201
|
Veletic I, Prijic S, Manshouri T, Nogueras-Gonzalez GM, Verstovsek S, Estrov Z. Altered T-cell subset repertoire affects treatment outcome of patients with myelofibrosis. Haematologica 2021; 106:2384-2396. [PMID: 32732359 PMCID: PMC8409049 DOI: 10.3324/haematol.2020.249441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Indexed: 12/13/2022] Open
Abstract
Phenotypic characterization of T cells in myelofibrosis is intriguing because of increased inflammation, markedly elevated pro-inflammatory cytokines, and altered distribution of T-cell subsets. Constitutive activation of Janus kinase-2 (JAK2) in the majority of patients with myelofibrosis contributes to the expression of the programmed cell death protein-1 (PD1) and T-cell exhaustion. We wondered whether T-cell activation affects treatment outcome of patients with myelofibrosis and sought to determine whether the JAK1/2 inhibitor ruxolitinib affects the activation of T-cell subsets. T cells from 47 myelofibrosis patients were analyzed and the percentages of either helper (CD4+) or cytotoxic (CD8+) naïve, central memory, effector memory, or effector T cells; and fractions of PD1-expressing cells in each subset were assessed. Higher numbers of T cells co-expressing CD4/PD1 and CD8/PD1 were found in myelofibrosis patients than in healthy controls (n=28), and the T cells were significantly skewed toward an effector phenotype in both CD4+ and CD8+ subsets, consistent with a shift from a quiescent to an activated state. Over the course of ruxolitinib treatment, the distribution of aberrant T-cell subsets significantly reversed towards resting cell phenotypes. CD4+ and CD8+ subsets at baseline correlated with monocyte and platelet counts, and their PD1+ fractions correlated with leukocyte counts and spleen size. Low numbers of PD1+/CD4+ and PD1+/CD8+ cells were associated with complete resolution of palpable splenomegaly and improved survival rate, suggesting that low levels of exhausted T cells confer a favorable response to ruxolitinib treatment.
Collapse
Affiliation(s)
- Ivo Veletic
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sanja Prijic
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Taghi Manshouri
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Srdan Verstovsek
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zeev Estrov
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
202
|
Oppliger Leibundgut E, Haubitz M, Burington B, Ottmann OG, Spitzer G, Odenike O, McDevitt MA, Röth A, Snyder DS, Baerlocher GM. Dynamics of mutations in patients with essential thrombocythemia treated with imetelstat. Haematologica 2021; 106:2397-2404. [PMID: 32732354 PMCID: PMC8409045 DOI: 10.3324/haematol.2020.252817] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Indexed: 01/14/2023] Open
Abstract
In a phase II study, the telomerase inhibitor imetelstat induced rapid hematologic responses in all patients with essential thrombocythemia who were refractory to or intolerant of prior therapies. Significant molecular responses were achieved within 3-6 months in 81% of patients with phenotypic driver mutations in JAK2, CALR and MPL. Here, we investigated the dynamics of additional somatic mutations in response to imetelstat. At study entry, 50% of patients carried one to five additional mutations in the genes ASXL1, CBL, DNMT3A, EZH2, IDH1, SF3B1, TET2, TP53 and U2AF1. Three patients with baseline mutations also had late-emerging mutations in TP53, IDH1 and TET2. Most clones with additional mutations were responsive to imetelstat and decreased with the driver mutation, including the poor prognostic ASXL1, EZH2 and U2AF1 mutations, while SF3B1 and TP53 mutations were associated with poorer molecular response. Overall, phenotypic driver mutation response was significantly deeper in patients without additional mutations (P=0.04) and correlated with longer duration of response. In conclusion, this detailed molecular analysis of heavily pretreated and partly resistant patients with essential thrombocythemia reveals a high individual patient complexity. Moreover, imetelstat demonstrates potential to inhibit efficiently co-incident mutations occurring in neoplastic clones in patients with essential thrombocythemia. (ClinicalTrials.gov number, NCT01243073).
Collapse
Affiliation(s)
| | - Monika Haubitz
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | | | - Oliver G Ottmann
- Department of Haematology, Cardiff University, Cardiff, United Kingdom
| | | | | | - Michael A McDevitt
- Divisions of Hematology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alexander Röth
- Department of Hematology, West German Cancer Center, University Hospital Essen, Essen, Germany
| | - David S Snyder
- Gehr Family Center for Leukemia Research, City of Hope National Medical Center, Duarte, CA, USA
| | | |
Collapse
|
203
|
Abstract
Clonal haematopoiesis (CH) is a common, age-related expansion of blood cells with somatic mutations that is associated with an increased risk of haematological malignancies, cardiovascular disease and all-cause mortality. CH may be caused by point mutations in genes associated with myeloid neoplasms, chromosomal copy number changes and loss of heterozygosity events. How inherited and environmental factors shape the incidence of CH is incompletely understood. Even though the several varieties of CH may have distinct phenotypic consequences, recent research points to an underlying genetic architecture that is highly overlapping. Moreover, there are numerous commonalities between the inherited variation associated with CH and that which has been linked to age-associated biomarkers and diseases. In this Review, we synthesize what is currently known about how inherited variation shapes the risk of CH and how this genetic architecture intersects with the biology of diseases that occur with ageing.
Collapse
Affiliation(s)
- Alexander J Silver
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Alexander G Bick
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
- Center for Immunobiology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Michael R Savona
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Center for Immunobiology, Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
204
|
NK Cells in Myeloproliferative Neoplasms (MPN). Cancers (Basel) 2021; 13:cancers13174400. [PMID: 34503210 PMCID: PMC8431564 DOI: 10.3390/cancers13174400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 11/24/2022] Open
Abstract
Simple Summary NK cells are important innate immune effectors that contribute substantially to tumor control, however the role of NK cells in haematological cancers is not as well understood. The aim of this review is to highlight the importance of the role of NK cells in the management of Ph+ Myeloproliferative Neoplasms, and emphasize the need and possible benefits of a more in-depth investigation into their role in classical MPNs and show potential strategies to harness the anti-tumoral capacities of NK cells. Abstract Myeloproliferative neoplasms (MPNs) comprise a heterogenous group of hematologic neoplasms which are divided into Philadelphia positive (Ph+), and Philadelphia negative (Ph−) or classical MPNs. A variety of immunological factors including inflammatory, as well as immunomodulatory processes, closely interact with the disease phenotypes in MPNs. NK cells are important innate immune effectors and substantially contribute to tumor control. Changes to the absolute and proportionate numbers of NK cell, as well as phenotypical and functional alterations are seen in MPNs. In addition to the disease itself, a variety of therapeutic options in MPNs may modify NK cell characteristics. Reports of suppressive effects of MPN treatment strategies on NK cell activity have led to intensive investigations into the respective compounds, to elucidate the possible negative effects of MPN therapy on control of the leukemic clones. We hereby review the available literature on NK cells in Ph+ and Ph− MPNs and summarize today’s knowledge on disease-related alterations in this cell compartment with particular focus on known therapy-associated changes. Furthermore, we critically evaluate conflicting data with possible implications for future projects. We also aim to highlight the relevance of full NK cell functionality for disease control in MPNs and the importance of considering specific changes related to therapy in order to avoid suppressive effects on immune surveillance.
Collapse
|
205
|
Roy A, Shrivastva S, Naseer S. In and out: Traffic and dynamics of thrombopoietin receptor. J Cell Mol Med 2021; 25:9073-9083. [PMID: 34448528 PMCID: PMC8500957 DOI: 10.1111/jcmm.16878] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/27/2021] [Accepted: 08/04/2021] [Indexed: 12/17/2022] Open
Abstract
Thrombopoiesis had long been a challenging area of study due to the rarity of megakaryocyte precursors in the bone marrow and the incomplete understanding of its regulatory cytokines. A breakthrough was achieved in the early 1990s with the discovery of the thrombopoietin receptor (TpoR) and its ligand thrombopoietin (TPO). This accelerated research in thrombopoiesis, including the uncovering of the molecular basis of myeloproliferative neoplasms (MPN) and the advent of drugs to treat thrombocytopenic purpura. TpoR mutations affecting its membrane dynamics or transport were increasingly associated with pathologies such as MPN and thrombocytosis. It also became apparent that TpoR affected hematopoietic stem cell (HSC) quiescence while priming hematopoietic stem cells (HSCs) towards the megakaryocyte lineage. Thorough knowledge of TpoR surface localization, dimerization, dynamics and stability is therefore crucial to understanding thrombopoiesis and related pathologies. In this review, we will discuss the mechanisms of TpoR traffic. We will focus on the recent progress in TpoR membrane dynamics and highlight the areas that remain unexplored.
Collapse
Affiliation(s)
- Anita Roy
- Kusuma School of Biological Sciences, Indian Institute of Technology, New Delhi, India
| | - Saurabh Shrivastva
- Kusuma School of Biological Sciences, Indian Institute of Technology, New Delhi, India
| | - Saadia Naseer
- Kusuma School of Biological Sciences, Indian Institute of Technology, New Delhi, India
| |
Collapse
|
206
|
Hitchcock IS, Hafer M, Sangkhae V, Tucker JA. The thrombopoietin receptor: revisiting the master regulator of platelet production. Platelets 2021; 32:770-778. [PMID: 34097561 PMCID: PMC8292222 DOI: 10.1080/09537104.2021.1925102] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 12/25/2022]
Abstract
Thrombopoietin (TPO) and its receptor, MPL, are the primary regulators of platelet production and critical for hematopoietic stem cell (HSC) maintenance. Since TPO was first cloned in 1994, the physiological and pathological roles of TPO and MPL have been well characterized, culminating in the first MPL agonists being approved for the treatment of chronic immune thrombocytopenia in 2008. Dysregulation of the TPO-MPL signaling axis contributes to the pathogenesis of hematological disorders: decreased expression or function results in severe thrombocytopenia progressing to bone marrow failure, while hyperactivation of MPL signaling, either by mutations in the receptor or associated Janus kinase 2 (JAK2), results in pathological myeloproliferation. Despite its importance, it was only recently that the long-running debate over the mechanism by which TPO binding activates MPL has been resolved. This review will cover key aspects of TPO and MPL structure and function and their importance in receptor activation, discuss how these are altered in hematological disorders and consider how a greater understanding could lead to the development of better-targeted and more efficacious therapies.
Collapse
Affiliation(s)
- Ian S. Hitchcock
- York Biomedical Research Institute, Department of Biology, University of York, York, UK
| | - Maximillian Hafer
- Department of Biology and Center of Cellular Nanoanalytics, University of Osnabrück, Osnabrück, Germany
| | - Veena Sangkhae
- Center for Iron Disorders, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Julie A. Tucker
- York Biomedical Research Institute, Department of Biology, University of York, York, UK
| |
Collapse
|
207
|
Dutta A, Nath D, Yang Y, Le BT, Mohi G. CDK6 Is a Therapeutic Target in Myelofibrosis. Cancer Res 2021; 81:4332-4345. [PMID: 34145036 PMCID: PMC8373692 DOI: 10.1158/0008-5472.can-21-0590] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 05/05/2021] [Accepted: 06/16/2021] [Indexed: 12/14/2022]
Abstract
Myelofibrosis (myelofibrosis) is a deadly blood neoplasia with the worst prognosis among myeloproliferative neoplasms (MPN). The JAK2 inhibitors ruxolitinib and fedratinib have been approved for treatment of myelofibrosis, but they do not offer significant improvement of bone marrow fibrosis. CDK6 expression is significantly elevated in MPN/myelofibrosis hematopoietic progenitor cells. In this study, we investigated the efficacy of CDK4/6 inhibitor palbociclib alone or in combination with ruxolitinib in Jak2V617F and MPLW515L murine models of myelofibrosis. Treatment with palbociclib alone significantly reduced leukocytosis and splenomegaly and inhibited bone marrow fibrosis in Jak2V617F and MPLW515L mouse models of myelofibrosis. Combined treatment of palbociclib and ruxolitinib resulted in normalization of peripheral blood leukocyte counts, marked reduction of spleen size, and abrogation of bone marrow fibrosis in murine models of myelofibrosis. Palbociclib treatment also preferentially inhibited Jak2V617F mutant hematopoietic progenitors in mice. Mechanistically, treatment with palbociclib or depletion of CDK6 inhibited Aurora kinase, NF-κB, and TGFβ signaling pathways in Jak2V617F mutant hematopoietic cells and attenuated expression of fibrotic markers in the bone marrow. Overall, these data suggest that palbociclib in combination with ruxolitinib may have therapeutic potential for treatment of myelofibrosis and support the clinical investigation of this drug combination in patients with myelofibrosis. SIGNIFICANCE: These findings demonstrate that CDK6 inhibitor palbociclib in combination with ruxolitinib ameliorates myelofibrosis, suggesting this drug combination could be an effective therapeutic strategy against this devastating blood disorder.
Collapse
Affiliation(s)
- Avik Dutta
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Dipmoy Nath
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Yue Yang
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Bao T Le
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Golam Mohi
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia.
