201
|
Müller WEG, Tolba E, Ackermann M, Neufurth M, Wang S, Feng Q, Schröder HC, Wang X. Fabrication of amorphous strontium polyphosphate microparticles that induce mineralization of bone cells in vitro and in vivo. Acta Biomater 2017; 50:89-101. [PMID: 28017868 DOI: 10.1016/j.actbio.2016.12.045] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 12/18/2016] [Accepted: 12/21/2016] [Indexed: 12/31/2022]
Abstract
UNLABELLED Here we describe the fabrication process of amorphous strontium-polyphosphate microparticles ("Sr-a-polyP-MP"). The effects of these particles on growth and gene expression were investigated with SaOS-2 cells as well as with human mesenchymal stem cells (MSC) and compared with those particles prepared of amorphous calcium-polyphosphate ("Ca-a-polyP-MP") and of strontium salt. The results revealed a markedly higher stimulation of growth of MSC by "Sr-a-polyP-MP" compared to "Ca-a-polyP-MP" and a significant increase in mineralization of SaOS-2 cells, as well as an enhanced upregulation of the expression of the genes encoding for alkaline phosphatase and the bone morphogenetic protein 2 (BMP-2), likewise performed with SaOS-2 cells. On the other hand, "Sr-a-polyP-MP" only slightly changes the expression of the osteocyte-specific sclerostin, a negative regulator of the canonical Wnt signaling pathway and an inhibitor of bone cell differentiation as well as of mineralization in SaOS-2 cells. In contrast, "Ca-a-polyP-MP" strongly increased the steady-state expression of the SOST (sclerostin) gene. In animal studies poly(d,l-lactide-co-glycolide (PLGA) microspheres, containing polyP particles, were implanted into critical-size calvarial defects in rats. The results show that the amorphous Sr-polyP-containing microspheres caused an increased healing/mineralization of the bone defect even after short implantation periods of 8-12weeks, if compared to the β-tri-calcium phosphate control as well as to Ca-polyP. It is proposed that "Sr-a-polyP-MP" might elicit suitable properties to be applied as a regeneratively active implant material for bone repair. STATEMENT OF SIGNIFICANCE In this manuscript, we fabricated amorphous strontium-polyphosphate microparticles ("Sr-a-polyP-MP") and studied their effects on bone mineral formation in vitro as well as in vivo. In vitro, those particles substantially increased the expression of the genes encoding for alkaline phosphatase, the bone morphogenetic protein 2 and the mineralization. In vivo, the "Sr-a-polyP-MP" packed into PLGA microspheres and implanted into critical-size calvarial defects in rats resulted in a speeded up of the healing/mineralization of the bone defect. Those properties qualify Sr-a-polyP as a suitable biomaterial for bone regenerative implants.
Collapse
Affiliation(s)
- Werner E G Müller
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany.
| | - Emad Tolba
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany
| | - Maximilian Ackermann
- Institute of Functional and Clinical Anatomy, University Medical Center of the Johannes Gutenberg University, Johann Joachim Becher Weg 13, D-55099 Mainz, Germany
| | - Meik Neufurth
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany
| | - Shunfeng Wang
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany
| | - Qingling Feng
- Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Heinz C Schröder
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany
| | - Xiaohong Wang
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany.
| |
Collapse
|
202
|
Chen Z, Ni S, Han S, Crawford R, Lu S, Wei F, Chang J, Wu C, Xiao Y. Nanoporous microstructures mediate osteogenesis by modulating the osteo-immune response of macrophages. NANOSCALE 2017; 9:706-718. [PMID: 27959374 DOI: 10.1039/c6nr06421c] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The osteoimmune environment plays indispensable roles in bone regeneration because the early immune environment that exists during the regenerative process promotes the recruitment and differentiation of osteoblastic lineage cells. The response of immune cells growing on nanotopographic surfaces and the microenvironment they generate should be considered when evaluating nanotopography-mediated osteogenesis, which are topics that are generally neglected in the field. In this study, we investigated the modulatory effects of nanoporous anodic alumina with different sized pores on macrophage responses and their subsequent effects on the osteogenic differentiation of bone marrow stromal cells (BMSCs). The nanopore structure and the pore size were found to be important adhesive cues for macrophages, which affected their spreading and cell shape, subsequently regulated the expression and activation of autophagy pathway components (LC3A/B, Beclin-1, Atg3, Atg7, and P62) and modulated the inflammatory response, osteoclastic activities, and release of osteogenic factors. Subsequently, the osteogenic pathways (Wnt and BMP) of BMSCs were found to be regulated by different nanopore-induced inflammatory environments, which affected the osteogenic differentiation outcomes. This study is the first to emphasize the effects of immune cells on nanotopography-mediated osteogenesis, which could lead to a new strategy for the development of advanced nanobiomaterials for tissue engineering, nanomedicine and immunotherapeutic applications.
Collapse
Affiliation(s)
- Zetao Chen
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, Guangdong, People's Republic of China and Institute of Health and Biomedical Innovation & the Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane 4059, Australia.
| | - Siyu Ni
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University Shanghai, 201620, People's Republic of China
| | - Shengwei Han
- Institute of Health and Biomedical Innovation & the Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane 4059, Australia.
| | - Ross Crawford
- Institute of Health and Biomedical Innovation & the Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane 4059, Australia.
| | - Shifeier Lu
- Institute of Health and Biomedical Innovation & the Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane 4059, Australia.
| | - Fei Wei
- Institute of Health and Biomedical Innovation & the Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane 4059, Australia.
| | - Jiang Chang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, People's Republic of China.
| | - Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, People's Republic of China.
| | - Yin Xiao
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, Guangdong, People's Republic of China and Institute of Health and Biomedical Innovation & the Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane 4059, Australia.
| |
Collapse
|
203
|
Müller WEG, Wang X, Schröder HC. New Target Sites for Treatment of Osteoporosis. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2017; 55:187-219. [PMID: 28238039 DOI: 10.1007/978-3-319-51284-6_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the last few years, much progress has been achieved in the discovery of new drug target sites for treatment of osteoporotic disorders, one of the main challenging diseases with a large burden for the public health systems. Among these new agents promoting bone formation, shifting the impaired equilibrium between bone anabolism and bone catabolism in the direction of bone synthesis are inorganic polymers, in particular inorganic polyphosphates that show strong stimulatory effects on the expression of bone anabolic marker proteins and hydroxyapatite formation. The bone-forming activity of these polymers can even be enhanced by combination with certain small molecules like quercetin, or if given as functionally active particles with certain divalent cations like strontium ions even showing by itself biological activity. This chapter summarizes recent developments in the search and development of novel anti-osteoporotic agents, with a particular focus on therapeutic approaches based on the potential application of inorganic polymers and combinations.
Collapse
Affiliation(s)
- Werner E G Müller
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128, Mainz, Germany.
- NanotecMARIN GmbH, Duesbergweg 6, 55128, Mainz, Germany.
| | - Xiaohong Wang
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128, Mainz, Germany
- NanotecMARIN GmbH, Duesbergweg 6, 55128, Mainz, Germany
| | - Heinz C Schröder
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128, Mainz, Germany
- NanotecMARIN GmbH, Duesbergweg 6, 55128, Mainz, Germany
| |
Collapse
|
204
|
Budak F, Bal SH, Tezcan G, Guvenc F, Akalin EH, Goral G, Deniz G, Oral HB. MicroRNA Expression Patterns of CD8+ T Cells in Acute and Chronic Brucellosis. PLoS One 2016; 11:e0165138. [PMID: 27824867 PMCID: PMC5100978 DOI: 10.1371/journal.pone.0165138] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 10/06/2016] [Indexed: 01/18/2023] Open
Abstract
Although our knowledge about Brucella virulence factors and the host response increase rapidly, the mechanisms of immune evasion by the pathogen and causes of chronic disease are still unknown. Here, we aimed to investigate the immunological factors which belong to CD8+ T cells and their roles in the transition of brucellosis from acute to chronic infection. Using miRNA microarray, more than 2000 miRNAs were screened in CD8+ T cells of patients with acute or chronic brucellosis and healthy controls that were sorted from peripheral blood with flow cytometry and validated through qRT-PCR. Findings were evaluated using GeneSpring GX (Agilent) 13.0 software and KEGG pathway analysis. Expression of two miRNAs were determined to display a significant fold change in chronic group when compared with acute or control groups. Both miRNAs (miR-126-5p and miR-4753-3p) were decreased (p <0.05 or fold change > 2). These miRNAs have the potential to be the regulators of CD8+ T cell-related marker genes for chronic brucellosis infections. The differentially expressed miRNAs and their predicted target genes are involved in MAPK signaling pathway, cytokine-cytokine receptor interactions, endocytosis, regulation of actin cytoskeleton, and focal adhesion indicating their potential roles in chronic brucellosis and its progression. It is the first study of miRNA expression analysis of human CD8+ T cells to clarify the mechanism of inveteracy in brucellosis.
Collapse
Affiliation(s)
- Ferah Budak
- Department of Immunology, Faculty of Medicine, Uludag University, Bursa, Turkey
| | - S. Haldun Bal
- Department of Immunology, Faculty of Medicine, Uludag University, Bursa, Turkey
| | - Gulcin Tezcan
- Department of Medical Biology, Faculty of Medicine, Uludag University, Bursa, Turkey
| | - Furkan Guvenc
- Department of Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - E. Halis Akalin
- Department of Clinical Microbiology and Infection Diseases, Faculty of Medicine, Uludag University, Bursa, Turkey
| | - Guher Goral
- Department of Medical Microbiology, Faculty of Medicine, Uludag University, Bursa, Turkey
| | - Gunnur Deniz
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - H. Barbaros Oral
- Department of Immunology, Faculty of Medicine, Uludag University, Bursa, Turkey
- * E-mail:
| |
Collapse
|
205
|
Wang T, Zhang X, Bikle DD. Osteogenic Differentiation of Periosteal Cells During Fracture Healing. J Cell Physiol 2016; 232:913-921. [PMID: 27731505 DOI: 10.1002/jcp.25641] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 10/07/2016] [Indexed: 12/15/2022]
Abstract
Five to ten percent of fractures fail to heal normally leading to additional surgery, morbidity, and altered quality of life. Fracture healing involves the coordinated action of stem cells primarily coming from the periosteum which differentiate into the chondrocytes and osteoblasts, forming first the soft (cartilage) callus followed by the hard (bone) callus. These stem cells are accompanied by a vascular invasion that appears critical for the differentiation process and which may enable the entry of osteoclasts necessary for the remodeling of the callus into mature bone. However, more research is needed to clarify the signaling events that activate the osteochondroprogenitor cells of periosteum and stimulate their differentiation into chondrocytes and osteoblasts. Ultimately a thorough understanding of the mechanisms for differential regulation of these osteochondroprogenitors will aid in the treatment of bone healing and the prevention of delayed union and nonunion of fractures. In this review, evidence supporting the concept that the periosteal cells are the major cell sources of skeletal progenitors for the fracture callus will be discussed. The osteogenic differentiation of periosteal cells manipulated by Wnt/β-catenin, TGF/BMP, Ihh/PTHrP, and IGF-1/PI3K-Akt signaling in fracture repair will be examined. The effect of physical (hypoxia and hyperoxia) and chemical factors (reactive oxygen species) as well as the potential coordinated regulatory mechanisms in the periosteal progenitor cells promoting osteogenic differentiation will also be discussed. Understanding the regulation of periosteal osteochondroprogenitors during fracture healing could provide insight into possible therapeutic targets and thereby help to enhance future fracture healing and bone tissue engineering approaches. J. Cell. Physiol. 232: 913-921, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Tao Wang
- Center for Musculoskeletal Research, School of Medicine and Dentistry, University of Rochester, Rochester, New York.,Endocrine Unit, VA Medical Center and University of California, San Francisco, California
| | - Xinping Zhang
- Center for Musculoskeletal Research, School of Medicine and Dentistry, University of Rochester, Rochester, New York
| | - Daniel D Bikle
- Endocrine Unit, VA Medical Center and University of California, San Francisco, California
| |
Collapse
|
206
|
Siao-Pin S, Damian LO, Muntean LM, Rednic S. Acroosteolysis in systemic sclerosis: An insight into hypoxia-related pathogenesis. Exp Ther Med 2016; 12:3459-3463. [PMID: 27882179 DOI: 10.3892/etm.2016.3782] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 07/01/2016] [Indexed: 01/13/2023] Open
Abstract
Acro-osteolysis, or bony resorption of the terminal digital tufts, is a well-recognized, but under-researched, feature of systemic sclerosis. The mechanisms that disturbs local homeostatic balance of bone formation and resorption in favor of osteoclast activation and pathological bone loss remain to be established. Vascular alterations and reduced capillary density impair tissue oxygenation in systemic sclerosis, and the resulting hypoxia might contribute directly to the disease progression. In this paper we summarize the current evidence for hypoxia as the common pathophysiological denominator of digital vasculopathy and enhanced osteoclastic activity in systemic sclerosis-associated acroosteolysis. The hypoxia-inducible transcription factor HIF-1α and VEGF signaling has a critical role in regulating osteoclastic bone-resorption and angiogenesis, and increased osteoclastogenesis and higher VEGF levels may contribute to acroosteolysis in systemic sclerosis. The cells of the osteoblast lineage also have important roles in angiogenic-osteogenic coupling. The research in this field might help limiting the disability associated with the disease.
