201
|
Sangro B, Gomez-Martin C, de la Mata M, Iñarrairaegui M, Garralda E, Barrera P, Riezu-Boj JI, Larrea E, Alfaro C, Sarobe P, Lasarte JJ, Pérez-Gracia JL, Melero I, Prieto J. A clinical trial of CTLA-4 blockade with tremelimumab in patients with hepatocellular carcinoma and chronic hepatitis C. J Hepatol 2013; 59:81-8. [PMID: 23466307 DOI: 10.1016/j.jhep.2013.02.022] [Citation(s) in RCA: 740] [Impact Index Per Article: 61.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 02/11/2013] [Accepted: 02/25/2013] [Indexed: 12/05/2022]
Abstract
BACKGROUND & AIMS Tremelimumab is a monoclonal antibody that blocks cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4), an inhibitory co-receptor that interferes with T cell activation and proliferation. The purpose of this pilot clinical trial was to test the antitumor and antiviral effect of tremelimumab in patients with hepatocellular carcinoma (HCC) and chronic hepatitis C virus (HCV) infection; and to study the safety of its administration to cirrhotic patients. METHODS Tremelimumab at a dose of 15 mg/kg IV every 90 days was administered until tumor progression or severe toxicity. Twenty patients were assessable for toxicity and viral response and 17 were assessable for tumor response. Most patients were in the advanced stage and 43% had an altered liver function (Child-Pugh class B). RESULTS A good safety profile was recorded and no patient needed steroids because of severe immune-mediated adverse events. Some patients had a transient albeit intense elevation of transaminases after the first dose, but not following subsequent cycles. Partial response rate was 17.6% and disease control rate was 76.4%. Time to progression was 6.48 months (95% CI 3.95-9.14). A significant drop in viral load was observed while new emerging variants of the hypervariable region 1 of HCV replaced the predominant variants present before therapy, particularly in those patients with a more prominent drop in viral load. This antiviral effect was associated with an enhanced specific anti-HCV immune response. CONCLUSIONS Tremelimumab safety profile and antitumor and antiviral activity, in patients with advanced HCC developed on HCV-induced liver cirrhosis, support further investigation.
Collapse
Affiliation(s)
- Bruno Sangro
- Liver Unit and HPB Oncology, Clinica Universidad de Navarra, Pamplona, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
202
|
Kared H, Fabre T, Bédard N, Bruneau J, Shoukry NH. Galectin-9 and IL-21 mediate cross-regulation between Th17 and Treg cells during acute hepatitis C. PLoS Pathog 2013; 9:e1003422. [PMID: 23818845 PMCID: PMC3688567 DOI: 10.1371/journal.ppat.1003422] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 04/30/2013] [Indexed: 12/12/2022] Open
Abstract
Loss of CD4 T cell help correlates with virus persistence during acute hepatitis C virus (HCV) infection, but the underlying mechanism(s) remain unknown. We developed a combined proliferation/intracellular cytokine staining assay to monitor expansion of HCV-specific CD4 T cells and helper cytokines expression patterns during acute infections with different outcomes. We demonstrate that acute resolving HCV is characterized by strong Th1/Th17 responses with specific expansion of IL-21-producing CD4 T cells and increased IL-21 levels in plasma. In contrast, viral persistence was associated with lower frequencies of IL-21-producing CD4 T cells, reduced proliferation and increased expression of the inhibitory receptors T cell immunoglobulin and mucin-domain-containing-molecule-3 (Tim-3), programmed death 1 (PD-1) and cytotoxic T-lymphocyte antigen 4 (CTLA-4) on HCV-specific CD8 T cells. Progression to persistent infection was accompanied by increased plasma levels of the Tim-3 ligand Galectin-9 (Gal-9) and expansion of Gal-9 expressing regulatory T cells (Tregs). In vitro supplementation of Tim-3(high) HCV-specific CD8 T cells with IL-21 enhanced their proliferation and prevented Gal-9 induced apoptosis. siRNA-mediated knockdown of Gal-9 in Treg cells rescued IL-21 production by HCV-specific CD4 T cells. We propose that failure of CD4 T cell help during acute HCV is partially due to an imbalance between Th17 and Treg cells whereby exhaustion of both CD4 and CD8 T cells through the Tim-3/Gal-9 pathway may be limited by IL-21 producing Th17 cells or enhanced by Gal-9 producing Tregs.
Collapse
Affiliation(s)
- Hassen Kared
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Hôpital St-Luc, Montréal, Québec, Canada
| | - Thomas Fabre
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Hôpital St-Luc, Montréal, Québec, Canada
- Département de microbiologie et immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Nathalie Bédard
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Hôpital St-Luc, Montréal, Québec, Canada
| | - Julie Bruneau
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Hôpital St-Luc, Montréal, Québec, Canada
- Departement de médecine familiale, Université de Montréal, Montréal, Québec, Canada
| | - Naglaa H. Shoukry
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Hôpital St-Luc, Montréal, Québec, Canada
- Département de médecine, Faculté de médecine, Université de Montréal, Montréal, Québec, Canada
- * E-mail:
| |
Collapse
|
203
|
Sharma A, Thompson JA, Repaka A, Mehnert JM. Ipilimumab administration in patients with advanced melanoma and hepatitis B and C. J Clin Oncol 2013; 31:e370-2. [PMID: 23775956 DOI: 10.1200/jco.2012.47.1946] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Anupa Sharma
- University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | | | | | | |
Collapse
|
204
|
Claassen MAA, Janssen HLA, Boonstra A. Role of T cell immunity in hepatitis C virus infections. Curr Opin Virol 2013; 3:461-7. [PMID: 23735335 DOI: 10.1016/j.coviro.2013.05.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 04/17/2013] [Accepted: 05/10/2013] [Indexed: 12/16/2022]
Abstract
Chronic infections with the hepatitis C virus (HCV) are a major global health issue. Viral replication is restricted to hepatocytes, and occurs for decades at high replication rates. Over the last decade, it became accepted that HCV-specific CD4(+) and CD8(+) T cells are crucial for protective immunity to HCV. However, a characteristic feature of persistent HCV infection is the dysfunctional T cell response, and over recent years enormous progress has been made in understanding the mechanisms that dampen the antiviral T cell responses in blood and liver of chronic HCV patients and also impact disease progression.
Collapse
Affiliation(s)
- Mark A A Claassen
- Liver Unit, Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | | | | |
Collapse
|
205
|
Pelletier S, Bédard N, Said E, Ancuta P, Bruneau J, Shoukry NH. Sustained hyperresponsiveness of dendritic cells is associated with spontaneous resolution of acute hepatitis C. J Virol 2013; 87:6769-81. [PMID: 23576504 PMCID: PMC3676083 DOI: 10.1128/jvi.02445-12] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 03/25/2013] [Indexed: 12/11/2022] Open
Abstract
Some studies have reported that dendritic cells (DCs) may be dysfunctional in a subset of patients with chronic hepatitis C virus (HCV) infection. However, the function of DCs during acute HCV infection and their role in determining infectious outcome remain elusive. Here, we examined the phenotype and function of myeloid DCs (mDCs) and plasmacytoid DCs (pDCs) during acute HCV infection. Three groups of injection drug users (IDUs) at high risk of HCV infection were studied: an uninfected group, a group with acute HCV infection with spontaneous resolution, and a group with acute infection with chronic evolution. We examined the frequency, maturation status, and cytokine production capacity of DCs in response to the Toll-like receptor 4 (TLR4) and TLR7/8 ligands lipopolysaccharide (LPS) and single-stranded RNA (ssRNA), respectively. Several observations could distinguish HCV-negative IDUs and acute HCV resolvers from patients with acute infection with chronic evolution. First, we observed a decrease in the frequency of mature CD86(+), programmed death-1 receptor ligand-positive (PDL1(+)), and PDL2(+) pDCs. This phenotype was associated with the increased sensitivity of pDCs from resolvers and HCV-negative IDUs versus the group with acute infection with chronic evolution to ssRNA stimulation in vitro. Second, LPS-stimulated mDCs from resolvers and HCV-negative IDUs produced higher levels of cytokines than mDCs from the group with acute infection with chronic evolution. Third, mDCs from all patients with acute HCV infection, irrespective of their outcomes, produced higher levels of cytokines during the early acute phase in response to ssRNA than mDCs from healthy controls. However, this hyperresponsiveness was sustained only in spontaneous resolvers. Altogether, our results suggest that the immature pDC phenotype and sustained pDC and mDC hyperresponsiveness are associated with spontaneous resolution of acute HCV infection.
Collapse
Affiliation(s)
- Sandy Pelletier
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Hôpital St-Luc,
- Département de Microbiologie et Immunologie,
| | - Nathalie Bédard
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Hôpital St-Luc,
| | - Elias Said
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Hôpital St-Luc,
- Département de Microbiologie et Immunologie,
| | - Petronela Ancuta
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Hôpital St-Luc,
- Département de Microbiologie et Immunologie,
| | - Julie Bruneau
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Hôpital St-Luc,
- Département de Médecine Familiale,
| | - Naglaa H. Shoukry
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Hôpital St-Luc,
- Département de Médecine, Université de Montréal, Montréal, Quebec, Canada
| |
Collapse
|
206
|
Gardiner D, Lalezari J, Lawitz E, DiMicco M, Ghalib R, Reddy KR, Chang KM, Sulkowski M, Marro SO, Anderson J, He B, Kansra V, McPhee F, Wind-Rotolo M, Grasela D, Selby M, Korman AJ, Lowy I. A randomized, double-blind, placebo-controlled assessment of BMS-936558, a fully human monoclonal antibody to programmed death-1 (PD-1), in patients with chronic hepatitis C virus infection. PLoS One 2013; 8:e63818. [PMID: 23717490 PMCID: PMC3661719 DOI: 10.1371/journal.pone.0063818] [Citation(s) in RCA: 189] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 04/04/2013] [Indexed: 01/09/2023] Open
Abstract
UNLABELLED Expression of the programmed death 1 (PD-1) receptor and its ligands are implicated in the T cell exhaustion phenotype which contributes to the persistence of several chronic viral infections, including human hepatitis C virus (HCV). The antiviral potential of BMS-936558 (MDX-1106) - a fully human anti-PD-1 monoclonal immunoglobulin-G4 that blocks ligand binding - was explored in a proof-of-concept, placebo-controlled single-ascending-dose study in patients (N = 54) with chronic HCV infection. Interferon-alfa treatment-experienced patients (n = 42) were randomized 5∶1 to receive a single infusion of BMS-936558 (0.03, 0.1, 0.3, 1.0, 3.0 mg/kg [n = 5 each] or 10 mg/kg [n = 10]) or of placebo (n = 7). An additional 12 HCV treatment-naïve patients were randomized to receive 10 mg/kg BMS-936558 (n = 10) or placebo (n = 2). Patients were followed for 85 days post-dose. Five patients who received BMS-936558 (0.1 [n = 1] or 10 mg/kg) and one placebo patient achieved the primary study endpoint of a reduction in HCV RNA ≥0.5 log10 IU/mL on at least 2 consecutive visits; 3 (10 mg/kg) achieved a >4 log10 reduction. Two patients (10 mg/kg) achieved HCV RNA below the lower limit of quantitation (25 IU/mL), one of whom (a prior null-responder) remained RNA-undetectable 1 year post-study. Transient reductions in CD4(+), CD8(+) and CD19(+) cells, including both naïve and memory CD4(+) and CD8(+) subsets, were observed at Day 2 without evidence of immune deficit. No clinically relevant changes in immunoglobulin subsets or treatment-related trends in circulating cytokines were noted. BMS-936558 exhibited dose-related exposure increases, with a half-life of 20-24 days. BMS-936558 was mostly well tolerated. One patient (10 mg/kg) experienced an asymptomatic grade 4 ALT elevation coincident with the onset of a 4-log viral load reduction. Six patients exhibited immune-related adverse events of mild-to-moderate intensity, including two cases of hyperthyroidism consistent with autoimmune thyroiditis. Further investigation of PD-1 pathway blockade in chronic viral disease is warranted. TRIAL REGISTRATION ClinicalTrials.gov NCT00703469.