- University of Virginia Cancer Center, Charlottesville, Virginia
| |
Collapse
|
208
|
Baumeister J, Maié T, Chatain N, Gan L, Weinbergerova B, de Toledo MAS, Eschweiler J, Maurer A, Mayer J, Kubesova B, Racil Z, Schuppert A, Costa I, Koschmieder S, Brümmendorf TH, Gezer D. Early and late stage MPN patients show distinct gene expression profiles in CD34 + cells. Ann Hematol 2021; 100:2943-2956. [PMID: 34390367 PMCID: PMC8592960 DOI: 10.1007/s00277-021-04615-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 07/11/2021] [Indexed: 12/12/2022]
Abstract
Myeloproliferative neoplasms (MPN), comprising essential thrombocythemia (ET), polycythemia vera (PV), and primary myelofibrosis (PMF), are hematological disorders of the myeloid lineage characterized by hyperproliferation of mature blood cells. The prediction of the clinical course and progression remains difficult and new therapeutic modalities are required. We conducted a CD34+ gene expression study to identify signatures and potential biomarkers in the different MPN subtypes with the aim to improve treatment and prevent the transformation from the rather benign chronic state to a more malignant aggressive state. We report here on a systematic gene expression analysis (GEA) of CD34+ peripheral blood or bone marrow cells derived from 30 patients with MPN including all subtypes (ET (n = 6), PV (n = 11), PMF (n = 9), secondary MF (SMF; post-ET-/post-PV-MF; n = 4)) and six healthy donors. GEA revealed a variety of differentially regulated genes in the different MPN subtypes vs. controls, with a higher number in PMF/SMF (200/272 genes) than in ET/PV (132/121). PROGENγ analysis revealed significant induction of TNFα/NF-κB signaling (particularly in SMF) and reduction of estrogen signaling (PMF and SMF). Consistently, inflammatory GO terms were enriched in PMF/SMF, whereas RNA splicing–associated biological processes were downregulated in PMF. Differentially regulated genes that might be utilized as diagnostic/prognostic markers were identified, such as AREG, CYBB, DNTT, TIMD4, VCAM1, and S100 family members (S100A4/8/9/10/12). Additionally, 98 genes (including CLEC1B, CMTM5, CXCL8, DACH1, and RADX) were deregulated solely in SMF and may be used to predict progression from early to late stage MPN.
Collapse
Affiliation(s)
- Julian Baumeister
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany.,Center for Integrated Oncology, Aachen Bonn Cologne Duesseldorf (CIO ABCD), Aachen, Germany
| | - Tiago Maié
- Center for Integrated Oncology, Aachen Bonn Cologne Duesseldorf (CIO ABCD), Aachen, Germany.,Institute for Computational Genomics, RWTH Aachen University, Aachen, Germany
| | - Nicolas Chatain
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany.,Center for Integrated Oncology, Aachen Bonn Cologne Duesseldorf (CIO ABCD), Aachen, Germany
| | - Lin Gan
- IZKF Genomics Core Facility, RWTH Aachen University Medical School, Aachen, Germany
| | - Barbora Weinbergerova
- Department of Internal Medicine, Hematology and Oncology, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Marcelo A S de Toledo
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany.,Center for Integrated Oncology, Aachen Bonn Cologne Duesseldorf (CIO ABCD), Aachen, Germany
| | - Jörg Eschweiler
- Department of Orthopedic Surgery, University Hospital RWTH Aachen, Aachen, Germany
| | - Angela Maurer
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany.,Center for Integrated Oncology, Aachen Bonn Cologne Duesseldorf (CIO ABCD), Aachen, Germany
| | - Jiri Mayer
- Department of Internal Medicine, Hematology and Oncology, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Blanka Kubesova
- Department of Internal Medicine, Hematology and Oncology, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Zdenek Racil
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Andreas Schuppert
- Center for Integrated Oncology, Aachen Bonn Cologne Duesseldorf (CIO ABCD), Aachen, Germany.,Joint Research Center for Computational Biomedicine, RWTH Aachen, Aachen, Germany
| | - Ivan Costa
- Center for Integrated Oncology, Aachen Bonn Cologne Duesseldorf (CIO ABCD), Aachen, Germany.,Institute for Computational Genomics, RWTH Aachen University, Aachen, Germany
| | - Steffen Koschmieder
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany.,Center for Integrated Oncology, Aachen Bonn Cologne Duesseldorf (CIO ABCD), Aachen, Germany
| | - Tim H Brümmendorf
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany.,Center for Integrated Oncology, Aachen Bonn Cologne Duesseldorf (CIO ABCD), Aachen, Germany
| | - Deniz Gezer
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany. .,Center for Integrated Oncology, Aachen Bonn Cologne Duesseldorf (CIO ABCD), Aachen, Germany.
| |
Collapse
|
209
|
Yoon J, Pettit K. Improving symptom burden and quality of life in patients with myelofibrosis: current strategies and future directions. Expert Rev Hematol 2021; 14:607-619. [PMID: 34148506 DOI: 10.1080/17474086.2021.1944096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Myelofibrosis (MF) is a complex and aggressive hematologic malignancy resulting from JAK/STAT-driven myeloproliferation and abnormal fibrogenesis. The clinical manifestations are heterogeneous and negatively impact quality of life and survival. JAK inhibitors improve symptoms and splenomegaly to a variable degree in a proportion of patients, but the effects for many patients are insufficient or short-lived. AREAS COVERED This review examines the constellation of symptoms that befall patients with MF, describes methods to quantify and serially monitor these symptoms, and evaluates pharmacologic and non-pharmacologic interventions for disease-related symptoms. The review also includes a discussion of areas of unmet medical need, and proposes future methods for meeting this need. EXPERT OPINION The treatment landscape for MF is evolving rapidly. The most effective therapies or combinations of therapies will likely simultaneously impact both the malignant hematopoietic stem cell and mechanisms of aberrant fibrogenesis that drive this disease. The goals of treatment for patients with myelofibrosis should be to improve length and quality of life. Clinical trials must be designed with these goals in mind, with endpoints focused on overall survival and symptom reduction, as opposed to surrogate endpoints such as spleen volume reduction.
Collapse
Affiliation(s)
- James Yoon
- Department of Medicine, Division of Hematology/Oncology, Michigan Medicine and University of Michigan Medical School, Ann Arbor, Michigan, United States
| | - Kristen Pettit
- Department of Medicine, Division of Hematology/Oncology, Michigan Medicine and University of Michigan Medical School, Ann Arbor, Michigan, United States
| |
Collapse
|
210
|
Co-mutation pattern, clonal hierarchy, and clone size concur to determine disease phenotype of SRSF2 P95-mutated neoplasms. Leukemia 2021; 35:2371-2381. [PMID: 33349666 DOI: 10.1038/s41375-020-01106-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 10/29/2020] [Accepted: 11/27/2020] [Indexed: 01/29/2023]
Abstract
Somatic mutations in splicing factor genes frequently occur in myeloid neoplasms. While SF3B1 mutations are associated with myelodysplastic syndromes (MDS) with ring sideroblasts, SRSF2P95 mutations are found in different disease categories, including MDS, myeloproliferative neoplasms (MPN), myelodysplastic/myeloproliferative neoplasms (MDS/MPN), and acute myeloid leukemia (AML). To identify molecular determinants of this phenotypic heterogeneity, we explored molecular and clinical features of a prospective cohort of 279 SRSF2P95-mutated cases selected from a population of 2663 patients with myeloid neoplasms. Median number of somatic mutations per subject was 3. Multivariate regression analysis showed associations between co-mutated genes and clinical phenotype, including JAK2 or MPL with myelofibrosis (OR = 26.9); TET2 with monocytosis (OR = 5.2); RAS-pathway genes with leukocytosis (OR = 5.1); and STAG2, RUNX1, or IDH1/2 with blast phenotype (MDS or AML) (OR = 3.4, 1.9, and 2.1, respectively). Within patients with SRSF2-JAK2 co-mutation, JAK2 dominance was invariably associated with clinical feature of MPN, whereas SRSF2 mutation was dominant in MDS/MPN. Within patients with SRSF2-TET2 co-mutation, clinical expressivity of monocytosis was positively associated with co-mutated clone size. This study provides evidence that co-mutation pattern, clone size, and hierarchy concur to determine clinical phenotype, tracing relevant genotype-phenotype associations across disease entities and giving insight on unaccountable clinical heterogeneity within current WHO classification categories.
Collapse
|
211
|
Satoh T, Toledo MAS, Boehnke J, Olschok K, Flosdorf N, Götz K, Küstermann C, Sontag S, Seré K, Koschmieder S, Brümmendorf TH, Chatain N, Tagawa YI, Zenke M. Human DC3 Antigen Presenting Dendritic Cells From Induced Pluripotent Stem Cells. Front Cell Dev Biol 2021; 9:667304. [PMID: 34368123 PMCID: PMC8339905 DOI: 10.3389/fcell.2021.667304] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 06/30/2021] [Indexed: 01/14/2023] Open
Abstract
Dendritic cells (DC) are professional antigen-presenting cells that develop from hematopoietic stem cells. Different DC subsets exist based on ontogeny, location and function, including the recently identified proinflammatory DC3 subset. DC3 have the prominent activity to polarize CD8+ T cells into CD8+ CD103+ tissue resident T cells. Here we describe human DC3 differentiated from induced pluripotent stem cells (iPS cells). iPS cell-derived DC3 have the gene expression and surface marker make-up of blood DC3 and polarize CD8+ T cells into CD8+ CD103+ tissue-resident memory T cells in vitro. To test the impact of malignant JAK2 V617F mutation on DC3, we differentiated patient-specific iPS cells with JAK2 V617Fhet and JAK2 V617Fhom mutations into JAK2 V617Fhet and JAK2 V617Fhom DC3. The JAK2 V617F mutation enhanced DC3 production and caused a bias toward erythrocytes and megakaryocytes. The patient-specific iPS cell-derived DC3 are expected to allow studying DC3 in human diseases and developing novel therapeutics.
Collapse
Affiliation(s)
- Taiki Satoh
- Department of Cell Biology, Institute for Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany.,Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany.,School of Life Sciences and Technology, Tokyo Institute of Technology, Kanagawa, Japan
| | - Marcelo A S Toledo
- Department of Cell Biology, Institute for Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany.,Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany.,Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University Medical School, Aachen, Germany
| | - Janik Boehnke
- Department of Cell Biology, Institute for Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany.,Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Kathrin Olschok
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University Medical School, Aachen, Germany
| | - Niclas Flosdorf
- Department of Cell Biology, Institute for Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany.,Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Katrin Götz
- Department of Cell Biology, Institute for Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany.,Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Caroline Küstermann
- Department of Cell Biology, Institute for Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany.,Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Stephanie Sontag
- Department of Cell Biology, Institute for Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany.,Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Kristin Seré
- Department of Cell Biology, Institute for Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany.,Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Steffen Koschmieder
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University Medical School, Aachen, Germany
| | - Tim H Brümmendorf
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University Medical School, Aachen, Germany
| | - Nicolas Chatain
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University Medical School, Aachen, Germany
| | - Yoh-Ichi Tagawa
- School of Life Sciences and Technology, Tokyo Institute of Technology, Kanagawa, Japan
| | - Martin Zenke
- Department of Cell Biology, Institute for Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany.,Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
212
|
Mughal TI, Psaila B, DeAngelo DJ, Saglio G, Van Etten RA, Radich JP. Interrogating the molecular genetics of chronic myeloproliferative malignancies for personalized management in 2021. Haematologica 2021; 106:1787-1793. [PMID: 33657787 PMCID: PMC8252942 DOI: 10.3324/haematol.2020.267252] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 01/13/2021] [Indexed: 12/15/2022] Open
Affiliation(s)
- Tariq I Mughal
- Tufts University Medical Center, Boston, MA, USA; University of Buckingham Medical School, Buckingham.
| | - Bethan Psaila
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford
| | | | | | | | | |
Collapse
|
213
|
Yasuda S, Aoyama S, Yoshimoto R, Li H, Watanabe D, Akiyama H, Yamamoto K, Fujiwara T, Najima Y, Doki N, Sakaida E, Edahiro Y, Imai M, Araki M, Komatsu N, Miura O, Kawamata N. MPL overexpression induces a high level of mutant-CALR/MPL complex: a novel mechanism of ruxolitinib resistance in myeloproliferative neoplasms with CALR mutations. Int J Hematol 2021; 114:424-440. [PMID: 34165774 DOI: 10.1007/s12185-021-03180-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/17/2021] [Accepted: 06/17/2021] [Indexed: 11/26/2022]
Abstract
Ruxolitinib (RUX), a JAK1/2-inhibitor, is effective for myeloproliferative neoplasm (MPN) with both JAK2V617 F and calreticulin (CALR) mutations. However, many MPN patients develop resistance to RUX. Although mechanisms of RUX-resistance in cells with JAK2V617 F have already been characterized, those in cells with CALR mutations remain to be elucidated. In this study, we established RUX-resistant human cell lines with CALR mutations and characterized mechanisms of RUX-resistance. Here, we found that RUX-resistant cells had high levels of MPL transcripts, overexpression of both MPL and JAK2, and increased phosphorylation of JAK2 and STAT5. We also found that mature MPL proteins were more stable in RUX-resistant cells. Knockdown of MPL in RUX-resistant cells by shRNAs decreased JAK/STAT signaling. Immunoprecipitation assays showed that binding of mutant CALR to MPL was increased in RUX-resistant cells. Reduction of mutated CALR decreased proliferation of the resistant cells. When resistant cells were cultured in the absence of RUX, the RUX-resistance was reversed, with reduction of the mutant-CALR/MPL complex. In conclusion, MPL overexpression induces higher levels of a mutant-CALR/MPL complex, which may cause RUX-resistance in cells with CALR mutations. This mechanism may be a new therapeutic target to overcome RUX-resistance.
