201
|
Qiao F, Gao CY, Tripathi BK, Zelenka PS. Distinct functions of Cdk5(Y15) phosphorylation and Cdk5 activity in stress fiber formation and organization. Exp Cell Res 2008; 314:3542-50. [PMID: 18838073 PMCID: PMC12060253 DOI: 10.1016/j.yexcr.2008.08.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Revised: 08/28/2008] [Accepted: 08/30/2008] [Indexed: 11/23/2022]
Abstract
Previous studies have shown that Cdk5 promotes lens epithelial cell adhesion. Here we use a cell spreading assay to investigate the mechanism of this effect. As cells spread, forming matrix adhesions and stress fibers, Cdk5(Y15) phosphorylation and Cdk5 kinase activity increased. Cdk5(Y15) phosphorylation was inhibited by PP1, a Src family kinase inhibitor. To identify the PP1-sensitive kinase, we transfected cells with siRNA oligonucleotides for cSrc and related kinases. Only cSrc siRNA oligonucleotides inhibited Cdk5(Y15) phosphorylation. Cdk5(pY15) and its activator, p35, colocalized with actin in stress fibers. To examine Cdk5 function, we inhibited Cdk5 activity under conditions that also prevent phosphorylation at Y15: expression of kinase inactive mutations Cdk5(Y15F) and Cdk5(K33T), and siRNA suppression of Cdk5. Stress fiber formation was severely inhibited. To distinguish between a requirement for Cdk5 kinase activity and a possible adaptor role for Cdk5(pY15), we used two methods that inhibit kinase activity without inhibiting phosphorylation at Y15: pharmacological inhibition with olomoucine and expression of the kinase inactive mutation, Cdk5(D144N). Stress fiber organization was altered, but stress fiber formation was not blocked. These findings indicate that Cdk5(Y15) phosphorylation and Cdk5 activity have distinct functions required for stress fiber formation and organization, respectively.
Collapse
Affiliation(s)
- Fengyu Qiao
- National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892-0704
| | - Chun Y. Gao
- National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892-0704
| | - Brajendra K. Tripathi
- National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892-0704
| | - Peggy S. Zelenka
- National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892-0704
| |
Collapse
|
202
|
Veracini L, Simon V, Richard V, Schraven B, Horejsi V, Roche S, Benistant C. The Csk-binding protein PAG regulates PDGF-induced Src mitogenic signaling via GM1. ACTA ACUST UNITED AC 2008; 182:603-14. [PMID: 18695048 PMCID: PMC2500143 DOI: 10.1083/jcb.200705102] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Spatial regulation is an important feature of signal specificity elicited by cytoplasmic tyrosine kinases of the Src family (SRC family protein tyrosine kinases [SFK]). Cholesterol-enriched membrane domains, such as caveolae, regulate association of SFK with the platelet-derived growth factor receptor (PDGFR), which is needed for kinase activation and mitogenic signaling. PAG, a ubiquitously expressed member of the transmembrane adaptor protein family, is known to negatively regulate SFK signaling though binding to Csk. We report that PAG modulates PDGFR levels in caveolae and SFK mitogenic signaling through a Csk-independent mechanism. Regulation of SFK mitogenic activity by PAG requires the first N-terminal 97 aa (PAG-N), which include the extracellular and transmembrane domains, palmitoylation sites, and a short cytoplasmic sequence. We also show that PAG-N increases ganglioside GM1 levels at the cell surface and, thus, displaces PDGFR from caveolae, a process that requires the ganglioside-specific sialidase Neu-3. In conclusion, PAG regulates PDGFR membrane partitioning and SFK mitogenic signaling by modulating GM1 levels within caveolae independently from Csk.
Collapse
Affiliation(s)
- Laurence Veracini
- Centre de Recherche en Biochimie Macromoléculare, Centre National de la Recherche Scientifique UMR5237, Universities of Montpellier I and II, 34293 Montpellier, France
| | | | | | | | | | | | | |
Collapse
|
203
|
Vultur A, Buettner R, Kowolik C, Liang W, Smith D, Boschelli F, Jove R. SKI-606 (bosutinib), a novel Src kinase inhibitor, suppresses migration and invasion of human breast cancer cells. Mol Cancer Ther 2008; 7:1185-94. [PMID: 18483306 DOI: 10.1158/1535-7163.mct-08-0126] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Src family kinase activity is elevated in many human tumors, including breast cancer, and is often associated with aggressive disease. We examined the effects of SKI-606 (bosutinib), a selective Src family kinase inhibitor, on human cancer cells derived from breast cancer patients to assess its potential for breast cancer treatment. Our results show that SKI-606 caused a decrease in cell motility and invasion of breast cancer cell lines with an IC50 of approximately 250 nmol/L, which was also the IC50 for inhibition of cellular Src kinase activity in intact tumor cells. These changes were accompanied by an increase in cell-to-cell adhesion and membrane localization of beta-catenin. By contrast, cell proliferation and survival were unaffected by SKI-606 at concentrations sufficient to block cell migration and invasion. Analysis of downstream effectors of Src revealed that SKI-606 inhibits the phosphorylation of focal adhesion kinase (FAK), proline-rich tyrosine kinase 2 (Pyk2), and Crk-associated substrate (p130Cas), with an IC50 similar to inhibition of cellular Src kinase. Our findings indicate that SKI-606 inhibits signaling pathways involved in controlling tumor cell motility and invasion, suggesting that SKI-606 is a promising therapeutic for breast cancer.
Collapse
Affiliation(s)
- Adina Vultur
- Molecular Medicine, Beckman Research Institute, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA 91010, USA
| | | | | | | | | | | | | |
Collapse
|
204
|
Lu S, Ouyang M, Seong J, Zhang J, Chien S, Wang Y. The spatiotemporal pattern of Src activation at lipid rafts revealed by diffusion-corrected FRET imaging. PLoS Comput Biol 2008; 4:e1000127. [PMID: 18711637 PMCID: PMC2517613 DOI: 10.1371/journal.pcbi.1000127] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Accepted: 06/16/2008] [Indexed: 01/22/2023] Open
Abstract
Genetically encoded biosensors based on fluorescence resonance energy transfer (FRET) have been widely applied to visualize the molecular activity in live cells with high spatiotemporal resolution. However, the rapid diffusion of biosensor proteins hinders a precise reconstruction of the actual molecular activation map. Based on fluorescence recovery after photobleaching (FRAP) experiments, we have developed a finite element (FE) method to analyze, simulate, and subtract the diffusion effect of mobile biosensors. This method has been applied to analyze the mobility of Src FRET biosensors engineered to reside at different subcompartments in live cells. The results indicate that the Src biosensor located in the cytoplasm moves 4–8 folds faster (0.93±0.06 µm2/sec) than those anchored on different compartments in plasma membrane (at lipid raft: 0.11±0.01 µm2/sec and outside: 0.18±0.02 µm2/sec). The mobility of biosensor at lipid rafts is slower than that outside of lipid rafts and is dominated by two-dimensional diffusion. When this diffusion effect was subtracted from the FRET ratio images, high Src activity at lipid rafts was observed at clustered regions proximal to the cell periphery, which remained relatively stationary upon epidermal growth factor (EGF) stimulation. This result suggests that EGF induced a Src activation at lipid rafts with well-coordinated spatiotemporal patterns. Our FE-based method also provides an integrated platform of image analysis for studying molecular mobility and reconstructing the spatiotemporal activation maps of signaling molecules in live cells. Fluorescence biosensors have been widely used to report the spatial and temporal activity of target molecules in live cells. However, biosensors can move independently of the target molecule and carry its signal to other subcellular locations. Therefore, the observed images appear to be the combination of the target molecular activity and the artifacts introduced by the movement of the biosensors (mainly due to diffusion). The intriguing question is how to estimate and exclude the movement effect of biosensors from the observed fluorescent images and to reconstruct the real activity map of the target molecules. The Src molecule plays important roles in cell adhesion, migration, and cancer invasion. In this paper, we developed a novel computational method to analyze and simulate the movement of the Src biosensor, which was then subtracted from the original fluorescent images. With this computational method, we observed discrete clusters of high Src activity at relatively stationary locations on the plasma membrane. Therefore, our results highlight the coordination of molecular activities in space and time. In addition to Src, our computational method can be used to reconstruct the activity map of other signaling molecules.
Collapse
Affiliation(s)
- Shaoying Lu
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Mingxing Ouyang
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Jihye Seong
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Jin Zhang
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University, Baltimore, Maryland, United States of America
- Solomon H. Snyder Department of Neuroscience and Department of Oncology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Shu Chien
- Department of Bioengineering, University of California at San Diego, San Diego, California, United States of America
- Department of Medicine, University of California at San Diego, San Diego, California, United States of America
| | - Yingxiao Wang
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Beckman Institute for Advanced Science and Technology, Department of Molecular and Integrative Physiology and Center of Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- * E-mail:
| |
Collapse
|
205
|
Bouchard V, Harnois C, Demers MJ, Thibodeau S, Laquerre V, Gauthier R, Vézina A, Noël D, Fujita N, Tsuruo T, Arguin M, Vachon PH. B1 integrin/Fak/Src signaling in intestinal epithelial crypt cell survival: integration of complex regulatory mechanisms. Apoptosis 2008; 13:531-42. [PMID: 18322799 DOI: 10.1007/s10495-008-0192-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The molecular determinants which dictate survival and apoptosis/anoikis in human intestinal crypt cells remain to be fully understood. To this effect, the roles of beta1 integrin/Fak/Src signaling to the PI3-K/Akt-1, MEK/Erk, and p38 pathways, were investigated. The regulation of six Bcl-2 homologs (Bcl-2, Mcl-1, Bcl-X(L), Bax, Bak, Bad) was likewise analyzed. We report that: (1) Anoikis causes a down-activation of Fak, Src, Akt-1 and Erk1/2, a loss of Fak-Src association, and a sustained/enhanced activation of p38beta, which is required as apoptosis/anoikis driver; (2) PI3-K/Akt-1 up-regulates the expression of Bcl-X(L) and Mcl-1, down-regulates Bax and Bak, drives Bad phosphorylation (both serine112/136 residues) and antagonizes p38beta activation; (3) MEK/Erk up-regulates Bcl-2, drives Bad phosphorylation (serine112 residue), but does not antagonize p38bactivation; (4) PI3-K/Akt-1 is required for survival, whereas MEK/Erk is not; (5) Src acts as a cornerstone in the engagement of both pathways by beta1 integrins/Fak, and is crucial for survival; and (6) beta1 integrins/Fak and/or Src regulate Bcl-2 homologs as both PI3-K/Atk-1 and MEK/Erk combined. Hence, beta1 integrin/Fak/Src signaling translates into integrated mediating functions of p38beta activation and regulation of Bcl-2 homologs by PI3-K/Akt-1 and MEK/Erk, consequently determining their requirement (or not) for survival.
