201
|
Al-Daghri NM, Wani K, AlHarthi H, Alghamdi A, Alnaami AM, Yakout SM. Sex-Specific Signature in the Circulating NLRP3 Levels of Saudi Adults with Metabolic Syndrome. J Clin Med 2021; 10:jcm10153288. [PMID: 34362072 PMCID: PMC8347773 DOI: 10.3390/jcm10153288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/14/2021] [Accepted: 07/23/2021] [Indexed: 12/27/2022] Open
Abstract
Recently, inflammasomes such as NLRP3 as cytosolic pattern-recognition receptors have been implicated in the development of inflammation; however, limited investigations report the circulating levels of this protein. The objective, thus, was to investigative circulating NLRP3 levels in Saudi patients with a low-grade inflammatory disorder called metabolic syndrome (MetS). Two hundred Saudi adults aged 30–65, with or without MetS diagnosed on the basis of National Cholesterol Education Programme Adult Treatment Panel III (NCEP ATP III) criteria, were randomly recruited. Five MetS components were established according to the diagnostic criteria in the study subjects. Circulating levels of NLRP3 and known inflammation markers, such as tumor necrosis factor α (TNF-α), C-reactive protein (CRP) and interleukins (IL-1β and IL-18), were measured in the blood samples taken from the study subjects. Gender-based analysis showed a significant elevated circulating levels of NLRP3 in non-MetS men compared to non-MetS females (p < 0.001). Moreover, an increase in circulating levels of NLRP3 with a number of MetS components (p = 0.038) was observed only in females. A significant positive correlation of NLRP3 levels with age (r = 0.20, p = 0.04), BMI (r = 0.32, p < 0.01) and waist (r = 0.24, p = 0.02) and a significant negative correlation between NLRP3 and HDL-cholesterol (r= −0.21, p = 0.03) were also observed in females. Logistic regression analysis also yielded a sex-specific positive association of NLRP3 with MetS in females, with this association influenced mostly by central obesity and dyslipidemia components of MetS. In conclusion, this study suggests a sexual disparity in the circulating levels of NLRP3, with a trend of increasing circulating NLRP3 levels with increasing MetS components observed only in females, influenced mostly by adiposity and dyslipidemia components of MetS. Longitudinal studies with a larger sample size and investigating sex-specific hormones with NLRP3 would be needed to establish a causal relationship of NLRP3 with MetS.
Collapse
Affiliation(s)
- Nasser M. Al-Daghri
- Biochemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (H.A.); (A.A.)
- Chair for Biomarkers of Chronic Diseases, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (K.W.); (A.M.A.); (S.M.Y.)
- Correspondence: ; Tel.: +966-14675939
| | - Kaiser Wani
- Chair for Biomarkers of Chronic Diseases, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (K.W.); (A.M.A.); (S.M.Y.)
| | - Hind AlHarthi
- Biochemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (H.A.); (A.A.)
| | - Amani Alghamdi
- Biochemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (H.A.); (A.A.)
| | - Abdullah M. Alnaami
- Chair for Biomarkers of Chronic Diseases, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (K.W.); (A.M.A.); (S.M.Y.)
| | - Sobhy M. Yakout
- Chair for Biomarkers of Chronic Diseases, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (K.W.); (A.M.A.); (S.M.Y.)
| |
Collapse
|
202
|
Jiang W, Hu JW, He XR, Jin WL, He XY. Statins: a repurposed drug to fight cancer. J Exp Clin Cancer Res 2021; 40:241. [PMID: 34303383 PMCID: PMC8306262 DOI: 10.1186/s13046-021-02041-2] [Citation(s) in RCA: 233] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/13/2021] [Indexed: 12/12/2022] Open
Abstract
As competitive HMG-CoA reductase (HMGCR) inhibitors, statins not only reduce cholesterol and improve cardiovascular risk, but also exhibit pleiotropic effects that are independent of their lipid-lowering effects. Among them, the anti-cancer properties of statins have attracted much attention and indicated the potential of statins as repurposed drugs for the treatment of cancer. A large number of clinical and epidemiological studies have described the anticancer properties of statins, but the evidence for anticancer effectiveness of statins is inconsistent. It may be that certain molecular subtypes of cancer are more vulnerable to statin therapy than others. Whether statins have clinical anticancer effects is still an active area of research. Statins appear to enhance the efficacy and address the shortcomings associated with conventional cancer treatments, suggesting that statins should be considered in the context of combined therapies for cancer. Here, we present a comprehensive review of the potential of statins in anti-cancer treatments. We discuss the current understanding of the mechanisms underlying the anti-cancer properties of statins and their effects on different malignancies. We also provide recommendations for the design of future well-designed clinical trials of the anti-cancer efficacy of statins.
Collapse
Affiliation(s)
- Wen Jiang
- Department of General Surgery, The Affiliated Provincial Hospital of Anhui Medical University, Hefei, 230001, P. R. China
| | - Jin-Wei Hu
- Department of General Surgery, The Affiliated Provincial Hospital of Anhui Medical University, Hefei, 230001, P. R. China
| | - Xu-Ran He
- Department of Finance, The First Affiliated Hospital of University of Science and Technology of China (Anhui Provincial Hospital), Hefei, 230001, P. R. China
| | - Wei-Lin Jin
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, P. R. China.
| | - Xin-Yang He
- Department of General Surgery, The First Affiliated Hospital of University of Science and Technology of China (Anhui Provincial Hospital), Hefei, 230001, P. R. China.
| |
Collapse
|
203
|
The Role of Microbiota in the Pathogenesis of Esophageal Adenocarcinoma. BIOLOGY 2021; 10:biology10080697. [PMID: 34439930 PMCID: PMC8389269 DOI: 10.3390/biology10080697] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/05/2021] [Accepted: 07/12/2021] [Indexed: 12/20/2022]
Abstract
Simple Summary Esophageal adenocarcinoma has a poor 5-year survival rate and is among the highest mortality cancers. Changes in the esophageal microbiome have been associated with cancer pathogenesis; however, the molecular mechanism remains obscure. This review article critically analyzes the molecular mechanisms through which microbiota may mediate the development and progression of esophageal adenocarcinoma and its precursors-gastroesophageal reflux disease and Barrett’s esophagus. It summarizes changes in esophageal microbiome composition in normal and pathologic states and subsequently discusses the role of altered microbiota in disease progression. The potential role of esophageal microbiota in protecting against the development of esophageal adenocarcinoma is also discussed. By doing so, this article highlights specific directions for future research developing microbiome-mediated therapeutics for esophageal adenocarcinoma. Abstract Esophageal adenocarcinoma (EAC) is associated with poor overall five-year survival. The incidence of esophageal cancer is on the rise, especially in Western societies, and the pathophysiologic mechanisms by which EAC develops are of extreme interest. Several studies have proposed that the esophageal microbiome may play an important role in the pathophysiology of EAC, as well as its precursors—gastroesophageal reflux disease (GERD) and Barrett’s esophagus (BE). Gastrointestinal microbiomes altered by inflammatory states have been shown to mediate tumorigenesis directly and are now being considered as novel targets for both cancer treatment and prevention. Elucidating molecular mechanisms through which the esophageal microbiome potentiates the development of GERD, BE, and EAC will provide a foundation on which new therapeutic targets can be developed. This review summarizes current findings that elucidate the molecular mechanisms by which microbiota promote the pathogenesis of GERD, BE, and EAC, revealing potential directions for additional research on the microbiome-mediated pathophysiology of EAC.
Collapse
|
204
|
Ju M, Bi J, Wei Q, Jiang L, Guan Q, Zhang M, Song X, Chen T, Fan J, Li X, Wei M, Zhao L. Pan-cancer analysis of NLRP3 inflammasome with potential implications in prognosis and immunotherapy in human cancer. Brief Bioinform 2021; 22:bbaa345. [PMID: 33212483 PMCID: PMC8294515 DOI: 10.1093/bib/bbaa345] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/21/2020] [Accepted: 10/29/2020] [Indexed: 02/07/2023] Open
Abstract
NLRP3 inflammasome was introduced as a double-edged sword in tumorigenesis and influenced immunotherapy response by modulating host immunity. However, a systematic assessment of the NLRP3-inflammasome-related genes across human cancers is lacking, and the predictive role of NLRP3 inflammasome in cancer immunotherapy (CIT) response remains unexplored. Thus, in this study, we performed a pan-cancer analysis of NLRP3-inflammasome-related genes across 24 human cancers. Out of these 24 cancers, 15 cancers had significantly different expression of NLRP3-inflammasome-related genes between normal and tumor samples. Meanwhile, Cox regression analysis showed that the NLRP3 inflammasome score could be served as an independent prognostic factor in skin cutaneous melanoma. Further analysis indicated that NLRP3 inflammasome may influence tumor immunity mainly by mediating tumor-infiltrating lymphocytes and macrophages, and the effect of NLRP3 inflammasome on immunity is diverse across tumor types in tumor microenvironment. We also found that the NLRP3 inflammasome score could be a stronger predictor for immune signatures compared with tumor mutation burden (TMB) and glycolytic activity, which have been reported as immune predictors. Furthermore, analysis of the association between NLRP3 inflammasome and CIT response using six CIT response datasets revealed the predictive value of NLRP3 inflammasome for immunotherapy response of patients in diverse cancers. Our study illustrates the characterization of NLRP3 inflammasome in multiple cancer types and highlights its potential value as a predictive biomarker of CIT response, which can pave the way for further investigation of the prognostic and therapeutic potentials of NLRP3 inflammasome.
Collapse
Affiliation(s)
- Mingyi Ju
- China Medical University, Liaoning, China
| | - Jia Bi
- China Medical University, Liaoning, China
| | - Qian Wei
- China Medical University, Liaoning, China
| | | | | | - Ming Zhang
- China Medical University, Liaoning, China
| | | | - Ting Chen
- China Medical University, Liaoning, China
| | - Jingyi Fan
- China Medical University, Liaoning, China
| | | | - Minjie Wei
- China Medical University, Liaoning, China
| | - Lin Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China
| |
Collapse
|
205
|
Zhang X, Shang X, Jin S, Ma Z, Wang H, Ao N, Yang J, Du J. Vitamin D ameliorates high-fat-diet-induced hepatic injury via inhibiting pyroptosis and alters gut microbiota in rats. Arch Biochem Biophys 2021; 705:108894. [PMID: 33965368 DOI: 10.1016/j.abb.2021.108894] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/16/2021] [Accepted: 04/25/2021] [Indexed: 12/12/2022]
Abstract
Accumulating evidence suggests that vitamin D (VD) has a therapeutic effect on non-alcoholic fatty liver disease (NAFLD). Pyroptosis and gut microbiota have been recognized as critical factors of the progression of NAFLD. However, the effect of VD on the pyroptosis and gut microbiota in NAFLD remains inconclusive. Herein, rats were fed high fat diet (HFD) for 12 weeks and concurrently treated with 5 μg/kg 1,25(OH)2D3 twice a week. BRL-3A cells were stimulated with 0.4 mmol/L palmitic acid (PA) and 1 μg/ml lipopolysaccharide (LPS) for 16 h and treated with 10-6 mol/L 1,25(OH)2D3. Effect of VD on the hepatic injury, lipid accumulation, activation of NLRP3 inflammasome and pyroptosis was determined in vivo and in vitro. Next, gasdermin D N-terminal (GSDMD-N) fragment was overexpressed in BRL-3A cells to investigate the role of pyroptosis in the therapeutic effect of VD on NAFLD. In addition, gut microbiota in NAFLD rats was also analyzed. Results showed that VD attenuated HFD-induced hepatic injury in vivo and PA-LPS-induced impairment of cell viability in vitro, and inhibited lipid accumulation, activation of NLRP3 inflammasome and pyroptosis in vivo and in vitro. GSDMD-N fragment overexpression suppressed the protective effect of VD on PA-LPS-induced activation of NLRP3 inflammasome, impairment of cell viability and lipid accumulation, indicating that VD might attenuate NAFLD through inhibiting pyroptosis. Additionally, VD also restored HFD-induced gut microbiota dysbiosis by increasing the relative abundance of Lactobacillus and reducing that of Acetatifactor, Oscillibacter and Flavonifractor. This study provides a novel mechanism underlying VD therapy against NAFLD.
Collapse
Affiliation(s)
- Xiaolei Zhang
- Department of Endocrinology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Xueying Shang
- Department of Endocrinology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Shi Jin
- Department of Endocrinology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhuoqi Ma
- Department of Endocrinology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - He Wang
- Department of Endocrinology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Na Ao
- Department of Endocrinology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Jing Yang
- Department of Endocrinology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Jian Du
- Department of Endocrinology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
206
|
Actkins KV, Beasley HK, Faucon AB, Davis LK, Sakwe AM. Calcium-Sensing Receptor Polymorphisms at rs1801725 Are Associated with Increased Risk of Secondary Malignancies. J Pers Med 2021; 11:642. [PMID: 34357109 PMCID: PMC8304025 DOI: 10.3390/jpm11070642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/07/2021] [Accepted: 07/02/2021] [Indexed: 12/19/2022] Open
Abstract
Dysregulation of systemic calcium homeostasis during malignancy is common in most patients with high-grade tumors. However, it remains unclear whether single nucleotide polymorphisms (SNPs) that alter the sensitivity of the calcium-sensing receptor (CaSR) to circulating calcium are associated with primary and/or secondary neoplasms at specific pathological sites in patients of European and African ancestry. Multivariable logistic regression models were used to analyze the association of CASR SNPs with circulating calcium, parathyroid hormone, vitamin D, and primary and secondary neoplasms. Circulating calcium is associated with an increased risk for breast, prostate, and skin cancers. In patients of European descent, the rs1801725 CASR SNP is associated with bone-related cancer phenotypes, deficiency of humoral immunity, and a higher risk of secondary neoplasms in the lungs and bone. Interestingly, circulating calcium levels are higher in homozygous patients for the inactivating CASR variant at rs1801725 (TT genotype), and this is associated with a higher risk of secondary malignancies. Our data suggest that expression of CaSR variants at rs1801725 is associated with a higher risk of developing secondary neoplastic lesions in the lungs and bone, due in part to cancer-induced hypercalcemia and/or tumor immune suppression. Screening of patients for CASR variants at this locus may lead to improved management of high calcium associated tumor progression.
