201
|
Sterneckert J, Stehling M, Bernemann C, Araúzo-Bravo MJ, Greber B, Gentile L, Ortmeier C, Sinn M, Wu G, Ruau D, Zenke M, Brintrup R, Klein DC, Ko K, Schöler HR. Neural induction intermediates exhibit distinct roles of Fgf signaling. Stem Cells 2011; 28:1772-81. [PMID: 20715182 DOI: 10.1002/stem.498] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Formation of the neural plate is an intricate process in early mammalian embryonic development mediated by cells of the inner cell mass and involving a series of steps, including development of the epiblast. Here, we report on the creation of an embryonic stem (ES) cell-based system to isolate and identify neural induction intermediates with characteristics of epiblast cells and neural plate. We demonstrate that neural commitment requires prior differentiation of ES cells into epiblast cells that are indistinguishable from those derived from natural embryos. We also demonstrate that epiblast cells can be isolated and cultured as epiblast stem cell lines. Fgf signaling is shown to be required for the differentiation of ES cells into these epiblast cells. Fgf2, widely used for maintenance of both human ES cells and epiblast stem cells, inhibits formation of early neural cells by epiblast intermediates in a dose-dependent manner and is sufficient to promote transient self-renewal of epiblast stem cells. In contrast, Fgf8, the endogenous embryonic neural inducer, fails to promote epiblast self-renewal, but rather promotes more homogenous neural induction with transient self-renewal of early neural cells. Removal of Fgf signaling entirely from epiblast cells promotes rapid neural induction and subsequent neurogenesis. We conclude that Fgf signaling plays different roles during the differentiation of ES cells, with an initial requirement in epiblast formation and a subsequent role in self-renewal. Fgf2 and Fgf8 thus stimulate self-renewal in different cell types.
Collapse
Affiliation(s)
- Jared Sterneckert
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, North Rhine-Westphalia, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
202
|
Leung AWL, Wong SYY, Chan D, Tam PPL, Cheah KSE. Loss of procollagen IIA from the anterior mesendoderm disrupts the development of mouse embryonic forebrain. Dev Dyn 2011; 239:2319-29. [PMID: 20730911 DOI: 10.1002/dvdy.22366] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Morphogenesis of the mammalian forebrain is influenced by the patterning activity of signals emanating from the anterior mesendoderm. In this study, we show that procollagen IIA (IIA), an isoform of the cartilage extracellular matrix protein encoded by an alternatively spliced transcript of Col2a1, is expressed in the prechordal plate and the anterior definitive endoderm. In the absence of IIA activity, the null mutants displayed a partially penetrant phenotype of loss of head tissues, holoprosencephaly, and loss of mid-facial structures, which is associated with reduced sonic hedgehog (Shh) expression in the prechordal mesoderm. Genetic interaction studies reveal that IIA function in forebrain and face development does not involve bone morphogenetic protein receptor 1A (BMPR1A)- or NODAL-mediated signaling activity.
Collapse
Affiliation(s)
- Alan W L Leung
- Department of Biochemistry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | | | | | | | | |
Collapse
|
203
|
Abu-Daya A, Nishimoto S, Fairclough L, Mohun TJ, Logan MP, Zimmerman LB. The secreted integrin ligand nephronectin is necessary for forelimb formation in Xenopus tropicalis. Dev Biol 2011; 349:204-12. [PMID: 20977901 PMCID: PMC3021715 DOI: 10.1016/j.ydbio.2010.10.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 09/27/2010] [Accepted: 10/14/2010] [Indexed: 11/21/2022]
Abstract
While limb regeneration has been extensively studied in amphibians, little is known about the initial events in limb formation in metamorphosing anurans. The small secreted integrin ligand nephronectin (npnt) is necessary for development of the metanephros in mouse. Although expressed in many tissues, its role in other developmental processes is not well-studied. Here we show that a transgene insertion that disrupts this gene ablates forelimb formation in Xenopus tropicalis. Our results suggest a novel role for integrin signalling in limb development, and represent the first insertional phenotype to be cloned in amphibians.
Collapse
Affiliation(s)
| | | | | | | | | | - Lyle B. Zimmerman
- Division of Developmental Biology, MRC-National Institute for Medical Research, Mill Hill, London, NW7 1AA, UK
| |
Collapse
|
204
|
Vlangos CN, Siuniak A, Ackley T, van Bokhoven H, Veltman J, Iyer R, Park JM, Keppler-Noreuil K, Keegan CE. Comprehensive genetic analysis of OEIS complex reveals no evidence for a recurrent microdeletion or duplication. Am J Med Genet A 2011; 155A:38-49. [PMID: 21204209 DOI: 10.1002/ajmg.a.33757] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Omphalocele-exstrophy of the bladder-imperforate anus-spinal defects (OEIS) complex, or cloacal exstrophy (EC), is a rare constellation of malformations in humans involving the urogenital, gastrointestinal, and skeletal systems, and less commonly the central nervous system. Although OEIS complex is well-recognized in the clinical setting, there remains a significant lack of understanding of this condition at both the developmental and the genetic level. While most cases are sporadic, familial cases have been reported, suggesting that one or more specific genes may play a significant role in this condition. Several developmental mechanisms have been proposed to explain the etiology of OEIS complex, and it is generally considered to be a defect early in caudal mesoderm development and ventral body wall closure. The goal of this study was to identify genetic aberrations in 13 patients with OEIS/EC using a combination of candidate gene analysis and microarray studies. Analysis of 14 candidate genes in combination with either high resolution SNP or oligonucleotide microarray did not reveal any disease-causing mutations, although novel variants were identified in five patients. To our knowledge, this is the most comprehensive genetic analysis of patients with OEIS complex to date. We conclude that OEIS is a complex disorder from an etiological perspective, likely involving a combination of genetic and environmental predispositions. Based on our data, OEIS complex is unlikely to be caused by a recurrent chromosomal aberration.
Collapse
|
205
|
Lui VWY, Yau DMS, Cheung CSF, Wong SCC, Chan AKC, Zhou Q, Wong EYL, Lau CPY, Lam EKY, Hui EP, Hong B, Hui CWC, Chan ASK, Ng PKS, Ng YK, Lo KW, Tsang CM, Tsui SKW, Tsao SW, Chan ATC. FGF8b oncogene mediates proliferation and invasion of Epstein–Barr virus-associated nasopharyngeal carcinoma cells: implication for viral-mediated FGF8b upregulation. Oncogene 2010; 30:1518-30. [DOI: 10.1038/onc.2010.529] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
206
|
Ota S, Tonou-Fujimori N, Tonou-Fujimori N, Nakayama Y, Ito Y, Kawamura A, Yamasu K. FGF receptor gene expression and its regulation by FGF signaling during early zebrafish development. Genesis 2010; 48:707-16. [PMID: 20960516 DOI: 10.1002/dvg.20682] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 09/11/2010] [Accepted: 10/07/2010] [Indexed: 12/23/2022]
Abstract
The expression of all four fgfr genes was extensively examined throughout early embryogenesis of the zebrafish (Danio rerio). fgfr1 alone was expressed maternally throughout the blastoderm, and then zygotically in the anterior neural plate and presomitic mesoderm. fgfr4 expression was first detected in late blastulae and was gradually restricted to the brain. fgfr2 and fgfr3 expression were initiated in early and late gastrulae, respectively; fgfr2 was expressed in the anterior neural plate and somitic mesoderm, whereas fgfr3 was activated in the axial mesoderm and then in the midbrain and somitic mesoderm. During somitogenesis, each of these fgfr genes was expressed in a characteristic manner in the brain. Using an FGF signal inhibitor, dominant-negative FGF receptors and fgf8.1/fgf8a mutants, we found that fgfr expression is directly or indirectly regulated by FGF signaling during epiboly and at the end of somitogenesis, revealing the presence of an autoregulatory mechanism.
Collapse
Affiliation(s)
- Satoshi Ota
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Shimo-Okubo, Sakura-ku, Saitama, Japan
| | | | | | | | | | | | | |
Collapse
|
207
|
Engberg N, Kahn M, Petersen DR, Hansson M, Serup P. Retinoic acid synthesis promotes development of neural progenitors from mouse embryonic stem cells by suppressing endogenous, Wnt-dependent nodal signaling. Stem Cells 2010; 28:1498-509. [PMID: 20665854 DOI: 10.1002/stem.479] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Embryonic stem (ES) cells differentiate spontaneously toward a neuroectodermal fate in serum-free, adherent monocultures. Here, we show that this spontaneous neural fate requires retinoic acid (RA) synthesis. We monitor ES cells containing reporter genes for markers of the early neural plate as well as the primitive streak and its progeny to determine the cell fates induced when RA signaling is perturbed. We demonstrate that the spontaneous neural commitment of mouse ES cells requires endogenous RA production from vitamin A (vitA) in the medium. Formation of neural progenitors is inhibited by removing vitA from the medium, by inhibiting the enzymes that catalyze the synthesis of RA, or by inhibiting RA receptors. We show that subnanomolar concentrations of RA restore neuroectodermal differentiation when RA synthesis is blocked. We demonstrate that a neural to mesodermal fate change occurring when RA signaling is inhibited is dependent on Nodal-, Wnt-, and fibroblast growth factor-signaling. We show that Nodal suppresses neural development in a Wnt-dependent manner and that Wnt-mediated inhibition of neural development is reversed by inhibition of Nodal signaling. Together, our results show that neural induction in ES cells requires RA at subnanomolar levels to suppress Nodal signaling and suggest that the mechanism by which Wnt signaling suppresses neural development is through facilitation of Nodal signaling.
