcareMurrayUtahUSA
| | - Greg L. Snow
- Intermountain Statistical Data Center, Intermountain Medical CenterIntermountain HealthcareMurrayUtahUSA
| | - Benjamin D. Horne
- Intermountain Medical Center Heart InstituteMurrayUtahUSA
- Division of Cardiovascular MedicineStanford UniversityStanfordCaliforniaUSA
| |
Collapse
|
242
|
Gorog DA, Storey RF, Gurbel PA, Tantry US, Berger JS, Chan MY, Duerschmied D, Smyth SS, Parker WAE, Ajjan RA, Vilahur G, Badimon L, Berg JMT, Cate HT, Peyvandi F, Wang TT, Becker RC. Current and novel biomarkers of thrombotic risk in COVID-19: a Consensus Statement from the International COVID-19 Thrombosis Biomarkers Colloquium. Nat Rev Cardiol 2022; 19:475-495. [PMID: 35027697 PMCID: PMC8757397 DOI: 10.1038/s41569-021-00665-7] [Citation(s) in RCA: 188] [Impact Index Per Article: 62.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/16/2021] [Indexed: 02/06/2023]
Abstract
Coronavirus disease 2019 (COVID-19) predisposes patients to thrombotic and thromboembolic events, owing to excessive inflammation, endothelial cell activation and injury, platelet activation and hypercoagulability. Patients with COVID-19 have a prothrombotic or thrombophilic state, with elevations in the levels of several biomarkers of thrombosis, which are associated with disease severity and prognosis. Although some biomarkers of COVID-19-associated coagulopathy, including high levels of fibrinogen and D-dimer, were recognized early during the pandemic, many new biomarkers of thrombotic risk in COVID-19 have emerged. In this Consensus Statement, we delineate the thrombotic signature of COVID-19 and present the latest biomarkers and platforms to assess the risk of thrombosis in these patients, including markers of platelet activation, platelet aggregation, endothelial cell activation or injury, coagulation and fibrinolysis as well as biomarkers of the newly recognized post-vaccine thrombosis with thrombocytopenia syndrome. We then make consensus recommendations for the clinical use of these biomarkers to inform prognosis, assess disease acuity, and predict thrombotic risk and in-hospital mortality. A thorough understanding of these biomarkers might aid risk stratification and prognostication, guide interventions and provide a platform for future research.
Collapse
Affiliation(s)
- Diana A Gorog
- National Heart and Lung Institute, Imperial College, London, UK.
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, UK.
| | - Robert F Storey
- Cardiovascular Research Unit, Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Paul A Gurbel
- Sinai Center for Thrombosis Research and Drug Development, Sinai Hospital of Baltimore, Baltimore, MD, USA
| | - Udaya S Tantry
- Sinai Center for Thrombosis Research and Drug Development, Sinai Hospital of Baltimore, Baltimore, MD, USA
| | - Jeffrey S Berger
- New York University Grossman School of Medicine, New York, NY, USA
| | - Mark Y Chan
- Yong Loo-Lin School of Medicine, National University of Singapore, Singapore, Singapore
- National University Heart Centre, Singapore, Singapore
| | - Daniel Duerschmied
- Cardiology and Angiology I and Medical Intensive Care, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg im Breisgau, Germany
- Cardiology, Medical Intensive Care, Angiology and Haemostaseology, University Medical Centre Mannheim, Mannheim, Germany
| | - Susan S Smyth
- UAMS College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - William A E Parker
- Cardiovascular Research Unit, Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Ramzi A Ajjan
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Gemma Vilahur
- Cardiovascular Research Center-ICCC, Research Institute - Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain
- CiberCV, Institute Carlos III, Madrid, Spain
| | - Lina Badimon
- Cardiovascular Research Center-ICCC, Research Institute - Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain
- CiberCV, Institute Carlos III, Madrid, Spain
- Universitat Autonoma de Barcelona, Barcelona, Spain
| | | | - Hugo Ten Cate
- Cardiovascular Research Institute Maastricht (CARIM) and Thrombosis Expertise Center, Maastricht University Medical Center, Maastricht, Netherlands
- Center for Thrombosis and Haemostasis, University Medical Center of Gutenberg University, Mainz, Germany
| | - Flora Peyvandi
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Milan, Italy
- Università degli Studi di Milano, Department of Pathophysiology and Transplantation, Milan, Italy
| | - Taia T Wang
- Department of Medicine, Division of Infectious Diseases, Stanford University, Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Richard C Becker
- Heart, Lung and Vascular Institute, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
243
|
Rovito R, Augello M, Ben-Haim A, Bono V, d'Arminio Monforte A, Marchetti G. Hallmarks of Severe COVID-19 Pathogenesis: A Pas de Deux Between Viral and Host Factors. Front Immunol 2022; 13:912336. [PMID: 35757770 PMCID: PMC9231592 DOI: 10.3389/fimmu.2022.912336] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/02/2022] [Indexed: 12/15/2022] Open
Abstract
Two years into Coronavirus Disease 2019 (COVID-19) pandemic, a comprehensive characterization of the pathogenesis of severe and critical forms of COVID-19 is still missing. While a deep dysregulation of both the magnitude and functionality of innate and adaptive immune responses have been described in severe COVID-19, the mechanisms underlying such dysregulations are still a matter of scientific debate, in turn hampering the identification of new therapies and of subgroups of patients that would most benefit from individual clinical interventions. Here we review the current understanding of viral and host factors that contribute to immune dysregulation associated with COVID-19 severity in the attempt to unfold and broaden the comprehension of COVID-19 pathogenesis and to define correlates of protection to further inform strategies of targeted therapeutic interventions.