Collapse
Affiliation(s)
- Ky’Era V. Actkins
- Department of Microbiology, Immunology and Physiology, School of Graduate Studies and Research, Meharry Medical College, Nashville, TN 37208, USA;
| | - Heather K. Beasley
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of Graduate Studies and Research, Meharry Medical College, Nashville, TN 37208, USA; (H.K.B.); (L.K.D.)
| | - Annika B. Faucon
- Vanderbilt University Medical Center, Vanderbilt Genetics Institute, Nashville, TN 37232, USA;
| | - Lea K. Davis
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of Graduate Studies and Research, Meharry Medical College, Nashville, TN 37208, USA; (H.K.B.); (L.K.D.)
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Amos M. Sakwe
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of Graduate Studies and Research, Meharry Medical College, Nashville, TN 37208, USA; (H.K.B.); (L.K.D.)
| |
Collapse
|
207
|
Yamamoto H, Ichikawa Y, Hirano SI, Sato B, Takefuji Y, Satoh F. Molecular Hydrogen as a Novel Protective Agent against Pre-Symptomatic Diseases. Int J Mol Sci 2021; 22:7211. [PMID: 34281264 PMCID: PMC8268741 DOI: 10.3390/ijms22137211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 12/17/2022] Open
Abstract
Mibyou, or pre-symptomatic diseases, refers to state of health in which a disease is slowly developing within the body yet the symptoms are not apparent. Common examples of mibyou in modern medicine include inflammatory diseases that are caused by chronic inflammation. It is known that chronic inflammation is triggered by the uncontrolled release of proinflammatory cytokines by neutrophils and macrophages in the innate immune system. In a recent study, it was shown that molecular hydrogen (H2) has the ability to treat chronic inflammation by eliminating hydroxyl radicals (·OH), a mitochondrial reactive oxygen species (ROS). In doing so, H2 suppresses oxidative stress, which is implicated in several mechanisms at the root of chronic inflammation, including the activation of NLRP3 inflammasomes. This review explains these mechanisms by which H2 can suppress chronic inflammation and studies its applications as a protective agent against different inflammatory diseases in their pre-symptomatic state. While mibyou cannot be detected nor treated by modern medicine, H2 is able to suppress the pathogenesis of pre-symptomatic diseases, and thus exhibits prospects as a novel protective agent.
Collapse
Affiliation(s)
- Haru Yamamoto
- Department of Molecular & Cell Biology, University of California, Berkeley, 3060 Valley Life Sciences Bldg #3140, Berkeley, CA 94720-3140, USA
- MiZ Inc., 39899 Balentine Drive Suite 200, Newark, CA 94560, USA;
| | - Yusuke Ichikawa
- MiZ Inc., 39899 Balentine Drive Suite 200, Newark, CA 94560, USA;
| | - Shin-ichi Hirano
- Department of Research and Development, MiZ Company Limited, 2-19-15 Ofuna, Kamakura, Kanagawa 247-0056, Japan; (S.-i.H.); (B.S.); (F.S.)
| | - Bunpei Sato
- Department of Research and Development, MiZ Company Limited, 2-19-15 Ofuna, Kamakura, Kanagawa 247-0056, Japan; (S.-i.H.); (B.S.); (F.S.)
| | - Yoshiyasu Takefuji
- Faculty of Environment and Information Studies, Keio University, 5322 Endo, Fujisawa 252-0882, Japan;
- Faculty of Data Science, Musashino University, 3-3-3 Ariake, Koto-Ku, Tokyo 134-8181, Japan
| | - Fumitake Satoh
- Department of Research and Development, MiZ Company Limited, 2-19-15 Ofuna, Kamakura, Kanagawa 247-0056, Japan; (S.-i.H.); (B.S.); (F.S.)
| |
Collapse
|
208
|
Choi HR, Lim H, Lee JH, Park H, Kim HP. Interruption of Helicobacter pylori-Induced NLRP3 Inflammasome Activation by Chalcone Derivatives. Biomol Ther (Seoul) 2021; 29:410-418. [PMID: 33653970 PMCID: PMC8255143 DOI: 10.4062/biomolther.2020.192] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/11/2021] [Accepted: 01/20/2021] [Indexed: 02/05/2023] Open
Abstract
Helicobacter pylori causes chronic gastritis through cag pathogenicity island (cagPAI), vacuolating cytotoxin A (VacA), lipopolysaccharides (LPS), and flagellin as pathogen-related molecular patterns (PAMPs), which, in combination with the pattern recognition receptors (PRRs) of host cells promotes the expression and secretion of inflammation-causing cytokines and activates innate immune responses such as inflammasomes. To identify useful compounds against H. pylori-associated gastric disorders, the effect of chalcone derivatives to activate the nucleotide-binding oligomerization domain (NOD)-like receptor family, pyrin domain-containing 3 (NLRP3) inflammasome was examined in an H. pylori-infected human monocytic THP-1 cell line in this study. Among the five synthetic structurally-related chalcone derivatives examined, 2'-hydroxy-4',6'-dimethoxychalcone (8) and 2'-hydroxy-3,4,5- trimethoxychalcone (12) strongly blocked the NLRP3 inflammasome in H. pylori-infected THP-1 cells. At 10 μM, these compounds inhibited the production of active IL-1β, IL-18, and caspase-1, and apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) oligomerization, but did not affect the expression levels of NLRP3, ASC, and pro-caspase-1. The interruption of NLRP3 inflammasome activation by these compounds was found to be mediated via the inhibition of the interleukin-1 receptor-associated kinase 4 (IRAK4)/IκBα/NF-κB signaling pathway. These compounds also inhibited caspase-4 production associated with non-canonical NLRP3 inflammasome activation. These results show for the first time that certain chalcones could interrupt the activation of the NLRP3 inflammasome in H. pylori-infected THP-1 cells. Therefore, these chalcones may be helpful in alleviating H. pylori-related inflammatory disorders including chronic gastritis.
Collapse
Affiliation(s)
- Hye Ri Choi
- College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hyun Lim
- College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Ju Hee Lee
- College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Haeil Park
- College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hyun Pyo Kim
- College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
209
|
Ratajczak MZ, Kucia M. The Nlrp3 inflammasome - the evolving story of its positive and negative effects on hematopoiesis. Curr Opin Hematol 2021; 28:251-261. [PMID: 33901136 PMCID: PMC8169640 DOI: 10.1097/moh.0000000000000658] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Hematopoiesis is co-regulated by innate immunity, which is an ancient evolutionary defense mechanism also involved in the development and regeneration of damaged tissues. This review seeks to shed more light on the workings of the Nlrp3 inflammasome, which is an intracellular innate immunity pattern recognition receptor and sensor of changes in the hematopoietic microenvironment, and focus on its role in hematopoieisis. RECENT FINDINGS Hematopoietic stem progenitor cells (HSPCs) are exposed to several external mediators of innate immunity. Moreover, since hemato/lymphopoietic cells develop from a common stem cell, their behavior and fate are coregulated by intracellular innate immunity pathways. Therefore, the Nlrp3 inflammasome is functional both in immune cells and in HSPCs and affects hematopoiesis in either a positive or negative way, depending on its activity level. Specifically, while a physiological level of activation regulates the trafficking of HSPCs and most likely maintains their pool in the bone marrow, hyperactivation may lead to irreversible cell damage by pyroptosis and HSPC senescence and contribute to the origination of myelodysplasia and hematopoietic malignancies. SUMMARY Modulation of the level of Nrp3 inflammasome activation will enable improvements in HSPC mobilization, homing, and engraftment strategies. It may also control pathological activation of this protein complex during HSPC senescence, graft-versus-host disease, the induction of cytokine storms, and the development of hematopoietic malignancies.
Collapse
Affiliation(s)
- Mariusz Z. Ratajczak
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, KY, USA
- Department of Regenerative Medicine, Center for Preclinical Research and Technology, Medical University of Warsaw, Poland
| | - Magdalena Kucia
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, KY, USA
- Department of Regenerative Medicine, Center for Preclinical Research and Technology, Medical University of Warsaw, Poland
| |
Collapse
|
210
|
Sivasinprasasn S, Wikan N, Tocharus J, Chaichompoo W, Suksamrarn A, Tocharus C. Pelargonic acid vanillylamide and rosuvastatin protect against oxidized low-density lipoprotein-induced endothelial dysfunction by inhibiting the NF-κB/NLRP3 pathway and improving cell-cell junctions. Chem Biol Interact 2021; 345:109572. [PMID: 34217687 DOI: 10.1016/j.cbi.2021.109572] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 06/17/2021] [Accepted: 06/30/2021] [Indexed: 11/24/2022]
Abstract
Oxidized low-density lipoprotein (ox-LDL) not only causes hyperlipidemia and contributes to atherosclerosis but also induces the endothelial dysfunction that leads to cardiovascular diseases. The nuclear factor-kappa B (NF-κB) pathway plays a key role in many chronic disorders and is a transcriptional factor in various inflammatory responses. The present study aimed to investigate the synergistic effects of pelargonic acid vanillylamide (PAVA) and rosuvastatin (RSV) on ox-LDL-induced inflammatory responses in human vascular endothelial cells (HUV-EC-C). HUV-EC-C were pretreated with PAVA or RSV and their combination for 2 h followed by ox-LDL for 24 h. The MTT assay was used to measure mitochondrial function. The DCFH-DA assay was used to evaluate oxidative phosphorylation, and western blotting was used to measured NF-κB/NLRP3 and related signaling pathways in HUV-EC-C. Ox-LDL induced lectin-type oxidized LDL receptor 1 (LOX-1) expression, NADPH oxidase 4 activation, and the overexpression of reactive oxygen species, which were inhibited by pretreatment with the combination of PAVA and RSV. Moreover, PAVA and RSV inhibited ox-LDL-induced NF-κBp65 activation. Ox-LDL induced NF-κB/NLRP3 pathway activation by inducing C-reactive protein expression, NLRP3 activation, caspase-1 activation, and IL-1β secretion, which were inhibited by pretreatment with the combination of PAVA and RSV. The combination of PAVA and RSV reduced ox-LDL-induced recruitment of monocytes to the site of inflammation, inhibited activation of the NLRP3 inflammasome, and ameliorated the impairment of cell-cell junctions through the NF-κB pathway. Our results suggest that the synergistic effects of PAVA and RSV provide a novel mechanism for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Sivanan Sivasinprasasn
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Naruemon Wikan
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Jiraporn Tocharus
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Waraluck Chaichompoo
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand
| | - Apichart Suksamrarn
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand
| | - Chainarong Tocharus
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
211
|
Wang Y, Zhang H, Xu Y, Peng T, Meng X, Zou F. NLRP3 induces the autocrine secretion of IL-1β to promote epithelial-mesenchymal transition and metastasis in breast cancer. Biochem Biophys Res Commun 2021; 560:72-79. [PMID: 33975248 DOI: 10.1016/j.bbrc.2021.04.122] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/23/2021] [Accepted: 04/28/2021] [Indexed: 01/10/2023]
Abstract
Tumor metastasis is a leading cause of mortality in patients with breast cancer (BC). As a predominant component of inflammasome, Nod-like receptor protein 3 (NLRP3) was found to be required for tumor progression, while the role of NLRP3 in BC metastasis remains largely undefined. In current study, we found that invasive BC had aberrant upregulation of NLRP3 expression, especially in the claudin-low subtype. And higher expression of NLRP3 predicted poor survival of BC patients. Further investigation suggested that NLRP3 promotes the migration and invasion, as well as the metastasis of BC cells. Moreover, we revealed that NLRP3 induces the autocrine secretion of IL-1β to promote epithelial-mesenchymal transition via a Caspase-1-dependent manner. Hence, this study suggested that upregulation of NLRP3 in BC induces the autocrine secretion of IL-1β and promotes EMT and metastasis of BC cells.
Collapse
Affiliation(s)
- Yuhao Wang
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China.
| | - Hongnan Zhang
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Yongjie Xu
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Tao Peng
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaojing Meng
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China.
| | - Fei Zou
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
212
|
Madi NM, Abo El Gheit RE, Barhoma RA, El Saadany A, Alghazaly GM, Marea K, El-Saka MH. Beneficial impact of Nesfatin-1 on reproductive dysfunction induced by nicotine in male rats: Possible modulation of autophagy and pyroptosis signaling pathways. Physiol Int 2021; 108:185-201. [PMID: 34166222 DOI: 10.1556/2060.2021.00176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 03/30/2021] [Indexed: 11/19/2022]
Abstract
This study was conducted to explore the beneficial impact of nesfatin-1 on reproductive dysfunction induced by nicotine (NT) in male rats with possible modulation of autophagy and pyroptosis signaling pathways. This research was performed on 40 Wistar male rats. They were distributed into four groups: control, normal+nesfatin-1, NT, and NT+nesfatin-1. At the end of the experimental period, the serum was separated for assay of testosterone, FSH and LH. Also, sperm parameters were determined. Histopathological examination of testicular tissue and immunohistochemical analysis was done for mammalian target of rapamycin, AMP-activated protein kinase, and mitogen-activated protein kinases including phosphorylated extracellular signal regulated kinase and phosphorylated cJun N-terminal kinase. Relative gene expression was determined for testicular nucleotide oligomerization domain (NOD)-like receptors proteins and Caspase-1, and autophagy markers including microtubule-associated protein 1 light chain 3 alpha and Beclin-1. Also, the following testicular parameters were assayed: 3β-hydroxysteroid dehydrogenase, 17β-hydroxysteroid dehydrogenase, malondialdehyde, superoxide dismutase activity, catalase, glucose-6 phosphate dehydrogenase, reactive oxygen species, caspase-3 activity, IL-1β, IL-18, mitochondrial transmembrane potential and Complex-I activity. The results revealed that the normal+nesfatin-1 group showed insignificant changes as compared to the control group. Meanwhile, the NT group exhibited prominent reproductive dysfunction in male rats. On the other hand, in the NT+nesfatin-1 group nesfatin-1 notably attenuated this reproductive dysfunction as evidenced by improvement of hormonal assay, sperm parameters, histopathological picture, immunohistochemical evaluation and real time relative gene expressions. In conclusion: Nesfatin-1 alleviated the impairment of male reproductive functions induced by NT via enhancement of autophagy pathways, suppression of pyroptosis, apoptosis, mitochondrial dysfunction and ROS production. Thus nesfatin-1 may offer a novel protective or therapeutic access for treating male infertility.