Collapse
Affiliation(s)
- Simon Siao-Pin
- Rheumatology Department, 'Iuliu Hațieganu' University of Medicine and Pharmacy Cluj, 400012 Cluj-Napoca, Romania; Rheumatology Department, Emergency Clinical County Hospital Cluj, 400006 Cluj-Napoca, Romania
| | - Laura-Otilia Damian
- Rheumatology Department, Emergency Clinical County Hospital Cluj, 400006 Cluj-Napoca, Romania
| | - Laura Mirela Muntean
- Rheumatology Department, 'Iuliu Hațieganu' University of Medicine and Pharmacy Cluj, 400012 Cluj-Napoca, Romania; Rheumatology Department, Emergency Clinical County Hospital Cluj, 400006 Cluj-Napoca, Romania
| | - Simona Rednic
- Rheumatology Department, 'Iuliu Hațieganu' University of Medicine and Pharmacy Cluj, 400012 Cluj-Napoca, Romania; Rheumatology Department, Emergency Clinical County Hospital Cluj, 400006 Cluj-Napoca, Romania
| |
Collapse
|
207
|
Zhang F, Song J, Zhang H, Huang E, Song D, Tollemar V, Wang J, Wang J, Mohammed M, Wei Q, Fan J, Liao J, Zou Y, Liu F, Hu X, Qu X, Chen L, Yu X, Luu HH, Lee MJ, He TC, Ji P. Wnt and BMP Signaling Crosstalk in Regulating Dental Stem Cells: Implications in Dental Tissue Engineering. Genes Dis 2016; 3:263-276. [PMID: 28491933 PMCID: PMC5421560 DOI: 10.1016/j.gendis.2016.09.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Tooth is a complex hard tissue organ and consists of multiple cell types that are regulated by important signaling pathways such as Wnt and BMP signaling. Serious injuries and/or loss of tooth or periodontal tissues may significantly impact aesthetic appearance, essential oral functions and the quality of life. Regenerative dentistry holds great promise in treating oral/dental disorders. The past decade has witnessed a rapid expansion of our understanding of the biological features of dental stem cells, along with the signaling mechanisms governing stem cell self-renewal and differentiation. In this review, we first summarize the biological characteristics of seven types of dental stem cells, including dental pulp stem cells, stem cells from apical papilla, stem cells from human exfoliated deciduous teeth, dental follicle precursor cells, periodontal ligament stem cells, alveolar bone-derived mesenchymal stem cells (MSCs), and MSCs from gingiva. We then focus on how these stem cells are regulated by bone morphogenetic protein (BMP) and/or Wnt signaling by examining the interplays between these pathways. Lastly, we analyze the current status of dental tissue engineering strategies that utilize oral/dental stem cells by harnessing the interplays between BMP and Wnt pathways. We also highlight the challenges that must be addressed before the dental stem cells may reach any clinical applications. Thus, we can expect to witness significant progresses to be made in regenerative dentistry in the coming decade.
Collapse
Affiliation(s)
- Fugui Zhang
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, and the Affiliated Hospital of Stomatology of Chongqing Medical University, Chongqing 401147, China.,Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jinglin Song
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, and the Affiliated Hospital of Stomatology of Chongqing Medical University, Chongqing 401147, China
| | - Hongmei Zhang
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, and the Affiliated Hospital of Stomatology of Chongqing Medical University, Chongqing 401147, China.,Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Enyi Huang
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, and the Affiliated Hospital of Stomatology of Chongqing Medical University, Chongqing 401147, China.,Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Dongzhe Song
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Department of Conservative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Viktor Tollemar
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jing Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Jinhua Wang
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, and the Affiliated Hospital of Stomatology of Chongqing Medical University, Chongqing 401147, China.,Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Maryam Mohammed
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Qiang Wei
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Jiaming Fan
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Junyi Liao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Yulong Zou
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Feng Liu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Xue Hu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Xiangyang Qu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Liqun Chen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Xinyi Yu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Hue H Luu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Michael J Lee
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Tong-Chuan He
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, and the Affiliated Hospital of Stomatology of Chongqing Medical University, Chongqing 401147, China.,Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Ping Ji
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, and the Affiliated Hospital of Stomatology of Chongqing Medical University, Chongqing 401147, China
| |
Collapse
|
208
|
Rattanawarawipa P, Pavasant P, Osathanon T, Sukarawan W. Effect of lithium chloride on cell proliferation and osteogenic differentiation in stem cells from human exfoliated deciduous teeth. Tissue Cell 2016; 48:425-31. [PMID: 27590780 DOI: 10.1016/j.tice.2016.08.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 08/11/2016] [Accepted: 08/19/2016] [Indexed: 12/11/2022]
Abstract
Lithium Chloride (LiCl) has been used as a canonical Wnt pathway activator due to its ability to inhibit a glycogen synthase kinase-3. The aim of the present study was to investigate the effect of LiCl on cell proliferation and osteogenic differentiation in stem cells isolated from human exfoliated deciduous teeth (SHEDs). SHEDs were isolated and cultured in media supplemented with LiCl at 5, 10, or 20mM. The results demonstrated that LiCl significantly decreased SHEDs colony forming unit ability in a dose dependent manner. LiCl significantly enhanced the percentage of cells in the sub G0 phase, accompanied by a reduction of the percentage of cells in the G1 phase at day 3 and 7 after treatment. Further, LiCl markedly decreased OSX and DMP1 mRNA expression after treating SHEDs in an osteogenic induction medium for 7 days. In addition, no significant difference in alkaline phosphatase enzymatic activity or mineral deposition was found. Together, these results imply that LiCl influences SHEDs behavior.
Collapse
Affiliation(s)
- Panarat Rattanawarawipa
- Department of Pediatric Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330 Thailand; Mineralized Tissue Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330 Thailand
| | - Prasit Pavasant
- Mineralized Tissue Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330 Thailand; Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330 Thailand
| | - Thanaphum Osathanon
- Mineralized Tissue Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330 Thailand; Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330 Thailand
| | - Waleerat Sukarawan
- Department of Pediatric Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330 Thailand; Mineralized Tissue Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330 Thailand.
| |
Collapse
|
209
|
Roy B, Curtis ME, Fears LS, Nahashon SN, Fentress HM. Molecular Mechanisms of Obesity-Induced Osteoporosis and Muscle Atrophy. Front Physiol 2016; 7:439. [PMID: 27746742 PMCID: PMC5040721 DOI: 10.3389/fphys.2016.00439] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 09/15/2016] [Indexed: 12/19/2022] Open
Abstract
Obesity and osteoporosis are two alarming health disorders prominent among middle and old age populations, and the numbers of those affected by these two disorders are increasing. It is estimated that more than 600 million adults are obese and over 200 million people have osteoporosis worldwide. Interestingly, both of these abnormalities share some common features including a genetic predisposition, and a common origin: bone marrow mesenchymal stromal cells. Obesity is characterized by the expression of leptin, adiponectin, interleukin 6 (IL-6), interleukin 10 (IL-10), monocyte chemotactic protein-1 (MCP-1), tumor necrosis factor-alpha (TNF-α), macrophage colony stimulating factor (M-CSF), growth hormone (GH), parathyroid hormone (PTH), angiotensin II (Ang II), 5-hydroxy-tryptamine (5-HT), Advance glycation end products (AGE), and myostatin, which exert their effects by modulating the signaling pathways within bone and muscle. Chemical messengers (e.g., TNF-α, IL-6, AGE, leptins) that are upregulated or downregulated as a result of obesity have been shown to act as negative regulators of osteoblasts, osteocytes and muscles, as well as positive regulators of osteoclasts. These additive effects of obesity ultimately increase the risk for osteoporosis and muscle atrophy. The aim of this review is to identify the potential cellular mechanisms through which obesity may facilitate osteoporosis, muscle atrophy and bone fractures.
Collapse
Affiliation(s)
- Bipradas Roy
- Department of Biological Sciences, Tennessee State University Nashville, TN, USA
| | - Mary E Curtis
- Department of Biological Sciences, Tennessee State University Nashville, TN, USA
| | - Letimicia S Fears
- Department of Biological Sciences, Tennessee State University Nashville, TN, USA
| | - Samuel N Nahashon
- Department of Agricultural and Environmental Sciences, Tennessee State University Nashville, TN, USA
| | - Hugh M Fentress
- Department of Biological Sciences, Tennessee State University Nashville, TN, USA
| |
Collapse
|
210
|
Altered Expressions of miR-1238-3p, miR-494, miR-6069, and miR-139-3p in the Formation of Chronic Brucellosis. J Immunol Res 2016; 2016:4591468. [PMID: 27722176 PMCID: PMC5046029 DOI: 10.1155/2016/4591468] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 07/29/2016] [Accepted: 07/31/2016] [Indexed: 01/18/2023] Open
Abstract
Brucellosis is a zoonotic disease that is still endemic in developing countries. Despite early diagnosis and treatment of patients, chronic infections are seen in 10–30% of patients. In this study, we aimed to investigate the immunological factors that play roles in the transition of brucellosis from acute infection into chronic infection. Here, more than 2000 miRNAs were screened in peripheral blood mononuclear cells (PBMCs) of patients with acute or chronic brucellosis and healthy controls by using miRNA array, and the results of the miRNA array were validated through qRT-PCR. Findings were evaluated using GeneSpring GX (Agilent) 13.0 software and KEGG pathway analysis. Four miRNAs were expressed in the chronic group but were not expressed in acute and control groups. Among these miRNAs, the expression level of miR-1238-3p was increased while miR-494, miR-6069, and miR-139-3p were decreased (p < 0.05, fold change > 2). These miRNAs have the potential to be markers for chronic cases. The differentially expressed miRNAs and their predicted target genes involved in endocytosis, regulation of actin cytoskeleton, MAPK signaling pathway, and cytokine-cytokine receptor interaction and its chemokine signaling pathway indicate their potential roles in chronic brucellosis and its progression. It is the first study of miRNA expression analysis of human PBMC to clarify the mechanism of inveteracy in brucellosis.
Collapse
|
211
|
Lu S, Wang J, Ye J, Zou Y, Zhu Y, Wei Q, Wang X, Tang S, Liu H, Fan J, Zhang F, Farina EM, Mohammed MM, Song D, Liao J, Huang J, Guo D, Lu M, Liu F, Liu J, Li L, Ma C, Hu X, Lee MJ, Reid RR, Ameer GA, Zhou D, He T. Bone morphogenetic protein 9 (BMP9) induces effective bone formation from reversibly immortalized multipotent adipose-derived (iMAD) mesenchymal stem cells. Am J Transl Res 2016; 8:3710-3730. [PMID: 27725853 PMCID: PMC5040671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 04/25/2016] [Indexed: 06/06/2023]
Abstract
Regenerative medicine and bone tissue engineering using mesenchymal stem cells (MSCs) hold great promise as an effective approach to bone and skeletal reconstruction. While adipose tissue harbors MSC-like progenitors, or multipotent adipose-derived cells (MADs), it is important to identify and characterize potential biological factors that can effectively induce osteogenic differentiation of MADs. To overcome the time-consuming and technically challenging process of isolating and culturing primary MADs, here we establish and characterize the reversibly immortalized mouse multipotent adipose-derived cells (iMADs). The isolated mouse primary inguinal MAD cells are reversibly immortalized via the retrovirus-mediated expression of SV40 T antigen flanked with FRT sites. The iMADs are shown to express most common MSC markers. FLP-mediated removal of SV40 T antigen effectively reduces the proliferative activity and cell survival of iMADs, indicating the immortalization is reversible. Using the highly osteogenic BMP9, we find that the iMADs are highly responsive to BMP9 stimulation, express multiple lineage regulators, and undergo osteogenic differentiation in vitro upon BMP9 stimulation. Furthermore, we demonstrate that BMP9-stimulated iMADs form robust ectopic bone with a thermoresponsive biodegradable scaffold material. Collectively, our results demonstrate that the reversibly immortalized iMADs exhibit the characteristics of multipotent MSCs and are highly responsive to BMP9-induced osteogenic differentiation. Thus, the iMADs should provide a valuable resource for the study of MAD biology, which would ultimately enable us to develop novel and efficacious strategies for MAD-based bone tissue engineering.
Collapse
Affiliation(s)
- Shun Lu
- Shandong Provincial Orthopaedics Hospital, The Provincial Hospital Affiliated to Shandong UniversityJinan 250021, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
| | - Jing Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, The Affiliated Hospitals of Chongqing Medical UniversityChongqing 400016, China
| | - Jixing Ye
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
- Department of Biomedical Engineering, School of Bioengineering, Chongqing UniversityChongqing 400044, China
| | - Yulong Zou
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, The Affiliated Hospitals of Chongqing Medical UniversityChongqing 400016, China
| | - Yunxiao Zhu
- Department of Biomedical Engineering and Simpson Querrey Institute for BioNanotechnology in Medicine, Northwestern UniversityEvanston, IL 60208, USA
| | - Qiang Wei
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, The Affiliated Hospitals of Chongqing Medical UniversityChongqing 400016, China
| | - Xin Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
- Departments of Surgery, Conservative Dentistry and Endodontics, West China Hospital and West China School of Stomatology, Sichuan UniversityChengdu 610041, China
| | - Shengli Tang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
- Department of General Surgery and Neurosurgery, The Affiliated Zhongnan Hospital of Wuhan UniversityWuhan 430071, China
| | - Hao Liu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, The Affiliated Hospitals of Chongqing Medical UniversityChongqing 400016, China
| | - Jiaming Fan
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, The Affiliated Hospitals of Chongqing Medical UniversityChongqing 400016, China
| | - Fugui Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, The Affiliated Hospitals of Chongqing Medical UniversityChongqing 400016, China
| | - Evan M Farina
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
| | - Maryam M Mohammed
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
| | - Dongzhe Song
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
- Departments of Surgery, Conservative Dentistry and Endodontics, West China Hospital and West China School of Stomatology, Sichuan UniversityChengdu 610041, China
| | - Junyi Liao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, The Affiliated Hospitals of Chongqing Medical UniversityChongqing 400016, China
| | - Jiayi Huang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, The Affiliated Hospitals of Chongqing Medical UniversityChongqing 400016, China
| | - Dan Guo
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, The Affiliated Hospitals of Chongqing Medical UniversityChongqing 400016, China
| | - Minpeng Lu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, The Affiliated Hospitals of Chongqing Medical UniversityChongqing 400016, China
| | - Feng Liu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, The Affiliated Hospitals of Chongqing Medical UniversityChongqing 400016, China
| | - Jianxiang Liu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
- Department of Orthopaedic Surgery, Union Hospital of Tongji Medical College, Huazhong University of Science & TechnologyWuhan 430022, China
| | - Li Li
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
- Department of Biomedical Engineering, School of Bioengineering, Chongqing UniversityChongqing 400044, China
| | - Chao Ma
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
- Department of General Surgery and Neurosurgery, The Affiliated Zhongnan Hospital of Wuhan UniversityWuhan 430071, China
| | - Xue Hu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, The Affiliated Hospitals of Chongqing Medical UniversityChongqing 400016, China
| | - Michael J Lee
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
| | - Russell R Reid
- Section of Plastic Surgery, Department of Surgery, The University of Chicago Medical CenterChicago, IL 60637, USA
| | - Guillermo A Ameer
- Department of Biomedical Engineering and Simpson Querrey Institute for BioNanotechnology in Medicine, Northwestern UniversityEvanston, IL 60208, USA
- Department of Surgery, Feinberg School of MedicineChicago, IL 60616, USA
| | - Dongsheng Zhou
- Shandong Provincial Orthopaedics Hospital, The Provincial Hospital Affiliated to Shandong UniversityJinan 250021, China
| | - Tongchuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, The Affiliated Hospitals of Chongqing Medical UniversityChongqing 400016, China
| |
Collapse
|
212
|
Ripamonti U, Duarte R, Parak R, Dickens C, Dix-Peek T, Klar RM. Redundancy and Molecular Evolution: The Rapid Induction of Bone Formation by the Mammalian Transforming Growth Factor-β3 Isoform. Front Physiol 2016; 7:396. [PMID: 27660615 PMCID: PMC5014861 DOI: 10.3389/fphys.2016.00396] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 08/25/2016] [Indexed: 11/26/2022] Open
Abstract
The soluble osteogenic molecular signals of the transforming growth factor-β (TGF-β) supergene family are the molecular bases of the induction of bone formation and postnatal bone tissue morphogenesis with translation into clinical contexts. The mammalian TGF-β3 isoform, a pleiotropic member of the family, controls a vast array of biological processes including the induction of bone formation. Recombinant hTGF-β3 induces substantial bone formation when implanted with either collagenous bone matrices or coral-derived macroporous bioreactors in the rectus abdominis muscle of the non-human primate Papio ursinus. In marked contrast, the three mammalian TGF-βs do not initiate the induction of bone formation in rodents and lagomorphs. The induction of bone by hTGF-β3/preloaded bioreactors is orchestrated by inducing fibrin-fibronectin rings that structurally organize tissue patterning and morphogenesis within the macroporous spaces. Induced advancing extracellular matrix rings provide the structural anchorage for hyper chromatic cells, interpreted as differentiating osteoblasts re-programmed by hTGF-β3 from invading myoblastic and/or pericytic differentiated cells. Runx2 and Osteocalcin expression are significantly up-regulated correlating to multiple invading cells differentiating into the osteoblastic phenotype. Bioreactors pre-loaded with recombinant human Noggin (hNoggin), a BMPs antagonist, show down-regulation of BMP-2 and other profiled osteogenic proteins' genes resulting in minimal bone formation. Coral-derived macroporous constructs preloaded with binary applications of hTGF-β3 and hNoggin also show down-regulation of BMP-2 with the induction of limited bone formation. The induction of bone formation by hTGF-β3 is via the BMPs pathway and it is thus blocked by hNoggin. Our systematic studies in P. ursinus with translational hTGF-β3 in large cranio-mandibulo-facial defects in humans are now requesting the re-evaluation of "Bone: formation by autoinduction" in primate models including humans.
