201
|
Abstract
Hypoxia-inducible factor (HIF) signalling is intricately involved in coupling angiogenesis and osteogenesis during bone development and repair. Activation of HIFs in response to a hypoxic bone micro-environment stimulates the transcription of multiple genes with effects on angiogenesis, precursor cell recruitment and differentiation. Substantial progress has been made in our understanding of the molecular mechanisms by which oxygen content regulates the levels and activity of HIFs. In particular, the discovery of the role of oxygen-dependent hydroxylase enzymes in modulating the activity of HIF-1α has sparked interest in potentially promising therapeutic strategies in multiple clinical fields and most recently bone healing. Several small molecules, termed hypoxia mimics, have been identified as activators of the HIF pathway and have demonstrated augmentation of both bone vascularity and bone regeneration in vivo. In this review we discuss key elements of the hypoxic signalling pathway and its role in bone regeneration. Current strategies for the manipulation of this pathway for enhancing bone repair are presented with an emphasis on recent pre-clinical in vivo investigations. These findings suggest promising approaches for the development of therapies to improve bone repair and tissue engineering strategies.
Collapse
|
202
|
Cook LM, Shay G, Araujo A, Aruajo A, Lynch CC. Integrating new discoveries into the "vicious cycle" paradigm of prostate to bone metastases. Cancer Metastasis Rev 2015; 33:511-25. [PMID: 24414228 DOI: 10.1007/s10555-014-9494-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In prostate to bone metastases, the "vicious cycle" paradigm has been traditionally used to illustrate how metastases manipulate the bone forming osteoblasts and resorbing osteoclasts in order to yield factors that facilitate growth and establishment. However, recent advances have illustrated that the cycle is far more complex than this simple interpretation. In this review, we will discuss the role of exosomes and hematopoietic/mesenchymal stem/stromal cells (MSC) that facilitate the establishment and activation of prostate metastases and how cells including myeloid-derived suppressor cells, macrophages, T cells, and nerve cells contribute to the momentum of the vicious cycle. The increased complexity of the tumor-bone microenvironment requires a system level approach. The evolution of computational models to interrogate the tumor-bone microenvironment is also discussed, and the application of this integrated approach should allow for the development of effective therapies to treat and cure prostate to bone metastases.
Collapse
Affiliation(s)
- Leah M Cook
- Department of Tumor Biology, Moffitt Cancer Center and Research Institute, 12902 Magnolia Dr., SRB-3, Tampa, FL, 33612, USA
| | | | | | | | | |
Collapse
|
203
|
Zhao S, Wang H, Zhang Y, Huang W, Rahaman MN, Liu Z, Wang D, Zhang C. Copper-doped borosilicate bioactive glass scaffolds with improved angiogenic and osteogenic capacity for repairing osseous defects. Acta Biomater 2015; 14:185-96. [PMID: 25534470 DOI: 10.1016/j.actbio.2014.12.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 12/03/2014] [Accepted: 12/14/2014] [Indexed: 12/26/2022]
Abstract
There is growing interest in the use of synthetic biomaterials to deliver inorganic ions that are known to stimulate angiogenesis and osteogenesis in vivo. In the present study, we investigated the effects of varying amounts of copper in a bioactive glass on the response of human bone marrow-derived mesenchymal stem cells (hBMSCs) in vitro and on blood vessel formation and bone regeneration in rat calvarial defects in vivo. Porous scaffolds of a borosilicate bioactive glass (composition 6Na2O, 8K2O, 8MgO, 22CaO, 36B2O3, 18SiO2, 2P2O5, mol.%) doped with 0.5, 1.0 and 3.0wt.% CuO were created using a foam replication method. When immersed in simulated body fluid, the scaffolds released Cu ions into the medium and converted to hydroxyapatite. At the concentrations used, the Cu in the glass was not toxic to the hBMSCs cultured on the scaffolds in vitro. The alkaline phosphatase activity of the hBMSCs and the expression levels of angiogenic-related genes (vascular endothelial growth factor and basic fibroblast growth factor) and osteogenic-related genes (runt-related transcription factor 2, bone morphogenetic protein-2 and osteopontin) increased significantly with increasing amount of Cu in the glass. When implanted in rat calvarial defects in vivo, the scaffolds (3wt.% CuO) significantly enhanced both blood vessel formation and bone regeneration in the defects at 8weeks post-implantation. These results show that doping bioactive glass implants with Cu is a promising approach for enhancing angiogenesis and osteogenesis in the healing of osseous defects.
Collapse
Affiliation(s)
- Shichang Zhao
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital, Shanghai Jiaotong University, Shanghai 200233, People's Republic of China
| | - Hui Wang
- School of Materials Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China
| | - Yadong Zhang
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital, Shanghai Jiaotong University, Shanghai 200233, People's Republic of China
| | - Wenhai Huang
- School of Materials Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China
| | - Mohamed N Rahaman
- Department of Materials Science and Engineering, and Center for Biomedical Science and Engineering, Missouri University of Science and Technology, Rolla, MO 65409-0340, USA
| | - Zhongtang Liu
- Department of Orthopaedics, Shanghai Hospital, Second Military Medical University, Shanghai 200433, People's Republic of China
| | - Deping Wang
- School of Materials Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China.
| | - Changqing Zhang
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital, Shanghai Jiaotong University, Shanghai 200233, People's Republic of China.
| |
Collapse
|
204
|
HaDuong JH, Blavier L, Baniwal SK, Frenkel B, Malvar J, Punj V, Sposto R, DeClerck YA. Interaction between bone marrow stromal cells and neuroblastoma cells leads to a VEGFA-mediated osteoblastogenesis. Int J Cancer 2015; 137:797-809. [PMID: 25648303 DOI: 10.1002/ijc.29465] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 12/30/2014] [Indexed: 01/01/2023]
Abstract
The potential role of osteoblasts in bone and bone marrow (BM) metastases in neuroblastoma (NBL) remains unclear. In this study, we examined the effect of NBL cells on the osteoblastic differentiation of BM-derived mesenchymal stromal cells (BMMSC). We show that the presence of NBL cells enhanced the osteoblastic differentiation of BMMSC driven by bone morphogenetic protein (BMP)-4, in the absence of any effect on NBL cell proliferation. Expression profiles of BMMSC driven toward osteoblastic differentiation revealed an increase in vascular endothelial growth factor A (Vegfa) expression in the presence of NBL cells. We demonstrated that NBL cells increased BMMSC-derived VEGFA mRNA and protein and that this was enhanced by BMP-4. However, in similar conditions, neither the addition of an mVEGFA blocking antibody nor exogenous recombinant (r) mVEGFA affected osteoblastic differentiation. In contrast, siRNA- mediated knock-down of VEGFA in BMMSC prevented osteoblastic differentiation in BMP-4-treated cocultures, an effect that was not reversed in the presence of rmVEGFA. An analysis of murine bones injected with hNBL cells revealed an increase of mVEGFA producing cells near tumor cells concomitantly with an increase in Vegfa and Runx2 mRNA. This coincided with an increase in osteoclasts, in Rankl/Opg mRNA ratio and with the formation of osteolytic lesions. Thus NBL cells promote osteoblastogenesis in the BM by increasing VEGFA expression in BMMSC. Our study provides a new insight into the role of VEGFA in NBL metastases by pointing to the role of stroma-derived intracrine VEGFA in osteoblastogenesis.
Collapse
Affiliation(s)
- Josephine H HaDuong
- The Saban Research Institute of Children's Hospital Los Angeles, Los Angeles, CA.,Division of Hematology, Oncology, and Blood & Marrow Transplantation, University of Southern California Keck School of Medicine, Los Angeles, CA.,Department of Pediatrics, University of Southern California Keck School of Medicine, Los Angeles, CA
| | - Laurence Blavier
- The Saban Research Institute of Children's Hospital Los Angeles, Los Angeles, CA.,Division of Hematology, Oncology, and Blood & Marrow Transplantation, University of Southern California Keck School of Medicine, Los Angeles, CA.,Department of Pediatrics, University of Southern California Keck School of Medicine, Los Angeles, CA
| | - Sanjeev K Baniwal
- Department of Orthopedic Surgery, University of Southern California, Los Angeles, CA
| | - Baruch Frenkel
- Department of Orthopedic Surgery, University of Southern California, Los Angeles, CA.,Department of Biochemistry & Molecular Biology, University of Southern California, Los Angeles, CA
| | - Jemily Malvar
- The Saban Research Institute of Children's Hospital Los Angeles, Los Angeles, CA
| | - Vasu Punj
- Norris Comprehensive Cancer Center Bioinformatics Core and Division of Hematology, University of Southern California Keck School of Medicine, Los Angeles, CA
| | - Richard Sposto
- The Saban Research Institute of Children's Hospital Los Angeles, Los Angeles, CA.,Division of Hematology, Oncology, and Blood & Marrow Transplantation, University of Southern California Keck School of Medicine, Los Angeles, CA.,Department of Pediatrics, University of Southern California Keck School of Medicine, Los Angeles, CA
| | - Yves A DeClerck
- The Saban Research Institute of Children's Hospital Los Angeles, Los Angeles, CA.,Division of Hematology, Oncology, and Blood & Marrow Transplantation, University of Southern California Keck School of Medicine, Los Angeles, CA.,Department of Pediatrics, University of Southern California Keck School of Medicine, Los Angeles, CA.,Department of Biochemistry & Molecular Biology, University of Southern California, Los Angeles, CA
| |
Collapse
|
205
|
Wang L, Mishina Y, Liu F. Osterix-Cre transgene causes craniofacial bone development defect. Calcif Tissue Int 2015; 96:129-37. [PMID: 25550101 PMCID: PMC4320656 DOI: 10.1007/s00223-014-9945-5] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 12/12/2014] [Indexed: 12/25/2022]
Abstract
The Cre/loxP system has been widely used to generate tissue-specific gene knockout mice. Inducible (Tet-off) Osx-GFP::Cre (Osx-Cre) mouse line that targets osteoblasts is widely used in the bone research field. In this study, we investigated the effect of Osx-Cre on craniofacial bone development. We found that newborn Osx-Cre mice showed severe hypomineralization in parietal, frontal, and nasal bones as well as the coronal sutural area when compared to control mice. As the mice matured, the intramembranous bone hypomineralization phenotype became less severe. The major hypomineralization defect in parietal, frontal, and nasal bones had mostly disappeared by postnatal day 21, but the defect in sutural areas persisted. Importantly, Doxycycline treatment eliminated cranial bone defects at birth which indicates that Cre expression may be responsible for the phenotype. In addition, we showed that the primary calvarial osteoblasts isolated from neonatal Osx-Cre mice had comparable differentiation ability compared to their littermate controls. This study reinforces the idea that Cre-positive litter mates are indispensable controls in studies using conditional gene deletion.
Collapse
Affiliation(s)
- Li Wang
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
| | - Yuji Mishina
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
| | - Fei Liu
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
- Corresponding author. , Phone: 734-936-0911, Fax: 734-647-2805
| |
Collapse
|
206
|
Tian T, Han Y, Ma B, Wu C, Chang J. Novel Co-akermanite (Ca2CoSi2O7) bioceramics with the activity to stimulate osteogenesis and angiogenesis. J Mater Chem B 2015; 3:6773-6782. [DOI: 10.1039/c5tb01244a] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Both osteogenesis and angiogenesis of bioactive materials play the vital role in the regeneration of large skeletal defects.