Collapse
Affiliation(s)
- N M Madi
- 1Department of Physiology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - R E Abo El Gheit
- 1Department of Physiology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - R A Barhoma
- 1Department of Physiology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - A El Saadany
- 2Department of Pharmacology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - G M Alghazaly
- 3Department of Internal Medicine, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - K Marea
- 4Department of Pathology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - M H El-Saka
- 1Department of Physiology, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
213
|
Zhong C, Wang R, Hua M, Zhang C, Han F, Xu M, Yang X, Li G, Hu X, Sun T, Ji C, Ma D. NLRP3 Inflammasome Promotes the Progression of Acute Myeloid Leukemia via IL-1β Pathway. Front Immunol 2021; 12:661939. [PMID: 34211462 PMCID: PMC8239362 DOI: 10.3389/fimmu.2021.661939] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 05/17/2021] [Indexed: 01/18/2023] Open
Abstract
NLRP3 inflammasome has been reported to be associated with the pathogenesis of multiple solid tumors. However, the role of NLRP3 inflammasome in acute myeloid leukemia (AML) remains unclear. We showed that NLRP3 inflammasome is over-expressed and highly activated in AML bone marrow leukemia cells, which is correlated with poor prognosis. The activation of NLRP3 inflammasome in AML cells promotes leukemia cells proliferation, inhibits apoptosis and increases resistance to chemotherapy, while inactivation of NLRP3 by caspase-1 or NF-κB inhibitor shows leukemia-suppressing effects. Bayesian networks analysis and cell co-culture tests further suggest that NLRP3 inflammasome acts through IL-1β but not IL-18 in AML. Knocking down endogenous IL-1β or anti-IL-1β antibody inhibits leukemia cells whereas IL-1β cytokine enhances leukemia proliferation. In AML murine model, up-regulation of NLRP3 increases the leukemia burden in bone marrow, spleen and liver, and shortens the survival time; furthermore, knocking out NLRP3 inhibits leukemia progression. Collectively, all these evidences demonstrate that NLRP3 inflammasome promotes AML progression in an IL-1β dependent manner, and targeting NLRP3 inflammasome may provide a novel therapeutic option for AML.
Collapse
Affiliation(s)
- Chaoqing Zhong
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China.,Department of Hematology, Shandong Yantai Mountain Hospital, Yantai, China
| | - Ruiqing Wang
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Mingqiang Hua
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China.,Department of Emergency, Qilu Hospital of Shandong University, Jinan, China
| | - Chen Zhang
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Fengjiao Han
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Miao Xu
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Xinyu Yang
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Guosheng Li
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Xiang Hu
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Tao Sun
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Chunyan Ji
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Daoxin Ma
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
214
|
Gong Y, Liu Y, Wang T, Li Z, Gao L, Chen H, Shu Y, Li Y, Xu H, Zhou Z, Dai L. Age-Associated Proteomic Signatures and Potential Clinically Actionable Targets of Colorectal Cancer. Mol Cell Proteomics 2021; 20:100115. [PMID: 34129943 PMCID: PMC8441843 DOI: 10.1016/j.mcpro.2021.100115] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 05/04/2021] [Accepted: 06/08/2021] [Indexed: 02/06/2023] Open
Abstract
The occurrence and prevalence of colorectal cancer (CRC) is closely associated with age. More than 90% of patients with CRC are diagnosed after 50 years of age. However, CRC incidence of young individuals has been increasing since 1990s, whereas the overall CRC frequency is declining. Distinct overall survival rates between young and aged patients with CRC have been established. Tremendous efforts have been made to clarify the underlying mechanisms of age-dependent clinical differences, but it still remains elusive. Here, we performed proteomic profiling of 50 patients with CRC and revealed proteomic signatures of CRC across age groups. Gene set enrichment analysis showed that distinct age-dependent clinical outcomes might mainly attribute to varied MYC targets V1/V2, E2F targets and G2M checkpoint gene sets, which were associated with cancer cell proliferation, cell apoptosis, tumor growth, and tumor metastasis. Multiple linear regression analysis revealed a large number of functional proteins, such as NOP2, CSE1L, NHP2, NOC2L and CDK1, with adjusted expression significantly correlated with age (p < 0.05). Among them, NHP2 is a core component of the telomerase complex associated with age. High NHP2 expression predicted poor overall survival, with a more significant correlation in aged patients with CRC. Knockdown of NHP2 significantly suppressed cancer cell proliferation. In addition, we revealed some age-related potential clinically actionable targets, such as PSEN1, TSPO, and CDK1, which might be more suitable for patients with late-onset CRC. Collectively, this study identifies age-associated proteomic signatures and potential therapeutic targets of CRC and may help make a precise decision on CRC treatment. The proteomic signatures of early-onset CRC are disclosed. Alterations of some proteins between cancerous and normal tissues are age-correlated. NHP2, overexpressed in tumors especially in aged patients, predicts poor prognosis. Potential age-dependent druggable targets and their inhibitors are summarized.
Collapse
Affiliation(s)
- Yanqiu Gong
- Department of Gastrointestinal Surgery, National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Yu Liu
- Department of Gastrointestinal Surgery, National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Tian Wang
- Life Science Mass Spectrometry Service Department, Thermo Fisher Scientific (China) Co, Chengdu, China
| | - Zhigui Li
- Department of Gastrointestinal Surgery, National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Li Gao
- Department of Gastrointestinal Surgery, National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Haining Chen
- Department of Gastrointestinal Surgery, National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Yang Shu
- Department of Gastrointestinal Surgery, National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Yuan Li
- Department of Gastrointestinal Surgery, National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Heng Xu
- Department of Gastrointestinal Surgery, National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Zongguang Zhou
- Department of Gastrointestinal Surgery, National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, China.
| | - Lunzhi Dai
- Department of Gastrointestinal Surgery, National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, China.
| |
Collapse
|
215
|
Quagliariello V, Berretta M, Buccolo S, Iovine M, Paccone A, Cavalcanti E, Taibi R, Montopoli M, Botti G, Maurea N. Polydatin Reduces Cardiotoxicity and Enhances the Anticancer Effects of Sunitinib by Decreasing Pro-Oxidative Stress, Pro-Inflammatory Cytokines, and NLRP3 Inflammasome Expression. Front Oncol 2021; 11:680758. [PMID: 34178667 PMCID: PMC8226180 DOI: 10.3389/fonc.2021.680758] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/21/2021] [Indexed: 01/18/2023] Open
Abstract
Renal cell carcinoma (RCC) represents the main renal tumors and are highly metastatic. Sunitinib, a recently-approved, multi-targeted Tyrosine Kinases Inhibitor (TKi), prolongs survival in patients with metastatic renal cell carcinoma and gastrointestinal stromal tumors, however a dose related cardiotoxicity was well described. Polydatin (3,4',5-trihydroxystilbene-3-β-d-glucoside) is a monocrystalline compound isolated from Polygonum cuspidatum with consolidated anti-oxidant and anti-inflammatory properties, however no studies investigated on its putative cardioprotective and chemosensitizing properties during incubation with sunitinib. We investigated on the effects of polydatin on the oxidative stress, NLRP3 inflammasome and Myd88 expression, highlighting on the production of cytokines and chemokines (IL-1β, IL-6, IL-8, CXCL-12 and TGF-β) during treatment with sunitinib. Exposure of cardiomyocytes and cardiomyoblasts (AC-16 and H9C2 cell lines) and human renal adenocarcinoma cells (769-P and A498) to polydatin combined to plasma-relevant concentrations of sunitinib reduces significantly iROS, MDA and LTB4 compared to only sunitinib-treated cells (P<0.001). In renal cancer cells and cardiomyocytes polydatin reduces expression of pro-inflammatory cytokines and chemokines involved in myocardial damages and chemoresistance and down-regulates the signaling pathway of NLRP3 inflammasome, MyD88 and NF-κB. Data of the present study, although in vitro, indicate that polydatin, besides reducing oxidative stress, reduces key chemokines involved in cancer cell survival, chemoresistance and cardiac damages of sunitinib through downregulation of NLRP3-MyD88 pathway, applying as a potential nutraceutical agent in preclinical studies of preventive cardio-oncology.
Collapse
Affiliation(s)
- Vincenzo Quagliariello
- Division of Cardiology, Istituto Nazionale Tumori –IRCCS- Fondazione G. Pascale, Napoli, Italy
| | - Massimiliano Berretta
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Simona Buccolo
- Division of Cardiology, Istituto Nazionale Tumori –IRCCS- Fondazione G. Pascale, Napoli, Italy
| | - Martina Iovine
- Division of Cardiology, Istituto Nazionale Tumori –IRCCS- Fondazione G. Pascale, Napoli, Italy
| | - Andrea Paccone
- Division of Cardiology, Istituto Nazionale Tumori –IRCCS- Fondazione G. Pascale, Napoli, Italy
| | - Ernesta Cavalcanti
- Laboratory Medicine Unit, Istituto Nazionale Tumori- IRCCS-Fondazione G. Pascale, Napoli, Italy
| | - Rosaria Taibi
- Department of Pharmacological Sciences, Gruppo Oncologico Ricercatori Italiani, GORI, Pordenone, Italy
| | - Monica Montopoli
- Department of Pharmaceutical and Pharmacological Sciences, Università degli Studi di Padova, Padova, Italy
| | - Gerardo Botti
- Scientific Direction, Istituto Nazionale Tumori- IRCCS- Fondazione G. Pascale, Napoli, Italy
| | - Nicola Maurea
- Division of Cardiology, Istituto Nazionale Tumori –IRCCS- Fondazione G. Pascale, Napoli, Italy
| |
Collapse
|
216
|
Bao G, Xu R, Wang X, Ji J, Wang L, Li W, Zhang Q, Huang B, Chen A, Zhang D, Kong B, Yang Q, Yuan C, Wang X, Wang J, Li X. Identification of lncRNA Signature Associated With Pan-Cancer Prognosis. IEEE J Biomed Health Inform 2021; 25:2317-2328. [PMID: 32991297 DOI: 10.1109/jbhi.2020.3027680] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Long noncoding RNAs (lncRNAs) have emerged as potential prognostic markers in various human cancers as they participate in many malignant behaviors. However, the value of lncRNAs as prognostic markers among diverse human cancers is still under investigation, and a systematic signature based on these transcripts that related to pan-cancer prognosis has yet to be reported. In this study, we proposed a framework to incorporate statistical power, biological rationale, and machine learning models for pan-cancer prognosis analysis. The framework identified a 5-lncRNA signature (ENSG00000206567, PCAT29, ENSG00000257989, LOC388282, and LINC00339) from TCGA training studies (n = 1,878). The identified lncRNAs are significantly associated (all P ≤ 1.48E-11) with overall survival (OS) of the TCGA cohort (n = 4,231). The signature stratified the cohort into low- and high-risk groups with significantly distinct survival outcomes (median OS of 9.84 years versus 4.37 years, log-rank P = 1.48E-38) and achieved a time-dependent ROC/AUC of 0.66 at 5 years. After routine clinical factors involved, the signature demonstrated better performance for long-term prognostic estimation (AUC of 0.72). Moreover, the signature was further evaluated on two independent external cohorts (TARGET, n = 1,122; CPTAC, n = 391; National Cancer Institute) which yielded similar prognostic values (AUC of 0.60 and 0.75; log-rank P = 8.6E-09 and P = 2.7E-06). An indexing system was developed to map the 5-lncRNA signature to prognoses of pan-cancer patients. In silico functional analysis indicated that the lncRNAs are associated with common biological processes driving human cancers. The five lncRNAs, especially ENSG00000206567, ENSG00000257989 and LOC388282 that never reported before, may serve as viable molecular targets common among diverse cancers.
Collapse
|
217
|
Fourie C, Shridas P, Davis T, de Villiers WJ, Engelbrecht AM. Serum amyloid A and inflammasome activation: A link to breast cancer progression? Cytokine Growth Factor Rev 2021; 59:62-70. [DOI: 10.1016/j.cytogfr.2020.10.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 10/16/2020] [Accepted: 10/20/2020] [Indexed: 12/13/2022]
|
218
|
Chao-Yang G, Peng C, Hai-Hong Z. Roles of NLRP3 inflammasome in intervertebral disc degeneration. Osteoarthritis Cartilage 2021; 29:793-801. [PMID: 33609693 DOI: 10.1016/j.joca.2021.02.204] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/21/2020] [Accepted: 02/08/2021] [Indexed: 02/02/2023]
Abstract
Intervertebral disc degeneration (IVDD) is one of the leading causes of low back pain and one of the most common health problems in the world. The nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing-3 (NLRP3) inflammasome, as a pattern recognition receptor, has been shown to be associated with the pathological processes of many diseases in recent years. With the exploration of the mechanism of IVDD, recent studies have shown that activation of the NLRP3 inflammasome is associated with intervertebral disc (IVD) inflammation, pyroptosis, extracellular matrix degradation and apoptosis of IVD cells. In this review, we summarize the structural characteristics of NLRP3 inflammasome and the activation signalling mechanisms. We also describe the role of the NLRP3 inflammasome in the pathological process of IVDD and the application of the targeting the NLRP3 inflammasome in IVDD treatment.