Collapse
Affiliation(s)
- Ugo Ripamonti
- Bone Research Laboratory, Faculty of Health Sciences, School of Oral Health Sciences, University of the WitwatersrandJohannesburg, South Africa
| | - Raquel Duarte
- Department of Internal Medicine, Faculty of Health Sciences, School of Clinical Medicine, University of the WitwatersrandJohannesburg, South Africa
| | - Ruqayya Parak
- Bone Research Laboratory, Faculty of Health Sciences, School of Oral Health Sciences, University of the WitwatersrandJohannesburg, South Africa
- Department of Oral Biological Sciences, School of Oral Health Sciences, University of the WitwatersrandJohannesburg, South Africa
| | - Caroline Dickens
- Department of Internal Medicine, Faculty of Health Sciences, School of Clinical Medicine, University of the WitwatersrandJohannesburg, South Africa
| | - Therese Dix-Peek
- Department of Internal Medicine, Faculty of Health Sciences, School of Clinical Medicine, University of the WitwatersrandJohannesburg, South Africa
| | - Roland M. Klar
- Bone Research Laboratory, Faculty of Health Sciences, School of Oral Health Sciences, University of the WitwatersrandJohannesburg, South Africa
- Department of Internal Medicine, Faculty of Health Sciences, School of Clinical Medicine, University of the WitwatersrandJohannesburg, South Africa
| |
Collapse
|
213
|
Onyido EK, Sweeney E, Nateri AS. Wnt-signalling pathways and microRNAs network in carcinogenesis: experimental and bioinformatics approaches. Mol Cancer 2016; 15:56. [PMID: 27590724 PMCID: PMC5010773 DOI: 10.1186/s12943-016-0541-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 08/26/2016] [Indexed: 02/02/2023] Open
Abstract
Over the past few years, microRNAs (miRNAs) have not only emerged as integral regulators of gene expression at the post-transcriptional level but also respond to signalling molecules to affect cell function(s). miRNAs crosstalk with a variety of the key cellular signalling networks such as Wnt, transforming growth factor-β and Notch, control stem cell activity in maintaining tissue homeostasis, while if dysregulated contributes to the initiation and progression of cancer. Herein, we overview the molecular mechanism(s) underlying the crosstalk between Wnt-signalling components (canonical and non-canonical) and miRNAs, as well as changes in the miRNA/Wnt-signalling components observed in the different forms of cancer. Furthermore, the fundamental understanding of miRNA-mediated regulation of Wnt-signalling pathway and vice versa has been significantly improved by high-throughput genomics and bioinformatics technologies. Whilst, these approaches have identified a number of specific miRNA(s) that function as oncogenes or tumour suppressors, additional analyses will be necessary to fully unravel the links among conserved cellular signalling pathways and miRNAs and their potential associated components in cancer, thereby creating therapeutic avenues against tumours. Hence, we also discuss the current challenges associated with Wnt-signalling/miRNAs complex and the analysis using the biomedical experimental and bioinformatics approaches.
Collapse
Affiliation(s)
- Emenike K Onyido
- Cancer Genetics & Stem Cell Group, Cancer Biology Unit, Division of Cancer & Stem Cells, School of Medicine, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Eloise Sweeney
- Cancer Genetics & Stem Cell Group, Cancer Biology Unit, Division of Cancer & Stem Cells, School of Medicine, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Abdolrahman Shams Nateri
- Cancer Genetics & Stem Cell Group, Cancer Biology Unit, Division of Cancer & Stem Cells, School of Medicine, University of Nottingham, Nottingham, NG7 2UH, UK.
| |
Collapse
|
214
|
Kidwai F, Edwards J, Zou L, Kaufman DS. Fibrinogen Induces RUNX2 Activity and Osteogenic Development from Human Pluripotent Stem Cells. Stem Cells 2016; 34:2079-89. [PMID: 27331788 PMCID: PMC5097445 DOI: 10.1002/stem.2427] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 04/18/2016] [Accepted: 05/06/2016] [Indexed: 12/18/2022]
Abstract
Pluripotent stem cells, both human embryonic stem cells (hESC) and induced pluripotent stem cells (iPSC), provide an important resource to produce specialized cells such as osteogenic cells for therapeutic applications such as repair or replacement of injured, diseased or damaged bone. hESCs and iPSCs can also be used to better define basic cellular and genetic mechanisms that regulate the earliest stages of human bone development. However, current strategies to mediate osteogenic differentiation of hESC and iPSC are typically limited by the use of xenogeneic components such as fetal bovine serum (FBS) that make defining specific agents that mediate human osteogenesis difficult. Runt-related transcription factor 2 (RUNX2) is a key regulator required for osteogenic differentiation. Here, we used a RUNX2-YFP reporter system to characterize the novel ability of fibrinogen to mediate human osteogenic development from hESC and iPSC in defined (serum-free) conditions. These studies demonstrate that fibrinogen mediates significant osteo-induction potential. Specifically, fibrinogen binds to the surface integrin (α9β1) to mediate RUNX2 gene expression through the SMAD1/5/8 signaling pathway. Additional studies characterize the fibrinogen-induced hESC/iPSC-derived osteogenic cells to demonstrate these osteogenic cells retain the capacity to express typical mature osteoblastic markers. Together, these studies define a novel fibrinogen-α9β1-SMAD1/5/8-RUNX2 signaling axis can efficiently induce osteogenic differentiation from hESCs and iPSCs. Stem Cells 2016;34:2079-2089.
Collapse
Affiliation(s)
- Fahad Kidwai
- Department of Restorative Sciences, School of Dentistry, University of Minnesota, Minnesota Dental Research Center for Biomaterials and Biomechanics, Minneapolis, Minnesota 55455, USA
- Division of Basic Sciences, Department of Diagnostic and Biological Sciences, School of Dentistry, Minneapolis, Minnesota 55455, USA
| | - Jessica Edwards
- Division of Basic Sciences, Department of Diagnostic and Biological Sciences, School of Dentistry, Minneapolis, Minnesota 55455, USA
| | - Li Zou
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Dan S. Kaufman
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA
- Department of Medicine, University of California - San Diego, La Jolla, California 92093, USA
| |
Collapse
|
215
|
Parenteral exposure to DEHP and its effect on the microstructure of bone and Wnt signaling pathway in F2 female mice. BIOCHIP JOURNAL 2016. [DOI: 10.1007/s13206-016-0309-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
216
|
Muthusamy K, Mohan S, Nagamani S, Kesavan C. Identification of novel small molecules that bind to the loop2 region of sclerostin - an in silico computational analysis. Physiol Res 2016; 65:871-878. [PMID: 27429110 DOI: 10.33549/physiolres.933267] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The goal of this study was to identify small molecular weight compounds that bind to sclerostin using in-silico methods because of the established importance of sclerostin-based therapies for the treatment of disease characterized by low bone mass. The zinc database (Zdb) revealed that nine potential molecules bind to the loop2 region (functional site) of sclerostin with ADME/T properties that are within an acceptable range defined for human use. Compounds 30160056 and 56871042 showed the highest docking score. Density functional theory (by HOMO, LUMO and MESP analysis) and MM/GBSA analysis showed that four compounds 30160056, 56871042, 72112226 and 43920281 exhibit high stability among the nine small molecules identified. Induced Docking Fit and Pymol software analyses revealed that the identified compounds differ in the interaction with amino acids in the loop2 region of sclerostin. Six compound exhibited interaction with Ile95 and 2 compounds with Asn93, an amino acid in the loop2 region known to be involved in sclerostin's inhibitory effect, suggesting that the identified compounds have the potential to bind and neutralize sclerostin function. Furthermore, compound 43920281 showed a low risk of toxicity and drug-like characteristic features compared to all nine identified compounds. In conclusion, in silico analysis identified a novel compound 43920281 as a potent anti-sclerostin therapeutic for drug development for the treatment of osteoporosis.
Collapse
Affiliation(s)
- K Muthusamy
- Department of Bioinformatics, Alagappa University, Karaikudi, India; Musculoskeletal Disease Center, VA Loma Linda Healthcare System, Research Service, Loma Linda, CA, USA.
| | | | | | | |
Collapse
|
217
|
Prajzlerová K, Grobelná K, Pavelka K, Šenolt L, Filková M. An update on biomarkers in axial spondyloarthritis. Autoimmun Rev 2016; 15:501-9. [DOI: 10.1016/j.autrev.2016.02.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 01/28/2016] [Indexed: 12/17/2022]
|
218
|
Peng S, Gao D, Gao C, Wei P, Niu M, Shuai C. MicroRNAs regulate signaling pathways in osteogenic differentiation of mesenchymal stem cells (Review). Mol Med Rep 2016; 14:623-9. [PMID: 27222009 PMCID: PMC4918597 DOI: 10.3892/mmr.2016.5335] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 04/18/2016] [Indexed: 12/15/2022] Open
Abstract
Osteogenesis is a complex multi-step process involving the differentiation of mesenchymal stem cells (MSCs) into osteoblast progenitor cells, preosteoblasts, osteoblasts and osteocytes, and the crosstalk between multiple cell types for the formation and remodeling of bone. The signaling regulatory networks during osteogenesis include various components, including growth factors, transcription factors, micro (mi)RNAs and effectors, a number of which form feedback loops controlling the balance of osteogenic differentiation by positive or negative regulation. miRNAs have been found to be important regulators of osteogenic signaling pathways in multiple aspects and multiple signaling pathways. The present review focusses on the progress in elucidating the role of miRNA in the osteogenesis signaling networks of MSCs as a substitute for bone implantation the the field of bone tissue engineering. In particular, the review classifies which miRNAs promote or suppress the osteogenic process, and summarizes which signaling pathway these miRNAs are involved in. Improvements in knowledge of the characteristics of miRNAs in osteogenesis provide an important step for their application in translational investigations of bone tissue engineering and bone disease.
Collapse
Affiliation(s)
- Shuping Peng
- Hunan Provincial Tumor Hospital and The Affiliated Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, P.R. China
| | - Dan Gao
- Hunan Provincial Tumor Hospital and The Affiliated Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, P.R. China
| | - Chengde Gao
- State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha, Hunan 410083, P.R. China
| | - Pingpin Wei
- Hunan Provincial Tumor Hospital and The Affiliated Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, P.R. China
| | - Man Niu
- Hunan Provincial Tumor Hospital and The Affiliated Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, P.R. China
| | - Cijun Shuai
- State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha, Hunan 410083, P.R. China
| |
Collapse
|
219
|
Hay E, Bouaziz W, Funck-Brentano T, Cohen-Solal M. Sclerostin and Bone Aging: A Mini-Review. Gerontology 2016; 62:618-623. [DOI: 10.1159/000446278] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 04/19/2016] [Indexed: 11/19/2022] Open
Abstract
Sclerostin, mainly produced by osteocytes, is now considered a major regulator of bone formation. Identified from patients with a low bone mass, sclerostin inhibits the Wnt pathway by binding to LRP5/6 and subsequently increases bone formation. Sclerostin may also play a role in the mediation of systemic and local factors such as calcitriol, PTH, glucocorticoids and tumor necrosis factor-alpha. Circulating sclerostin levels increase with age and with the decline of kidney function. However, they are surprisingly higher in patients with a high bone mineral density, suggesting that sclerostin may be a relevant marker of the pool of mature osteocytes. The anti-anabolic properties lead to the development of anti-sclerostin biotherapies that are under current evaluation. The results of these clinical trials will open new promising opportunities for the treatment of osteoporosis and bone fragility fractures.