Collapse
Affiliation(s)
- Tian Tian
- Biomaterials and Tissue Engineering Research Center
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- China
| | - Yan Han
- Med-X Research Institute
- Department of Biomedical Engineering
- Shanghai Jiaotong University
- Shanghai 200030
- China
| | - Bing Ma
- Biomaterials and Tissue Engineering Research Center
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- China
| | - Chengtie Wu
- Biomaterials and Tissue Engineering Research Center
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- China
| | - Jiang Chang
- Biomaterials and Tissue Engineering Research Center
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- China
| |
Collapse
|
207
|
Novák J, Olejníčková V, Tkáčová N, Santulli G. Mechanistic Role of MicroRNAs in Coupling Lipid Metabolism and Atherosclerosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 887:79-100. [PMID: 26662987 PMCID: PMC4871243 DOI: 10.1007/978-3-319-22380-3_5] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
MicroRNAs (miRNAs, miRs) represent a group of powerful and versatile posttranscriptional regulators of gene expression being involved in the fine control of a plethora of physiological and pathological processes. Besides their well-established crucial roles in the regulation of cell cycle, embryogenesis or tumorigenesis, these tiny molecules have also been shown to participate in the regulation of lipid metabolism. In particular, miRs orchestrate cholesterol and fatty acids synthesis, transport, and degradation and low-density and high-density lipoprotein (LDL and HDL) formation. It is thus not surprising that they have also been reported to affect the development and progression of several lipid metabolism-related disorders including liver steatosis and atherosclerosis. Mounting evidence suggests that miRs might represent important "posttranscriptional hubs" of lipid metabolism, which means that one miR usually targets 3'-untranslated regions of various mRNAs that are involved in different steps of one precise metabolic/signaling pathway, e.g., one miR targets mRNAs of enzymes important for cholesterol synthesis, degradation, and transport. Therefore, changes in the levels of one key miR affect various steps of one pathway, which is thereby promoted or inhibited. This makes miRs potent future diagnostic and even therapeutic tools for personalized medicine. Within this chapter, the most prominent microRNAs involved in lipid metabolism, e.g., miR-27a/b, miR-33/33*, miR-122, miR-144, or miR-223, and their intracellular and extracellular functions will be extensively discussed, in particular focusing on their mechanistic role in the pathophysiology of atherosclerosis. Special emphasis will be given on miR-122, the first microRNA currently in clinical trials for the treatment of hepatitis C and on miR-223, the most abundant miR in lipoprotein particles.
Collapse
Affiliation(s)
- Jan Novák
- 2nd Department of Internal Medicine, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic.
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5-building A18, Brno, 62500, Czech Republic.
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5-building A20, Brno, 62500, Czech Republic.
| | - Veronika Olejníčková
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5-building A20, Brno, 62500, Czech Republic
| | - Nikola Tkáčová
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5-building A20, Brno, 62500, Czech Republic
| | - Gaetano Santulli
- Columbia University Medical Center, New York Presbyterian Hospital —Manhattan, New York, NY, USA; “Federico II” University Hospital, Naples, Italy
| |
Collapse
|
208
|
Kyllönen L, D’Este M, Alini M, Eglin D. Local drug delivery for enhancing fracture healing in osteoporotic bone. Acta Biomater 2015; 11:412-34. [PMID: 25218339 DOI: 10.1016/j.actbio.2014.09.006] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 08/30/2014] [Accepted: 09/04/2014] [Indexed: 01/08/2023]
Abstract
Fragility fractures can cause significant morbidity and mortality in patients with osteoporosis and inflict a considerable medical and socioeconomic burden. Moreover, treatment of an osteoporotic fracture is challenging due to the decreased strength of the surrounding bone and suboptimal healing capacity, predisposing both to fixation failure and non-union. Whereas a systemic osteoporosis treatment acts slowly, local release of osteogenic agents in osteoporotic fracture would act rapidly to increase bone strength and quality, as well as to reduce the bone healing period and prevent development of a problematic non-union. The identification of agents with potential to stimulate bone formation and improve implant fixation strength in osteoporotic bone has raised hope for the fast augmentation of osteoporotic fractures. Stimulation of bone formation by local delivery of growth factors is an approach already in clinical use for the treatment of non-unions, and could be utilized for osteoporotic fractures as well. Small molecules have also gained ground as stable and inexpensive compounds to enhance bone formation and tackle osteoporosis. The aim of this paper is to present the state of the art on local drug delivery in osteoporotic fractures. Advantages, disadvantages and underlying molecular mechanisms of different active species for local bone healing in osteoporotic bone are discussed. This review also identifies promising new candidate molecules and innovative approaches for the local drug delivery in osteoporotic bone.
Collapse
|
209
|
Hreha J, Wey A, Cunningham C, Krell ES, Brietbart EA, Paglia DN, Montemurro NJ, Nguyen DA, Lee YJ, Komlos D, Lim E, Benevenia J, O'Connor JP, Lin SS. Local manganese chloride treatment accelerates fracture healing in a rat model. J Orthop Res 2015; 33:122-30. [PMID: 25231276 DOI: 10.1002/jor.22733] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 08/20/2014] [Indexed: 02/04/2023]
Abstract
This study investigated the effects of local delivery of manganese chloride (MnCl2), an insulin-mimetic compound, upon fracture healing using a rat femoral fracture model. Mechanical testing, histomorphometry, and immunohistochemistry were performed to assess early and late parameters of fracture healing. At 4 weeks post-fracture, maximum torque to failure was 70% higher (P<0.05) and maximum torsional rigidity increased 133% (P<0.05) in animals treated with 0.125 mg/kg MnCl2 compared to saline controls. Histological analysis of the fracture callus revealed percent new mineralized tissue was 17% higher (P<0.05) at day 10. Immunohistochemical analysis of the 0.125 mg/kg MnCl2 treated group, compared to saline controls, showed a 379% increase in the density of VEGF-C+ cells. In addition, compared to saline controls, the 0.125 mg/kg MnCl2 treated group showed a 233% and 150% increase in blood vessel density in the subperiosteal region at day 10 post-fracture as assessed by detection of PECAM and smooth muscle α actin, respectively. The results suggest that local MnCl2 treatment accelerates fracture healing by increasing mechanical parameters via a potential mechanism of amplified early angiogenesis leading to increased osteogenesis. Therefore, local administration of MnCl2 is a potential therapeutic adjunct for fracture healing.
Collapse
Affiliation(s)
- Jeremy Hreha
- Department of Orthopaedics, Rutgers-New Jersey Medical School, 90 Bergen Street, Suite 7300, Newark, New Jersey, 07103
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
210
|
Stegen S, van Gastel N, Carmeliet G. Bringing new life to damaged bone: the importance of angiogenesis in bone repair and regeneration. Bone 2015; 70:19-27. [PMID: 25263520 DOI: 10.1016/j.bone.2014.09.017] [Citation(s) in RCA: 326] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 09/14/2014] [Accepted: 09/18/2014] [Indexed: 12/26/2022]
Abstract
Bone has the unique capacity to heal without the formation of a fibrous scar, likely because several of the cellular and molecular processes governing bone healing recapitulate the events during skeletal development. A critical component in bone healing is the timely appearance of blood vessels in the fracture callus. Angiogenesis, the formation of new blood vessels from pre-existing ones, is stimulated after fracture by the local production of numerous angiogenic growth factors. The fracture vasculature not only supplies oxygen and nutrients, but also stem cells able to differentiate into osteoblasts and in a later phase also the ions necessary for mineralization. This review provides a concise report of the regulation of angiogenesis by bone cells, its importance during bone healing and its possible therapeutic applications in bone tissue engineering. This article is part of a Special Issue entitled "Stem Cells and Bone".
Collapse
Affiliation(s)
- Steve Stegen
- Laboratory of Clinical and Experimental Endocrinology, Department of Clinical and Experimental Medicine, KU Leuven, 3000 Leuven, Belgium; Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, 3000 Leuven, Belgium
| | - Nick van Gastel
- Laboratory of Clinical and Experimental Endocrinology, Department of Clinical and Experimental Medicine, KU Leuven, 3000 Leuven, Belgium; Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, 3000 Leuven, Belgium
| | - Geert Carmeliet
- Laboratory of Clinical and Experimental Endocrinology, Department of Clinical and Experimental Medicine, KU Leuven, 3000 Leuven, Belgium; Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, 3000 Leuven, Belgium.
| |
Collapse
|
211
|
Willems WF, Larsen M, Friedrich PF, Bishop AT. Vascularized bone transplant chimerism mediated by vascular endothelial growth factor. Microsurgery 2015; 35:45-51. [PMID: 25073635 PMCID: PMC4308546 DOI: 10.1002/micr.22300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Revised: 07/09/2014] [Accepted: 07/14/2014] [Indexed: 11/12/2022]
Abstract
BACKGROUND Vascular endothelial growth factor (VEGF) induces angiogenesis and osteogenesis in bone allotransplants. We aim to determine whether bone remodeling in VEGF-treated bone allotransplants results from repopulation with circulation-derived autogenous cells or survival of allogenic transplant-derived cells. METHODS Vascularized femoral bone transplants were transplanted from female Dark Agouti rats (DA;RT1(a) ) to male Piebald Viral Glaxo (PVG;RT1(c) ). Arteriovenous bundle implantation and short-term immunosuppression were used to maintain cellular viability. VEGF was encapsulated in biodegradable microspheres and delivered intramedullary in the experimental group (n = 22). In the control group (n = 22), no VEGF was delivered. Rats were sacrificed at 4 or 18 weeks. Laser capture microdissection of bone remodeling areas was performed at the inner and outer cortex. Sex-mismatched genes were quantified with reverse transcription-polymerase chain reaction to determine the amount of male cells to total cells, defined as the relative expression ratio (rER). RESULTS At 4 weeks, rER was significantly higher at the inner cortex in VEGF-treated transplants as compared to untreated transplants (0.622 ± 0.225 vs. 0.362 ± 0.081, P = 0.043). At 4 weeks, the outer cortex in the control group had a significantly higher rER (P = 0.038), whereas in the VEGF group, the inner cortex had a higher rER (P = 0.015). Over time, in the outer cortex the rER significantly increased to 0.634 ± 0.106 at 18 weeks in VEGF-treated rats (P = 0.049). At 18 weeks, the rER was >0.5 at all cortical areas in both groups. CONCLUSIONS These in vivo findings suggest a chemotactic effect of intramedullary applied VEGF on recipient-derived bone and could imply that more rapid angiogenesis of vascularized allotransplants can be established with microencapsulated VEGF.