Collapse
Affiliation(s)
- Nina Engberg
- Department of Stem Cell Biology, Hagedorn Research Institute, Gentofte, Denmark
| | | | | | | | | |
Collapse
|
208
|
Abstract
Fibroblast growth factor (FGF) signalling has been implicated during several phases of early embryogenesis, including the patterning of the embryonic axes, the induction and/or maintenance of several cell lineages and the coordination of morphogenetic movements. Here, we summarise our current understanding of the regulation and roles of FGF signalling during early vertebrate development.
Collapse
Affiliation(s)
- Karel Dorey
- The Healing Foundation Centre, Michael Smith Building, Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Enrique Amaya
- The Healing Foundation Centre, Michael Smith Building, Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| |
Collapse
|
209
|
Fuchs A, Inthal A, Herrmann D, Cheng S, Nakatomi M, Peters H, Neubüser A. Regulation of Tbx22 during facial and palatal development. Dev Dyn 2010; 239:2860-74. [PMID: 20845426 DOI: 10.1002/dvdy.22421] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Mutations in the gene encoding the T-box transcription factor TBX22 cause X-linked cleft palate and ankyloglossia in humans. Here we show that Tbx22 expression during facial and palatal development is regulated by FGF and BMP signaling. Our results demonstrate that FGF8 induces Tbx22 in the early face while BMP4 represses and thus restricts its expression. This regulation is conserved between chicken and mouse, although the Tbx22-expression patterns differ considerably between these two species. We suggest that these species-specific differences may result at least in part from differences in the spatiotemporal patterns of BMP activity, but we exclude a direct repression of Tbx22 by the BMP-inducible transcriptional repressor MSX1. Together these findings help to integrate Tbx22 into the molecular network of factors regulating facial development.
Collapse
Affiliation(s)
- Alisa Fuchs
- Developmental Biology, Institute of Biology 1, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | | | | | | | | | | | | |
Collapse
|
210
|
Krawchuk D, Weiner SJ, Chen YT, Lu B, Costantini F, Behringer RR, Laufer E. Twist1 activity thresholds define multiple functions in limb development. Dev Biol 2010; 347:133-46. [PMID: 20732316 PMCID: PMC2976588 DOI: 10.1016/j.ydbio.2010.08.015] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 08/13/2010] [Accepted: 08/16/2010] [Indexed: 02/04/2023]
Abstract
The basic helix-loop-helix transcription factor Twist1 is essential for normal limb development. Twist1(-/-) embryos die at midgestation. However, studies on early limb buds found that Twist1(-/-) mutant limb mesenchyme has an impaired response to FGF signaling from the apical ectodermal ridge, which disrupts the feedback loop between the mesenchyme and AER, and reduces and shifts anteriorly Shh expression in the zone of polarizing activity. We have combined Twist1 null, hypomorph and conditional alleles to generate a Twist1 allelic series that survives to birth. As Twist1 activity is reduced, limb skeletal defects progress from preaxial polydactyly to girdle reduction combined with hypoplasia, aplasia or mirror symmetry of all limb segments. With reduced Twist1 activity there is striking and progressive upregulation of ectopic Shh expression in the anterior of the limb, combined with an anterior shift in the posterior Shh domain, which is expressed at normal intensity, and loss of the posterior AER. Consequently limb outgrowth is initially impaired, before an ectopic anterior Shh domain expands the AER, promoting additional growth and repatterning. Reducing the dosage of FGF targets of the Etv gene family, which are known repressors of Shh expression in anterior limb mesenchyme, strongly enhances the anterior skeletal phenotype. Conversely this and other phenotypes are suppressed by reducing the dosage of the Twist1 antagonist Hand2. Our data support a model whereby multiple Twist1 activity thresholds contribute to early limb bud patterning, and suggest how particular combinations of skeletal defects result from differing amounts of Twist1 activity.
Collapse
Affiliation(s)
- Dayana Krawchuk
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Shoshana J. Weiner
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | - You-Tzung Chen
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Benson Lu
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Frank Costantini
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Richard R. Behringer
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ed Laufer
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA
| |
Collapse
|
211
|
Brooks LR, Chung WCJ, Tsai PS. Abnormal hypothalamic oxytocin system in fibroblast growth factor 8-deficient mice. Endocrine 2010; 38:174-80. [PMID: 21046478 PMCID: PMC3093295 DOI: 10.1007/s12020-010-9366-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Accepted: 06/28/2010] [Indexed: 12/31/2022]
Abstract
Oxytocin (OT) is a nonapeptide essential for maternal care. The development of the OT neuroendocrine system is a multi-step process dependent on the action of many transcription factors, but upstream signaling molecules regulating this process are still poorly understood. In this study, we examined if fibroblast growth factor 8 (FGF8), a signaling molecule critical for forebrain development, is essential for the proper formation of the OT system. Using immunohistochemistry, we showed a significant reduction in the number of neurons immunoreactive for the mature OT peptide in the paraventricular nucleus (PVN) and supraoptic nucleus (SON) in the hypothalamus of homozygous (HOMO) FGF8 hypomorphic mice compared to wild-type mice. The number of neurons positive for oxyphysin prohormone in the SON but not the PVN was also significantly reduced in FGF8 HOMO hypomorphs. However, steady-state mRNA levels of the oxyphysin prohormone were not significantly different between FGF8 hypomorphs and WT mice. These data suggest that a global reduction in FGF8 signaling leads to an overall reduction of mature OT and oxyphysin prohormone levels that may have resulted from defects in multiple stages of the hormone-synthesis pathway. Since proper hormone synthesis is a hallmark of mature OT neurons, this study suggests that FGF8 signaling may contribute to the phenotypic maturation of a neuroendocrine system that originates within the diencephalon.
Collapse
Affiliation(s)
- Leah R Brooks
- Department of Integrative Physiology and the Center for Neuroscience, University of Colorado, Boulder, CO 80309-0354, USA.
| | | | | |
Collapse
|
212
|
Fernandez-Diaz LC, Laurent A, Girasoli S, Turco M, Longobardi E, Iotti G, Jenkins NA, Fiorenza MT, Copeland NG, Blasi F. The absence of Prep1 causes p53-dependent apoptosis of mouse pluripotent epiblast cells. Development 2010; 137:3393-403. [PMID: 20826531 DOI: 10.1242/dev.050567] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Disruption of mouse Prep1, which codes for a homeodomain transcription factor, leads to embryonic lethality during post-implantation stages. Prep1(-/-) embryos stop developing after implantation and before anterior visceral endoderm (AVE) formation. In Prep1(-/-) embryos at E6.5 (onset of gastrulation), the AVE is absent and the proliferating extra-embryonic ectoderm and epiblast, marked by Bmp4 and Oct4, respectively, are reduced in size. At E.7.5, Prep1(-/-) embryos are small and very delayed, showing no evidence of primitive streak or of differentiated embryonic lineages. Bmp4 is expressed residually, while the reduced number of Oct4-positive cells is constant up to E8.5. At E6.5, Prep1(-/-) embryos retain a normal mitotic index but show a major increase in cleaved caspase 3 and TUNEL staining, indicating apoptosis. Therefore, the mouse embryo requires Prep1 when undergoing maximal expansion in cell number. Indeed, the phenotype is partially rescued in a p53(-/-), but not in a p16(-/-), background. Apoptosis is probably due to DNA damage as Atm downregulation exacerbates the phenotype. Despite this early lethal phenotype, Prep1 is not essential for ES cell establishment. A differential embryonic expression pattern underscores the unique function of Prep1 within the Meis-Prep family.
Collapse
Affiliation(s)
- Luis C Fernandez-Diaz
- IFOM, FIRC Institute of Molecular Oncology Foundation, IFOM-IEO Campus, via Adamello 16, Milan, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
213
|
Oki S, Kitajima K, Meno C. Dissecting the role of Fgf signaling during gastrulation and left-right axis formation in mouse embryos using chemical inhibitors. Dev Dyn 2010; 239:1768-78. [PMID: 20503372 DOI: 10.1002/dvdy.22282] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Fgf signaling plays pivotal roles in mouse gastrulation and left-right axis formation. However, although genetic analyses have revealed important aspects of Fgf signaling in these processes, the temporal resolution of genetic studies is low. Here, we combined whole-embryo culture with application of chemical compounds to inhibit Fgf signaling at specific time points. We found that sodium chlorate and PD173074 are potent inhibitors of Fgf signaling in early mouse embryos. Fgf signaling is required for the epithelial-to-mesenchymal transition of the primitive streak before the onset of gastrulation. Once gastrulation begins, Fgf signaling specifies mesodermal fates via the Ras/MAPK downstream cascade. Finally, Fgf signaling on the posterior side of the embryo during gastrulation induces Nodal expression in the node via Tbx6-Dll1, the initial event required for Nodal expression in the left lateral plate mesoderm.