Collapse
|
220
|
Ye J, Wang J, Zhu Y, Wei Q, Wang X, Yang J, Tang S, Liu H, Fan J, Zhang F, Farina EM, Mohammed MK, Zou Y, Song D, Liao J, Huang J, Guo D, Lu M, Liu F, Liu J, Li L, Ma C, Hu X, Haydon RC, Lee MJ, Reid RR, Ameer GA, Yang L, He TC. A thermoresponsive polydiolcitrate-gelatin scaffold and delivery system mediates effective bone formation from BMP9-transduced mesenchymal stem cells. ACTA ACUST UNITED AC 2016; 11:025021. [PMID: 27097687 DOI: 10.1088/1748-6041/11/2/025021] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Successful bone tissue engineering requires at the minimum sufficient osteoblast progenitors, efficient osteoinductive factors, and biocompatible scaffolding materials. We previously demonstrated that bone morphogenetic protein 9 (BMP9) is one of the most potent factors in inducing osteogenic differentiation of mesenchymal stem cells (MSCs). Here, we investigated the potential use of a biodegradable citrate-based thermosensitive macromolecule, poly(polyethyleneglycol citrate-co-N-isopropylacrylamide) (PPCN) mixed with gelatin (PPCNG) as a scaffold for the delivery of BMP9-stimulated MSCs to promote localized bone formation. The addition of gelatin to PPCN effectively enhanced the cell adhesion and survival properties of MSCs entrapped within the gel in 3D culture. Using the BMP9-transduced MSC line immortalized mouse embryonic fibroblasts (iMEFs), we found that PPCNG facilitated BMP9-induced osteogenic differentiation of iMEFs in vivo and promoted the formation of well-ossified and vascularized trabecular bone-like structures in a mouse model of ectopic bone formation. Histologic evaluation revealed that vascularization of the bony masses retrieved from the iMEFs + PPCNG group was significantly more pronounced than that of the direct cell injection group. Accordingly, vascular endothelial growth factor (VEGF) expression was shown to be significantly higher in the bony masses recovered from the iMEFs + PPCNG group. Taken together, our results suggest that PPCNG may serve as a novel biodegradable and injectable scaffold and carrier for gene and cell-based bone tissue engineering.
Collapse
Affiliation(s)
- Jixing Ye
- Department of Biomedical Engineering, School of Bioengineering, Chongqing University, Chongqing 400044, People's Republic of China. Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
221
|
Tanshinol Rescues the Impaired Bone Formation Elicited by Glucocorticoid Involved in KLF15 Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:1092746. [PMID: 27051474 PMCID: PMC4808655 DOI: 10.1155/2016/1092746] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 12/19/2015] [Accepted: 12/22/2015] [Indexed: 12/20/2022]
Abstract
Decreased bone formation is responsible for the pathogenesis of glucocorticoid- (GC-) induced osteoporosis (GIO), while the mechanism remains to be elucidated. The aim was to investigate how natural antioxidant tanshinol attenuates oxidative stress and rescues impaired bone formation elicited by GC in Sprague-Dawley rats and in C2C12 cells and/or MC3T3-E1 cells. The results showed that tanshinol prevented bone loss and decreased biomechanical characteristics and suppressed reduction of biomarkers related to osteogenesis in GIO rats. Further study revealed that tanshinol reversed decrease of transcription activity of Osterix-luc and rescued impairment of osteoblastic differentiation and bone formation involved in induction of KLF15 mRNA. Meanwhile, tanshinol diminished inhibition of protein expression of β-catenin and Tcf4 and transcription activity of Tcf4-luc induced by GC, especially under conditions of KLF siRNA in vitro. Additionally, tanshinol attenuated increase of reactive oxygen species (ROS) generation, phosphorylation of p66Shc expression, TUNEL-positive cells, and caspase-3 activity elicited by KLF15 under conditions of GC. Taken together, the present findings suggest that tanshinol attenuated the decrease of bone formation and bone mass and bone quality elicited by GC involved in KLF15/Wnt signaling transduction and counteracted GC-evoked oxidative stress and subsequent cell apoptosis involved in KLF15/p66Shc pathway cascade.
Collapse
|
222
|
Zhang S, Chen X, Hu Y, Wu J, Cao Q, Chen S, Gao Y. All-trans retinoic acid modulates Wnt3A-induced osteogenic differentiation of mesenchymal stem cells via activating the PI3K/AKT/GSK3β signalling pathway. Mol Cell Endocrinol 2016; 422:243-253. [PMID: 26747727 DOI: 10.1016/j.mce.2015.12.018] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 12/19/2015] [Accepted: 12/24/2015] [Indexed: 01/06/2023]
Abstract
Osteogenic differentiation of mesenchymal stem cells (MSCs) is a vital process for the maintenance of healthy bone tissue and is mediated by numerous factors. Canonical Wnt signalling is essential for MSC osteogenic differentiation, and it interacts with several nuclear receptors, including the retinoic acid receptor, vitamin D receptor, and glucocorticoid receptor. Here, we explored whether Wnt3A and all-trans-retinoic acid (ATRA) play synergistic roles in MSC osteogenic differentiation. We found that ATRA potentiated the Wnt3A-induced expression of early and late osteogenic markers as well as matrix mineralization and further confirmed the phenomena using foetal limb explant culture and MSC implantation experiments. Mechanistically, ATRA cooperated with Wnt3A to induce β-catenin translocation from cell-cell contacts into the cytosol and nucleus, thereby activating Wnt/β-catenin signalling. Additionally, Wnt3A attenuated ATRA-induced Cyp26a1 expression, inhibiting the degradation of ATRA into its oxidative forms. β-catenin silencing abolished the stimulatory effect of ATRA on Wnt3A-induced alkaline phosphatase (ALP) activity and reversed its inhibitory effect on Cyp26a1 expression. Furthermore, ATRA and Wnt3A synergistically promoted AKT phosphorylation, enhancing β-catenin-dependent transcription through GSK3β inhibition or direct β-catenin phosphorylation at Ser552. This event was largely abolished by LY294002 pre-treatment, suggesting that ATRA and Wnt3A at least partially promote osteogenic differentiation via activating the PI3K/AKT/GSK3β signalling pathway. Thus, crosstalk between the Wnt/β-catenin and retinoic acid signalling pathways may be an effective therapeutic target for bone diseases, such as osteoporosis.
Collapse
Affiliation(s)
- Shuang Zhang
- Department of Geriatrics, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaoting Chen
- Department of Geriatrics, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yan Hu
- Department of Geriatrics, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jin Wu
- Shanghai Institute for Pediatric Research, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qing Cao
- Department of Geriatrics, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Shuyan Chen
- Department of Geriatrics, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yanhong Gao
- Department of Geriatrics, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|
223
|
Yang K, Wang X, Zhang H, Wang Z, Nan G, Li Y, Zhang F, Mohammed MK, Haydon RC, Luu HH, Bi Y, He TC. The evolving roles of canonical WNT signaling in stem cells and tumorigenesis: implications in targeted cancer therapies. J Transl Med 2016; 96:116-36. [PMID: 26618721 PMCID: PMC4731283 DOI: 10.1038/labinvest.2015.144] [Citation(s) in RCA: 181] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 10/06/2015] [Indexed: 02/07/2023] Open
Abstract
The canonical WNT/β-catenin signaling pathway governs a myriad of biological processes underlying the development and maintenance of adult tissue homeostasis, including regulation of stem cell self-renewal, cell proliferation, differentiation, and apoptosis. WNTs are secreted lipid-modified glycoproteins that act as short-range ligands to activate receptor-mediated signaling pathways. The hallmark of the canonical pathway is the activation of β-catenin-mediated transcriptional activity. Canonical WNTs control the β-catenin dynamics as the cytoplasmic level of β-catenin is tightly regulated via phosphorylation by the 'destruction complex', consisting of glycogen synthase kinase 3β (GSK3β), casein kinase 1α (CK1α), the scaffold protein AXIN, and the tumor suppressor adenomatous polyposis coli (APC). Aberrant regulation of this signaling cascade is associated with varieties of human diseases, especially cancers. Over the past decade, significant progress has been made in understanding the mechanisms of canonical WNT signaling. In this review, we focus on the current understanding of WNT signaling at the extracellular, cytoplasmic membrane, and intracellular/nuclear levels, including the emerging knowledge of cross-talk with other pathways. Recent progresses in developing novel WNT pathway-targeted therapies will also be reviewed. Thus, this review is intended to serve as a refresher of the current understanding about the physiologic and pathogenic roles of WNT/β-catenin signaling pathway, and to outline potential therapeutic opportunities by targeting the canonical WNT pathway.
Collapse
Affiliation(s)
- Ke Yang
- Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, The Children's Hospital, Chongqing Medical University; Chongqing, China, Molecular Oncology Laboratory, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Xin Wang
- Molecular Oncology Laboratory, The University of Chicago Medical Center, Chicago, IL 60637, USA, Department of Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Hongmei Zhang
- Molecular Oncology Laboratory, The University of Chicago Medical Center, Chicago, IL 60637, USA, Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, and the Affiliated Hospital of Stomatology of Chongqing Medical University, Chongqing, China
| | - Zhongliang Wang
- Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, The Children's Hospital, Chongqing Medical University; Chongqing, China, Molecular Oncology Laboratory, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Guoxin Nan
- Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, The Children's Hospital, Chongqing Medical University; Chongqing, China, Molecular Oncology Laboratory, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Yasha Li
- Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, The Children's Hospital, Chongqing Medical University; Chongqing, China, Molecular Oncology Laboratory, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Fugui Zhang
- Molecular Oncology Laboratory, The University of Chicago Medical Center, Chicago, IL 60637, USA, Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, and the Affiliated Hospital of Stomatology of Chongqing Medical University, Chongqing, China
| | - Maryam K. Mohammed
- Molecular Oncology Laboratory, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Rex C. Haydon
- Molecular Oncology Laboratory, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Hue H. Luu
- Molecular Oncology Laboratory, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Yang Bi
- Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, The Children's Hospital, Chongqing Medical University; Chongqing, China, Molecular Oncology Laboratory, The University of Chicago Medical Center, Chicago, IL 60637, USA, Corresponding authors T.-C. He, MD, PhD, Molecular Oncology Laboratory, The University of Chicago Medical Center, 5841 South Maryland Avenue, MC 3079, Chicago, IL 60637, USA, Tel. (773) 702-7169; Fax (773) 834-4598, , Yang Bi, MD, PhD, Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, The Children's Hospital, Chongqing Medical University, Chongqing 400046, China, Tel. 011-86-23-63633113; Fax: 011-86-236362690,
| | - Tong-Chuan He
- Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, The Children's Hospital, Chongqing Medical University; Chongqing, China, Molecular Oncology Laboratory, The University of Chicago Medical Center, Chicago, IL 60637, USA, Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, and the Affiliated Hospital of Stomatology of Chongqing Medical University, Chongqing, China, Corresponding authors T.-C. He, MD, PhD, Molecular Oncology Laboratory, The University of Chicago Medical Center, 5841 South Maryland Avenue, MC 3079, Chicago, IL 60637, USA, Tel. (773) 702-7169; Fax (773) 834-4598, , Yang Bi, MD, PhD, Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, The Children's Hospital, Chongqing Medical University, Chongqing 400046, China, Tel. 011-86-23-63633113; Fax: 011-86-236362690,
| |
Collapse
|
224
|
Wnt/β-catenin signaling plays an ever-expanding role in stem cell self-renewal, tumorigenesis and cancer chemoresistance. Genes Dis 2016; 3:11-40. [PMID: 27077077 PMCID: PMC4827448 DOI: 10.1016/j.gendis.2015.12.004] [Citation(s) in RCA: 208] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Wnt signaling transduces evolutionarily conserved pathways which play important roles in initiating and regulating a diverse range of cellular activities, including cell proliferation, calcium homeostasis, and cell polarity. The role of Wnt signaling in controlling cell proliferation and stem cell self-renewal is primarily carried out through the canonical pathway, which is the best-characterized the multiple Wnt signaling branches. The past 10 years has seen a rapid expansion in our understanding of the complexity of this pathway, as many new components of Wnt signaling have been identified and linked to signaling regulation, stem cell functions, and adult tissue homeostasis. Additionally, a substantial body of evidence links Wnt signaling to tumorigenesis of cancer types and implicates it in the development of cancer drug resistance. Thus, a better understanding of the mechanisms by which dysregulation of Wnt signaling precedes the development and progression of human cancer may hasten the development of pathway inhibitors to augment current therapy. This review summarizes and synthesizes our current knowledge of the canonical Wnt pathway in development and disease. We begin with an overview of the components of the canonical Wnt signaling pathway and delve into the role this pathway has been shown to play in stemness, tumorigenesis, and cancer drug resistance. Ultimately, we hope to present an organized collection of evidence implicating Wnt signaling in tumorigenesis and chemoresistance to facilitate the pursuit of Wnt pathway modulators that may improve outcomes of cancers in which Wnt signaling contributes to aggressive disease and/or treatment resistance.
Collapse
|
225
|
Shin HR, Islam R, Yoon WJ, Lee T, Cho YD, Bae HS, Kim BS, Woo KM, Baek JH, Ryoo HM. Pin1-mediated Modification Prolongs the Nuclear Retention of β-Catenin in Wnt3a-induced Osteoblast Differentiation. J Biol Chem 2016; 291:5555-5565. [PMID: 26740630 DOI: 10.1074/jbc.m115.698563] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Indexed: 11/06/2022] Open
Abstract
The canonical Wnt signaling pathway, in which β-catenin nuclear localization is a crucial step, plays an important role in osteoblast differentiation. Pin1, a prolyl isomerase, is also known as a key enzyme in osteogenesis. However, the role of Pin1 in canonical Wnt signal-induced osteoblast differentiation is poorly understood. We found that Pin1 deficiency caused osteopenia and reduction of β-catenin in bone lining cells. Similarly, Pin1 knockdown or treatment with Pin1 inhibitors strongly decreased the nuclear β-catenin level, TOP flash activity, and expression of bone marker genes induced by canonical Wnt activation and vice versa in Pin1 overexpression. Pin1 interacts directly with and isomerizes β-catenin in the nucleus. The isomerized β-catenin could not bind to nuclear adenomatous polyposis coli, which drives β-catenin out of the nucleus for proteasomal degradation, which consequently increases the retention of β-catenin in the nucleus and might explain the decrease of β-catenin ubiquitination. These results indicate that Pin1 could be a critical target to modulate β-catenin-mediated osteogenesis.