Collapse
Affiliation(s)
- Véronique Bouchard
- Département d'Anatomie et de Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
206
|
Oneyama C, Hikita T, Enya K, Dobenecker MW, Saito K, Nada S, Tarakhovsky A, Okada M. The lipid raft-anchored adaptor protein Cbp controls the oncogenic potential of c-Src. Mol Cell 2008; 30:426-36. [PMID: 18498747 DOI: 10.1016/j.molcel.2008.03.026] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2007] [Revised: 02/21/2008] [Accepted: 03/18/2008] [Indexed: 12/29/2022]
Abstract
The tyrosine kinase c-Src is upregulated in various human cancers irrespective of its negative regulator Csk, but the regulatory mechanisms remain unclear. Here, we show that a lipid raft-anchored Csk adaptor, Cbp/PAG, is directly involved in controlling the oncogenicity of c-Src. Using Csk-deficient cells that can be transformed by c-Src overexpression, we found that Cbp expression is markedly downregulated by c-Src activation and re-expression of Cbp efficiently suppresses c-Src transformation as well as tumorigenesis. Cbp-deficient cells are more susceptible to v-Src transformation than their parental cells. Upon phosphorylation, Cbp specifically binds to activated c-Src and sequesters it in lipid rafts, resulting in an efficient suppression of c-Src function independent of Csk. In some human cancer cells and tumors, Cbp is downregulated and the introduction of Cbp significantly suppresses tumorigenesis. These findings indicate a potential role for Cbp as a suppressor of c-Src-mediated tumor progression.
Collapse
Affiliation(s)
- Chitose Oneyama
- Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | |
Collapse
|
207
|
Li X, Jia Z, Shen Y, Ichikawa H, Jarvik J, Nagele RG, Goldberg GS. Coordinate suppression of Sdpr and Fhl1 expression in tumors of the breast, kidney, and prostate. Cancer Sci 2008; 99:1326-33. [PMID: 18422756 PMCID: PMC11158056 DOI: 10.1111/j.1349-7006.2008.00816.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The Src tyrosine kinase associates with the focal adhesion adaptor protein Cas (Crk-associated substrate) to suppress the expression of potential tumor suppressor genes. For example, Src utilizes Cas to suppress the expression of the LIM-only protein Fhl1 (four and a half LIM domains 1), in order to promote non-anchored tumor-cell growth and migration. Here, we report that the promoter region of the Fhl1 gene was methylated more in Src-transformed cells than non-transformed cells. In addition, global expression analysis indicates that Fhl1 induced expression of serum deprivation response factor (Sdpr) in Src-transformed cells. Moreover, Fhl1 and Sdpr was expressed in approximately 87% and 40% of samples obtained from non-transformed breast, 100% of samples obtained from non-transformed kidney, and over 60% of samples obtained from non-transformed prostate. In contrast, Fhl1 and Sdpr was detected in approximately 40% and 7% of matched samples from mammary carcinoma, less than 11% of matched samples from kidney carcinoma, and in less than 22% of matched samples from prostate carcinoma. These data indicate that Fhl1 and Sdpr expression was significantly reduced in tumors of the breast (P < 0.02 and P < 0.001), kidney (P < 0.01), and prostate (P < 0.05). In addition, although Src can activate mitogen-activated protein kinase (MAPK) to promote tumor-cell growth, our data indicate that Src did not rely on MAPK activity to suppress the expression of Fhl1 and Sdpr in transformed cells. Thus, Src induced methylation of the promoter region of the Fhl1 gene; Src suppressed Fhl1 and Sdpr expression independent of mitogen-activated protein kinase (MAPK) activity; Fhl1 induced the expression of Sdpr in Src-transformed cells; and Fhl1 and Sdpr expression was suppressed in tumors of the breast, kidney, and prostate.
Collapse
Affiliation(s)
- Xun Li
- Molecular Biology Department, University of Medicine and Dentistry of New Jersey, Stratford, NJ 08084, USA
| | | | | | | | | | | | | |
Collapse
|
208
|
Abstract
The c-src proto-oncogene product, c-Src, is frequently over-expressed and activated in various human malignant cancers, implicating a role for c-Src in cancer progression. To verify the role of c-Src, we analyzed the transforming ability of c-Src in mouse embryonic fibroblasts that lack Csk, a negative regulator of Src family kinases. Although Csk deficiency is not sufficient for cell transformation, c-Src over-expression induced characteristic transformed phenotypes including anchorage-independent growth and tumorigenecity. These phenotypes were dose-dependently inhibited by the re-expression of Csk, indicating that there is a certain threshold for c-Src transformation, which is determined by the c-Src : Csk ratio. In contrast to v-Src, c-Src induced the phosphorylation of a limited number of cellular proteins and elicited a restricted change in gene expression profiles. The activation of some critical targets for v-Src transformation, such as STAT3, was not significantly induced by c-Src transformation. Several genes that are involved in cancer progression, that is, cyclin D1 and HIF-1alpha, were induced by v-Src, but not by c-Src. Furthermore, v-Src tumors exhibited aggressive growth and extensive angiogenesis, while c-Src tumors grew more slowly accompanied by the induction of hematomas. These findings demonstrate that c-Src has the potential to induce cell transformation, but it requires coordination with an additional pathway(s) to promote tumor progression in vivo.
Collapse
Affiliation(s)
- Chitose Oneyama
- Department of Oncogene Research, Research Institute of Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | | | |
Collapse
|
209
|
Murugan AK, Ihara S, Tokuda E, Uematsu K, Tsuchida N, Fukui Y. SWAP-70 is important for invasive phenotypes of mouse embryo fibroblasts transformed by v-Src. IUBMB Life 2008; 60:236-40. [PMID: 18344189 DOI: 10.1002/iub.33] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
SWAP-70 is a protein involved in actin rearrangement, especially in membrane ruffling. Mouse embryo fibroblasts (MEFs) deficient in SWAP-70 show impaired membrane ruffling and fail to grow in soft agar after transformation by v-Src. Here, we show that v-Src transformed MEFs expressing SWAP-70 are highly invasive. MEFs expressing SWAP-70 or v-Src alone were far less invasive, suggesting that both proteins were required for the cells to be invasive. Expression of both SWAP-70 and v-Src induced constant membrane ruffling, which may cause vigorous cell movement, probably required for invasiveness of the cells. Expression of v-Src alone morphologically transformed MEFs but formed lamellipodia rather than membrane ruffles, suggesting less aggressive nature of the cells compared with those expressing both SWAP-70 and v-Src. These results suggest that v-Src and SWAP-70 act synergistically in the invasion activity of MEFs.
Collapse
Affiliation(s)
- Avaniyapuram Kannan Murugan
- Department of Molecular Cellular Oncology and Microbiology, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
210
|
v-Src oncogene product increases sphingosine kinase 1 expression through mRNA stabilization: alteration of AU-rich element-binding proteins. Oncogene 2008; 27:6023-33. [PMID: 18574469 DOI: 10.1038/onc.2008.198] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Sphingosine kinase 1 (SPHK1) is overexpressed in solid tumors and leukemia. However, the mechanism of SPHK1 overexpression by oncogenes has not been defined. We found that v-Src-transformed NIH3T3 cells showed a high SPHK1 mRNA, SPHK1 protein and SPHK enzyme activity. siRNA of SPHK1 inhibited the growth of v-Src-NIH3T3, suggesting the involvement of SPHK1 in v-Src-induced oncogenesis. v-Src-NIH3T3 showed activations of protein kinase C-alpha, signal transducers and activators of transcription 3 and c-Jun NH(2)-terminal kinase. Their inhibition suppressed SPHK1 expression in v-Src-NIH3T3, whereas their overexpression increased SPHK1 mRNA in NIH3T3. Unexpectedly, the nuclear run-on assay and the promoter analysis using 5'-promoter region of mouse SPHK1 did not show any significant difference between mock- and v-Src-NIH3T3. Furthermore, the half-life of SPHK1 mRNA in mock-NIH3T3 was nearly 15 min, whereas that of v-Src-NIH3T3 was much longer. Examination of two AU-rich region-binding proteins, AUF1 and HuR, that regulate mRNA decay reciprocally, showed decreased total AUF1 protein associated with increased tyrosine-phosphorylated form and increased serine-phosphorylated HuR protein in v-Src-NIH3T3. Modulation of AUF1 and HuR by their overexpression or siRNA revealed that SPHK1 mRNA in v-Src- and mock-NIH3T3 was regulated reciprocally by these factors. Our results showed, for the first time, a novel mechanism of v-Src-induced SPHK1 overexpression.
Collapse
|
211
|
Luo W, Slebos RJ, Hill S, Li M, Brábek J, Amanchy R, Chaerkady R, Pandey A, Ham AJL, Hanks SK. Global impact of oncogenic Src on a phosphotyrosine proteome. J Proteome Res 2008; 7:3447-60. [PMID: 18563927 DOI: 10.1021/pr800187n] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Elevated activity of Src, the first characterized protein-tyrosine kinase, is associated with progression of many human cancers, and Src has attracted interest as a therapeutic target. Src is known to act in various receptor signaling systems to impact cell behavior, yet it remains likely that the spectrum of Src protein substrates relevant to cancer is incompletely understood. To better understand the cellular impact of deregulated Src kinase activity, we extensively applied a mass spectrometry shotgun phosphotyrosine (pTyr) proteomics strategy to obtain global pTyr profiles of Src-transformed mouse fibroblasts as well as their nontransformed counterparts. A total of 867 peptides representing 563 distinct pTyr sites on 374 different proteins were identified from the Src-transformed cells, while 514 peptides representing 275 pTyr sites on 167 proteins were identified from nontransformed cells. Distinct characteristics of the two profiles were revealed by spectral counting, indicative of pTyr site relative abundance, and by complementary quantitative analysis using stable isotope labeling with amino acids in cell culture (SILAC). While both pTyr profiles are replete with sites on signaling and adhesion/cytoskeletal regulatory proteins, the Src-transformed profile is more diverse with enrichment in sites on metabolic enzymes and RNA and protein synthesis and processing machinery. Forty-three pTyr sites (32 proteins) are predicted as major biologically relevant Src targets on the basis of frequent identification in both cell populations. This select group, of particular interest as diagnostic biomarkers, includes well-established Src sites on signaling/adhesion/cytoskeletal proteins, but also uncharacterized sites of potential relevance to the transformed cell phenotype.
