201
|
Obare P, Ogutu B, Adams M, Odera JS, Lilley K, Dosoo D, Adhiambo C, Owusu-Agyei S, Binka F, Wanja E, Johnson J. Misclassification of Plasmodium infections by conventional microscopy and the impact of remedial training on the proficiency of laboratory technicians in species identification. Malar J 2013; 12:113. [PMID: 23537145 PMCID: PMC3626703 DOI: 10.1186/1475-2875-12-113] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 03/22/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Malaria diagnosis is largely dependent on the demonstration of parasites in stained blood films by conventional microscopy. Accurate identification of the infecting Plasmodium species relies on detailed examination of parasite morphological characteristics, such as size, shape, pigment granules, besides the size and shape of the parasitized red blood cells and presence of cell inclusions. This work explores misclassifications of four Plasmodium species by conventional microscopy relative to the proficiency of microscopists and morphological characteristics of the parasites on Giemsa-stained blood films. CASE DESCRIPTION Ten-day malaria microscopy remedial courses on parasite detection, species identification and parasite counting were conducted for public health and research laboratory personnel. Proficiency in species identification was assessed at the start (pre) and the end (post) of each course using known blood films of Plasmodium falciparum, Plasmodium malariae, Plasmodium ovale and Plasmodium vivax infections with densities ranging from 1,000 to 30,000 parasites/μL. Outcomes were categorized as false negative, positive without speciation, P. falciparum, P. malariae, P. ovale, P. vivax and mixed infections. DISCUSSION AND EVALUATION Reported findings are based on 1,878 P. falciparum, 483 P. malariae, 581 P. ovale and 438 P. vivax cumulative results collated from 2008 to 2010 remedial courses. Pre-training false negative and positive misclassifications without speciation were significantly lower on P. falciparum infections compared to non-falciparum infections (p < 0.0001). Post-training misclassifications decreased significantly compared to pre- training misclassifications which in turn led to significant improvements in the identification of the four species. However, P. falciparum infections were highly misclassified as mixed infections, P. ovale misclassified as P. vivax and P. vivax similarly misclassified as P. ovale (p < 0.05). CONCLUSION These findings suggest that the misclassification of malaria species could be a common occurrence especially where non-falciparum infections are involved due to lack of requisite skills in microscopic diagnosis and variations in morphological characteristics within and between Plasmodium species. Remedial training might improve reliability of conventional light microscopy with respect to differentiation of Plasmodium infections.
Collapse
Affiliation(s)
- Peter Obare
- Kenya Medical Research Institute/United States Army Medical Research Unit, Kenya, Malaria Diagnostics Centre, Box 54 - 40100, Kisumu, Kenya.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
202
|
Plasmodium knowlesi: the emerging zoonotic malaria parasite. Acta Trop 2013; 125:191-201. [PMID: 23088834 DOI: 10.1016/j.actatropica.2012.10.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2012] [Revised: 10/03/2012] [Accepted: 10/14/2012] [Indexed: 11/20/2022]
Abstract
Plasmodium knowlesi was initially identified in the 30s as a natural Plasmodium of Macaca fascicularis monkey also capable of experimentally infecting humans. It gained a relative notoriety in the mid-30s as an alternative to Plasmodium vivax in the treatment of the general paralysis of the insane (neurosyphilis). In 1965 the first natural human infection was described in a US military surveyor coming back from the Pahang jungle of the Malaysian peninsula. P. knowlesi was again brought to the attention of the medical community when in 2004, Balbir Singh and his co-workers reported that about 58% of malaria cases observed in the Kapit district of the Malaysian Borneo were actually caused by P. knowlesi. In the following years several reports showed that P. knowlesi is much more widespread than initially thought with cases reported across Southeast Asia. This infection should also be considered in the differential diagnosis of any febrile travellers coming back from a recent travel to forested areas of Southeast Asia. P. knowlesi can cause severe malaria with a rate of 6-9% and with a case fatality rate of 3%. Respiratory distress, acute renal failure, shock and hyperbilirubinemia are the most frequently observed complications of severe P. knowlesi malaria. Chloroquine is considered the treatment of choice of uncomplicated malaria caused by P. knowlesi.