Collapse
Affiliation(s)
- Hye-Rim Shin
- From the Departments of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, and
| | - Rabia Islam
- From the Departments of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, and
| | - Won-Joon Yoon
- From the Departments of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, and
| | - Taegyung Lee
- From the Departments of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, and
| | - Young-Dan Cho
- From the Departments of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, and; Periodontology, School of Dentistry, Seoul National University, Seoul, 110-749, Korea
| | - Han-Sol Bae
- From the Departments of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, and
| | - Bong-Su Kim
- From the Departments of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, and
| | - Kyung-Mi Woo
- From the Departments of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, and
| | - Jeong-Hwa Baek
- From the Departments of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, and
| | - Hyun-Mo Ryoo
- From the Departments of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, and.
| |
Collapse
|
226
|
Chen Z, Xue J, Shen T, Mu S, Fu Q. Curcumin alleviates glucocorticoid-induced osteoporosis through the regulation of the Wnt signaling pathway. Int J Mol Med 2015; 37:329-38. [PMID: 26677102 PMCID: PMC4716794 DOI: 10.3892/ijmm.2015.2432] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 12/03/2015] [Indexed: 12/22/2022] Open
Abstract
It is known that prolonged glucocorticoid (GC) treatment results in osteoporosis. This study aimed to evaluate the protective effects of curcumin on the bones of rats with dexamethasone (DXM)-induced osteoporosis. In the present study, rats were administered DXM for 60 days to induce osteoporosis, and they were then treated with curcumin (100 mg/kg/day) for a further 60 days. H&E staining was used to observe the pathological changes in the femurs. Serum osteocalcin levels and collagen-type I fragments (CTX) were examined as bone metabolism markers. The results revealed that treatment with curcumin attenuated DXM-induced bone injury in femurs, increased the serum levels of osteocalcin and decreased the levels of CTX. In addition, in in vitro experiments, primary rat osteoblasts treated with curcumin at 0.5, 1 and 2 µM were exposed to 100 nM DXM. An MTT assay was used to determine the proliferative ability of the cells. Alkaline phosphatase activity, and the mRNA expression levels of runt-related transcription factor 2 (Runx2), osterix, osteocalcin, collagen, type 1, alpha 1 (Col1A1) and osteonectin were detected to assess transcription factor-associated osteogenic differentiation. The mRNA and protein expression levels of osteoprotegerin (OPG) and receptor activator for nuclear factor-kappa B ligand (RANKL) were detected to assess cytokine-associated osteoclastogenesis. The results demonstrated that curcumin prevented the DXM-induced inhibition of the proliferative ability of the osteoblasts in a dose-dependent manner. In addition, curcumin upregulated the mRNA expression levels of transcription factors that favor osteoblast differentiation and increased the ratio of OPG to RANKL. Moreover, the effects of curcumin on the Wnt signaling pathway were also investigated. RT-qPCR and western blot analysis demonstrated that the Wnt signaling pathway, which was inhibited by DXM, was re-activated upon treatment with curcumin. Immunofluorescence staining revealed that curcumin restored the intranuclear staining of β-catenin in the DXM-stimulated osteoblasts. Collectively, our data demonstrate that curcumin may be a potential therapeutic agent for the treatment of GC-induced osteoporosis.
Collapse
Affiliation(s)
- Zhiguang Chen
- Department of Spine and Joint Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Jinqi Xue
- The Seventh Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Tao Shen
- Department of Spine and Joint Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Shuai Mu
- Department of Spine and Joint Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Qin Fu
- Department of Spine and Joint Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
227
|
Sun X, Cao Z, Zhang Q, Liu S, Xu F, Che J, Zhu Y, Li Y, Pan C, Liang W. Aluminum trichloride impairs bone and downregulates Wnt/β-catenin signaling pathway in young growing rats. Food Chem Toxicol 2015; 86:154-62. [DOI: 10.1016/j.fct.2015.10.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Revised: 09/16/2015] [Accepted: 10/10/2015] [Indexed: 11/16/2022]
|
228
|
Ahmadzadeh A, Norozi F, Shahrabi S, Shahjahani M, Saki N. Wnt/β-catenin signaling in bone marrow niche. Cell Tissue Res 2015; 363:321-35. [PMID: 26475718 DOI: 10.1007/s00441-015-2300-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 09/20/2015] [Indexed: 12/14/2022]
Abstract
The bone marrow (BM) niche is a specific physiological environment for hematopoietic and non-hematopoietic stem cells (HSCs). Several signaling pathways (including Wnt/β-catenin) regulate various aspects of stem cell growth, function and death in the BM niche. In addition, the canonical Wnt pathway is crucial for directing self-renewal and differentiation as important mechanisms in many types of stem cells. We review the role of the Wnt/β-catenin pathway in the BM niche and its importance in stem cells. Relevant literature was identified by a PubMed search (1997-2014) of English-language literature by using the following keywords: BM niche, Wnt/β-catenin signaling, osteoblast, osteoclast and bone disease. The Wnt/β-catenin pathway regulates the stability of the β-catenin proto-oncogene. The stabilized β-catenin then translocates to the nucleus, forming a β-catenin-TCF/LEF complex regulating the transcription of specific target genes. Stem cells require β-catenin to mediate their response to Wnt signaling for maintenance and transition from the pluripotent state during embryogenesis. In adult stem cells, Wnt signaling functions at various hierarchical levels to contribute to the specification of the diverse tissues. Aberrant Wnt/β-catenin signaling and its downstream transcriptional regulators are observed in several malignant stem cells and human cancers. Because Wnt signaling can maintain stem cells and cancer cells, the ability to modulate the Wnt pathway either positively or negatively may be of therapeutic relevance. The controlled activation of Wnt signaling might allow us to enhance stem and progenitor cell activity when regeneration is needed.
Collapse
Affiliation(s)
- Ahmad Ahmadzadeh
- Health Research Institute, Research Center of Thalassemia & Hemoglobinopathy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fatemeh Norozi
- Health Research Institute, Research Center of Thalassemia & Hemoglobinopathy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Saeid Shahrabi
- Department of Biochemistry and Hematology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Mohammad Shahjahani
- Health Research Institute, Research Center of Thalassemia & Hemoglobinopathy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Najmaldin Saki
- Health Research Institute, Research Center of Thalassemia & Hemoglobinopathy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
229
|
Visweswaran M, Pohl S, Arfuso F, Newsholme P, Dilley R, Pervaiz S, Dharmarajan A. Multi-lineage differentiation of mesenchymal stem cells - To Wnt, or not Wnt. Int J Biochem Cell Biol 2015; 68:139-47. [PMID: 26410622 DOI: 10.1016/j.biocel.2015.09.008] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 09/21/2015] [Accepted: 09/22/2015] [Indexed: 01/06/2023]
Abstract
Mesenchymal stem cells (MSCs) are multipotent precursor cells originating from several adult connective tissues. MSCs possess the ability to self-renew and differentiate into several lineages, and are recognized by the expression of unique cell surface markers. Several lines of evidence suggest that various signal transduction pathways and their interplay regulate MSC differentiation. To that end, a critical player in regulating MSC differentiation is a group of proteins encoded by the Wnt gene family, which was previously known for influencing various stages of embryonic development and cell fate determination. As MSCs have gained significant clinical attention for their potential applications in regenerative medicine, it is imperative to unravel the mechanisms by which molecular regulators control differentiation of MSCs for designing cell-based therapeutics. It is rather coincidental that the functional outcome(s) of Wnt-induced signals share similarities with cellular redox-mediated networks from the standpoint of MSC biology. Furthermore, there is evidence for a crosstalk between Wnt and redox signalling, which begs the question whether Wnt-mediated differentiation signals involve the intermediary role of reactive oxygen species. In this review, we summarize the impact of Wnt signalling on multi-lineage differentiation of MSCs, and attempt to unravel the intricate interplay between Wnt and redox signals.
Collapse
Affiliation(s)
- Malini Visweswaran
- Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia 6102, Australia
| | - Sebastian Pohl
- Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia 6102, Australia
| | - Frank Arfuso
- Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia 6102, Australia
| | - Philip Newsholme
- School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia 6102, Australia
| | - Rodney Dilley
- Ear Sciences Centre, University of Western Australia and Ear Science Institute Australia, Perth, Western Australia 6008, Australia
| | - Shazib Pervaiz
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; National University Cancer Institute, National University Health System, Singapore; School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia 6102, Australia
| | - Arun Dharmarajan
- Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia 6102, Australia.
| |
Collapse
|
230
|
|
231
|
Folestad A, Ålund M, Asteberg S, Fowelin J, Aurell Y, Göthlin J, Cassuto J. IL-17 cytokines in bone healing of diabetic Charcot arthropathy patients: a prospective 2 year follow-up study. J Foot Ankle Res 2015; 8:39. [PMID: 26288655 PMCID: PMC4539704 DOI: 10.1186/s13047-015-0096-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 08/04/2015] [Indexed: 01/04/2023] Open
Abstract
Background Little is currently known of the pathophysiological mechanisms triggering Charcot arthropathy and regulating its recovery although foot trauma has been proposed as a major initiating factor by activation of proinflammatory cytokines leading to increased osteoclastogenic activity and progressive bone destruction. Several members of the IL-17 family of proinflammatory cytokines have been shown to play a key role in the pathogenesis of inflammatory conditions affecting bone and joints but none has previously been studied in Charcot foot patients. The aim of this study was to investigate the role of IL-17A, IL-17E and IL-17F in patients presenting with Charcot foot. Methods Twenty-six consecutive Charcot patients were monitored during 2 years by repeated foot radiographs, MRI and circulating levels of IL-17A, IL-17E and IL-17F. Analysis of cytokines was done by ultra-sensitive chemiluminescence technique and data were analyzed by one-way repeated measures ANOVA. Neuropathic diabetic patients (n = 20) and healthy subjects (n = 20) served as controls. Results Plasma IL-17A and IL-17E in weight-bearing Charcot patients at diagnosis were at the level of diabetic controls, whereas IL-17F was significantly lower than diabetic controls. A significant increase in IL-17A and IL-17E reaching a peak 2–4 months after inclusion and start of offloading treatment in Charcot patients was followed by a gradual decrease to the level of diabetic controls at 2 years postinclusion. In contrast, IL-17F increased gradually from inclusion to a level not significantly different from diabetic controls after 2 years. Conclusions Charcot patients display a significant elevation of all three IL-17 cytokines during the follow-up period relative values at diagnosis and values in control patients supporting a role in the bone repair and remodeling activity during the recovery phase. The rapid increase of IL-17A and IL-17E shortly after initiating off-loading treatment could suggest this to be a response to immobilization and stabilization of the diseased foot.
Collapse
Affiliation(s)
- Agnetha Folestad
- Department of Orthopaedics, CapioLundby Hospital, Göteborg, Sweden
| | - Martin Ålund
- Department of Orthopaedics, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Susanne Asteberg
- Department of Orthopaedics, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Jesper Fowelin
- Diabetes Care Unit, Department of Medicine, Frölunda Specialist Hospital, Västra Frölunda, Göteborg, Sweden
| | - Ylva Aurell
- Department of Radiology, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Jan Göthlin
- Department of Radiology, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Jean Cassuto
- Orthopaedic Research Unit, Sahlgrenska University Hospital, Staben, Hus U1, 431 80 Mölndal, Sweden, Göteborg University, Göteborg, Sweden
| |
Collapse
|
232
|
Tsai PH, Chien Y, Chuang JH, Chou SJ, Chien CH, Lai YH, Li HY, Ko YL, Chang YL, Wang CY, Liu YY, Lee HC, Yang CH, Tsai TF, Lee YY, Chiou SH. Dysregulation of Mitochondrial Functions and Osteogenic Differentiation in Cisd2-Deficient Murine Induced Pluripotent Stem Cells. Stem Cells Dev 2015; 24:2561-76. [PMID: 26230298 DOI: 10.1089/scd.2015.0066] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Wolfram syndrome 2 (WFS2) is a premature aging syndrome caused by an irreversible mitochondria-mediated disorder. Cisd2, which regulates mitochondrial electron transport, has been recently identified as the causative gene of WFS2. The mouse Cisd2 knockout (KO) (Cisd2(-/-)) recapitulates most of the clinical manifestations of WFS2, including growth retardation, osteopenia, and lordokyphosis. However, the precise mechanisms underlying osteopenia in WFS2 and Cisd2 KO mice remain unknown. In this study, we collected embryonic fibroblasts from Cisd2-deficient embryos and reprogrammed them into induced pluripotent stem cells (iPSCs) via retroviral transduction with Oct4/Sox2/Klf4/c-Myc. Cisd2-deficient mouse iPSCs (miPSCs) exhibited structural abnormalities in their mitochondria and an impaired proliferative capability. The global gene expression profiles of Cisd2(+/+), Cisd2(+/-), and Cisd2(-/-) miPSCs revealed that Cisd2 functions as a regulator of both mitochondrial electron transport and Wnt/β-catenin signaling, which is critical for cell proliferation and osteogenic differentiation. Notably, Cisd2(-/-) miPSCs exhibited impaired Wnt/β-catenin signaling, with the downregulation of downstream genes, such as Tcf1, Fosl1, and Jun and the osteogenic regulator Runx2. Several differentiation markers for tridermal lineages were globally impaired in Cisd2(-/-) miPSCs. Alizarin red S staining and flow cytometry analysis further revealed that Cisd2(-/-) miPSCs failed to undergo osteogenic differentiation. Taken together, our results, as determined using an miPSC-based platform, have demonstrated that Cisd2 regulates mitochondrial function, proliferation, intracellular Ca(2+) homeostasis, and Wnt pathway signaling. Cisd2 deficiency impairs the activation of Wnt/β-catenin signaling and thereby contributes to the pathogeneses of osteopenia and lordokyphosis in WFS2 patients.