Collapse
Affiliation(s)
- Weifeng Luo
- Department of Cell and Developmental Biology, Cancer Biology, Biostatistics, and Biochemistry, and The Proteomics Laboratory of the Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
212
|
Westhoff MA, Zhou S, Bachem MG, Debatin KM, Fulda S. Identification of a novel switch in the dominant forms of cell adhesion-mediated drug resistance in glioblastoma cells. Oncogene 2008; 27:5169-81. [PMID: 18469856 DOI: 10.1038/onc.2008.148] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The failure of malignant cells to undergo apoptosis is a major obstacle in cancer therapy, and thus identifying the underlining molecules involved therein is imperative for improving patient survival. An important mechanism of drug resistance is cell adhesion-mediated drug resistance (CAM-DR). In this study we identify a novel switch by which glioblastoma multiforme (GBM) cells alter the mode of CAM-DR. In the absence of a microenvironmental cue provided by components of the extracellular matrix (ECM), GBM cells are able to employ an alternative, but equally effective, mode of CAM-DR by forming spheres via cell-cell interactions. Intriguingly, when inhibiting cell-cell interactions in the absence of ECM components, either by low cell density or by inhibition of gap junctions (intercellular connexin tunnels) through chemical inhibition with carbenoxyolone or co-incubation with the connexin-mimicking Gap 27 Cx37,43 peptide, GBM cells were sensitized to tumor necrosis factor-related apoptosis-inducing ligand- and CD95-induced apoptosis. By demonstrating that GBM cells can alternate from one form of CAM-DR (cell-substrate tethering) to another (homocellular cell-cell adhesion) and that inhibition of both forms is necessary for apoptosis sensitization, our findings not only have important implications for novel approaches to restore defective apoptosis programs, but also reveal a novel role of gap junctions in GBM.
Collapse
Affiliation(s)
- M A Westhoff
- Department of Hematology/Oncology, University Children's Hospital, Ulm, Germany
| | | | | | | | | |
Collapse
|
213
|
Tournaviti S, Hannemann S, Terjung S, Kitzing TM, Stegmayer C, Ritzerfeld J, Walther P, Grosse R, Nickel W, Fackler OT. SH4-domain-induced plasma membrane dynamization promotes bleb-associated cell motility. J Cell Sci 2008; 120:3820-9. [PMID: 17959630 DOI: 10.1242/jcs.011130] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
SH4 domains provide bipartite membrane-targeting signals for oncogenic Src family kinases. Here we report the induction of non-apoptotic plasma membrane (PM) blebbing as a novel and conserved activity of SH4 domains derived from the prototypic Src kinases Src, Fyn, Yes and Lck as well as the HASPB protein of Leishmania parasites. SH4-domain-induced blebbing is highly dynamic, with bleb formation and collapse displaying distinct kinetics. These reorganizations of the PM are controlled by Rho but not Rac or Cdc42 GTPase signalling pathways. SH4-induced membrane blebbing requires the membrane association of the SH4 domain, is regulated by the activities of Rock kinase and myosin II ATPase, and depends on the integrity of F-actin as well as microtubules. Endogenous Src kinase activity is crucial for PM blebbing in SH4-domain-expressing cells, active Src and Rock kinases are enriched in SH4-domain-induced PM blebs, and PM blebbing correlates with enhanced cell invasion in 3D matrices. These results establish a novel link between SH4 domains, Src activity and Rho signalling, and implicate SH4-domain-mediated PM dynamization as a mechanism that influences invasiveness of cells transformed by SH4-domain-containing oncoproteins.
Collapse
Affiliation(s)
- Stella Tournaviti
- Heidelberg University Biochemistry Center, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
214
|
Mandal M, Myers JN, Lippman SM, Johnson FM, Williams MD, Rayala S, Ohshiro K, Rosenthal DI, Weber RS, Gallick GE, El-Naggar AK. Epithelial to mesenchymal transition in head and neck squamous carcinoma: association of Src activation with E-cadherin down-regulation, vimentin expression, and aggressive tumor features. Cancer 2008; 112:2088-100. [PMID: 18327819 DOI: 10.1002/cncr.23410] [Citation(s) in RCA: 150] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Epithelial-mesenchymal transformations (EMT) are critical for the invasion, progression, and metastasis of epithelial carcinogenesis. The role of EMT in head and neck squamous carcinoma (HNSC) tumorigenesis remains unexplored. In the current study, the expressions of several factors associated with the induction of EMT in HNSC cell lines and tumor specimens were investigated to define their functional and pathologic role in HNSC. METHODS Eleven HNSC cell lines and 50 primary tumor tissue specimens formed the materials of this study. Western blot analysis as well as immunohistochemical, and functional techniques were used to assess the status of activated Src (p-Src), E-cadherin, and vimentin in both cell lines and tumor tissues and the results were correlated with patients' clinicopathologic parameters. RESULTS The results demonstrated the inverse expression of p-Src and E-cadherin in the majority of cell lines and in primary tumor tissues compared with normal squamous mucosa. Elevated levels of p-Src were accompanied by down-regulation of E-cadherin and the expression of vimentin in epithelial tumor cells. In vitro inhibition of Src led to E-cadherin reexpression and increased cell contact in squamous carcinoma cell lines. Immunophenotypic analysis of these markers in primary tumor tissues demonstrated a significant correlation between increased p-Src, decreased E-cadherin, and vimentin expression and aggressive tumor features including penetrating invasive fronts, high-grade sarcomatoid transformation, and lymph node metastasis. CONCLUSIONS The results of the current study indicate that Src and E-cadherin may play an important role in EMT, invasion, and aggressive clinicopathologic features of HNSC. These proteins may be targeted for the therapeutic intervention of patients with HNSC.
Collapse
Affiliation(s)
- Mahitosh Mandal
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
215
|
Jones RJ, Young O, Renshaw L, Jacobs V, Fennell M, Marshall A, Green TP, Elvin P, Womack C, Clack G, Dixon JM. Src inhibitors in early breast cancer: a methodology, feasibility and variability study. Breast Cancer Res Treat 2008; 114:211-21. [PMID: 18409068 DOI: 10.1007/s10549-008-9997-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Accepted: 03/28/2008] [Indexed: 11/30/2022]
Abstract
Early clinical trials of anticancer agents may be enriched by robust biomarkers of activity. Surrogate measures used in trials of cytotoxic agents, such as tumor size regression, may not be informative when investigating targeted agents that act principally to inhibit invasion or proliferation. This study aimed to determine the validity of invasion-related biomarkers of activity for AZD0530, a potent Src inhibitor currently in clinical development. Focal adhesion kinase (FAK) and paxillin are downstream phosphorylation substrates of Src and mediate tumor cell adhesion and invasiveness. These were therefore selected as biologically relevant markers of Src inhibition. Early breast cancer was chosen as a model as multiple samples can be collected during standard treatment and there is an intervening period in which experimental intervention can be applied. Tumor tissue was collected from diagnostic core biopsies and subsequent surgical tumor excision samples in 29 women with early breast cancer attending a single center. Protein levels were assessed quantitatively by Luminex and qualitatively by immunohistochemistry. AZD0530 inhibited tumor growth in a manner independent of dose and inhibited phosphorylation of FAK and paxillin in a dose-dependent manner in a Calu-6 xenograft model. In the clinical study, agreement of within-visit and also of between-visit measurements was high and the estimated number of patients required to detect a drug effect would be low enough to allow use of these markers as endpoints in future dose selection studies.
Collapse
Affiliation(s)
- R J Jones
- Centre for Oncology and Applied Pharmacology, CRUK Beatson Laboratories, Garscube Estate, Glasgow, Scotland, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
216
|
de Diesbach P, Medts T, Carpentier S, D'Auria L, Van Der Smissen P, Platek A, Mettlen M, Caplanusi A, van den Hove MF, Tyteca D, Courtoy PJ. Differential subcellular membrane recruitment of Src may specify its downstream signalling. Exp Cell Res 2008; 314:1465-79. [DOI: 10.1016/j.yexcr.2008.01.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2007] [Revised: 12/21/2007] [Accepted: 01/14/2008] [Indexed: 12/22/2022]
|
217
|
Kopetz S, Shah AN, Gallick GE. Src continues aging: current and future clinical directions. Clin Cancer Res 2008; 13:7232-6. [PMID: 18094400 DOI: 10.1158/1078-0432.ccr-07-1902] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Aberrant activation of members of the Src family of nonreceptor protein tyrosine kinases is common in solid tumor malignancies and may contribute to the development and/or progression of these tumors. As a result, four Src inhibitors are now in more than 50 clinical trials for at least 14 different types of solid tumors. In this review, we briefly discuss the preclinical rationale for Src inhibitors, the development strategies most likely to be successful in the clinic, and the rationale for Src inhibitors in combination with other agents as part of a more comprehensive therapeutic strategy. As the use of Src family inhibitors in clinical trials on solid tumors is in its infancy, further studies on the roles of Src family kinases in tumor progression, chemoresistance, epidermal-to-mesenchymal transition, and other properties of tumor progression will be important in designing the most effective clinical trials using these inhibitors.
Collapse
Affiliation(s)
- Scott Kopetz
- Department of Gastrointestinal Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030-4009, USA
| | | | | |
Collapse
|
218
|
Gueto C, Ruiz JL, Torres JE, Méndez J, Vivas-Reyes R. Three-dimensional quantitative structure–activity relationship studies on novel series of benzotriazine based compounds acting as Src inhibitors using CoMFA and CoMSIA. Bioorg Med Chem 2008; 16:2439-47. [DOI: 10.1016/j.bmc.2007.11.053] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2007] [Revised: 11/20/2007] [Accepted: 11/21/2007] [Indexed: 10/22/2022]
|
219
|
In silico screening and biological evaluation of inhibitors of Src-SH3 domain interaction with a proline-rich ligand. Bioorg Med Chem Lett 2008; 18:1217-22. [DOI: 10.1016/j.bmcl.2007.11.115] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2007] [Revised: 11/28/2007] [Accepted: 11/29/2007] [Indexed: 11/22/2022]
|
220
|
Shakespeare WC, Wang Y, Bohacek R, Keenan T, Sundaramoorthi R, Metcalf C, Dilauro A, Roeloffzen S, Liu S, Saltmarsh J, Paramanathan G, Dalgarno D, Narula S, Pradeepan S, van Schravendijk MR, Keats J, Ram M, Liou S, Adams S, Wardwell S, Bogus J, Iuliucci J, Weigele M, Xing L, Boyce B, Sawyer TK. SAR of Carbon-Linked, 2-Substituted Purines: Synthesis and Characterization of AP23451 as a novel Bone-Targeted Inhibitor of Src Tyrosine Kinase With In Vivo Anti-Resorptive Activity. Chem Biol Drug Des 2008; 71:97-105. [DOI: 10.1111/j.1747-0285.2007.00615.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
221
|
Carlucci A, Gedressi C, Lignitto L, Nezi L, Villa-Moruzzi E, Avvedimento EV, Gottesman M, Garbi C, Feliciello A. Protein-tyrosine phosphatase PTPD1 regulates focal adhesion kinase autophosphorylation and cell migration. J Biol Chem 2008; 283:10919-29. [PMID: 18223254 DOI: 10.1074/jbc.m707248200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
PTPD1 is a cytosolic nonreceptor tyrosine phosphatase and a positive regulator of the Src-epidermal growth factor transduction pathway. We show that PTPD1 localizes along actin filaments and at adhesion plaques. PTPD1 forms a stable complex via distinct molecular modules with actin, Src tyrosine kinase, and focal adhesion kinase (FAK), a scaffold protein kinase enriched at adhesion plaques. Overexpression of PTPD1 promoted cell scattering and migration, short hairpin RNA-mediated silencing of endogenous PTPD1, or expression of PTPD1 mutants lacking either catalytic activity (PTPD1(C1108S)) or the FERM domain (PTPD1(Delta1-325)) significantly reduced cell motility. PTPD1 and Src catalytic activities were both required for epidermal growth factor-induced FAK autophosphorylation at its active site and for downstream propagation of ERK1/2 signaling. Our findings demonstrate that PTPD1 is a component of a multivalent scaffold complex nucleated by FAK at specific intracellular sites. By modulating Src-FAK signaling at adhesion sites, PTPD1 promotes the cytoskeleton events that induce cell adhesion and migration.