Collapse
Affiliation(s)
- Wouter F Willems
- Department of Orthopedic Surgery, Microvascular Research Laboratory, Mayo Clinic, Rochester, MN
| | | | | | | |
Collapse
|
212
|
Yuan Q, Sun L, Li JJ, An CH. Elevated VEGF levels contribute to the pathogenesis of osteoarthritis. BMC Musculoskelet Disord 2014; 15:437. [PMID: 25515407 PMCID: PMC4391471 DOI: 10.1186/1471-2474-15-437] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 12/11/2014] [Indexed: 12/23/2022] Open
Abstract
Background The aim of our meta-analysis is to understand the relationship between the pathogenesis of osteoarthritis and the expression levels of vascular endothelial growth factor (VEGF) in multiple disease tissues in osteoarthritis patients. Methods The following electronic databases were searched, without language restrictions, to retrieve published studies relevant to VEGF and osteoarthritis: MEDLINE (1966 ~ 2013), the Cochrane Library Database (Issue 12, 2013), EMBASE (1980 ~ 2013), CINAHL (1982 ~ 2013), Web of Science (1945 ~ 2013) and the Chinese Biomedical Database (CBM) (1982 ~ 2013). Meta-analysis of the extracted data was performed using the STATA statistical software. Standardized mean difference (SMD) with its corresponding 95% confidence interval (95% CI) was calculated. Results A total of 11 case–control studies, containing 302 osteoarthritis patients and 195 healthy controls, met our selection criteria for this meta-analysis. Our analyses of the data available from multiple disease tissues demonstrate that VEGF expression levels in osteoarthritis patients are significantly higher than healthy controls (SMD = 1.18, 95% CI: 4.91 ~ 9.11, P < 0.001). A subgroup analysis based on ethnicity revealed that both Asian and Caucasian osteoarthritis patients had higher levels of VEGF expression compared to their respective healthy counterparts (Asians: SMD = 5.49, 95% CI: 3.44 ~ 7.54, P < 0.001; Caucasians: SMD = 15.17, 95% CI: 5.21 ~ 25.13, P = 0.003; respectively). We also performed other subgroup analyses based on country, language and sample source, and the results showed that, in all these subgroups, osteoarthritis patients had higher levels of VEGF expression than healthy controls (all P > 0.05). Conclusion Our meta-analysis provides evidence that higher VEGF expression levels strongly correlate with the pathogenesis of osteoarthritis. Electronic supplementary material The online version of this article (doi:10.1186/1471-2474-15-437) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Quan Yuan
- Department of Orthopedics, Shengjing Hospital of China Medical University, Sanhao Street No. 36, Heping District, Shenyang, 110004, P.R. China.
| | - Li Sun
- Department of Nephrology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, P.R. China.
| | - Jian-Jun Li
- Department of Orthopedics, Shengjing Hospital of China Medical University, Sanhao Street No. 36, Heping District, Shenyang, 110004, P.R. China.
| | - Chun-Hou An
- Department of Orthopedics, Shengjing Hospital of China Medical University, Sanhao Street No. 36, Heping District, Shenyang, 110004, P.R. China.
| |
Collapse
|
213
|
Ding X, Lucas T, Marcuzzi GP, Pfister H, Eming SA. Distinct Functions of Epidermal and Myeloid-Derived VEGF-A in Skin Tumorigenesis Mediated by HPV8. Cancer Res 2014; 75:330-43. [DOI: 10.1158/0008-5472.can-13-3007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
214
|
Synergistic effects of dimethyloxalylglycine and butyrate incorporated into α-calcium sulfate on bone regeneration. Biomaterials 2014; 39:1-14. [PMID: 25477166 DOI: 10.1016/j.biomaterials.2014.10.054] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 10/19/2014] [Indexed: 01/22/2023]
Abstract
Osteogenesis is closely related to angiogenesis, and the combined delivery of angiogenic and osteogenic factors has been suggested to enhance bone regeneration. Small molecules have been explored as alternatives to growth factors for tissue regeneration applications. In this study, we examined the effects of the combined application of angiogenic and osteogenic small molecules on bone regeneration using a prolyl hydroxylase, dimethyloxalylglycine (DMOG), and a histone deacetylase inhibitor, butyrate. In a critical size bone defect model in rats, DMOG and butyrate, which were incorporated into α calcium sulfate (αCS), resulted in synergistic enhancements in bone and blood vessel formation, eventually leading to bone healing, as confirmed by micro-CT and histological analyses. In MC4 pre-osteoblast cultures, DMOG and butyrate enhanced the pro-angiogenic responses and osteoblast differentiation, respectively, which were evaluated based on the levels of hypoxia inducible factor (HIF)-1α protein and the expression of pro-angiogenic molecules (VEGF, home oxidase-1, glucose transporter-1) and by alkaline phosphatase (ALP) activity and the expression of osteoblast phenotype marker molecules (ALP, α1(I)col, osteocalcin, and bone sialoprotein). DMOG combined with butyrate synergistically improved osteoblast differentiation and pro-angiogenic responses, the levels of which were drastically increased in the cultures on αCS disks. Furthermore, it was demonstrated that αCS increased the level of HIF-1α and as a consequence VEGF expression, and supported osteoblast differentiation through the release of calcium ions from the αCS. Altogether, the results of this study provide evidence that a combination treatment with the small molecules DMOG and butyrate can expedite the process of bone regeneration and that αCS can be an efficient delivery vehicle for the small molecules for bone regeneration.
Collapse
|
215
|
Peng J, Lai ZG, Fang ZL, Xing S, Hui K, Hao C, Jin Q, Qi Z, Shen WJ, Dong QN, Bing ZH, Fu DL. Dimethyloxalylglycine prevents bone loss in ovariectomized C57BL/6J mice through enhanced angiogenesis and osteogenesis. PLoS One 2014; 9:e112744. [PMID: 25394221 PMCID: PMC4231053 DOI: 10.1371/journal.pone.0112744] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 10/12/2014] [Indexed: 12/16/2022] Open
Abstract
Hypoxia-inducible factor 1-α (HIF-1α) plays a critical role in angiogenesis-osteogenesis coupling during bone development and bone regeneration. Previous studies have shown that 17β-estradiol activates the HIF-1α signaling pathway and that mice with conditional activation of the HIF-1α signaling pathway in osteoblasts are protected from ovariectomy (OVX)-induced bone loss. In addition, it has been shown that hypoxia facilitates the osteogenic differentiation of mesenchymal stem cells (MSCs) and modulates Wnt/β-catenin signaling. Therefore, we hypothesized that activation of the HIF-1α signaling pathway by hypoxia-mimicking agents would prevent bone loss due to estrogen deficiency. In this study, we confirmed the effect of dimethyloxalylglycine (DMOG), a hypoxia-mimicking agent, on the HIF-1α signaling pathway and investigated the effect of DMOG on MSC osteogenic differentiation and the Wnt/β-catenin signaling pathway. We then investigated the effect of DMOG treatment on OVX-induced bone loss. Female C57BL/6J mice were divided into sham, OVX, OVX+L-DMOG (5 mg/kg/day), and OVX+H-DMOG (20 mg/kg/day) groups. At sacrifice, static and dynamic bone histomorphometry were performed with micro computed tomography (micro-CT) and undecalcified sections, respectively. Bone strength was assessed with the three-point bending test, and femur vessels were reconstructed and analyzed by micro-CT. Serum vascular endothelial growth factor (VEGF), osteocalcin, and C-terminal telopeptides of collagen type(CTX) were measured by ELISA. Tartrate-resistant acid phosphatase staining was used to assess osteoclast formation. Alterations in the HIF-1α and Wnt/β-catenin signaling pathways in the bone were detected by western blot. Our results showed that DMOG activated the HIF-1α signaling pathway, which further activated the Wnt/β-catenin signaling pathway and enhanced MSC osteogenic differentiation. The micro-CT results showed that DMOG treatment improved trabecular bone density and restored the bone microarchitecture and blood vessels in OVX mice. Bone strength was also partly restored in DMOG-treated OVX mice. Dynamic bone histomorphometric analysis of the femur metaphysic revealed that DMOG increased the mineralizing surface, mineral apposition rate, and bone formation rate. The serum levels of VEGF and osteocalcin were higher in DMOG-treated OVX mice. However, there were no significant differences in serum CTX or in the number of tartrate-resistant acid phosphatase-stained cells between DMOG-treated OVX mice and OVX mice. Western blot results showed that DMOG administration partly rescued the decrease in HIF-1α and β-catenin expression following ovariectomy. Collectively, these results indicate that DMOG prevents bone loss due to ovariectomy in C57BL/6J mice by enhancing angiogenesis and osteogenesis, which are associated with activated HIF-1α and Wnt/β-catenin signaling pathways.
Collapse
Affiliation(s)
- Jia Peng
- Shanghai Institute of Traumatology and Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Ruijin Hospital, Jiao Tong University School of Medicine, Shanghai, China
| | - Zuo Gui Lai
- Shanghai Institute of Traumatology and Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Ruijin Hospital, Jiao Tong University School of Medicine, Shanghai, China
- Department of Orthopaedics, Qian Fo Shan Hospital, Shang Dong University, Ji Nan, China
| | - Zhang Lian Fang
- Shanghai Institute of Traumatology and Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Ruijin Hospital, Jiao Tong University School of Medicine, Shanghai, China
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Shen Xing
- Shanghai Institute of Traumatology and Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Ruijin Hospital, Jiao Tong University School of Medicine, Shanghai, China
| | - Kang Hui
- Shanghai Institute of Traumatology and Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Ruijin Hospital, Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Hao
- Shanghai Institute of Traumatology and Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Ruijin Hospital, Jiao Tong University School of Medicine, Shanghai, China
| | - Qi Jin
- Shanghai Institute of Traumatology and Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Ruijin Hospital, Jiao Tong University School of Medicine, Shanghai, China
| | - Zhou Qi
- Shanghai Institute of Traumatology and Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Ruijin Hospital, Jiao Tong University School of Medicine, Shanghai, China
| | - Wang Jin Shen
- Shanghai Institute of Traumatology and Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Ruijin Hospital, Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Nian Dong
- Shanghai Institute of Traumatology and Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Ruijin Hospital, Jiao Tong University School of Medicine, Shanghai, China
| | - Zhou Han Bing
- Shanghai Institute of Traumatology and Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Ruijin Hospital, Jiao Tong University School of Medicine, Shanghai, China
| | - Deng Lian Fu
- Shanghai Institute of Traumatology and Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Ruijin Hospital, Jiao Tong University School of Medicine, Shanghai, China
- * E-mail:
| |
Collapse
|
216
|
The prolyl hydroxylase inhibitor dimethyloxalylglycine enhances dentin sialophoshoprotein expression through VEGF-induced Runx2 stabilization. PLoS One 2014; 9:e112078. [PMID: 25369078 PMCID: PMC4219688 DOI: 10.1371/journal.pone.0112078] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 10/13/2014] [Indexed: 01/19/2023] Open
Abstract
Prolyl hydroxylase (PHD) inhibitors are suggested as therapeutic agents for tissue regeneration based on their ability to induce pro-angiogenic responses. In this study, we examined the effect of the PHD inhibitor dimethyloxalylglycine (DMOG) on odontoblast maturation and sought to determine the underlying mechanism using MDPC-23 odontoblast-like cells. DMOG significantly enhanced matrix mineralization, confirmed by alizarin red staining and by measurement of the calcium content. DMOG dose-dependently increased alkaline phosphatase activity and the expressions of dentin sialophosphoprotein (Dspp) and osteocalcin. To determine the underlying events leading to DMOG-induced Dspp expression, we analyzed the effect of DMOG on Runx2. Knockdown of Runx2 using siRNAs decreased Dspp expression and prevented DMOG-induced Dspp expression. DMOG enhanced the transcriptional activity and level of Runx2 protein but not Runx2 transcript, and this enhancement was linked to the inhibitory effects of DMOG on the degradation of Runx2 protein. The vascular endothelial growth factor (VEGF) siRNAs profoundly decreased the Runx2 protein levels and inhibited the DMOG-increased Runx2 protein. Recombinant VEGF protein treatment significantly and dose-dependently increased the transcriptional activity and level of the Runx2 protein but not Runx2 transcript. Dspp expression was also enhanced by VEGF. Last, we examined the involvement of the Erk mitogen-activated protein kinase and Pin1 pathway in VEGF-enhanced Runx2 because this pathway can regulate the stability and activity of the Runx2 protein. VEGF stimulated Erk activation, and the inhibitors of Erk and Pin1 hampered VEGF-enhanced Runx2 protein. Taken together, the results of this study provide evidence that DMOG can enhance Dspp expression through VEGF-induced stabilization of Runx2 protein, and thus, suggest that DMOG can be used as a therapeutic tool for enhancing odontoblast maturation in dental procedures.