Collapse
Affiliation(s)
- G Chao-Yang
- Lanzhou University Second Hospital, 82 Cuiying Men, Lanzhou, 730000, PR China; Orthopaedics Key Laboratory of Gansu Province, Lanzhou, 730000, PR China
| | - C Peng
- Lanzhou University Second Hospital, 82 Cuiying Men, Lanzhou, 730000, PR China; Orthopaedics Key Laboratory of Gansu Province, Lanzhou, 730000, PR China
| | - Z Hai-Hong
- Lanzhou University Second Hospital, 82 Cuiying Men, Lanzhou, 730000, PR China.
| |
Collapse
|
219
|
Dettorre GM, Patel M, Gennari A, Pentheroudakis G, Romano E, Cortellini A, Pinato DJ. The systemic pro-inflammatory response: targeting the dangerous liaison between COVID-19 and cancer. ESMO Open 2021; 6:100123. [PMID: 33932622 PMCID: PMC8026271 DOI: 10.1016/j.esmoop.2021.100123] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 02/06/2023] Open
Abstract
Inflammation is an established driver of severe SARS-CoV-2 infection and a mechanism linked to the increased susceptibility to fatal COVID-19 demonstrated by patients with cancer. As patients with cancer exhibit a higher level of inflammation compared with the general patient population, patients with cancer and COVID-19 may uniquely benefit from strategies targeted at overcoming the unrestrained pro-inflammatory response. Targeted and non-targeted anti-inflammatory therapies may prevent end-organ damage in SARS-CoV-2-infected patients with cancer and decrease mortality. Here, we review the clinical role of selective inhibition of pro-inflammatory interleukins, tyrosine kinase modulation, anti-tumor necrosis factor agents, and other non-targeted approaches including corticosteroids in their roles as disease-modulating agents in patients with COVID-19 and cancer. Investigation of these therapeutics in this highly vulnerable patient group is posited to facilitate the development of tailored therapeutics for this patient population, aiding the transition of systemic inflammation from a prognostic domain to a source of therapeutic targets.
Collapse
Affiliation(s)
- G M Dettorre
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London, UK
| | - M Patel
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London, UK
| | - A Gennari
- Division of Oncology, Department of Translational Medicine, University of Piemonte Orientale and Maggiore della Carità Hospital, Novara, Italy
| | - G Pentheroudakis
- Department of Medical Oncology, University of Ioannina, Ioannina, Greece; Chief Medical Officer, European Society for Medical Oncology, Lugano, Switzerland
| | - E Romano
- Department of Medical Oncology, Center for Cancer Immunotherapy, Institut Curie, Paris, France
| | - A Cortellini
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London, UK; Department of Biotechnology and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy.
| | - D J Pinato
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London, UK; Division of Oncology, Department of Translational Medicine, University of Piemonte Orientale and Maggiore della Carità Hospital, Novara, Italy.
| |
Collapse
|
220
|
Bai R, Lang Y, Shao J, Deng Y, Refuhati R, Cui L. The Role of NLRP3 Inflammasome in Cerebrovascular Diseases Pathology and Possible Therapeutic Targets. ASN Neuro 2021; 13:17590914211018100. [PMID: 34053242 PMCID: PMC8168029 DOI: 10.1177/17590914211018100] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cerebrovascular diseases are pathological conditions involving impaired blood flow in the brain, primarily including ischaemic stroke, intracranial haemorrhage, and subarachnoid haemorrhage. The nucleotide-binding and oligomerisation (NOD) domain-like receptor (NLR) family pyrin domain (PYD)-containing 3 (NLRP3) inflammasome is a protein complex and a vital component of the immune system. Emerging evidence has indicated that the NLRP3 inflammasome plays an important role in cerebrovascular diseases. The function of the NLRP3 inflammasome in the pathogenesis of cerebrovascular diseases remains an interesting field of research. In this review, we first summarised the pathological mechanism of cerebrovascular diseases and the pathological mechanism of the NLRP3 inflammasome in aggravating atherosclerosis and cerebrovascular diseases. Second, we outlined signalling pathways through which the NLRP3 inflammasome participates in aggravating or mitigating cerebrovascular diseases. Reactive oxygen species (ROS)/nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), ROS/thioredoxin-interacting protein (TXNIP) and purinergic receptor-7 (P2X7R) signalling pathways can activate the NLRP3 inflammasome; activation of the NLRP3 inflammasome can aggravate cerebrovascular diseases by mediating apoptosis and pyroptosis. Autophagy/mitochondrial autophagy, nuclear factor E2-related factor-2 (Nrf2), interferon (IFN)-β, sirtuin (SIRT), and phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) reportedly alleviate cerebrovascular diseases by inhibiting NLRP3 inflammasome activation. Finally, we explored specific inhibitors of the NLRP3 inflammasome based on the two-step activation of the NLRP3 inflammasome, which can be developed as new drugs to treat cerebrovascular diseases.
Collapse
Affiliation(s)
- Rongrong Bai
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Yue Lang
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Jie Shao
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Yu Deng
- Department of Hepatopancreatobiliary Surgery, The First Hospital of Jilin University, Changchun, China
| | - Reyisha Refuhati
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Li Cui
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
221
|
Natriuretic Peptides Regulate Prostate Cells Inflammatory Behavior: Potential Novel Anticancer Agents for Prostate Cancer. Biomolecules 2021; 11:biom11060794. [PMID: 34070682 PMCID: PMC8228623 DOI: 10.3390/biom11060794] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/18/2021] [Accepted: 05/24/2021] [Indexed: 02/05/2023] Open
Abstract
Inflammation, by inducing a tumor-promoting microenvironment, is a hallmark for prostate cancer (PCa) progression. NOD-like receptor protein 3 (NLRP3)-inflammasome activation, interleukin-1β (IL-1β) secretion, and cancer cell-released extracellular vesicles (EVs) contribute to the establishment of tumor microenvironment. We have shown that PC3-derived EVs (PC3-EVs) activate inflammasome cascade in non-cancerous PNT2 cells. It is known that the endogenous biomolecules and Natriuretic Peptides (NPs), such as ANP and BNP, inhibit inflammasome activation in immune cells. Here we investigated whether ANP and BNP modify PCa inflammatory phenotype in vitro. By using PNT2, LNCaP, and PC3 cell lines, which model different PCa progression stages, we analyzed inflammasome activation and the related pathways by Western blot and IL-1β secretion by ELISA. We found that tumor progression is characterized by constitutive inflammasome activation, increased IL-1β secretion, and reduced endogenous NPs expression. The administration of exogenous ANP and BNP, via p38-MAPK or ERK1/2-MAPK, by inducing NLRP3 phosphorylation, counteract inflammasome activation and IL-1β maturation in PC3 and PC3-EVs-treated PNT2 cells, respectively. Our results demonstrate that NPs, by interfering with cell-specific signaling pathways, exert pleiotropic anti-inflammatory effects converging toward inflammasome phosphorylation and suggest that NPs can be included in a drug repurposing process for PCa.
Collapse
|
222
|
Kuc-Ciepluch D, Ciepluch K, Arabski M. Gasdermin family proteins as a permeabilization factor
of cell membrane in pyroptosis process. POSTEP HIG MED DOSW 2021. [DOI: 10.5604/01.3001.0014.8985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The type of cell death, i.e. apoptosis, autophagy, necrosis or pyroptosis, depends on the inducing
factor and the phase of the cell cycle. The main role in immunological response to microorganisms
is played by a process called pyroptosis. Pyroptosis induces various types of inflammatory
factors in response to molecular patterns associated with pathogens, e.g., bacterial lipopolysaccharide
in the canonical or non-canonical pathway depending on the type of caspases involved.
In pyroptosis, the gasdermin D protein belonging to the gasdermin protein family (A, B, C, D, E
and DFNB59) plays an important role, which is characterized by specific tissue gene expression
mainly in epithelial cells, skin and the digestive system and is responsible for regulating the proliferation
and differentiation of cells and is responsible for inhibiting or developing cancers in
various organs. The GSDM family is responsible for the formation of pores in the cell membrane,
enabling the secretion of proinflammatory cytokines (IL-1β and IL-18) involved in initiating inflammatory
response pathways by recruiting and activating immune cells at the site of infection.
The gasdermin D protein plays an essential role in the non-canonical pyroptosis process, whose
N-terminal forming pores in the cell membrane leads to edema, osmotic lysis and, consequently,
to the death of the infected cell.
Collapse
Affiliation(s)
- Dorota Kuc-Ciepluch
- Zakład Biologii Medycznej, Instytut Biologii, Uniwersytet Jana Kochanowskiego w Kielcach
| | - Karol Ciepluch
- Zakład Biologii Medycznej, Instytut Biologii, Uniwersytet Jana Kochanowskiego w Kielcach
| | - Michał Arabski
- Zakład Biologii Medycznej, Instytut Biologii, Uniwersytet Jana Kochanowskiego w Kielcach
| |
Collapse
|
223
|
Targeting the NLRP3 Inflammasome as a New Therapeutic Option for Overcoming Cancer. Cancers (Basel) 2021; 13:cancers13102297. [PMID: 34064909 PMCID: PMC8151587 DOI: 10.3390/cancers13102297] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 02/06/2023] Open
Abstract
Inflammasomes are multiprotein complexes that regulate the maturation and secretion of the proinflammatory cytokines interleukin-1beta (IL-1β and interleukin-18 (IL-18) in response to various intracellular stimuli. As a member of the inflammasomes family, NLRP3 is the most studied and best characterized inflammasome and has been shown to be involved in several pathologies. Recent findings have made it increasingly apparent that the NLRP3 inflammasome may also play a central role in tumorigenesis, and it has attracted attention as a potential anticancer therapy target. In this review, we discuss the role of NLRP3 in the development and progression of cancer, offering a detailed summary of NLRP3 inflammasome activation (and inhibition) in the pathogenesis of various forms of cancer. Moreover, we focus on the therapeutic potential of targeting NLRP3 for cancer therapy, emphasizing how understanding NLRP3 inflammasome-dependent cancer mechanisms might guide the development of new drugs that target the inflammatory response of tumor-associated cells.
Collapse
|
224
|
Huang X, Gan H, Tan J, Wang T, Zhao J, Zhao Y. BRCC3 promotes activation of the NLRP6 inflammasome following cerebral ischemia/reperfusion (I/R) injury in rats. Neurosci Lett 2021; 756:135954. [PMID: 33979701 DOI: 10.1016/j.neulet.2021.135954] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/01/2021] [Accepted: 05/07/2021] [Indexed: 12/30/2022]
Abstract
NOD-like receptor family pyrin domain containing 6 (NLRP6), a novel member of the NLR family, has been confirmed to have an inflammasome-dependent proinflammatory effect in cerebral ischemia/reperfusion injury. NLRP6 assembles a multimeric inflammasome complex comprising the adaptor ASC and the effector pro-caspase-1 to mediate the activation of caspase-1. The molecular mechanism regulating activation of the NLRP6 inflammasome remains unclear. Previous studies have shown that BRCA1-BRCA2-containing complex subunit 3 (BRCC3), a JAMM domain-containing Zn2+ metalloprotease deubiquitinating enzyme, participates in a variety of cellular activities. In this study, we found that BRCC3 expression was increased in the middle cerebral artery occlusion (MCAO) model. BRCC3 siRNA could reduce nerve damage and inflammation. Interestingly, the result of co-immunoprecipitation showed that the interaction between BRCC3 and NLRP6 was enhanced after model, and the result of immunofluorescence showed that the co-localization of BRCC3 and NLRP6 was increased. At the same time, the expression of NLRP6, cleavated-caspase-1 and IL-1β was decreased after BRCC3 interference. These results illustrate a regulatory mechanism involving the BRCC3-NLRP6 pathway and highlight NLRP6 as a potential therapeutic target for inflammatory diseases.
Collapse
Affiliation(s)
- Xiaohuan Huang
- Department of Pathology, Chongqing Medical University, Chongqing, CQ, 400016, China; Department of Pathology, Chongqing Three Gorges Medical College, Wanzhou, WZ, 404120, China
| | - Hui Gan
- Department of Pathophysiology, Chongqing Medical University, Chongqing, CQ, 400016, China
| | - Junyi Tan
- Department of Pathophysiology, Chongqing Medical University, Chongqing, CQ, 400016, China
| | - Tingting Wang
- Department of Pathology, Chongqing Medical University, Chongqing, CQ, 400016, China
| | - Jing Zhao
- Department of Pathophysiology, Chongqing Medical University, Chongqing, CQ, 400016, China.
| | - Yong Zhao
- Department of Pathology, Chongqing Medical University, Chongqing, CQ, 400016, China.
| |
Collapse
|
225
|
Nadeem S, Chen Z, Wei M, Li F, Ling D. Nanomedicine-induced pyroptosis for cancer therapy. Nanomedicine (Lond) 2021; 16:1071-1074. [PMID: 33942673 DOI: 10.2217/nnm-2021-0063] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Sadia Nadeem
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Zheng Chen
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Min Wei
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Fangyuan Li
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.,Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Daishun Ling
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.,School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China.,Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.,Key Laboratory of Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
226
|
Mohseni-Moghaddam P, Roghani M, Khaleghzadeh-Ahangar H, Sadr SS, Sala C. A literature overview on epilepsy and inflammasome activation. Brain Res Bull 2021; 172:229-235. [PMID: 33964347 DOI: 10.1016/j.brainresbull.2021.05.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/29/2021] [Accepted: 05/01/2021] [Indexed: 12/15/2022]
Abstract
Epilepsy is one of the most prevalent serious brain disorders worldwide. Accumulating evidence has suggested that inflammation participates in the progression and pathogenesis of epilepsy. During inflammation, a cytosolic multimolecular complex called the "inflammasome" is activated, driving the innate immune response. This inflammatory pathway by sensing various pathogens and molecules from damaged cells and then activation of caspase-1 enzyme initiates inflammatory responses. Activated caspase-1 leads to the proteolytic cleavage of the pro-inflammatory cytokines, interleukin-1β (IL-1β) and interleukin-18 (IL-18), and also induction of an inflammatory programmed cell death termed pyroptosis. NLR family pyrin domain-containing 1 (NLRP1) and NLRP3 are the two best-characterized inflammasome members, and both basic and clinical research has reported their activation during epilepsy. This overview is intended to summarize the current literature concerning NLRP1 and NLRP3 inflammasome activation and epilepsy.