Collapse
Affiliation(s)
- Shunichiro Yasuda
- Department of Immunotherapy for Hematopoietic Disorders, Tokyo Medical and Dental University, TMDU, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
- Department of Hematology, TMDU, Tokyo, Japan
| | - Satoru Aoyama
- Department of Immunotherapy for Hematopoietic Disorders, Tokyo Medical and Dental University, TMDU, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
- Department of Hematology, TMDU, Tokyo, Japan
| | | | - Huixin Li
- Department of Immunotherapy for Hematopoietic Disorders, Tokyo Medical and Dental University, TMDU, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Daisuke Watanabe
- Department of Immunotherapy for Hematopoietic Disorders, Tokyo Medical and Dental University, TMDU, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
- Department of Hematology, TMDU, Tokyo, Japan
| | | | | | - Takeo Fujiwara
- Department of Global Health Promotion, TMDU, Tokyo, Japan
| | - Yuho Najima
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan
| | - Noriko Doki
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan
| | - Emiko Sakaida
- Department of Hematology, Chiba University, Chiba, Japan
| | - Yoko Edahiro
- Department of Hematology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Misa Imai
- Department of Hematology, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Leading center for the development and Research of Cancer Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Marito Araki
- Department of Transfusion Medicine and Stem Cell Regulation, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Norio Komatsu
- Department of Hematology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Osamu Miura
- Department of Hematology, TMDU, Tokyo, Japan
| | - Norihiko Kawamata
- Department of Immunotherapy for Hematopoietic Disorders, Tokyo Medical and Dental University, TMDU, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.
| |
Collapse
|
214
|
Chia YC, Islam MA, Hider P, Woon PY, Johan MF, Hassan R, Ramli M. The Prevalence of TET2 Gene Mutations in Patients with BCR- ABL-Negative Myeloproliferative Neoplasms (MPN): A Systematic Review and Meta-Analysis. Cancers (Basel) 2021; 13:3078. [PMID: 34203097 PMCID: PMC8235080 DOI: 10.3390/cancers13123078] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/13/2021] [Accepted: 06/17/2021] [Indexed: 12/19/2022] Open
Abstract
Multiple recurrent somatic mutations have recently been identified in association with myeloproliferative neoplasms (MPN). This meta-analysis aims to assess the pooled prevalence of TET2 gene mutations among patients with MPN. Six databases (PubMed, Scopus, ScienceDirect, Google Scholar, Web of Science and Embase) were searched for relevant studies from inception till September 2020, without language restrictions. The eligibility criteria included BCR-ABL-negative MPN adults with TET2 gene mutations. A random-effects model was used to estimate the pooled prevalence with 95% confidence intervals (CIs). Subgroup analyses explored results among different continents and countries, WHO diagnostic criteria, screening methods and types of MF. Quality assessment was undertaken using the Joanna Briggs Institute critical appraisal tool. The study was registered with PROSPERO (CRD42020212223). Thirty-five studies were included (n = 5121, 47.1% female). Overall, the pooled prevalence of TET2 gene mutations in MPN patients was 15.5% (95% CI: 12.1-19.0%, I2 = 94%). Regional differences explained a substantial amount of heterogeneity. The prevalence of TET2 gene mutations among the three subtypes PV, ET and MF were 16.8%, 9.8% and 15.7%, respectively. The quality of the included studies was determined to be moderate-high among 83% of the included studies. Among patients with BCR-ABL-negative MPN, the overall prevalence of TET2 gene mutations was 15.5%.
Collapse
Affiliation(s)
- Yuh Cai Chia
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia; (Y.C.C.); (M.F.J.); (R.H.)
| | - Md Asiful Islam
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia; (Y.C.C.); (M.F.J.); (R.H.)
| | - Phil Hider
- Department of Population Health, University of Otago, Christchurch 8140, New Zealand;
| | - Peng Yeong Woon
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 97004, Taiwan;
| | - Muhammad Farid Johan
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia; (Y.C.C.); (M.F.J.); (R.H.)
| | - Rosline Hassan
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia; (Y.C.C.); (M.F.J.); (R.H.)
| | - Marini Ramli
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia; (Y.C.C.); (M.F.J.); (R.H.)
| |
Collapse
|
215
|
Mathangasinghe Y, Fauvet B, Jane SM, Goloubinoff P, Nillegoda NB. The Hsp70 chaperone system: distinct roles in erythrocyte formation and maintenance. Haematologica 2021; 106:1519-1534. [PMID: 33832207 PMCID: PMC8168490 DOI: 10.3324/haematol.2019.233056] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Indexed: 01/14/2023] Open
Abstract
Erythropoiesis is a tightly regulated cell differentiation process in which specialized oxygen- and carbon dioxide-carrying red blood cells are generated in vertebrates. Extensive reorganization and depletion of the erythroblast proteome leading to the deterioration of general cellular protein quality control pathways and rapid hemoglobin biogenesis rates could generate misfolded/aggregated proteins and trigger proteotoxic stresses during erythropoiesis. Such cytotoxic conditions could prevent proper cell differentiation resulting in premature apoptosis of erythroblasts (ineffective erythropoiesis). The heat shock protein 70 (Hsp70) molecular chaperone system supports a plethora of functions that help maintain cellular protein homeostasis (proteostasis) and promote red blood cell differentiation and survival. Recent findings show that abnormalities in the expression, localization and function of the members of this chaperone system are linked to ineffective erythropoiesis in multiple hematological diseases in humans. In this review, we present latest advances in our understanding of the distinct functions of this chaperone system in differentiating erythroblasts and terminally differentiated mature erythrocytes. We present new insights into the protein repair-only function(s) of the Hsp70 system, perhaps to minimize protein degradation in mature erythrocytes to warrant their optimal function and survival in the vasculature under healthy conditions. The work also discusses the modulatory roles of this chaperone system in a wide range of hematological diseases and the therapeutic gain of targeting Hsp70.
Collapse
Affiliation(s)
| | - Bruno Fauvet
- Department of Plant Molecular Biology, Lausanne University, Lausanne
| | - Stephen M Jane
- Central Clinical School, Monash University, Prahran, Victoria, Australia; Department of Hematology, Alfred Hospital, Monash University, Prahran, Victoria
| | | | - Nadinath B Nillegoda
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria.
| |
Collapse
|
216
|
Fisher DAC, Fowles JS, Zhou A, Oh ST. Inflammatory Pathophysiology as a Contributor to Myeloproliferative Neoplasms. Front Immunol 2021; 12:683401. [PMID: 34140953 PMCID: PMC8204249 DOI: 10.3389/fimmu.2021.683401] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 05/12/2021] [Indexed: 12/12/2022] Open
Abstract
Myeloid neoplasms, including acute myeloid leukemia (AML), myeloproliferative neoplasms (MPNs), and myelodysplastic syndromes (MDS), feature clonal dominance and remodeling of the bone marrow niche in a manner that promotes malignant over non-malignant hematopoiesis. This take-over of hematopoiesis by the malignant clone is hypothesized to include hyperactivation of inflammatory signaling and overproduction of inflammatory cytokines. In the Ph-negative MPNs, inflammatory cytokines are considered to be responsible for a highly deleterious pathophysiologic process: the phenotypic transformation of polycythemia vera (PV) or essential thrombocythemia (ET) to secondary myelofibrosis (MF), and the equivalent emergence of primary myelofibrosis (PMF). Bone marrow fibrosis itself is thought to be mediated heavily by the cytokine TGF-β, and possibly other cytokines produced as a result of hyperactivated JAK2 kinase in the malignant clone. MF also features extramedullary hematopoiesis and progression to bone marrow failure, both of which may be mediated in part by responses to cytokines. In MF, elevated levels of individual cytokines in plasma are adverse prognostic indicators: elevated IL-8/CXCL8, in particular, predicts risk of transformation of MF to secondary AML (sAML). Tumor necrosis factor (TNF, also known as TNFα), may underlie malignant clonal dominance, based on results from mouse models. Human PV and ET, as well as MF, harbor overproduction of multiple cytokines, above what is observed in normal aging, which can lead to cellular signaling abnormalities separate from those directly mediated by hyperactivated JAK2 or MPL kinases. Evidence that NFκB pathway signaling is frequently hyperactivated in a pan-hematopoietic pattern in MPNs, including in cells outside the malignant clone, emphasizes that MPNs are pan-hematopoietic diseases, which remodel the bone marrow milieu to favor persistence of the malignancy. Clinical evidence that JAK2 inhibition by ruxolitinib in MF neither reliably reduces malignant clonal burden nor eliminates cytokine elevations, suggests targeting cytokine mediated signaling as a therapeutic strategy, which is being pursued in new clinical trials. Greater knowledge of inflammatory pathophysiology in MPNs can therefore contribute to the development of more effective therapy.
Collapse
Affiliation(s)
- Daniel Arthur Corpuz Fisher
- Divisions of Hematology & Oncology, School of Medicine, Washington University in St. Louis, Saint Louis, MO, United States
| | - Jared Scott Fowles
- Divisions of Hematology & Oncology, School of Medicine, Washington University in St. Louis, Saint Louis, MO, United States
| | - Amy Zhou
- Divisions of Hematology & Oncology, School of Medicine, Washington University in St. Louis, Saint Louis, MO, United States
| | - Stephen Tracy Oh
- Divisions of Hematology & Oncology, School of Medicine, Washington University in St. Louis, Saint Louis, MO, United States
| |
Collapse
|
217
|
Functional Consequences of Mutations in Myeloproliferative Neoplasms. Hemasphere 2021; 5:e578. [PMID: 34095761 PMCID: PMC8171364 DOI: 10.1097/hs9.0000000000000578] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 04/13/2021] [Indexed: 01/14/2023] Open
Abstract
Driver mutations occur in Janus kinase 2 (JAK2), thrombopoietin receptor (MPL), and calreticulin (CALR) in BCR-ABL1 negative myeloproliferative neoplasms (MPNs). From mutations leading to one amino acid substitution in JAK2 or MPL, to frameshift mutations in CALR resulting in a protein with a different C-terminus, all the mutated proteins lead to pathologic and persistent JAK2-STAT5 activation. The most prevalent mutation, JAK2 V617F, is associated with the 3 entities polycythemia vera (PV), essential thrombocythemia (ET), and myelofibrosis (MF), while CALR and MPL mutations are associated only with ET and MF. Triple negative ET and MF patients may harbor noncanonical mutations in JAK2 or MPL. One major fundamental question is whether the conformations of JAK2 V617F, MPL W515K/L/A, or CALR mutants differ from those of their wild type counterparts so that a specific treatment could target the clone carrying the mutated driver and spare physiological hematopoiesis. Of great interest, a set of epigenetic mutations can co-exist with the phenotypic driver mutations in 35%–40% of MPNs. These epigenetic mutations, such as TET2, EZH2, ASXL1, or DNMT3A mutations, promote clonal hematopoiesis and increased fitness of aged hematopoietic stem cells in both clonal hematopoiesis of indeterminate potential (CHIP) and MPNs. Importantly, the main MPN driver mutation JAK2 V617F is also associated with CHIP. Accumulation of several epigenetic and splicing mutations favors progression of MPNs to secondary acute myeloid leukemia. Another major fundamental question is how epigenetic rewiring due to these mutations interacts with persistent JAK2-STAT5 signaling. Answers to these questions are required for better therapeutic interventions aimed at preventing progression of ET and PV to MF, and transformation of these MPNs in secondary acute myeloid leukemia.
Collapse
|
218
|
Activated IL-6 signaling contributes to the pathogenesis of, and is a novel therapeutic target for, CALR-mutated MPNs. Blood Adv 2021; 5:2184-2195. [PMID: 33890979 DOI: 10.1182/bloodadvances.2020003291] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 03/14/2021] [Indexed: 02/08/2023] Open
Abstract
Calreticulin (CALR), an endoplasmic reticulum-associated chaperone, is frequently mutated in myeloproliferative neoplasms (MPNs). Mutated CALR promotes downstream JAK2/STAT5 signaling through interaction with, and activation of, the thrombopoietin receptor (MPL). Here, we provide evidence of a novel mechanism contributing to CALR-mutated MPNs, represented by abnormal activation of the interleukin 6 (IL-6)-signaling pathway. We found that UT7 and UT7/mpl cells, engineered by clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) to express the CALR type 1-like (DEL) mutation, acquired cytokine independence and were primed to the megakaryocyte (Mk) lineage. Levels of IL-6 messenger RNA (mRNA), extracellular-released IL-6, membrane-associated glycoprotein 130 (gp130), and IL-6 receptor (IL-6R), phosphorylated JAK1 and STAT3 (p-JAK1 and p-STAT3), and IL-6 promoter region occupancy by STAT3 all resulted in increased CALR DEL cells in the absence of MPL stimulation. Wild-type, but not mutated, CALR physically interacted with gp130 and IL-6R, downregulating their expression on the cell membrane. Agents targeting gp130 (SC-144), IL-6R (tocilizumab [TCZ]), and cell-released IL-6 reduced proliferation of CALR DEL as well as CALR knockout cells, supporting a mutated CALR loss-of-function model. CD34+ cells from CALR-mutated patients showed increased levels of IL-6 mRNA and p-STAT3, and colony-forming unit-Mk growth was inhibited by either SC144 or TCZ, as well as an IL-6 antibody, supporting cell-autonomous activation of the IL-6 pathway. Targeting IL-6 signaling also reduced colony formation by CD34+ cells of JAK2V617F-mutated patients. The combination of TCZ and ruxolitinib was synergistic at very low nanomolar concentrations. Overall, our results suggest that target inhibition of IL-6 signaling may have therapeutic potential in CALR, and possibly JAK2V617F, mutated MPNs.