Collapse
Affiliation(s)
- Shinya Oki
- Department of Developmental Biology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | | |
Collapse
|
214
|
Sakurai Y, Kurokawa D, Kiyonari H, Kajikawa E, Suda Y, Aizawa S. Otx2 and Otx1 protect diencephalon and mesencephalon from caudalization into metencephalon during early brain regionalization. Dev Biol 2010; 347:392-403. [PMID: 20816794 DOI: 10.1016/j.ydbio.2010.08.028] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 08/24/2010] [Accepted: 08/25/2010] [Indexed: 10/19/2022]
Abstract
Otx2 is expressed in each step and site of head development. To dissect each Otx2 function we have identified a series of Otx2 enhancers. The Otx2 expression in the anterior neuroectoderm is regulated by the AN enhancer and the subsequent expression in forebrain and midbrain later than E8.5 by FM1 and FM2 enhancers; the Otx1 expression takes place at E8.0. In telencephalon later than E9.5 Otx1 continues to be expressed in the entire pallium, while the Otx2 expression is confined to the most medial pallium. To determine the Otx functions in forebrain and midbrain development we have generated mouse mutants that lack both FM1 and FM2 enhancers (DKO: Otx2(ΔFM1ΔFM2/ΔFM1ΔFM2)) and examined the TKO (Otx1(-/-)Otx2(ΔFM1ΔFM2/ΔFM1ΔFM2)) phenotype. The mutants develop normally until E8.0, but subsequently by E9.5 the diencephalon, including thalamic eminence and prethalamus, and the mesencephalon are caudalized into metencephalon consisting of isthmus and rhombomere 1; the caudalization does not extend to rhombomere 2 and more caudal rhombomeres. In rostral forebrain, neopallium, ganglionic eminences and hypothalamus in front of prethalamus develop; we propose that they become insensitive to the caudalization with the switch from the Otx2 expression under the AN enhancer to that under FM1 and FM2 enhancers. In contrast, the medial pallium requires Otx1 and Otx2 for its development later than E9.5, and the Otx2 expression in diencepalon and mesencephalon later than E9.5 is also directed by an enhancer other than FM1 and FM2 enhancers.
Collapse
Affiliation(s)
- Yusuke Sakurai
- Laboratory for Vertebrate Body Plan, Center for Developmental Biology, RIKEN Kobe, 2-2-3 Minatojima Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | | | | | | | | | | |
Collapse
|
215
|
Toyoda R, Assimacopoulos S, Wilcoxon J, Taylor A, Feldman P, Suzuki-Hirano A, Shimogori T, Grove EA. FGF8 acts as a classic diffusible morphogen to pattern the neocortex. Development 2010; 137:3439-48. [PMID: 20843859 DOI: 10.1242/dev.055392] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Gain- and loss-of-function experiments have demonstrated that a source of fibroblast growth factor (FGF) 8 regulates anterior to posterior (A/P) patterning in the neocortical area map. Whether FGF8 controls patterning as a classic diffusible morphogen has not been directly tested. We report evidence that FGF8 diffuses through the mouse neocortical primordium from a discrete source in the anterior telencephalon, forms a protein gradient across the entire A/P extent of the primordium, and acts directly at a distance from its source to determine area identity. FGF8 immunofluorescence revealed FGF8 protein distributed in an A/P gradient. Fate-mapping experiments showed that outside the most anterior telencephalon, neocortical progenitor cells did not express Fgf8, nor were they derived from Fgf8-expressing cells, suggesting that graded distribution of FGF8 results from protein diffusion from the anterior source. Supporting this conclusion, a dominant-negative high-affinity FGF8 receptor captured endogenous FGF8 at a distance from the FGF8 source. New FGF8 sources introduced by electroporation showed haloes of FGF8 immunofluorescence indicative of FGF8 diffusion, and surrounding cells reacted to a new source of FGF8 by upregulating different FGF8-responsive genes in concentric domains around the source. Reducing endogenous FGF8 with the dominant-negative receptor in the central neocortical primordium induced cells to adopt a more posterior area identity, demonstrating long-range area patterning by FGF8. These observations support FGF8 as a classic diffusible morphogen in neocortex, thereby guiding future studies of neocortical pattern formation.
Collapse
Affiliation(s)
- Reiko Toyoda
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | | | | | |
Collapse
|
216
|
Moldrich RX, Gobius I, Pollak T, Zhang J, Ren T, Brown L, Mori S, de Juan C, Britanova O, Tarabykin V, Richards LJ. Molecular regulation of the developing commissural plate. J Comp Neurol 2010; 518:3645-61. [PMID: 20653027 PMCID: PMC2910370 DOI: 10.1002/cne.22445] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Coordinated transfer of information between the brain hemispheres is essential for function and occurs via three axonal commissures in the telencephalon: the corpus callosum (CC), hippocampal commissure (HC), and anterior commissure (AC). Commissural malformations occur in over 50 human congenital syndromes causing mild to severe cognitive impairment. Disruption of multiple commissures in some syndromes suggests that common mechanisms may underpin their development. Diffusion tensor magnetic resonance imaging revealed that forebrain commissures crossed the midline in a highly specific manner within an oblique plane of tissue, referred to as the commissural plate. This specific anatomical positioning suggests that correct patterning of the commissural plate may influence forebrain commissure formation. No analysis of the molecular specification of the commissural plate has been performed in any species; therefore, we utilized specific transcription factor markers to delineate the commissural plate and identify its various subdomains. We found that the mouse commissural plate consists of four domains and tested the hypothesis that disruption of these domains might affect commissure formation. Disruption of the dorsal domains occurred in strains with commissural defects such as Emx2 and Nfia knockout mice but commissural plate patterning was normal in other acallosal strains such as Satb2(-/-). Finally, we demonstrate an essential role for the morphogen Fgf8 in establishing the commissural plate at later developmental stages. The results demonstrate that correct patterning of the commissural plate is an important mechanism in forebrain commissure formation.
Collapse
Affiliation(s)
- Randal X. Moldrich
- The University of Queensland, The Queensland Brain Institute, Brisbane, QLD 4072, Australia
| | - Ilan Gobius
- The University of Queensland, The Queensland Brain Institute, Brisbane, QLD 4072, Australia
| | - Thomas Pollak
- The University of Queensland, The Queensland Brain Institute, Brisbane, QLD 4072, Australia
| | - Jiangyang Zhang
- Division of NMR Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Tianbo Ren
- The University of Queensland, The Queensland Brain Institute, Brisbane, QLD 4072, Australia
| | - Lucia Brown
- Department of Obstetrics, University of Vermont, Gynecology and Reproductive Sciences, Burlington, Vermont 05401, USA
| | - Susumu Mori
- Division of NMR Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
- F.M. Kirby Functional Imaging Center, Kennedy Krieger Institute, Baltimore, Maryland, 21205, USA
| | - Camino de Juan
- Max-Planck-Institute for Experimental Medicine, 37075 and the Research Center for the Molecular Physiology of the Brain (CMPB), 37073 Gottingen, Germany
| | - Olga Britanova
- Max-Planck-Institute for Experimental Medicine, 37075 and the Research Center for the Molecular Physiology of the Brain (CMPB), 37073 Gottingen, Germany
| | - Victor Tarabykin
- Max-Planck-Institute for Experimental Medicine, 37075 and the Research Center for the Molecular Physiology of the Brain (CMPB), 37073 Gottingen, Germany
| | - Linda J. Richards
- The University of Queensland, The Queensland Brain Institute, Brisbane, QLD 4072, Australia
- The University of Queensland, The School of Biomedical Sciences, Brisbane, QLD 4072, Australia
| |
Collapse
|
217
|
Miyoshi T, Otsuka F, Yamashita M, Inagaki K, Nakamura E, Tsukamoto N, Takeda M, Suzuki J, Makino H. Functional relationship between fibroblast growth factor-8 and bone morphogenetic proteins in regulating steroidogenesis by rat granulosa cells. Mol Cell Endocrinol 2010; 325:84-92. [PMID: 20434519 DOI: 10.1016/j.mce.2010.04.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 04/08/2010] [Accepted: 04/13/2010] [Indexed: 12/17/2022]
Abstract
Bone morphogenetic proteins (BMPs) have been recognized as crucial molecules in regulating ovarian physiology, with different BMPs having differential actions in FSH-induced estradiol production. To identify the roles of oocyte factors that modulate steroidogenesis controlled by BMPs, we here investigated the effects of FGF-8 in rat granulosa/oocyte co-cultures. FGF-8 potently suppressed FSH-induced estradiol production, but did not affect cAMP-induced estradiol produced by rat granulosa cells. FGF-8 had no effects on progesterone and cAMP production induced by FSH and forskolin. The inhibitory effects of FGF-8 on FSH-induced estradiol production were not altered by BMP-2, -4, -6 or -7. In the presence of FGF-8, BMPs suppressed FSH-induced progesterone by reducing cAMP, suggesting that FGF-8 and BMP independently regulate FSH receptor signaling. Notably, FGF-8-induced ERK and SAPK/JNK phosphorylation in granulosa cells, in which ERK activation was further enhanced by FSH and oocytes. Inhibition of ERK and SAPK/JNK reduced FSH-induced progesterone and cAMP levels, suggesting that the activation of these pathways enhances FSH-induced cAMP signaling. In addition, ERK inhibition upregulated FSH-induced estradiol synthesis, indicating that ERK pathway is also involved in suppressing aromatase activity in granulosa cells. Interestingly, FGF-8 enhanced BMP-induced Smad1/5/8 and Id-1-promoter activities with decreased expression of Smad6/7. Since the SAPK/JNK inhibitor inhibited FGF-8 effects in upregulating Id-1 transcription, SAPK/JNK appears to be involved in the mechanism by which FGF-8 enhances BMP-Smad signaling. Furthermore, in the presence of oocytes, the inhibition of endogenous FGF receptor signaling suppressed FSH- and forskolin-induced progesterone and cAMP, showing that endogenous FGF system is involved in activation of FSH-induced cAMP-PKA signaling via ERK and SAPK/JNK. Thus, the oocyte factor, FGF-8, not only suppresses FSH-induced estradiol production by activating ERK, but also enhances BMP-Smad signaling in granulosa cells. This interaction between FGF-8 and BMPs may play a key role in regulating steroidogenesis through oocyte-granulosa cell communication.