Collapse
Affiliation(s)
- Roberta Rovito
- Clinic of Infectious Diseases and Tropical Medicine, Azienda Socio Sanitaria Territoriale (ASST) Santi Paolo e Carlo, Department of Health Sciences, University of Milan, Milan, Italy
| | - Matteo Augello
- Clinic of Infectious Diseases and Tropical Medicine, Azienda Socio Sanitaria Territoriale (ASST) Santi Paolo e Carlo, Department of Health Sciences, University of Milan, Milan, Italy
| | - Assaf Ben-Haim
- Clinic of Infectious Diseases and Tropical Medicine, Azienda Socio Sanitaria Territoriale (ASST) Santi Paolo e Carlo, Department of Health Sciences, University of Milan, Milan, Italy
| | - Valeria Bono
- Clinic of Infectious Diseases and Tropical Medicine, Azienda Socio Sanitaria Territoriale (ASST) Santi Paolo e Carlo, Department of Health Sciences, University of Milan, Milan, Italy
| | - Antonella d'Arminio Monforte
- Clinic of Infectious Diseases and Tropical Medicine, Azienda Socio Sanitaria Territoriale (ASST) Santi Paolo e Carlo, Department of Health Sciences, University of Milan, Milan, Italy
| | - Giulia Marchetti
- Clinic of Infectious Diseases and Tropical Medicine, Azienda Socio Sanitaria Territoriale (ASST) Santi Paolo e Carlo, Department of Health Sciences, University of Milan, Milan, Italy
| |
Collapse
|
244
|
Ventura-Santana E, Ninan JR, Snyder CM, Okeke EB. Neutrophil Extracellular Traps, Sepsis and COVID-19 - A Tripod Stand. Front Immunol 2022; 13:902206. [PMID: 35757734 PMCID: PMC9226304 DOI: 10.3389/fimmu.2022.902206] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/11/2022] [Indexed: 12/12/2022] Open
Abstract
The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the current coronavirus disease 2019 (COVID-19) pandemic. Majority of COVID-19 patients have mild disease but about 20% of COVID-19 patients progress to severe disease. These patients end up in the intensive care unit (ICU) with clinical manifestations of acute respiratory distress syndrome (ARDS) and sepsis. The formation of neutrophil extracellular traps (NETs) has also been associated with severe COVID-19. Understanding of the immunopathology of COVID-19 is critical for the development of effective therapeutics. In this article, we discuss evidence indicating that severe COVID-19 has clinical presentations consistent with the definitions of viral sepsis. We highlight the role of neutrophils and NETs formation in the pathogenesis of severe COVID-19. Finally, we highlight the potential of therapies inhibiting NETs formation for the treatment of COVID-19.