Collapse
Affiliation(s)
- Annalisa Carlucci
- Dipartimento di Biologia e Patologia Molecolare e Cellulare, Istituto di Endocrinologia ed Oncologia Sperimentale, CNR, Facoltà di Medicina, Università Federico II, via s. Pansini, 5 80131 Napoli, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
222
|
Takatsuka A, Yagi R, Koike M, Oneyama C, Nada S, Schmedt C, Uchiyama Y, Okada M. Ablation of Csk in neural crest lineages causes corneal anomaly by deregulating collagen fibril organization and cell motility. Dev Biol 2008; 315:474-88. [PMID: 18262517 DOI: 10.1016/j.ydbio.2008.01.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2007] [Revised: 12/29/2007] [Accepted: 01/04/2008] [Indexed: 12/25/2022]
Abstract
Src family kinases (SFKs) have been implicated in the regulation of cell motility. To verify their in vivo roles during development, we generated mutant mice in which Csk, a negative regulator of SFKs, was inactivated in neural crest lineages using the Protein zero promoter in a Cre-loxP system. Inactivation of Csk caused deformities in various tissues of neural crest origins, including facial dysplasia and corneal opacity. In the cornea, the stromal collagen fibril was disorganized and there was an overproduction of collagen 1a1 and several metalloproteases. The corneal endothelium failed to overlie the central region of the eye and the peripheral endothelium displayed a disorganized cytoskeleton. Corneal mesenchymal cells cultured from mutant mice showed attenuated cell motility. In these cells, p130 Crk-associated substrate (Cas) was hyperphosphorylated and markedly downregulated. The expression of a dominant negative Cas (Cas Delta SD) could suppress the cell motility defects. Fluorescence resonance energy transfer analysis revealed that activation of Rac1 and Cdc42 was depolarized in Csk-inactivated cells, which was restored by the expression of either Csk or Cas Delta SD. These results demonstrate that the SFKs/Csk circuit plays crucial roles in corneal development by controlling stromal organization and by ensuring cell motility via the Cas-Rac/Cdc42 pathways.
Collapse
Affiliation(s)
- Atsuko Takatsuka
- Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | |
Collapse
|
223
|
Abstract
The Arf (ADP-ribosylation factor) GAPs (GTPase-activating proteins) are a family of proteins with a common catalytic domain that induces hydrolysis of GTP bound to Arf GTP-binding proteins. At least three groups of multidomain Arf GAPs affect the actin cytoskeleton and cellular activities, such as migration and movement, that depend on the cytoskeleton. One role of the Arf GAPs is to regulate membrane remodelling that accompanies actin polymerization. Regulation of membrane remodelling is mediated in part by the regulation of Arf proteins. However, Arf GAPs also regulate actin independently of effects on membranes or Arf. These functions include acting as upstream regulators of Rho family proteins and providing a scaffold for Rho effectors and exchange factors. With multiple functional elements, the Arf GAPs could integrate signals and biochemical activities that result in co-ordinated changes in actin and membranes necessary for a wide range of cellular functions.
Collapse
Affiliation(s)
- Paul A Randazzo
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
224
|
Saito K, Enya K, Oneyama C, Hikita T, Okada M. Proteomic identification of ZO-1/2 as a novel scaffold for Src/Csk regulatory circuit. Biochem Biophys Res Commun 2007; 366:969-75. [PMID: 18086565 DOI: 10.1016/j.bbrc.2007.12.055] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Accepted: 12/10/2007] [Indexed: 11/17/2022]
Abstract
To elucidate the regulatory mechanism of cell transformation induced by c-Src tyrosine kinase, we performed a proteomic analysis of tyrosine phosphorylated proteins that interact with c-Src and/or its negative regulator Csk. The c-Src interacting proteins were affinity-purified from Src transformed cells using the Src SH2 domain as a ligand. LC-MS/MS analysis of the purified proteins identified general Src substrates, such as focal adhesion kinase and paxillin, and ZO-1/2 as a transformation-dependent Src target. The Csk binding proteins were analyzed by a tandem affinity purification method. In addition to the previously identified Csk binding proteins, including Cbp/PAG, paxillin, and caveolin-1, we found that ZO-1/2 could also serve as a major Csk binding protein. ZO-2 was phosphorylated concurrently with Src transformation and specifically bound to Csk in a Csk SH2 dependent manner. These results suggest novel roles for ZO proteins as Src/Csk scaffolds potentially involved in the regulation of Src transformation.
Collapse
Affiliation(s)
- Kazunobu Saito
- Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | | | | | |
Collapse
|
225
|
Liang FP, Lin CH, Kuo CD, Chao HP, Fu SL. Suppression of v-Src transformation by andrographolide via degradation of the v-Src protein and attenuation of the Erk signaling pathway. J Biol Chem 2007; 283:5023-33. [PMID: 18086662 DOI: 10.1074/jbc.m705877200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Elevated expression and aberrant activation of the src oncogene are strongly associated with cancer initiation and progression, thereby making Src a promising molecular target for anti-cancer therapy. Through drug screening using a temperature-inducible v-Src-transformed epithelial cell line, we found that andrographolide could suppress v-Src-induced transformation and down-regulate v-Src protein expression. In addition, actin cable dissolution and E-cadherin down-regulation, features of transformed phenotype, are perturbed by andrographolide. Moreover, andrographolide promoted v-Src degradation via a ubiquitin-dependent manner. Although andrographolide treatment altered the tyrosine phosphorylation pattern in v-Src-expressing cells, it did not directly affect the kinase activity of v-Src. Both the Erk and phosphatidylinositol 3-kinase signaling pathways were strongly inhibited in andrographolide-treated v-Src cells. However, only MKK inhibitors (PD98059 and U0126) were able to cause a non-transformed morphology similar to that of andrographolide-treated v-Src cells. Moreover, overexpression of constitutively active MKK1 in v-Src cells blocked andrographolide-mediated morphological inhibition. Interestingly, andrographolide treatment could also reduce the protein level of the c-Src truncation mutant (Src531), an Src mutant originally identified from human colon cancer cells. In summary, we demonstrated that andrographolide antagonized v-Src action through promotion of v-Src protein degradation. Furthermore, attenuation of the Erk1/2 signaling pathway is essential for andrographolide-mediated inhibition of v-Src transformation. Our results demonstrate that andrographolide can act as a v-Src inhibitor and reveal a novel action mechanism of andrographolide.
Collapse
Affiliation(s)
- Fong-Pin Liang
- Institute of Traditional Medicine, Faculty of Life Sciences, National Yang-Ming University, 155, Sec. 2, Li-Nong St., Taipei 11221, and Department of Research and Education, Taipei City Hospital, Taiwan
| | | | | | | | | |
Collapse
|
226
|
Srinivasan R, Forman S, Quinlan RA, Ohanian J, Ohanian V. Regulation of contractility by Hsp27 and Hic-5 in rat mesenteric small arteries. Am J Physiol Heart Circ Physiol 2007; 294:H961-9. [PMID: 18083901 DOI: 10.1152/ajpheart.00939.2007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The regulation of small artery contractility by vasoconstrictors is important for vascular function, and actin cytoskeleton remodeling is required for contraction. p38 MAPK and tyrosine kinases are implicated in actin polymerization and contraction through heat shock protein 27 (Hsp27) and the cytoskeletal protein paxillin, respectively. We evaluated the roles of downstream targets of p38 MAPK and tyrosine kinases in cytoskeletal reorganization and contraction and whether the two signaling pathways regulate contraction independent of each other. We identified the expression of the paxillin homologue hydrogen peroxide-inducible clone-5 (Hic-5) and showed its activation by norepinephrine (NE) in a Src-dependent manner. Furthermore, we demonstrated a NE-induced interaction of proline-rich tyrosine kinase-2 (PYK2) but not Src or p125 focal adhesion kinase with Hic-5. This interaction was Src dependent, suggesting that Hic-5 was a substrate for PYK2 downstream from Src. The activation of Hic-5 induced its relocalization to the cytosol. The parallel activation of Hsp27 by NE was p38 MAPK dependent and led to its dissociation from actin filaments and translocation from membrane to cytosol and increased actin polymerization. Both Hsp27 and Hic-5 activation resulted in their association within the same time frame as NE-induced contraction, and the inhibition of either p38 MAPK or Src inhibited the interaction between Hsp27 and Hic-5 and the contractile response. Furthermore, combined p38 MAPK and Src inhibition had no greater effect on contraction than individual inhibition, suggesting that the two pathways act through a common mechanism. These data show that NE-induced activation and the association of Hsp27 and Hic-5 are required for the reorganization of the actin cytoskeleton and force development in small arteries.
Collapse
Affiliation(s)
- R Srinivasan
- Cardiovascular Research Group, University of Manchester, UK
| | | | | | | | | |
Collapse
|
227
|
CNTO 95, a fully human anti alphav integrin antibody, inhibits cell signaling, migration, invasion, and spontaneous metastasis of human breast cancer cells. Clin Exp Metastasis 2007; 25:139-48. [PMID: 18064530 DOI: 10.1007/s10585-007-9132-4] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2007] [Accepted: 11/19/2007] [Indexed: 01/03/2023]
Abstract
CNTO 95 is a fully human monoclonal antibody that recognizes alphav integrins. Previous studies have shown that CNTO 95 exhibits both anti-tumor and anti-angiogenic activities (Trikha M et al., Int J Cancer 110:326-335, 2004). In this study we investigated the biological activities of CNTO 95 on breast tumor cells both in vitro and in vivo. In vitro treatment with CNTO 95 decreased the viability of breast tumor cells adhering to vitronectin. CNTO 95 inhibited tumor cell adhesion, migration, and invasion in vitro. CNTO 95 treatment also induced tyrosine dephosphorylation of focal adhesion kinase (FAK), and the docking protein paxillin that recruits both structural and signaling molecules to focal adhesions (Turner CE, Int J Biochem Cell Biol 30:955-959, 1998; O'Neil GM et al., Trends Cell Biol 10:111-119, 2000). These results suggest that CNTO 95 inhibits breast tumor cell growth, migration and invasion by interruption of alphav integrin mediated focal adhesions and cell motility signals. In vivo studies of CNTO 95 were conducted in an orthotopic breast tumor xenograft model. Treatment with CNTO 95 resulted in significant inhibition of both tumor growth and spontaneous metastasis of MDA-MB-231 cells to the lungs. CNTO 95 also inhibited lung metastasis in a separate experimental (tail vein injection) model of metastasis. The results presented here demonstrate the anti-tumor and anti-metastatic activities of CNTO 95 in breast cancer models and provide insight into the cellular and molecular mechanisms mediating its inhibitory effects on metastasis.