Collapse
Affiliation(s)
- Parvaneh Mohseni-Moghaddam
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran; Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mehrdad Roghani
- Neurophysiology Research Center, Shahed University, Tehran, Iran
| | - Hossein Khaleghzadeh-Ahangar
- Department of Physiology, School of Medicine, Babol University of Medical Sciences, Babol, Iran; Immunoregulation Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Seyed Shahabeddin Sadr
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran; Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Carlo Sala
- CNR Neuroscience Institute, Milan, Italy
| |
Collapse
|
227
|
Clayton SA, MacDonald L, Kurowska-Stolarska M, Clark AR. Mitochondria as Key Players in the Pathogenesis and Treatment of Rheumatoid Arthritis. Front Immunol 2021; 12:673916. [PMID: 33995417 PMCID: PMC8118696 DOI: 10.3389/fimmu.2021.673916] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/12/2021] [Indexed: 12/22/2022] Open
Abstract
Mitochondria are major energy-producing organelles that have central roles in cellular metabolism. They also act as important signalling hubs, and their dynamic regulation in response to stress signals helps to dictate the stress response of the cell. Rheumatoid arthritis is an inflammatory and autoimmune disease with high prevalence and complex aetiology. Mitochondrial activity affects differentiation, activation and survival of immune and non-immune cells that contribute to the pathogenesis of this disease. This review outlines what is known about the role of mitochondria in rheumatoid arthritis pathogenesis, and how current and future therapeutic strategies can function through modulation of mitochondrial activity. We also highlight areas of this topic that warrant further study. As producers of energy and of metabolites such as succinate and citrate, mitochondria help to shape the inflammatory phenotype of leukocytes during disease. Mitochondrial components can directly stimulate immune receptors by acting as damage-associated molecular patterns, which could represent an initiating factor for the development of sterile inflammation. Mitochondria are also an important source of intracellular reactive oxygen species, and facilitate the activation of the NLRP3 inflammasome, which produces cytokines linked to disease symptoms in rheumatoid arthritis. The fact that mitochondria contain their own genetic material renders them susceptible to mutation, which can propagate their dysfunction and immunostimulatory potential. Several drugs currently used for the treatment of rheumatoid arthritis regulate mitochondrial function either directly or indirectly. These actions contribute to their immunomodulatory functions, but can also lead to adverse effects. Metabolic and mitochondrial pathways are attractive targets for future anti-rheumatic drugs, however many questions still remain about the precise role of mitochondrial activity in different cell types in rheumatoid arthritis.
Collapse
Affiliation(s)
- Sally A Clayton
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom.,Research into Inflammatory Arthritis Centre Versus Arthritis (RACE), Birmingham, United Kingdom
| | - Lucy MacDonald
- Research into Inflammatory Arthritis Centre Versus Arthritis (RACE), Glasgow, United Kingdom.,Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Mariola Kurowska-Stolarska
- Research into Inflammatory Arthritis Centre Versus Arthritis (RACE), Glasgow, United Kingdom.,Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Andrew R Clark
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom.,Research into Inflammatory Arthritis Centre Versus Arthritis (RACE), Birmingham, United Kingdom
| |
Collapse
|
228
|
Moon SW, Son HJ, Mo HY, Yoo NJ, Lee SH. Somatic Mutation of NLRP Genes in Gastric and Colonic Cancers. Pathol Oncol Res 2021; 27:607385. [PMID: 34257569 PMCID: PMC8262223 DOI: 10.3389/pore.2021.607385] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 02/26/2021] [Indexed: 01/21/2023]
Abstract
Nucleotide-binding and leucine-rich repeat protein (NLRP) genes are involved in inflammasome formation that plays a role in inflammation/host defense and cell death. Both cell death and inflammation are crucial for cancer development, but the roles of NLRPs in cancer are partially known. In this study, we analyzed mononucleotide repeats in coding sequences of NLRP1, NLRP2, NLRP4 and NLRP9, and found 1, 1, 1 and 8 frameshift mutation (s) in gastric (GC) and colonic cancers (CRC), respectively. Five of the 32 high microsatellite instability (MSI-H) GCs (15.5%) and 6 of 113 MSI-H CRCs (5.5%) exhibited the frameshift mutations. There was no NLRP frameshift mutations in microsatellite stable (MSS) GCs and CRCs. We also discovered that 2 of 16 CRCs (12.5%) harbored intratumoral heterogeneity (ITH) of the NLRP9 frameshift mutations in one or more areas. In both GC and CRC with MSI-H, NLRP9 expression in NLRP9-mutated cases was significantly lower than that in NLRP9-non-mutated cases. Our data indicate that NLRP9 is altered at multiple levels (frameshift mutation, mutational ITH and loss of expression), which together could contribute to pathogenesis of MSI-H GC and CRC.
Collapse
Affiliation(s)
- Seong Won Moon
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Hyun Ji Son
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Ha Yoon Mo
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Nam Jin Yoo
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Sug Hyung Lee
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Department of Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| |
Collapse
|
229
|
An update on the regulatory mechanisms of NLRP3 inflammasome activation. Cell Mol Immunol 2021; 18:1141-1160. [PMID: 33850310 PMCID: PMC8093260 DOI: 10.1038/s41423-021-00670-3] [Citation(s) in RCA: 466] [Impact Index Per Article: 116.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/25/2021] [Indexed: 02/08/2023] Open
Abstract
The NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasome is a multiprotein complex involved in the release of mature interleukin-1β and triggering of pyroptosis, which is of paramount importance in a variety of physiological and pathological conditions. Over the past decade, considerable advances have been made in elucidating the molecular mechanisms underlying the priming/licensing (Signal 1) and assembly (Signal 2) involved in NLRP3 inflammasome activation. Recently, a number of studies have indicated that the priming/licensing step is regulated by complicated mechanisms at both the transcriptional and posttranslational levels. In this review, we discuss the current understanding of the mechanistic details of NLRP3 inflammasome activation with a particular emphasis on protein-protein interactions, posttranslational modifications, and spatiotemporal regulation of the NLRP3 inflammasome machinery. We also present a detailed summary of multiple positive and/or negative regulatory pathways providing upstream signals that culminate in NLRP3 inflammasome complex assembly. A better understanding of the molecular mechanisms underlying NLRP3 inflammasome activation will provide opportunities for the development of methods for the prevention and treatment of NLRP3 inflammasome-related diseases.
Collapse
|
230
|
Looi CK, Hii LW, Chung FFL, Mai CW, Lim WM, Leong CO. Roles of Inflammasomes in Epstein-Barr Virus-Associated Nasopharyngeal Cancer. Cancers (Basel) 2021; 13:1786. [PMID: 33918087 PMCID: PMC8069343 DOI: 10.3390/cancers13081786] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/08/2021] [Accepted: 03/08/2021] [Indexed: 02/05/2023] Open
Abstract
Epstein-Barr virus (EBV) infection is recognised as one of the causative agents in most nasopharyngeal carcinoma (NPC) cases. Expression of EBV viral antigens can induce host's antiviral immune response by activating the inflammasomes to produce pro-inflammatory cytokines, such as interleukin-1β (IL-1β) and IL-18. These cytokines are known to be detrimental to a wide range of virus-infected cells, in which they can activate an inflammatory cell death program, called pyroptosis. However, aberrant inflammasome activation and production of its downstream cytokines lead to chronic inflammation that may contribute to various diseases, including NPC. In this review, we summarise the roles of inflammasomes during viral infection, how EBV evades inflammasome-mediated immune response, and progress into tumourigenesis. The contrasting roles of inflammasomes in cancer, as well as the current therapeutic approaches used in targeting inflammasomes, are also discussed in this review. While the inflammasomes appear to have dual roles in carcinogenesis, there are still many questions that remain unanswered. In particular, the exact molecular mechanism responsible for the regulation of the inflammasomes during carcinogenesis of EBV-associated NPC has not been explored thoroughly. Furthermore, the current practical application of inflammasome inhibitors is limited to specific tumour types, hence, further studies are warranted to discover the potential of targeting the inflammasomes for the treatment of NPC.
Collapse
Affiliation(s)
- Chin King Looi
- School of Postgraduate Studies, International Medical University, Kuala Lumpur 57000, Malaysia; (C.K.L.); (L.-W.H.)
- Center for Cancer and Stem Cell Research, Institute for Research, Development and Innovation (IRDI), International Medical University, Kuala Lumpur 57000, Malaysia; (C.-W.M.); (W.-M.L.)
| | - Ling-Wei Hii
- School of Postgraduate Studies, International Medical University, Kuala Lumpur 57000, Malaysia; (C.K.L.); (L.-W.H.)
- Center for Cancer and Stem Cell Research, Institute for Research, Development and Innovation (IRDI), International Medical University, Kuala Lumpur 57000, Malaysia; (C.-W.M.); (W.-M.L.)
- School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Felicia Fei-Lei Chung
- Mechanisms of Carcinogenesis Section (MCA), Epigenetics Group (EGE), International Agency for Research on Cancer World Health Organisation, CEDEX 08 Lyon, France;
| | - Chun-Wai Mai
- Center for Cancer and Stem Cell Research, Institute for Research, Development and Innovation (IRDI), International Medical University, Kuala Lumpur 57000, Malaysia; (C.-W.M.); (W.-M.L.)
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Wei-Meng Lim
- Center for Cancer and Stem Cell Research, Institute for Research, Development and Innovation (IRDI), International Medical University, Kuala Lumpur 57000, Malaysia; (C.-W.M.); (W.-M.L.)
- School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Chee-Onn Leong
- Center for Cancer and Stem Cell Research, Institute for Research, Development and Innovation (IRDI), International Medical University, Kuala Lumpur 57000, Malaysia; (C.-W.M.); (W.-M.L.)
- School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| |
Collapse
|
231
|
Kulkarni A, Bowers LW. The role of immune dysfunction in obesity-associated cancer risk, progression, and metastasis. Cell Mol Life Sci 2021; 78:3423-3442. [PMID: 33464384 PMCID: PMC11073382 DOI: 10.1007/s00018-020-03752-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/10/2020] [Accepted: 12/28/2020] [Indexed: 02/07/2023]
Abstract
Obesity has been linked to an increased risk of and a worse prognosis for several types of cancer. A number of interrelated mediators contribute to obesity's pro-tumor effects, including chronic adipose inflammation and other perturbations of immune cell development and function. Here, we review studies examining the impact of obesity-induced immune dysfunction on cancer risk and progression. While the role of adipose tissue inflammation in obesity-associated cancer risk has been well characterized, the effects of obesity on immune cell infiltration and activity within the tumor microenvironment are not well studied. In this review, we aim to highlight the impact of both adipose-mediated inflammatory signaling and intratumoral immunosuppressive signaling in obesity-induced cancer risk, progression, and metastasis.
Collapse
Affiliation(s)
- Aneesha Kulkarni
- Department of Nutrition Science, College of Health and Human Sciences, Purdue University, West Lafayette, IN, 47906, USA
| | - Laura W Bowers
- Department of Nutrition Science, College of Health and Human Sciences, Purdue University, West Lafayette, IN, 47906, USA.
| |
Collapse
|
232
|
Lin HC, Chen YJ, Wei YH, Lin HA, Chen CC, Liu TF, Hsieh YL, Huang KY, Lin KH, Wang HH, Chen LC. Lactic Acid Fermentation Is Required for NLRP3 Inflammasome Activation. Front Immunol 2021; 12:630380. [PMID: 33854503 PMCID: PMC8039150 DOI: 10.3389/fimmu.2021.630380] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/27/2021] [Indexed: 01/06/2023] Open
Abstract
Activation of the Nod-like receptor 3 (NLRP3) inflammasome is important for activation of innate immune responses, but improper and excessive activation can cause inflammatory disease. We previously showed that glycolysis, a metabolic pathway that converts glucose into pyruvate, is essential for NLRP3 inflammasome activation in macrophages. Here, we investigated the role of metabolic pathways downstream glycolysis - lactic acid fermentation and pyruvate oxidation-in activation of the NLRP3 inflammasome. Using pharmacological or genetic approaches, we show that decreasing lactic acid fermentation by inhibiting lactate dehydrogenase reduced caspase-1 activation and IL-1β maturation in response to various NLRP3 inflammasome agonists such as nigericin, ATP, monosodium urate (MSU) crystals, or alum, indicating that lactic acid fermentation is required for NLRP3 inflammasome activation. Inhibition of lactate dehydrogenase with GSK2837808A reduced lactate production and activity of the NLRP3 inflammasome regulator, phosphorylated protein kinase R (PKR), but did not reduce the common trigger of NLRP3 inflammasome, potassium efflux, or reactive oxygen species (ROS) production. By contrast, decreasing the activity of pyruvate oxidation by depletion of either mitochondrial pyruvate carrier 2 (MPC2) or pyruvate dehydrogenase E1 subunit alpha 1 (PDHA1) enhanced NLRP3 inflammasome activation, suggesting that inhibition of mitochondrial pyruvate transport enhanced lactic acid fermentation. Moreover, treatment with GSK2837808A reduced MSU-mediated peritonitis in mice, a disease model used for studying the consequences of NLRP3 inflammasome activation. Our results suggest that lactic acid fermentation is important for NLRP3 inflammasome activation, while pyruvate oxidation is not. Thus, reprograming pyruvate metabolism in mitochondria and in the cytoplasm should be considered as a novel strategy for the treatment of NLRP3 inflammasome-associated diseases.
Collapse
Affiliation(s)
- Hsin-Chung Lin
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan.,Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, Taipei, Taiwan
| | - Yu-Jen Chen
- Department of Radiation Oncology, MacKay Memorial Hospital, New Taipei City, Taiwan.,Department of Medical Research, MacKay Memorial Hospital, New Taipei City, Taiwan.,Department of Nursing, MacKay Junior College of Medicine, Nursing, and Management, Taipei, Taiwan
| | - Yau-Huei Wei
- Center for Mitochondrial Medicine and Free Radical Research, Changhua Christian Hospital, Changhua, Taiwan
| | - Hsin-An Lin
- Department of Medicine, Tri-Service General Hospital SongShan Branch, Taipei, Taiwan
| | - Chien-Chou Chen
- Department of Medicine, Tri-Service General Hospital SongShan Branch, Taipei, Taiwan
| | - Tze-Fan Liu
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| | - Yi-Lin Hsieh
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| | - Kuo-Yang Huang
- Graduate Institute of Pathology and Parasitology, National Defense Medical Center, Taipei, Taiwan
| | - Kuan-Hung Lin
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei City, Taiwan
| | - Hsueh-Hsiao Wang
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| | - Lih-Chyang Chen
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| |
Collapse
|
233
|
Ju X, Yang Z, Zhang H, Wang Q. Role of pyroptosis in cancer cells and clinical applications. Biochimie 2021; 185:78-86. [PMID: 33746064 DOI: 10.1016/j.biochi.2021.03.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/01/2021] [Accepted: 03/09/2021] [Indexed: 02/06/2023]
Abstract
Chemotherapy drugs usually inhibit tumor cell growth through the apoptosis pathway. However, tumor cells become resistant to chemotherapy drugs by evading apoptosis. It is necessary to find new ways to inhibit tumor growth through other types of death. Pyroptosis is a recently identified inflammatory cell death that plays an important role in a variety of diseases, including cancer. In this review, we will systematically review recent progress in the pyroptosis signaling pathway, the role of inflammasomes in cancer in the context of pyroptosis, the role of gasdermin proteins in cancer and the role of pyroptosis in tumor immunity. We will also discuss the application of the pyroptosis pathway in clinical studies. Finally, we hope to provide new strategies for pyroptosis in the clinic.