Collapse
|
207
|
Schmidt J, Blum HE, Thimme R. T-cell responses in hepatitis B and C virus infection: similarities and differences. Emerg Microbes Infect 2013; 2:e15. [PMID: 26038456 PMCID: PMC3630955 DOI: 10.1038/emi.2013.14] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 02/13/2013] [Accepted: 02/17/2013] [Indexed: 01/05/2023]
Abstract
Chronic hepatitis B virus (HBV) and hepatitis C virus (HCV) infection are global health problems affecting 600 million people worldwide. Indeed, HBV and HCV are hepatotropic viruses that can cause acute and chronic liver disease progressing to liver cirrhosis and even hepatocellular carcinoma. Furthermore, co-infections of HBV and HCV with HIV are emerging worldwide. These co-infections are even more likely to develop persistent infection and are difficult to treat. There is growing evidence that virus-specific CD4+ and CD8+ T-cell responses play a central role in the outcome and pathogenesis of HBV and HCV infection. While virus-specific T-cell responses are able to successfully clear the virus in a subpopulation of patients, failure of these T-cell responses is associated with the development of viral persistence. In this review article, we will discuss similarities and differences in HBV- and HCV-specific T-cell responses that are central in determining viral clearance, persistence and liver disease.
Collapse
Affiliation(s)
- Julia Schmidt
- Department of Medicine II, University Hospital Freiburg , D-79106 Freiburg, Germany
| | - Hubert E Blum
- Department of Medicine II, University Hospital Freiburg , D-79106 Freiburg, Germany
| | - Robert Thimme
- Department of Medicine II, University Hospital Freiburg , D-79106 Freiburg, Germany
| |
Collapse
|
208
|
Liu B, Wang M, Wang X, Zhao D, Liu D, Liu J, Chen PJ, Yang D, He F, Tang L. Liver sinusoidal endothelial cell lectin inhibits CTL-dependent virus clearance in mouse models of viral hepatitis. THE JOURNAL OF IMMUNOLOGY 2013; 190:4185-95. [PMID: 23487419 DOI: 10.4049/jimmunol.1203091] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Liver sinusoidal endothelial cell lectin (LSECtin) was recently reported to suppress intrahepatic T cell immunity and to limit immune-mediated liver injury. However, its role in the outcome and pathogenesis of viral infection has not yet been elucidated. Using a mouse model infected with a hepatotropic adenovirus, we found that the absence of LSECtin led to a higher frequency of intrahepatic effector CTLs. These cells produced higher levels of antiviral cytokines and cytotoxic factors and exhibited an increased expression of the transcription factors T-bet and Runx3. This phenotype observed in the LSECtin-knockout cells mediated a more efficient virus-specific cytotoxicity compared with that of wild-type cells. As a consequence, LSECtin deficiency significantly accelerated liver adenovirus clearance. In contrast, LSECtin upregulation in the liver delayed viral clearance; this delayed clearance was accompanied by the downregulation of the antiviral activity of CTLs. We further constructed an immunocompetent mouse model of acute hepatitis B viral infection to demonstrate that LSECtin significantly delayed the clearance of hepatitis B virus from blood and infected hepatocytes by limiting the frequency of hepatitis B virus-specific IFN-γ-producing cells. Consistent with this function, LSECtin was upregulated in the liver of mouse models of viral hepatitis. Taken together, our results suggest that LSECtin may facilitate the reduction of liver inflammation at the cost of delaying virus clearance and that this effect might be hijacked by the virus as an escape mechanism.
Collapse
Affiliation(s)
- Biao Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
209
|
WANG DONGSHENG, ZHOU DING, DU QIN, LIANG QI, WANG QIANG, FANG LI, WANG GUANGRONG, FAN QUMING, LIU BEIZHONG, ZHOU JINGGUO, TANG ZHONG, WU HAO, GUO XIAOLAN, JIAO YANMEI, ZHANG GUOYUAN. Aberrant production of soluble inducible T-cell co-stimulator (sICOS) and soluble programmed cell death protein 1 (sPD-1) in patients with chronic hepatitis C. Mol Med Rep 2013; 7:1197-202. [DOI: 10.3892/mmr.2013.1326] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 01/16/2013] [Indexed: 11/06/2022] Open
|
210
|
The frequency of CD127(+) hepatitis C virus (HCV)-specific T cells but not the expression of exhaustion markers predicts the outcome of acute HCV infection. J Virol 2013; 87:4772-7. [PMID: 23388706 DOI: 10.1128/jvi.03122-12] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
T cells are exhausted and overexpress inhibitory molecules in chronic hepatitis C virus (HCV) infection. It is unclear whether this is the cause or consequence of HCV persistence. By studying serial blood and liver samples of chimpanzees during acute infection, we demonstrate that the early expression of the memory precursor marker CD127 on HCV-specific T cells, but not the expression of inhibitory molecules on those T cells or their ligands in the liver, predicts the outcome of acute infection.
Collapse
|
211
|
Seigel B, Bengsch B, Lohmann V, Bartenschlager R, Blum HE, Thimme R. Factors that determine the antiviral efficacy of HCV-specific CD8(+) T cells ex vivo. Gastroenterology 2013; 144:426-436. [PMID: 23142136 DOI: 10.1053/j.gastro.2012.10.047] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 10/03/2012] [Accepted: 10/31/2012] [Indexed: 12/26/2022]
Abstract
BACKGROUND & AIMS Dysfunctional CD8(+) T cells are believed to contribute to the ability of hepatitis C virus (HCV) to evade the immune response. Most studies have focused on the effector functions of HCV-specific CD8(+) T cells or their surface expression of inhibitory receptors. There is currently no information available about the ex vivo ability of HCV-specific CD8(+) T cells to inhibit viral replication (antiviral efficacy). METHODS To analyze the antiviral efficacy of virus-specific CD8(+) T cells ex vivo, we used an immunologic model based on a cell line that expresses HLA-A*02 and contains a stably replicating HCV reporter replicon. We isolated HCV-specific CD8(+) T cells from 18 HLA-A*02-positive patients with chronic HCV infection and 15 subjects with resolved HCV infection (7 spontaneous, 8 after therapy). Replicon cells were labeled with virus-specific peptides; inhibition of HCV replication was determined by measuring luciferase activity after 72 hours of coculture with virus-specific CD8(+) T cells. RESULTS HCV-specific CD8(+) T cells from patients with chronic HCV infection had a significantly lower antiviral efficacy than influenza-, Epstein-Barr virus-, and cytomegalovirus-specific CD8(+) T cells. Antiviral efficacy was associated with the ability of virus-specific CD8(+) T cells to secrete interferon gamma. The antiviral efficacy of HCV-specific CD8(+) T cells was linked to surface expression of CD127 and PD-1. The cytokines interleukin-2, interleukin-7, and interleukin-15 increased the antiviral efficacy of CD127-positive but not of CD127-negative, HCV-specific CD8(+) T cells. Spontaneous, but not antiviral therapy-induced, viral clearance was associated with increased antiviral efficacy. CONCLUSIONS The ability of CD8(+) T cells to inhibit HCV replication ex vivo is associated with their ability to secrete interferon gamma and their surface expression of CD127 and PD-1.
Collapse
Affiliation(s)
- Bianca Seigel
- Department of Medicine II, University Hospital of Freiburg, Freiburg, Germany; Faculty of Biology, University of Freiburg, Freiburg, Germany; Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany
| | - Bertram Bengsch
- Department of Medicine II, University Hospital of Freiburg, Freiburg, Germany; Faculty of Biology, University of Freiburg, Freiburg, Germany; Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany
| | - Volker Lohmann
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Heidelberg, Germany
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Heidelberg, Germany
| | - Hubert E Blum
- Department of Medicine II, University Hospital of Freiburg, Freiburg, Germany
| | - Robert Thimme
- Department of Medicine II, University Hospital of Freiburg, Freiburg, Germany.
| |
Collapse
|
212
|
Flego M, Ascione A, Cianfriglia M, Vella S. Clinical development of monoclonal antibody-based drugs in HIV and HCV diseases. BMC Med 2013; 11:4. [PMID: 23289632 PMCID: PMC3565905 DOI: 10.1186/1741-7015-11-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 01/04/2013] [Indexed: 12/21/2022] Open
Abstract
Today there are many licensed antiviral drugs, but the emergence of drug resistant strains sometimes invalidates the effects of the current therapies used in the treatment of infectious diseases. Compared to conventional antiviral drugs, monoclonal antibodies (mAbs) used as pharmacological molecules have particular physical characteristics and modes of action, and, therefore, they should be considered as a distinct therapeutic class. Despite being historically validated, antibodies may represent a novel tool for combatting infectious diseases. The current high cost of mAbs' production, storage and administration (by injection only) and the consequent obstacles to development are outweighed by mAbs' clinical advantages. These are related to a low toxicity combined with high specificity and versatility, which allows a specific antibody to mediate various biological effects, ranging from the virus neutralization mechanisms to the modulation of immune responses.This review briefly summarizes the recent technological advances in the field of immunoglobulin research, and the current status of mAb-based drugs in clinical trials for HIV and HCV diseases. For each clinical trial the available data are reported and the emerging conceptual problems of the employed mAbs are highlighted.This overview helps to give a clear picture of the efficacy and challenges of the mAbs in the field of these two infectious diseases which have such a global impact.