Collapse
|
228
|
c-Src-mediated epithelial cell migration and invasion regulated by PDZ binding site. Mol Cell Biol 2007; 28:642-55. [PMID: 18039857 DOI: 10.1128/mcb.01024-07] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
c-Src tyrosine kinase controls proliferation, cell adhesion, and cell migration and is highly regulated. A novel regulatory mechanism to control c-Src function that has recently been identified involves the C-terminal amino acid sequence Gly-Glu-Asn-Leu (GENL) of c-Src as ligand for PDZ domains. Herein, we determined the biological relevance of this c-Src regulation in human breast epithelial cells. The intact GENL sequence maintained c-Src in an inactive state in starved cells and restricted c-Src functions that might lead to metastatic transformation under normal growth conditions. c-Src with a C-terminal Leu/Ala mutation in GENL (Src-A) promoted the activation and translocation of cortactin and focal adhesion kinase and increased the motility and persistence of cell migration on the basement membrane. Src-A promoted increased extracellular proteolytic activity, and in acinar cultures, it led to the escape of cells through the basement membrane into the surrounding matrix. We ascribe the regulatory function of C-terminal Leu to the role of GENL in modulating c-Src activity downstream of cell matrix adhesion. We propose that the C terminus of c-Src via its GENL sequence presents a mechanism that restricts c-Src in epithelia and prevents progression toward an invasive phenotype.
Collapse
|
229
|
Gab2 and Src co-operate in human mammary epithelial cells to promote growth factor independence and disruption of acinar morphogenesis. Oncogene 2007; 27:2693-704. [PMID: 17998934 DOI: 10.1038/sj.onc.1210928] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The Gab2 docking protein is a target of several oncogenic protein tyrosine kinases and potentiates activation of the Ras/extracellular signal regulated kinase and phosphatidylinositol 3-kinase (PI3-kinase) pathways. Since Gab2 is phosphorylated by c-Src, and both proteins are overexpressed in breast cancers, we have determined the biological consequences of their co-expression in the immortalized human mammary epithelial cell line MCF-10A. While overexpression of c-Src did not affect acinar morphogenesis or growth factor dependence in three-dimensional culture, c-Src co-operated with Gab2 to promote epidermal growth factor (EGF)-independent acinar growth. In contrast, expression of v-Src or the activated mutant c-SrcY527F led to a spectrum of aberrant phenotypes ranging from spheroids with incomplete luminal clearance to highly disrupted, dispersed structures. Gab2 co-expression shifted the phenotypic distribution towards the dispersed phenotype, an effect not observed with a Gab2 mutant unable to bind the p85 subunit of PI3-kinase (Gab2Deltap85). In v-Src-expressing cells, Gab2, but not Gab2Deltap85, significantly decreased E-cadherin adhesive strength without altering its surface expression. Gab2 associated with E-cadherin in the presence and absence of v-Src, indicating that the ability of Gab2 to weaken the strength of cell-cell contacts may reflect enhanced activation of PI3-kinase at adherens junctions. Gab2 also increased migration and invasion of these cells in transwell assays, but these effects were p85-independent. Overall, these findings demonstrate a novel mechanism whereby Gab2 may promote metastatic spread and indicate that Gab2 may play several roles during breast cancer progression.
Collapse
|
230
|
Destaing O, Sanjay A, Itzstein C, Horne WC, Toomre D, De Camilli P, Baron R. The tyrosine kinase activity of c-Src regulates actin dynamics and organization of podosomes in osteoclasts. Mol Biol Cell 2007; 19:394-404. [PMID: 17978100 DOI: 10.1091/mbc.e07-03-0227] [Citation(s) in RCA: 164] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Podosomes are dynamic actin-rich structures composed of a dense F-actin core surrounded by a cloud of more diffuse F-actin. Src performs one or more unique functions in osteoclasts (OCLs), and podosome belts and bone resorption are impaired in the absence of Src. Using Src(-/-) OCLs, we investigated the specific functions of Src in the organization and dynamics of podosomes. We found that podosome number and the podosome-associated actin cloud were decreased in Src(-/-) OCLs. Videomicroscopy and fluorescence recovery after photobleaching analysis revealed that the life span of Src(-/-) podosomes was increased fourfold and that the rate of actin flux in the core was decreased by 40%. Thus, Src regulates the formation, structure, life span, and rate of actin polymerization in podosomes and in the actin cloud. Rescue of Src(-/-) OCLs with Src mutants showed that both the kinase activity and either the SH2 or the SH3 binding domain are required for Src to restore normal podosome organization and dynamics. Moreover, inhibition of Src family kinase activities in Src(-/-) OCLs by Src inhibitors or by expressing dominant-negative Src(K295M) induced the formation of abnormal podosomes. Thus, Src is an essential regulator of podosome structure, dynamics and organization.
Collapse
Affiliation(s)
- Olivier Destaing
- Department of Orthopaedics, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | | | | | |
Collapse
|
231
|
Abstract
Cbl proteins are ubiquitin ligases and multifunctional adaptor proteins that are implicated in the regulation of signal transduction in various cell types and in response to different stimuli. Cbl-associated proteins can assemble together at a given time or space inside the cell, and such an interactome can form signal competent networks that control many physiological processes. Dysregulation of spatial or temporal constraints in the Cbl interactome results in the development of human pathologies such as immune diseases, diabetes and cancer.
Collapse
Affiliation(s)
- Mirko H H Schmidt
- Institute for Biochemistry II, Goethe University Medical School, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany
| | | |
Collapse
|
232
|
Zelenka PS, Arpitha P. Coordinating cell proliferation and migration in the lens and cornea. Semin Cell Dev Biol 2007; 19:113-24. [PMID: 18035561 DOI: 10.1016/j.semcdb.2007.10.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2007] [Accepted: 10/01/2007] [Indexed: 10/22/2022]
Abstract
Migration is a complex process for epithelial tissues, because the epithelium must move as an intact sheet to preserve its barrier function. The requirement for structural integrity is met by coupling cell-to-matrix and cell-to-cell adhesion at the cellular level, and by coordinating cell proliferation and cell migration in the tissue as a whole. Proliferation is suppressed at the migrating cell front, allowing cells in this region to remain tightly packed while advancing rapidly. At the same time, proliferation is enhanced in a region behind the advancing cell front to expand the epithelial cell sheet. This review considers the extracellular signals and intracellular signaling pathways that regulate these processes in the lens and corneal epithelium, with emphasis on the commonalities that link these tissues.
Collapse
Affiliation(s)
- P S Zelenka
- National Eye Institute, NIH, Bethesda, MD 20892, USA.
| | | |
Collapse
|
233
|
Shvartsman DE, Donaldson JC, Diaz B, Gutman O, Martin GS, Henis YI. Src kinase activity and SH2 domain regulate the dynamics of Src association with lipid and protein targets. ACTA ACUST UNITED AC 2007; 178:675-86. [PMID: 17698610 PMCID: PMC2064473 DOI: 10.1083/jcb.200701133] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Src functions depend on its association with the plasma membrane and with specific membrane-associated assemblies. Many aspects of these interactions are unclear. We investigated the functions of kinase, SH2, and SH3 domains in Src membrane interactions. We used FRAP beam-size analysis in live cells expressing a series of c-Src–GFP proteins with targeted mutations in specific domains together with biochemical experiments to determine whether the mutants can generate and bind to phosphotyrosyl proteins. Wild-type Src displays lipid-like membrane association, whereas constitutively active Src-Y527F interacts transiently with slower-diffusing membrane-associated proteins. These interactions require Src kinase activity and SH2 binding, but not SH3 binding. Furthermore, overexpression of paxillin, an Src substrate with a high cytoplasmic population, competes with membrane phosphotyrosyl protein targets for binding to activated Src. Our observations indicate that the interactions of Src with lipid and protein targets are dynamic and that the kinase and SH2 domain cooperate in the membrane targeting of Src.
Collapse
Affiliation(s)
- Dmitry E Shvartsman
- Department of Neurobiochemistry, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | | | | | |
Collapse
|
234
|
Bouchard V, Demers MJ, Thibodeau S, Laquerre V, Fujita N, Tsuruo T, Beaulieu JF, Gauthier R, Vézina A, Villeneuve L, Vachon PH. Fak/Src signaling in human intestinal epithelial cell survival and anoikis: differentiation state-specific uncoupling with the PI3-K/Akt-1 and MEK/Erk pathways. J Cell Physiol 2007; 212:717-28. [PMID: 17443665 DOI: 10.1002/jcp.21096] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Human intestinal epithelial cell survival and anoikis are distinctively regulated according to the state of differentiation. In the present study, we analyzed the roles of focal adhesion kinase (Fak)/Src signaling to the PI3-K/Akt-1 and mitogen-activated protein kinase (MEK)/extracellular regulated kinases (Erk) pathways, within the context of such differentiation-state distinctions. Anoikis was induced by inhibition of beta1 integrins (antibody blocking), inhibition of Fak (pharmacologic inhibition or overexpression of dominant negative mutants), or by maintaining cells in suspension. Activation parameters of Fak, Src, Akt-1, and Erk1/2 were analyzed. Activities of Src, Akt-1, or Erk1/2 were also blocked by pharmacological inhibition or by overexpression of dominant-negative mutants. We report that: (1) the loss or inhibition of beta1 integrin binding activity causes anoikis and results in a down-activation of Fak, Src, Akt-1, and Erk1/2 in both undifferentiated, and differentiated cells; (2) the inhibition of Fak likewise causes anoikis and a down-activation of Src, Akt-1, and Erk1/2, regardless of the differentiation state; (3) Src, PI3-K/Akt-1, and MEK/Erk contribute to the survival of differentiated cells, whereas MEK/Erk does not play a role in the survival of undifferentiated ones; (4) the inhibition/loss of beta1 integrin binding and/or Fak activity results in a loss of Src engagement with Fak, regardless of the state of differentiation; and (5) Src contributes to the activation of both the PI3-K/Akt-1 and MEK/Erk pathways in undifferentiated cells, but does not influence PI3-K/Akt-1 in differentiated ones. Hence, Fak/Src signaling to the PI3-K/Akt-1 and MEK/Erk pathways undergoes a differentiation state-specific uncoupling which ultimately reflects upon the selective engagement of these same pathways in the mediation of intestinal epithelial cell survival.