Collapse
Affiliation(s)
- Tomoko Miyoshi
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kitaku, Okayama 700-8558, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
218
|
Kim HJ. Stem cell potential in Parkinson's disease and molecular factors for the generation of dopamine neurons. Biochim Biophys Acta Mol Basis Dis 2010; 1812:1-11. [PMID: 20713152 DOI: 10.1016/j.bbadis.2010.08.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 07/13/2010] [Accepted: 08/11/2010] [Indexed: 12/20/2022]
Abstract
Parkinson's disease (PD) involves the loss of dopamine (DA) neurons, making it the most expected neurodegenerative disease to be treated by cell replacement therapy. Stem cells are a promising source for cell replacement therapy due to their ability to self-renew and their pluripotency/multipotency that allows them to generate various types of cells. However, it is challenging to derive midbrain DA neurons from stem cells. Thus, in this review, I will discuss the molecular factors that are known to play critical roles in the generation and survival of DA neurons. The developmental process of DA neurons and functions of extrinsic soluble factors and homeodomain proteins, forkhead box proteins, proneural genes, Nurr1 and genes involved in epigenetic control are discussed. In addition, different types of stem cells that have potential for future cell replacement therapy are reviewed.
Collapse
Affiliation(s)
- Hyun-Jung Kim
- Laboratory of Molecular and Stem Cell Pharmacology, College of Pharmacy, Chung-Ang University, Seoul 156-756, South Korea.
| |
Collapse
|
219
|
Mao J, McKean DM, Warrier S, Corbin JG, Niswander L, Zohn IE. The iron exporter ferroportin 1 is essential for development of the mouse embryo, forebrain patterning and neural tube closure. Development 2010; 137:3079-88. [PMID: 20702562 DOI: 10.1242/dev.048744] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Neural tube defects (NTDs) are some of the most common birth defects observed in humans. The incidence of NTDs can be reduced by peri-conceptional folic acid supplementation alone and reduced even further by supplementation with folic acid plus a multivitamin. Here, we present evidence that iron maybe an important nutrient necessary for normal development of the neural tube. Following implantation of the mouse embryo, ferroportin 1 (Fpn1) is essential for the transport of iron from the mother to the fetus and is expressed in the visceral endoderm, yolk sac and placenta. The flatiron (ffe) mutant mouse line harbors a hypomorphic mutation in Fpn1 and we have created an allelic series of Fpn1 mutations that result in graded developmental defects. A null mutation in the Fpn1 gene is embryonic lethal before gastrulation, hypomorphic Fpn1(ffe/ffe) mutants exhibit NTDs consisting of exencephaly, spina bifida and forebrain truncations, while Fpn1(ffe/KI) mutants exhibit even more severe NTDs. We show that Fpn1 is not required in the embryo proper but rather in the extra-embryonic visceral endoderm. Our data indicate that loss of Fpn1 results in abnormal morphogenesis of the anterior visceral endoderm (AVE). Defects in the development of the forebrain in Fpn1 mutants are compounded by defects in multiple signaling centers required for maintenance of the forebrain, including the anterior definitive endoderm (ADE), anterior mesendoderm (AME) and anterior neural ridge (ANR). Finally, we demonstrate that this loss of forebrain maintenance is due in part to the iron deficiency that results from the absence of fully functional Fpn1.
Collapse
Affiliation(s)
- Jinzhe Mao
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC 20010, USA
| | | | | | | | | | | |
Collapse
|
220
|
Wyngaarden LA, Vogeli KM, Ciruna BG, Wells M, Hadjantonakis AK, Hopyan S. Oriented cell motility and division underlie early limb bud morphogenesis. Development 2010; 137:2551-8. [PMID: 20554720 DOI: 10.1242/dev.046987] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The vertebrate limb bud arises from lateral plate mesoderm and its overlying ectoderm. Despite progress regarding the genetic requirements for limb development, morphogenetic mechanisms that generate early outgrowth remain relatively undefined. We show by live imaging and lineage tracing in different vertebrate models that the lateral plate contributes mesoderm to the early limb bud through directional cell movement. The direction of cell motion, longitudinal cell axes and bias in cell division planes lie largely parallel to one another along the rostrocaudal (head-tail) axis in lateral plate mesoderm. Transition of these parameters from a rostrocaudal to a mediolateral (outward from the body wall) orientation accompanies early limb bud outgrowth. Furthermore, we provide evidence that Wnt5a acts as a chemoattractant in the emerging limb bud where it contributes to the establishment of cell polarity that is likely to underlie the oriented cell behaviours.
Collapse
Affiliation(s)
- Laurie A Wyngaarden
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, M5G 1X8, Canada
| | | | | | | | | | | |
Collapse
|
221
|
Collette NM, Genetos D, Murugesh D, Harland RM, Loots GG. Genetic evidence that SOST inhibits WNT signaling in the limb. Dev Biol 2010; 342:169-79. [PMID: 20359476 PMCID: PMC2896299 DOI: 10.1016/j.ydbio.2010.03.021] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Revised: 03/18/2010] [Accepted: 03/22/2010] [Indexed: 11/17/2022]
Abstract
SOST is a negative regulator of bone formation, and mutations in human SOST are responsible for sclerosteosis. In addition to high bone mass, sclerosteosis patients occasionally display hand defects, suggesting that SOST may function embryonically. Here we report that overexpression of SOST leads to loss of posterior structures of the zeugopod and autopod by perturbing anterior-posterior and proximal-distal signaling centers in the developing limb. Mutant mice that overexpress SOST in combination with Grem1 and Lrp6 mutations display more severe limb defects than single mutants alone, while Sost(-/-) significantly rescues the Lrp6(-/-) skeletal phenotype, signifying that SOST gain-of-function impairs limb patterning by inhibiting the WNT signaling through LRP5/6.
Collapse
Affiliation(s)
- Nicole M. Collette
- Biology and Biotechnology Division, Lawrence Livermore National Laboratory, 7000 East Avenue, L-452, Livermore, CA 94550
- Department of Molecular and Cell Biology, Division of Genetics, Genomics, and Development, and Center for Integrative Genomics, University of California, Berkeley, CA 94720-3204, USA
| | - Damian Genetos
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Deepa Murugesh
- Biology and Biotechnology Division, Lawrence Livermore National Laboratory, 7000 East Avenue, L-452, Livermore, CA 94550
- Department of Molecular and Cell Biology, Division of Genetics, Genomics, and Development, and Center for Integrative Genomics, University of California, Berkeley, CA 94720-3204, USA
| | - Richard M. Harland
- Department of Molecular and Cell Biology, Division of Genetics, Genomics, and Development, and Center for Integrative Genomics, University of California, Berkeley, CA 94720-3204, USA
| | - Gabriela G. Loots
- Biology and Biotechnology Division, Lawrence Livermore National Laboratory, 7000 East Avenue, L-452, Livermore, CA 94550
- Department of Molecular and Cell Biology, Division of Genetics, Genomics, and Development, and Center for Integrative Genomics, University of California, Berkeley, CA 94720-3204, USA
| |
Collapse
|
222
|
Chilov D, Sinjushina N, Saarimäki-Vire J, Taketo MM, Partanen J. beta-Catenin regulates intercellular signalling networks and cell-type specific transcription in the developing mouse midbrain-rhombomere 1 region. PLoS One 2010; 5:e10881. [PMID: 20532162 PMCID: PMC2880587 DOI: 10.1371/journal.pone.0010881] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Accepted: 05/01/2010] [Indexed: 12/29/2022] Open
Abstract
β-catenin is a multifunctional protein involved in both signalling by secreted factors of Wnt family and regulation of the cellular architecture. We show that β-catenin stabilization in mouse midbrain-rhombomere1 region leads to robust up-regulation of several Wnt signalling target genes, including Fgf8. Suggestive of direct transcriptional regulation of the Fgf8 gene, β-catenin stabilization resulted in Fgf8 up-regulation also in other tissues, specifically in the ventral limb ectoderm. Interestingly, stabilization of β-catenin rapidly caused down-regulation of the expression of Wnt1 itself, suggesting a negative feedback loop. The changes in signal molecule expression were concomitant with deregulation of anterior-posterior and dorso-ventral patterning. The transcriptional regulatory functions of β-catenin were confirmed by β-catenin loss-of-function experiments. Temporally controlled inactivation of β-catenin revealed a cell-autonomous role for β-catenin in the maintenance of cell-type specific gene expression in the progenitors of midbrain dopaminergic neurons. These results highlight the role of β-catenin in establishment of neuroectodermal signalling centers, promoting region-specific gene expression and regulation of cell fate determination.
Collapse
Affiliation(s)
- Dmitri Chilov
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | | | | | - Makoto M. Taketo
- Department of Pharmacology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Juha Partanen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
- Department of Biosciences, University of Helsinki, Helsinki, Finland
- * E-mail:
| |
Collapse
|
223
|
Doroba CK, Sears KE. The Divergent Development of the Apical Ectodermal Ridge in the Marsupial Monodelphis domestica. Anat Rec (Hoboken) 2010; 293:1325-32. [DOI: 10.1002/ar.21183] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
224
|
Huang T, Liu Y, Huang M, Zhao X, Cheng L. Wnt1-cre-mediated Conditional Loss of Dicer Results in Malformation of the Midbrain and Cerebellum and Failure of Neural Crest and Dopaminergic Differentiation in Mice. J Mol Cell Biol 2010; 2:152-63. [DOI: 10.1093/jmcb/mjq008] [Citation(s) in RCA: 143] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
225
|
Dong Y, Jesse AM, Kohn A, Gunnell LM, Honjo T, Zuscik MJ, O'Keefe RJ, Hilton MJ. RBPjkappa-dependent Notch signaling regulates mesenchymal progenitor cell proliferation and differentiation during skeletal development. Development 2010; 137:1461-71. [PMID: 20335360 PMCID: PMC2853848 DOI: 10.1242/dev.042911] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2010] [Indexed: 12/19/2022]
Abstract
The Notch pathway has recently been implicated in mesenchymal progenitor cell (MPC) differentiation from bone marrow-derived progenitors. However, whether Notch regulates MPC differentiation in an RBPjkappa-dependent manner, specifies a particular MPC cell fate, regulates MPC proliferation and differentiation during early skeletal development or controls specific Notch target genes to regulate these processes remains unclear. To determine the exact role and mode of action for the Notch pathway in MPCs during skeletal development, we analyzed tissue-specific loss-of-function (Prx1Cre; Rbpjk(f/f)), gain-of-function (Prx1Cre; Rosa-NICD(f/+)) and RBPjkappa-independent Notch gain-of-function (Prx1Cre; Rosa-NICD(f/+); Rbpjk(f/f)) mice for defects in MPC proliferation and differentiation. These data demonstrate for the first time that the RBPjkappa-dependent Notch signaling pathway is a crucial regulator of MPC proliferation and differentiation during skeletal development. Our study also implicates the Notch pathway as a general suppressor of MPC differentiation that does not bias lineage allocation. Finally, Hes1 was identified as an RBPjkappa-dependent Notch target gene important for MPC maintenance and the suppression of in vitro chondrogenesis.