Collapse
Affiliation(s)
- Esmeiry Ventura-Santana
- Department of Biology, State University of New York at Fredonia, Fredonia, NY, United States
| | - Joshua R Ninan
- Department of Biology, State University of New York at Fredonia, Fredonia, NY, United States
| | - Caitlin M Snyder
- Department of Biology, State University of New York at Fredonia, Fredonia, NY, United States
| | - Emeka B Okeke
- Department of Biology, State University of New York at Fredonia, Fredonia, NY, United States
| |
Collapse
|
245
|
Rabaan AA, Bakhrebah MA, Mutair AA, Alhumaid S, Al-Jishi JM, AlSihati J, Albayat H, Alsheheri A, Aljeldah M, Garout M, Alfouzan WA, Alhashem YN, AlBahrani S, Alshamrani SA, Alotaibi S, AlRamadhan AA, Albasha HN, Hajissa K, Temsah MH. Systematic Review on Pathophysiological Complications in Severe COVID-19 among the Non-Vaccinated and Vaccinated Population. Vaccines (Basel) 2022; 10:985. [PMID: 35891149 PMCID: PMC9318201 DOI: 10.3390/vaccines10070985] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/13/2022] [Accepted: 06/17/2022] [Indexed: 02/06/2023] Open
Abstract
COVID-19, caused by SARS-CoV-2, is one of the longest viral pandemics in the history of mankind, which have caused millions of deaths globally and induced severe deformities in the survivals. For instance, fibrosis and cavities in the infected lungs of COVID-19 are some of the complications observed in infected patients post COVID-19 recovery. These health abnormalities, including is multiple organ failure-the most striking pathological features of COVID-19-have been linked with diverse distribution of ACE2 receptor. Additionally, several health complications reports were reported after administration of COVID-19 vaccines in healthy individuals, but clinical or molecular pathways causing such complications are not yet studied in detail. Thus, the present systematic review established the comparison of health complication noted in vaccinated and non-vaccinated individuals (COVID-19 infected patients) to identify the association between vaccination and the multiorgan failure based on the data obtained from case studies, research articles, clinical trials/Cohort based studies and review articles published between 2020-2022. This review also includes the biological rationale behind the COVID-19 infection and its subsequent symptoms and effects including multiorgan failure. In addition, multisystem inflammatory syndrome (MIS) has been informed in individuals post vaccination that resulted in multiorgan failure but, no direct correlation of vaccination with MIS has been established. Similarly, hemophagocytic lymphohistiocytosis (HLH) also noted to cause multiorgan failure in some individuals following full vaccination. Furthermore, severe complications were recorded in elderly patients (+40 years of age), indicates that older age individuals are higher risk by COVID-19 and post vaccination, but available literature is not sufficient to comply with any conclusive statements on relationship between vaccination and multiorgan failure.
Collapse
Affiliation(s)
- Ali A. Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
| | - Muhammed A. Bakhrebah
- Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia;
| | - Abbas Al Mutair
- Research Center, Almoosa Specialist Hospital, Al-Ahsa 36342, Saudi Arabia;
- College of Nursing, Princess Norah Bint Abdulrahman University, Riyadh 11564, Saudi Arabia
- School of Nursing, Wollongong University, Wollongong, NSW 2522, Australia
- Nursing Department, Prince Sultan Military College of Health Sciences, Dhahran 33048, Saudi Arabia
| | - Saad Alhumaid
- Administration of Pharmaceutical Care, Al-Ahsa Health Cluster, Ministry of Health, Al-Ahsa 31982, Saudi Arabia;
| | - Jumana M. Al-Jishi
- Internal Medicine Department, Qatif Central Hospital, Qatif 32654, Saudi Arabia;
| | - Jehad AlSihati
- Internal Medicine Department, Gastroenterology Section, King Fahad Specialist Hospital, Dammam 31311, Saudi Arabia;
| | - Hawra Albayat
- Infectious Disease Department, King Saud Medical City, Riyadh 7790, Saudi Arabia; (H.A.); (A.A.)
| | - Ahmed Alsheheri
- Infectious Disease Department, King Saud Medical City, Riyadh 7790, Saudi Arabia; (H.A.); (A.A.)