Collapse
Affiliation(s)
- Véronique Bouchard
- Département d'Anatomie et de Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
235
|
Pahujaa M, Anikin M, Goldberg GS. Phosphorylation of connexin43 induced by Src: regulation of gap junctional communication between transformed cells. Exp Cell Res 2007; 313:4083-90. [PMID: 17956757 DOI: 10.1016/j.yexcr.2007.09.010] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Revised: 09/06/2007] [Accepted: 09/06/2007] [Indexed: 01/14/2023]
Abstract
Cx43 is a widely expressed gap junction protein that mediates communication between many cell types. In general, tumor cells display less intercellular communication than their nontransformed precursors. The Src tyrosine kinase has been implicated in progression of a wide variety of cancers. Src can phosphorylate Cx43, and this event is associated with the suppression of gap junction communication. However, Src activates multiple signaling pathways that can also affect intercellular communication. For example, serine kinases including PKC and MAPK are downstream effectors of Src that can also phosphorylate Cx43 and disrupt gap junctional communication. In addition, Src can affect the expression of other proteins that may affect intercellular communication. Indeed, disruption of gap junctions by Src appears to be complex. It has become clear that Src can affect Cx43 activity by multiple mechanisms. Here, we review how Src may orchestrate events that regulate intercellular communication mediated by Cx43.
Collapse
Affiliation(s)
- Madhuri Pahujaa
- Department of Cell Biology, University of Medicine and Dentistry of New Jersey, Science Center, 2 Medical Center Dr., Stratford, NJ 08084, USA
| | | | | |
Collapse
|
236
|
Kalakonda S, Nallar SC, Gong P, Lindner DJ, Goldblum SE, Reddy SP, Kalvakolanu DV. Tumor suppressive protein gene associated with retinoid-interferon-induced mortality (GRIM)-19 inhibits src-induced oncogenic transformation at multiple levels. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 171:1352-68. [PMID: 17823279 PMCID: PMC1988884 DOI: 10.2353/ajpath.2007.070241] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Interferons (IFNs) inhibit the growth of infectious pathogens and tumor development. Although IFNs are potent tumor suppressors, they modestly inhibit the growth of some human solid tumors. Their weak activity against such tumors is augmented by co-treatment with differentiation-inducing agents such as retinoids. Previous studies from our laboratory identified a novel gene product, gene associated with retinoid-interferon-induced mortality (GRIM)-19, as an IFN/all-trans retinoic acid-induced growth suppressor. However, the mechanisms of its growth suppressive actions are unclear. The src-family of tyrosine kinases is important regulators of various cell growth responses. Mutational activation of src causes cellular transformation by altering transcription and cytoskeletal properties. In this study, we show that GRIM-19 suppresses src-induced cellular transformation in vitro and in vivo by down-regulating the expression of a number of signal transducer and activator of transcription-3 (STAT3)-dependent cellular genes. In addition, GRIM-19 inhibited the src-induced cell motility and metastasis by suppressing the tyrosyl phosphorylation of focal adhesion kinase, paxillin, E-cadherin, and gamma-catenin. Effects of GRIM-19 on src-induced cellular transformation are reversible in the presence of specific short hairpin RNA, indicating its direct effect on transformation. GRIM-19-mediated inhibition of the src-induced tyrosyl phosphorylation of cellular proteins, such as focal adhesion kinase and paxillin, seems to occur independently of the STAT3 protein. GRIM-19 had no significant effect on the cellular transformation induced by other oncogenes such as myc and Ha-ras. Thus, GRIM-19 not only blocks src-induced gene expression through STAT3 but also the activation of cell adhesion molecules.
Collapse
MESH Headings
- Animals
- Apoptosis Regulatory Proteins/antagonists & inhibitors
- Apoptosis Regulatory Proteins/genetics
- Apoptosis Regulatory Proteins/metabolism
- Cell Adhesion Molecules/antagonists & inhibitors
- Cell Adhesion Molecules/metabolism
- Cell Line, Tumor
- Cell Movement
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Down-Regulation
- Gene Expression
- Gene Expression Regulation, Neoplastic
- Genes, Tumor Suppressor
- Humans
- Interferons/pharmacology
- NADH, NADPH Oxidoreductases/antagonists & inhibitors
- NADH, NADPH Oxidoreductases/genetics
- NADH, NADPH Oxidoreductases/metabolism
- Phosphorylation
- RNA, Small Interfering/pharmacology
- Rats
- Retinoids/pharmacology
- STAT3 Transcription Factor/antagonists & inhibitors
- STAT3 Transcription Factor/metabolism
- Transfection
- Tumor Suppressor Proteins/genetics
- Tumor Suppressor Proteins/metabolism
- Tyrosine/metabolism
- src-Family Kinases/antagonists & inhibitors
Collapse
Affiliation(s)
- Sudhakar Kalakonda
- Department of Microbiology and Immunology, Greenebaum Cancer Center, University of Maryland School of Medicine, 660 West Redwood St., Howard Hall 350, Baltimore, MD 21201, USA
| | | | | | | | | | | | | |
Collapse
|
237
|
Imamichi Y, Menke A. Signaling pathways involved in collagen-induced disruption of the E-cadherin complex during epithelial-mesenchymal transition. Cells Tissues Organs 2007; 185:180-90. [PMID: 17587824 DOI: 10.1159/000101319] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
There is substantial interest in the influence of the microenvironment on tumor cells. Cell-cell as well as cell-matrix interactions have been correlated with the control of different processes such as tumor cell proliferation, differentiation, survival and migration. In this review, we focus on the influence of collagen types I and III expressed in carcinomata on the E-cadherin-mediated adhesion between epithelial tumor cells. Recently published studies described the ability of fibrillar collagen to reduce E-cadherin gene expression and to induce disruption of the E-cadherin adhesion complex. The reduced cellular adhesion influences tissue integrity and has been correlated with elevated cell migration and invasion of different carcinoma cells. Altered tyrosine phosphorylation of the intracellular, cadherin-associated catenins was identified as an important regulator of collagen-induced disassembly of the E-cadherin adhesion complex. The molecular mechanisms involved in collagen-induced cell transformation include activation of integrins, activation and translocation of the focal adhesion kinase to the E-cadherin/catenin complex as well as inhibition of the phosphatase PTEN.
Collapse
Affiliation(s)
- Yukiko Imamichi
- Department of Internal Medicine I, University of Ulm, Ulm, Germany
| | | |
Collapse
|
238
|
Dimri M, Naramura M, Duan L, Chen J, Ortega-Cava C, Chen G, Goswami R, Fernandes N, Gao Q, Dimri GP, Band V, Band H. Modeling breast cancer-associated c-Src and EGFR overexpression in human MECs: c-Src and EGFR cooperatively promote aberrant three-dimensional acinar structure and invasive behavior. Cancer Res 2007; 67:4164-72. [PMID: 17483327 DOI: 10.1158/0008-5472.can-06-2580] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Epidermal growth factor receptor (EGFR), a member of the ErbB family of receptor tyrosine kinases, is overexpressed in as many as 60% cases of breast and other cancers. EGFR overexpression is a characteristic of highly aggressive molecular subtypes of breast cancer with basal-like and BRCA1 mutant phenotypes distinct from ErbB2-overexpressing breast cancers. Yet, EGFR is substantially weaker compared with ErbB2 in promoting the oncogenic transformation of nontumorigenic human mammary epithelial cells (human MEC), suggesting a role for cooperating oncogenes. Here, we have modeled the co-overexpression of EGFR and a biologically and clinically relevant potential modifier c-Src in two distinct immortal but nontumorigenic human MECs. Using a combination of morphologic analysis and confocal imaging of polarity markers in three-dimensional Matrigel culture together with functional analyses of early oncogenic traits, we show for the first time that EGFR and c-Src co-overexpression but not EGFR or c-Src overexpression alone unleashes an oncogenic signaling program that leads to hyperproliferation and loss of polarity in three-dimensional acinar cultures, marked enhancement of migratory and invasive behavior, and anchorage-independent growth. Our results establish that EGFR overexpression in an appropriate context (modeled here using c-Src overexpression) can initiate oncogenic transformation of nontumorigenic human MECs and provide a suitable in vitro model to interrogate human breast cancer-relevant oncogenic signaling pathways initiated by overexpressed EGFR and to identify modifiers of EGFR-mediated breast oncogenesis.
Collapse
Affiliation(s)
- Manjari Dimri
- Division of Molecular Oncology, Evanston Northwestern Healthcare Research Institute, Evanston, IL 60201, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
239
|
Lin MT, Lin BR, Chang CC, Chu CY, Su HJ, Chen ST, Jeng YM, Kuo ML. IL-6 induces AGS gastric cancer cell invasion via activation of the c-Src/RhoA/ROCK signaling pathway. Int J Cancer 2007; 120:2600-8. [PMID: 17304514 DOI: 10.1002/ijc.22599] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Interleukin-6 (IL-6) is a multifunctional cytokine that is associated with the disease status and outcomes of gastric cancer. Nonetheless, the underlying mechanism of how IL-6 promotes the spread of gastric cancer is still unclear. In this study, we used a modified Boyden chamber assay to test the invasion ability of different gastric cancer cell lines. Liposome-mediated transfection was used to introduce an IL-6 expression vector into AGS cells, and the transfectants were further examined for the expression of active RhoA and phosphorylated Src using a pull-down assay and coimmunoprecipitation/Western blot analysis. Furthermore, RhoA expression in gastric adenocarcinoma specimens was investigated immunohistochemically. We documented that IL-6 could promote AGS cell motility and invasiveness, and inhibition of RhoA expression by dominant negative RhoA, C3 transferase, or dominant negative Src expressing plasmids could effectively decrease the invasiveness of IL-6 transfectants. We also documented an interaction between active RhoA and phosphorylated-Src following IL-6 treatment. Gastric cancers displaying high expression of RhoA are highly correlated with aggressive lymph node metastasis, more advanced tumor stage, histologically diffuse type and poorer survival. In conclusion, IL-6 induces AGS gastric cancer cell invasion via activation of the c-Src/RhoA/ROCK signaling pathway and RhoA expression could be used as a prognostic factor in patients with gastric adenocarcinoma.
Collapse
Affiliation(s)
- Ming-Tsan Lin
- Department of Primary Care Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
240
|
McLachlan RW, Kraemer A, Helwani FM, Kovacs EM, Yap AS. E-cadherin adhesion activates c-Src signaling at cell-cell contacts. Mol Biol Cell 2007; 18:3214-23. [PMID: 17553930 PMCID: PMC1949350 DOI: 10.1091/mbc.e06-12-1154] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Cadherin-based cell-cell contacts are prominent sites for phosphotyrosine signaling, being enriched in tyrosine-phosphorylated proteins and tyrosine kinases and phosphatases. The functional interplay between cadherin adhesion and tyrosine kinase signaling, however, is complex and incompletely understood. In this report we tested the hypothesis that cadherin adhesion activates c-Src signaling and sought to assess its impact on cadherin function. We identified c-Src as part of a cadherin-activated cell signaling pathway that is stimulated by ligation of the adhesion receptor. However, c-Src has a biphasic impact on cadherin function, exerting a positive supportive role at lower signal strengths, but inhibiting function at high signal strengths. Inhibiting c-Src under circumstances when it is activated by cadherin adhesion decreased several measures of cadherin function. This suggests that the cadherin-activated c-Src signaling pathway serves positively to support cadherin function. Finally, our data implicate PI3-kinase signaling as a target for cadherin-activated c-Src signaling that contributes to its positive impact on cadherin function. We conclude that E-cadherin signaling is an important activator of c-Src at cell-cell contacts, providing a key input into a signaling pathway where quantitative changes in signal strength may result in qualitative differences in functional outcome.