Collapse
|
217
|
Sinha P, Aarnisalo P, Chubb R, Ono N, Fulzele K, Selig M, Saeed H, Chen M, Weinstein LS, Pajevic PD, Kronenberg HM, Wu JY. Loss of Gsα early in the osteoblast lineage favors adipogenic differentiation of mesenchymal progenitors and committed osteoblast precursors. J Bone Miner Res 2014; 29:2414-26. [PMID: 24806274 PMCID: PMC4220542 DOI: 10.1002/jbmr.2270] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 04/22/2014] [Accepted: 04/30/2014] [Indexed: 12/18/2022]
Abstract
In humans, aging and glucocorticoid treatment are associated with reduced bone mass and increased marrow adiposity, suggesting that the differentiation of osteoblasts and adipocytes may be coordinately regulated. Within the bone marrow, both osteoblasts and adipocytes are derived from mesenchymal progenitor cells, but the mechanisms guiding the commitment of mesenchymal progenitors into osteoblast versus adipocyte lineages are not fully defined. The heterotrimeric G protein subunit Gs α activates protein kinase A signaling downstream of several G protein-coupled receptors including the parathyroid hormone receptor, and plays a crucial role in regulating bone mass. Here, we show that targeted ablation of Gs α in early osteoblast precursors, but not in differentiated osteocytes, results in a dramatic increase in bone marrow adipocytes. Mutant mice have reduced numbers of mesenchymal progenitors overall, with an increase in the proportion of progenitors committed to the adipocyte lineage. Furthermore, cells committed to the osteoblast lineage retain adipogenic potential both in vitro and in vivo. These findings have clinical implications for developing therapeutic approaches to direct the commitment of mesenchymal progenitors into the osteoblast lineage.
Collapse
Affiliation(s)
- Partha Sinha
- Endocrine Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Piia Aarnisalo
- Endocrine Unit, Massachusetts General Hospital, Boston, MA, USA
- Department of Clinical Chemistry, University of Helsinki and Helsinki University Central Hospital, Hospital District of Helsinki and Uusimaa, Laboratory Services (HUSLAB), Helsinki, Finland
| | - Rhiannon Chubb
- Endocrine Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Noriaki Ono
- Endocrine Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Keertik Fulzele
- Endocrine Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Martin Selig
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Hamid Saeed
- Division of Endocrinology, Stanford University School of Medicine, Stanford, CA, USA
| | - Min Chen
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Lee S Weinstein
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | | | | | - Joy Y Wu
- Endocrine Unit, Massachusetts General Hospital, Boston, MA, USA
- Division of Endocrinology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
218
|
Yang Y, Ma B, Jin Y, Ben W, Zhang D, Jiang K, Feng S, Huang L, Zheng J. Bioinformatic mining of kinase inhibitors that regulate autophagy through kinase signaling pathways. Mol Med Rep 2014; 10:3348-56. [PMID: 25323421 DOI: 10.3892/mmr.2014.2663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 09/09/2014] [Indexed: 11/05/2022] Open
Abstract
The aim of this study was to predict the kinase inhibitors that may regulate autophagy. A total of 62 kinases were obtained through text mining by importing the keyword 'autophagy' and a 'protein kinase' Excel file to PubMed. Subsequently, 146 kinases were derivated through screening in the PubMed database by importing the 'autophagy‑associated gene' and 'protein kinase' files. Following intersection of the above two methods, 54 candidate autophagy‑associated kinases were obtained. Enrichment analysis indicated that these candidate autophagy‑associated kinases were mainly enriched in pathways such as the calcium, Wnt, HIF‑1 and mTOR signaling pathways. Among the 54 kinases, 24 were identified through text mining to have specific kinase inhibitors that regulate the corresponding functions; a total of 56 kinase inhibitors were found to be involved in the regulation of these 24 kinases. In total, nine of these 56 kinase inhibitors identified had been widely reported in autophagy regulation studies, 23 kinase inhibitors had been seldom reported and 24 had never been reported. Therefore, introducing these kinases into autophagy regulation analysis in subsequent studies may produce important results.
Collapse
Affiliation(s)
- Yang Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Biao Ma
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Ye Jin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Wei Ben
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Dandan Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Keping Jiang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Shujun Feng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Lu Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Jianhua Zheng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
219
|
Maes C, Clemens TL. Angiogenic-osteogenic coupling: the endothelial perspective. BONEKEY REPORTS 2014; 3:578. [PMID: 25328674 PMCID: PMC4197481 DOI: 10.1038/bonekey.2014.73] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Christa Maes
- Laboratory for Skeletal Cell Biology and Physiology (SCEBP), Skeletal Biology and Engineering Research Center (SBE), Department of Development and Regeneration, KU Leuven , Leuven, Belgium
| | - Thomas L Clemens
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine , Baltimore, MD, USA
| |
Collapse
|
220
|
Do lamin A and lamin C have unique roles? Chromosoma 2014; 124:1-12. [PMID: 25283634 DOI: 10.1007/s00412-014-0484-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Revised: 08/12/2014] [Accepted: 08/13/2014] [Indexed: 10/24/2022]
Abstract
The A-type lamins, lamin A and lamin C, generated from a single gene, LMNA, are major structural components of the nuclear lamina. The two alternative splice products have mostly been studied together because they have been considered to be interchangeable. However, several lines of evidence indicate that in spite of being generated from the same gene and having high similarities in their primary sequences, the two isoforms are not equivalent in different biological aspects in both health and disease. The key question is whether they have both overlapping and unique functions and whether they are distinctly regulated. Based on the so far available experimental evidence, lamin A appears to be the most regulated A-type isoform during development, aging, and disease which indicates that lamin A is implicated in many different biological aspects and may have a greater repertoire of specialized functions than lamin C. The aim of this review is to point out differences between the two major LMNA splice variants and the consequences of these differences on their functions. This may guide further research and be of prime importance for the understanding of the pathogenesis of LMNA mutations.
Collapse
|
221
|
Baraliakos X, Heldmann F, Callhoff J, Listing J, Appelboom T, Brandt J, Van den Bosch F, Breban M, Burmester G, Dougados M, Emery P, Gaston H, Grunke M, Van Der Horst-Bruinsma IE, Landewé R, Leirisalo-Repo M, Sieper J, De Vlam K, Pappas D, Kiltz U, Van Der Heijde D, Braun J. Which spinal lesions are associated with new bone formation in patients with ankylosing spondylitis treated with anti-TNF agents? A long-term observational study using MRI and conventional radiography. Ann Rheum Dis 2014; 73:1819-25. [PMID: 23852807 DOI: 10.1136/annrheumdis-2013-203425] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
OBJECTIVE To study the relationship of spinal inflammation and fatty degeneration (FD) as detected by MRI and new bone formation seen on conventional radiographs (CRs) in ankylosing spondylitis (AS). METHODS CRs at baseline, 2 years and 5 years and spinal MRIs at baseline and 2 years of 73 AS patients treated with infliximab in European AS Infliximab Cohort were available. Relative risks (RR) were calculated with a general linear model after adjustment for within-patient variation. RESULTS In a total of 1466 vertebral edges (VEs) without baseline syndesmophytes, 61 syndesmophytes developed at 5 years, the majority of which (57.4%) had no corresponding detectable MRI lesions at baseline. VEs with both inflammation and FD at baseline had the highest risk (RR 3.3, p=0.009) for syndesmophyte formation at 5 years, followed by VEs that developed new FD or did not resolve FD at 2 years (RR=2.3, p=0.034), while inflammation at baseline with no FD at 2 years had the lowest risk for syndesmophyte formation at 5 years (RR=0.8). Of the VEs with inflammation at baseline, >70% resolved completely, 28.8% turned into FD after 2 years, but only 1 syndesmophyte developed within 5 years. CONCLUSIONS Parallel occurrence of inflammation and FD at baseline and development of FD without prior inflammation after 2 years were significantly associated with syndesmophyte formation after 5 years of anti-tumour necrosis factor (TNF) therapy. However, the sequence 'inflammation-FD-new bone formation' was rarely observed, an argument against the TNF-brake hypothesis. Whether an early suppression of inflammation leads to a decrease of the risk for new bone formation remains to be demonstrated.
Collapse
Affiliation(s)
- X Baraliakos
- Rheumazentrum Ruhrgebiet Herne, Ruhr-University Bochum, Germany
| | - F Heldmann
- Rheumazentrum Ruhrgebiet Herne, Ruhr-University Bochum, Germany
| | - J Callhoff
- Epidemiology Unit, German Rheumatism Research Center, Berlin, Germany
| | - J Listing
- Epidemiology Unit, German Rheumatism Research Center, Berlin, Germany
| | | | - J Brandt
- Rheumapraxis Steglitz/Charité, Berlin, Germany
| | - F Van den Bosch
- Department of Rheumatology, Universitair Ziekenhuis Ghent, Gent, Belgium
| | - M Breban
- Department of Rheumatology, Hopital Ambroise Paré, University of Versailles Saint-Quentin-en-Yvelines, Boulogne, France
| | - Gr Burmester
- Department of Rheumatology and Clinical Immunology, Charité University Medicine Berlin, Campus Mitte, Berlin, Germany
| | - M Dougados
- Department of Rheumatology B, Paris-Descartes University; AP-HP, Cochin Hospital, Paris, France
| | - P Emery
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Chapel Allerton Hospital, Leeds, and NIHR Leeds Musculoskeletal Biomedical Research Unit, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - H Gaston
- Department of Rheumatology, Addenbrookes Hospital, University of Cambridge, Cambridge, UK
| | - M Grunke
- Medizinische Klinik und Poliklinik IV, University of Munich, Munich, Germany
| | | | - R Landewé
- Department of Clinical immunology & Rheumatology, AMC Amsterdam, Academisch Ziekenhuis Maastricht, Amsterdam, The Netherlands
| | - M Leirisalo-Repo
- Department of Medicine, Division of Rheumatology, University Central Hospital Helsinki, Helsinki, Finland
| | - J Sieper
- Medical Department I, Rheumatology, Charité University Medicine Berlin, Campus Steglitz, Berlin, Germany
| | - K De Vlam
- University Hospital Leuven, Leuven, Belgium
| | - D Pappas
- Center for Orthopaedics and Traumatology, St. Anna Hospital, Herne, Germany
| | - U Kiltz
- Rheumazentrum Ruhrgebiet Herne, Ruhr-University Bochum, Germany
| | - D Van Der Heijde
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - J Braun
- Rheumazentrum Ruhrgebiet Herne, Ruhr-University Bochum, Germany
| |
Collapse
|
222
|
El-Chemaly S, Pacheco-Rodriguez G, Malide D, Meza-Carmen V, Kato J, Cui Y, Padilla PI, Samidurai A, Gochuico BR, Moss J. Nuclear localization of vascular endothelial growth factor-D and regulation of c-Myc-dependent transcripts in human lung fibroblasts. Am J Respir Cell Mol Biol 2014; 51:34-42. [PMID: 24450584 DOI: 10.1165/rcmb.2013-0417oc] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Lymphangiogenesis and angiogenesis are processes that are, in part, regulated by vascular endothelial growth factor (VEGF)-D. The formation of lymphatic structures has been implicated in multiple lung diseases, including pulmonary fibrosis. VEGF-D is a secreted protein produced by fibroblasts and macrophages, which induces lymphangiogenesis by signaling via VEGF receptor-3, and angiogenesis through VEGF receptor-2. VEGF-D contains a central VEGF homology domain, which is the biologically active domain, with flanking N- and C-terminal propeptides. Full-length VEGF-D (∼ 50 kD) is proteolytically processed in the extracellular space, to generate VEGF homology domain that contains the VEGF-D receptor-binding sites. Here, we report that, independent of its cell surface receptors, full-length VEGF-D accumulated in nuclei of fibroblasts, and that this process appears to increase with cell density. In nuclei, full-length VEGF-D associated with RNA polymerase II and c-Myc. In cells depleted of VEGF-D, the transcriptionally regulated genes appear to be modulated by c-Myc. These findings have potential clinical implications, as VEGF-D was found in fibroblast nuclei in idiopathic pulmonary fibrosis, a disease characterized by fibroblast proliferation. These findings are consistent with actions of full-length VEGF-D in cellular homeostasis in health and disease, independent of its receptors.