| | - Mohammed Aljeldah
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hafr Al Batin, Hafr Al Batin 39524, Saudi Arabia;
| | - Mohammed Garout
- Department of Community Medicine and Health Care for Pilgrims, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| | - Wadha A. Alfouzan
- Department of Microbiology, Faculty of Medicine, Kuwait University, Safat 13110, Kuwait;
- Microbiology Unit, Department of Laboratories, Farwania Hospital, Farwania 85000, Kuwait
| | - Yousef N. Alhashem
- Department of Clinical Laboratory Sciences, Mohammed AlMana College of Health Sciences, Dammam 34222, Saudi Arabia;
| | - Salma AlBahrani
- Infectious Disease Unit, Specialty Internal Medicine, King Fahd Military Medical Complex, Dhahran 31932, Saudi Arabia;
| | - Saleh A. Alshamrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia;
| | - Sultan Alotaibi
- Molecular Microbiology Department, King Fahad Medical City, Riyadh 11525, Saudi Arabia;
| | - Abdullah A. AlRamadhan
- Laboratory and Toxicology Department, Security Forces Specialized Comprehensive Clinics, Al-Ahsa 36441, Saudi Arabia;
| | - Hanadi N. Albasha
- Department of Infection Prevention and Control, Obeid Specialized Hospital, Riyadh 12627, Saudi Arabia;
| | - Khalid Hajissa
- Department of Medical Microbiology & Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia;
| | - Mohamad-Hani Temsah
- Pediatric Department, College of Medicine, King Saud University, Riyadh 11451, Saudi Arabia;
| |
Collapse
|
246
|
Zhang Y, Wu C, Li L, Pandeya A, Zhang G, Cui J, Kirchhofer D, Wood JP, Smyth SS, Wei Y, Li Z. Extracellular Histones Trigger Disseminated Intravascular Coagulation by Lytic Cell Death. Int J Mol Sci 2022; 23:6800. [PMID: 35743244 PMCID: PMC9224270 DOI: 10.3390/ijms23126800] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/02/2022] [Accepted: 06/16/2022] [Indexed: 01/08/2023] Open
Abstract
Histones are cationic nuclear proteins that are essential for the structure and functions of eukaryotic chromatin. However, extracellular histones trigger inflammatory responses and contribute to death in sepsis by unknown mechanisms. We recently reported that inflammasome activation and pyroptosis trigger coagulation activation through a tissue-factor (TF)-dependent mechanism. We used a combination of various deficient mice to elucidate the molecular mechanism of histone-induced coagulation. We showed that histones trigger coagulation activation in vivo, as evidenced by coagulation parameters and fibrin deposition in tissues. However, histone-induced coagulopathy was neither dependent on intracellular inflammasome pathways involving caspase 1/11 and gasdermin D (GSDMD), nor on cell surface receptor TLR2- and TLR4-mediated host immune response, as the deficiency of these genes in mice did not protect against histone-induced coagulopathy. The incubation of histones with macrophages induced lytic cell death and phosphatidylserine (PS) exposure, which is required for TF activity, a key initiator of coagulation. The neutralization of TF diminished the histone-induced coagulation. Our findings revealed lytic cell death as a novel mechanism of histone-induced coagulation activation and thrombosis.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Oncology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China;
- Saha Cardiovascular Research Center, College of Medicine, University of Kentucky, Lexington, KY 40506, USA; (G.Z.); (J.P.W.)
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A & M University, College Station, TX 76549, USA;
| | - Congqing Wu
- Saha Cardiovascular Research Center, College of Medicine, University of Kentucky, Lexington, KY 40506, USA; (G.Z.); (J.P.W.)
- Department of Surgery, College of Medicine, University of Kentucky, Lexington, KY 40506, USA
| | - Lan Li
- Department of Chemistry, College of Arts and Sciences, University of Kentucky, Lexington, KY 40506, USA; (L.L.); (A.P.); (J.C.)
| | - Ankit Pandeya
- Department of Chemistry, College of Arts and Sciences, University of Kentucky, Lexington, KY 40506, USA; (L.L.); (A.P.); (J.C.)
| | - Guoying Zhang
- Saha Cardiovascular Research Center, College of Medicine, University of Kentucky, Lexington, KY 40506, USA; (G.Z.); (J.P.W.)
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A & M University, College Station, TX 76549, USA;
| | - Jian Cui
- Department of Chemistry, College of Arts and Sciences, University of Kentucky, Lexington, KY 40506, USA; (L.L.); (A.P.); (J.C.)
| | - Daniel Kirchhofer
- Department of Early Discovery Biochemistry, Genentech Inc., South San Francisco, CA 94080, USA;
| | - Jeremy P. Wood
- Saha Cardiovascular Research Center, College of Medicine, University of Kentucky, Lexington, KY 40506, USA; (G.Z.); (J.P.W.)
| | - Susan S. Smyth
- Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - Yinan Wei
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A & M University, College Station, TX 76549, USA;
- Department of Chemistry, College of Arts and Sciences, University of Kentucky, Lexington, KY 40506, USA; (L.L.); (A.P.); (J.C.)
| | - Zhenyu Li
- Saha Cardiovascular Research Center, College of Medicine, University of Kentucky, Lexington, KY 40506, USA; (G.Z.); (J.P.W.)