Collapse
Affiliation(s)
- Robert W. McLachlan
- *Division of Molecular Cell Biology, Institute for Molecular Bioscience, and
| | - Astrid Kraemer
- *Division of Molecular Cell Biology, Institute for Molecular Bioscience, and
| | - Falak M. Helwani
- *Division of Molecular Cell Biology, Institute for Molecular Bioscience, and
| | - Eva M. Kovacs
- School for Biomedical Science, The University of Queensland, St. Lucia, Brisbane, Queensland, Australia 4072
| | - Alpha S. Yap
- *Division of Molecular Cell Biology, Institute for Molecular Bioscience, and
| |
Collapse
|
241
|
Sirvent A, Boureux A, Simon V, Leroy C, Roche S. The tyrosine kinase Abl is required for Src-transforming activity in mouse fibroblasts and human breast cancer cells. Oncogene 2007; 26:7313-23. [PMID: 17533370 DOI: 10.1038/sj.onc.1210543] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The cytoplasmic tyrosine kinase Src has been implicated in signal transduction induced by growth factors and integrins. Src also shows oncogenic activity when deregulated. Accumulating evidence indicates that the tyrosine kinase Abl is an important substrate for Src signalling in normal cells. Here we show that Abl is also required for Src-induced transformation of mouse fibroblasts. Abl does not mediate tyrosine phosphorylation of Stat3 and Shc, two important regulators of Src oncogenic activity. In contrast, Abl controls the activation of the small GTPase Rac for oncogenic signalling and active Rac partly rescued Src transformation in cells with inactive Abl. Moreover, Abl mediates Src-induced extracellular regulated kinase 5 (ERK5) activation to drive cell transformation. Finally, we find that Abl/Rac and Abl/ERK5 pathways also operate in human MCF7 and BT549 breast cancer cells, where neoplastic transformation depends on Src-like activities. Therefore, Abl is an important regulator of Src oncogenic activity both in mouse fibroblasts and in human cancer cells. Targeting these Abl-dependent signalling cascades may be of therapeutic value in breast cancers where Src-like function is important.
Collapse
Affiliation(s)
- A Sirvent
- CRBM, CNRS UMR5237 - UMII, 1919 route de Mende, Montpellier, France
| | | | | | | | | |
Collapse
|
242
|
Leupold JH, Asangani I, Maurer GD, Lengyel E, Post S, Allgayer H. Src InducesUrokinase ReceptorGene Expression and Invasion/Intravasation via Activator Protein-1/p-c-Jun in Colorectal Cancer. Mol Cancer Res 2007; 5:485-96. [PMID: 17510314 DOI: 10.1158/1541-7786.mcr-06-0211] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The urokinase receptor [urokinase plasminogen activator receptor (u-PAR)] promotes invasion and metastasis and is associated with poor patient survival. Recently, it was shown that Src induces u-PAR gene expression via Sp1 bound to the u-PAR promoter region -152/-135. However, u-PAR is regulated by diverse promoter motifs, among them being an essential activator protein-1 (AP-1) motif at -190/-171. Moreover, an in vivo relevance of Src-induced transcriptional regulators of u-PAR-mediated invasion, in particular intravasation, and a relevance in resected patient tumors have not sufficiently been shown. The present study was conducted (a) to investigate if, in particular, AP-1-related transcriptional mediators are required for Src-induced u-PAR-gene expression, (b) to show in vivo relevance of AP-1-mediated Src-induced u-PAR gene expression for invasion/intravasation and for resected tissues from colorectal cancer patients. Src stimulation of the u-PAR promoter deleted for AP-1 region -190/-171 was reduced as compared with the wild-type promoter in cultured colon cancer cells. In gelshifts/chromatin immunoprecipitation, Src-transfected SW480 cells showed an increase of phospho-c-Jun, in addition to JunD and Fra-1, bound to region -190/-171. Src-transfected cells showed a significant increase in c-Jun phosphorylated at Ser(73) and also Ser(63), which was paralleled by increased phospho-c-jun-NH(2)-kinase. Significant decreases of invasion/in vivo intravasation (chorionallantoic membrane model) were observed in Src-overexpressing cells treated with Src inhibitors, u-PAR-small interfering RNA, and dominant negative c-Jun (TAM67). In resected tissues of 20 colorectal cancer patients, a significant correlation between Src activity, AP-1 complexes bound to u-PAR region -190/-171, and advanced pN stage were observed. These data suggest that Src-induced u-PAR gene expression and invasion/intravasation in vivo is also mediated via AP-1 region -190/-171, especially bound with c-Jun phosphorylated at Ser(73/63), and that this pathway is biologically relevant for colorectal cancer patients, suggesting therapeutic potential.
Collapse
Affiliation(s)
- Jörg H Leupold
- Department of Experimental Surgery Mannheim Faculty, University of Heidelberg, Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
243
|
Wang Y, Chang J, Chen KD, Li S, Li JYS, Wu C, Chien S. Selective adapter recruitment and differential signaling networks by VEGF vs. shear stress. Proc Natl Acad Sci U S A 2007; 104:8875-9. [PMID: 17496149 PMCID: PMC1885595 DOI: 10.1073/pnas.0703088104] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Vascular endothelial cells are continuously exposed to mechanical and chemical stimuli, such as shear stress and VEGF, respectively. It is still not clear how cells perceive these stimuli and orchestrate their responses. Studying the molecular mechanism by which shear stress and VEGF regulate the signaling pathways in bovine endothelial aortic cells, we found that VEGF induced a rapid association of VEGF receptor 2 (Flk-1) with Nck beta, but shear stress did not have such an effect. SU1498 (a specific inhibitor of Flk-1) and Nck beta(nm) (a negative mutant of Nck beta) blocked the VEGF-induced ERK and JNK activities. Only SU1498, but not Nck beta(nm), inhibited the shear-induced ERK activity. Furthermore, neither SU1498 nor Nck beta(nm) had significant effects on the shear-induced JNK activity, which can be blocked by inhibitors of Src family kinase and ROCK kinase. Therefore, mechanical (shear stress) and chemical (VEGF) stimuli diverge at the receptor Flk-1 in terms of the recruitment of the adapter protein Nck beta, and they employ different components of the complex signaling network in regulating downstream molecules, e.g., ERK and JNK.
Collapse
Affiliation(s)
- Yingxiao Wang
- *Department of Bioengineering and The Whitaker Institute of Biomedical Engineering, University of California at San Diego, La Jolla, CA 92093; and
| | - Joann Chang
- *Department of Bioengineering and The Whitaker Institute of Biomedical Engineering, University of California at San Diego, La Jolla, CA 92093; and
| | - Kuang-Den Chen
- *Department of Bioengineering and The Whitaker Institute of Biomedical Engineering, University of California at San Diego, La Jolla, CA 92093; and
| | - Song Li
- *Department of Bioengineering and The Whitaker Institute of Biomedical Engineering, University of California at San Diego, La Jolla, CA 92093; and
| | - Julie Yi-Shuan Li
- *Department of Bioengineering and The Whitaker Institute of Biomedical Engineering, University of California at San Diego, La Jolla, CA 92093; and
| | - Chuanyue Wu
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15261
| | - Shu Chien
- *Department of Bioengineering and The Whitaker Institute of Biomedical Engineering, University of California at San Diego, La Jolla, CA 92093; and
- To whom correspondence should be addressed at:
Department of Bioengineering, University of California at San Diego, La Jolla, CA 92093-0427. E-mail:
| |
Collapse
|
244
|
Rönty M, Taivainen A, Heiska L, Otey C, Ehler E, Song WK, Carpen O. Palladin interacts with SH3 domains of SPIN90 and Src and is required for Src-induced cytoskeletal remodeling. Exp Cell Res 2007; 313:2575-85. [PMID: 17537434 PMCID: PMC2000818 DOI: 10.1016/j.yexcr.2007.04.030] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2006] [Revised: 04/23/2007] [Accepted: 04/27/2007] [Indexed: 11/24/2022]
Abstract
Palladin and SPIN90 are widely expressed proteins, which participate in modulation of actin cytoskeleton by binding to a variety of scaffold and signaling molecules. Cytoskeletal reorganization can be induced by activation of signaling pathways, including the PDGF receptor and Src tyrosine kinase pathways. In this study we have analyzed the interplay between palladin, SPIN90 and Src and characterized the role of palladin and SPIN90 in PDGF and Src-induced cytoskeletal remodeling. We show that the SH3 domains of SPIN90 and Src directly bind palladin's poly-proline sequence and the interaction controls intracellular targeting of SPIN90. In PDGF-treated cells, palladin and SPIN90 co-localize in actin-rich membrane ruffles and lamellipodia. The effect of PDGF on the cytoskeleton is at least partly mediated by the Src kinase since PP2, a selective Src kinase family inhibitor, blocked PDGF-induced changes. Furthermore, expression of active Src kinase resulted in coordinated translocation of both palladin and SPIN90 to membrane protrusions. Knock-down of endogenous SPIN90 did not inhibit Src-induced cytoskeletal rearrangement, whereas knock-down of palladin resulted in cytoskeletal disorganization and inhibition of remodeling. Further studies showed that palladin is tyrosine phosphorylated in cells expressing active Src indicating bidirectional interplay between palladin and Src. These results may have implications in understanding the invasive and metastatic phenotype of neoplastic cells induced by Src.