Collapse
|
223
|
Bao W, Yin J, Liang Y, Guo Z, Wang Y, Liu D, Wang X, Wang Z. Recombinant Goat VEGF164 Increases Hair Growth by Painting Process on the Skin of Shaved Mouse. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2014; 27:1355-9. [PMID: 25178380 PMCID: PMC4150203 DOI: 10.5713/ajas.2014.14046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 03/11/2014] [Accepted: 03/31/2014] [Indexed: 11/27/2022]
Abstract
To detect goat vascular endothelial growth factor (VEGF)-mediated regrowth of hair, full-length VEGF164 cDNA was cloned from Inner Mongolia cashmere goat (Capra hircus) into the pET-his prokaryotic expression vector, and the recombinant plasmid was transferred into E. coli BL21 cells. The expression of recombinant 6×his-gVEGF164 protein was induced by 0.5 mM isopropyl thio-β-D-galactoside at 32°C. Recombinant goat VEGF164 (rgVEGF164) was purified and identi ed by western blot using monoclonal anti-his and anti-VEGF antibodies. The rgVEGF164 was smeared onto the dorsal area of a shaved mouse, and we noted that hair regrowth in this area was faster than in the control group. Thus, rgVEGF164 increases hair growth in mice.
Collapse
|
224
|
Zhang X, Akech J, Browne G, Russell S, Wixted JJ, Stein JL, Stein GS, Lian JB. Runx2-Smad signaling impacts the progression of tumor-induced bone disease. Int J Cancer 2014; 136:1321-32. [PMID: 25053011 DOI: 10.1002/ijc.29094] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 06/26/2014] [Accepted: 07/09/2014] [Indexed: 12/30/2022]
Abstract
Runx2, a master regulator of osteogenesis, is abnormally expressed in advanced prostate cancer. Here, we addressed Runx2 contribution to formation of prostate cancer-related osteolytic and osteoblastic bone lesions by mediating TGFβ/BMP signaling through direct interaction with Smads. Further, we examined involvement of the Runx2-Smad complex in mediating tumor growth and distal metastasis. To identify Runx2-Smad-specific mechanisms of prostate tumor activity in bone, we generated PC3 prostate cancer cell lines expressing Runx2-WT or one of two mutant proteins (Runx2-HTY and Runx2-ΔC) that each disrupt the Runx2-Smad interaction, either directly through a point mutation or by deletion of the functional C-terminus, respectively. Intratibial tumors generated from these cells revealed that Runx2-WT-expressing cells resulted in predominantly osteolytic disease, whereas cells expressing mutant proteins exhibited tumors with mixed osteolytic/osteoblastic lesions. Extent of bone loss and woven bone formation was assessed by radiography and micro-computed tomography. Bioluminescent imaging showed the presence of labeled prostate cancer cells in the lung at the latest time point examined, with Runx2-WT group exhibiting increased incidence of tumor cells in lung. Notably, disruption of the Runx2-Smad interaction significantly reduced incidence and size of lung tumors. Altered expression of Runx2 target genes involved in invasion, growth, adhesion and metastasis supported our findings. Thus, our studies demonstrate that Runx2 in prostate cancer cells plays a significant role in intratibial prostate cancer-related tumor growth and bone loss through mechanisms mediated by the Runx2-Smad signaling pathway. This work expands upon the potential importance of Runx2 as a therapeutic target in cancer.
Collapse
Affiliation(s)
- Xuhui Zhang
- Department of Biochemistry, University of Vermont College of Medicine, Burlington, VT; Department of Cell Biology, University of Massachusetts Medical School, Worcester, MA
| | | | | | | | | | | | | | | |
Collapse
|
225
|
Zahoor M, Cha PH, Choi KY. Indirubin-3'-oxime, an activator of Wnt/β-catenin signaling, enhances osteogenic commitment of ST2 cells and restores bone loss in high-fat diet-induced obese male mice. Bone 2014; 65:60-8. [PMID: 24815917 DOI: 10.1016/j.bone.2014.05.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 04/30/2014] [Accepted: 05/02/2014] [Indexed: 10/25/2022]
Abstract
Obesity is a growing issue of the modern world, and its negative impact on bones in obese male patients has been recently reported. The Wnt/β-catenin pathway has an established role in the regulation of body fat content and bone density. We investigated the effects of indirubin-3'-oxime (I3O), the GSK3β inhibitor that activates Wnt/β-catenin signaling, on trabecular bone in high-fat diet (HFD)-induced obese male mice. I3O reverses the downregulating effect of fatty acid (FA) on Wnt/β-catenin signaling and enhances the osteogenic commitment of the bone marrow-derived stromal cell line ST2. FA induces the adipogenic differentiation of bone marrow stromal cells in vitro. In a male mouse model of HFD-induced obesity, trabecular bone loss was observed in the femora, with a gross increase in abdominal fat; however, the HFD effects were rescued with the activation of Wnt/β-catenin signaling by I3O treatment. I3O administration also reversed the increase in the number of HFD-induced adipocytes in the femur bone marrow in trabecular bone. Overall, our results indicate that I3O could be a potential therapeutic agent for obese male patients through downregulation of abdominal fat and net increment in trabecular bone density.
Collapse
Affiliation(s)
- Muhammad Zahoor
- Translational Research Center for Protein Function Control, Yonsei University, Seoul, South Korea; Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Pu-Hyeon Cha
- Translational Research Center for Protein Function Control, Yonsei University, Seoul, South Korea; Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Kang-Yell Choi
- Translational Research Center for Protein Function Control, Yonsei University, Seoul, South Korea; Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea.
| |
Collapse
|
226
|
Madhu V, Li CJ, Dighe AS, Balian G, Cui Q. BMP-non-responsive Sca1+ CD73+ CD44+ mouse bone marrow derived osteoprogenitor cells respond to combination of VEGF and BMP-6 to display enhanced osteoblastic differentiation and ectopic bone formation. PLoS One 2014; 9:e103060. [PMID: 25048464 PMCID: PMC4105618 DOI: 10.1371/journal.pone.0103060] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 06/25/2014] [Indexed: 12/29/2022] Open
Abstract
Clinical trials on fracture repair have challenged the effectiveness of bone morphogenetic proteins (BMPs) but suggest that delivery of mesenchymal stem cells (MSCs) might be beneficial. It has also been reported that BMPs could not increase mineralization in several MSCs populations, which adds ambiguity to the use of BMPs. However, an exogenous supply of MSCs combined with vascular endothelial growth factor (VEGF) and BMPs is reported to synergistically enhance fracture repair in animal models. To elucidate the mechanism of this synergy, we investigated the osteoblastic differentiation of cloned mouse bone marrow derived MSCs (D1 cells) in vitro in response to human recombinant proteins of VEGF, BMPs (-2, -4, -6, -9) and the combination of VEGF with BMP-6 (most potent BMP). We further investigated ectopic bone formation induced by MSCs pre-conditioned with VEGF, BMP-6 or both. No significant increase in mineralization, phosphorylation of Smads 1/5/8 and expression of the ALP, COL1A1 and osterix genes was observed upon addition of VEGF or BMPs alone to the cells in culture. The lack of CD105, Alk1 and Alk6 expression in D1 cells correlated with poor response to BMPs indicating that a greater care in the selection of MSCs is necessary. Interestingly, the combination of VEGF and BMP-6 significantly increased the expression of ALP, COL1A1 and osterix genes and D1 cells pre-conditioned with VEGF and BMP-6 induced greater bone formation in vivo than the non-conditioned control cells or the cells pre-conditioned with either VEGF or BMP-6 alone. This enhanced bone formation by MSCs correlated with higher CADM1 expression and OPG/RANKL ratio in the implants. Thus, combined action of VEGF and BMP on MSCs enhances osteoblastic differentiation of MSCs and increases their bone forming ability, which cannot be achieved through use of BMPs alone. This strategy can be effectively used for bone repair.
Collapse
Affiliation(s)
- Vedavathi Madhu
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Virginia, Charlottesville, Virginia, United States of America
| | - Ching-Ju Li
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Virginia, Charlottesville, Virginia, United States of America
| | - Abhijit S. Dighe
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Virginia, Charlottesville, Virginia, United States of America
| | - Gary Balian
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Virginia, Charlottesville, Virginia, United States of America
| | - Quanjun Cui
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Virginia, Charlottesville, Virginia, United States of America
- * E-mail:
| |
Collapse
|
227
|
Knockdown of PTHR1 in osteosarcoma cells decreases invasion and growth and increases tumor differentiation in vivo. Oncogene 2014; 34:2922-33. [PMID: 25043296 DOI: 10.1038/onc.2014.217] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Revised: 06/01/2014] [Accepted: 06/13/2014] [Indexed: 12/11/2022]
Abstract
Osteosarcoma (OS) is the most common cancer of bone. Parathyroid hormone (PTH) regulates calcium homeostasis and bone development, while the paracrine/autocrine PTH-related protein (PTHrP) has central roles in endochondral bone formation and bone remodeling. Using a murine OS model, we found that OS cells express PTHrP and the common PTH/PTHrP receptor (PTHR1). To investigate the role of PTHR1 signaling in OS cell behavior, we used shRNA to reduce PTHR1 expression. This only mildly inhibited proliferation in vitro, but markedly reduced invasion through collagen and reduced expression of RANK ligand (RANKL). Administration of PTH(1-34) did not stimulate OS proliferation in vivo but, strikingly, PTHR1 knockdown resulted in a profound growth inhibition and increased differentiation/mineralization of the tumors. Treatment with neutralizing antibody to PTHrP did not recapitulate the knockdown of PTHR1. Consistent with this lack of activity, PTHrP was predominantly intracellular in OS cells. Knockdown of PTHR1 resulted in increased expression of late osteoblast differentiation genes and upregulation of Wnt antagonists. RANKL production was reduced in knockdown tumors, providing for reduced homotypic signaling through the receptor, RANK. Loss of PTHR1 resulted in the coordinated loss of gene signatures associated with the polycomb repressive complex 2 (PRC2). Using Ezh2 inhibitors, we demonstrate that the increased expression of osteoblast maturation markers is in part mediated by the loss of PRC2 activity. Collectively these results demonstrate that PTHR1 signaling is important in maintaining OS proliferation and undifferentiated state. This is in part mediated by intracellular PTHrP and through regulation of the OS epigenome.
Collapse
|
228
|
Role of angiogenesis in bone repair. Arch Biochem Biophys 2014; 561:109-17. [PMID: 25034215 DOI: 10.1016/j.abb.2014.07.006] [Citation(s) in RCA: 264] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Revised: 07/01/2014] [Accepted: 07/08/2014] [Indexed: 12/25/2022]
Abstract
Bone vasculature plays a vital role in bone development, remodeling and homeostasis. New blood vessel formation is crucial during both primary bone development as well as fracture repair in adults. Both bone repair and bone remodeling involve the activation and complex interaction between angiogenic and osteogenic pathways. Interestingly studies have demonstrated that angiogenesis precedes the onset of osteogenesis. Indeed reduced or inadequate blood flow has been linked to impaired fracture healing and old age related low bone mass disorders such as osteoporosis. Similarly the slow penetration of host blood vessels in large engineered bone tissue grafts has been cited as one of the major hurdle still impeding current bone construction engineering strategies. This article reviews the current knowledge elaborating the importance of vascularization during bone healing and remodeling, and the current therapeutic strategies being adapted to promote and improve angiogenesis.