Collapse
Affiliation(s)
- Yufeng Dong
- Department of Orthopaedics and Rehabilitation, Center for Musculoskeletal Research, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Alana M. Jesse
- Department of Orthopaedics and Rehabilitation, Center for Musculoskeletal Research, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Anat Kohn
- Department of Orthopaedics and Rehabilitation, Center for Musculoskeletal Research, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Lea M. Gunnell
- Department of Orthopaedics and Rehabilitation, Center for Musculoskeletal Research, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Tasuku Honjo
- Immunology and Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | - Michael J. Zuscik
- Department of Orthopaedics and Rehabilitation, Center for Musculoskeletal Research, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Regis J. O'Keefe
- Department of Orthopaedics and Rehabilitation, Center for Musculoskeletal Research, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Matthew J. Hilton
- Department of Orthopaedics and Rehabilitation, Center for Musculoskeletal Research, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| |
Collapse
|
226
|
|
227
|
Holley M, Rhodes C, Kneebone A, Herde MK, Fleming M, Steel KP. Emx2 and early hair cell development in the mouse inner ear. Dev Biol 2010; 340:547-56. [PMID: 20152827 PMCID: PMC2877772 DOI: 10.1016/j.ydbio.2010.02.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Revised: 01/18/2010] [Accepted: 02/03/2010] [Indexed: 12/04/2022]
Abstract
Emx2 is a homeodomain protein that plays a critical role in inner ear development. Homozygous null mice die at birth with a range of defects in the CNS, renal system and skeleton. The cochlea is shorter than normal with about 60% fewer auditory hair cells. It appears to lack outer hair cells and some supporting cells are either absent or fail to differentiate. Many of the hair cells differentiate in pairs and although their hair bundles develop normally their planar cell polarity is compromised. Measurements of cell polarity suggest that classic planar cell polarity molecules are not directly influenced by Emx2 and that polarity is compromised by developmental defects in the sensory precursor population or by defects in epithelial cues for cell alignment. Planar cell polarity is normal in the vestibular epithelia although polarity reversal across the striola is absent in both the utricular and saccular maculae. In contrast, cochlear hair cell polarity is disorganized. The expression domain for Bmp4 is expanded and Fgfr1 and Prox1 are expressed in fewer cells in the cochlear sensory epithelium of Emx2 null mice. We conclude that Emx2 regulates early developmental events that balance cell proliferation and differentiation in the sensory precursor population.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Cell Polarity/genetics
- Cochlea/cytology
- Cochlea/embryology
- Cochlea/growth & development
- Cochlea/metabolism
- Ear, Inner/cytology
- Ear, Inner/embryology
- Ear, Inner/metabolism
- Embryo, Mammalian/cytology
- Embryo, Mammalian/metabolism
- Embryo, Mammalian/ultrastructure
- Epithelium/metabolism
- Gene Expression Regulation, Developmental
- Hair Cells, Auditory/cytology
- Hair Cells, Auditory/metabolism
- Hair Cells, Auditory/ultrastructure
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Immunohistochemistry
- In Situ Hybridization
- Mice
- Mice, Knockout
- Transcription Factors/genetics
- Transcription Factors/metabolism
Collapse
Affiliation(s)
- Matthew Holley
- Department of Biomedical Science, Addison Building, Western Bank, Sheffield S10 2TN, UK.
| | | | | | | | | | | |
Collapse
|
228
|
Rentschler S, Jain R, Epstein JA. Tissue-tissue interactions during morphogenesis of the outflow tract. Pediatr Cardiol 2010; 31:408-13. [PMID: 20039033 PMCID: PMC2951316 DOI: 10.1007/s00246-009-9611-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Accepted: 12/07/2009] [Indexed: 01/02/2023]
Abstract
The heart forms as a linear heart tube that loops and septates to produce a mature four-chambered structure. The single vessel emerging from the embryonic heart, the truncus arteriosus, divides into the aorta and the pulmonary artery as part of this septation process, and a series of additional morphogenetic events result in the proper alignment and orientation of the cardiac outflow tract. Recent evidence indicates that this process involves the complex interactions of multiple cell types including primary and secondary heart fields, neural crest, pharyngeal mesenchyme, endoderm, and endothelium. Among the many signals that mediate tissue-tissue interactions during the formation of the outflow tract, we have focused on the role of the Notch signaling pathway. Here, we focus on recent advances in our understanding of Notch-mediated regulation of cardiac development with specific attention to the formation of the cardiac outflow tract.
Collapse
Affiliation(s)
- Stacey Rentschler
- Department of Cell and Developmental Biology, Penn Cardiovascular Institute, and the Institute for Regenerative Medicine, University of Pennsylvania, 1154 BRB II, 421 Curie Blvd, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
229
|
Cheng Y, Sudarov A, Szulc KU, Sgaier SK, Stephen D, Turnbull DH, Joyner AL. The Engrailed homeobox genes determine the different foliation patterns in the vermis and hemispheres of the mammalian cerebellum. Development 2010; 137:519-29. [PMID: 20081196 DOI: 10.1242/dev.027045] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Little is known about the genetic pathways and cellular processes responsible for regional differences in cerebellum foliation, which interestingly are accompanied by regionally distinct afferent circuitry. We have identified the Engrailed (En) homeobox genes as being crucial to producing the distinct medial vermis and lateral hemisphere foliation patterns in mammalian cerebella. By producing a series of temporal conditional mutants in En1 and/or En2, we demonstrate that both En genes are required to ensure that folia exclusive to the vermis or hemispheres form in the appropriate mediolateral position. Furthermore, En1/En2 continue to regulate foliation after embryonic day 14, at which time Fgf8 isthmic organizer activity is complete and the major output cells of the cerebellar cortex have been specified. Changes in spatially restricted gene expression occur prior to foliation in mutants, and foliation is altered from the onset and is accompanied by changes in the thickness of the layer of proliferating granule cell precursors. In addition, the positioning and timing of fissure formation are altered. Thus, the En genes represent a new class of genes that are fundamental to patterning cerebellum foliation throughout the mediolateral axis and that act late in development.
Collapse
Affiliation(s)
- Yulan Cheng
- Developmental Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | | | | | | | | | | | | |
Collapse
|
230
|
Farkas DR, Chapman DL. Kinked tail mutation results in notochord defects in heterozygotes and distal visceral endoderm defects in homozygotes. Dev Dyn 2010; 238:3237-47. [PMID: 19877283 DOI: 10.1002/dvdy.22141] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Proper formation of the anterior-posterior (AP) axis in the developing embryo is critical for the correct patterning and often survival of the organism. In the mouse, an initial step in axis establishment is the specification and migration of the distal visceral endoderm (DVE). We have identified a semi-dominant spontaneous mutation in mouse, named kinked tail (knk), which when heterozygous results in a kinky tail phenotype due to fusions and dysmorphology of the tail vertebrae. Vertebral fusions appear to be a secondary effect of notochord thickening and branching in the tail region. Homozygosity for knk results in early embryonic lethality by embryonic day 8.5 due to improper timing of DVE specification and migration, and subsequent failure to establish the AP axis.
Collapse
Affiliation(s)
- Deborah R Farkas
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | | |
Collapse
|
231
|
Mikedis MM, Downs KM. Collagen type IV and Perlecan exhibit dynamic localization in the Allantoic Core Domain, a putative stem cell niche in the murine allantois. Dev Dyn 2010; 238:3193-204. [PMID: 19924818 DOI: 10.1002/dvdy.22129] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
A body of evidence suggests that the murine allantois contains a stem cell niche, the Allantoic Core Domain (ACD), that may contribute to a variety of allantoic and embryonic cell types. Given that extracellular matrix (ECM) regulates cell fate and function in niches, the allantois was systematically examined for Collagen type IV (ColIV) and Perlecan, both of which are associated with stem cell proliferation and differentiation. Not only was localization of ColIV and Perlecan more widespread during gastrulation than previously reported, but protein localization profiles were particularly robust and dynamic within the allantois and associated visceral endoderm as the ACD formed and matured. We propose that these data provide further evidence that the ACD is a stem cell niche whose activity is synchronized with associated visceral endoderm, possibly via ECM proteins.