Collapse
Affiliation(s)
- Xiaoli Ju
- School of Medicine, Jiangsu University, Zhenjiang, China.
| | - Zhilong Yang
- Department of General Surgery, Nanjing Lishui District People's Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing, China.
| | - Heng Zhang
- Department of General Surgery, Nanjing Lishui District People's Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing, China.
| | - Qiang Wang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, PR China.
| |
Collapse
|
234
|
Ma YS, Xin R, Yang XL, Shi Y, Zhang DD, Wang HM, Wang PY, Liu JB, Chu KJ, Fu D. Paving the way for small-molecule drug discovery. Am J Transl Res 2021; 13:853-870. [PMID: 33841626 PMCID: PMC8014367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/18/2020] [Indexed: 06/12/2023]
Abstract
Small-molecule drugs are organic compounds affecting molecular pathways by targeting important proteins, which have a low molecular weight, making them penetrate cells easily. Small-molecule drugs can be developed from leads derived from rational drug design or isolated from natural resources. As commonly used medications, small-molecule drugs can be taken orally, which enter cells to act on intracellular targets. These characteristics make small-molecule drugs promising candidates for drug development, and they are increasingly favored in the pharmaceutical market. Despite the advancements in molecular genetics and effective new processes in drug development, the drugs currently used in clinical practice are inadequate due to their poor efficacy or severe side effects. Therefore, developing new safe and efficient drugs is a top priority for disease control and curing.
Collapse
Affiliation(s)
- Yu-Shui Ma
- National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and TechnologyChangsha 410004, Hunan, China
- Cancer Institute, Nantong Tumor HospitalNantong 226631, China
- Central Laboratory for Medical Research, Shanghai Tenth People’s Hospital, Tongji University School of MedicineShanghai 200072, China
| | - Rui Xin
- Central Laboratory for Medical Research, Shanghai Tenth People’s Hospital, Tongji University School of MedicineShanghai 200072, China
| | - Xiao-Li Yang
- Central Laboratory for Medical Research, Shanghai Tenth People’s Hospital, Tongji University School of MedicineShanghai 200072, China
| | - Yi Shi
- Cancer Institute, Nantong Tumor HospitalNantong 226631, China
| | - Dan-Dan Zhang
- Central Laboratory for Medical Research, Shanghai Tenth People’s Hospital, Tongji University School of MedicineShanghai 200072, China
| | - Hui-Min Wang
- Cancer Institute, Nantong Tumor HospitalNantong 226631, China
| | - Pei-Yao Wang
- Central Laboratory for Medical Research, Shanghai Tenth People’s Hospital, Tongji University School of MedicineShanghai 200072, China
| | - Ji-Bin Liu
- Cancer Institute, Nantong Tumor HospitalNantong 226631, China
| | - Kai-Jian Chu
- Department of Biliary Tract Surgery I, Third Affiliated Hospital of Second Military Medical UniversityShanghai 200438, China
| | - Da Fu
- Central Laboratory for Medical Research, Shanghai Tenth People’s Hospital, Tongji University School of MedicineShanghai 200072, China
| |
Collapse
|
235
|
Sabu V, Krishnan S, Peter J, Aswathy IS, Lal Preethi SS, Simon M, Radhakrishna GP, Helen A. Synergistic effect of Betulinic acid, Apigenin and Skimmianine (BASk) in high cholesterol diet rabbit: Involvement of CD36-TLR2 signaling pathway. Cytokine 2021; 142:155475. [PMID: 33667961 DOI: 10.1016/j.cyto.2021.155475] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 02/05/2021] [Accepted: 02/13/2021] [Indexed: 01/02/2023]
Abstract
BACKGROUND Progression of chronic inflammatory disease, atherosclerosis is a multifactorial process. Cluster of differentiation 36 (CD36) mediated downstream activation of Toll like receptor 2 (TLR2) and NLRP3 (Nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3) inflammasome signaling pathway actively participates during chronic inflammation. Nowadays, synergistic combinations of bioactive compounds attained priority in the field of drug discovery and development as therapeutic agents. An investigation regarding the anti-inflammatory potential of a novel drug formulation, BASk which is a combination of three bioactive compounds Betulinic acid (B):Apigenin (A):Skimmianine (Sk) remains the focus area of this research study. We also elucidate the molecular mechanism behind the therapeutic potential of BASk through CD36 mediated activation TLR2-NLRP3 signaling pathway. METHODS OxLDL induced hPBMCs used to screen out a suitable combination of BASk via MTT, COX, LOX, NOS and MPO assays. Hypercholesterolemia is induced in rabbits by supplementing with 1% cholesterol + 0.5% cholic acid and treated with BASk (2:2:1) (5 mg/Kg) and atorvastatin (10 mg/Kg) for 60 days. CD36, TLR2, NLRP3, NFκB, cytokines, endothelial damage were quantified by reverse transcription, real time PCR, ELISA, flow cytometry and histopathology. RESULTS hPBMCs pretreated with BASk at 2:2:1 ratio significantly decreased the activities of COX, 15-LOX, NOS and MPO on OxLDL induction than quercetin. Down regulation of CD36, TLR2, MyD88, TRAF6 by BASk further buttressed NLRP3 inflammasome activation mediated by the transcription factor NFκB. This is in correlation with the effect of BASk by balancing pro (IL-1β, IL-18) and anti-inflammatory (TGF-β) mediators in the aortic endothelial cells. CONCLUSION BASk exerted its anti-inflammatory potential by reducing pro-inflammatory mediators during cholesterol supplementation via down regulating CD36 mediated TLR2 - NLRP3 inflammasome cascade. This deciphers a synergistic combination named BASk (2:2:1) as a novel drug formulation against chronic inflammatory disease, atherosclerosis.
Collapse
Affiliation(s)
- Vidya Sabu
- Department of Biochemistry, Research Centre, University of Kerala, Kariavattom Campus, Thiruvananthapuram, 695581 Kerala, India
| | - Santhi Krishnan
- Department of Biochemistry, Research Centre, University of Kerala, Kariavattom Campus, Thiruvananthapuram, 695581 Kerala, India
| | - Jasmine Peter
- Department of Biochemistry, Research Centre, University of Kerala, Kariavattom Campus, Thiruvananthapuram, 695581 Kerala, India
| | - I S Aswathy
- Department of Biochemistry, Research Centre, University of Kerala, Kariavattom Campus, Thiruvananthapuram, 695581 Kerala, India
| | - S S Lal Preethi
- Department of Biochemistry, Research Centre, University of Kerala, Kariavattom Campus, Thiruvananthapuram, 695581 Kerala, India
| | - Monisha Simon
- Department of Biochemistry, Research Centre, University of Kerala, Kariavattom Campus, Thiruvananthapuram, 695581 Kerala, India
| | | | - A Helen
- Department of Biochemistry, Research Centre, University of Kerala, Kariavattom Campus, Thiruvananthapuram, 695581 Kerala, India.
| |
Collapse
|
236
|
Rohatgi A, Kirkwood JM. Beyond PD-1: The Next Frontier for Immunotherapy in Melanoma. Front Oncol 2021; 11:640314. [PMID: 33732652 PMCID: PMC7958874 DOI: 10.3389/fonc.2021.640314] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 01/07/2021] [Indexed: 12/14/2022] Open
Abstract
The advent of first and second-generation immune checkpoint blockade (ICI) has resulted in improved survival of patients with metastatic melanoma over the past decade. However, the majority of patients ultimately progress despite these treatments, which has served as an impetus to consider a range of subsequent therapies. Many of the next generation of immunotherapeutic agents focus on modifying the immune system to overcome resistance to checkpoint blockade. ICI resistance can be understood as primary, or acquired-where the latter is the most common scenario. While there are several postulated mechanisms by which resistance, particularly acquired resistance, occurs, the predominant escape mechanisms include T cell exhaustion, upregulation of alternative inhibitory checkpoint receptors, and alteration of the tumor microenvironment (TME) into a more suppressive, anti-inflammatory state. Therapeutic agents in development are designed to work by combating one or more of these resistance mechanisms. These strategies face the added challenge of minimizing immune-related toxicities, while improving antitumor efficacy. This review focuses upon the following categories of novel therapeutics: 1) alternative inhibitory receptor pathways; 2) damage- or pathogen-associated molecular patterns (DAMPs/PAMPs); and 3) immune cell signaling mediators. We present the current state of these therapies, including preclinical and clinical data available for these targets under development.
Collapse
Affiliation(s)
| | - John M. Kirkwood
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| |
Collapse
|
237
|
Liu N, Wu Y, Wen X, Li P, Lu F, Shang H. Chronic stress promotes acute myeloid leukemia progression through HMGB1/NLRP3/IL-1β signaling pathway. J Mol Med (Berl) 2021; 99:403-414. [PMID: 33409553 DOI: 10.1007/s00109-020-02011-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 11/08/2020] [Accepted: 11/18/2020] [Indexed: 12/18/2022]
Abstract
Acute myeloid leukemia (AML) is an aggressive hematologic malignancy with poor prognosis and overall survival. Clinical investigations show that chronic stress is commonly present in the course of AML and associated with adverse outcome. However, the underlying molecular mechanisms are elusive. In the present study, a chronic restraint stress mouse model was established to evaluate the effect of stress on AML. We found that mice under chronic stress exhibited significantly increased liver and spleen infiltration of leukemic cells and poorer overall survival. This was accompanied by elevated cellular NLR family pyrin domain containing 3 (NLRP3) and interleukin-1β (IL-1β) in the liver or bone marrow, and secreted IL-1β in the plasma, indicating the activation of inflammasomes under chronic restraint stress. High mobility group box 1 (HMGB1) expression was markedly increased in newly diagnosed AML patients, but reduced in complete remission AML patients. The expression level of HMGB1 was positively correlated with NLRP3 mRNA in AML patients. Knockdown of HMGB1 significantly decreased NLRP3 and IL-1β expression in AML cell lines, and secreted IL-1β in supernatant of AML cell culture, while HMGB1 stimulation caused contrary effects. These results implied that HMGB1 could be involved in the regulation of inflammasome activation in AML development. Mice model showed that chronic restraint stress-facilitated proliferation and infiltration of AML cells were largely abrogated by knocking down HMGB1. Knockdown of HMGB1 also ameliorated overall survival and remarkably neutralized NLRP3 and IL-1β expression under chronic restraint stress. These findings provide evidences that chronic stress promotes AML progression via HMGB1/NLRP3/IL-1β dependent mechanism, suggesting that HMGB1 is a potential therapeutic target for AML. KEY MESSAGES: • Chronic restraint stress promoted acute myeloid leukemia (AML) progression and mediated NLRP3 inflammasome activation in xenograft mice. • HMGB1 mediated NLRP3 inflammasome activation in AML cells. • Knockdown of HMGB1 inhibited AML progression under chronic stress in vivo.
Collapse
MESH Headings
- Animals
- Bone Marrow/metabolism
- Cell Line, Tumor
- Chronic Disease
- Disease Progression
- Female
- Gene Expression Regulation, Leukemic
- Gene Knockdown Techniques
- HMGB1 Protein/antagonists & inhibitors
- HMGB1 Protein/biosynthesis
- HMGB1 Protein/genetics
- HMGB1 Protein/physiology
- Heterografts
- Humans
- Inflammasomes/metabolism
- Inflammation
- Interleukin-1beta/biosynthesis
- Interleukin-1beta/genetics
- Interleukin-1beta/physiology
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/physiopathology
- Liver/metabolism
- Liver/pathology
- Mice, Inbred C57BL
- NLR Family, Pyrin Domain-Containing 3 Protein/biosynthesis
- NLR Family, Pyrin Domain-Containing 3 Protein/genetics
- NLR Family, Pyrin Domain-Containing 3 Protein/physiology
- Neoplasm Proteins/physiology
- RNA Interference
- Remission Induction
- Restraint, Physical
- Signal Transduction/physiology
- Spleen/metabolism
- Spleen/pathology
- Stress, Physiological
- Toll-Like Receptor 4/physiology
- Mice
Collapse
Affiliation(s)
- Na Liu
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Yifan Wu
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
- Xinhua Hospital Chongming Branch, Shanghai Jiaotong University School of Medicine, Shanghai, 202150, China
| | - Xin Wen
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Peng Li
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Fei Lu
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Hong Shang
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, 107 West Wenhua Road, Jinan, 250012, Shandong, China.
| |
Collapse
|
238
|
Jia M, Lv Y, Xu Y, Gong Z. A comparative analysis of NLRP3-related inflammatory mediators in synovial fluid in temporomandibular joint osteoarthritis and internal derangement. BMC Musculoskelet Disord 2021; 22:229. [PMID: 33637064 PMCID: PMC7913283 DOI: 10.1186/s12891-021-04092-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 02/17/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The nucleotide-binding oligomerization domain-like receptor pyrin domain containing 3 (NLRP3) inflammasome signaling pathway is a highlighted topic in the field of inflammation. However, there is little research on the relationship between the NLRP3 inflammasome pathway and temporomandibular joint osteoarthritis (TMJOA). The aim of this study was to examine the expression of inflammatory mediators related to the NLRP3 inflammasome in the synovial fluid of patients with condylar cartilage degeneration and verify the clinical effects of sodium hyaluronic acid (HA) treatment on TMJOA. METHODS Patients diagnosed with temporomandibular joint internal derangement (TMJID) without condylar defects and TMJOA with condylar defects were divided into two groups. There were thirty patients in each group, and inflammatory mediators related to the NLRP3 inflammasome, including interleukin-1 beta (IL-1β), IL-18, NLRP3, and cysteinyl aspartate specific proteinase 1 (CASP1), in synovial fluid were measured by enzyme-linked immunosorbent assay (ELISA). Eighteen patients in the TMJOA group were retested after two HA treatments to evaluate the therapeutic effects of HA. RESULTS IL-1β, IL-18, NLRP3 and CASP1 were all positive in the two groups, and TMJOA patients with condylar defects had higher expression of these molecules than TMJID patients (P < 0.05). IL-1β, IL-18, and NLRP3 were decreased after two HA treatments (P<0.05), but there was no significant difference in CASP1 after two HA injections (P = 0.549). CONCLUSIONS The NLRP3 inflammasome signaling pathway may be involved in condylar degeneration. HA could reduce some inflammatory molecules to alleviate inflammation.