Collapse
Affiliation(s)
- Ping-Hsing Tsai
- 1 Institute of Pharmacology, National Yang-Ming University , Taipei, Taiwan
| | - Yueh Chien
- 1 Institute of Pharmacology, National Yang-Ming University , Taipei, Taiwan .,2 Department of Medical Research, Taipei Veterans General Hospital , Taipei, Taiwan
| | - Jen-Hua Chuang
- 2 Department of Medical Research, Taipei Veterans General Hospital , Taipei, Taiwan .,3 Institute of Clinical Medicine, National Yang-Ming University , Taipei, Taiwan
| | - Shih-Jie Chou
- 1 Institute of Pharmacology, National Yang-Ming University , Taipei, Taiwan
| | - Chian-Hsu Chien
- 2 Department of Medical Research, Taipei Veterans General Hospital , Taipei, Taiwan .,3 Institute of Clinical Medicine, National Yang-Ming University , Taipei, Taiwan
| | - Ying-Hsiu Lai
- 4 Institute of Anatomy & Cell Biology, National Yang-Ming University , Taipei, Taiwan
| | - Hsin-Yang Li
- 4 Institute of Anatomy & Cell Biology, National Yang-Ming University , Taipei, Taiwan .,5 School of Medicine, National Yang-Ming University , Taipei, Taiwan .,6 Department of Obstetrics and Gynecology, Neurological Institute , Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yu-Lin Ko
- 2 Department of Medical Research, Taipei Veterans General Hospital , Taipei, Taiwan .,5 School of Medicine, National Yang-Ming University , Taipei, Taiwan
| | - Yuh-Lih Chang
- 1 Institute of Pharmacology, National Yang-Ming University , Taipei, Taiwan .,7 Department of Pharmacy, Neurological Institute , Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chen-Ying Wang
- 5 School of Medicine, National Yang-Ming University , Taipei, Taiwan
| | - Yung-Yang Liu
- 2 Department of Medical Research, Taipei Veterans General Hospital , Taipei, Taiwan .,3 Institute of Clinical Medicine, National Yang-Ming University , Taipei, Taiwan
| | - Hsin-Chen Lee
- 1 Institute of Pharmacology, National Yang-Ming University , Taipei, Taiwan .,5 School of Medicine, National Yang-Ming University , Taipei, Taiwan
| | - Chang-Hao Yang
- 8 Department of Ophthalmology, National Taiwan University Hospital , Taipei, Taiwan
| | - Ting-Fen Tsai
- 9 Department of Life Sciences & Institute of Genome Sciences, National Yang-Ming University , Taipei, Taiwan
| | - Yi-Yen Lee
- 3 Institute of Clinical Medicine, National Yang-Ming University , Taipei, Taiwan .,10 Department of Neurosurgery, Neurological Institute , Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shih-Hwa Chiou
- 1 Institute of Pharmacology, National Yang-Ming University , Taipei, Taiwan .,2 Department of Medical Research, Taipei Veterans General Hospital , Taipei, Taiwan .,3 Institute of Clinical Medicine, National Yang-Ming University , Taipei, Taiwan .,4 Institute of Anatomy & Cell Biology, National Yang-Ming University , Taipei, Taiwan
| |
Collapse
|
233
|
Folestad A, Ålund M, Asteberg S, Fowelin J, Aurell Y, Göthlin J, Cassuto J. Role of Wnt/β-catenin and RANKL/OPG in bone healing of diabetic Charcot arthropathy patients. Acta Orthop 2015; 86:415-25. [PMID: 25811776 PMCID: PMC4513595 DOI: 10.3109/17453674.2015.1033606] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND AND PURPOSE Charcot neuropathy is characterized by bone destruction in a foot leading to deformity, instability, and risk of amputation. Little is known about the pathogenic mechanisms. We hypothesized that the bone-regulating Wnt/β-catenin and RANKL/OPG pathways have a role in Charcot arthropathy. PATIENTS AND METHODS 24 consecutive Charcot patients were treated by off-loading, and monitored for 2 years by repeated foot radiography, MRI, and circulating levels of sclerostin, dickkopf-1, Wnt inhibitory factor-1, Wnt ligand-1, OPG, and RANKL. 20 neuropathic diabetic controls and 20 healthy controls served as the reference. RESULTS Levels of sclerostin, Dkk-1 and Wnt-1, but not of Wif-1, were significantly lower in Charcot patients than in the diabetic controls at inclusion. Dkk-1 and Wnt-1 levels responded to off-loading by increasing. Sclerostin levels were significantly higher in the diabetic controls than in the other groups whereas Wif-1 levels were significantly higher in the healthy controls than in the other groups. OPG and RANKL levels were significantly higher in the Charcot patients than in the other groups at inclusion, but decreased to the levels in healthy controls at 2 years. OPG/RANKL ratio was balanced in all groups at inclusion, and it remained balanced in Charcot patients on repeated measurement throughout the study. INTERPRETATION High plasma RANKL and OPG levels at diagnosis of Charcot suggest that there is high bone remodeling activity before gradually normalizing after off-loading treatment. The consistently balanced OPG/RANKL ratio in Charcot patients suggests that there is low-key net bone building activity by this pathway following diagnosis and treatment. Inter-group differences at diagnosis and changes in Wnt signaling following off-loading treatment were sufficiently large to be reflected by systemic levels, indicating that this pathway has a role in bone remodeling and bone repair activity in Charcot patients. This is of particular clinical relevance considering the recent emergence of promising drugs that target this system.
Collapse
Affiliation(s)
- Agnetha Folestad
- Department of Orthopedic Surgery, CapioLundby Hospital, Göteborg
| | - Martin Ålund
- Department of Orthopedic Surgery, Sahlgrenska University Hospital, Mölndal;
| | - Susanne Asteberg
- Department of Orthopedic Surgery, Sahlgrenska University Hospital, Mölndal;
| | - Jesper Fowelin
- Diabetes Care Unit, Department of Medicine, Frölunda Specialist Hospital, Västra Frölunda
| | - Ylva Aurell
- Department of Radiology, Sahlgrenska University Hospital, Mölndal
| | - Jan Göthlin
- Department of Radiology, Sahlgrenska University Hospital, Mölndal
| | - Jean Cassuto
- Orthopedic Research Unit, Sahlgrenska University Hospital/Mölndal and Göteborg University, Göteborg, Sweden
| |
Collapse
|
234
|
Volpon JB, Silva AV, Falcai MJ, Louzada MJQ, Zamarioli A, Kotake BGDS, Issa JPM. The osteogenic effects of swimming on bone mass, strength, and microarchitecture in rats with unloading-induced bone loss. Microsc Res Tech 2015; 78:784-91. [PMID: 26179081 DOI: 10.1002/jemt.22541] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 05/29/2015] [Accepted: 06/16/2015] [Indexed: 11/09/2022]
Abstract
The effect of nonweight-bearing exercise on osteoporotic bones remains controversial and inconclusive. The purpose of this study was to evaluate the effects of swimming on osteoporotic tibias of rats submitted to hindlimb suspension. Initially, 20 Wistar rats were used to confirm a significant bone loss following 21 days of unloading. Thirty rats were then divided into 3 groups and followed during 51 days: CON (nonsuspended rats), S + WB (suspended rats for 21 days and then released for regular weight-bearing) and, S + Swim (suspended rats for 21 days and then released from suspension and submitted to swimming exercise). We observed that swimming exercise was effective at fully recovering the bone deterioration caused by suspension, with significant increments in BMD, bone strength and bone volume. On the other hand, regular weight-bearing failed at fully restoring the bone loss induced by unloading. These results indicate that swimming exercise may be a potential tool to improve bone density, strength, and trabecular volume in tibias with bone loss induced by mechanical unloading in suspended rats. We conclude that this modality of activity could be beneficial in improving bone mass, strength, and architecture in osteoporotic individuals induced by disuse, such as bed rest or those exposed to microgravity, who may not be able to perform weight-bearing exercises.
Collapse
Affiliation(s)
- Jose Batista Volpon
- Department of Biomechanics, Medicine and Rehabilitation, School of Medicine of Ribeirão Preto, University of São Paulo, Brazil
| | - Adriana Valadares Silva
- Department of Biomechanics, Medicine and Rehabilitation, School of Medicine of Ribeirão Preto, University of São Paulo, Brazil
| | - Mauricio Jose Falcai
- Department of Biomechanics, Medicine and Rehabilitation, School of Medicine of Ribeirão Preto, University of São Paulo, Brazil
| | | | - Ariane Zamarioli
- Department of Biomechanics, Medicine and Rehabilitation, School of Medicine of Ribeirão Preto, University of São Paulo, Brazil
| | | | | |
Collapse
|
235
|
Zhang Q, Wang J, Deng F, Yan Z, Xia Y, Wang Z, Ye J, Deng Y, Zhang Z, Qiao M, Li R, Denduluri SK, Wei Q, Zhao L, Lu S, Wang X, Tang S, Liu H, Luu HH, Haydon RC, He TC, Jiang L. TqPCR: A Touchdown qPCR Assay with Significantly Improved Detection Sensitivity and Amplification Efficiency of SYBR Green qPCR. PLoS One 2015; 10:e0132666. [PMID: 26172450 PMCID: PMC4501803 DOI: 10.1371/journal.pone.0132666] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 06/17/2015] [Indexed: 02/05/2023] Open
Abstract
The advent of fluorescence-based quantitative real-time PCR (qPCR) has revolutionized the quantification of gene expression analysis in many fields, including life sciences, agriculture, forensic science, molecular diagnostics, and medicine. While SYBR Green-based qPCR is the most commonly-used platform due to its inexpensive nature and robust chemistry, quantifying the expression of genes with low abundance or RNA samples extracted from highly restricted or limited sources can be challenging because the detection sensitivity of SYBR Green-based qPCR is limited. Here, we develop a novel and effective touchdown qPCR (TqPCR) protocol by incorporating a 4-cycle touchdown stage prior to the quantification amplification stage. Using the same cDNA templates, we find that TqPCR can reduce the average Cq values for Gapdh, Rps13, and Hprt1 reference genes by 4.45, 5.47, and 4.94 cycles, respectively, when compared with conventional qPCR; the overall average Cq value reduction for the three reference genes together is 4.95. We further find that TqPCR can improve PCR amplification efficiency and thus increase detection sensitivity. When the quantification of Wnt3A-induced target gene expression in mesenchymal stem cells is analyzed, we find that, while both conventional qPCR and TqPCR can detect the up-regulation of the relatively abundant target Axin2, only TqPCR can detect the up-regulation of the lowly-expressed targets Oct4 and Gbx2. Finally, we demonstrate that the MRQ2 and MRQ3 primer pairs derived from mouse reference gene Tbp can be used to validate the RNA/cDNA integrity of qPCR samples. Taken together, our results strongly suggest that TqPCR may increase detection sensitivity and PCR amplification efficiency. Overall, TqPCR should be advantageous over conventional qPCR in expression quantification, especially when the transcripts of interest are lowly expressed, and/or the availability of total RNA is highly restricted or limited.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Neurology, and the Ministry of Education Key Laboratory of Child Development and Disorders, The Children’s Hospital of Chongqing Medical University, Chongqing 400046, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, United States of America
| | - Jing Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, United States of America
- Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Fang Deng
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, United States of America
- Department of Cell Biology, the Third Military Medical University, Chongqing 400038, China
| | - Zhengjian Yan
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, United States of America
- Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Yinglin Xia
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, NY 14642, United States of America
| | - Zhongliang Wang
- Department of Neurology, and the Ministry of Education Key Laboratory of Child Development and Disorders, The Children’s Hospital of Chongqing Medical University, Chongqing 400046, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, United States of America
| | - Jixing Ye
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, United States of America
- School of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Youlin Deng
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, United States of America
- Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Zhonglin Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, United States of America
- Departments of General Surgery and Neurology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Min Qiao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, United States of America
- Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Ruifang Li
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, United States of America
- Departments of General Surgery and Neurology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Sahitya K. Denduluri
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, United States of America
| | - Qiang Wei
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, United States of America
- Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Lianggong Zhao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, United States of America
- Department of Orthopaedic Surgery, the Second Affiliated Hospital of Lanzhou University, Lanzhou 730000, China
| | - Shun Lu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, United States of America
- Department of Orthopaedic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250012, China
| | - Xin Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, United States of America
- Department of Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Shengli Tang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, United States of America
- Departments of General Surgery and Neurology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Hao Liu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, United States of America
- Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Hue H. Luu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, United States of America
| | - Rex C. Haydon
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, United States of America
| | - Tong-Chuan He
- Department of Neurology, and the Ministry of Education Key Laboratory of Child Development and Disorders, The Children’s Hospital of Chongqing Medical University, Chongqing 400046, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, United States of America
- * E-mail: (T-CH); (LJ)
| | - Li Jiang
- Department of Neurology, and the Ministry of Education Key Laboratory of Child Development and Disorders, The Children’s Hospital of Chongqing Medical University, Chongqing 400046, China
- * E-mail: (T-CH); (LJ)
| |
Collapse
|
236
|
Abstract
Adding to its well-known roles in locomotion and calcium balance, the skeleton has recently been appreciated as a true endocrine organ. Bone remodeling, a highly dynamic process, requires synchronized activities and crosstalk between bone cells. Discovery and characterization of the Wnt/β catenin pathway in bone formation, FGF23 regulation of phosphate homeostasis and osteocalcin in energy and glucose homeostasis have reframed our view of the skeleton from simply a target tissue of the endocrine system to an endocrine tissue itself. This comprehensive review provides an overview of these complex pathways, their application to human bone disorders and implications for developing diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Anda Gonciulea
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | |
Collapse
|
237
|
Abstract
Sclerostin is a cysteine-knot glycoprotein product of the SOST gene, predominately expressed by osteocytes, that is a regulator of osteoblastic bone formation. When sclerostin binds to its low-density lipoprotein receptor-related proteins 5 and 6 on the cell membrane of osteoblasts, it inhibits canonical Wnt/β-catenin signaling and reduces osteoblastic bone formation. Sclerostin was first identified in the study of two rare autosomal recessive disorders, sclerosteosis and van Buchem disease, which are associated with absent or reduced levels of sclerostin. Although homozygote patients with these disorders have serious adverse clinical consequences due to excessive bone growth, heterozygote patients have a normal phenotype, high bone mass, and very low risk of fractures. This has led to the concept that downregulation of sclerostin might be effective in the treatment of osteoporosis. Several humanized monoclonal antibodies to sclerostin, including romosozumab and blosozumab, are now in clinical development. Preliminary data show that these agents result in a transient increase in bone formation markers, a sustained decrease in bone resorption markers, and a robust increase in bone mineral density. If any of these agents are found to reduce fracture risk with a favorable safety profile, it will expand the options for osteoanabolic therapy for patients at high risk for fractures.