Collapse
Affiliation(s)
- Maria M Mikedis
- Department of Anatomy, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
232
|
Shh pathway activation is present and required within the vertebrate limb bud apical ectodermal ridge for normal autopod patterning. Proc Natl Acad Sci U S A 2010; 107:5489-94. [PMID: 20212115 DOI: 10.1073/pnas.0912818107] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Expression of Sonic Hedgehog (Shh) in the posterior mesenchyme of the developing limb bud regulates patterning and growth of the developing limb by activation of the Hedgehog (Hh) signaling pathway. Through the analysis of Shh and Hh signaling target genes, it has been shown that activation in the limb bud mesoderm is required for normal limb development to occur. In contrast, it has been stated that Hh signaling in the limb bud ectoderm cannot occur because components of the Hh signaling pathway and Hh target genes have not been found in this tissue. However, recent array-based data identified both the components necessary to activate the Hh signaling pathway and targets of this pathway in the limb bud ectoderm. Using immunohistochemistry and various methods of detection for targets of Hh signaling, we found that SHH protein and targets of Hh signaling are present in the limb bud ectoderm including the apex of the bud. To directly test whether ectodermal Hh signaling was required for normal limb patterning, we removed Smo, an essential component of the Hh signaling pathway, from the apical ectodermal ridge (AER). Loss of functional Hh signaling in the AER resulted in disruption of the normal digit pattern and formation of additional postaxial cartilaginous condensations. These data indicate that contrary to previous accounts, the Hh signaling pathway is present and required in the developing limb AER for normal autopod development.
Collapse
|
233
|
Nilsson EM, Brokken LJ, Härkönen PL. Fibroblast growth factor 8 increases breast cancer cell growth by promoting cell cycle progression and by protecting against cell death. Exp Cell Res 2010; 316:800-12. [DOI: 10.1016/j.yexcr.2009.11.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Revised: 11/12/2009] [Accepted: 11/27/2009] [Indexed: 02/05/2023]
|
234
|
Stavridis MP, Collins BJ, Storey KG. Retinoic acid orchestrates fibroblast growth factor signalling to drive embryonic stem cell differentiation. Development 2010; 137:881-90. [PMID: 20179094 PMCID: PMC2834455 DOI: 10.1242/dev.043117] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2010] [Indexed: 12/21/2022]
Abstract
Embryonic stem (ES) cells fluctuate between self-renewal and the threshold of differentiation. Signalling via the fibroblast growth factor (Fgf)/Erk pathway is required to progress from this dynamic state and promote mouse ES cell differentiation. Retinoic acid also induces differentiation in many cellular contexts, but its mechanism of action in relation to Fgf/Erk signalling in ES cells is poorly understood. Here, we show for the first time that endogenous retinoid signalling is required for the timely acquisition of somatic cell fate in mouse ES cells and that exposure to retinoic acid advances differentiation by a dual mechanism: first increasing, but in the long-term decreasing, Fgf signalling. Rapid retinoid induction of Fgf8 and downstream Erk activity on day 1 in differentiation conditions may serve to ensure loss of self-renewal. However, more gradual repression of Fgf4 by retinoic acid is accompanied by an overall reduction in Erk activity on day 2, and the acquisition of neural and non-neural fates is now advanced by inhibition of Fgf signalling. So, although blocking Fgf/Erk activity is known to promote ES cell self-renewal, once cells have experienced a period of such signals, subsequent inhibition of Fgf signalling has the opposite effect and drives differentiation. We further show in the embryo that retinoid repression of Fgf signalling promotes neural differentiation onset in an analogous step in the extending embryonic body axis and so identify attenuation of Fgf signalling by retinoic acid as a conserved fundamental mechanism driving differentiation towards somatic cell fates.
Collapse
Affiliation(s)
| | | | - Kate G. Storey
- Neural Development Group, Division of Cell and Developmental Biology, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| |
Collapse
|
235
|
Abstract
Congenital heart disease represents the most common form of human birth defect, occurring in nearly 1 in 100 live births. An increasing number of patients with these defects are surviving infancy. Approximately one-third of congenital heart defects involve malformations of the outflow tract. Related defects are found in isolation and as part of common human syndromes. Our laboratory has investigated mechanisms of cardiac morphogenesis with particular attention to outflow tract formation. During cardiogenesis, neural crest cells interact with second heart field myocardium and endocardial cushion mesenchyme. Our recent work demonstrates that Jagged1/Notch signaling within the second heart field initiates a signaling cascade involving Fgf8, Bmp4, and downstream effectors that modulate outflow tract development and aortic arch artery patterning. Hence, complex tissue-tissue interactions and integration of multiple pathways converge to orchestrate proper patterning of the outflow region. The role of Notch signaling in adult cardiac homeostasis and disease is an area of active investigation.
Collapse
Affiliation(s)
- Rajan Jain
- Department of Cell and Developmental Biology, Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|
236
|
Zimmer C, Lee J, Griveau A, Arber S, Pierani A, Garel S, Guillemot F. Role of Fgf8 signalling in the specification of rostral Cajal-Retzius cells. Development 2010; 137:293-302. [PMID: 20040495 PMCID: PMC2799162 DOI: 10.1242/dev.041178] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2009] [Indexed: 12/14/2022]
Abstract
Cajal-Retzius (CR) cells play a key role in the formation of the cerebral cortex. These pioneer neurons are distributed throughout the cortical marginal zone in distinct graded distributions. Fate mapping and cell lineage tracing studies have recently shown that CR cells arise from restricted domains of the pallial ventricular zone, which are associated with signalling centres involved in the early regionalisation of the telencephalic vesicles. In this study, we identified a subpopulation of CR cells in the rostral telencephalon that expresses Er81, a downstream target of Fgf8 signalling. We investigated the role of the rostral telencephalic patterning centre, which secretes FGF molecules, in the specification of these cells. Using pharmacological inhibitors and genetic inactivation of Fgf8, we showed that production of Fgf8 by the rostral telencephalic signalling centre is required for the specification of the Er81+ CR cell population. Moreover, the analysis of Fgf8 gain-of-function in cultivated mouse embryos and of Emx2 and Gli3 mutant embryos revealed that ectopic Fgf8 signalling promotes the generation of CR cells with a rostral phenotype from the dorsal pallium. These data showed that Fgf8 signalling is both required and sufficient to induce rostral CR cells. Together, our results shed light on the mechanisms specifying rostral CR cells and further emphasise the crucial role of telencephalic signalling centres in the generation of distinct CR cell populations.
Collapse
Affiliation(s)
- Céline Zimmer
- National Institute for Medical Research (NIMR), Medical Research Council (MRC), Department of Molecular Neurobiology, London NW7 1AA, UK
| | - Jun Lee
- Biozentrum, Department of Cell Biology, University of Basel, and Friedrich Miescher Institute for Biomedical Research, 4056 Basel, Switzerland
| | - Amélie Griveau
- Institut Jacques Monod, Program in Development and Neurobiology, CNRS UMR 7592 and Université Paris Diderot, Paris 75013, France
| | - Silvia Arber
- Biozentrum, Department of Cell Biology, University of Basel, and Friedrich Miescher Institute for Biomedical Research, 4056 Basel, Switzerland
| | - Alessandra Pierani
- Institut Jacques Monod, Program in Development and Neurobiology, CNRS UMR 7592 and Université Paris Diderot, Paris 75013, France
| | - Sonia Garel
- INSERM U784, Ecole Normale Supérieure, Département de Biologie, Paris 75005, France
| | - François Guillemot
- National Institute for Medical Research (NIMR), Medical Research Council (MRC), Department of Molecular Neurobiology, London NW7 1AA, UK
| |
Collapse
|
237
|
Butterfield NC, McGlinn E, Wicking C. The molecular regulation of vertebrate limb patterning. Curr Top Dev Biol 2010; 90:319-41. [PMID: 20691854 DOI: 10.1016/s0070-2153(10)90009-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The limb has long been considered a paradigm for organogenesis because of its simplicity and ease of manipulation. However, it has become increasingly clear that the processes required to produce a perfectly formed limb involve complex molecular interactions across all three axes of limb development. Old models have evolved with acquisition of molecular knowledge, and in more recent times mathematical modeling approaches have been invoked to explain the precise spatio-temporal regulation of gene networks that coordinate limb patterning and outgrowth. This review focuses on recent advances in our understanding of vertebrate limb development, highlighting the signaling interactions required to lay down the pattern on which the processes of differentiation will act to ultimately produce the final limb.
Collapse
Affiliation(s)
- Natalie C Butterfield
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | | | | |
Collapse
|
238
|
Schlosser G. Making senses development of vertebrate cranial placodes. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 283:129-234. [PMID: 20801420 DOI: 10.1016/s1937-6448(10)83004-7] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Cranial placodes (which include the adenohypophyseal, olfactory, lens, otic, lateral line, profundal/trigeminal, and epibranchial placodes) give rise to many sense organs and ganglia of the vertebrate head. Recent evidence suggests that all cranial placodes may be developmentally related structures, which originate from a common panplacodal primordium at neural plate stages and use similar regulatory mechanisms to control developmental processes shared between different placodes such as neurogenesis and morphogenetic movements. After providing a brief overview of placodal diversity, the present review summarizes current evidence for the existence of a panplacodal primordium and discusses the central role of transcription factors Six1 and Eya1 in the regulation of processes shared between different placodes. Upstream signaling events and transcription factors involved in early embryonic induction and specification of the panplacodal primordium are discussed next. I then review how individual placodes arise from the panplacodal primordium and present a model of multistep placode induction. Finally, I briefly summarize recent advances concerning how placodal neurons and sensory cells are specified, and how morphogenesis of placodes (including delamination and migration of placode-derived cells and invagination) is controlled.