Collapse
Affiliation(s)
- Mengying Jia
- Oncology Department of Oral and Maxillofacial Surgery of The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, Xin Jiang Province, China
- The Stomatology College of Xinjiang Medical University, Urumqi, 830054, Xin Jiang Province, China
| | - Yaoguang Lv
- Oncology Department of Oral and Maxillofacial Surgery of The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, Xin Jiang Province, China
- The Stomatology College of Xinjiang Medical University, Urumqi, 830054, Xin Jiang Province, China
| | - Yingjie Xu
- Oncology Department of Oral and Maxillofacial Surgery of The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, Xin Jiang Province, China
- The Stomatology College of Xinjiang Medical University, Urumqi, 830054, Xin Jiang Province, China
| | - Zhongcheng Gong
- Oncology Department of Oral and Maxillofacial Surgery of The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, Xin Jiang Province, China.
- The Stomatology College of Xinjiang Medical University, Urumqi, 830054, Xin Jiang Province, China.
| |
Collapse
|
239
|
Pandareesh MD, Kameshwar VH, Byrappa K. Prostate Carcinogenesis: Insights in Relation to Epigenetics and Inflammation. Endocr Metab Immune Disord Drug Targets 2021; 21:253-267. [PMID: 32682386 DOI: 10.2174/1871530320666200719020709] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/17/2020] [Accepted: 04/29/2020] [Indexed: 12/24/2022]
Abstract
Prostate cancer is a multifactorial disease that mainly occurs due to the accumulation of somatic, genetic, and epigenetic changes, resulting in the inactivation of tumor-suppressor genes and activation of oncogenes. Mutations in genes, specifically those that control cell growth and division or the repair of damaged DNA, make the cells grow and divide uncontrollably to form a tumor. The risk of developing prostate cancer depends upon the gene that has undergone the mutation. Identifying such genetic risk factors for prostate cancer poses a challenge for the researchers. Besides genetic mutations, many epigenetic alterations, including DNA methylation, histone modifications (methylation, acetylation, ubiquitylation, sumoylation, and phosphorylation) nucleosomal remodeling, and chromosomal looping, have significantly contributed to the onset of prostate cancer as well as the prognosis, diagnosis, and treatment of prostate cancer. Chronic inflammation also plays a major role in the onset and progression of human cancer, via modifications in the tumor microenvironment by initiating epithelialmesenchymal transition and remodeling the extracellular matrix. In this article, the authors present a brief history of the mechanisms and potential links between the genetic aberrations, epigenetic changes, inflammation, and inflammasomes that are known to contribute to the prognosis of prostate cancer. Furthermore, the authors examine and discuss the clinical potential of prostate carcinogenesis in relation to epigenetics and inflammation for its diagnosis and treatment..
Collapse
Affiliation(s)
- Mirazkar D Pandareesh
- Center for Research and Innovation, BGSIT Campus, Adichunchanagiri University, B.G. Nagara, Mandya District, Karnataka 571448, India
| | - Vivek H Kameshwar
- Center for Research and Innovation, BGSIT Campus, Adichunchanagiri University, B.G. Nagara, Mandya District, Karnataka 571448, India
| | - Kullaiah Byrappa
- Center for Research and Innovation, BGSIT Campus, Adichunchanagiri University, B.G. Nagara, Mandya District, Karnataka 571448, India
| |
Collapse
|
240
|
Seok JK, Kang HC, Cho YY, Lee HS, Lee JY. Therapeutic regulation of the NLRP3 inflammasome in chronic inflammatory diseases. Arch Pharm Res 2021; 44:16-35. [PMID: 33534121 PMCID: PMC7884371 DOI: 10.1007/s12272-021-01307-9] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 01/07/2021] [Indexed: 12/13/2022]
Abstract
Inflammasomes are cytosolic pattern recognition receptors that recognize pathogen-associated molecular patterns (PAMPs) and danger-associated molecular patterns (DAMPs) derived from invading pathogens and damaged tissues, respectively. Upon activation, the inflammasome forms a complex containing a receptor protein, an adaptor, and an effector to induce the autocleavage and activation of procaspase-1 ultimately culminating in the maturation and secretion of IL-1β and IL-18 and pyroptosis. Inflammasome activation plays an important role in host immune responses to pathogen infections and tissue repair in response to cellular damage. The NLRP3 inflammasome is a well-characterized pattern recognition receptor and is well known for its critical role in the regulation of immunity and the development and progression of various inflammatory diseases. In this review, we summarize recent efforts to develop therapeutic applications targeting the NLRP3 inflammasome to cure and prevent chronic inflammatory diseases. This review extensively discusses NLRP3 inflammasome-related diseases and current development of small molecule inhibitors providing beneficial information on the design of therapeutic strategies for NLRP3 inflammasome-related diseases. Additionally, small molecule inhibitors are classified depending on direct or indirect targeting mechanism to describe the current status of the development of pharmacological inhibitors.
Collapse
Affiliation(s)
- Jin Kyung Seok
- BK21 PLUS Team, College of Pharmacy, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Han Chang Kang
- BK21 PLUS Team, College of Pharmacy, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Yong-Yeon Cho
- BK21 PLUS Team, College of Pharmacy, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Hye Suk Lee
- BK21 PLUS Team, College of Pharmacy, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Joo Young Lee
- BK21 PLUS Team, College of Pharmacy, The Catholic University of Korea, Bucheon, 14662, Republic of Korea.
| |
Collapse
|
241
|
Lin TY, Tsai MC, Tu W, Yeh HC, Wang SC, Huang SP, Li CY. Role of the NLRP3 Inflammasome: Insights Into Cancer Hallmarks. Front Immunol 2021; 11:610492. [PMID: 33613533 PMCID: PMC7886802 DOI: 10.3389/fimmu.2020.610492] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 12/16/2020] [Indexed: 12/22/2022] Open
Abstract
In response to a variety of stresses, mammalian cells activate the inflammasome for targeted caspase-dependent pyroptosis. The research community has recently begun to deduce that the activation of inflammasome is instigated by several known oncogenic stresses and metabolic perturbations; nevertheless, the role of inflammasomes in the context of cancer biology is less understood. In manipulating the expression of inflammasome, researchers have found that NLRP3 serves as a deterministic player in conducting tumor fate decisions. Understanding the mechanistic underpinning of pro-tumorigenic and anti-tumorigenic pathways might elucidate novel therapeutic onco-targets, thereby providing new opportunities to manipulate inflammasome in augmenting the anti-tumorigenic activity to prevent tumor expansion and achieve metastatic control. Accordingly, this review aims to decode the complexity of NLRP3, whereby summarizing and clustering findings into cancer hallmarks and tissue contexts may expedite consensus and underscore the potential of the inflammasome in drug translation.
Collapse
Affiliation(s)
- Ting-Yi Lin
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Meng-Chun Tsai
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wei Tu
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hsin-Chih Yeh
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Urology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan.,Department of Urology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shu-Chi Wang
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shu-Pin Huang
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Urology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chia-Yang Li
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| |
Collapse
|
242
|
Dey Sarkar R, Sinha S, Biswas N. Manipulation of Inflammasome: A Promising Approach Towards Immunotherapy of Lung Cancer. Int Rev Immunol 2021; 40:171-182. [PMID: 33508984 DOI: 10.1080/08830185.2021.1876044] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Chronic inflammation has emerged as a key player at different stages of cancer development. A prominent signaling pathway for acute and chronic inflammation is the activation of the caspase-1 inflammasomes. These are complexes that assemble on activation of certain nucleotide-binding domain, leucine-rich repeat containing proteins (NLRs), AIM2-like receptors (ALRs), or pyrin due to activation via PAMPs or DAMPs. Of these, five complexes-NLRP1, NLRP3, NLRC4, Pyrin, and AIM2 are of importance in the context of cancer for their activities in modulating immune responses, cell proliferation, and apoptosis. Inflammasomes have emerged as clinically relevant in multiple forms of cancer making them highly promising targets for cancer therapy. As lungs are a tissue niche that is prone to inflammation owing to its exposure to external substances, inflammasomes play a vital role in the development and pathogenesis of lung cancer. Therefore, manipulation of inflammasome by various immunomodulatory means could prove a full-proof strategy for the treatment of lung cancer. Here, in this review, we tried to explore the various strategies to target the inflammasomes for the treatment of lung cancer.
Collapse
Affiliation(s)
- Rupak Dey Sarkar
- Department of Life Sciences, Presidency University, Kolkata, India
| | - Samraj Sinha
- Department of Life Sciences, Presidency University, Kolkata, India
| | - Nabendu Biswas
- Department of Life Sciences, Presidency University, Kolkata, India
| |
Collapse
|
243
|
Ratajczak MZ, Kucia M. Extracellular Adenosine Triphosphate (eATP) and Its Metabolite, Extracellular Adenosine (eAdo), as Opposing "Yin-Yang" Regulators of Nlrp3 Inflammasome in the Trafficking of Hematopoietic Stem/Progenitor Cells. Front Immunol 2021; 11:603942. [PMID: 33584673 PMCID: PMC7878390 DOI: 10.3389/fimmu.2020.603942] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/14/2020] [Indexed: 12/17/2022] Open
Abstract
Nlrp3 inflammasome plays a pleiotropic role in hematopoietic cells. On the one hand, physiological activation of this intracellular protein complex is crucial to maintaining normal hematopoiesis and the trafficking of hematopoietic stem progenitor cells (HSPCs). On the other hand, its hyperactivation may lead to cell death by pyroptosis, and prolonged activity is associated with sterile inflammation of the BM and, as a consequence, with the HSPCs aging and origination of myelodysplasia and leukemia. Thus, we need to understand better this protein complex's actions to define the boundaries of its safety window and study the transition from being beneficial to being detrimental. As demonstrated, the Nlrp3 inflammasome is expressed and active both in HSPCs and in the non-hematopoietic cells that are constituents of the bone marrow (BM) microenvironment. Importantly, the Nlrp3 inflammasome responds to mediators of purinergic signaling, and while extracellular adenosine triphosphate (eATP) activates this protein complex, its metabolite extracellular adenosine (eAdo) has the opposite effect. In this review, we will discuss and focus on the physiological consequences of the balance between eATP and eAdo in regulating the trafficking of HSPCs in an Nlrp3 inflammasome-dependent manner, as seen during pharmacological mobilization from BM into peripheral blood (PB) and in the reverse mechanism of homing from PB to BM and engraftment. We propose that both mediators of purinergic signaling and the Nlrp3 inflammasome itself may become important therapeutic targets in optimizing the trafficking of HSPCs in clinical settings.
Collapse
Affiliation(s)
- Mariusz Z. Ratajczak
- Stem Cell Institute at Division of Hematology, Department of Medicine and James Graham Brown Cancer Center, University of Louisville, KY, United States
- Center for Preclinical Studies and Technology, Department of Regenerative Medicine Medical University of Warsaw, Warsaw, Poland
| | - Magda Kucia
- Stem Cell Institute at Division of Hematology, Department of Medicine and James Graham Brown Cancer Center, University of Louisville, KY, United States
- Center for Preclinical Studies and Technology, Department of Regenerative Medicine Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
244
|
Park WJ, Han JS. Gryllus bimaculatus extract protects against lipopolysaccharide and palmitate-induced production of proinflammatory cytokines and inflammasome formation. Mol Med Rep 2021; 23:206. [PMID: 33495809 PMCID: PMC7821350 DOI: 10.3892/mmr.2021.11845] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/08/2020] [Indexed: 01/22/2023] Open
Abstract
Inflammation and the inflammasome complex formation are associated with numerous diseases, and palmitates or lipopolysaccharides (LPS) have been identified as potential links between these disorders. Recently, edible insects such as the Gryllus bimaculatus (GB) and the larva of Tenebrio molitor have emerged as alternative food sources. In the present study, the effect of GB on LPS- or palmitate-induced production of inflammatory cytokines, the formation of the inflammasome complex, reactive oxygen species (ROS) generation, endoplasmic reticulum (ER) stress and cell death was investigated in RAW264.7 cells. The results revealed that GB extract downregulated the production of inflammatory cytokines (such as TNF-α, IL-1β and IL-6). Since the role of the MAP kinase and NF-κB signalling pathways in the production of inflammatory cytokines is well established, the translocation of p65 into the nucleus and the phosphorylation of IκB and MAP kinases were further examined. Both these processes were upregulated following LPS and palmitate treatment, but they were inhibited by the GB extract. Moreover, GB extract decreased LPS/palmitate-induced inflammasome complex formation (assessed via analysing the levels of the apoptosis-associated speck-like protein containing a caspase-recruitment domain, NOD-like receptor family pyrin domain containing 3, cleaved caspase-1 and IL-1β), the generation of ROS, ER stress and cell death. Treatment with SB203580 (a p38 inhibitor), SP600125 (a JNK inhibitor) and pyrrolidinedithiocarbamate ammonium (an NF-κB inhibitor) decreased the production of inflammatory cytokines, as well as helped in the recovery of LPS/palmitate-induced cell death. Overall, GB extract served an inhibitory role in LPS/palmitate-induced inflammation via inhibiting the MAP kinase and NF-κB signalling pathways, inflammasome complex formation, ROS generation, ER stress and cell death.