Collapse
Affiliation(s)
- Mikko Rönty
- Department of Pathology, Neuroscience Program, Biomedicum Helsinki, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Corresponding author: Mikko Rönty, , Phone: +358-9-19126433, Fax: +358-9-47171964
| | - Anu Taivainen
- Department of Pathology, Neuroscience Program, Biomedicum Helsinki, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Corresponding author: Mikko Rönty, , Phone: +358-9-19126433, Fax: +358-9-47171964
| | - Leena Heiska
- Department of Pathology, Neuroscience Program, Biomedicum Helsinki, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Carol Otey
- Department of Cell and Molecular Physiology, University of North Carolina at Chapel Hill
| | - Elisabeth Ehler
- The Randall Division of Cell & Molecular Biophysics and the Cardiovascular Division, King’s College London, SE1 1UL, London, UK
| | - Woo Keun Song
- Department of Life Science, Kwangju Institute of Science and Technology, 1 Oryong-dong, Buk-gu, Gwangju,Korea
| | - Olli Carpen
- Department of Pathology, Neuroscience Program, Biomedicum Helsinki, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Department of Pathology, University of Turku and Turku University Hospital, Turku, Finland
| |
Collapse
|
245
|
Shen Y, Khusial PR, Li X, Ichikawa H, Moreno AP, Goldberg GS. SRC utilizes Cas to block gap junctional communication mediated by connexin43. J Biol Chem 2007; 282:18914-21. [PMID: 17488714 DOI: 10.1074/jbc.m608980200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Src tyrosine kinase phosphorylates Cas (Crk-associated substrate) to confer anchorage independence and invasive growth potential to transformed cells. Gap junctional communication is often lower between aggressive tumor cells compared with normal or benign precursors. The gap junction protein connexin43 (Cx43) is a tumor suppressor that can inhibit tumor cell growth. Src can phosphorylate Cx43 to block gap junctional communication between transformed cells. However, mechanisms by which this event actually closes intercellular channels have not been clearly defined. Here, we report that Src and Cas associate with each other at intercellular junctions. In addition, Cas is required for Src to reduce dye transfer and electrical coupling between cells expressing Cx43. Thus, Src utilizes Cas to inhibit gap junctional communication mediated by Cx43. This finding introduces a novel role of the Cas focal adhesion linker protein in the gap junction complex. This observation may help explain how gap junctional communication can be suppressed between malignant and metastatic tumor cells.
Collapse
Affiliation(s)
- Yongquan Shen
- Department of Molecular Biology, Science Center, University of Medicine and Dentistry, Stratford, New Jersey 08084, USA
| | | | | | | | | | | |
Collapse
|
246
|
Huveneers S, van den Bout I, Sonneveld P, Sancho A, Sonnenberg A, Danen EHJ. Integrin αvβ3 Controls Activity and Oncogenic Potential of Primed c-Src. Cancer Res 2007; 67:2693-700. [PMID: 17363590 DOI: 10.1158/0008-5472.can-06-3654] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Increased activity of the proto-oncogene c-Src and elevated levels of integrin alpha(v)beta(3) are found in melanomas and multiple carcinomas. Regulation of c-Src involves "priming" through disruption of intramolecular interactions followed by "activation" through phosphorylation in the kinase domain. Interactions with overexpressed receptor tyrosine kinases or mutations in the SRC gene can induce priming of c-Src in cancer. Here, we show that alpha(v)beta(3) promotes activation of primed c-Src, causing enhanced phosphorylation of established Src substrates, survival, proliferation, and tumor growth. The beta(3) cytoplasmic tail is required and sufficient for integrin-mediated stimulation of all these events through a mechanism that is independent of beta(3) tyrosine phosphorylation. Instead, experiments using Src variants containing the v-Src Src homology 3 (SH3) domain and using mutant beta(3) subunits indicate that a functional interaction of the beta(3) cytoplasmic tail with the c-Src SH3 domain is required. These findings delineate a novel integrin-controlled oncogenic signaling cascade and suggest that the interaction of alpha(v)beta(3) with c-Src may represent a novel target for therapeutic intervention.
Collapse
Affiliation(s)
- Stephan Huveneers
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
247
|
Fukui Y, Tanaka T, Tachikawa H, Ihara S. SWAP-70 is required for oncogenic transformation by v-Src in mouse embryo fibroblasts. Biochem Biophys Res Commun 2007; 356:512-6. [PMID: 17367752 DOI: 10.1016/j.bbrc.2007.03.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Accepted: 03/01/2007] [Indexed: 11/23/2022]
Abstract
SWAP-70 is a phosphatidylinositol trisphosphate (PtdIns(3,4,5)P(3)) binding protein, which acts in F-actin rearrangement. The role of SWAP-70 in oncogenic transformation of mouse embryo fibroblasts (MEFs) by v-Src was examined by use of MEFs defective in SWAP-70. v-Src morphologically transformed MEFs lacking SWAP-70, but growth of the transformed cells in culture was slower than that of cells supplemented with exogenous SWAP-70. The v-Src-transformed MEFs deficient in SWAP-70 were unable to grow in soft agar while those expressing SWAP70 readily formed colonies, suggesting that SWAP-70 is required for anchorage independent growth of v-Src transformed MEFs. When transplanted in nude mice, tumors formed by the v-Src transformed SWAP-70(-/-) MEFs were smaller than those formed by cells expressing exogenous SWAP-70. These results suggest that SWAP-70 may be required for oncogenic transformation and contributes to cell growth in MEFs transformed by v-Src.
Collapse
Affiliation(s)
- Yasuhisa Fukui
- Division of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan.
| | | | | | | |
Collapse
|
248
|
Pillai MR, Lefevre EA, Carr BV, Charleston B, O'Grady P. Workshop cluster 1, a γδ T cell specific receptor is phosphorylated and down regulated by activation induced Src family kinase activity. Mol Immunol 2007; 44:1691-703. [PMID: 16997376 DOI: 10.1016/j.molimm.2006.08.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2006] [Revised: 07/12/2006] [Accepted: 08/03/2006] [Indexed: 11/28/2022]
Abstract
Workshop cluster 1(+) gamma delta (WC1(+)gammadelta) T cells have been shown to play important roles in the immune response to infections. WC1 is a transmembrane glycoprotein, uniquely expressed on the surface of gammadelta T cells of ruminants and pigs. A role for WC1 in inducing a reversible growth arrest of gammadelta T cells has been previously demonstrated. WC1-induced growth inhibition has been shown to be overcome following gammadelta T cell activation with Concanavalin A (Con A). However, molecular mechanism(s) by which WC1 signalling might be modulated following activation have not been elucidated. In this paper we show that Con A activation of bovine lymphocytes induces the tyrosine phosphorylation of WC1 in a Src-family kinase-dependent manner. Src family kinases also phosphorylated WC1 in a COS-7 co-transfection system. Furthermore, a glutathione-S-transferase (GST)-WC1 cytoplasmic domain fusion protein was directly phosphorylated by recombinant Lck (rLck) in vitro. The Y(1303) of WC1 was identified by mutational analysis as the only one of the five WC1 tyrosine residues to be critical for Src family phosphorylation. The importance of activation-induced Src family activity for WC1 function was investigated with the Src-family specific inhibitor PP2. These studies show that the surface levels of WC1 are down regulated in a Src-family-dependent manner following activation of bovine lymphocytes. Down regulation of surface WC1 was accompanied by a Src-family-dependent accumulation of intracellular WC1. These data show that WC1 is modulated by activation-induced tyrosine phosphorylation thus providing a new insight into the signalling mechanisms by which WC1 and gammadelta T cell activation are regulated in this important and unique cell population.
Collapse
Affiliation(s)
- Meenu R Pillai
- Department of Immunology, Institute for Animal Health, Pirbright Laboratory, Pirbright, Woking, Surrey GU24 0NF, UK
| | | | | | | | | |
Collapse
|
249
|
Huang H, Lu FI, Jia S, Meng S, Cao Y, Wang Y, Ma W, Yin K, Wen Z, Peng J, Thisse C, Thisse B, Meng A. Amotl2 is essential for cell movements in zebrafish embryo and regulates c-Src translocation. Development 2007; 134:979-88. [PMID: 17293535 DOI: 10.1242/dev.02782] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Angiomotin (Amot), the founding member of the Motin family, is involved in angiogenesis by regulating endothelial cell motility, and is required for visceral endoderm movement in mice. However, little is known about biological functions of the other two members of the Motin family, Angiomotin-like1(Amotl1) and Angiomotin-like2 (Amotl2). Here, we have identified zebrafish amotl2 as an Fgf-responsive gene. Zebrafish amotl2 is expressed maternally and in restricted cell types zygotically. Knockdown of amotl2 expression delays epiboly and impairs convergence and extension movement, and amotl2-deficient cells in mosaic embryos fail to migrate properly. This coincides with loss of membrane protrusions and disorder of F-actin. Amotl2 partially co-localizes with RhoB-or EEA1-positive endosomes and the non-receptor tyrosine kinase c-Src. We further demonstrate that Amotl2 interacts preferentially with and facilitates outward translocation of the phosphorylated c-Src, which may in turn regulate the membrane architecture. These data provide the first evidence that amotl2 is essential for cell movements in vertebrate embryos.
Collapse
Affiliation(s)
- Huizhe Huang
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing 100084, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
250
|
Barbolina MV, Adley BP, Ariztia EV, Liu Y, Stack MS. Microenvironmental Regulation of Membrane Type 1 Matrix Metalloproteinase Activity in Ovarian Carcinoma Cells via Collagen-induced EGR1 Expression. J Biol Chem 2007; 282:4924-4931. [PMID: 17158885 DOI: 10.1074/jbc.m608428200] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Late stage ovarian cancer is characterized by disseminated intraperitoneal metastasis as secondary lesions anchor in the type I and III collagen-rich submesothelial matrix. Ovarian carcinoma cells preferentially adhere to interstitial collagen, and collagen-induced integrin clustering up-regulates the expression of the transmembrane collagenase membrane type 1 matrix metalloproteinase (MT1-MMP). Collagenolytic activity is important in intraperitoneal metastasis, potentiating invasion through the mesothelial cell layer and colonization of the submesothelial collagen-rich matrix. The objective of this study was to elucidate a potential mechanistic link between collagen adhesion and MT1-MMP expression. Our results indicate that culturing cells on three-dimensional collagen gels, but not thin layer collagen or synthetic three-dimensional hydrogels, results in rapid induction of the transcription factor EGR1. Integrin signaling through a SRC kinase-dependent pathway is necessary for EGR1 induction. Silencing of EGR1 expression using small interfering RNA abrogated collagen-induced MT1-MMP expression and inhibited cellular invasion of three-dimensional collagen gels. These data support a model for intraperitoneal metastasis wherein collagen adhesion and clustering of collagen binding integrins activates integrin-mediated signaling via SRC kinases to induce expression of EGR1, resulting in transcriptional activation of the MT1-MMP promoter and subsequent MT1-MMP-catalyzed collagen invasion. This model highlights the role of unique interactions between ovarian carcinoma cells and interstitial collagens in the ovarian tumor microenvironment in inducing gene expression changes that potentiate intraperitoneal metastatic progression.
Collapse
Affiliation(s)
- Maria V Barbolina
- Departments of Cell & Molecular Biology and Chicago Chicago, Illinois 60611
| | - Brian P Adley
- Pathology, Northwestern University Feinberg School of Medicine and the Chicago, Illinois 60611
| | - Edgardo V Ariztia
- Departments of Cell & Molecular Biology and Chicago Chicago, Illinois 60611
| | - Yueying Liu
- Departments of Cell & Molecular Biology and Chicago Chicago, Illinois 60611
| | - M Sharon Stack
- Departments of Cell & Molecular Biology and Chicago Chicago, Illinois 60611; Cell & Molecular Biology and Chicago, Illinois 60611; Robert H. Lurie Comprehensive Cancer Center, Chicago, Illinois 60611.
| |
Collapse
|