Collapse
|
229
|
Miao T, Rao KS, Spees JL, Oldinski RA. Osteogenic differentiation of human mesenchymal stem cells through alginate-graft-poly(ethylene glycol) microsphere-mediated intracellular growth factor delivery. J Control Release 2014; 192:57-66. [PMID: 24979209 DOI: 10.1016/j.jconrel.2014.06.029] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 06/18/2014] [Accepted: 06/19/2014] [Indexed: 01/18/2023]
Abstract
The intracellular delivery of growth factors increases opportunities for controlling cell behavior and maintaining tissue homeostasis. Recently, VEGFA was reported to enhance osteogenic differentiation of mesenchymal stem cells (MSCs) through an intracrine mechanism, suggesting a new strategy to promote bone tissue formation in osteoporotic patients. The goal of this study was to design and fabricate ligand-conjugated alginate-graft-poly(ethylene glycol) microspheres for intracellular delivery and release of VEGFA in primary human MSCs to enhance osteogenic differentiation as a potential therapeutic. Three types of microspheres were synthesized and characterized by scanning electron microscopy, in vitro drug release kinetics, MSC uptake and internalization: alginate alone (Alg), alginate-graft-poly(ethylene glycol) (Alg-g-PEG) and alginate-graft-poly(ethylene glycol)-S-S-arginine-glycine-aspartic acid (Alg-g-RGD). Each of the different microsphere formulations successfully transported bioactive VEGFA into primary human MSCs within 48h of culture, and significantly enhanced osteogenic differentiation compared to control treatments with empty microspheres (intracellular control) or non-encapsulated VEGFA (extracellular control). Adipogenic differentiation was not affected by the presence of VEGFA intracellularly or extracellularly. These results demonstrating the internalization of alginate-based microspheres and intracellular delivery of VEGFA support the efficacy of using this drug delivery and intracrine mechanism to control the fate of human MSCs and enhance osteogenic differentiation.
Collapse
Affiliation(s)
- Tianxin Miao
- Bioengineering Program, College of Engineering and Mathematical Sciences, College of Medicine, University of Vermont, Burlington VT 05405, USA.
| | - Krithika S Rao
- Cell and Molecular Biology Graduate Program, College of Medicine, University of Vermont, Burlington, VT 05405, USA.
| | - Jeffrey L Spees
- Cell and Molecular Biology Graduate Program, College of Medicine, University of Vermont, Burlington, VT 05405, USA; Stem Cell Core, University of Vermont, Colchester, VT 05446, USA.
| | - Rachael A Oldinski
- Bioengineering Program, College of Engineering and Mathematical Sciences, College of Medicine, University of Vermont, Burlington VT 05405, USA; Mechanical Engineering Program, College of Engineering and Mathematical Sciences, University of Vermont, Burlington, VT 05405, USA; Department of Orthopaedics and Rehabilitation, College of Medicine, University of Vermont, Burlington, VT 05405, USA.
| |
Collapse
|
230
|
A novel PPARγ2 modulator sLZIP controls the balance between adipogenesis and osteogenesis during mesenchymal stem cell differentiation. Cell Death Differ 2014; 21:1642-55. [PMID: 24948012 DOI: 10.1038/cdd.2014.80] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 04/22/2014] [Accepted: 05/09/2014] [Indexed: 02/08/2023] Open
Abstract
Mesenchymal stem cells (MSCs), also known as multipotent stromal cells, are used in clinical trials. However, the use of MSCs for medical treatment of patients poses a potential problem due to the possibility of transdifferentiation into unwanted tissues. Disruption of the balance during MSC differentiation leads to obesity, skeletal fragility, and osteoporosis. Differentiation of MSCs into either adipocytes or osteoblasts is transcriptionally regulated by the two key transcription factors PPARγ2 and Runx2. PPARγ2 is highly expressed during adipocyte differentiation and regulates expression of genes involved in adipogenesis. Runx2 induces osteogenic gene expression and, thereby, increases osteoblast differentiation. Although transcriptional modulation of PPARγ2 has been investigated in adipogenesis, the underlying molecular mechanisms to control the balance between adipogenesis and osteogenesis in MSCs remain unclear. In this study, the role of sLZIP in regulation of PPARγ2 transcriptional activation was investigated along with sLZIP's involvement in differentiation of MSCs into adipocytes and osteoblasts. sLZIP interacts with PPARγ2 and functions as a corepressor of PPARγ2. sLZIP enhances formation of the PPARγ2 corepressor complex through specific interaction with HDAC3, resulting in suppression of PPARγ2 transcriptional activity. We found that sLZIP prevents expression of PPARγ2 target genes and adipocyte differentiation both in vitro and in vivo. sLZIP also upregulates Runx2 transcriptional activity via inhibition of PPARγ2 activity, and promotes osteoblast differentiation. sLZIP transgenic mice exhibited enhanced bone mass and density, compared with wild-type mice. These results indicate that sLZIP has a critical role in the regulation of osteogenesis and bone development. However, sLZIP does not affect chondrogenesis and osteoclastogenesis. We propose that sLZIP is a novel PPARγ2 modulator for control of the balance between adipogenesis and osteogenesis during MSC differentiation, and that sLZIP can be used as a therapeutic target molecule for treatment of obesity, osteodystrophy, and osteoporosis.
Collapse
|
231
|
Li N, Pan S, Zhu H, Mu H, Liu W, Hua J. BMP4 promotes SSEA-1(+) hUC-MSC differentiation into male germ-like cells in vitro. Cell Prolif 2014; 47:299-309. [PMID: 24923741 DOI: 10.1111/cpr.12115] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 03/20/2014] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES Recent studies have demonstrated that primordial germ cells (PGC) can be differentiated from human umbilical cord mesenchymal stem cells (hUC-MSCs), and embryonic stem cells (ESCs) in vitro. Nevertheless, efficiencies were low and unstable. Here, whether hUC-MSCs can be induced to differentiate into germ-like cells with the aid of bone morphogenetic protein (BMP4) was investigated. MATERIALS AND METHODS Human umbilical cord mesenchymal stem cells were freshly isolated and cultured with BMP4. SSEA-1(+/-) cells were purified using magnetic-activated cell sorting (MACS) from the hUC-MSCs, and further induced with BMP4. Quantitative real-time PCR (qRT-PCR) and immunofluorescence analysis were used to determine PGC and germ-like cell-specific markers. RESULTS Human umbilical cord mesenchymal stem cells differentiated into SSEA-1(+) spherical PGC-like cells efficiently with 12.5 ng/ml BMP4. qRT-PCR and immunofluorescence analysis demonstrated that SSEA-1(+) cells expressed higher levels of PGC-specific markers than SSEA-1(-) cells. Furthermore, SSEA-1(+) cells were induced with BMP4 to differentiate into STRA8, SCP3, DMRT1 and PLZF-positive male germ-like cells, and some sperm-like cells were obtained by 7-14 days after induction. CONCLUSION These results suggest that SSEA-1(+) hUC-MSCs can differentiate into male germ-like cells in the presence of BMP4. This study provides an efficient protocol to study germ-cell development using hUC-MSCs.
Collapse
Affiliation(s)
- N Li
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Key Lab for Animal Biotechnology of Agriculture Ministry of China, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | | | | | | | | | | |
Collapse
|
232
|
Gemini-Piperni S, Milani R, Bertazzo S, Peppelenbosch M, Takamori ER, Granjeiro JM, Ferreira CV, Teti A, Zambuzzi W. Kinome profiling of osteoblasts on hydroxyapatite opens new avenues on biomaterial cell signaling. Biotechnol Bioeng 2014; 111:1900-5. [PMID: 24668294 DOI: 10.1002/bit.25246] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 03/07/2014] [Accepted: 03/19/2014] [Indexed: 11/11/2022]
Abstract
In degenerative diseases or lesions, bone tissue replacement and regeneration are important clinical goals. The most used bone substitutes today are hydroxyapatite (HA) scaffolds. These scaffolds, developed over the last few decades, present high porosity and good osteointegration, but haven't completely solved issues related to bone defects. Moreover, the exact intracellular mechanisms involved in the response to HA have yet to be addressed. This prompted us to investigate the protein networks responsible for signal transduction during early osteoblast adhesion on synthetic HA scaffolds. By performing a global kinase activity assay, we showed that there is a specific molecular machinery responding to HA contact, immediately triggering pathways leading to cytoskeleton rearrangement due to activation of Adducin 1 (ADD1), protein kinase A (PKA), protein kinase C (PKC), and vascular endothelial growth factor (VEGF). Moreover, we found a significantly increased phosphorylation of the activating site Ser-421 in histone deacetylase 1 (HDAC1), a substrate of Cyclin-Dependent Kinase 5 (CDK5). These phosphorylation events are hallmarks of osteoblast differentiation, pointing to HA surfaces ability to promote differentiation. We also found that AKT was kept active, suggesting the maintenance of survival pathways. Interestingly, though, the substrate sequence of CDK5 also presented higher phosphorylation levels when compared to control conditions. To our knowledge, this kinase has never before been related to osteoblast biology, opening a new avenue of investigation for novel pathways involved in this matter. These results suggest that HA triggers a specific intracellular signal transduction cascade during early osteoblast adhesion, activating proteins involved with cytoskeleton rearrangement, and induction of osteoblast differentiation.
Collapse
Affiliation(s)
- Sara Gemini-Piperni
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
233
|
Marie PJ. Bone cell senescence: mechanisms and perspectives. J Bone Miner Res 2014; 29:1311-21. [PMID: 24496911 DOI: 10.1002/jbmr.2190] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 01/24/2014] [Accepted: 01/27/2014] [Indexed: 12/15/2022]
Abstract
Age-related bone loss is in large part the consequence of senescence mechanisms that impact bone cell number and function. In recent years, progress has been made in the understanding of the molecular mechanisms underlying bone cell senescence that contributes to the alteration of skeletal integrity during aging. These mechanisms can be classified as intrinsic senescence processes, alterations in endogenous anabolic factors, and changes in local support. Intrinsic senescence mechanisms cause cellular dysfunctions that are not tissue specific and include telomere shortening, accumulation of oxidative damage, impaired DNA repair, and altered epigenetic mechanisms regulating gene transcription. Aging mechanisms that are more relevant to the bone microenvironment include alterations in the expression and signaling of local growth factors and altered intercellular communications. This review provides an integrated overview of the current concepts and interacting mechanisms underlying bone cell senescence during aging and how they could be targeted to reduce the negative impact of senescence in the aging skeleton.
Collapse
Affiliation(s)
- Pierre J Marie
- Inserm UMR-1132, Paris, France; University Paris Diderot, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
234
|
Wey A, Cunningham C, Hreha J, Breitbart E, Cottrell J, Ippolito J, Clark D, Lin HN, Benevenia J, O'Connor JP, Lin SS, Paglia DN. Local ZnCl2 accelerates fracture healing. J Orthop Res 2014; 32:834-41. [PMID: 24574139 DOI: 10.1002/jor.22593] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 01/13/2014] [Indexed: 02/04/2023]
Abstract
This study evaluated the effect of local zinc chloride (ZnCl2 ), an insulin mimetic agent, upon the early and late parameters of fracture healing in rats using a standard femur fracture model. Mechanical testing, radiographic scoring, histomorphometry, qualitative histological scoring, PCNA immunohistochemistry, and local growth factor analysis were performed. Fractures treated with local ZnCl2 possessed significantly increased mechanical properties compared to controls at 4 weeks post fracture. The radiographic scoring analysis showed increased cortical bridging at 4 weeks in the 1.0 (p=0.0015) and 3.0 (p<0.0001) mg/kg ZnCl2 treated groups. Histomorphometry of the fracture callus at day 7 showed 177% increase (p=0.036) in percent cartilage and 133% increase (p=0.002) in percent mineralized tissue with local ZnCl2 treatment compared to controls. Qualitative histological scoring showed a 2.1× higher value at day 7 in the ZnCl2 treated group compared to control (p = 0.004). Cell proliferation and growth factors, VEGF and IGF-I, within fracture calluses treated with local ZnCl2 were increased at day 7. The results suggest local administration of ZnCl2 increases cell proliferation, causing increased growth factor production which yields improved chondrogenesis and endochondral ossification. Ultimately, these events lead to accelerated fracture healing as early as 4 weeks post fracture.