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A & M University, College Station, TX 76549, USA;
| |
Collapse
|
247
|
Dehnen D, Neuberger E, In der Schmitten J, Giagkou E, Simon P, Botzenhardt S. cfDNA as a surrogate marker for COVID-19 severity in patients with influenza-like symptoms with and without SARS-CoV-2 infections in general practice: a study protocol for a prospective cohort study. BMJ Open 2022; 12:e058647. [PMID: 35710258 PMCID: PMC9207575 DOI: 10.1136/bmjopen-2021-058647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
INTRODUCTION The clinical course of patients with a SARS-CoV-2 (COVID-19) infection varies widely, from symptom-free to severe courses that can lead to death. Laboratory values of SARS-CoV-2 patients such as lymphocyte counts or C-reactive protein (CRP) do not allow a prediction of the actual course of the disease. To identify a possible predictive marker for the differentiation and prognosis of illness with influenza-like symptoms with and without SARS-CoV-2 infections in general practice, we will analyse the concentrations of cell-free DNA (cfDNA) levels, laboratory and clinical parameters, temperature, oxygen saturation, breathing rate and concomitant symptoms in patients with flu-like symptoms with and without a SARS-CoV-2 infection. METHODS AND ANALYSIS This is a single-centre, two-arm, parallel longitudinal cohort study with a total of 44 patients. 22 patients with flu-like symptoms without a SARS-CoV-2 infection and 22 patients with flu-like symptoms with a SARS-CoV-2 infection will be recruited. The primary objective is to compare cfDNA levels in ambulatory patients in general practice with flu-like symptoms with SARS-CoV-2 infection with those with influenza like symptoms without a SARS-CoV-2 infection during the disease (day 7 and day 14). The secondary objective is to determine whether there is a correlation between cfDNA concentrations on the one hand, and laboratory and clinical parameters on the other hand. cfDNA, differential blood count, high-sensitive CRP and erythrocyte sedimentation rate will be measured in blood samples, concomitant symptoms will be surveyed via a self-assessment questionnaire, and oxygen saturation, breathing rate and examination of the lungs will be reported by treating physicians. ETHICS AND DISSEMINATION Ethical approval was issued on 1 March 2021 by the Ethics Committee Essen under the number 21-9916-BO. Findings will be published in peer-reviewed open-access journals and presented at national and international conferences. TRIAL REGISTRATION NUMBER DRKS00024722.
Collapse
Affiliation(s)
- Dorothea Dehnen
- Institute of General Practice, Medical Faculty, University of Duisburg-Essen Faculty of Medicine, Essen, Germany
| | - Elmo Neuberger
- Department of Sports Medicine, Rehabilitation and Disease Prevention, Johannes Gutenberg Universitat Mainz, Mainz, Germany
| | - Jürgen In der Schmitten
- Institute of General Practice, Medical Faculty, University of Duisburg-Essen Faculty of Medicine, Essen, Germany
| | - Ekaterini Giagkou
- Institute of General Practice, Medical Faculty, University of Duisburg-Essen Faculty of Medicine, Essen, Germany
| | - Perikles Simon
- Department of Sports Medicine, Rehabilitation and Disease Prevention, Johannes Gutenberg Universitat Mainz, Mainz, Germany
| | - Suzan Botzenhardt
- Institute of General Practice, Medical Faculty, University of Duisburg-Essen Faculty of Medicine, Essen, Germany
| |
Collapse
|
248
|
Lagedal R, Eriksson O, Sörman A, Huckriede JB, Kristensen B, Franzén S, Larsson A, Bergqvist A, Alving K, Forslund A, Persson B, Ekdahl KN, Garcia de Frutos P, Nilsson B, Nicolaes GAF, Lipcsey M, Hultström M, Frithiof R. Impaired Antibody Response Is Associated with Histone-Release, Organ Dysfunction and Mortality in Critically Ill COVID-19 Patients. J Clin Med 2022; 11:jcm11123419. [PMID: 35743491 PMCID: PMC9225468 DOI: 10.3390/jcm11123419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/24/2022] [Accepted: 06/10/2022] [Indexed: 02/06/2023] Open