Collapse
|
219
|
Shallis RM, Podoltsev NA. Emerging agents and regimens for polycythemia vera and essential thrombocythemia. Biomark Res 2021; 9:40. [PMID: 34049597 PMCID: PMC8161993 DOI: 10.1186/s40364-021-00298-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/18/2021] [Indexed: 12/26/2022] Open
Abstract
Polycythemia vera (PV) and essential thrombocythemia (ET) are both driven by JAK-STAT pathway activation and consequently much of the recent research efforts to improve the management and outcomes of patients with these neoplasms have centered around inhibition of this pathway. In addition to newer JAK inhibitors and improved interferons, promising novel agents exploiting a growing understanding of PV and ET pathogenesis and disease evolution mechanisms are being developed. These agents may modify the disease course in addition to cytoreduction. Histone deacetylase, MDM2 and telomerase inhibitors in patients with PV/ET have demonstrated clinically efficacy and serve as chief examples. Hepcidin mimetics, limiting iron availability to red blood cell precursors, offer an exciting alternative to therapeutic phlebotomy and have the potential to revolutionize management for patients with PV. Many of these newer agents are found to improve hematologic parameters and symptom burden, but their role in thrombotic risk reduction and disease progression control is currently unknown. The results of larger, randomized studies to confirm the early efficacy signals observed in phase 1/2 trials are eagerly awaited.
Collapse
Affiliation(s)
- Rory M Shallis
- Section of Hematology, Department of Internal Medicine, Yale University School of Medicine and Yale Cancer Center, 333 Cedar Street, PO Box 208028, New Haven, CT, 06520-8028, USA
| | - Nikolai A Podoltsev
- Section of Hematology, Department of Internal Medicine, Yale University School of Medicine and Yale Cancer Center, 333 Cedar Street, PO Box 208028, New Haven, CT, 06520-8028, USA.
| |
Collapse
|
220
|
Asaro RJ, Cabrales P. Red Blood Cells: Tethering, Vesiculation, and Disease in Micro-Vascular Flow. Diagnostics (Basel) 2021; 11:diagnostics11060971. [PMID: 34072241 PMCID: PMC8228733 DOI: 10.3390/diagnostics11060971] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 12/14/2022] Open
Abstract
The red blood cell has become implicated in the progression of a range of diseases; mechanisms by which red cells are involved appear to include the transport of inflammatory species via red cell-derived vesicles. We review this role of RBCs in diseases such as diabetes mellitus, sickle cell anemia, polycythemia vera, central retinal vein occlusion, Gaucher disease, atherosclerosis, and myeloproliferative neoplasms. We propose a possibly unifying, and novel, paradigm for the inducement of RBC vesiculation during vascular flow of red cells adhered to the vascular endothelium as well as to the red pulp of the spleen. Indeed, we review the evidence for this hypothesis that links physiological conditions favoring both vesiculation and enhanced RBC adhesion and demonstrate the veracity of this hypothesis by way of a specific example occurring in splenic flow which we argue has various renderings in a wide range of vascular flows, in particular microvascular flows. We provide a mechanistic basis for membrane loss and the formation of lysed red blood cells in the spleen that may mediate their turnover. Our detailed explanation for this example also makes clear what features of red cell deformability are involved in the vesiculation process and hence require quantification and a new form of quantitative indexing.
Collapse
Affiliation(s)
- Robert J. Asaro
- Department of Structural Engineering, University of California, San Diego, CA 92093, USA
- Correspondence: ; Tel.: +1-619-890-6888; Fax: +1-858-534-6373
| | - Pedro Cabrales
- Department of Bioengineering, University of California, San Diego, CA 92093, USA;
| |
Collapse
|
221
|
Liang X, Yang Q, Wu P, He C, Yin L, Xu F, Yin Z, Yue G, Zou Y, Li L, Song X, Lv C, Zhang W, Jing B. The synthesis review of the approved tyrosine kinase inhibitors for anticancer therapy in 2015-2020. Bioorg Chem 2021; 113:105011. [PMID: 34091289 DOI: 10.1016/j.bioorg.2021.105011] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/26/2021] [Accepted: 05/20/2021] [Indexed: 01/09/2023]
Abstract
In the 21st century, cancer is the major public health problem worldwide. Based on the important roles of protein tyrosine kinase, the accelerated hunt for potent small-molecule tyrosine kinase inhibitors has led to the success of 30 newly inhibitors in this family for the cancer therapy in last five years. In this review, we updated their synthesis methods, and compared the original research routes with the optimized routes for each PTK inhibitor against different target, in order to make an outlook on the future synthesis of potential PTK inhibitors for anticancer therapy.
Collapse
Affiliation(s)
- Xiaoxia Liang
- Natural Medicine Research Center, College of veterinary medicine, Sichuan Agricultural University, Chengdu 611130, PR China.
| | - Qian Yang
- Natural Medicine Research Center, College of veterinary medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Pan Wu
- Natural Medicine Research Center, College of veterinary medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Changliang He
- Natural Medicine Research Center, College of veterinary medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Lizi Yin
- Natural Medicine Research Center, College of veterinary medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Funeng Xu
- Natural Medicine Research Center, College of veterinary medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Zhongqiong Yin
- Natural Medicine Research Center, College of veterinary medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Guizhou Yue
- Natural Medicine Research Center, College of veterinary medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Yuanfeng Zou
- Natural Medicine Research Center, College of veterinary medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Lixia Li
- Natural Medicine Research Center, College of veterinary medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Xu Song
- Natural Medicine Research Center, College of veterinary medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Cheng Lv
- Natural Medicine Research Center, College of veterinary medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Wei Zhang
- Natural Medicine Research Center, College of veterinary medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Bo Jing
- Natural Medicine Research Center, College of veterinary medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| |
Collapse
|
222
|
Myeloproliferative Neoplasms: The Long Wait for JAK2-Mutant Clone Expansion. Cell Stem Cell 2021; 28:359-361. [PMID: 33667352 DOI: 10.1016/j.stem.2021.02.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Myeloproliferative neoplasms (MPNs) are hematological malignancies caused by somatic mutations originating from a single hematopoietic stem cell (HSC). In this issue of Cell Stem Cell,Van Egeren et al. (2021) used whole-genome sequencing of hematopoietic colonies to reconstruct the clonal history and time of acquisition of the disease-initiating gene mutation.
Collapse
|
223
|
Kanduła Z, Lewandowski K. Calreticulin – a multifaced protein. POSTEP HIG MED DOSW 2021. [DOI: 10.5604/01.3001.0014.8892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Calreticulin (CALR) is a highly conserved multi-function protein that primarily localizes within
the lumen of the endoplasmic reticulum (ER). It participates in various processes in the cells,
including glycoprotein chaperoning, regulation of Ca2+ homeostasis, antigen processing and
presentation for adaptive immune response, cell adhesion/migration, cell proliferation, immunogenic
cell death, gene expression and RNA stability. The role of CALR in the assembly,
retrieval and cell surface expression of MHC class I molecules is well known. A fraction of
the total cellular CALR is localized in the cytosol, following its retro-translocation from the
ER. In the cell stress conditions, CALR is also expressed on the cell surface via an interaction
with phosphatidylserine localized on the inner leaflet of the plasma membrane. The abovementioned
mechanism is relevant for the recognition of the cells, as well as immunogenicity
and phagocytic uptake of proapoptotic and apoptotic cells.
Lastly, the presence of CALR exon 9 gene mutations was confirmed in patients with myeloproliferative
neoplasms. Their presence results in an abnormal CALR structure due to the
loss of its ER-retention sequence, CALR extra-ER localisation, the formation of a complex
with thrombopoietin receptor, and oncogenic transformation of hematopoietic stem cells. It
is also known that CALR exon 9 mutants are highly immunogenic and induce T cell response.
Despite this fact, CALR mutant positive hematopoietic cells emerge. The last phenomenon is
probably the result of the inhibition of phagocytosis of the cancer cells exposing CALR mutant
protein by dendritic cells.
Collapse
Affiliation(s)
- Zuzanna Kanduła
- Department of Hematology and Bone Marrow Transplantation, Poznań University of Medical Sciences, Poland
| | - Krzysztof Lewandowski
- Department of Hematology and Bone Marrow Transplantation, Poznań University of Medical Sciences, Poland
| |
Collapse
|
224
|
Cominal JG, Cacemiro MDC, Berzoti-Coelho MG, Pereira IEG, Frantz FG, Souto EX, Covas DT, de Figueiredo-Pontes LL, Oliveira MC, Malmegrim KCR, de Castro FA. Bone Marrow Soluble Mediator Signatures of Patients With Philadelphia Chromosome-Negative Myeloproliferative Neoplasms. Front Oncol 2021; 11:665037. [PMID: 34084749 PMCID: PMC8167065 DOI: 10.3389/fonc.2021.665037] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 04/21/2021] [Indexed: 12/18/2022] Open
Abstract
Background Essential thrombocythemia (ET), polycythemia vera (PV), and primary myelofibrosis (PMF) are clonal hematological diseases classified as Philadelphia chromosome-negative myeloproliferative neoplasms (MPN). MPN pathogenesis is associated with the presence of somatic driver mutations, bone marrow (BM) niche alterations, and tumor inflammatory status. The relevance of soluble mediators in the pathogenesis of MPN led us to analyze the levels of cytokines, chemokines, and growth factors related to inflammation, angiogenesis and hematopoiesis regulation in the BM niche of MPN patients. Methods Soluble mediator levels in BM plasma samples from 17 healthy subjects, 28 ET, 19 PV, and 16 PMF patients were determined using a multiplex assay. Soluble mediator signatures were created from categorical analyses of high mediator producers. Soluble mediator connections and the correlation between plasma levels and clinic-laboratory parameters were also analyzed. Results The soluble mediator signatures of the BM niche of PV patients revealed a highly inflammatory and pro-angiogenic milieu, with increased levels of chemokines (CCL2, CCL5, CXCL8, CXCL12, CXCL10), and growth factors (GM-CSF M-CSF, HGF, IFN-γ, IL-1β, IL-6Ra, IL-12, IL-17, IL-18, TNF-α, VEGF, and VEGF-R2). ET and PMF patients presented intermediate inflammatory and pro-angiogenic profiles. Deregulation of soluble mediators was associated with some clinic-laboratory parameters of MPN patients, including vascular events, treatment status, risk stratification of disease, hemoglobin concentration, hematocrit, and red blood cell count. Conclusions Each MPN subtype exhibits a distinct soluble mediator signature. Deregulated production of BM soluble mediators may contribute to MPN pathogenesis and BM niche modification, provides pro-tumor stimuli, and is a potential target for future therapies.
Collapse
Affiliation(s)
- Juçara Gastaldi Cominal
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil.,Center for Cell-Based Therapy, Regional Blood Center of Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Maira da Costa Cacemiro
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil.,Center for Cell-Based Therapy, Regional Blood Center of Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Maria Gabriela Berzoti-Coelho
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil.,Center for Cell-Based Therapy, Regional Blood Center of Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Illy Enne Gomes Pereira
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil.,Center for Cell-Based Therapy, Regional Blood Center of Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Fabiani Gai Frantz
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Elizabeth Xisto Souto
- Department of Clinical Hematology, Euryclides de Jesus Zerbini Transplant Hospital, São Paulo, Brazil
| | - Dimas Tadeu Covas
- Center for Cell-Based Therapy, Regional Blood Center of Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Lorena Lobo de Figueiredo-Pontes
- Center for Cell-Based Therapy, Regional Blood Center of Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Division of Hematology, Hemotherapy and Cellular Therapy, Department of Medical Imaging, Hematology, and Clinical Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Maria Carolina Oliveira
- Center for Cell-Based Therapy, Regional Blood Center of Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Division of Rheumatology, Allergy and Immunotherapy, Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Kelen Cristina Ribeiro Malmegrim
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil.,Center for Cell-Based Therapy, Regional Blood Center of Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Fabíola Attié de Castro
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil.,Center for Cell-Based Therapy, Regional Blood Center of Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
225
|
Guy A, Bidet A, Ling C, Caumont C, Boureau L, Viallard JF, Parrens M. Novel findings of splenic extramedullary hematopoiesis during primary myelofibrosis, post-essential thrombocythemia, and post-polycythemia vera myelofibrosis. Virchows Arch 2021; 479:755-764. [PMID: 33934231 DOI: 10.1007/s00428-021-03110-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/17/2021] [Accepted: 04/22/2021] [Indexed: 01/14/2023]
Abstract
BCR-ABL-fusion-negative myeloproliferative neoplasms (MPNs) with myelofibrosis (MF) include primary MF, post-polycythemia vera MF and post-essential thrombocythemia MF. Clonal extramedullary hematopoiesis (EMH) can occur during MPN pathogenesis. Although histopathological bone-marrow (BM) features during clonal EMH have been investigated, those of the spleen have been poorly described. We analyzed splenectomy samples from 28 patients with MF and BM samples from 20 of them. Slides were stained with hematoxylin and eosin, reticulin, and trichrome, with immunohistochemical labeling of glycophorin A, myeloperoxidase, CD61, CD34, and CD117. We also subjected splenectomy and BM samples from six patients and spleen samples from seven patients to next-generation sequencing (NGS). Megakaryocyte-rich spleen nodules (MRSNs), seen in seven of the 28 patients, were significantly associated with megakaryocyte proliferation in the spleen (p = 0.04). We devised a grading system for spleen fibrosis (SF) and found that SF was increased in 20 of 28 patients. Notably, patients with SF were more likely to have MRSNs, suggesting that megakaryocytes might participate in SF, as previously described in BM. Comparisons of spleen and BM NGS findings of six patients' specimens revealed identical mutational status in the two organs for half of the patients. We observed additional mutations in the spleen of two patients. However, the meaning of this finding remains unknown since there was a long interval between BM and spleen samplings (68 and 82 months, respectively).