Collapse
Affiliation(s)
- Michela Flego
- Department of Therapeutic Research and Medicines Evaluation, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | | | | | | |
Collapse
|
213
|
Neumann-Haefelin C, Thimme R. Adaptive immune responses in hepatitis C virus infection. Curr Top Microbiol Immunol 2013; 369:243-62. [PMID: 23463204 DOI: 10.1007/978-3-642-27340-7_10] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The adaptive immune response plays a central role in the outcome of hepatitis C virus (HCV) infection. Indeed, spontaneous viral clearance is associated with an early neutralizing antibody response as well as vigorous and sustained HCV-specific CD4+ and CD8+ T cell responses. In persistent HCV infection, however, all three components of the antiviral adaptive immune response fail due to different viral evasion strategies. In this chapter, we will describe the components of a successful immune response against HCV and summarize the mechanisms of immune failure. We will also highlight characteristics of protective CD8+ T cell responses which is the key factor to the design of an efficacious vaccine.
Collapse
|
214
|
Macaulay R, Riddell NE, Griffiths SJ, Akbar AN, Henson SM. Differing HLA types influence inhibitory receptor signalling in CMV-specific CD8+ T cells. Hum Immunol 2012; 74:302-9. [PMID: 23220495 DOI: 10.1016/j.humimm.2012.11.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 11/26/2012] [Accepted: 11/27/2012] [Indexed: 11/26/2022]
Abstract
The dysregulated immune response to CMV constitutes a major force driving T cell immunosenescence and growing evidence suggests that it is not a benign virus in old age. We show here that the PD-1/L pathway defines a reversible defect in CMV specific CD8(+) T cell proliferative responses in both young and old individuals. More specifically, highly differentiated CD45RA(+)CD27(-) CMV-specific CD8(+) T cells exhibit a proliferative deficit compared their central and effector memory counterparts, which is reversed following PD-L blockade. However, we also report that HLA-B(∗)07/TPR specific CD8(+) T cells express higher levels of PD-1 than HLA-A(∗)02/NLV specific cells and HLA-A(∗)02 individuals show a higher proliferative response to PD-L blockade, than HLA-B(∗)07 individuals, which we postulate may be due to the differing functional avidities for these two CMV-specific CD8(+) T cells populations. Nevertheless data presented here demonstrate that CMV-specific CD8(+) T cells can be functionally enhanced by perturbation of the PD-1/L signalling pathway, whose manipulation may provide a therapeutic modality to combat age-associated immune decline.
Collapse
Affiliation(s)
- Richard Macaulay
- Division of Infection and Immunity, University College London, 5 University Street, London, WC1E 6JF, UK
| | | | | | | | | |
Collapse
|
215
|
Frebel H, Nindl V, Schuepbach RA, Braunschweiler T, Richter K, Vogel J, Wagner CA, Loffing-Cueni D, Kurrer M, Ludewig B, Oxenius A. Programmed death 1 protects from fatal circulatory failure during systemic virus infection of mice. ACTA ACUST UNITED AC 2012; 209:2485-99. [PMID: 23230000 PMCID: PMC3526355 DOI: 10.1084/jem.20121015] [Citation(s) in RCA: 166] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The PD-1–PD-L1 pathway inhibits perforin-mediated killing of PD-L1+ vascular endothelial cells by CD8+ T cells, thereby limiting vascular damage during systemic LCMV infection. The inhibitory programmed death 1 (PD-1)–programmed death ligand 1 (PD-L1) pathway contributes to the functional down-regulation of T cell responses during persistent systemic and local virus infections. The blockade of PD-1–PD-L1–mediated inhibition is considered as a therapeutic approach to reinvigorate antiviral T cell responses. Yet previous studies reported that PD-L1–deficient mice develop fatal pathology during early systemic lymphocytic choriomeningitis virus (LCMV) infection, suggesting a host protective role of T cell down-regulation. As the exact mechanisms of pathology development remained unclear, we set out to delineate in detail the underlying pathogenesis. Mice deficient in PD-1–PD-L1 signaling or lacking PD-1 signaling in CD8 T cells succumbed to fatal CD8 T cell–mediated immunopathology early after systemic LCMV infection. In the absence of regulation via PD-1, CD8 T cells killed infected vascular endothelial cells via perforin-mediated cytolysis, thereby severely compromising vascular integrity. This resulted in systemic vascular leakage and a consequential collapse of the circulatory system. Our results indicate that the PD-1–PD-L1 pathway protects the vascular system from severe CD8 T cell–mediated damage during early systemic LCMV infection, highlighting a pivotal physiological role of T cell down-regulation and suggesting the potential development of immunopathological side effects when interfering with the PD-1–PD-L1 pathway during systemic virus infections.
Collapse
Affiliation(s)
- Helge Frebel
- Institute of Microbiology, ETH Zurich, 8093 Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
216
|
Fisicaro P, Valdatta C, Massari M, Loggi E, Ravanetti L, Urbani S, Giuberti T, Cavalli A, Vandelli C, Andreone P, Missale G, Ferrari C. Combined blockade of programmed death-1 and activation of CD137 increase responses of human liver T cells against HBV, but not HCV. Gastroenterology 2012; 143:1576-1585.e4. [PMID: 22929808 DOI: 10.1053/j.gastro.2012.08.041] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 08/04/2012] [Accepted: 08/08/2012] [Indexed: 12/18/2022]
Abstract
BACKGROUND & AIMS In patients with chronic hepatitis B virus (HBV) and hepatitis C virus (HCV) infections, antiviral functions of T cells are impaired; these might be increased by blocking T-cell co-inhibitory pathways, such as preventing interaction between the receptor programmed death (PD)-1 and its ligand, PD-L1. We attempted to optimize the restoration of T-cell functions in patients with chronic HBV or HCV infection with a combination of reagents that block PD-1 interaction with PD-L1 and stimulate T-cell signaling via CD137, a member of the tumor necrosis factor-receptor family. METHODS We assessed the effects of CD137 stimulation (via CD137L), alone or in combination with antibodies that block PD-1 interaction with PD-L1 (anti-PD-L1), on proliferation and production of interferon-γ and interleukin-2 by intrahepatic and peripheral T cells from patients with chronic HBV or HCV infection. We also analyzed expression of different co-stimulatory molecules on virus-specific CD8+ and forkhead box P3+CD4+ cells by flow cytometry. RESULTS Incubation of intrahepatic T cells with CD137L and anti-PD-L1 increased their responses to HBV, but not HCV. However, HCV-specific T cells isolated from peripheral blood were sensitive to these reagents. Virus-specific T cells from some, but not all patients, had increased responses to anti-PD-L1 when CD137L was added because in some cases the combination of anti-PD-L1 and CD137L overstimulated T cells, leading to their inhibition. Intrahepatic HBV- and HCV-specific CD8+ T cells had different costimulatory profiles; liver cells from patients with chronic HBV infection had a higher proportion of forkhead box P3+ regulatory T cells, with higher levels of PD-1, compared with liver cells from patients with chronic HCV infection. CONCLUSIONS A combination of reagents that prevent interaction between PD-1 and its ligand and activate CD137 signaling increase responses of intrahepatic HBV-specific T cells and circulating HCV-specific T cells. This strategy might be developed to increase T-cell responses to these viruses in patients with chronic hepatitis B or C, and tailoring the dose of CD137L administered will help optimize results.
Collapse
Affiliation(s)
- Paola Fisicaro
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
217
|
|
218
|
Liechtenstein T, Dufait I, Bricogne C, Lanna A, Pen J, Breckpot K, Escors D. PD-L1/PD-1 Co-Stimulation, a Brake for T cell Activation and a T cell Differentiation Signal. JOURNAL OF CLINICAL & CELLULAR IMMUNOLOGY 2012; S12:006. [PMID: 23525238 PMCID: PMC3605779 DOI: 10.4172/2155-9899.s12-006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
For T cell activation, three signals have to be provided from the antigen presenting cell; Signal 1 (antigen recognition), signal 2 (co-stimulation) and signal 3 (cytokine priming). Blocking negative co-stimulation during antigen presentation to T cells is becoming a promising therapeutic strategy to enhance cancer immunotherapy. Here we will focus on interference with PD-1/PD-L1 negative co-stimulation during antigen presentation to T cells as a therapeutic approach. We will discuss the potential mechanisms and the therapeutic consequences by which interference/inhibition with this interaction results in anti-tumour immunity. Particularly, we will comment on whether blocking negative co-stimulation provides differentiation signals to T cells undergoing antigen presentation. A major dogma in immunology states that T cell differentiation signals are given by cytokines and chemokines (signal 3) rather than co-stimulation (signal 2). We will discuss whether this is the case when blocking PD-L1/PD-1 negative co-stimulation.
Collapse
Affiliation(s)
- Therese Liechtenstein
- Division of Infection and Immunity, Rayne Institute, University College London, 5 University Street, WC1E 6JF, London, UK
| | - Ines Dufait
- Division of Infection and Immunity, Rayne Institute, University College London, 5 University Street, WC1E 6JF, London, UK
- Laboratory of Molecular and Cellular Therapy, Department of Physiology-Immunology, Vrije Universiteit Brussel, Laarbeeklaan 103/E, B-1090 Jette, Belgium
| | - Christopher Bricogne
- Division of Infection and Immunity, Rayne Institute, University College London, 5 University Street, WC1E 6JF, London, UK
| | - Alessio Lanna
- Division of Infection and Immunity, Rayne Institute, University College London, 5 University Street, WC1E 6JF, London, UK
| | - Joeri Pen
- Laboratory of Molecular and Cellular Therapy, Department of Physiology-Immunology, Vrije Universiteit Brussel, Laarbeeklaan 103/E, B-1090 Jette, Belgium
| | - Karine Breckpot
- Laboratory of Molecular and Cellular Therapy, Department of Physiology-Immunology, Vrije Universiteit Brussel, Laarbeeklaan 103/E, B-1090 Jette, Belgium
| | - David Escors
- Division of Infection and Immunity, Rayne Institute, University College London, 5 University Street, WC1E 6JF, London, UK
| |
Collapse
|
219
|
Brenndörfer ED, Sällberg M. Hepatitis C virus-mediated modulation of cellular immunity. Arch Immunol Ther Exp (Warsz) 2012; 60:315-29. [PMID: 22911132 DOI: 10.1007/s00005-012-0184-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 03/09/2012] [Indexed: 12/14/2022]
Abstract
The hepatitis C virus (HCV) is a major cause of chronic liver disease globally. A chronic infection can result in liver fibrosis, liver cirrhosis, hepatocellular carcinoma and liver failure in a significant ratio of the patients. About 170 million people are currently infected with HCV. Since 80 % of the infected patients develop a chronic infection, HCV has evolved sophisticated escape strategies to evade both the innate and the adaptive immune system. Thus, chronic hepatitis C is characterized by perturbations in the number, subset composition and/or functionality of natural killer cells, natural killer T cells, dendritic cells, macrophages and T cells. The balance between HCV-induced immune evasion and the antiviral immune response results in chronic liver inflammation and consequent immune-mediated liver injury. This review summarizes our current understanding of the HCV-mediated interference with cellular immunity and of the factors resulting in HCV persistence. A profound knowledge about the intrinsic properties of HCV and its effects on intrahepatic immunity is essential to be able to design effective immunotherapies against HCV such as therapeutic HCV vaccines.