Collapse
Affiliation(s)
- Aaron Wey
- Rutgers New Jersey Medical School, Department of Orthopaedics, 90 Bergen Street, Suite 7300, Newark, New Jersey, 07103
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
235
|
The hypoxia-inducible factor pathway, prolyl hydroxylase domain protein inhibitors, and their roles in bone repair and regeneration. BIOMED RESEARCH INTERNATIONAL 2014; 2014:239356. [PMID: 24895555 PMCID: PMC4034436 DOI: 10.1155/2014/239356] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 01/23/2014] [Accepted: 02/16/2014] [Indexed: 02/06/2023]
Abstract
Hypoxia-inducible factors (HIFs) are oxygen-dependent transcriptional activators that play crucial roles in angiogenesis, erythropoiesis, energy metabolism, and cell fate decisions. The group of enzymes that can catalyse the hydroxylation reaction of HIF-1 is prolyl hydroxylase domain proteins (PHDs). PHD inhibitors (PHIs) activate the HIF pathway by preventing degradation of HIF-α via inhibiting PHDs. Osteogenesis and angiogenesis are tightly coupled during bone repair and regeneration. Numerous studies suggest that HIFs and their target gene, vascular endothelial growth factor (VEGF), are critical regulators of angiogenic-osteogenic coupling. In this brief perspective, we review current studies about the HIF pathway and its role in bone repair and regeneration, as well as the cellular and molecular mechanisms involved. Additionally, we briefly discuss the therapeutic manipulation of HIFs and VEGF in bone repair and bone tumours. This review will expand our knowledge of biology of HIFs, PHDs, PHD inhibitors, and bone regeneration, and it may also aid the design of novel therapies for accelerating bone repair and regeneration or inhibiting bone tumours.
Collapse
|
236
|
Hinton RJ. Genes that regulate morphogenesis and growth of the temporomandibular joint: A review. Dev Dyn 2014; 243:864-74. [DOI: 10.1002/dvdy.24130] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 03/11/2014] [Accepted: 03/17/2014] [Indexed: 01/17/2023] Open
Affiliation(s)
- Robert J. Hinton
- Department of Biomedical Sciences; Texas A&M Baylor College of Dentistry; Dallas Texas
| |
Collapse
|
237
|
Distinct VEGF functions during bone development and homeostasis. Arch Immunol Ther Exp (Warsz) 2014; 62:363-8. [PMID: 24699630 DOI: 10.1007/s00005-014-0285-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 02/18/2014] [Indexed: 10/25/2022]
Abstract
Vascular endothelial growth factor-A (VEGF) is a key regulator of physiological hemangiogenesis during development, postnatal growth, and homeostasis. It is well known that VEGF is required for effective coupling of angiogenesis to endochondral and membranous bone formation during skeletal development. However, less well known are the roles of VEGF in regulating the differentiation and/or functions of skeletal cells such as chondrocytes, osteoblasts, and osteoclasts. In this review, we discuss some of these functions. During early skeletal development, VEGF is important for the survival of chondrocytes in the hypoxic regions of the cartilage models of future bones, the vascularization of developing bones and proliferation and differentiation of osteoblastic cells. Postnatally, osteoblast-derived VEGF is critical for maintaining bone homeostasis by stimulating the differentiation of mesenchymal stem cells to osteoblasts and repressing their differentiation to adipocytes. Recent data indicate that these effects of VEGF on osteogenic/adipogenic stem cell fates are based on an intracellular (intracrine) mechanism. In contrast, osteoblast-derived VEGF is also known to stimulate the differentiation of monocytes to osteoclasts by a paracrine mechanism. Mice with VEGF-deficient osteoblastic lineage cells exhibit age-dependent loss of bone mass and an increase in bone marrow fat. These changes are similar to the changes associated with osteoporosis in humans. Thus, a better understanding of the intracellular mechanisms by which VEGF regulates osteoblastic and adipogenic differentiation may lead to the identification of new targets for therapies to prevent osteoporotic bone loss.
Collapse
|
238
|
Weng T, Xie Y, Huang J, Luo F, Yi L, He Q, Chen D, Chen L. Inactivation of Vhl in osteochondral progenitor cells causes high bone mass phenotype and protects against age-related bone loss in adult mice. J Bone Miner Res 2014; 29:820-9. [PMID: 23999831 PMCID: PMC4111233 DOI: 10.1002/jbmr.2087] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 08/09/2013] [Accepted: 08/22/2013] [Indexed: 11/07/2022]
Abstract
Previous studies have shown that disruption of von Hippel-Lindau gene (Vhl) coincides with activation of hypoxia-inducible factor α (HIFα) signaling in bone cells and plays an important role in bone development, homeostasis, and regeneration. It is known that activation of HIF1α signaling in mature osteoblasts is central to the coupling between angiogenesis and bone formation. However, the precise mechanisms responsible for the coupling between skeletal angiogenesis and osteogenesis during bone remodeling are only partially elucidated. To evaluate the role of Vhl in bone homeostasis and the coupling between vascular physiology and bone, we generated mice lacking Vhl in osteochondral progenitor cells (referred to as Vhl cKO mice) at postnatal and adult stages in a tamoxifen-inducible manner and changes in skeletal morphology were assessed by micro-computed tomography (µCT), histology, and bone histomorphometry. We found that mice with inactivation of Vhl in osteochondral progenitor cells at the postnatal stage largely phenocopied that of mice lacking Vhl in mature osteoblasts, developing striking and progressive accumulation of cancellous bone with increased microvascular density and bone formation. These were accompanied with a significant increase in osteoblast proliferation, upregulation of differentiation marker Runx2 and osteocalcin, and elevated expression of vascular endothelial growth factor (VEGF) and phosphorylation of Smad1/5/8. In addition, we found that Vhl deletion in osteochondral progenitor cells in adult bone protects mice from aging-induced bone loss. Our data suggest that the VHL-mediated signaling in osteochondral progenitor cells plays a critical role in bone remodeling at postnatal/adult stages through coupling osteogenesis and angiogenesis. © 2014 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Tujun Weng
- Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | | | | | | | | | | | | | | |
Collapse
|
239
|
Chung R, Foster BK, Xian CJ. The potential role of VEGF-induced vascularisation in the bony repair of injured growth plate cartilage. J Endocrinol 2014; 221:63-75. [PMID: 24464023 DOI: 10.1530/joe-13-0539] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Growth plate injuries often result in undesirable bony repair causing bone growth defects, for which the underlying mechanisms are unclear. Whilst the key importance of pro-angiogenic vascular endothelial growth factor (VEGF) is well-known in bone development and fracture repair, its role during growth plate bony repair remains unexplored. Using a rat tibial growth plate injury repair model with anti-VEGF antibody, Bevacizumab, as a single i.p. injection (2.5 mg/kg) after injury, this study examined the roles of VEGF-driven angiogenesis during growth plate bony repair. Histology analyses observed isolectin-B4-positive endothelial cells and blood vessel-like structures within the injury site on days 6 and 14, with anti-VEGF treatment significantly decreasing blood-vessel-like structures within the injury site (P<0.05). Compared with untreated controls, anti-VEGF treatment resulted in an increase in undifferentiated mesenchymal repair tissue, but decreased bony tissue at the injury site at day 14 (P<0.01). Consistently, microcomputed tomography analysis of the injury site showed significantly decreased bony repair tissue after treatment (P<0.01). RT-PCR analyses revealed a significant decrease in osteocalcin (P<0.01) and a decreasing trend in Runx2 expression at the injury site following treatment. Furthermore, growth plate injury-induced reduced tibial lengthening was more pronounced in anti-VEGF-treated injured rats on day 60, consistent with the observation of a significantly increased height of the hypertrophic zone adjacent to the growth plate injury site (P<0.05). These results indicate that VEGF is important for angiogenesis and formation of bony repair tissue at the growth plate injury site as well as for endochondral bone lengthening function of the uninjured growth plate.
Collapse
Affiliation(s)
- Rosa Chung
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, City East Campus, GPO Box 2471, Adelaide, South Australia 5001, Australia Department of Orthopaedic Surgery, Women's and Children's Hospital, North Adelaide, South Australia 5006, Australia
| | | | | |
Collapse
|
240
|
Danks JA, Freeman AN, Martin TJ. Historical Perspective and Evolutionary Origins of Parathyroid Hormone-Related Protein. Clin Rev Bone Miner Metab 2014. [DOI: 10.1007/s12018-014-9163-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
241
|
Wang H, Smith GW, Yang Z, Jiang Y, McCloskey M, Greenberg K, Geisen P, Culp WD, Flannery J, Kafri T, Hammond S, Hartnett ME. Short hairpin RNA-mediated knockdown of VEGFA in Müller cells reduces intravitreal neovascularization in a rat model of retinopathy of prematurity. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 183:964-74. [PMID: 23972394 DOI: 10.1016/j.ajpath.2013.05.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 04/29/2013] [Accepted: 05/06/2013] [Indexed: 02/08/2023]
Abstract
Vascular endothelial growth factor (VEGF) A is implicated in aberrant angiogenesis and intravitreous neovascularization (IVNV) in retinopathy of prematurity (ROP). However, VEGFA also regulates retinal vascular development and functions as a retinal neural survival factor. By using a relevant ROP model, the 50/10 oxygen-induced retinopathy (OIR) model, we previously found that broad inhibition of VEGFA bioactivity using a neutralizing antibody to rat VEGF significantly reduced IVNV area compared with control IgG but also significantly reduced body weight gain in the pups, suggesting an adverse effect. Therefore, we propose that knockdown of up-regulated VEGFA in cells that overexpress it under pathological conditions would reduce IVNV without affecting physiological retinal vascular development or overall pup growth. Herein, we determined first that the VEGFA mRNA signal was located within the inner nuclear layer corresponding to CRALBP-labeled Müller cells of pups in the 50/10 OIR model. We then developed a lentiviral-delivered miR-30eembedded shRNA against VEGFA that targeted Müller cells. Reduction of VEGFA by lentivector VEGFA-shRNAetargeting Müller cells efficiently reduced 50/10 OIR up-regulated VEGFA and IVNV in the model, without adversely affecting physiological retinal vascular development or pup weight gain. Knockdown of VEGFA in rat Müller cells by lentivector VEGFA-shRNA significantly reduced VEGFR2 phosphorylation in retinal vascular endothelial cells. Our results suggest that targeted knockdown of overexpressed VEGFA in Müller cells safely reduces IVNV in a relevant ROP model.
Collapse
Affiliation(s)
- Haibo Wang
- The John A. Moran Eye Center, The University of Utah, Salt Lake City, Utah, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
242
|
Zhou Y, Guan X, Yu M, Wang X, Zhu W, Wang C, Yu M, Wang H. Angiogenic/osteogenic response of BMMSCs on bone-derived scaffold: effect of hypoxia and role of PI3K/Akt-mediated VEGF-VEGFR pathway. Biotechnol J 2014; 9:944-53. [PMID: 24421279 DOI: 10.1002/biot.201300310] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 10/15/2013] [Accepted: 01/09/2014] [Indexed: 11/05/2022]
Abstract
Bone tissue deficiency is a common clinical challenge. Tissue-engineered bone constructs are an effective approach for the repair of orthopedic bone defects. Mimicking the essential components of the in vivo microenvironment is an efficient way to develop functional constructs. In this study, bone marrow-derived mesenchymal stromal cells (BMMSCs) were seeded into bone-derived scaffolds, a material with similar structure to natural bone. This was done under hypoxic conditions, an environment that imitates that experienced by BMMSCs in vivo. Our data indicate that hypoxia (5% O2 ) significantly increases the proliferation of BMMSCs seeded in scaffolds. As reflected by highly expressed osteogenesis- and angiogenesis-associated biomarkers, including vascular endothelial growth factor (VEGF), RUNX2, bone morphogenetic protein-2/4 and osteopontin, hypoxia also significantly increases the osteogenic and angiogenic responses of BMMSCs seeded into bone-derived scaffold composites. PI3K/Akt-mediated regulation of VEGF-activated VEGFR1/2 signaling is important for hypoxia-induced proliferative/osteogenic/angiogenic responses in BMMSC cellular scaffolds. The combination of bone-derived scaffolds and hypoxia is conducive to the differentiation of BMMSCs into functional tissue-engineered scaffold composites.