Collapse
Affiliation(s)
- Alexandre Guy
- UMR 1034, Inserm, Biology of Cardiovascular Diseases, University of Bordeaux, 33600, Pessac, France. .,Laboratory of Hematology, University Hospital Center of Bordeaux, Haut-Lévêque Hospital, 33600, Pessac, France.
| | - Audrey Bidet
- Laboratory of Hematology, University Hospital Center of Bordeaux, Haut-Lévêque Hospital, 33600, Pessac, France
| | - Catherine Ling
- Pathology Department, University Hospital Center of Bordeaux, Haut-Lévêque Hospital, 33600, Pessac, France
| | - Charline Caumont
- Tumor Biology Department, University Hospital Center of Bordeaux, Haut-Lévêque Hospital, 33600, Pessac, France
| | - Lisa Boureau
- Laboratory of Hematology, University Hospital Center of Bordeaux, Haut-Lévêque Hospital, 33600, Pessac, France
| | - Jean-François Viallard
- UMR 1034, Inserm, Biology of Cardiovascular Diseases, University of Bordeaux, 33600, Pessac, France.,Internal Medicine Department, University Hospital Center of Bordeaux, Haut-Lévêque Hospital, 33600, Pessac, France
| | - Marie Parrens
- Pathology Department, University Hospital Center of Bordeaux, Haut-Lévêque Hospital, 33600, Pessac, France.,INSERM U1053, University of Bordeaux, 33076, Bordeaux, France
| |
Collapse
|
226
|
Chang YH. Myelodysplastic syndromes and overlap syndromes. Blood Res 2021; 56:S51-S64. [PMID: 33935036 PMCID: PMC8094000 DOI: 10.5045/br.2021.2021010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 12/11/2022] Open
Abstract
Myelodysplastic syndromes (MDS) are a heterogeneous group of clonal hematological neoplasms characterized by ineffective hematopoiesis, morphologic dysplasia, and cytopenia. MDS overlap syndromes include various disorders, such as myelodysplastic/myeloproliferative neoplasms and hypoplastic MDS with aplastic anemia characteristics. MDS overlap syndromes share the characteristics of other diseases, which make differential diagnoses challenging. Advances in genomic studies have led to the discovery of frequent mutations in MDS and overlap syndromes; however, most of the mutations are not specific for the diagnosis of these diseases. The molecular characteristics of the overlap syndromes usually do not show a just "in-between" form but rather heterogeneous features. Established diagnostic criteria for these diseases based on clinical, morphologic, and laboratory features are still useful when combined with genomic data. It is expected that further studies for MDS and overlap syndromes will place emphasis on the roles of mutations as therapeutic targets and prognostic indicators.
Collapse
Affiliation(s)
- Yoon Hwan Chang
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
227
|
Lee SE. Disease modifying agents of myeloproliferative neoplasms: a review. Blood Res 2021; 56:S26-S33. [PMID: 33935032 PMCID: PMC8093995 DOI: 10.5045/br.2021.2020325] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/25/2021] [Accepted: 03/30/2021] [Indexed: 01/14/2023] Open
Abstract
The identification of driver mutations in Janus kinase (JAK) 2, calreticulin (CALR), and myeloproliferative leukemia (MPL) has contributed to a better understanding of disease pathogenesis by highlighting the importance of JAK signal transducer and activator of transcription (STAT) signaling in classical myeloproliferative neoplasms (MPNs). This has led to the therapeutic use of novel targeted treatments, such as JAK2 inhibitors. More recently, with the development of next-generation sequencing, additional somatic mutations, which are not restricted to MPNs, have been elucidated. Treatment decisions for MPN patients are influenced by the MPN subtype, symptom burden, and risk classification. Although prevention of vascular events is the main objective of therapy for essential thrombocythemia (ET) and polycythemia vera (PV) patients, disease-modifying drugs are needed to eradicate clonal hematopoiesis and prevent progression to more aggressive myeloid neoplasms. JAK inhibitors are a valuable therapeutic strategy for patients with myelofibrosis (MF) who have splenomegaly and/or disease-related symptoms, but intolerance, refractory, resistance, and disease progression still present challenges. Currently, allogeneic stem cell transplantation remains the only curative treatment for MF, but it is typically limited by age-related comorbidities and high treatment-related mortality. Therefore, a better understanding of the molecular pathogenesis and potential new therapies with the aim of modifying the natural history of the disease is important. In this article, I review the current understanding of the molecular basis of MPNs and clinical studies on potential disease-modifying agents.
Collapse
Affiliation(s)
- Sung-Eun Lee
- Department of Hematology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
228
|
JAK2-V617F and interferon-α induce megakaryocyte-biased stem cells characterized by decreased long-term functionality. Blood 2021; 137:2139-2151. [PMID: 33667305 DOI: 10.1182/blood.2020005563] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 02/08/2021] [Indexed: 12/17/2022] Open
Abstract
We studied a subset of hematopoietic stem cells (HSCs) that are defined by elevated expression of CD41 (CD41hi) and showed bias for differentiation toward megakaryocytes (Mks). Mouse models of myeloproliferative neoplasms (MPNs) expressing JAK2-V617F (VF) displayed increased frequencies and percentages of the CD41hi vs CD41lo HSCs compared with wild-type controls. An increase in CD41hi HSCs that correlated with JAK2-V617F mutant allele burden was also found in bone marrow from patients with MPN. CD41hi HSCs produced a higher number of Mk-colonies of HSCs in single-cell cultures in vitro, but showed reduced long-term reconstitution potential compared with CD41lo HSCs in competitive transplantations in vivo. RNA expression profiling showed an upregulated cell cycle, Myc, and oxidative phosphorylation gene signatures in CD41hi HSCs, whereas CD41lo HSCs showed higher gene expression of interferon and the JAK/STAT and TNFα/NFκB signaling pathways. Higher cell cycle activity and elevated levels of reactive oxygen species were confirmed in CD41hi HSCs by flow cytometry. Expression of Epcr, a marker for quiescent HSCs inversely correlated with expression of CD41 in mice, but did not show such reciprocal expression pattern in patients with MPN. Treatment with interferon-α further increased the frequency and percentage of CD41hi HSCs and reduced the number of JAK2-V617F+ HSCs in mice and patients with MPN. The shift toward the CD41hi subset of HSCs by interferon-α provides a possible mechanism of how interferon-α preferentially targets the JAK2 mutant clone.
Collapse
|
229
|
Westermann J, Bullinger L. Precision medicine in myeloid malignancies. Semin Cancer Biol 2021; 84:153-169. [PMID: 33895273 DOI: 10.1016/j.semcancer.2021.03.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 03/28/2021] [Accepted: 03/29/2021] [Indexed: 12/13/2022]
Abstract
Myeloid malignancies have always been at the forefront of an improved understanding of the molecular pathogenesis of cancer. In accordance, over the last years, basic research focusing on the aberrations underlying malignant transformation of myeloid cells has provided the basis for precision medicine approaches and subsequently has led to the development of powerful therapeutic strategies. In this review article, we will recapitulate what has happened since in the 1980s the use of all-trans retinoic acid (ATRA), as a first targeted cancer therapy, has changed one of the deadliest leukemia subtypes, acute promyelocytic leukemia (APL), into one that can be cured without classical chemotherapy today. Similarly, imatinib, the first molecularly designed cancer therapy, has revolutionized the management of chronic myeloid leukemia (CML). Thus, targeted treatment approaches have become the paradigm for myeloid malignancy, but many questions still remain unanswered, especially how identical mutations can be associated with different phenotypes. This might be linked to the impact of the cell of origin, gene-gene interactions, or the tumor microenvironment including the immune system. Continuous research in the field of myeloid neoplasia has started to unravel the molecular pathways that are not only crucial for initial treatment response, but also resistance of leukemia cells under therapy. Ongoing studies focusing on leukemia cell vulnerabilities do already point to novel (targetable) "Achilles heels" that can further improve myeloid cancer therapy.
Collapse
Affiliation(s)
- Jörg Westermann
- Department of Hematology, Oncology and Tumor Immunology, Charité University Medicine Berlin, Campus Virchow Clinic, Augustenburger Platz 1, 13353 Berlin, Germany.
| | - Lars Bullinger
- Department of Hematology, Oncology and Tumor Immunology, Charité University Medicine Berlin, Campus Virchow Clinic, Augustenburger Platz 1, 13353 Berlin, Germany.
| |
Collapse
|
230
|
Reeves BN, Beckman JD. Novel Pathophysiological Mechanisms of Thrombosis in Myeloproliferative Neoplasms. Curr Hematol Malig Rep 2021; 16:304-313. [PMID: 33876389 DOI: 10.1007/s11899-021-00630-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2021] [Indexed: 12/18/2022]
Abstract
PURPOSE OF REVIEW Thrombosis remains a leading cause of morbidity and mortality in BCR/ABL negative myeloproliferative neoplasms (MPN). Circulating blood cells are both increased in quantity and qualitatively abnormal in MPN, resulting in an increased thrombotic risk. Herein, we review recently elucidated mechanisms of MPN thrombosis and discuss implications of drugs currently under investigation for MPN. RECENT FINDINGS Recent studies highlight that in JAK2V617F granulocytes and platelets, thrombo-inflammatory genes are upregulated. Furthermore, in JAK2V617F granulocytes, protein expression of integrin CD11b, tissue factor, and leukocyte alkaline phosphatase are all increased. Overall, myeloid cells, namely neutrophils, may contribute in several ways, such as through increased adhesion via β1 integrin binding to VCAM1, increased infiltration, and enhanced inducibility to extrude neutrophil extracellular traps. Non-myeloid inflammatory cells may also contribute via secretion of cytokines. With regard to red blood cells, number, rigidity, adhesion, and generation of microvesicles may lead to increased vascular resistance as well as increased cell-cell interactions that promote rolling and adhesion. Platelets may also contribute in a similar fashion. Lastly, the vasculature is also increasingly appreciated, as several studies have demonstrated increased endothelial expression of pro-coagulant and pro-adhesive proteins, such as von Willebrand factor or P-selectin in JAK2V617F endothelial cells. With the advent of molecular diagnostics, MPN therapeutics are advancing beyond cytoreduction. Our increased understanding of pro-inflammatory and thrombotic pathophysiology in MPN provides a rational basis for evaluation of in-development MPN therapeutics to reduce thrombosis.
Collapse
Affiliation(s)
- Brandi N Reeves
- Department of Medicine, Division of Hematology and Oncology, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
- Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Joan D Beckman
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, 420 Delaware St. SE, MMC 480, Minneapolis, MN, 55455, USA.
| |
Collapse
|
231
|
Morsia E, Gangat N. Myelofibrosis: challenges for preclinical models and emerging therapeutic targets. Expert Opin Ther Targets 2021; 25:211-222. [PMID: 33844952 DOI: 10.1080/14728222.2021.1915992] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Introduction: Myelofibrosis (MF) is characterized by anemia, splenomegaly, constitutional symptoms and bone marrow fibrosis. MF has no curative treatment to date, except for a small subset of patients that are eligible for allogeneic hematopoietic stem cell transplant. The discovery in recent years of the MF mutational landscape and the role of bone marrow microenvironment in disease pathogenesis has led to further insights into disease biology and consequentially rationally derived therapies.Areas covered: We searched PubMed/Medline/American Society of Hematology (ASH) abstracts until November 2020 using the following terms: myelofibrosis, mouse models, pre-clinical studies and clinical trials. The development of targeted therapies is aimed to modify the history of the disease. Although JAK inhibitors showed encouraging results in terms of spleen and symptoms response, long term remissions and disease modifying ability is lacking. Beyond JAK inhibitors, a range of agents targeting proliferative, metabolic, apoptotic pathways, the microenvironment, epigenetic modification and immunomodulation are in various stages of investigations. We review pre-clinical data, preliminary clinical results of these agents, and finally offer insights on the management of MF patients.Expert opinion: MF patients refractory or with suboptimal response to JAK inhibitors, may be managed by addition of agents with differing mechanisms, such as bromodomain (BET), lysine demethylase 1 (LSD1), MDM2, or Bcl-Xl inhibitors which could prevent emergence of resistance. Immunotherapies as long-acting interferons, and calreticulin directed antibodies or peptide vaccination are eagerly awaited. Historically, therapeutic challenges in MF have arisen due to the fact that rationally derived therapies that are based on murine models have limited impact on fibrosis and underlying disease biology in human studies, the latter illustrates the complex multi-faceted disease pathogenesis of MF. Together, we not only suggest individualized therapy in MF that is guided by genomic signature but also its early implementation potentially in prefibrotic MF.
Collapse
Affiliation(s)
- Erika Morsia
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
232
|
Liang X, Wu P, Yang Q, Xie Y, He C, Yin L, Yin Z, Yue G, Zou Y, Li L, Song X, Lv C, Zhang W, Jing B. An update of new small-molecule anticancer drugs approved from 2015 to 2020. Eur J Med Chem 2021; 220:113473. [PMID: 33906047 DOI: 10.1016/j.ejmech.2021.113473] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/02/2021] [Accepted: 04/09/2021] [Indexed: 01/09/2023]
Abstract
A high incidence of cancer has given rise to the development of more anti-tumor drugs. From 2015 to 2020, fifty-six new small-molecule anticancer drugs, divided into ten categories according to their anti-tumor target activities, have been approved. These include TKIs (30 drugs), MAPK inhibitors (3 drugs), CDK inhibitors (3 drugs), PARP inhibitors (3 drugs), PI3K inhibitors (3 drugs), SMO receptor antagonists (2 drugs), AR antagonists (2 drugs), SSTR inhibitors (2 drugs), IDH inhibitors (2 drugs) and others (6 drugs). Among them, PTK inhibitors (30/56) have led to a paradigm shift in cancer treatment with less toxicity and more potency. Each of their structures, approval statuses, applications, SAR analyses, and original research synthesis routes have been summarized, giving us a more comprehensive map for further efforts to design more specific targeted agents for reducing cancer in the future. We believe this review will help further research of potential antitumor agents in clinical usage.