Collapse
Affiliation(s)
- Maryam Sharifi
- University of New Mexico School of Medicine, Albuquerque, NM, USA
| | | | | |
Collapse
|
238
|
Seifert A, Werheid DF, Knapp SM, Tobiasch E. Role of Hox genes in stem cell differentiation. World J Stem Cells 2015; 7:583-595. [PMID: 25914765 PMCID: PMC4404393 DOI: 10.4252/wjsc.v7.i3.583] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 11/20/2014] [Accepted: 12/17/2014] [Indexed: 02/06/2023] Open
Abstract
Hox genes are an evolutionary highly conserved gene family. They determine the anterior-posterior body axis in bilateral organisms and influence the developmental fate of cells. Embryonic stem cells are usually devoid of any Hox gene expression, but these transcription factors are activated in varying spatial and temporal patterns defining the development of various body regions. In the adult body, Hox genes are among others responsible for driving the differentiation of tissue stem cells towards their respective lineages in order to repair and maintain the correct function of tissues and organs. Due to their involvement in the embryonic and adult body, they have been suggested to be useable for improving stem cell differentiations in vitro and in vivo. In many studies Hox genes have been found as driving factors in stem cell differentiation towards adipogenesis, in lineages involved in bone and joint formation, mainly chondrogenesis and osteogenesis, in cardiovascular lineages including endothelial and smooth muscle cell differentiations, and in neurogenesis. As life expectancy is rising, the demand for tissue reconstruction continues to increase. Stem cells have become an increasingly popular choice for creating therapies in regenerative medicine due to their self-renewal and differentiation potential. Especially mesenchymal stem cells are used more and more frequently due to their easy handling and accessibility, combined with a low tumorgenicity and little ethical concerns. This review therefore intends to summarize to date known correlations between natural Hox gene expression patterns in body tissues and during the differentiation of various stem cells towards their respective lineages with a major focus on mesenchymal stem cell differentiations. This overview shall help to understand the complex interactions of Hox genes and differentiation processes all over the body as well as in vitro for further improvement of stem cell treatments in future regenerative medicine approaches.
Collapse
|
239
|
Rahman MS, Akhtar N, Jamil HM, Banik RS, Asaduzzaman SM. TGF-β/BMP signaling and other molecular events: regulation of osteoblastogenesis and bone formation. Bone Res 2015; 3:15005. [PMID: 26273537 PMCID: PMC4472151 DOI: 10.1038/boneres.2015.5] [Citation(s) in RCA: 432] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 01/26/2015] [Accepted: 02/27/2015] [Indexed: 02/08/2023] Open
Abstract
Transforming growth factor-beta (TGF-β)/bone morphogenetic protein (BMP) plays a fundamental role in the regulation of bone organogenesis through the activation of receptor serine/threonine kinases. Perturbations of TGF-β/BMP activity are almost invariably linked to a wide variety of clinical outcomes, i.e., skeletal, extra skeletal anomalies, autoimmune, cancer, and cardiovascular diseases. Phosphorylation of TGF-β (I/II) or BMP receptors activates intracellular downstream Smads, the transducer of TGF-β/BMP signals. This signaling is modulated by various factors and pathways, including transcription factor Runx2. The signaling network in skeletal development and bone formation is overwhelmingly complex and highly time and space specific. Additive, positive, negative, or synergistic effects are observed when TGF-β/BMP interacts with the pathways of MAPK, Wnt, Hedgehog (Hh), Notch, Akt/mTOR, and miRNA to regulate the effects of BMP-induced signaling in bone dynamics. Accumulating evidence indicates that Runx2 is the key integrator, whereas Hh is a possible modulator, miRNAs are regulators, and β-catenin is a mediator/regulator within the extensive intracellular network. This review focuses on the activation of BMP signaling and interaction with other regulatory components and pathways highlighting the molecular mechanisms regarding TGF-β/BMP function and regulation that could allow understanding the complexity of bone tissue dynamics.
Collapse
Affiliation(s)
- Md Shaifur Rahman
- Tissue Banking and Biomaterial Research Unit, Atomic Energy Research Establishment , Dhaka 1349, Bangladesh
| | - Naznin Akhtar
- Tissue Banking and Biomaterial Research Unit, Atomic Energy Research Establishment , Dhaka 1349, Bangladesh
| | - Hossen Mohammad Jamil
- Tissue Banking and Biomaterial Research Unit, Atomic Energy Research Establishment , Dhaka 1349, Bangladesh
| | - Rajat Suvra Banik
- Lab of Network Biology, Biotechnology and Genetic Engineering Discipline, Khulna University , Khulna 9208, Bangladesh
| | - Sikder M Asaduzzaman
- Tissue Banking and Biomaterial Research Unit, Atomic Energy Research Establishment , Dhaka 1349, Bangladesh
| |
Collapse
|
240
|
Baker EK, Taylor S, Gupte A, Chalk AM, Bhattacharya S, Green AC, Martin TJ, Strbenac D, Robinson MD, Purton LE, Walkley CR. Wnt inhibitory factor 1 (WIF1) is a marker of osteoblastic differentiation stage and is not silenced by DNA methylation in osteosarcoma. Bone 2015; 73:223-32. [PMID: 25571841 DOI: 10.1016/j.bone.2014.12.063] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 12/03/2014] [Accepted: 12/28/2014] [Indexed: 12/29/2022]
Abstract
Wnt pathway targeting is of high clinical interest for treating bone loss disorders such as osteoporosis. These therapies inhibit the action of negative regulators of osteoblastic Wnt signaling. The report that Wnt inhibitory factor 1 (WIF1) was epigenetically silenced via promoter DNA methylation in osteosarcoma (OS) raised potential concerns for such treatment approaches. Here we confirm that Wif1 expression is frequently reduced in OS. However, we demonstrate that silencing is not driven by DNA methylation. Treatment of mouse and human OS cells showed that Wif1 expression was robustly induced by HDAC inhibition but not by methylation inhibition. Consistent with HDAC dependent silencing, the Wif1 locus in OS was characterized by low acetylation levels and a bivalent H3K4/H3K27-trimethylation state. Wif1 expression marked late stages of normal osteoblast maturation and stratified OS tumors based on differentiation stage across species. Culture of OS cells under differentiation inductive conditions increased expression of Wif1. Together these results demonstrate that Wif1 is not targeted for silencing by DNA methylation in OS. Instead, the reduced expression of Wif1 in OS cells is in context with their stage in differentiation.
Collapse
Affiliation(s)
- Emma K Baker
- Stem Cell Regulation Unit, St. Vincent's Institute of Medical Research, Fitzroy, Australia; Department of Medicine, St. Vincent's Hospital, University of Melbourne, Fitzroy, Australia.
| | - Scott Taylor
- Stem Cell Regulation Unit, St. Vincent's Institute of Medical Research, Fitzroy, Australia
| | - Ankita Gupte
- Stem Cell Regulation Unit, St. Vincent's Institute of Medical Research, Fitzroy, Australia
| | - Alistair M Chalk
- Stem Cell Regulation Unit, St. Vincent's Institute of Medical Research, Fitzroy, Australia; Department of Medicine, St. Vincent's Hospital, University of Melbourne, Fitzroy, Australia
| | - Shreya Bhattacharya
- Stem Cell Regulation Unit, St. Vincent's Institute of Medical Research, Fitzroy, Australia; Department of Medicine, St. Vincent's Hospital, University of Melbourne, Fitzroy, Australia
| | - Alanna C Green
- Stem Cell Regulation Unit, St. Vincent's Institute of Medical Research, Fitzroy, Australia; Department of Medicine, St. Vincent's Hospital, University of Melbourne, Fitzroy, Australia
| | - T John Martin
- Department of Medicine, St. Vincent's Hospital, University of Melbourne, Fitzroy, Australia; Bone Cell Biology and Disease Unit, St. Vincent's Institute of Medical Research, Fitzroy, Australia
| | - Dario Strbenac
- Cancer Epigenetics, Garvan Institute of Medical Research, Darlinghurst, Australia
| | - Mark D Robinson
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland; SIB Swiss Institute of Bioinformatics, University of Zurich, Zurich, Switzerland
| | - Louise E Purton
- Stem Cell Regulation Unit, St. Vincent's Institute of Medical Research, Fitzroy, Australia; Department of Medicine, St. Vincent's Hospital, University of Melbourne, Fitzroy, Australia
| | - Carl R Walkley
- Stem Cell Regulation Unit, St. Vincent's Institute of Medical Research, Fitzroy, Australia; Department of Medicine, St. Vincent's Hospital, University of Melbourne, Fitzroy, Australia.
| |
Collapse
|
241
|
Juhász T, Helgadottir SL, Tamás A, Reglődi D, Zákány R. PACAP and VIP signaling in chondrogenesis and osteogenesis. Peptides 2015; 66:51-7. [PMID: 25701761 DOI: 10.1016/j.peptides.2015.02.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 01/16/2015] [Accepted: 01/20/2015] [Indexed: 02/07/2023]
Abstract
Skeletal development is a complex process regulated by multifactorial signaling cascades that govern proper tissue specific cell differentiation and matrix production. The influence of certain regulatory peptides on cartilage or bone development can be predicted but are not widely studied. In this review, we aimed to assemble and overview those signaling pathways which are modulated by PACAP and VIP neuropeptides and are involved in cartilage and bone formation. We discuss recent experimental data suggesting broad spectrum functions of these neuropeptides in osteogenic and chondrogenic differentiation, including the canonical downstream targets of PACAP and VIP receptors, PKA or MAPK pathways, which are key regulators of chondro- and osteogenesis. Recent experimental data support the hypothesis that PACAP is a positive regulator of chondrogenesis, while VIP has been reported playing an important role in the inflammatory reactions of surrounding joint tissues. Regulatory function of PACAP and VIP in bone development has also been proved, although the source of the peptides is not obvious. Crosstalk and collateral connections of the discussed signaling mechanisms make the system complicated and may obscure the pure effects of VIP and PACAP. Chondro-protective properties of PACAP during oxidative stress observed in our experiments indicate a possible therapeutic application of this neuropeptide.
Collapse
Affiliation(s)
- Tamás Juhász
- Department of Anatomy, Histology and Embryology, University of Debrecen, Faculty of Medicine, Nagyerdei krt. 98, H-4032 Debrecen, Hungary.
| | - Solveig Lind Helgadottir
- Department of Anatomy, Histology and Embryology, University of Debrecen, Faculty of Medicine, Nagyerdei krt. 98, H-4032 Debrecen, Hungary
| | - Andrea Tamás
- Department of Anatomy MTA-PTE "Lendület" PACAP Research Team, University of Pécs, Medical School, Szigeti út 12, H-7624 Pécs, Hungary
| | - Dóra Reglődi
- Department of Anatomy MTA-PTE "Lendület" PACAP Research Team, University of Pécs, Medical School, Szigeti út 12, H-7624 Pécs, Hungary
| | - Róza Zákány
- Department of Anatomy, Histology and Embryology, University of Debrecen, Faculty of Medicine, Nagyerdei krt. 98, H-4032 Debrecen, Hungary
| |
Collapse
|
242
|
Wu K, Zhou M, Wu QX, Yuan SX, Wang DX, Jin JL, Huang J, Yang JQ, Sun WJ, Wan LH, He BC. The role of IGFBP-5 in mediating the anti-proliferation effect of tetrandrine in human colon cancer cells. Int J Oncol 2015; 46:1205-13. [PMID: 25524807 DOI: 10.3892/ijo.2014.2800] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 11/26/2014] [Indexed: 11/06/2022] Open
Abstract
Colon cancer is one of the most common malignancies, causes considerable morbidity and mortality. The current treatment for colon cancer is more modest than had been hoped. There is an urgent clinical need to explore new agents or adjuvants for colon cancer treatment. Natural products and their derivates act as one of the major source for anticancer agent. In the present study, we investigated the anti-proliferation and chemoprevention effects of tetrandrine (Tet) on colon cancer cells to uncover the possible molecular basis of this effect. We found that Tet can inhibit proliferation and induce apoptosis in LoVo cells. With dimethylhydrazine (DMH) and dextran sodium sulfate (DSS) induced colon cancer model, we found that Tet can prevent or inhibit DMH plus DSS induced aberrant crypt foci (ACF) and colon cancer formation, as well as suppress tumor growth in the xenograft colon cancer model. Tet can downregulate the expression of IGFBP-5 in LoVo cells. Exogenous expression of IGFBP-5 can attenuate the anti-cancer activity of Tet, while IGFBP-5 knockdown potentiates this effect of Tet on LoVo cells. Tet can inhibit Wnt/β-catenin signaling transduction, which can be partly reversed by exogenous expression of IGFBP-5, but is enhanced by IGFBP-5 knockdown. Our results demonstrated that the anticancer activity of Tet in colon cancer cells may be mediated partly by downregulating the expression of IGFBP-5, thus inactivating Wnt/β-catenin signaling transduction.