Collapse
Affiliation(s)
- Yi Zhou
- Affiliated Hospital of Stomatology, Medical College, Zhejiang University, Hangzhou, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
243
|
Guzmán-Hernández ML, Potter G, Egervári K, Kiss JZ, Balla T. Secretion of VEGF-165 has unique characteristics, including shedding from the plasma membrane. Mol Biol Cell 2014; 25:1061-72. [PMID: 24501421 PMCID: PMC3967971 DOI: 10.1091/mbc.e13-07-0418] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
VEGF secretion is studied using VEGF165-GFP chimera. Efficient secretion requires Sar1- and Arf1-dependent steps and glycosylation in the Golgi. VEGF is retained in the outer surface of the plasma membrane, and shedding with other membrane components is an important step in the secretion process. Vascular endothelial growth factor (VEGF) is a critical regulator of endothelial cell differentiation and vasculogenesis during both development and tumor vascularization. VEGF-165 is a major form that is secreted from the cells via a poorly characterized pathway. Here we use green fluorescent protein– and epitope-tagged VEGF-165 and find that its early trafficking between the endoplasmic reticulum and the Golgi requires the small GTP-binding proteins Sar1 and Arf1 and that its glycosylation in the Golgi compartment is necessary for efficient post-Golgi transport and secretion from the cells. The relative temperature insensitivity of VEGF secretion and its Sar1 and Arf1 inhibitory profiles distinguish it from other cargoes using the “constitutive” secretory pathway. Prominent features of VEGF secretion are the retention of the protein on the outer surface of the plasma membrane and the stimulation of its secretion by Ca2+ and protein kinase C. Of importance, shedding of VEGF-165 from the cell surface together with other membrane components appears to be a unique feature by which some VEGF is delivered to the surroundings to exert its known biological actions. Understanding VEGF trafficking can reveal additional means by which tumor vascularization can be inhibited by pharmacological interventions.
Collapse
Affiliation(s)
- Maria Luisa Guzmán-Hernández
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892 Department of Neurosciences, University of Geneva, 1211 Geneva 4, Switzerland
| | | | | | | | | |
Collapse
|
244
|
Wölfle JV, Fiedler J, Dürselen L, Reichert J, Scharnweber D, Förster A, Schwenzer B, Reichel H, Ignatius A, Brenner RE. Improved anchorage of Ti6Al4V orthopaedic bone implants through oligonucleotide mediated immobilization of BMP-2 in osteoporotic rats. PLoS One 2014; 9:e86151. [PMID: 24465929 PMCID: PMC3897651 DOI: 10.1371/journal.pone.0086151] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 12/06/2013] [Indexed: 11/19/2022] Open
Abstract
The aim of the present study was to test the biocompatibility and functionality of orthopaedic bone implants with immobilized oligonucleotides serving as anchor stands for rhBMP-2 and rhVEGF-A conjugated with complementary oligonucleotides in an osteoporotic rat model. Al2O3-blasted acid etched Ti6Al4V implants, carrying oligonucleotide anchor strands and hybridized with rhBMP-2 or rhVEGF-A through complementary 31-mer oligonucleotide stands were inserted into the proximal tibia of ovariectomized rats. At the time of surgery (15 weeks after ovariectomy) microCT analysis showed significantly lower bone mineral density compared to non-ovariectomized animals. Bone-implant contact (BIC) and pullout-force were not negatively affected by non-hybridized anchor strands. Twelve weeks after surgery, a significantly higher pullout force was found for BMP-2 hybridized to the anchor strands compared to non-hybridized anchor strands or native samples, and on histomorphometric analysis BIC was highest in the BMP group. Thus, we could show the biocompatibility and in vivo functionality of this modular, self-organizing system for immobilization and subsequent release of BMP-2 in vivo.
Collapse
Affiliation(s)
- Julia V. Wölfle
- Department of Orthopaedic Surgery, Centre of Musculoskeletal Research, University of Ulm, Ulm, Germany
| | - Jörg Fiedler
- Division for Biochemistry of Joint and Connective Tissue Diseases, Department of Orthopaedic Surgery, Centre of Musculoskeletal Research, University of Ulm, Ulm, Germany
| | - Lutz Dürselen
- Institute of Orthopaedic Research and Biomechanics, Centre of Musculoskeletal Research, University of Ulm, Ulm, Germany
| | - Judith Reichert
- Max Bergmann Center of Biomaterials, TU Dresden, Dresden, Germany
| | | | - Anne Förster
- Institute of Biochemistry, TU Dresden, Dresden, Germany
| | | | - Heiko Reichel
- Department of Orthopaedic Surgery, Centre of Musculoskeletal Research, University of Ulm, Ulm, Germany
| | - Anita Ignatius
- Institute of Orthopaedic Research and Biomechanics, Centre of Musculoskeletal Research, University of Ulm, Ulm, Germany
| | - Rolf E. Brenner
- Division for Biochemistry of Joint and Connective Tissue Diseases, Department of Orthopaedic Surgery, Centre of Musculoskeletal Research, University of Ulm, Ulm, Germany
- * E-mail:
| |
Collapse
|
245
|
Dellinger MT, Garg N, Ferry T, Kelly J, Olsen BR. First International Conference on Generalized Lymphatic Anomaly and Gorham–Stout Syndrome. ACTA ACUST UNITED AC 2013. [DOI: 10.1038/bonekey.2013.210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
246
|
Berendsen AD, Olsen BR. How vascular endothelial growth factor-A (VEGF) regulates differentiation of mesenchymal stem cells. J Histochem Cytochem 2013; 62:103-8. [PMID: 24309509 PMCID: PMC3902099 DOI: 10.1369/0022155413516347] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Vascular endothelial growth factor A (VEGF), a key factor in angiogenesis, plays an essential role in skeletal development and postnatal homeostasis. VEGF serves as a survival factor for chondrocytes and couples the resorption of cartilage with bone formation during endochondral ossification. Recently, it has also been found to regulate the balance between osteoblast and adipocyte differentiation in bone marrow mesenchymal stem cells. Surprisingly, this regulatory function of VEGF is not based on paracrine signaling involving cell surface receptor activation. Instead, the mechanism appears to utilize intracellular VEGF, which is functionally linked to the nuclear envelope protein lamin A. Lamin A and VEGF control osteoblast and adipocyte differentiation by regulating the levels of the osteoblast and adipocyte transcription factors Runx2 and PPARγ, respectively. These data raise the intriguing possibility that loss of bone mass during aging may be manipulated by controlling the levels and activity of intracellular VEGF in bone marrow mesenchymal stem cells.
Collapse
Affiliation(s)
- Agnes D Berendsen
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, USA
| | | |
Collapse
|
247
|
Honda Y, Ding X, Mussano F, Wiberg A, Ho CM, Nishimura I. Guiding the osteogenic fate of mouse and human mesenchymal stem cells through feedback system control. Sci Rep 2013; 3:3420. [PMID: 24305548 PMCID: PMC3851880 DOI: 10.1038/srep03420] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 11/15/2013] [Indexed: 01/18/2023] Open
Abstract
Stem cell-based disease modeling presents unique opportunities for mechanistic elucidation and therapeutic targeting. The stable induction of fate-specific differentiation is an essential prerequisite for stem cell-based strategy. Bone morphogenetic protein 2 (BMP-2) initiates receptor-regulated Smad phosphorylation, leading to the osteogenic differentiation of mesenchymal stromal/stem cells (MSC) in vitro; however, it requires supra-physiological concentrations, presenting a bottleneck problem for large-scale drug screening. Here, we report the use of a double-objective feedback system control (FSC) with a differential evolution (DE) algorithm to identify osteogenic cocktails of extrinsic factors. Cocktails containing significantly reduced doses of BMP-2 in combination with physiologically relevant doses of dexamethasone, ascorbic acid, beta-glycerophosphate, heparin, retinoic acid and vitamin D achieved accelerated in vitro mineralization of mouse and human MSC. These results provide insight into constructive approaches of FSC to determine the applicable functional and physiological environment for MSC in disease modeling, drug screening and tissue engineering.
Collapse
Affiliation(s)
- Yoshitomo Honda
- 1] The Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, UCLA School of Dentistry, Box 951668, Los Angeles, CA, 90095, USA [2] Craniofacial Function Engineering and Research Unit for Interface Oral Health Science, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan [3] Institute of Dental Research, Osaka Dental University, 8-1 Kuzuha Hanazonocho, Hirakata-Shi, Osaka, 573-1121, Japan
| | | | | | | | | | | |
Collapse
|
248
|
|
249
|
Chen G, Shi X, Sun C, Li M, Zhou Q, Zhang C, Huang J, Qiu Y, Wen X, Zhang Y, Zhang Y, Yang S, Lu L, Zhang J, Yuan Q, Lu J, Xu G, Xue Y, Jin Z, Jiang C, Ying M, Liu X. VEGF-mediated proliferation of human adipose tissue-derived stem cells. PLoS One 2013; 8:e73673. [PMID: 24098328 PMCID: PMC3789739 DOI: 10.1371/journal.pone.0073673] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 07/21/2013] [Indexed: 12/21/2022] Open
Abstract
Human adipose tissue-derived stem cells (ADSCs) are an attractive multipotent stem cell source with therapeutic applicability across diverse fields for the repair and regeneration of acute and chronically damaged tissues. In recent years, there has been increasing interest in ADSC for tissue engineering applications. However, the mechanisms underlying the regulation of ADSC proliferation are not fully understood. Here we show that 47 transcripts are up-regulated while 23 are down-regulated in ADSC compared to terminally differentiated cells based on global mRNA profiling and microRNA profiling. Among the up-regulated genes, the expression of vascular endothelial growth factor (VEGF) is fine-tuned by miR-199a-5p. Further investigation indicates that VEGF accelerates ADSC proliferation whereas the multipotency of ADSC remains stable in terms of adipogenic, chondrogenic and osteogenic potentials after VEGF treatment, suggesting that VEGF may serve as an excellent supplement for accelerating ADSC proliferation during in vitro expansion.
Collapse
Affiliation(s)
- Guangfeng Chen
- Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiujuan Shi
- Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chen Sun
- Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Min Li
- Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Qing Zhou
- Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Chen Zhang
- Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jun Huang
- Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yu Qiu
- Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiangyi Wen
- Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yan Zhang
- Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yushan Zhang
- Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shuzhang Yang
- Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lixia Lu
- Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jieping Zhang
- Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qionglan Yuan
- Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jianwei Lu
- Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Guotong Xu
- Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yunyun Xue
- Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zibing Jin
- Division of Ophthalmic Genetics, The Eye Hospital of Wenzhou Medical College and Lab for Stem Cell & Retinal Regeneration, School of Ophthalmology & Optometry, Wenzhou Medical College, Wenzhou, China
| | - Cizhong Jiang
- Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
- * E-mail: (XL); (CJ); (MY)
| | - Ming Ying
- Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences, Shenzhen University, Shenzhen, China
- * E-mail: (XL); (CJ); (MY)
| | - Xiaoqing Liu
- Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences, Shenzhen University, Shenzhen, China
- * E-mail: (XL); (CJ); (MY)
| |
Collapse
|
250
|
Lian JB, Gordon JA, Stein GS. Redefining the activity of a bone-specific transcription factor: novel insights for understanding bone formation. J Bone Miner Res 2013; 28:2060-3. [PMID: 23966343 DOI: 10.1002/jbmr.2076] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jane B Lian
- Department of Biochemistry, University of Vermont College of Medicine, Burlington, VT, USA
| | | | | |
Collapse
|