Collapse
Affiliation(s)
- Gerhard Schlosser
- Zoology, School of Natural Sciences & Martin Ryan Institute, National University of Ireland, Galway, Ireland
| |
Collapse
|
239
|
Watanabe Y, Miyagawa-Tomita S, Vincent SD, Kelly RG, Moon AM, Buckingham ME. Role of mesodermal FGF8 and FGF10 overlaps in the development of the arterial pole of the heart and pharyngeal arch arteries. Circ Res 2009; 106:495-503. [PMID: 20035084 DOI: 10.1161/circresaha.109.201665] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
RATIONALE The genes encoding fibroblast growth factor (FGF) 8 and 10 are expressed in the anterior part of the second heart field that constitutes a population of cardiac progenitor cells contributing to the arterial pole of the heart. Previous studies of hypomorphic and conditional Fgf8 mutants show disrupted outflow tract (OFT) and right ventricle (RV) development, whereas Fgf10 mutants do not have detectable OFT defects. OBJECTIVES Our aim was to investigate functional overlap between Fgf8 and Fgf10 during formation of the arterial pole. METHODS AND RESULTS We generated mesodermal Fgf8; Fgf10 compound mutants with MesP1Cre. The OFT/RV morphology in these mutants was affected with variable penetrance; however, the incidence of embryos with severely affected OFT/RV morphology was significantly increased in response to decreasing Fgf8 and Fgf10 gene dosage. Fgf8 expression in the pharyngeal arch ectoderm is important for development of the pharyngeal arch arteries and their derivatives. We now show that Fgf8 deletion in the mesoderm alone leads to pharyngeal arch artery phenotypes and that these vascular phenotypes are exacerbated by loss of Fgf10 function in the mesodermal core of the arches. CONCLUSIONS These results show functional overlap of FGF8 and FGF10 signaling from second heart field mesoderm during development of the OFT/RV, and from pharyngeal arch mesoderm during pharyngeal arch artery formation, highlighting the sensitivity of these key aspects of cardiovascular development to FGF dosage.
Collapse
Affiliation(s)
- Yusuke Watanabe
- Department of Developmental Biology, URA CNRS 2578, Institut Pasteur, 25 rue du Dr. Roux 75015 Paris, France
| | | | | | | | | | | |
Collapse
|
240
|
Fgf8b-containing spliceforms, but not Fgf8a, are essential for Fgf8 function during development of the midbrain and cerebellum. Dev Biol 2009; 338:183-92. [PMID: 19968985 DOI: 10.1016/j.ydbio.2009.11.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Revised: 11/23/2009] [Accepted: 11/30/2009] [Indexed: 02/05/2023]
Abstract
The single Fgf8 gene in mice produces eight protein isoforms (Fgf8a-h) with different N-termini by alternative splicing. Gain-of-function studies have demonstrated that Fgf8a and Fgf8b have distinct activities in the developing midbrain and hindbrain (MHB) due to their different binding affinities with FGF receptors. Here we have performed loss-of-function analyses to determine the in vivo requirement for these two Fgf8 spliceforms during MHB development. We showed that deletion of Fgf8b-containing spliceforms (b, d, f and h) leads to loss of multiple key regulatory genes, including Fgf8 itself, in the MHB region. Therefore, specific inactivation of Fgf8b-containing spliceforms, similar to the loss of Fgf8, in MHB progenitors results in deletion of the midbrain, isthmus, and cerebellum. We also created a splice-site mutation abolishing Fgf8a-containing spliceforms (a, c, e, and g). Mice lacking Fgf8a-containing spliceforms exhibit growth retardation and postnatal lethality, and the phenotype is variable in different genetic backgrounds, suggesting that the Fgf8a-containing spliceforms may play a role in modulating the activity of Fgf8. Surprisingly, no discernable defect was detected in the midbrain and cerebellum of Fgf8a-deficient mice. To determine if Fgf17, which is expressed in the MHB region and possesses similar activities to Fgf8a based on gain-of-function studies, may compensate for the loss of Fgf8a, we generated Fgf17 and Fgf8a double mutant mice. Mice lacking both Fgf8a-containing spliceforms and Fgf17 display the same defect in the posterior midbrain and anterior cerebellum as Fgf17 mutant mice. Therefore, Fgf8b-containing spliceforms, but not Fgf8a, are essential for the function of Fgf8 during the development of the midbrain and cerebellum.
Collapse
|
241
|
Wittmann DM, Blöchl F, Trümbach D, Wurst W, Prakash N, Theis FJ. Spatial analysis of expression patterns predicts genetic interactions at the mid-hindbrain boundary. PLoS Comput Biol 2009; 5:e1000569. [PMID: 19936059 PMCID: PMC2774268 DOI: 10.1371/journal.pcbi.1000569] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Accepted: 10/19/2009] [Indexed: 11/18/2022] Open
Abstract
The isthmic organizer mediating differentiation of mid- and hindbrain during vertebrate development is characterized by a well-defined pattern of locally restricted gene expression domains around the mid-hindbrain boundary (MHB). This pattern is established and maintained by a regulatory network between several transcription and secreted factors that is not yet understood in full detail. In this contribution we show that a Boolean analysis of the characteristic spatial gene expression patterns at the murine MHB reveals key regulatory interactions in this network. Our analysis employs techniques from computational logic for the minimization of Boolean functions. This approach allows us to predict also the interplay of the various regulatory interactions. In particular, we predict a maintaining, rather than inducing, effect of Fgf8 on Wnt1 expression, an issue that remained unclear from published data. Using mouse anterior neural plate/tube explant cultures, we provide experimental evidence that Fgf8 in fact only maintains but does not induce ectopic Wnt1 expression in these explants. In combination with previously validated interactions, this finding allows for the construction of a regulatory network between key transcription and secreted factors at the MHB. Analyses of Boolean, differential equation and reaction-diffusion models of this network confirm that it is indeed able to explain the stable maintenance of the MHB as well as time-courses of expression patterns both under wild-type and various knock-out conditions. In conclusion, we demonstrate that similar to temporal also spatial expression patterns can be used to gain information about the structure of regulatory networks. We show, in particular, that the spatial gene expression patterns around the MHB help us to understand the maintenance of this boundary on a systems level. Understanding brain formation during development is a tantalizing challenge. It is also essential for the fight against neurodegenerative diseases. In vertebrates, the central nervous system arises from a structure called the neural plate. This tissue is divided into four regions, which continue to develop into forebrain, midbrain, hindbrain and spinal cord. Interactions between locally expressed genes and signaling molecules are responsible for this patterning. Two key signaling molecules in this process are Fgf8 and Wnt1 proteins. They are secreted from a signaling center located at the boundary between prospective mid- and hindbrain (mid-hindbrain boundary, MHB) and mediate development of these two brain regions. Here, we logically analyze the spatial gene expression patterns at the MHB and predict interactions involved in the differentiation of mid- and hindbrain. In particular, our analysis indicates that Wnt1 depends on Fgf8 for stable maintenance. A time-course analysis of Wnt1 expression after implantation of Fgf8-coated beads in mouse neural plate/tube explants experimentally validates our prediction about the interactions between these two key patterning molecules. Subsequently, we demonstrate that available data allows construction of a mathematical model able to explain the maintenance of the signaling center at the MHB. We begin to understand this small aspect of brain formation on a systems level.
Collapse
Affiliation(s)
- Dominik M. Wittmann
- Computational Modeling in Biology, Institute for Bioinformatics and Systems Biology, Helmholtz Zentrum München, German Research Centre for Environmental Health, Munich-Neuherberg, Germany
- Zentrum Mathematik, Technische Universität München, Garching, Germany
| | - Florian Blöchl
- Computational Modeling in Biology, Institute for Bioinformatics and Systems Biology, Helmholtz Zentrum München, German Research Centre for Environmental Health, Munich-Neuherberg, Germany
| | - Dietrich Trümbach
- Molecular Neurogenetics, Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Centre for Environmental Health, Technische Universität München, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Munich-Neuherberg, Germany
- Max Planck Institute of Psychiatry, Munich, Germany
| | - Wolfgang Wurst
- Molecular Neurogenetics, Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Centre for Environmental Health, Technische Universität München, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Munich-Neuherberg, Germany
- Max Planck Institute of Psychiatry, Munich, Germany
| | - Nilima Prakash
- Molecular Neurogenetics, Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Centre for Environmental Health, Technische Universität München, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Munich-Neuherberg, Germany
| | - Fabian J. Theis
- Computational Modeling in Biology, Institute for Bioinformatics and Systems Biology, Helmholtz Zentrum München, German Research Centre for Environmental Health, Munich-Neuherberg, Germany
- Zentrum Mathematik, Technische Universität München, Garching, Germany
- Max-Planck-Institute for Dynamics and Self-Organization, Göttingen, Germany
- * E-mail:
| |
Collapse
|
242
|
Savory JGA, Bouchard N, Pierre V, Rijli FM, De Repentigny Y, Kothary R, Lohnes D. Cdx2 regulation of posterior development through non-Hox targets. Development 2009; 136:4099-110. [PMID: 19906845 DOI: 10.1242/dev.041582] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The homeodomain transcription factors Cdx1, Cdx2 and Cdx4 play essential roles in anteroposterior vertebral patterning through regulation of Hox gene expression. Cdx2 is also expressed in the trophectoderm commencing at E3.5 and plays an essential role in implantation, thus precluding assessment of the cognate-null phenotype at later stages. Cdx2 homozygous null embryos generated by tetraploid aggregation exhibit an axial truncation indicative of a role for Cdx2 in elaborating the posterior embryo through unknown mechanisms. To better understand such roles, we developed a conditional Cdx2 floxed allele in mice and effected temporal inactivation at post-implantation stages using a tamoxifen-inducible Cre. This approach yielded embryos that were devoid of detectable Cdx2 protein and exhibited the axial truncation phenotype predicted from previous studies. This phenotype was associated with attenuated expression of genes encoding several key players in axial elongation, including Fgf8, T, Wnt3a and Cyp26a1, and we present data suggesting that T, Wnt3a and Cyp26a1 are direct Cdx2 targets. We propose a model wherein Cdx2 functions as an integrator of caudalizing information by coordinating axial elongation and somite patterning through Hox-independent and -dependent pathways, respectively.