Abstract
Purpose: the pathophysiologic mechanisms explaining differences in clinical outcomes following COVID-19 are not completely described. This study aims to investigate antibody responses in critically ill patients with COVID-19 in relation to inflammation, organ failure and 30-day survival. Methods: All patients with PCR-verified COVID-19 and gave consent, and who were admitted to a tertiary Intensive care unit (ICU) in Sweden during March–September 2020 were included. Demography, repeated blood samples and measures of organ function were collected. Analyses of anti-SARS-CoV-2 antibodies (IgM, IgA and IgG) in plasma were performed and correlated to patient outcome and biomarkers of inflammation and organ failure. Results: A total of 115 patients (median age 62 years, 77% male) were included prospectively. All patients developed severe respiratory dysfunction, and 59% were treated with invasive ventilation. Thirty-day mortality was 22.6% for all included patients. Patients negative for any anti-SARS-CoV-2 antibody in plasma during ICU admission had higher 30-day mortality compared to patients positive for antibodies. Patients positive for IgM had more ICU-, ventilator-, renal replacement therapy- and vasoactive medication-free days. IgA antibody concentrations correlated negatively with both SAPS3 and maximal SOFA-score and IgM-levels correlated negatively with SAPS3. Patients with antibody levels below the detection limit had higher plasma levels of extracellular histones on day 1 and elevated levels of kidney and cardiac biomarkers, but showed no signs of increased inflammation, complement activation or cytokine release. After adjusting for age, positive IgM and IgG antibodies were still associated with increased 30-day survival, with odds ratio (OR) 7.1 (1.5–34.4) and 4.2 (1.1–15.7), respectively. Conclusion: In patients with severe COVID-19 requiring intensive care, a poor antibody response is associated with organ failure, systemic histone release and increased 30-day mortality.
Collapse
Affiliation(s)
- Rickard Lagedal
- Department of Surgical Sciences, Anaesthesia and Intensive Care, Uppsala University, 752 36 Uppsala, Sweden; (S.F.); (M.L.); (M.H.); (R.F.)
- Correspondence:
| | - Oskar Eriksson
- Department of Immunology, Genetics and Pathology, Uppsala University, 752 36 Uppsala, Sweden; (O.E.); (A.S.); (B.P.); (K.N.E.); (B.N.)
- Department of Medical Biochemistry and Microbiology, Uppsala University, 752 36 Uppsala, Sweden
| | - Anna Sörman
- Department of Immunology, Genetics and Pathology, Uppsala University, 752 36 Uppsala, Sweden; (O.E.); (A.S.); (B.P.); (K.N.E.); (B.N.)
| | - Joram B. Huckriede
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6211 LK Maastricht, The Netherlands; (J.B.H.); (G.A.F.N.)
| | | | - Stephanie Franzén
- Department of Surgical Sciences, Anaesthesia and Intensive Care, Uppsala University, 752 36 Uppsala, Sweden; (S.F.); (M.L.); (M.H.); (R.F.)
| | - Anders Larsson
- Department of Medical Sciences, Uppsala University, 752 36 Uppsala, Sweden;
| | - Anders Bergqvist
- Department of Medical Sciences, Section of Clinical Microbiology, Uppsala University, 752 36 Uppsala, Sweden;
- Clinical Microbiology and Hospital Infection Control, Uppsala University Hospital, 752 36 Uppsala, Sweden
| | - Kjell Alving
- Department of Women’s and Children’s Health, Uppsala University, 752 36 Uppsala, Sweden; (K.A.); (A.F.)
| | - Anders Forslund
- Department of Women’s and Children’s Health, Uppsala University, 752 36 Uppsala, Sweden; (K.A.); (A.F.)
| | - Barbro Persson
- Department of Immunology, Genetics and Pathology, Uppsala University, 752 36 Uppsala, Sweden; (O.E.); (A.S.); (B.P.); (K.N.E.); (B.N.)
| | - Kristina N. Ekdahl
- Department of Immunology, Genetics and Pathology, Uppsala University, 752 36 Uppsala, Sweden; (O.E.); (A.S.); (B.P.); (K.N.E.); (B.N.)