Collapse
Affiliation(s)
- Erwin Daniel Brenndörfer
- Division of Clinical Microbiology F68, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, 141 86, Stockholm, Sweden.
| | | |
Collapse
|
220
|
Peretz Y, He Z, Shi Y, Yassine-Diab B, Goulet JP, Bordi R, Filali-Mouhim A, Loubert JB, El-Far M, Dupuy FP, Boulassel MR, Tremblay C, Routy JP, Bernard N, Balderas R, Haddad EK, Sékaly RP. CD160 and PD-1 co-expression on HIV-specific CD8 T cells defines a subset with advanced dysfunction. PLoS Pathog 2012; 8:e1002840. [PMID: 22916009 PMCID: PMC3420930 DOI: 10.1371/journal.ppat.1002840] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Accepted: 06/20/2012] [Indexed: 12/27/2022] Open
Abstract
Chronic viral infections lead to persistent CD8 T cell activation and functional exhaustion. Expression of programmed cell death-1 (PD-1) has been associated to CD8 T cell dysfunction in HIV infection. Herein we report that another negative regulator of T cell activation, CD160, was also upregulated on HIV-specific CD8 T lymphocytes mostly during the chronic phase of infection. CD8 T cells that expressed CD160 or PD-1 were still functional whereas co-expression of CD160 and PD-1 on CD8 T cells defined a novel subset with all the characteristics of functionally exhausted T cells. Blocking the interaction of CD160 with HVEM, its natural ligand, increased HIV-specific CD8 T cell proliferation and cytokine production. Transcriptional profiling showed that CD160−PD-1+CD8 T cells encompassed a subset of CD8+ T cells with activated transcriptional programs, while CD160+PD-1+ T cells encompassed primarily CD8+ T cells with an exhausted phenotype. The transcriptional profile of CD160+PD-1+ T cells showed the downregulation of the NFκB transcriptional node and the upregulation of several inhibitors of T cell survival and function. Overall, we show that CD160 and PD-1 expressing subsets allow differentiating between activated and exhausted CD8 T cells further reinforcing the notion that restoration of function will require multipronged approaches that target several negative regulators. HIV infection is widely known to cause generalized immune activation and immune exhaustion ultimately leading to HIV disease progression. Several studies have suggested over the years that the accumulation of inhibitory signalling proteins on the surface of responding cells is linked to immune exhaustion in HIV. It has become paramount to distinguish functionally exhausted CD8 T cells from activated HIV-specific CD8 T cells because both cell types have different fates. Using specific cell surface markers, we were able to identify these different cell types and show that HIV-infected patients accumulate dysfunctional CD8 T cells over time. Importantly, we show that this dysfunction is reversible.
Collapse
Affiliation(s)
- Yoav Peretz
- Caprion/ImmuneCarta Services, Montreal, Quebec, Canada
- Centre de Recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Hôpital St-Luc, Montreal, Quebec, Canada
- Laboratoire d'Immunologie, Département de Microbiologie et d'Immunologie, Université de Montreal, Montreal, Quebec, Canada
| | - Zhong He
- Vaccine & Gene Therapy Institute Florida, Port St. Lucie, Florida, United States of America
| | - Yu Shi
- Vaccine & Gene Therapy Institute Florida, Port St. Lucie, Florida, United States of America
| | - Bader Yassine-Diab
- Centre de Recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Hôpital St-Luc, Montreal, Quebec, Canada
- Laboratoire d'Immunologie, Département de Microbiologie et d'Immunologie, Université de Montreal, Montreal, Quebec, Canada
| | - Jean-Philippe Goulet
- Centre de Recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Hôpital St-Luc, Montreal, Quebec, Canada
- Laboratoire d'Immunologie, Département de Microbiologie et d'Immunologie, Université de Montreal, Montreal, Quebec, Canada
| | - Rebeka Bordi
- Vaccine & Gene Therapy Institute Florida, Port St. Lucie, Florida, United States of America
| | - Ali Filali-Mouhim
- Vaccine & Gene Therapy Institute Florida, Port St. Lucie, Florida, United States of America
| | - Jean-Baptiste Loubert
- Centre de Recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Hôpital St-Luc, Montreal, Quebec, Canada
- Laboratoire d'Immunologie, Département de Microbiologie et d'Immunologie, Université de Montreal, Montreal, Quebec, Canada
| | - Mohamed El-Far
- Centre de Recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Hôpital St-Luc, Montreal, Quebec, Canada
- Laboratoire d'Immunologie, Département de Microbiologie et d'Immunologie, Université de Montreal, Montreal, Quebec, Canada
| | - Franck P. Dupuy
- Vaccine & Gene Therapy Institute Florida, Port St. Lucie, Florida, United States of America
| | - Mohamed Rachid Boulassel
- Immunodeficiency Service and Division of Hematology, Royal Victoria Hospital, McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | - Cécile Tremblay
- Centre de Recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Hôpital St-Luc, Montreal, Quebec, Canada
- Laboratoire d'Immunologie, Département de Microbiologie et d'Immunologie, Université de Montreal, Montreal, Quebec, Canada
| | - Jean-Pierre Routy
- Immunodeficiency Service and Division of Hematology, Royal Victoria Hospital, McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | - Nicole Bernard
- Department of Experimental Medicine, McGill University, Montreal, Quebec, Canada
| | - Robert Balderas
- BD Biosciences, San Diego, California, United States of America
| | - Elias K. Haddad
- Centre de Recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Hôpital St-Luc, Montreal, Quebec, Canada
- Laboratoire d'Immunologie, Département de Microbiologie et d'Immunologie, Université de Montreal, Montreal, Quebec, Canada
- Vaccine & Gene Therapy Institute Florida, Port St. Lucie, Florida, United States of America
| | - Rafick-Pierre Sékaly
- Centre de Recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Hôpital St-Luc, Montreal, Quebec, Canada
- Laboratoire d'Immunologie, Département de Microbiologie et d'Immunologie, Université de Montreal, Montreal, Quebec, Canada
- Vaccine & Gene Therapy Institute Florida, Port St. Lucie, Florida, United States of America
- Department of Experimental Medicine, McGill University, Montreal, Quebec, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
- Institut National de la Santé et de la Recherche Médicale U743, CRCHUM, Université de Montreal, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
221
|
Ip PP, Nijman HW, Wilschut J, Daemen T. Therapeutic vaccination against chronic hepatitis C virus infection. Antiviral Res 2012; 96:36-50. [PMID: 22841700 DOI: 10.1016/j.antiviral.2012.07.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2012] [Revised: 06/25/2012] [Accepted: 07/13/2012] [Indexed: 12/12/2022]
Abstract
Approximately 170 million people worldwide are chronic carriers of Hepatitis C virus (HCV). To date, there is no prophylactic vaccine available against HCV. The standard-of-care therapy for HCV infection involves a combination of pegylated interferon-α and ribavirin. This therapy, which is commonly associated with side effects, has a curative rate varying from 43% (HCV genotype 1) to 80% (HCV genotype 2). In 2011, two direct-acting antiviral agents, telaprevir and boceprevir, were approved by the US Food and drug Administration and are now being used in combination with standard-of-care therapy in selected patients infected with HCV genotype 1. Although both drugs are promising, resulting in a shortening of therapy, these drugs also induce additional side effects and have reduced efficacy in patients who did not respond to standard-of-care previously. An alternative approach would be to treat HCV by stimulating the immune system with a therapeutic vaccine ideally aimed at (i) the eradication of HCV-infected cells and (ii) neutralization of infectious HCV particles. The challenge is to develop therapeutic vaccination strategies that are either at least as effective as antiviral drugs but with lower side effects, or vaccines that, when combined with antiviral drugs, can circumvent long-term use of these drugs thereby reducing their side effects. In this review, we summarize and discuss recent preclinical developments in the area of therapeutic vaccination against chronic HCV infection. Although neutralizing antibodies have been described to exert protective immunity, clinical studies on the induction of neutralizing antibodies in therapeutic settings are limited. Therefore, we will primarily discuss therapeutic vaccines which aim to induce effective cellular immune response against HCV.
Collapse
Affiliation(s)
- Peng Peng Ip
- Department of Medical Microbiology, Molecular Virology Section, University of Groningen, University Medical Center Groningen, The Netherlands
| | | | | | | |
Collapse
|
222
|
Channappanavar R, Twardy BS, Suvas S. Blocking of PDL-1 interaction enhances primary and secondary CD8 T cell response to herpes simplex virus-1 infection. PLoS One 2012; 7:e39757. [PMID: 22808056 PMCID: PMC3395688 DOI: 10.1371/journal.pone.0039757] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 05/29/2012] [Indexed: 11/26/2022] Open
Abstract
The blocking of programmed death ligand-1 (PDL-1) has been shown to enhance virus-specific CD8 T cell function during chronic viral infections. Though, how PDL-1 blocking at the time of priming affects the quality of CD8 T cell response to acute infections is not well understood and remains controversial. This report demonstrates that the magnitude of the primary and secondary CD8 T cell responses to herpes simplex virus-1 (HSV-1) infection is subject to control by PDL-1. Our results showed that after footpad HSV-1 infection, PD-1 expression increases on immunodominant SSIEFARL peptide specific CD8 T cells. Additionally, post-infection, the level of PDL-1 expression also increases on CD11c+ dendritic cells. Intraperitoneal administration of anti-PDL-1 monoclonal antibody given one day prior to and three days after cutaneous HSV-1 infection, resulted in a marked increase in effector and memory CD8 T cell response to SSIEFARL peptide. This was shown by measuring the quantity and quality of SSIEFARL-specific CD8 T cells by making use of ex-vivo assays that determine antigen specific CD8 T cell function, such as intracellular cytokine assay, degranulation assay to measure cytotoxicity and viral clearance. Our results are discussed in terms of the beneficial effects of blocking PDL-1 interactions, while giving prophylactic vaccines, to generate a more effective CD8 T cell response to viral infection.