Collapse
Affiliation(s)
- Woo-Jae Park
- Department of Biochemistry, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
| | - Jung-Soon Han
- Research Institute of Human Ecology, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
245
|
De Luca R, Davis PJ, Lin HY, Gionfra F, Percario ZA, Affabris E, Pedersen JZ, Marchese C, Trivedi P, Anastasiadou E, Negro R, Incerpi S. Thyroid Hormones Interaction With Immune Response, Inflammation and Non-thyroidal Illness Syndrome. Front Cell Dev Biol 2021; 8:614030. [PMID: 33553149 PMCID: PMC7859329 DOI: 10.3389/fcell.2020.614030] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 12/14/2020] [Indexed: 12/14/2022] Open
Abstract
The interdependence between thyroid hormones (THs), namely, thyroxine and triiodothyronine, and immune system is nowadays well-recognized, although not yet fully explored. Synthesis, conversion to a bioactive form, and release of THs in the circulation are events tightly supervised by the hypothalamic-pituitary-thyroid (HPT) axis. Newly synthesized THs induce leukocyte proliferation, migration, release of cytokines, and antibody production, triggering an immune response against either sterile or microbial insults. However, chronic patho-physiological alterations of the immune system, such as infection and inflammation, affect HPT axis and, as a direct consequence, THs mechanism of action. Herein, we revise the bidirectional crosstalk between THs and immune cells, required for the proper immune system feedback response among diverse circumstances. Available circulating THs do traffic in two distinct ways depending on the metabolic condition. Mechanistically, internalized THs form a stable complex with their specific receptors, which, upon direct or indirect binding to DNA, triggers a genomic response by activating transcriptional factors, such as those belonging to the Wnt/β-catenin pathway. Alternatively, THs engage integrin αvβ3 receptor on cell membrane and trigger a non-genomic response, which can also signal to the nucleus. In addition, we highlight THs-dependent inflammasome complex modulation and describe new crucial pathways involved in microRNA regulation by THs, in physiological and patho-physiological conditions, which modify the HPT axis and THs performances. Finally, we focus on the non-thyroidal illness syndrome in which the HPT axis is altered and, in turn, affects circulating levels of active THs as reported in viral infections, particularly in immunocompromised patients infected with human immunodeficiency virus.
Collapse
Affiliation(s)
- Roberto De Luca
- Department of Neurology, Center for Life Science, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Paul J. Davis
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Albany, NY, United States
- Albany Medical College, Albany, NY, United States
| | - Hung-Yun Lin
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Albany, NY, United States
- Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Traditional Herbal Medicine Research Center of Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Fabio Gionfra
- Department of Sciences, University “Roma Tre,” Rome, Italy
| | | | | | - Jens Z. Pedersen
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Cinzia Marchese
- Department of Experimental Medicine, University “La Sapienza,” Rome, Italy
| | - Pankaj Trivedi
- Department of Experimental Medicine, University “La Sapienza,” Rome, Italy
| | - Eleni Anastasiadou
- Department of Experimental Medicine, University “La Sapienza,” Rome, Italy
| | - Roberto Negro
- National Institute of Gastroenterology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) “S. de Bellis” Research Hospital, Castellana Grotte, Italy
| | - Sandra Incerpi
- Department of Sciences, University “Roma Tre,” Rome, Italy
| |
Collapse
|
246
|
Structure, Activation and Regulation of NLRP3 and AIM2 Inflammasomes. Int J Mol Sci 2021; 22:ijms22020872. [PMID: 33467177 PMCID: PMC7830601 DOI: 10.3390/ijms22020872] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/23/2020] [Accepted: 01/11/2021] [Indexed: 12/12/2022] Open
Abstract
The inflammasome is a three-component (sensor, adaptor, and effector) filamentous signaling platform that shields from multiple pathogenic infections by stimulating the proteolytical maturation of proinflammatory cytokines and pyroptotic cell death. The signaling process initiates with the detection of endogenous and/or external danger signals by specific sensors, followed by the nucleation and polymerization from sensor to downstream adaptor and then to the effector, caspase-1. Aberrant activation of inflammasomes promotes autoinflammatory diseases, cancer, neurodegeneration, and cardiometabolic disorders. Therefore, an equitable level of regulation is required to maintain the equilibrium between inflammasome activation and inhibition. Recent advancement in the structural and mechanistic understanding of inflammasome assembly potentiates the emergence of novel therapeutics against inflammasome-regulated diseases. In this review, we have comprehensively discussed the recent and updated insights into the structure of inflammasome components, their activation, interaction, mechanism of regulation, and finally, the formation of densely packed filamentous inflammasome complex that exists as micron-sized punctum in the cells and mediates the immune responses.
Collapse
|
247
|
Wu AG, Zhou XG, Qiao G, Yu L, Tang Y, Yan L, Qiu WQ, Pan R, Yu CL, Law BYK, Qin DL, Wu JM. Targeting microglial autophagic degradation in NLRP3 inflammasome-mediated neurodegenerative diseases. Ageing Res Rev 2021; 65:101202. [PMID: 33161129 DOI: 10.1016/j.arr.2020.101202] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 02/07/2023]
Abstract
Neuroinflammation is considered as a detrimental factor in neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), etc. Nucleotide-binding oligomerization domain-, leucine-rich repeat- and pyrin domain-containing 3 (NLRP3), the most well-studied inflammasome, is abundantly expressed in microglia and has gained considerable attention. Misfolded proteins are characterized as the common hallmarks of neurodegenerative diseases due to not only their induced neuronal toxicity but also their effects in over-activating microglia and the NLRP3 inflammasome. The activated NLRP3 inflammasome aggravates the pathology and accelerates the progression of neurodegenerative diseases. Emerging evidence indicates that microglial autophagy plays an important role in the maintenance of brain homeostasis and the negative regulation of NLRP3 inflammasome-mediated neuroinflammation. The excessive activation of NLRP3 inflammasome impairs microglial autophagy and further aggravates the pathogenesis of neurodegenerative diseases. In this review article, we summarize and discuss the NLRP3 inflammasome and its specific inhibitors in microglia. The crucial role of microglial autophagy and its inducers in the removal of misfolded proteins, the clearance of damaged mitochondria and reactive oxygen species (ROS), and the degradation of the NLRP3 inflammasome or its components in neurodegenerative diseases are summarized. Understanding the underlying mechanisms behind the sex differences in NLRP3 inflammasome-mediated neurodegenerative diseases will help researchers to develop more targeted therapies and increase our diagnostic and prognostic abilities. In addition, the superiority of the combined use of microglial autophagy inducers with the specific inhibitors of the NLRP3 inflammasome in the inhibition of NLRP3 inflammasome-mediated neuroinflammation requires further preclinical and clinical validations in the future.
Collapse
|
248
|
Yousefi H, Mashouri L, Okpechi SC, Alahari N, Alahari SK. Repurposing existing drugs for the treatment of COVID-19/SARS-CoV-2 infection: A review describing drug mechanisms of action. Biochem Pharmacol 2021; 183:114296. [PMID: 33191206 PMCID: PMC7581400 DOI: 10.1016/j.bcp.2020.114296] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/14/2020] [Accepted: 10/16/2020] [Indexed: 02/06/2023]
Abstract
The outbreak of a novel coronavirus (SARS-CoV-2) has caused a major public health concern across the globe. SARS-CoV-2 is the seventh coronavirus that is known to cause human disease. As of September 2020, SARS-CoV-2 has been reported in 213 countries and more than 31 million cases have been confirmed, with an estimated mortality rate of ∼3%. Unfortunately, a drug or vaccine is yet to be discovered to treat COVID-19. Thus, repurposing of existing cancer drugs will be a novel approach in treating COVID-19 patients. These drugs target viral replication cycle, viral entry and translocation to the nucleus. Some can enhance innate antiviral immune response as well. Hence this review focuses on comprehensive list of 22 drugs that work against COVID-19 infection. These drugs include fingolimod, colchicine, N4-hydroxycytidine, remdesivir, methylprednisone, oseltamivir, icatibant, perphanizine, viracept, emetine, homoharringtonine, aloxistatin, ribavirin, valrubicin, famotidine, almitrine, amprenavir, hesperidin, biorobin, cromolyn sodium, and antibodies- tocilzumab and sarilumab. Also, we provide a list of 31 drugs that are predicted to function against SARS-CoV-2 infection. In summary, we provide succinct overview of various therapeutic modalities. Among these 53 drugs, based on various clinical trials and literature, remdesivir, nelfinavir, methylpredinosolone, colchicine, famotidine and emetine may be used for COVID-19. SIGNIFICANCE: It is of utmost important priority to develop novel therapies for COVID-19. Since the effect of SARS-CoV-2 is so severe, slowing the spread of diseases will help the health care system, especially the number of visits to Intensive Care Unit (ICU) of any country. Several clinical trials are in works around the globe. Moreover, NCI developed a recent and robust response to COVID-19 pandemic. One of the NCI's goals is to screen cancer related drugs for identification of new therapies for COVID-19. https://www.cancer.gov/news-events/cancer-currents-blog/2020/covid-19-cancer-nci-response?cid=eb_govdel.
Collapse
Affiliation(s)
- Hassan Yousefi
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center School of Medicine, New Orleans, LA, USA
| | - Ladan Mashouri
- Department of Medical Sciences, University of Arkansas, Little Rock, AK, USA
| | - Samuel C Okpechi
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center School of Medicine, New Orleans, LA, USA
| | - Nikhilesh Alahari
- Department of Biological Engineering, Louisiana State University, Baton Rouge, LA, USA
| | - Suresh K Alahari
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center School of Medicine, New Orleans, LA, USA; Stanley Scott Cancer Research Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA.
| |
Collapse
|
249
|
Chen W, Wei T, Chen Y, Yang L, Wu X. Downregulation of IRAK1 Prevents the Malignant Behavior of Hepatocellular Carcinoma Cells by Blocking Activation of the MAPKs/NLRP3/IL-1β Pathway. Onco Targets Ther 2020; 13:12787-12796. [PMID: 33363384 PMCID: PMC7751837 DOI: 10.2147/ott.s260793] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/25/2020] [Indexed: 12/29/2022] Open
Abstract
INTRODUCTION Interleukin-1 receptor-associated kinase 1 (IRAK1) was shown to contribute to a variety of cancer-related processes. However, the function of IRAK1 in hepatocellular carcinoma (HCC) pathogenesis has not been investigated in detail. METHODS IRAK1 expression in HCC was examined by immunohistochemistry, qRT-PCR, and Western blot assays. In addition, Huh7 and Hep3B cells were transfected with IRAK1 siRNAs and/or a NOD-like receptor family pyrindomain containing 3 (NLRP3) plasmid. Western blot, EdU staining, and Transwell assays were performed to determine changes of apoptosis, proliferation, migration, and invasion in HCC cells. Moreover, changes in the expression of proteins involved in the MAPKs/NLRP3/IL-1β pathway were confirmed by Western blotting. RESULTS IRAK1 was found to be highly upregulated in HCC tissues and cells. Knockdown of IRAK1 signaling prevented the proliferation, invasion, migration, epithelial-mesenchymal transition (EMT) of HCC cells. Mechanistically, we found that activation of the MAPKs/NLRP3/IL-1β pathway could be markedly suppressed by IRAK1 knockdown in HCC cells. Furthermore, our data showed that NLRP3 could partially reverse the reduced aggressive biological behaviors of HCC cells which were caused by RAK1 knockdown. CONCLUSION Knockdown of IRAK1 prevented HCC progression by inhibiting the ability of NLRP3 to block the MAPKs/IL-1β pathway, suggesting that approach as a strategy for treating HCC.
Collapse
Affiliation(s)
- Wei Chen
- Department of Oncology, People’s Hospital of Huadu District, Guangzhou510800, People’s Republic of China
| | - Tao Wei
- Department of Oncology, People’s Hospital of Huadu District, Guangzhou510800, People’s Republic of China
| | - Yinghua Chen
- Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou510515, People’s Republic of China
| | - Lan Yang
- Department of Laser Beauty, People’s Hospital of Huadu District, Guangzhou510800, People’s Republic of China
| | - Xiaomin Wu
- Department of Oncology, People’s Hospital of Huadu District, Guangzhou510800, People’s Republic of China
| |
Collapse
|
250
|
Barrea L, Caprio M, Tuccinardi D, Moriconi E, Di Renzo L, Muscogiuri G, Colao A, Savastano S. Could ketogenic diet "starve" cancer? Emerging evidence. Crit Rev Food Sci Nutr 2020; 62:1800-1821. [PMID: 33274644 DOI: 10.1080/10408398.2020.1847030] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cancer cells (CCs) predominantly use aerobic glycolysis (Warburg effect) for their metabolism. This important characteristic of CCs represents a potential metabolic pathway to be targeted in the context of tumor treatment. Being this mechanism related to nutrient oxidation, dietary manipulation has been hypothesized as an important strategy during tumor treatment. Ketogenic diet (KD) is a dietary pattern characterized by high fat intake, moderate-to-low protein consumption, and very-low-carbohydrate intake (<50 g), which in cancer setting may target CCs metabolism, potentially influencing both tumor treatment and prognosis. Several mechanisms, far beyond the originally proposed inhibition of glucose/insulin signaling, can underpin the effectiveness of KD in cancer management, ranging from oxidative stress, mitochondrial metabolism, and inflammation. The role of a qualified Nutritionist is essential to reduce and manage the short and long-term complications of this dietary therapy, which must be personalized to the individual patient for the planning of tailored KD protocol in cancer patients. In the present review, we summarize the proposed antitumor mechanisms of KD, the application of KD in cancer patients with obesity and cachexia, and the preclinical and clinical evidence on KD therapy in cancer.
Collapse
Affiliation(s)
- Luigi Barrea
- Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Naples, Italy.,Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O.), Department of Clinical Medicine and Surgery, Endocrinology Unit, University Medical School of Naples, Naples, Italy
| | - Massimiliano Caprio
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Pisana, Rome, Italy.,Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Rome, Italy
| | - Dario Tuccinardi
- Unit of Endocrinology and Diabetes, Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy
| | - Eleonora Moriconi
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Pisana, Rome, Italy
| | - Laura Di Renzo
- Section of Clinical Nutrition and Nutrigenomic, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Giovanna Muscogiuri
- Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Naples, Italy.,Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O.), Department of Clinical Medicine and Surgery, Endocrinology Unit, University Medical School of Naples, Naples, Italy
| | - Annamaria Colao
- Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Naples, Italy.,Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O.), Department of Clinical Medicine and Surgery, Endocrinology Unit, University Medical School of Naples, Naples, Italy.,Cattedra Unesco "Educazione alla salute e allo sviluppo sostenibile", University Federico II, Naples, Italy
| | - Silvia Savastano
- Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Naples, Italy.,Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O.), Department of Clinical Medicine and Surgery, Endocrinology Unit, University Medical School of Naples, Naples, Italy
| | | |
Collapse
|