- Linneus Centre for Biomaterials Chemistry, Linneus University, 392 31 Kalmar, Sweden
| | - Pablo Garcia de Frutos
- Department of Cell Death and Proliferation, IIBB-CSIC, IDIBAPS and CIBERCV, 08036 Barcelona, Spain;
| | - Bo Nilsson
- Department of Immunology, Genetics and Pathology, Uppsala University, 752 36 Uppsala, Sweden; (O.E.); (A.S.); (B.P.); (K.N.E.); (B.N.)
| | - Gerry A. F. Nicolaes
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6211 LK Maastricht, The Netherlands; (J.B.H.); (G.A.F.N.)
| | - Miklos Lipcsey
- Department of Surgical Sciences, Anaesthesia and Intensive Care, Uppsala University, 752 36 Uppsala, Sweden; (S.F.); (M.L.); (M.H.); (R.F.)
- Hedenstierna Laboratory, Anesthesiology and Intensive Care, Department of Surgical Sciences, Uppsala University, 752 36 Uppsala, Sweden
| | - Michael Hultström
- Department of Surgical Sciences, Anaesthesia and Intensive Care, Uppsala University, 752 36 Uppsala, Sweden; (S.F.); (M.L.); (M.H.); (R.F.)
- Unit for Integrative Physiology, Department of Medical Cell Biology, Uppsala University, 752 36 Uppsala, Sweden
| | - Robert Frithiof
- Department of Surgical Sciences, Anaesthesia and Intensive Care, Uppsala University, 752 36 Uppsala, Sweden; (S.F.); (M.L.); (M.H.); (R.F.)
| |
Collapse
|
249
|
Li X, Zhang Z, Wang Z, Gutiérrez-Castrellón P, Shi H. Cell deaths: Involvement in the pathogenesis and intervention therapy of COVID-19. Signal Transduct Target Ther 2022; 7:186. [PMID: 35697684 PMCID: PMC9189267 DOI: 10.1038/s41392-022-01043-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/18/2022] [Accepted: 05/26/2022] [Indexed: 02/06/2023] Open
Abstract
The current pandemic of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has dramatically influenced various aspects of the world. It is urgent to thoroughly study pathology and underlying mechanisms for developing effective strategies to prevent and treat this threatening disease. It is universally acknowledged that cell death and cell autophagy are essential and crucial to maintaining host homeostasis and participating in disease pathogenesis. At present, more than twenty different types of cell death have been discovered, some parts of which have been fully understood, whereas some of which need more investigation. Increasing studies have indicated that cell death and cell autophagy caused by coronavirus might play an important role in virus infection and pathogenicity. However, the knowledge of the interactions and related mechanisms of SARS-CoV-2 between cell death and cell autophagy lacks systematic elucidation. Therefore, in this review, we comprehensively delineate how SARS-CoV-2 manipulates diverse cell death (including apoptosis, necroptosis, pyroptosis, ferroptosis, and NETosis) and cell autophagy for itself benefits, which is simultaneously involved in the occurrence and progression of COVID-19, aiming to provide a reasonable basis for the existing interventions and further development of novel therapies.
Collapse
Affiliation(s)
- Xue Li
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Ziqi Zhang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Zhenling Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Ke Yuan 4th Road, Gao Peng Street, Chengdu, Sichuan, 610041, People's Republic of China
| | - Pedro Gutiérrez-Castrellón
- Center for Translational Research on Health Science, Hospital General Dr. Manuel Gea Gonzalez. Ministry of Health, Calz. Tlalpan 4800, Col. Secc. XVI, 14080, Mexico city, Mexico.
| | - Huashan Shi
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China.