Collapse
Affiliation(s)
- Rudragouda Channappanavar
- Department of Biological Sciences, Oakland University, Rochester, Michigan, United States of America
| | - Brandon S. Twardy
- Department of Biological Sciences, Oakland University, Rochester, Michigan, United States of America
| | - Susmit Suvas
- Department of Biological Sciences, Oakland University, Rochester, Michigan, United States of America
- * E-mail:
| |
Collapse
|
223
|
Dominguez-Villar M, Fernandez-Ponce C, Munoz-Suano A, Gomez E, Rodríguez-Iglesias M, Garcia-Cozar F. Up-regulation of FOXP3 and induction of suppressive function in CD4+ Jurkat T-cells expressing hepatitis C virus core protein. Clin Sci (Lond) 2012; 123:15-27. [PMID: 22214248 DOI: 10.1042/cs20110631] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
HCV (hepatitis C virus) infection is a serious health care problem that affects more than 170 million people worldwide. Viral clearance depends on the development of a successful cellular immune response against the virus. Interestingly, such a response is altered in chronically infected patients, leading to chronic hepatitis that can result in liver fibrosis, cirrhosis and hepatocellular carcinoma. Among the mechanisms that have been described as being responsible for the immune suppression caused by the virus, Treg-cells (regulatory T-cells) are emerging as an essential component. In the present work we aim to study the effect of HCV-core protein in the development of T-cells with regulatory-like function. Using a third-generation lentiviral system to express HCV-core in CD4+ Jurkat T-cells, we describe that HCV-core-expressing Jurkat cells show an up-regulation of FOXP3 (forkhead box P3) and CTLA-4 (cytotoxic T-lymphocyte antigen-4). Moreover, we show that HCV-core-transduced Jurkat cells are able to suppress CD4+ and CD8+ T-cell responses to anti-CD3 plus anti-CD28 stimulation.
Collapse
Affiliation(s)
- Margarita Dominguez-Villar
- Puerto Real University Hospital Research Unit, School of Medicine, Department of Biomedicine, Biotechnology (Immunology), University of Cadiz, Cadiz, Spain
| | | | | | | | | | | |
Collapse
|
224
|
Odorizzi PM, Wherry EJ. Inhibitory receptors on lymphocytes: insights from infections. THE JOURNAL OF IMMUNOLOGY 2012; 188:2957-65. [PMID: 22442493 DOI: 10.4049/jimmunol.1100038] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Costimulatory and inhibitory receptors are critical regulators of adaptive immune cell function. These pathways regulate the initiation and termination of effective immune responses to infections while limiting autoimmunity and/or immunopathology. This review focuses on recent advances in our understanding of inhibitory receptor pathways and their roles in different diseases and/or infections, emphasizing potential clinical applications and important unanswered mechanistic questions. Although significant progress has been made in defining the influence of inhibitory receptors at the cellular level, relatively little is known about the underlying molecular pathways. We discuss our current understanding of the molecular mechanisms for key inhibitory receptor pathways, highlight major gaps in knowledge, and explore current and future clinical applications.
Collapse
Affiliation(s)
- Pamela M Odorizzi
- Department of Microbiology, Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | |
Collapse
|
225
|
Shimizu Y. T cell immunopathogenesis and immunotherapeutic strategies for chronic hepatitis B virus infection. World J Gastroenterol 2012; 18:2443-2451. [PMID: 22654441 PMCID: PMC3360442 DOI: 10.3748/wjg.v18.i20.2443] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 02/08/2012] [Accepted: 02/26/2012] [Indexed: 02/06/2023] Open
Abstract
Hepatitis B is caused by the host immune response and T cells play a major role in the immunopathogenesis. More importantly, T cells not only destroy hepatocytes infected by hepatitis B virus (HBV), but also control HBV replication or eradicate HBV in a noncytolytic manner. Therefore, analysis of T cell immune response during acute and chronic HBV infection is important to develop a strategy for successful viral control, which could lead to immunotherapy for terminating persistent HBV infection. There have been many attempts at immunotherapy for chronic HBV infection, and some have shown promising results. High viral load has been shown to suppress antiviral immune responses and immunoinhibitory signals have been recently elucidated, therefore, viral suppression by nucleos(t)ide analogs, stimulation of antiviral immune response, and suppression of the immunoinhibitory signals must be combined to achieve desirable antiviral effects.
Collapse
|
226
|
Inhibitory receptors are expressed by Trypanosoma cruzi-specific effector T cells and in hearts of subjects with chronic Chagas disease. PLoS One 2012; 7:e35966. [PMID: 22574131 PMCID: PMC3344843 DOI: 10.1371/journal.pone.0035966] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 03/26/2012] [Indexed: 01/28/2023] Open
Abstract
We had formerly demonstrated that subjects chronically infected with Trypanosoma cruzi show impaired T cell responses closely linked with a process of T cell exhaustion. Recently, the expression of several inhibitory receptors has been associated with T cell dysfunction and exhaustion. In this study, we have examined the expression of the cytotoxic T lymphocyte antigen 4 (CTLA-4) and the leukocyte immunoglobulin like receptor 1 (LIR-1) by peripheral T. cruzi antigen-responsive IFN-gamma (IFN-γ)-producing and total T cells from chronically T. cruzi-infected subjects with different clinical forms of the disease. CTAL-4 expression was also evaluated in heart tissue sections from subjects with severe myocarditis. The majority of IFN-γ-producing CD4+ T cells responsive to a parasite lysate preparation were found to express CTLA-4 but considerably lower frequencies express LIR-1, irrespective of the clinical status of the donor. Conversely, few IFN-γ-producing T cells responsive to tetanus and diphtheria toxoids expressed CTLA-4 and LIR-1. Polyclonal stimulation with anti-CD3 antibodies induced higher frequencies of CD4+CTAL-4+ T cells in patients with severe heart disease than in asymptomatic subjects. Ligation of CTLA-4 and LIR-1 with their agonistic antibodies, in vitro, reduces IFN-γ production. Conversely, CTLA-4 blockade did not improved IFN-γ production in response to T. cruzi antigens. Subjects with chronic T. cruzi infection had increased numbers of CD4+LIR-1+ among total peripheral blood mononuclear cells, relative to uninfected individuals and these numbers decreased after treatment with benznidazole. CTLA-4 was also expressed by CD3+ T lymphocytes infiltrating heart tissues from chronically infected subjects with severe myocarditis. These findings support the conclusion that persistent infection with T. cruzi leads to the upregulation of inhibitory receptors which could alter parasite specific T cell responses in the chronic phase of Chagas disease.
Collapse
|
227
|
Masalova OV, Lesnova EI, Shingarova LN, Tunitskaya VL, Ulanova TI, Burkov AN, Kushch AA. The combined application of nucleotide and amino acid sequences of NS3 hepatitis C virus protein, DNA encoding granulocyte macrophage colony-stimulating factor, and inhibitor of regulatory T cells induces effective immune responce against Hepatitis C virus. Mol Biol 2012; 46:473-480. [DOI: 10.1134/s0026893312030077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 11/03/2011] [Indexed: 01/05/2025]
|
228
|
Thimme R, Binder M, Bartenschlager R. Failure of innate and adaptive immune responses in controlling hepatitis C virus infection. FEMS Microbiol Rev 2012; 36:663-83. [PMID: 22142141 DOI: 10.1111/j.1574-6976.2011.00319.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 11/07/2011] [Accepted: 11/25/2011] [Indexed: 12/24/2022] Open
Affiliation(s)
- Robert Thimme
- Department of Medicine II, University Medical Center Freiburg, Freiburg, Germany
| | | | | |
Collapse
|
229
|
Henson SM, Macaulay R, Franzese O, Akbar AN. Reversal of functional defects in highly differentiated young and old CD8 T cells by PDL blockade. Immunology 2012; 135:355-63. [PMID: 22211948 DOI: 10.1111/j.1365-2567.2011.03550.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Highly differentiated CD8(+) CD28(-) CD27(-) T cells have short telomeres, defective telomerase activity and reduced capacity for proliferation. In addition, these cells express increased levels of inhibitory receptors and display defective Akt(ser(473)) phosphorylation following activation. It is not known whether signalling via programmed death 1 (PD-1) contributes to any of the attenuated differentiation-related functional changes in CD8(+) T cells. To address this we blocked PD-1 signalling during T-cell receptor (TCR) activation using antibodies against PD-1 ligand 1 (PDL1) and PDL2. This resulted in a significant enhancement of Akt(ser(473)) phosphorylation and TCR-induced proliferative activity of highly differentiated CD8(+) CD28(-) CD27(-) T cells. In contrast, the reduced telomerase activity in these cells was not altered by blockade of PDL1/2. We also demonstrate that PD-1 signalling can inhibit the proliferative response in primary human CD8(+) T cells from both young and older humans. These data collectively highlight that some, but not all, functional changes that arise during progressive T-cell differentiation and during ageing are maintained actively by inhibitory receptor signalling.
Collapse
Affiliation(s)
- Sian M Henson
- Division of Infection and Immunity, University College London, London, UK.
| | | | | | | |
Collapse
|
230
|
Zhang G, Han Q, Duan S, Li Z, Li N, Zhu Q, Chen J, Lv Y, Zeng X, Chen Y, Liu Z. PDCD1 polymorphism amplifies the predisposing effect conferred by CTLA4 polymorphism in chronic hepatitis B virus infection. Hum Immunol 2012; 73:421-425. [PMID: 22342451 DOI: 10.1016/j.humimm.2012.01.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2011] [Revised: 12/21/2011] [Accepted: 01/24/2012] [Indexed: 01/12/2023]
Abstract
Programmed cell death 1 (PDCD-1) and cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) both negatively regulate the T-cell response in chronic hepatitis B virus (HBV) infection. This study determined genotypes of PDCD1 -606 G/A and +8669 G/A and CTLA4 -318 C/T and +49 A/G polymorphisms in 172 chronic HBV patients and 145 healthy controls and analyzed the interaction between these polymorphisms of the 2 genes. The results indicated that carriage of the PDCD1 +8669 A allele was increased in HBV patients carrying the CTLA4 -318 CC genotype and carrying the CTLA4 +49 AA genotype compared with controls carrying the CTLA4 -318 CC genotype (80.2% vs 64.8%, p = 0.002, odds ratio [OR] = 2.202, 95% confidence interval [95% CI] = 1.326-3.656) and carrying the CTLA4 +49 AA genotype (18.6% vs 9.7%, p = 0.024, OR = 2.139, 95% CI = 1.093-4.187), respectively. More obviously, carriage of the PDCD1 +8669 AA genotype was significantly increased in HBV patients carrying the CTLA4 +49 AA genotype compared with controls carrying the same CTLA4 +49 genotype (14.0% vs 3.4%, p = 0.001, OR = 4.541, 95% CI = 1.686-12.230). These results suggest that the PDCD1 +8669 A allele and AA genotype may amplify the predisposing effect conferred by the CTLA4 polymorphism through PDCD1 and CTLA4 gene interaction in chronic HBV infection.