Collapse
Affiliation(s)
- Joanne G A Savory
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada
| | | | | | | | | | | | | |
Collapse
|
243
|
Talamillo A, Delgado I, Nakamura T, de-Vega S, Yoshitomi Y, Unda F, Birchmeier W, Yamada Y, Ros MA. Role of Epiprofin, a zinc-finger transcription factor, in limb development. Dev Biol 2009; 337:363-74. [PMID: 19913006 DOI: 10.1016/j.ydbio.2009.11.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Revised: 11/03/2009] [Accepted: 11/04/2009] [Indexed: 11/29/2022]
Abstract
The formation and maintenance of the apical ectodermal ridge (AER) is critical for the outgrowth and patterning of the vertebrate limb. In the present work, we have investigated the role of Epiprofin (Epfn/Sp6), a member of the SP/KLF transcription factor family that is expressed in the limb ectoderm and the AER, during limb development. Epfn mutant mice have a defective autopod that shows mesoaxial syndactyly in the forelimb and synostosis (bony fusion) in the hindlimb and partial bidorsal digital tips. Epfn mutants also show a defect in the maturation of the AER that appears flat and broad, with a double ridge phenotype. By genetic analysis, we also show that Epfn is controlled by WNT/b-CATENIN signaling in the limb ectoderm. Since the less severe phenotypes of the conditional removal of b-catenin in the limb ectoderm strongly resemble the limb phenotype of Epfn mutants, we propose that EPFN very likely functions as a modulator of WNT signaling in the limb ectoderm.
Collapse
Affiliation(s)
- Ana Talamillo
- Departamento de Anatomía y Biología Celular. Facultad de Medicina. Universidad de Cantabria, 39011 Santander, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
244
|
Flrt2 and Flrt3 have overlapping and non-overlapping expression during craniofacial development. Gene Expr Patterns 2009; 9:497-502. [DOI: 10.1016/j.gep.2009.07.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Revised: 07/10/2009] [Accepted: 07/11/2009] [Indexed: 01/04/2023]
|
245
|
Domínguez-Frutos E, Vendrell V, Alvarez Y, Zelarayan LC, López-Hernández I, Ros M, Schimmang T. Tissue-specific requirements for FGF8 during early inner ear development. Mech Dev 2009; 126:873-81. [DOI: 10.1016/j.mod.2009.07.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Revised: 07/13/2009] [Accepted: 07/14/2009] [Indexed: 11/15/2022]
|
246
|
Komisarczuk AZ, Kawakami K, Becker TS. Cis-regulation and chromosomal rearrangement of the fgf8 locus after the teleost/tetrapod split. Dev Biol 2009; 336:301-12. [PMID: 19782672 DOI: 10.1016/j.ydbio.2009.09.029] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Revised: 09/02/2009] [Accepted: 09/18/2009] [Indexed: 12/23/2022]
Abstract
The complex expression pattern of fibroblast growth factor 8 (Fgf8) and the cellular responses dependent on concentration of its mRNA in vertebrates suggest that Fgf8 should be tightly controlled at the transcriptional level. We found zebrafish conserved noncoding elements (CNEs) with pan-vertebrate as well as fish-specific orthologous sequences from across 200 kb of the zebrafish fgf8a genomic regulatory block to direct reporter expression in patterns consistent with the expression pattern of fgf8a. These included elements from inside the introns of the skin-specific slc2a15a and the ubiquitously expressed fbxw4 bystander genes. The fgf8a/fbxw4 gene pair, which has remained joined throughout three whole genome duplications in chordate evolution, is inverted in teleost genomes, but CNEs across both evolutionary breakpoints showed specific activity. While some CNEs directed highly reproducible expression patterns, others were subject to variation but showed, in a subset of transgenes, expression in the apical ectodermal ridge, the anterior boundaries of somites and the midbrain-hindbrain boundary, specific Fgf8 signaling domains, suggesting that their activity may be context specific. A human element with tetrapod-specific orthologous sequences directed reporter expression to the vasculature, possibly corresponding to a tetrapod innovation. We conclude that fgf8a transcriptional regulation employs pan-vertebrate and teleost-specific enhancers dispersed over three genes in the zebrafish genome.
Collapse
Affiliation(s)
- Anna Z Komisarczuk
- Sars Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, N-5008 Bergen, Norway
| | | | | |
Collapse
|
247
|
Denaxa M, Sharpe PT, Pachnis V. The LIM homeodomain transcription factors Lhx6 and Lhx7 are key regulators of mammalian dentition. Dev Biol 2009; 333:324-36. [PMID: 19591819 PMCID: PMC2738952 DOI: 10.1016/j.ydbio.2009.07.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Revised: 07/01/2009] [Accepted: 07/01/2009] [Indexed: 12/30/2022]
Abstract
Genes encoding LIM homeodomain transcription factors are implicated in cell type specification and differentiation during embryogenesis. Two closely related members of this family, Lhx6 and Lhx7, are expressed in the ectomesenchyme of the maxillary and mandibular processes and have been suggested to control patterning of the first branchial arch (BA1) and odontogenesis. However, mice homozygous for single mutations either have no cranial defects (Lhx6) or show only cleft palate (Lhx7). To reveal the potential redundant activities of Lhx6 and Lhx7 in cranial morphogenesis, we generated mice with all combinations of wild-type and mutant alleles. Double homozygous mice have characteristic defects of the cranial skeleton and die shortly after birth, most likely because of cleft palate. In addition, Lhx6/7 deficient embryos lack molar teeth. The absence of molars in double mutants is not due to patterning defects of BA1 but results from failure of specification of the molar mesenchyme. Despite molar agenesis, Lhx6/7-deficient animals have normal incisors which, in the maxilla, are flanked by a supernumerary pair of incisor-like teeth. Our experiments demonstrate that the redundant activities of the LIM homeodomain proteins Lhx6 and Lhx7 are critical for craniofacial development and patterning of mammalian dentition.
Collapse
Affiliation(s)
- Myrto Denaxa
- Division of Molecular Neurobiology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK.
| | | | | |
Collapse
|
248
|
Stottmann RW, Tran PV, Turbe-Doan A, Beier DR. Ttc21b is required to restrict sonic hedgehog activity in the developing mouse forebrain. Dev Biol 2009; 335:166-78. [PMID: 19732765 DOI: 10.1016/j.ydbio.2009.08.023] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Revised: 08/24/2009] [Accepted: 08/24/2009] [Indexed: 10/20/2022]
Abstract
Organizing centers in the developing brain provide an assortment of instructive patterning cues, including Sonic hedgehog (Shh). Here we characterize the forebrain phenotype caused by loss of Ttc21b, a gene we identified in an ENU mutagenesis screen as a novel ciliary gene required for retrograde intraflagellar transport. The Ttc21b mutant has defects in limb, eye and, most dramatically, brain development. We show that Shh signaling is elevated in the rostral portion of the mutant embryo, including in a domain in or near the zona limitans intrathalamica. We demonstrate here that ciliary defects seen in the Ttc21b mutant extend to the embryonic brain, adding forebrain development to the spectrum of tissues affected by defects in ciliary physiology. We show that development of the Ttc21b brain phenotype is modified by lowering levels of the Shh ligand, supporting our hypothesis that the abnormal patterning is a consequence of elevated Shh signaling. Finally, we evaluate Wnt signaling but do not find evidence that this plays a role in causing the perturbed neurodevelopmental phenotype we describe.
Collapse
Affiliation(s)
- R W Stottmann
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
249
|
Understanding the mechanisms of callosal development through the use of transgenic mouse models. Semin Pediatr Neurol 2009; 16:127-42. [PMID: 19778710 DOI: 10.1016/j.spen.2009.07.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The cerebral cortex is the area of the brain where higher-order cognitive processing occurs. The 2 hemispheres of the cerebral cortex communicate through one of the largest fiber tracts in the brain, the corpus callosum. Malformation of the corpus callosum in human beings occurs in 1 in 4000 live births, and those afflicted experience an extensive range of neurologic disorders, from relatively mild to severe cognitive deficits. Understanding the molecular and cellular processes involved in these disorders would therefore assist in the development of prognostic tools and therapies. During the past 3 decades, mouse models have been used extensively to determine which molecules play a role in the complex regulation of corpus callosum development. This review provides an update on these studies, as well as highlights the value of using mouse models with the goal of developing therapies for human acallosal syndromes.
Collapse
|
250
|
Regulation of pre-otic brain development by the cephalic neural crest. Proc Natl Acad Sci U S A 2009; 106:15774-9. [PMID: 19720987 DOI: 10.1073/pnas.0906072106] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Emergence of the neural crest (NC) is considered an essential asset in the evolution of the chordate phylum, as specific vertebrate traits such as peripheral nervous system, cephalic skeletal tissues, and head development are linked to the NC and its derivatives. It has been proposed that the emergence of the NC was responsible for the formation of a "new head" characterized by the spectacular development of the forebrain and associated sense organs. It was previously shown that removal of the cephalic NC (CNC) prevents the formation of the facial structures but also results in anencephaly. This article reports on the molecular mechanisms whereby the CNC controls cephalic neurulation and brain morphogenesis. This study demonstrates that molecular variations of Gremlin and Noggin level in CNC account for morphological changes in brain size and development. CNC cells act in these processes through a multi-step control and exert cumulative effects counteracting bone morphogenetic protein signaling produced by the neighboring tissues (e.g., adjacent neuroepithelium, ventro-medial mesoderm, superficial ectoderm). These data provide an explanation for the fact that acquisition of the NC during the protochordate-to-vertebrate transition has coincided with a large increase of brain vesicles.
Collapse
|