Collapse
Affiliation(s)
- Xiaoxia Liang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China.
| | - Pan Wu
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Qian Yang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Yunyu Xie
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Changliang He
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Lizi Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Zhongqiong Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Guizhou Yue
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Yuanfeng Zou
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Lixia Li
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Xu Song
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Cheng Lv
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Wei Zhang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Bo Jing
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| |
Collapse
|
233
|
Increased B4GALT1 expression is associated with platelet surface galactosylation and thrombopoietin plasma levels in MPNs. Blood 2021; 137:2085-2089. [PMID: 33238000 DOI: 10.1182/blood.2020007265] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 11/09/2020] [Indexed: 12/31/2022] Open
Abstract
Aberrant megakaryopoiesis is a hallmark of the myeloproliferative neoplasms (MPNs), a group of clonal hematological malignancies originating from hematopoietic stem cells, leading to an increase in mature blood cells in the peripheral blood. Sialylated derivatives of the glycan structure β4-N-acetyllactosamine (Galβ1,4GlcNAc or type-2 LacNAc, hereafter referred to as LacNAc) regulate platelet life span, hepatic thrombopoietin (TPO) production, and thrombopoiesis. We found increased TPO plasma levels in MPNs with high allele burden of the mutated clones. Remarkably, platelets isolated from MPNs had a significant increase in LacNAc expression that correlated with the high allele burden regardless of the underlying identified mutation. Megakaryocytes derived in vitro from these patients showed an increased expression of the B4GALT1 gene encoding β-1,4-galactosyltransferase 1 (β4GalT1). Consistently, megakaryocytes from MPN showed increased LacNAc expression relative to healthy controls, which was counteracted by the treatment with a Janus kinase 1/2 inhibitor. Altered expression of B4GALT1 in mutant megakaryocytes can lead to the production of platelets with aberrant galactosylation, which in turn promote hepatic TPO synthesis regardless of platelet mass. Our findings provide a new paradigm for understanding aberrant megakaryopoiesis in MPNs and identify β4GalT1 as a potential actionable target for therapy.
Collapse
|
234
|
The Contemporary Approach to CALR-Positive Myeloproliferative Neoplasms. Int J Mol Sci 2021; 22:ijms22073371. [PMID: 33806036 PMCID: PMC8038093 DOI: 10.3390/ijms22073371] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/15/2021] [Accepted: 03/19/2021] [Indexed: 12/20/2022] Open
Abstract
CALR mutations are a revolutionary discovery and represent an important hallmark of myeloproliferative neoplasms (MPN), especially essential thrombocythemia and primary myelofibrosis. To date, several CALR mutations were identified, with only frameshift mutations linked to the diseased phenotype. It is of diagnostic and prognostic importance to properly define the type of CALR mutation and subclassify it according to its structural similarities to the classical mutations, a 52-bp deletion (type 1 mutation) and a 5-bp insertion (type 2 mutation), using a statistical approximation algorithm (AGADIR). Today, the knowledge on the pathogenesis of CALR-positive MPN is expanding and several cellular mechanisms have been recognized that finally cause a clonal hematopoietic expansion. In this review, we discuss the current basis of the cellular effects of CALR mutants and the understanding of its implementation in the current diagnostic laboratorial and medical practice. Different methods of CALR detection are explained and a diagnostic algorithm is shown that aids in the approach to CALR-positive MPN. Finally, contemporary methods joining artificial intelligence in accordance with molecular-genetic biomarkers in the approach to MPN are presented.
Collapse
|
235
|
Crossing the Borders: An Integrated Approach to Myeloproliferative Neoplasms and Mastocytoses. Cancers (Basel) 2021; 13:cancers13071492. [PMID: 33804916 PMCID: PMC8037154 DOI: 10.3390/cancers13071492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 03/22/2021] [Indexed: 01/14/2023] Open
|
236
|
Baik R, Wyman SK, Kabir S, Corn JE. Genome editing to model and reverse a prevalent mutation associated with myeloproliferative neoplasms. PLoS One 2021; 16:e0247858. [PMID: 33661998 PMCID: PMC7932127 DOI: 10.1371/journal.pone.0247858] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/15/2021] [Indexed: 12/26/2022] Open
Abstract
Myeloproliferative neoplasms (MPNs) cause the over-production of blood cells such as erythrocytes (polycythemia vera) or platelets (essential thrombocytosis). JAK2 V617F is the most prevalent somatic mutation in many MPNs, but previous modeling of this mutation in mice relied on transgenic overexpression and resulted in diverse phenotypes that were in some cases attributed to expression level. CRISPR-Cas9 engineering offers new possibilities to model and potentially cure genetically encoded disorders via precise modification of the endogenous locus in primary cells. Here we develop "scarless" Cas9-based reagents to create and reverse the JAK2 V617F mutation in an immortalized human erythroid progenitor cell line (HUDEP-2), CD34+ adult human hematopoietic stem and progenitor cells (HSPCs), and immunophenotypic long-term hematopoietic stem cells (LT-HSCs). We find no overt in vitro increase in proliferation associated with an endogenous JAK2 V617F allele, but co-culture with wild type cells unmasks a competitive growth advantage provided by the mutation. Acquisition of the V617F allele also promotes terminal differentiation of erythroid progenitors, even in the absence of hematopoietic cytokine signaling. Taken together, these data are consistent with the gradually progressive manifestation of MPNs and reveals that endogenously acquired JAK2 V617F mutations may yield more subtle phenotypes as compared to transgenic overexpression models.
Collapse
Affiliation(s)
- Ron Baik
- Innovative Genomics Institute, University of California, Berkeley, CA, United States of America
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, United States of America
- New York University School of Medicine, New York, NY, United States of America
| | - Stacia K. Wyman
- Innovative Genomics Institute, University of California, Berkeley, CA, United States of America
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, United States of America
| | - Shaheen Kabir
- Innovative Genomics Institute, University of California, Berkeley, CA, United States of America
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, United States of America
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, United States of America
- * E-mail: (JEC); (SK)
| | - Jacob E. Corn
- Innovative Genomics Institute, University of California, Berkeley, CA, United States of America
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, United States of America
- * E-mail: (JEC); (SK)
| |
Collapse
|
237
|
Nilsri N, Jangprasert P, Pawinwongchai J, Israsena N, Rojnuckarin P. Distinct effects of V617F and exon12-mutated JAK2 expressions on erythropoiesis in a human induced pluripotent stem cell (iPSC)-based model. Sci Rep 2021; 11:5255. [PMID: 33664283 PMCID: PMC7933160 DOI: 10.1038/s41598-021-83895-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 02/09/2021] [Indexed: 12/15/2022] Open
Abstract
Activating mutations affecting the JAK-STAT signal transduction is the genetic driver of myeloproliferative neoplasms (MPNs) which comprise polycythemia vera (PV), essential thrombocythemia (ET) and myelofibrosis. The JAK2p.V617F mutation can produce both erythrocytosis in PV and thrombocytosis in ET, while JAK2 exon 12 mutations cause only erythrocytosis. We hypothesized that these two mutations activated different intracellular signals. In this study, the induced pluripotent stem cells (iPSCs) were used to model JAK2-mutated MPNs. Normal iPSCs underwent lentiviral transduction to overexpress JAK2p.V617F or JAK2p.N542_E543del (JAK2exon12) under a doxycycline-inducible system. The modified iPSCs were differentiated into erythroid cells. Compared with JAK2V617F-iPSCs, JAK2exon12-iPSCs yielded more total CD71+GlycophorinA+ erythroid cells, displayed more mature morphology and expressed more adult hemoglobin after doxycycline induction. Capillary Western immunoassay revealed significantly higher phospho-STAT1 but lower phospho-STAT3 and lower Phospho-AKT in JAK2exon12-iPSCs compared with those of JAK2V617F-iPSCs in response to erythropoietin. Furthermore, interferon alpha and arsenic trioxide were tested on these modified iPSCs to explore their potentials for MPN therapy. Both agents preferentially inhibited proliferation and promoted apoptosis of the iPSCs expressing mutant JAK2 compared with those without doxycycline induction. In conclusion, the modified iPSC model can be used to investigate the mechanisms and search for new therapy of MPNs.
Collapse
Affiliation(s)
- Nungruthai Nilsri
- Doctor of Philosophy Program in Medical Sciences, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Medical Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, Thailand
| | - Panchalee Jangprasert
- Interdisciplinary Program of Biomedical Sciences, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | | - Nipan Israsena
- Stem Cell and Cell Therapy Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Ponlapat Rojnuckarin
- Research Unit in Translational Hematology, Division of Hematology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, 10330, Thailand.
| |
Collapse
|
238
|
Abstract
The US Food and Drug Administration (FDA) approval of Janus kinase 2 inhibitors, ruxolitinib and fedratinib for the treatment of intermediate-2 or high-risk primary or secondary myelofibrosis (MF) has revolutionized the management of MF. Nevertheless, these drugs do not reliably alter the natural history of disease. Burgeoning understanding of the molecular pathogenesis and the bone marrow microenvironment in MF has galvanized the development of targeted therapeutics. This review provides insight into the novel therapies under clinical evaluation.
Collapse
|
239
|
Guijarro-Hernández A, Vizmanos JL. A Broad Overview of Signaling in Ph-Negative Classic Myeloproliferative Neoplasms. Cancers (Basel) 2021; 13:cancers13050984. [PMID: 33652860 PMCID: PMC7956519 DOI: 10.3390/cancers13050984] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary There is growing evidence that Ph-negative myeloproliferative neoplasms are disorders in which multiple signaling pathways are significantly disturbed. The heterogeneous phenotypes observed among patients have highlighted the importance of having a comprehensive knowledge of the molecular mechanisms behind these diseases. This review aims to show a broad overview of the signaling involved in myeloproliferative neoplasms (MPNs) and other processes that can modify them, which could be helpful to better understand these diseases and develop more effective targeted treatments. Abstract Ph-negative myeloproliferative neoplasms (polycythemia vera (PV), essential thrombocythemia (ET) and primary myelofibrosis (PMF)) are infrequent blood cancers characterized by signaling aberrations. Shortly after the discovery of the somatic mutations in JAK2, MPL, and CALR that cause these diseases, researchers extensively studied the aberrant functions of their mutant products. In all three cases, the main pathogenic mechanism appears to be the constitutive activation of JAK2/STAT signaling and JAK2-related pathways (MAPK/ERK, PI3K/AKT). However, some other non-canonical aberrant mechanisms derived from mutant JAK2 and CALR have also been described. Moreover, additional somatic mutations have been identified in other genes that affect epigenetic regulation, tumor suppression, transcription regulation, splicing and other signaling pathways, leading to the modification of some disease features and adding a layer of complexity to their molecular pathogenesis. All of these factors have highlighted the wide variety of cellular processes and pathways involved in the pathogenesis of MPNs. This review presents an overview of the complex signaling behind these diseases which could explain, at least in part, their phenotypic heterogeneity.
Collapse
Affiliation(s)
- Ana Guijarro-Hernández
- Department of Biochemistry and Genetics, School of Sciences, University of Navarra, 31008 Pamplona, Spain;
| | - José Luis Vizmanos
- Department of Biochemistry and Genetics, School of Sciences, University of Navarra, 31008 Pamplona, Spain;
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
- Correspondence:
| |
Collapse
|
240
|
Sørensen AL, Hasselbalch HC, Bjørn ME, Nielsen CH, Cordua S, Skov V, Kjær L, Poulsen HE, Ellervik C. Elevated levels of oxidized nucleosides in individuals with the JAK2V617F mutation from a general population study. Redox Biol 2021; 41:101895. [PMID: 33621788 PMCID: PMC7907890 DOI: 10.1016/j.redox.2021.101895] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 02/06/2021] [Accepted: 02/09/2021] [Indexed: 11/18/2022] Open
Abstract
It is unknown if the somatic mutations in chronic myeloproliferative neoplasms (MPNs), JAK2V617F and Calreticulin, are associated with oxidative stress, or impaired mitochondrial defense against reactive oxygen species. In the Danish General Suburban Population Study (GESUS), including 116 JAK2V617F-mutated, 8 CALR-mutated, and 3310 mutation-negative participants without overt MPN, and in a study of 39 patients with myelofibrosis, the most advances type of MPNs, and 179 matched controls, we compared the urinary concentration of oxidized nucleosides – 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG) and 8-oxo-7,8-dihydroguanosine (8-oxoGuo) – as markers of oxidative stress. In GESUS, we performed Mendelian randomization analyses, using the Ala16Val single nucleotide polymorphism in the superoxide dismutase2 (SOD2) gene. In the multivariate analyses in GESUS, the 8-oxodG and 8-oxoGuo concentration were 13% (95%CI: 6–21%, p < 0.001) and 6% (95%CI: 0.4–11%, p = 0.035) higher in mutation-positive than in mutation-negative participants, respectively. Each SOD2 T allele was associated with an odds ratio of being mutation-positive of 1.69 (95%CI: 1.12–2.55, p = 0.013) through 8-oxodG. The 8-oxodG and 8-oxoGuo concentrations were 77% (95%CI: 49–110%, p < 0.001) and 105% (95%CI: 80–133%, p < 0.001) higher in myelofibrosis patients than in controls, respectively. In conclusion, an impaired mitochondrial antioxidative defense, that is causatively associated with markers of oxidative stress, may contribute to the development of mutations associated with MPNs.