Collapse
Affiliation(s)
- Guoyu Zhang
- Department of Infectious Diseases, First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, 710061 Shaanxi, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
231
|
Bes M, Sauleda S, Casamitjana N, Piron M, Campos-Varela I, Quer J, Cubero M, Puig L, Guardia J, Esteban JI. Reversal of nonstructural protein 3-specific CD4(+) T cell dysfunction in patients with persistent hepatitis C virus infection. J Viral Hepat 2012; 19:283-94. [PMID: 22404727 DOI: 10.1111/j.1365-2893.2011.01549.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Hepatitis C virus (HCV)-specific T cell responses are essential for HCV control, and chronic infection is characterized by functionally altered antigen-specific T cells. It has been proposed that the early inactivation of specific CD4(+) T cell responses may be involved in establishment of HCV persistence. We have investigated whether HCV-specific CD4(+) T cells dysfunction can be reversed in vitro. Nonstructural protein 3 (NS3) and core-specific CD4(+) T cells from eight chronically infected and eight spontaneously resolved HCV individuals were selected through transient CD154 (CD40 ligand) expression, and their functional profile (IFN-γ, IL-2, TNF-α, IL-10 and IL-4 production by enzyme-linked immunospot assay, cytometric bead array and intracellular cytokine staining, and proliferation by carboxy-fluorescein diacetate succinimidyl ester dilution assay) was determined both ex vivo and after in vitro expansion of sorted CD154-expressing cells in the absence of specific antigen in IL-7/IL-15-supplemented medium. Ex vivo bulk CD4(+) T cells from chronic patients expressed CD154 in most cases, albeit at lower frequencies than those of resolved patients (0.11%vs 0.41%; P = 0.01), when stimulated with NS3, but not core, although they had a markedly impaired capacity to produce IL-2 and IFN-γ. Antigen-free in vitro expansion of NS3-specific CD154(+) cells from chronic patients restored IFN-γ and IL-2 production and proliferation to levels similar to those of patients with spontaneously resolved infection. Hence, NS3-specific CD4(+) T cell response can be rescued in most chronic HCV patients by in vitro expansion in the absence of HCV-specific antigen. These results might provide a rationale for adoptive immunotherapy.
Collapse
Affiliation(s)
- M Bes
- Transfusion Safety Laboratory, Banc de Sang i Teixits, Servei Català de la Salut, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
232
|
Acquired transcriptional programming in functional and exhausted virus-specific CD8 T cells. Curr Opin HIV AIDS 2012; 7:50-7. [PMID: 22134341 DOI: 10.1097/coh.0b013e32834ddcf2] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Failure to control viral infections such as HIV results in T-cell receptor (TCR) and inhibitory receptor driven exhaustion of antigen-specific T cells. Persistent signaling by these receptors during chronic viral infection sculpts the transcriptional regulatory programs of virus-specific T cells. The resulting gene expression profile is tailored to temper the potentially damaging effector functions of cytotoxic T cells and adapt them to an antigen-rich and inflammation-rich environment. Here we review recent studies investigating mechanisms of transcriptional regulation of effector, functional memory, and exhausted T-cell functions during acute versus chronic infections. RECENT FINDINGS Patterns of gene expression in virus-specific CD8 T cells are a result of a combination of pro and inhibitory signals from antigen presentation (TCR-mediated) and co-inhibitory receptor ligation (PD-1, 2B4). Further, memory-specific transcriptional regulation of 2B4 expression and signaling impose a self-limiting secondary effector response to a prolonged viral infection. Additionally, differentiation of functional memory CD8 T cells is coupled with acquisition of a repressive epigenetic program for PD-1 expression. However, chronic infection provides a signal that blocks the acquisition of these epigenetic modifications reinforcing the suppression of cytotoxic lymphocyte (CTL) functions in exhausted cells. SUMMARY Current findings suggest that the mechanism(s) that delineate functional memory versus exhaustion are coupled with acquisition of transcriptional programs at the effector stage of differentiation, reinforced by cessation or persistence of TCR signaling.
Collapse
|
233
|
Positive and negative regulation of cellular immune responses in physiologic conditions and diseases. Clin Dev Immunol 2012; 2012:485781. [PMID: 22548114 PMCID: PMC3324270 DOI: 10.1155/2012/485781] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Accepted: 01/20/2012] [Indexed: 12/28/2022]
Abstract
The immune system has evolved to allow robust responses against pathogens while avoiding autoimmunity. This is notably enabled by stimulatory and inhibitory signals which contribute to the regulation of immune responses. In the presence of a pathogen, a specific and effective immune response must be induced and this leads to antigen-specific T-cell proliferation, cytokines production, and induction of T-cell differentiation toward an effector phenotype. After clearance or control of the pathogen, the effector immune response must be terminated in order to avoid tissue damage and chronic inflammation and this process involves coinhibitory molecules. When the immune system fails to eliminate or control the pathogen, continuous stimulation of T cells prevents the full contraction and leads to the functional exhaustion of effector T cells. Several evidences both in vitro and in vivo suggest that this anergic state can be reverted by blocking the interactions between coinhibitory molecules and their ligands. The potential to revert exhausted or inactivated T-cell responses following selective blocking of their function made these markers interesting targets for therapeutic interventions in patients with persistent viral infections or cancer.
Collapse
|
234
|
Baitsch L, Fuertes-Marraco SA, Legat A, Meyer C, Speiser DE. The three main stumbling blocks for anticancer T cells. Trends Immunol 2012; 33:364-72. [PMID: 22445288 DOI: 10.1016/j.it.2012.02.006] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 02/08/2012] [Accepted: 02/21/2012] [Indexed: 02/06/2023]
Abstract
Memory and effector T cells have the potential to counteract cancer progression, but often fail to control the disease, essentially because of three main stumbling blocks. First, clonal deletion leads to relatively low numbers or low-to-intermediate T cell receptor (TCR) affinity of self/tumor-specific T cells. Second, the poor innate immune stimulation by solid tumors is responsible for inefficient priming and boosting. Third, T cells are suppressed in the tumor microenvironment by inhibitory signals from other immune cells, stroma and tumor cells, which induces T cell exhaustion, as demonstrated in metastases of melanoma patients. State-of-the-art adoptive cell transfer and active immunotherapy can partially overcome the three stumbling blocks. The reversibility of T cell exhaustion and novel molecular insights provide the basis for further improvements of clinical immunotherapy.
Collapse
Affiliation(s)
- Lukas Baitsch
- Clinical Tumor Biology and Immunotherapy Unit, Ludwig Center for Cancer Research of the University of Lausanne, and Service of Radiation Oncology, Lausanne University Hospital Center, CH-1011 Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
235
|
Nakamoto N, Ebinuma H, Kanai T, Chu PS, Ono Y, Mikami Y, Ojiro K, Lipp M, Love PE, Saito H, Hibi T. CCR9+ macrophages are required for acute liver inflammation in mouse models of hepatitis. Gastroenterology 2012; 142:366-76. [PMID: 22079594 DOI: 10.1053/j.gastro.2011.10.039] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Revised: 10/25/2011] [Accepted: 10/26/2011] [Indexed: 12/23/2022]
Abstract
BACKGROUND & AIMS Antigen-presenting cells (APCs) are involved in the induction of liver inflammation. We investigated the roles of specific APCs in the pathogenesis of acute liver injury in mice. METHODS We used concanavalin A (con A) or carbon tetrachloride to induce acute liver inflammation in mice and studied the roles of macrophages that express CCR9. RESULTS After injection of con A, we detected CCR9(+)CD11b(+)CD11c(-) macrophages that express tumor necrosis factor (TNF)-α in livers of mice, whereas CCR9(+)Siglec-H(+)CD11b(-)CD11c(low) plasmacytoid DCs (pDCs), which are abundant in normal livers, disappeared. The CCR9(+) macrophages were also detected in the livers of RAG-2(-/-) mice, which lack lymphocytes and natural killer T cells, after injection of con A. Under inflammatory conditions, CCR9(+) macrophages induced naive CD4(+) T cells to become interferon gamma-producing Th1 cells in vivo and in vitro. CCR9(-/-) mice injected with con A did not develop hepatitis unless they also received CCR9(+) macrophages from mice that received con A; more CCR9(+) macrophages accumulated in their inflamed livers than CCR9(+) pDCs, CCR9(-) pDCs, or CCR9(-) macrophages isolated from mice that had received injections of con A. Levels of CCL25 messenger RNA increased in livers after injection of con A; neutralizing antibodies against CCL25 reduced the induction of hepatitis by con A by blocking the migration of CCR9(+) macrophages and their production of TNF-α. Peripheral blood samples from patients with acute hepatitis had greater numbers of TNF-α-producing CCR9(+)CD14(+)CD16(high) monocytes than controls. CONCLUSIONS CCR9(+) macrophages contribute to the induction of acute liver inflammation in mouse models of hepatitis.
Collapse
Affiliation(s)
- Nobuhiro Nakamoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
236
|
Schulze Zur Wiesch J, Ciuffreda D, Lewis-Ximenez L, Kasprowicz V, Nolan BE, Streeck H, Aneja J, Reyor LL, Allen TM, Lohse AW, McGovern B, Chung RT, Kwok WW, Kim AY, Lauer GM. Broadly directed virus-specific CD4+ T cell responses are primed during acute hepatitis C infection, but rapidly disappear from human blood with viral persistence. ACTA ACUST UNITED AC 2012; 209:61-75. [PMID: 22213804 PMCID: PMC3260872 DOI: 10.1084/jem.20100388] [Citation(s) in RCA: 185] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Vigorous proliferative CD4(+) T cell responses are the hallmark of spontaneous clearance of acute hepatitis C virus (HCV) infection, whereas comparable responses are absent in chronically evolving infection. Here, we comprehensively characterized the breadth, specificity, and quality of the HCV-specific CD4(+) T cell response in 31 patients with acute HCV infection and varying clinical outcomes. We analyzed in vitro T cell expansion in the presence of interleukin-2, and ex vivo staining with HCV peptide-loaded MHC class II tetramers. Surprisingly, broadly directed HCV-specific CD4(+) T cell responses were universally detectable at early stages of infection, regardless of the clinical outcome. However, persistent viremia was associated with early proliferative defects of the HCV-specific CD4(+) T cells, followed by rapid deletion of the HCV-specific response. Only early initiation of antiviral therapy was able to preserve CD4(+) T cell responses in acute, chronically evolving infection. Our results challenge the paradigm that HCV persistence is the result of a failure to prime HCV-specific CD4(+) T cells. Instead, broadly directed HCV-specific CD4(+) T cell responses are usually generated, but rapid exhaustion and deletion of these cells occurs in the majority of patients. The data further suggest a short window of opportunity to prevent the loss of CD4(+) T cell responses through antiviral therapy.