Collapse
Affiliation(s)
- Ke Wu
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Mi Zhou
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Qiu-Xiang Wu
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Shuang-Xu Yuan
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Dong-Xu Wang
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Jie-Li Jin
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Jun Huang
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Jun-Qin Yang
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Wen-Juan Sun
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Li-Hua Wan
- Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Bai-Cheng He
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
243
|
Zhang J, Li ZG, Si YM, Chen B, Meng J. The difference on the osteogenic differentiation between periodontal ligament stem cells and bone marrow mesenchymal stem cells under inflammatory microenviroments. Differentiation 2014; 88:97-105. [PMID: 25498523 DOI: 10.1016/j.diff.2014.10.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 09/26/2014] [Accepted: 10/29/2014] [Indexed: 12/14/2022]
Abstract
Periodontitis is a major cause of tooth loss in adults and periodontal ligament stem cells (PDLSCs) is the most favorable candidate for the reconstruction of tissues destroyed by periodontal diseases. However, pathological alterations caused by inflammatory insults might impact the regenerative capacities of these cells. Bone-marrow-derived human mesenchymal stem cells (hBMSCs) would accelerate alveolar bone regeneration by transplantation, compared to PDLSCs. Therefore, a better understanding of the osteogenic differentiation between PDLSCs and BMSCs in inflammatory microenviroments is therefore warranted. In this study, human PDLSCs were investigated for their stem cell characteristics via analysis of cell surface marker expression, colony forming unit efficiency, osteogenic differentiation and adipogenic differentiation, and compared to BMSCs. To determine the impact of both inflammation and the NF-κβ signal pathway on osteogenic differentiation, cells were challenged with TNF-α under osteogenic induction conditions and investigated for mineralization, alkaline phosphatase (ALP) activity, cell proliferation and relative genes expression. Results showed that PDLSCs exhibit weaker mineralization and ALP activity compared to BMSCs. TNF-α inhibited genes expression of osteogenic differentiation in PDLSCs, while, it stimulates gene expressions (BSP and Runx2) in BMSCs. Enhanced NF-κβ activity in PDLSCs decreases expression of Runx2 but it does not impede the osteogenic differentiation of BMSCs. Taken together, these results may suggest that the BMSCs owned the stronger immunomodulation in local microenvironment via anti-inflammatory functions, compared to PDLSCs.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Stomatology, The Affiliated School of Clinical Medicine of Xuzhou Medical College, Xuzhou Central Hospital, Xuzhou, China
| | - Zhi-Gang Li
- Department of Urology, The Affiliated School of Clinical Medicine of Xuzhou Medical College, Xuzhou Central Hospital, Xuzhou, China
| | - Ya-Meng Si
- Department of Stomatology, The Affiliated School of Clinical Medicine of Xuzhou Medical College, Xuzhou Central Hospital, Xuzhou, China
| | - Bin Chen
- Department of Stomatology, The Affiliated School of Clinical Medicine of Xuzhou Medical College, Xuzhou Central Hospital, Xuzhou, China
| | - Jian Meng
- Department of Stomatology, The Affiliated School of Clinical Medicine of Xuzhou Medical College, Xuzhou Central Hospital, Xuzhou, China.
| |
Collapse
|
244
|
Canonical Wnt signaling acts synergistically on BMP9-induced osteo/odontoblastic differentiation of stem cells of dental apical papilla (SCAPs). Biomaterials 2014; 39:145-54. [PMID: 25468367 DOI: 10.1016/j.biomaterials.2014.11.007] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Revised: 10/21/2014] [Accepted: 11/03/2014] [Indexed: 12/19/2022]
Abstract
Dental pulp/dentin regeneration using dental stem cells combined with odontogenic factors may offer great promise to treat and/or prevent premature tooth loss. Here, we investigate if BMP9 and Wnt/β-catenin act synergistically on odontogenic differentiation. Using the immortalized SCAPs (iSCAPs) isolated from mouse apical papilla tissue, we demonstrate that Wnt3A effectively induces early osteogenic marker alkaline phosphatase (ALP) in iSCAPs, which is reduced by β-catenin knockdown. While Wnt3A and BMP9 enhance each other's ability to induce ALP activity in iSCAPs, silencing β-catenin significantly diminishes BMP9-induced osteo/odontogenic differentiation. Furthermore, silencing β-catenin reduces BMP9-induced expression of osteocalcin and osteopontin and in vitro matrix mineralization of iSCAPs. In vivo stem cell implantation assay reveals that while BMP9-transduced iSCAPs induce robust ectopic bone formation, iSCAPs stimulated with both BMP9 and Wnt3A exhibit more mature and highly mineralized trabecular bone formation. However, knockdown of β-catenin in iSCAPs significantly diminishes BMP9 or BMP9/Wnt3A-induced ectopic bone formation in vivo. Thus, our results strongly suggest that β-catenin may play an important role in BMP9-induced osteo/ondontogenic signaling and that BMP9 and Wnt3A may act synergistically to induce osteo/odontoblastic differentiation of iSCAPs. It's conceivable that BMP9 and/or Wnt3A may be explored as efficacious biofactors for odontogenic regeneration and tooth engineering.
Collapse
|
245
|
Deng F, Chen X, Liao Z, Yan Z, Wang Z, Deng Y, Zhang Q, Zhang Z, Ye J, Qiao M, Li R, Denduluri S, Wang J, Wei Q, Li M, Geng N, Zhao L, Zhou G, Zhang P, Luu HH, Haydon RC, Reid RR, Yang T, He TC. A simplified and versatile system for the simultaneous expression of multiple siRNAs in mammalian cells using Gibson DNA Assembly. PLoS One 2014; 9:e113064. [PMID: 25398142 PMCID: PMC4232585 DOI: 10.1371/journal.pone.0113064] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 10/18/2014] [Indexed: 01/01/2023] Open
Abstract
RNA interference (RNAi) denotes sequence-specific mRNA degradation induced by short interfering double-stranded RNA (siRNA) and has become a revolutionary tool for functional annotation of mammalian genes, as well as for development of novel therapeutics. The practical applications of RNAi are usually achieved by expressing short hairpin RNAs (shRNAs) or siRNAs in cells. However, a major technical challenge is to simultaneously express multiple siRNAs to silence one or more genes. We previously developed pSOS system, in which siRNA duplexes are made from oligo templates driven by opposing U6 and H1 promoters. While effective, it is not equipped to express multiple siRNAs in a single vector. Gibson DNA Assembly (GDA) is an in vitro recombination system that has the capacity to assemble multiple overlapping DNA molecules in a single isothermal step. Here, we developed a GDA-based pSOK assembly system for constructing single vectors that express multiple siRNA sites. The assembly fragments were generated by PCR amplifications from the U6-H1 template vector pB2B. GDA assembly specificity was conferred by the overlapping unique siRNA sequences of insert fragments. To prove the technical feasibility, we constructed pSOK vectors that contain four siRNA sites and three siRNA sites targeting human and mouse β-catenin, respectively. The assembly reactions were efficient, and candidate clones were readily identified by PCR screening. Multiple β-catenin siRNAs effectively silenced endogenous β-catenin expression, inhibited Wnt3A-induced β-catenin/Tcf4 reporter activity and expression of Wnt/β-catenin downstream genes. Silencing β-catenin in mesenchymal stem cells inhibited Wnt3A-induced early osteogenic differentiation and significantly diminished synergistic osteogenic activity between BMP9 and Wnt3A in vitro and in vivo. These findings demonstrate that the GDA-based pSOK system has been proven simplistic, effective and versatile for simultaneous expression of multiple siRNAs. Thus, the reported pSOK system should be a valuable tool for gene function studies and development of novel therapeutics.
Collapse
Affiliation(s)
- Fang Deng
- Department of Cell Biology, Third Military Medical University, Chongqing, 400038, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, United States of America
| | - Xiang Chen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, United States of America
| | - Zhan Liao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, United States of America
- Department of Orthopaedic Surgery, the Affiliated Xiang-Ya Hospital of Central South University, Changsha, 410008, China
| | - Zhengjian Yan
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, United States of America
- Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing, 400016, China
| | - Zhongliang Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, United States of America
- Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing, 400016, China
| | - Youlin Deng
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, United States of America
- Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing, 400016, China
| | - Qian Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, United States of America
- Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing, 400016, China
| | - Zhonglin Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, United States of America
- Department of Surgery, the Affiliated Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Jixing Ye
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, United States of America
- School of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Min Qiao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, United States of America
- Department of Orthopaedic Surgery, the Affiliated Xiang-Ya Hospital of Central South University, Changsha, 410008, China
- Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing, 400016, China
| | - Ruifang Li
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, United States of America
- Department of Surgery, the Affiliated Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Sahitya Denduluri
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, United States of America
| | - Jing Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, United States of America
- Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing, 400016, China
| | - Qiang Wei
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, United States of America
- Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing, 400016, China
| | - Melissa Li
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, United States of America
| | - Nisha Geng
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, United States of America
| | - Lianggong Zhao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, United States of America
- Department of Orthopaedic Surgery, the Second Affiliated Hospital of Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Guolin Zhou
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, United States of America
| | - Penghui Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, United States of America
- Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing, 400016, China
| | - Hue H. Luu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, United States of America
| | - Rex C. Haydon
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, United States of America
| | - Russell R. Reid
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, United States of America
- The Laboratory of Craniofacial Biology, Department of Surgery, The University of Chicago Medical Center, Chicago, IL, 60637, United States of America
| | - Tian Yang
- Department of Cell Biology, Third Military Medical University, Chongqing, 400038, China
- * E-mail: (TCH); (TY)
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, United States of America
- Department of Orthopaedic Surgery, the Affiliated Xiang-Ya Hospital of Central South University, Changsha, 410008, China
- * E-mail: (TCH); (TY)
| |
Collapse
|
246
|
Kunttas-Tatli E, Roberts DM, McCartney BM. Self-association of the APC tumor suppressor is required for the assembly, stability, and activity of the Wnt signaling destruction complex. Mol Biol Cell 2014; 25:3424-36. [PMID: 25208568 PMCID: PMC4214788 DOI: 10.1091/mbc.e14-04-0885] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The tumor suppressor adenomatous polyposis coli (APC) is an essential negative regulator of Wnt signaling through its activity in the destruction complex with Axin, GSK3β, and CK1 that targets β-catenin/Armadillo (β-cat/Arm) for proteosomal degradation. The destruction complex forms macromolecular particles we termed the destructosome. Whereas APC functions in the complex through its ability to bind both β-cat and Axin, we hypothesize that APC proteins play an additional role in destructosome assembly through self-association. Here we show that a novel N-terminal coil, the APC self-association domain (ASAD), found in vertebrate and invertebrate APCs, directly mediates self-association of Drosophila APC2 and plays an essential role in the assembly and stability of the destructosome that regulates β-cat degradation in Drosophila and human cells. Consistent with this, removal of the ASAD from the Drosophila embryo results in β-cat/Arm accumulation and aberrant Wnt pathway activation. These results suggest that APC proteins are required not only for the activity of the destructosome, but also for the assembly and stability of this macromolecular machine.
Collapse
Affiliation(s)
- Ezgi Kunttas-Tatli
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213
| | - David M Roberts
- Department of Biology, Franklin and Marshall College, Lancaster, PA 17604
| | - Brooke M McCartney
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213
| |
Collapse
|
247
|
Tomei P, Zaza G, Granata S, Gatti D, Fraccarollo C, Gesualdo L, Boschiero L, Lupo A. Sclerostin and Dickkopf-1 in Post-menopausal Renal Allograft Recipients. Transplant Proc 2014; 46:2241-6. [DOI: 10.1016/j.transproceed.2014.07.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
248
|
Plotnikov EY, Silachev DN, Zorova LD, Pevzner IB, Jankauskas SS, Zorov SD, Babenko VA, Skulachev MV, Zorov DB. Lithium salts — Simple but magic. BIOCHEMISTRY (MOSCOW) 2014; 79:740-9. [DOI: 10.1134/s0006297914080021] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
249
|
Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) Signalling Enhances Osteogenesis in UMR-106 Cell Line. J Mol Neurosci 2014; 54:555-73. [DOI: 10.1007/s12031-014-0389-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 07/22/2014] [Indexed: 01/14/2023]
|
250
|
Thorfve A, Bergstrand A, Ekström K, Lindahl A, Thomsen P, Larsson A, Tengvall P. Gene expression profiling of peri-implant healing of PLGA-Li+ implants suggests an activated Wnt signaling pathway in vivo. PLoS One 2014; 9:e102597. [PMID: 25047349 PMCID: PMC4105622 DOI: 10.1371/journal.pone.0102597] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 06/20/2014] [Indexed: 01/09/2023] Open
Abstract
Bone development and regeneration is associated with the Wnt signaling pathway that, according to literature, can be modulated by lithium ions (Li+). The aim of this study was to evaluate the gene expression profile during peri-implant healing of poly(lactic-co-glycolic acid) (PLGA) implants with incorporated Li+, while PLGA without Li+ was used as control, and a special attention was then paid to the Wnt signaling pathway. The implants were inserted in rat tibia for 7 or 28 days and the gene expression profile was investigated using a genome-wide microarray analysis. The results were verified by qPCR and immunohistochemistry. Histomorphometry was used to evaluate the possible effect of Li+ on bone regeneration. The microarray analysis revealed a large number of significantly differentially regulated genes over time within the two implant groups. The Wnt signaling pathway was significantly affected by Li+, with approximately 34% of all Wnt-related markers regulated over time, compared to 22% for non-Li+ containing (control; Ctrl) implants. Functional cluster analysis indicated skeletal system morphogenesis, cartilage development and condensation as related to Li+. The downstream Wnt target gene, FOSL1, and the extracellular protein-encoding gene, ASPN, were significantly upregulated by Li+ compared with Ctrl. The presence of β-catenin, FOSL1 and ASPN positive cells was confirmed around implants of both groups. Interestingly, a significantly reduced bone area was observed over time around both implant groups. The presence of periostin and calcitonin receptor-positive cells was observed at both time points. This study is to the best of the authors' knowledge the first report evaluating the effect of a local release of Li+ from PLGA at the fracture site. The present study shows that during the current time frame and with the present dose of Li+ in PLGA implants, Li+ is not an enhancer of early bone growth, although it affects the Wnt signaling pathway.
Collapse
Affiliation(s)
- Anna Thorfve
- Department of Biomaterials, Institute of Clinical Sciences, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, Gothenburg, Sweden
| | - Anna Bergstrand
- Department of Chemical and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
- SuMo BIOMATERIALS VINN Excellence Center, Gothenburg, Sweden
- Stiftelsen Chalmers Industriteknik, Chalmers Teknikpark, Gothenburg, Sweden
| | - Karin Ekström
- Department of Biomaterials, Institute of Clinical Sciences, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, Gothenburg, Sweden
| | - Anders Lindahl
- BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, Gothenburg, Sweden
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Peter Thomsen
- Department of Biomaterials, Institute of Clinical Sciences, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, Gothenburg, Sweden
| | - Anette Larsson
- Department of Chemical and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
- SuMo BIOMATERIALS VINN Excellence Center, Gothenburg, Sweden
| | - Pentti Tengvall
- Department of Biomaterials, Institute of Clinical Sciences, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, Gothenburg, Sweden
| |
Collapse
|