Collapse
Affiliation(s)
- Anders L Sørensen
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark; Institute for Inflammation Research, Center for Rheumatology and Spine Diseases, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.
| | - Hans C Hasselbalch
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Mads Emil Bjørn
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Claus H Nielsen
- Institute for Inflammation Research, Center for Rheumatology and Spine Diseases, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Sabrina Cordua
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | - Vibe Skov
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | - Lasse Kjær
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | - Henrik E Poulsen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; Department of Clinical Pharmacology, Bispebjerg Frederiksberg Hospitals, Copenhagen, Denmark
| | - Christina Ellervik
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; Department of Laboratory Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Department of Production, Research, and Innovation, Region Zealand, Sorø, Denmark
| |
Collapse
|
241
|
Stetka J, Skoda RC. Mouse models of myeloproliferative neoplasms for pre-clinical testing of novel therapeutic agents. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2021; 165:26-33. [PMID: 33542546 DOI: 10.5507/bp.2021.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 01/08/2021] [Indexed: 11/23/2022] Open
Abstract
Myeloproliferative neoplasms (MPN), are clonal hematopoietic stem cell (HSC) disorders driven by gain-of-function mutations in JAK2 (JAK2-V617F), CALR or MPL genes. MPN treatment options currently mainly consist of cytoreductive therapy with hydroxyurea and JAK2 inhibitors such as ruxolitinib and fedratinib. Pegylated interferon-alpha can induce complete molecular remission (CMR) in some MPN patients when applied at early stages of disease. The ultimate goal of modern MPN treatment is to develop novel therapies that specifically target mutant HSCs in MPN and consistently induce CMR. Basic research has identified a growing number of candidate drugs with promising effects in vitro. A first step on the way to developing these compounds into drugs approved for treatment of MPN patients often consists of examining the effects in vivo using pre-clinical mouse models of MPN. Here we review the current state of MPN mouse models and the experimental setup for their optimal use in drug testing. In addition to novel compounds, combinatorial therapeutic approaches are often considered for the treatment of MPN. Optimized and validated mouse models can provide an efficient way to rapidly assess and select the most promising combinations and thereby contribute to accelerating the development of novel therapies of MPN.
Collapse
Affiliation(s)
- Jan Stetka
- Department of Biomedicine, Experimental Hematology, University Hospital Basel and University of Basel, Basel, Switzerland.,Department of Biology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Czech Republic
| | - Radek C Skoda
- Department of Biomedicine, Experimental Hematology, University Hospital Basel and University of Basel, Basel, Switzerland
| |
Collapse
|
242
|
Lehmann U, Stark H, Bartels S, Schlue J, Büsche G, Kreipe H. Genome-wide DNA methylation profiling is able to identify prefibrotic PMF cases at risk for progression to myelofibrosis. Clin Epigenetics 2021; 13:28. [PMID: 33541399 PMCID: PMC7860011 DOI: 10.1186/s13148-021-01010-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/11/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Patients suffering from the BCR-ABL1-negative myeloproliferative disease prefibrotic primary myelofibrosis (pre-PMF) have a certain risk for progression to myelofibrosis. Accurate risk estimation for this fibrotic progression is of prognostic importance and clinically relevant. Commonly applied risk scores are based on clinical, cytogenetic, and genetic data but do not include epigenetic modifications. Therefore, we evaluated the assessment of genome-wide DNA methylation patterns for their ability to predict fibrotic progression in PMF patients. RESULTS For this purpose, the DNA methylation profile was analyzed genome-wide in a training set of 22 bone marrow trephines from patients with either fibrotic progression (n = 12) or stable disease over several years (n = 10) using the 850 k EPIC array from Illumina. The DNA methylation classifier constructed from this data set was validated in an independently measured test set of additional 11 bone marrow trephines (7 with stable disease, 4 with fibrotic progress). Hierarchical clustering of methylation β-values and linear discriminant classification yielded very good discrimination between both patient groups. By gene ontology analysis, the most differentially methylated CpG sites are primarily associated with genes involved in cell-cell and cell-matrix interactions. CONCLUSIONS In conclusion, we could show that genome-wide DNA methylation profiling of bone marrow trephines is feasible under routine diagnostic conditions and, more importantly, is able to predict fibrotic progression in pre-fibrotic primary myelofibrosis with high accuracy.
Collapse
Affiliation(s)
- Ulrich Lehmann
- Institute of Pathology, Medical School Hannover, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| | - Helge Stark
- Institute of Pathology, Medical School Hannover, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Stephan Bartels
- Institute of Pathology, Medical School Hannover, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Jerome Schlue
- Institute of Pathology, Medical School Hannover, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Guntram Büsche
- Institute of Pathology, Medical School Hannover, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Hans Kreipe
- Institute of Pathology, Medical School Hannover, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| |
Collapse
|
243
|
Poisson J, Tanguy M, Davy H, Camara F, El Mdawar MB, Kheloufi M, Dagher T, Devue C, Lasselin J, Plessier A, Merchant S, Blanc-Brude O, Souyri M, Mougenot N, Dingli F, Loew D, Hatem SN, James C, Villeval JL, Boulanger CM, Rautou PE. Erythrocyte-derived microvesicles induce arterial spasms in JAK2V617F myeloproliferative neoplasm. J Clin Invest 2021; 130:2630-2643. [PMID: 32045382 PMCID: PMC7190923 DOI: 10.1172/jci124566] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 02/04/2020] [Indexed: 12/16/2022] Open
Abstract
Arterial cardiovascular events are the leading cause of death in patients with JAK2V617F myeloproliferative neoplasms (MPNs). However, their mechanisms are poorly understood. The high prevalence of myocardial infarction without significant coronary stenosis or atherosclerosis in patients with MPNs suggests that vascular function is altered. The consequences of JAK2V617F mutation on vascular reactivity are unknown. We observe here increased responses to vasoconstrictors in arteries from Jak2V617F mice resulting from a disturbed endothelial NO pathway and increased endothelial oxidative stress. This response was reproduced in WT mice by circulating microvesicles isolated from patients carrying JAK2V617F and by erythrocyte-derived microvesicles from transgenic mice. Microvesicles of other cellular origins had no effect. This effect was observed ex vivo on isolated aortas, but also in vivo on femoral arteries. Proteomic analysis of microvesicles derived from JAK2V617F erythrocytes identified increased expression of myeloperoxidase as the likely mechanism accounting for their effect. Myeloperoxidase inhibition in microvesicles derived from JAK2V617F erythrocytes suppressed their effect on oxidative stress. Antioxidants such as simvastatin and N-acetyl cysteine improved arterial dysfunction in Jak2V617F mice. In conclusion, JAK2V617F MPNs are characterized by exacerbated vasoconstrictor responses resulting from increased endothelial oxidative stress caused by circulating erythrocyte-derived microvesicles. Simvastatin appears to be a promising therapeutic strategy in this setting.
Collapse
Affiliation(s)
- Johanne Poisson
- Paris-Centre de recherche cardiovasculaire (PARCC), Université de Paris, Paris, France.,Centre de recherche sur l'inflammation, Inserm, Université de Paris, Paris, France.,Geriatrics Department, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Marion Tanguy
- Paris-Centre de recherche cardiovasculaire (PARCC), Université de Paris, Paris, France.,Centre de recherche sur l'inflammation, Inserm, Université de Paris, Paris, France
| | - Hortense Davy
- Paris-Centre de recherche cardiovasculaire (PARCC), Université de Paris, Paris, France
| | - Fatoumata Camara
- Paris-Centre de recherche cardiovasculaire (PARCC), Université de Paris, Paris, France
| | - Marie-Belle El Mdawar
- Paris-Centre de recherche cardiovasculaire (PARCC), Université de Paris, Paris, France
| | - Marouane Kheloufi
- Paris-Centre de recherche cardiovasculaire (PARCC), Université de Paris, Paris, France
| | - Tracy Dagher
- Inserm U1170, Institut Gustave Roussy, Université Paris XI, Villejuif, France
| | - Cécile Devue
- Paris-Centre de recherche cardiovasculaire (PARCC), Université de Paris, Paris, France
| | - Juliette Lasselin
- Paris-Centre de recherche cardiovasculaire (PARCC), Université de Paris, Paris, France
| | - Aurélie Plessier
- Service d'Hépatologie, Pôle des Maladies de l'Appareil Digestif, Hôpital Beaujon, Département Hospitalo-Universitaire (DHU Unity), AP-HP, Clichy, France.,Centre de Référence des Maladies Vasculaires du Foie, French Network for Rare Liver Diseases (FILFOIE), European Reference Network (ERN), Clichy, France
| | - Salma Merchant
- Inserm U1170, Institut Gustave Roussy, Université Paris XI, Villejuif, France
| | - Olivier Blanc-Brude
- Paris-Centre de recherche cardiovasculaire (PARCC), Université de Paris, Paris, France
| | - Michèle Souyri
- Inserm UMR S1131, University Hospital Institute (IHU), Université de Paris, Paris, France
| | - Nathalie Mougenot
- Inserm UMS 28, Phénotypage du petit animal, Plateforme d'expérimentations coeur-muscle-vaisseaux (PECMV), Sorbonne University, Paris, France
| | - Florent Dingli
- Laboratoire de Spectrométrie de Masse Protéomique, Institut Curie, Université de recherche PSL, Paris, France
| | - Damarys Loew
- Laboratoire de Spectrométrie de Masse Protéomique, Institut Curie, Université de recherche PSL, Paris, France
| | - Stephane N Hatem
- Inserm, UMR 1166, Institut de cardiométabolisme et nutrition (ICAN), Sorbonne University, Paris, France
| | - Chloé James
- Inserm U1034, Biology of Cardiovascular, Pessac, France.,University of Bordeaux, Pessac, France.,Laboratory of Hematology, Bordeaux University Hospital Center, Pessac, France
| | - Jean-Luc Villeval
- Inserm U1170, Institut Gustave Roussy, Université Paris XI, Villejuif, France
| | - Chantal M Boulanger
- Paris-Centre de recherche cardiovasculaire (PARCC), Université de Paris, Paris, France
| | - Pierre-Emmanuel Rautou
- Paris-Centre de recherche cardiovasculaire (PARCC), Université de Paris, Paris, France.,Centre de recherche sur l'inflammation, Inserm, Université de Paris, Paris, France.,Inserm U1170, Institut Gustave Roussy, Université Paris XI, Villejuif, France.,Service d'Hépatologie, Pôle des Maladies de l'Appareil Digestif, Hôpital Beaujon, Département Hospitalo-Universitaire (DHU Unity), AP-HP, Clichy, France
| |
Collapse
|
244
|
Bywater M, Lane SW. A knockout combination for MPN stem cells. J Exp Med 2021; 218:e20201884. [PMID: 33185683 PMCID: PMC7671566 DOI: 10.1084/jem.20201884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Myeloproliferative neoplasms (MPNs) are a group of blood cancers that are maintained by stem cell populations. In this issue of JEM, Dagher et al. (https://doi.org/10.1084/jem.20201268) combine arsenic and interferon α to deliver a knockout punch to MPN stem cells and provide new hope to cure patients with MPNs.
Collapse
Affiliation(s)
- Megan Bywater
- Cancer Program, QIMR Berghofer Medical Research Institute, Herston, Australia
- University of Queensland, Brisbane, Australia
| | - Steven W. Lane
- Cancer Program, QIMR Berghofer Medical Research Institute, Herston, Australia
- University of Queensland, Brisbane, Australia
- Cancer Care Services, Royal Brisbane and Women’s Hospital, Herston, Australia
| |
Collapse
|
245
|
Bartels S, Vogtmann J, Schipper E, Büsche G, Schlue J, Lehmann U, Kreipe H. Combination of myeloproliferative neoplasm driver gene activation with mutations of splice factor or epigenetic modifier genes increases risk of rapid blastic progression. Eur J Haematol 2021; 106:520-528. [PMID: 33460496 DOI: 10.1111/ejh.13579] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/09/2021] [Indexed: 01/04/2023]
Abstract
OBJECTIVES Myeloproliferative neoplasms (MPN) comprising polycythemia vera (PV), essential thrombocythemia (ET) and primary myelofibrosis (PMF) follow a bi-phasic course of disease with fibrotic and/or blastic progression. At presentation in the chronic phase, currently there are only insufficient tools to predict the risk of progression in individual cases. METHODS In this study, chronic phase MPN (16 PMF, 11 PV, and 11 MPN unclassified) with blastic transformation during course of disease (n = 38, median follow-up 5.3 years) were analyzed by high-throughput sequencing. MPN cases with a comparable follow-up period and without evidence of blast increase served as control (n = 63, median follow-up 5.8 years). RESULTS Frequent ARCH/CHIP-associated mutations (TET2, ASXL1, DNMT3A) found at presentation were not significantly associated with blastic transformation. By contrast, mutations of SRSF2, U2AF1, and IDH1/2 at first presentation were frequently observed in the progression cohort (13/38, 34.2%) and were completely missing in the control group without blast transformation during follow-up (P = .0007 for SRSF2; P = .0063 for U2AF1 and IDH1/2). CONCLUSION Unlike frequent ARCH/CHIP alterations (TET2, ASXL1, DNMT3A), mutations in SRSF2, IDH1/2, and U2AF1 when manifest already at first presentation provide an independent risk factor for rapid blast transformation of MPN.