Collapse
Affiliation(s)
- Julian Schulze Zur Wiesch
- Gastrointestinal Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
237
|
Abstract
Apoptosis is a natural process where cells that are no longer required can be eliminated in a highly regulated, controlled manner. Apoptosis is important in maintaining the mammalian immune system and plays a significant role in immune response, positive and negative T cell selection, and cytotoxic death of target cells. When the apoptotic pathways are impaired or are not tightly regulated, autoimmune diseases, inflammatory diseases, viral and bacterial infections and cancers ensue. An imbalance in the anti-apoptotic and pro-apoptotic factors has been implicated in these diseases. Moreover, current therapies directed towards these diseases focus on the modulation of the apoptotic death pathways to regulate the immune response. In this review, we will focus on the process of T cell activation and apoptosis in autoimmune reactions, in response to tumor progression as well as in response to bacterial and viral infections.
Collapse
Affiliation(s)
- Anuradha K Murali
- Departments of Surgery, Medical University of South Carolina, Charleston, SC 29425
| | | |
Collapse
|
238
|
Antigen-specific CD4 T-cell help rescues exhausted CD8 T cells during chronic viral infection. Proc Natl Acad Sci U S A 2011; 108:21182-7. [PMID: 22160724 DOI: 10.1073/pnas.1118450109] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
CD4 T cells play a critical role in regulating CD8 T-cell responses during chronic viral infection. Several studies in animal models and humans have shown that the absence of CD4 T-cell help results in severe dysfunction of virus-specific CD8 T cells. However, whether function can be restored in already exhausted CD8 T cells by providing CD4 T-cell help at a later time remains unexplored. In this study, we used a mouse model of chronic lymphocytic choriomeningitis virus (LCMV) infection to address this question. Adoptive transfer of LCMV-specific CD4 T cells into chronically infected mice restored proliferation and cytokine production by exhausted virus-specific CD8 T cells and reduced viral burden. Although the transferred CD4 T cells were able to enhance function in exhausted CD8 T cells, these CD4 T cells expressed high levels of the programmed cell death (PD)-1 inhibitory receptor. Blockade of the PD-1 pathway increased the ability of transferred LCMV-specific CD4 T cells to produce effector cytokines, improved rescue of exhausted CD8 T cells, and resulted in a striking reduction in viral load. These results suggest that CD4 T-cell immunotherapy alone or in conjunction with blockade of inhibitory receptors may be a promising approach for treating CD8 T-cell dysfunction in chronic infections and cancer.
Collapse
|
239
|
Kosmaczewska A, Bocko D, Ciszak L, Wlodarska-Polinska I, Kornafel J, Szteblich A, Masternak A, Frydecka I. Dysregulated expression of both the costimulatory CD28 and inhibitory CTLA-4 molecules in PB T cells of advanced cervical cancer patients suggests systemic immunosuppression related to disease progression. Pathol Oncol Res 2011; 18:479-89. [PMID: 22094905 PMCID: PMC3313031 DOI: 10.1007/s12253-011-9471-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 10/26/2011] [Indexed: 12/20/2022]
Abstract
Cervical cancer (CC) occurs more frequently in women who are immunosuppressed, suggesting that both local and systemic immune abnormalities may be involved in the evolution of the disease. Costimulatory CD28 and inhibitory CTLA-4 molecules expressed in T cells play a key role in the balanced immune responses. There has been demonstrated a relation between CD28, CTLA-4, and IFN genes in susceptibility to CC, suggesting their importance in CC development. Therefore, we assessed the pattern of CD28 and CTLA-4 expression in T cells from PB of CC patients with advanced CC (stages III and IV according to FIGO) compared to controls. We also examined the ability of PBMCs to secrete IFN-gamma. We found lower frequencies of freshly isolated and ex vivo stimulated CD4 + CD28+ and CD8 + CD28+ T cells in CC patients than in controls. Loss of CD28 expression was more pronounced in the CD8+ T subset. Markedly increased proportions of CTLA-4+ T cells in CC patients before and after culture compared to controls were also observed. In addition, patients’ T cells exhibited abnormal kinetics of surface CTLA-4 expression, with the peak at 24 h of stimulation, which was in contrast to corresponding normal T cells, revealing maximum CTLA-4 expression at 72 h of stimulation. Of note, markedly higher IFN-gamma concentrations were shown in supernatants of stimulated PBMCs from CC patients. Conclusions: Our report shows the dysregulated CD28 and CTLA-4 expression in PB T cells of CC patients, which may lead to impaired function of these lymphocytes and systemic immunosuppression related to disease progression.
Collapse
Affiliation(s)
- Agata Kosmaczewska
- Department of Experimental Therapy, Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, 53-114, Wroclaw, Poland.
| | | | | | | | | | | | | | | |
Collapse
|
240
|
Wood NAW, Linn ML, Bowen DG. Exhausted or just sleeping: awakening virus-specific responses in chronic hepatitis C virus infection. Hepatology 2011; 54:1879-82. [PMID: 22038790 DOI: 10.1002/hep.24602] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Nicole A W Wood
- A W Morrow Gastroenterology and Liver Centre, Centenary Institute, Royal Prince Alfred Hospital and University of Sydney, Sydney, Australia
| | | | | |
Collapse
|
241
|
Yang Y, Wang B, Yang D, Lu M, Xu Y. Prokaryotic expression of woodchuck cytotoxic T lymphocyte antigen 4 (wCTLA-4) and preparation of polyclonal antibody to wCTLA-4. Protein Expr Purif 2011; 81:181-5. [PMID: 22040606 DOI: 10.1016/j.pep.2011.10.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 10/14/2011] [Accepted: 10/15/2011] [Indexed: 12/17/2022]
Abstract
Cytotoxic T lymphocyte antigen 4 (CTLA-4) is an inhibitory T cell receptor predominately expressed on activated T cells and plays an important role in regulation of specific T cell responses to viral infection. The woodchuck model is an informative animal model for hepatitis B virus (HBV) infection. In this study, the extracellular region of woodchuck CTLA-4 (wCTLA-4) was cloned and the fusion protein of GST-wCTLA-4 was expressed and purified. Polyclonal antibody against GST-wCTLA-4 (anti-GST-wCTLA-4) was prepared. The full length wCTLA-4 protein expressed in transfected baby hamster kidney cells was detected by anti-GST-wCTLA-4 in western blot analysis and immunofluorescence staining. Anti-GST-wCTLA-4 provides a useful tool to study the role of CTLA-4 in T-cell response in the woodchuck model. Further, the blocking of CTLA-4 with anti-GST-wCTLA-4, as a novel therapy approach for chronic hepatitis B virus infection, could be studied in woodchuck model now.
Collapse
Affiliation(s)
- Yinke Yang
- Department of Microbiology, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, China
| | | | | | | | | |
Collapse
|
242
|
Raziorrouh B, Ulsenheimer A, Schraut W, Heeg M, Kurktschiev P, Zachoval R, Jung MC, Thimme R, Neumann-Haefelin C, Horster S, Wächtler M, Spannagl M, Haas J, Diepolder HM, Grüner NH. Inhibitory molecules that regulate expansion and restoration of HCV-specific CD4+ T cells in patients with chronic infection. Gastroenterology 2011; 141:1422-31, 1431.e1-6. [PMID: 21763239 DOI: 10.1053/j.gastro.2011.07.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 06/27/2011] [Accepted: 07/05/2011] [Indexed: 12/20/2022]
Abstract
BACKGROUND & AIMS Inhibitory receptors such as programmed death 1 (PD-1) and cytotoxic T lymphocyte-associated antigen (CTLA)-4 mediate CD8+ T-cell exhaustion during chronic viral infection, but little is known about roles in dysfunction of CD4+ T cells. METHODS We investigated the functions of inhibitory molecules on hepatitis C virus (HCV)-, influenza-, and Epstein-Barr virus (EBV)-specific CD4+ T cells in patients with chronic infections compared with patients with resolved HCV infection and healthy donors. Expression of PD-1, CTLA-4, CD305, and CD200R were analyzed on HCV-specific CD4+ T cells, isolated from peripheral blood using major histocompatibility complex class II tetramers. We investigated the effects of in vitro inhibition of various inhibitory pathways on proliferation and cytokine production by CD4+ T cells, and we compared these effects with those from inhibition of interleukin (IL)-10 and transforming growth factor (TGF)-β1. RESULTS PD-1 and CTLA-4 were up-regulated on virus-specific CD4+ T cells from patients with chronic HCV infections. PD-1 expression was lower on influenza- than on HCV-specific CD4+ T cells from subjects with chronic HCV infection, whereas CTLA-4 was expressed at similar levels, independent of their specificity. CD305 and CD200R were up-regulated in HCV resolvers. Blockade of PD-L1/2, IL-10, and TGF-β1 increased expansion of CD4+ T cells in patients with chronic HCV, whereas inhibition of IL-10 and TGF-β1 was most effective in restoring HCV-specific production of interferon gamma, IL-2, and tumor necrosis factor α. CONCLUSIONS We characterized expression of inhibitory molecules on HCV-, influenza-, and EBV-specific CD4+ T cells and the effects of in vitro blockade on CD4+ T-cell expansion and cytokine production. Inhibition of PD-1, IL-10, and TGF-β1 is most efficient in restoration of HCV-specific CD4+ T cells.
Collapse
Affiliation(s)
- Bijan Raziorrouh
- Medical Department II, University Hospital of Ludwig-Maximillians-University, and Institute for Immunology, Ludwig-Maximilians-University, Munich, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
243
|
Cavanagh MM, Qi Q, Weyand CM, Goronzy JJ. Finding Balance: T cell Regulatory Receptor Expression during Aging. Aging Dis 2011; 2:398-413. [PMID: 22396890 PMCID: PMC3295076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 09/29/2011] [Accepted: 10/10/2011] [Indexed: 05/31/2023] Open
Abstract
Aging is associated with a variety of changes to immune responsiveness. Reduced protection against infection, reduced responses to vaccination and increased risk of autoimmunity are all hallmarks of advanced age. Here we consider how changes in the expression of regulatory receptors on the T cell surface contribute to altered immunity during aging.