| |
Collapse
|
250
|
Quail DF, Amulic B, Aziz M, Barnes BJ, Eruslanov E, Fridlender ZG, Goodridge HS, Granot Z, Hidalgo A, Huttenlocher A, Kaplan MJ, Malanchi I, Merghoub T, Meylan E, Mittal V, Pittet MJ, Rubio-Ponce A, Udalova IA, van den Berg TK, Wagner DD, Wang P, Zychlinsky A, de Visser KE, Egeblad M, Kubes P. Neutrophil phenotypes and functions in cancer: A consensus statement. J Exp Med 2022; 219:e20220011. [PMID: 35522219 PMCID: PMC9086501 DOI: 10.1084/jem.20220011] [Citation(s) in RCA: 168] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/11/2022] [Accepted: 03/23/2022] [Indexed: 12/12/2022] Open
Abstract
Neutrophils are the first responders to infection and inflammation and are thus a critical component of innate immune defense. Understanding the behavior of neutrophils as they act within various inflammatory contexts has provided insights into their role in sterile and infectious diseases; however, the field of neutrophils in cancer is comparatively young. Here, we summarize key concepts and current knowledge gaps related to the diverse roles of neutrophils throughout cancer progression. We discuss sources of neutrophil heterogeneity in cancer and provide recommendations on nomenclature for neutrophil states that are distinct in maturation and activation. We address discrepancies in the literature that highlight a need for technical standards that ought to be considered between laboratories. Finally, we review emerging questions in neutrophil biology and innate immunity in cancer. Overall, we emphasize that neutrophils are a more diverse population than previously appreciated and that their role in cancer may present novel unexplored opportunities to treat cancer.
Collapse
Affiliation(s)
- Daniela F. Quail
- Rosalind and Morris Goodman Cancer Institute, Department of Physiology, McGill University, Montreal, Quebec, Canada
| | - Borko Amulic
- Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Monowar Aziz
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, Manhasset, NY
| | - Betsy J. Barnes
- Center for Autoimmune, Musculoskeletal and Hematopoietic Diseases, Feinstein Institutes for Medical Research, Manhasset, NY
- Departments of Molecular Medicine and Pediatrics, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY
| | - Evgeniy Eruslanov
- Division of Thoracic Surgery, Department of Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Zvi G. Fridlender
- Hadassah Medical Center, Institute of Pulmonary Medicine, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Helen S. Goodridge
- Board of Governors Regenerative Medicine Institute and Research Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Zvi Granot
- Department of Developmental Biology and Cancer Research, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Andrés Hidalgo
- Vascular Biology and Therapeutics Program and Department of Immunobiology, Yale University School of Medicine, New Haven, CT
- Area of Cell and Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Anna Huttenlocher
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI
| | - Mariana J. Kaplan
- Systemic Autoimmunity Branch, Intramural Research Program, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD
| | - Ilaria Malanchi
- Tumour-Host Interaction Laboratory, The Francis Crick Institute, London, UK
| | - Taha Merghoub
- Ludwig Collaborative and Swim Across America Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY
- Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Weill Cornell Medical College, New York, NY
| | - Etienne Meylan
- Lung Cancer and Immuno-Oncology Laboratory, Bordet Cancer Research Laboratories, Institut Jules Bordet, Université Libre de Bruxelles, Anderlecht, Belgium
- Laboratory of Immunobiology, Université Libre de Bruxelles, Gosselies, Belgium
| | - Vivek Mittal
- Department of Cardiothoracic Surgery, Neuberger Berman Foundation Lung Cancer Research Center, Weill Cornell Medicine, New York, NY
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY
| | - Mikael J. Pittet
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
- Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland
- Department of Oncology, Geneva University Hospitals, Geneva, Switzerland
- AGORA Cancer Research Center, Lausanne, Switzerland
| | - Andrea Rubio-Ponce
- Area of Cell and Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Irina A. Udalova
- University of Oxford, Kennedy Institute of Rheumatology, Oxford, UK
| | - Timo K. van den Berg
- Laboratory of Immunotherapy, Sanquin Research, Amsterdam, Netherlands
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Denisa D. Wagner
- Program in Cellular and Molecular Medicine, Division of Hematology/Oncology, Boston Children’s Hospital and Harvard Medical School, Boston, MA
| | - Ping Wang
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, Manhasset, NY
| | - Arturo Zychlinsky
- Department of Cellular Microbiology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Karin E. de Visser
- Division of Tumour Biology and Immunology, Oncode Institute, Netherlands Cancer Institute, Amsterdam, Netherlands
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Centre, Leiden, Netherlands
- Banbury Center meeting organizers, Diverse Functions of Neutrophils in Cancer, Cold Spring Harbor Laboratory, New York, NY
| | - Mikala Egeblad
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY
- Banbury Center meeting organizers, Diverse Functions of Neutrophils in Cancer, Cold Spring Harbor Laboratory, New York, NY
| | - Paul Kubes
- Department of Pharmacology and Physiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Banbury Center meeting organizers, Diverse Functions of Neutrophils in Cancer, Cold Spring Harbor Laboratory, New York, NY
- Department of Microbiology, Immunology & Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|