Collapse
Affiliation(s)
- Stephan Bartels
- Institut für Pathologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Julia Vogtmann
- Institut für Pathologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Elisa Schipper
- Institut für Pathologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Guntram Büsche
- Institut für Pathologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Jerome Schlue
- Institut für Pathologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Ulrich Lehmann
- Institut für Pathologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Hans Kreipe
- Institut für Pathologie, Medizinische Hochschule Hannover, Hannover, Germany
| |
Collapse
|
246
|
Emerging Role of Neutrophils in the Thrombosis of Chronic Myeloproliferative Neoplasms. Int J Mol Sci 2021; 22:ijms22031143. [PMID: 33498945 PMCID: PMC7866001 DOI: 10.3390/ijms22031143] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/10/2021] [Accepted: 01/20/2021] [Indexed: 12/11/2022] Open
Abstract
Thrombosis is a major cause of morbimortality in patients with chronic Philadelphia chromosome-negative myeloproliferative neoplasms (MPN). In the last decade, multiple lines of evidence support the role of leukocytes in thrombosis of MPN patients. Besides the increase in the number of cells, neutrophils and monocytes of MPN patients show a pro-coagulant activated phenotype. Once activated, neutrophils release structures composed of DNA, histones, and granular proteins, called extracellular neutrophil traps (NETs), which in addition to killing pathogens, provide an ideal matrix for platelet activation and coagulation mechanisms. Herein, we review the published literature related to the involvement of NETs in the pathogenesis of thrombosis in the setting of MPN; the effect that cytoreductive therapies and JAK inhibitors can have on markers of NETosis, and, finally, the novel therapeutic strategies targeting NETs to reduce the thrombotic complications in these patients.
Collapse
|
247
|
Spampinato M, Giallongo C, Romano A, Longhitano L, La Spina E, Avola R, Scandura G, Dulcamare I, Bramanti V, Di Rosa M, Vicario N, Parenti R, Li Volti G, Tibullo D, Palumbo GA. Focus on Osteosclerotic Progression in Primary Myelofibrosis. Biomolecules 2021; 11:biom11010122. [PMID: 33477816 PMCID: PMC7832894 DOI: 10.3390/biom11010122] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/09/2021] [Accepted: 01/16/2021] [Indexed: 12/22/2022] Open
Abstract
Primary myelofibrosis (PMF) is a myeloproliferative neoplasm characterized by hematopoietic stem-cell-derived clonal proliferation, leading to bone marrow (BM) fibrosis. Hematopoiesis alterations are closely associated with modifications of the BM microenvironment, characterized by defective interactions between vascular and endosteal niches. As such, neoangiogenesis, megakaryocytes hyperplasia and extensive bone marrow fibrosis, followed by osteosclerosis and bone damage, are the most relevant consequences of PMF. Moreover, bone tissue deposition, together with progressive fibrosis, represents crucial mechanisms of disabilities in patients. Although the underlying mechanisms of bone damage observed in PMF are still unclear, the involvement of cytokines, growth factors and bone marrow microenvironment resident cells have been linked to disease progression. Herein, we focused on the role of megakaryocytes and their alterations, associated with cytokines and chemokines release, in modulating functions of most of the bone marrow cell populations and in creating a complex network where impaired signaling strongly contributes to progression and disabilities.
Collapse
Affiliation(s)
- Mariarita Spampinato
- Section of Biochemistry, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (M.S.); (L.L.); (R.A.); (D.T.)
| | - Cesarina Giallongo
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy;
| | - Alessandra Romano
- Department of General Surgery and Medical-Surgical Specialties, Division of Hematology, A.O.U. “Policlinico-Vittorio Emanuele”, University of Catania, 95123 Catania, Italy; (A.R.); (E.L.S.); (G.S.); (I.D.)
| | - Lucia Longhitano
- Section of Biochemistry, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (M.S.); (L.L.); (R.A.); (D.T.)
| | - Enrico La Spina
- Department of General Surgery and Medical-Surgical Specialties, Division of Hematology, A.O.U. “Policlinico-Vittorio Emanuele”, University of Catania, 95123 Catania, Italy; (A.R.); (E.L.S.); (G.S.); (I.D.)
| | - Roberto Avola
- Section of Biochemistry, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (M.S.); (L.L.); (R.A.); (D.T.)
| | - Grazia Scandura
- Department of General Surgery and Medical-Surgical Specialties, Division of Hematology, A.O.U. “Policlinico-Vittorio Emanuele”, University of Catania, 95123 Catania, Italy; (A.R.); (E.L.S.); (G.S.); (I.D.)
| | - Ilaria Dulcamare
- Department of General Surgery and Medical-Surgical Specialties, Division of Hematology, A.O.U. “Policlinico-Vittorio Emanuele”, University of Catania, 95123 Catania, Italy; (A.R.); (E.L.S.); (G.S.); (I.D.)
| | - Vincenzo Bramanti
- Division of Clinical Pathology, “Giovanni Paolo II” Hospital–A.S.P. Ragusa, 97100 Ragusa, Italy;
| | - Michelino Di Rosa
- Section of Human Anatomy and Histology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy;
| | - Nunzio Vicario
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (N.V.); (R.P.)
| | - Rosalba Parenti
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (N.V.); (R.P.)
| | - Giovanni Li Volti
- Section of Biochemistry, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (M.S.); (L.L.); (R.A.); (D.T.)
- Correspondence: (G.L.V.); (G.A.P.)
| | - Daniele Tibullo
- Section of Biochemistry, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (M.S.); (L.L.); (R.A.); (D.T.)
| | - Giuseppe A. Palumbo
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy;
- Correspondence: (G.L.V.); (G.A.P.)
| |
Collapse
|
248
|
Spampinato M, Giallongo C, Romano A, Longhitano L, La Spina E, Avola R, Scandura G, Dulcamare I, Bramanti V, Di Rosa M, Vicario N, Parenti R, Li Volti G, Tibullo D, Palumbo GA. Focus on Osteosclerotic Progression in Primary Myelofibrosis. Biomolecules 2021. [PMID: 33477816 DOI: 10.3390/biom11010122.pmid:33477816;pmcid:pmc7832894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023] Open
Abstract
Primary myelofibrosis (PMF) is a myeloproliferative neoplasm characterized by hematopoietic stem-cell-derived clonal proliferation, leading to bone marrow (BM) fibrosis. Hematopoiesis alterations are closely associated with modifications of the BM microenvironment, characterized by defective interactions between vascular and endosteal niches. As such, neoangiogenesis, megakaryocytes hyperplasia and extensive bone marrow fibrosis, followed by osteosclerosis and bone damage, are the most relevant consequences of PMF. Moreover, bone tissue deposition, together with progressive fibrosis, represents crucial mechanisms of disabilities in patients. Although the underlying mechanisms of bone damage observed in PMF are still unclear, the involvement of cytokines, growth factors and bone marrow microenvironment resident cells have been linked to disease progression. Herein, we focused on the role of megakaryocytes and their alterations, associated with cytokines and chemokines release, in modulating functions of most of the bone marrow cell populations and in creating a complex network where impaired signaling strongly contributes to progression and disabilities.
Collapse
Affiliation(s)
- Mariarita Spampinato
- Section of Biochemistry, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Cesarina Giallongo
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, 95123 Catania, Italy
| | - Alessandra Romano
- Department of General Surgery and Medical-Surgical Specialties, Division of Hematology, A.O.U. "Policlinico-Vittorio Emanuele", University of Catania, 95123 Catania, Italy
| | - Lucia Longhitano
- Section of Biochemistry, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Enrico La Spina
- Department of General Surgery and Medical-Surgical Specialties, Division of Hematology, A.O.U. "Policlinico-Vittorio Emanuele", University of Catania, 95123 Catania, Italy
| | - Roberto Avola
- Section of Biochemistry, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Grazia Scandura
- Department of General Surgery and Medical-Surgical Specialties, Division of Hematology, A.O.U. "Policlinico-Vittorio Emanuele", University of Catania, 95123 Catania, Italy
| | - Ilaria Dulcamare
- Department of General Surgery and Medical-Surgical Specialties, Division of Hematology, A.O.U. "Policlinico-Vittorio Emanuele", University of Catania, 95123 Catania, Italy
| | - Vincenzo Bramanti
- Division of Clinical Pathology, "Giovanni Paolo II" Hospital-A.S.P. Ragusa, 97100 Ragusa, Italy
| | - Michelino Di Rosa
- Section of Human Anatomy and Histology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Nunzio Vicario
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Rosalba Parenti
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Giovanni Li Volti
- Section of Biochemistry, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Daniele Tibullo
- Section of Biochemistry, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Giuseppe A Palumbo
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, 95123 Catania, Italy
| |
Collapse
|
249
|
Sharma M, Bhavani C, Suresh SB, Paul J, Yadav L, Ross C, Srivastava S. Gene expression profiling of CD34(+) cells from patients with myeloproliferative neoplasms. Oncol Lett 2021; 21:204. [PMID: 33574943 PMCID: PMC7816297 DOI: 10.3892/ol.2021.12465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 10/08/2020] [Indexed: 01/01/2023] Open
Abstract
Myeloproliferative neoplasms (MPN) are clonal disorders characterized by the increased proliferation of hematopoietic stem cell precursors and mature blood cells. Mutations of Janus kinase 2 (JAK2), Calreticulin (CALR) and MPL (myeloproliferative leukemia virus) are key driver mutations in MPN. However, the molecular profile of triple negative MPN has been a subject of ambiguity over the past few years. Mutations of, methylcytosine dioxygenase TET2, polycomb group protein ASXL1 and histone-lysine N-methyltransferase EZH2 genes have accounted for certain subsets of triple negative MPNs but the driving cause for majority of cases is still unexplored. The present study performed a microarray-based transcriptomic profile analysis of bone marrow-derived CD34(+) cells from seven MPN samples. A total of 21,448 gene signatures were obtained, which were further filtered into 472 upregulated and 202 downregulated genes. Gene ontology and protein-protein interaction (PPI) network analysis highlighted an upregulation of genes involved in cell cycle and chromatin modification in JAK2V617F negative vs. positive MPN samples. Out of the upregulated genes, seven were associated with the hematopoietic stem cell signature, while forty-seven were associated with the embryonic stem cell signature. The majority of the genes identified were under the control of NANOG and E2F4 transcription factors. The PPI network indicated a strong interaction between chromatin modifiers and cell cycle genes, such as histone-lysine N-methyltransferase SUV39H1, SWI/SNF complex subunit SMARCC2, SMARCE2, chromatin remodeling complex subunit SS18, tubulin β (TUBB) and cyclin dependent kinase CDK1. Among the upregulated epigenetic markers, there was a ~10-fold increase in MYB expression in JAK2V617F negative samples. A significant increase in total CD34 counts in JAK2V617F negative vs. positive samples (P<0.05) was also observed. Overall, the present data showed a distinct pattern of expression in JAK2V617F negative vs. positive samples with upregulated genes involved in epigenetic modification.
Collapse
Affiliation(s)
- Mugdha Sharma
- Department of Medicine, St. John's Medical College and Hospital, Bengaluru, Karnataka 560034, India
| | - Chandra Bhavani
- St. John's Research Institute, St. John's National Academy of Health Sciences, Bengaluru, Karnataka 560034, India
| | - Srinag Bangalore Suresh
- Department of Medicine, St. John's Medical College and Hospital, Bengaluru, Karnataka 560034, India
| | - John Paul
- Department of Medicine, St. John's Medical College and Hospital, Bengaluru, Karnataka 560034, India
| | - Lokendra Yadav
- Department of Transfusion Medicine and Immunohematology, St. John's Medical College and Hospital, Bengaluru, Karnataka 560034, India
| | - Cecil Ross
- Department of Medicine, St. John's Medical College and Hospital, Bengaluru, Karnataka 560034, India
| | - Sweta Srivastava
- Department of Transfusion Medicine and Immunohematology, St. John's Medical College and Hospital, Bengaluru, Karnataka 560034, India
| |
Collapse
|
250
|
Yung Y, Lee E, Chu HT, Yip PK, Gill H. Targeting Abnormal Hematopoietic Stem Cells in Chronic Myeloid Leukemia and Philadelphia Chromosome-Negative Classical Myeloproliferative Neoplasms. Int J Mol Sci 2021; 22:ijms22020659. [PMID: 33440869 PMCID: PMC7827471 DOI: 10.3390/ijms22020659] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 02/02/2023] Open
Abstract
Myeloproliferative neoplasms (MPNs) are unique hematopoietic stem cell disorders sharing mutations that constitutively activate the signal-transduction pathways involved in haematopoiesis. They are characterized by stem cell-derived clonal myeloproliferation. The key MPNs comprise chronic myeloid leukemia (CML), polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF). CML is defined by the presence of the Philadelphia (Ph) chromosome and BCR-ABL1 fusion gene. Despite effective cytoreductive agents and targeted therapy, complete CML/MPN stem cell eradication is rarely achieved. In this review article, we discuss the novel agents and combination therapy that can potentially abnormal hematopoietic stem cells in CML and MPNs and the CML/MPN stem cell-sustaining bone marrow microenvironment.
Collapse
MESH Headings
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Antineoplastic Combined Chemotherapy Protocols/adverse effects
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Autophagy
- Biomarkers, Tumor
- Cell Survival/drug effects
- Cell Transformation, Neoplastic/genetics
- Combined Modality Therapy
- Disease Susceptibility
- Genetic Predisposition to Disease
- Hematopoietic Stem Cells/drug effects
- Hematopoietic Stem Cells/metabolism
- Hematopoietic Stem Cells/pathology
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/etiology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/therapy
- Molecular Targeted Therapy
- Myeloproliferative Disorders/etiology
- Myeloproliferative Disorders/pathology
- Myeloproliferative Disorders/therapy
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Philadelphia Chromosome
- Signal Transduction/drug effects
- Stem Cell Niche
- Tumor Microenvironment
Collapse
Affiliation(s)
| | | | | | | | - Harinder Gill
- Correspondence: ; Tel.: +852-2255-4542; Fax: +852-2816-2863
| |
Collapse
|