Collapse
Affiliation(s)
| | | | | | - Jörg J. Goronzy
- Correspondence should be addressed to: Jörg J. Goronzy, M.D., Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, CA, USA.
| |
Collapse
|
244
|
The PD-1/PD-L1 (B7-H1) pathway in chronic infection-induced cytotoxic T lymphocyte exhaustion. J Biomed Biotechnol 2011; 2011:451694. [PMID: 21960736 PMCID: PMC3180079 DOI: 10.1155/2011/451694] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 07/21/2011] [Indexed: 01/22/2023] Open
Abstract
Cytotoxic CD8 T lymphocytes (CTLs) play a pivotal role in the control of infection. Activated CTLs, however, often lose effector function during chronic infection. PD-1 receptor and its ligand PD-L1 of the B7/CD28 family function as a T cell coinhibitory pathway and are emerging as major regulators converting effector CTLs into exhausted CTLs during chronic infection with human immunodeficiency virus, hepatitis B virus, hepatitis C virus, and other pathogens capable of establishing chronic infections. Importantly, blockade of the PD-1/PD-L1 pathway is able to restore functional capabilities to exhausted CTLs and early clinical trials have shown promise. Further research will reveal how chronic infection induces upregulation of PD-1 on CTLs and PD-L1 on antigen-presenting cells and other tissue cells and how the PD-1/PD-L1 interaction promotes CTLs exhaustion, which is crucial for developing effective prophylactic and therapeutic vaccination against chronic infections.
Collapse
|
245
|
Zhou CB, Li ZW. Progress in understanding the role of PD-1/PD-L1 signaling pathway in the immunoregulation of HBV infection. Shijie Huaren Xiaohua Zazhi 2011; 19:2752-2759. [DOI: 10.11569/wcjd.v19.i26.2752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Programmed cell death-1 (PD-1) is an inhibitory co-stimulatory molecule belonging to the CD28 family. It plays an important role in the maintenance of immune tolerance through binding to its ligands. Recent studies showed that the PD-1/PD-1 ligand 1 (PD-L1) pathway played an essential role in the development of chronic viral infection, autoimmune diseases and tumor immunity. Manipulating this pathway may have possible clinical applications to HBV treatment. This article will review the recent progress in understanding the role of PD-1/PD-L1 signaling pathway in the immunoregulation of HBV infection.
Collapse
|
246
|
Abstract
T cell exhaustion develops under conditions of antigen-persistence caused by infection with various chronic pathogens, such as human immunodeficiency virus (HIV) and mycobacterium tuberculosis (TB), or by the development of cancer. T cell exhaustion is characterized by stepwise and progressive loss of T cell function, which is probably the main reason for the failed immunological control of chronic pathogens and cancers. Recent observations have detailed some of the intrinsic and extrinsic factors that influence the severity of T cell exhaustion. Duration and magnitude of antigenic activation of T cells might be associated with up-regulation of inhibitory receptors, which is a major intrinsic factor of T cell exhaustion. Extrinsic factors might include the production of suppressive cytokines, T cell priming by either non-professional antigen-presenting cells (APCs) or tolerogenic dendritic cells (DCs), and alteration of regulatory T (Treg) cells. Further investigation of the cellular and molecular processes behind the development of T cell exhaustion can reveal therapeutic targets and strategies for the treatment of chronic infections and cancers. Here, we report the properties and the mechanisms of T cell exhaustion in a chronic environment.
Collapse
Affiliation(s)
- Hyun-Tak Jin
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|
247
|
MacParland SA, Vali B, Ostrowski MA. Immunopathogenesis of HIV/hepatitis C virus coinfection. Future Virol 2011. [DOI: 10.2217/fvl.11.80] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
As a result of shared infection routes, approximately 25% of individuals infected with HIV in North America are also infected with hepatitis C virus (HCV). In the setting of HIV coinfection, the course of HCV disease is more aggressive, resulting in higher HCV viral loads and a more rapid progression of liver pathology. With the success of HAART, HCV-related end-stage liver disease has become a leading cause of morbidity and mortality in HIV/HCV-coinfected patients. In this article, we will discuss recent studies examining the immune response during HIV and HCV coinfection, focusing on alterations or dysfunctions in virus-specific T-cell responses that may play a role in the immunopathogenesis of HIV/HCV coinfection. Summarizing the impact of HIV coinfection on HCV-specific T-cell immunity and highlighting some of the proposed mechanisms of T-cell dysfunction in HIV/HCV-coinfected individuals may uncover information that could lead to new treatment strategies for these patients experiencing accelerated liver disease and generally poorer outcomes than their HCV-monoinfected counterparts.
Collapse
Affiliation(s)
| | - Bahareh Vali
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Mario A Ostrowski
- Department of Immunology, University of Toronto, Toronto, ON, Canada; University of Toronto, Medical Sciences Building, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Clinical Sciences Division, University of Toronto, Toronto, ON, Canada
- Li Ka Shing Knowledge Institute at St Michael’s Hospital, Toronto, ON, Canada
| |
Collapse
|
248
|
Wieërs G, Demotte N, Godelaine D, van der Bruggen P. Immune suppression in tumors as a surmountable obstacle to clinical efficacy of cancer vaccines. Cancers (Basel) 2011; 3:2904-54. [PMID: 24212939 PMCID: PMC3759179 DOI: 10.3390/cancers3032904] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 07/01/2011] [Accepted: 07/07/2011] [Indexed: 02/07/2023] Open
Abstract
Human tumors are usually not spontaneously eliminated by the immune system and therapeutic vaccination of cancer patients with defined antigens is followed by tumor regressions only in a small minority of the patients. The poor vaccination effectiveness could be explained by an immunosuppressive tumor microenvironment. Because T cells that infiltrate tumor metastases have an impaired ability to lyse target cells or to secrete cytokine, many researchers are trying to decipher the underlying immunosuppressive mechanisms. We will review these here, in particular those considered as potential therapeutic targets. A special attention will be given to galectins, a family of carbohydrate binding proteins. These lectins have often been implicated in inflammation and cancer and may be useful targets for the development of new anti-cancer therapies.
Collapse
Affiliation(s)
- Grégoire Wieërs
- Ludwig Institute for Cancer Research and Université catholique de Louvain, de Duve Institute, 74 av. Hippocrate, P.O. Box B1-7403, B-1200 Brussels, Belgium; E-Mails: (G.W.); (N.D.); (D.G.)
| | - Nathalie Demotte
- Ludwig Institute for Cancer Research and Université catholique de Louvain, de Duve Institute, 74 av. Hippocrate, P.O. Box B1-7403, B-1200 Brussels, Belgium; E-Mails: (G.W.); (N.D.); (D.G.)
| | - Danièle Godelaine
- Ludwig Institute for Cancer Research and Université catholique de Louvain, de Duve Institute, 74 av. Hippocrate, P.O. Box B1-7403, B-1200 Brussels, Belgium; E-Mails: (G.W.); (N.D.); (D.G.)
| | - Pierre van der Bruggen
- Ludwig Institute for Cancer Research and Université catholique de Louvain, de Duve Institute, 74 av. Hippocrate, P.O. Box B1-7403, B-1200 Brussels, Belgium; E-Mails: (G.W.); (N.D.); (D.G.)
| |
Collapse
|
249
|
Racanelli V, Leone P, Grakoui A. A spatial view of the CD8+ T-cell response: the case of HCV. Rev Med Virol 2011; 21:347-57. [PMID: 21732472 DOI: 10.1002/rmv.702] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Revised: 05/11/2011] [Accepted: 05/27/2011] [Indexed: 01/07/2023]
Abstract
In viral infections, a memory T-cell population comprises multiple subtypes of cells, distributed in diverse anatomic compartments and possibly re-circulating among them. Accordingly, memory T cells display distinct phenotypes and functions, depending on the nature of the infecting virus, the anatomic location of the infection, and the differences between the sites of active infection and T-cell collection. This paper explores the body compartments where virus-specific CD8(+) T cells have been found during chronic hepatitis C virus infection, describes the cells' memory qualities, and discusses how they are spatially regulated, in comparison with other human viral infections. Understanding the role of compartmentalization and diversity of HCV-specific memory T-cell subsets may be the key to developing effective immunotherapies.
Collapse
Affiliation(s)
- Vito Racanelli
- Department of Internal Medicine and Clinical Oncology, University of Bari Medical School, Bari, Italy.
| | | | | |
Collapse
|
250
|
Ruhl M, Knuschke T, Schewior K, Glavinic L, Neumann-Haefelin C, Chang DI, Klein M, Heinemann FM, Tenckhoff H, Wiese M, Horn PA, Viazov S, Spengler U, Roggendorf M, Scherbaum N, Nattermann J, Hoffmann D, Timm J. CD8+ T-cell response promotes evolution of hepatitis C virus nonstructural proteins. Gastroenterology 2011; 140:2064-73. [PMID: 21376049 DOI: 10.1053/j.gastro.2011.02.060] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 01/21/2011] [Accepted: 02/18/2011] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Hepatitis C virus (HCV) acquires mutations that allow it to escape the CD8+ T-cell response, although the extent to which this process contributes to viral evolution at the population level is not clear. We studied viral adaptation using data from a large outbreak of HCV genotype 1b infection that occurred among women immunized with contaminated immunoglobulin from 1977 to 1978. METHODS The HCV nonstructural protein coding regions NS3-NS5B were sequenced from 78 patients, and mutations were mapped according to their location inside or outside previously described CD8+ T-cell epitopes. A statistical approach was developed to identify sites/regions under reproducible selection pressure associated with HLA class I. RESULTS The frequency of nonsynonymous mutations was significantly higher inside previously described CD8+ T-cell epitopes than outside-particularly in NS3/4A and NS5B. We identified new regions that are under selection pressure, indicating that not all CD8+ T-cell epitopes have been identified; 6 new epitopes that interact with CD8+ T cells were identified and confirmed in vitro. In some CD8+ T-cell epitopes mutations were reproducibly identified in patients that shared the relevant HLA allele, indicating immune pressure at the population level. There was statistical support for selection of mutations in 18 individual epitopes. Interestingly, 14 of these were restricted by HLA-B allele. CONCLUSIONS HLA class I-associated selection pressure on the nonstructural proteins and here predominantly on NS3/4A and NS5B promotes evolution of HCV. HLA-B alleles have a dominant effect in this selection process. Adaptation of HCV to the CD8+ T-cell response at the population level creates challenges for vaccine design.
Collapse
Affiliation(s)
- Marianne Ruhl
- Institute of Virology, University of Duisburg-Essen, and Addiction Research Group, Department of Psychiatry and Psychotherapy, LVR-Hospital Essen, Essen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|