Collapse
|
203
|
Eradication of malaria through genetic engineering: the current situation. ASIAN PAC J TROP MED 2013; 6:85-94. [DOI: 10.1016/s1995-7645(13)60001-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Revised: 12/15/2012] [Accepted: 01/15/2013] [Indexed: 01/03/2023] Open
|
204
|
Increasing incidence of Plasmodium knowlesi malaria following control of P. falciparum and P. vivax Malaria in Sabah, Malaysia. PLoS Negl Trop Dis 2013; 7:e2026. [PMID: 23359830 PMCID: PMC3554533 DOI: 10.1371/journal.pntd.0002026] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 12/06/2012] [Indexed: 11/25/2022] Open
Abstract
Background The simian parasite Plasmodium knowlesi is a common cause of human malaria in Malaysian Borneo and threatens the prospect of malaria elimination. However, little is known about the emergence of P. knowlesi, particularly in Sabah. We reviewed Sabah Department of Health records to investigate the trend of each malaria species over time. Methods Reporting of microscopy-diagnosed malaria cases in Sabah is mandatory. We reviewed all available Department of Health malaria notification records from 1992–2011. Notifications of P. malariae and P. knowlesi were considered as a single group due to microscopic near-identity. Results From 1992–2011 total malaria notifications decreased dramatically, with P. falciparum peaking at 33,153 in 1994 and decreasing 55-fold to 605 in 2011, and P. vivax peaking at 15,857 in 1995 and decreasing 25-fold to 628 in 2011. Notifications of P. malariae/P. knowlesi also demonstrated a peak in the mid-1990s (614 in 1994) before decreasing to ≈100/year in the late 1990s/early 2000s. However, P. malariae/P. knowlesi notifications increased >10-fold between 2004 (n = 59) and 2011 (n = 703). In 1992 P. falciparum, P. vivax and P. malariae/P. knowlesi monoinfections accounted for 70%, 24% and 1% respectively of malaria notifications, compared to 30%, 31% and 35% in 2011. The increase in P. malariae/P. knowlesi notifications occurred state-wide, appearing to have begun in the southwest and progressed north-easterly. Conclusions A significant recent increase has occurred in P. knowlesi notifications following reduced transmission of the human Plasmodium species, and this trend threatens malaria elimination. Determination of transmission dynamics and risk factors for knowlesi malaria is required to guide measures to control this rising incidence. The simian parasite Plasmodium knowlesi is a common cause of malaria in Malaysian Borneo; however, little is known about its emergence over time, particularly in Sabah. We reviewed all available Sabah Department of health malaria notification records from 1992–2011, and considered notifications of P. malariae and P. knowlesi as a single group due to their microscopic similarity. We found that malaria notifications in Sabah have decreased dramatically, with P. falciparum and P. vivax notifications peaking at 33,153 and 15,877 respectively during 1994–1995, and falling to 605 and 628 respectively in 2011. Notifications of P. malariae/P. knowlesi fell from a peak of 614 in 1994 to ≈100/year in the late 1990s/early 2000s, however increased >10-fold between 2004 (n = 59) and 2011 (n = 703). In 1992 P. falciparum, P. vivax and P. malariae/P. knowlesi monoinfections accounted for 70%, 24% and 1% respectively of malaria notifications, compared to 30%, 31% and 35% in 2011. The increase in P. malariae/P. knowlesi notifications occurred state-wide, appearing to have begun in the southwest and progressed north-easterly. This significant recent increase in P. knowlesi notifications following reduced transmission of the human Plasmodium species threatens malaria elimination; further research is required to determine transmission dynamics and risk factors for knowlesi malaria.
Collapse
|
205
|
Ichagichu M, Ngotho M, Karanja SM, Kokwaro G, Kariuki T, Nzila A, Ozwara H. Preclinical drug evaluation system in the Plasmodium knowlesi baboon model of malaria: the methotrexate study. J Med Primatol 2013; 42:62-70. [PMID: 23294369 DOI: 10.1111/jmp.12034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2012] [Indexed: 11/30/2022]
Abstract
BACKGROUND Drug resistance against first-line antimalarials warrants search for new lead compounds and repurposing of drugs such as methotrexate. Animal models are required for preclinical drug development before clinical testing. This study aimed to develop a preclinical drug development system in baboons infected with Plasmodium knowlesi. METHODS Protocols for drug administration, pharmacokinetics, clinical chemistry and haematology were developed in the baboon model. Baboons were infected with P. knowlesi and methotrexate administered orally for 5 days. Clinical signs, parasitaemia, gross and histopathology examinations were conducted to determine effect of methotrexate in baboons. RESULTS No major clinical chemistry, haematology and pathological changes attributable to methotrexate were observed. Parasitaemia suppression of 77.67% was achieved at a methotrexate dose of 3.0 mg/kg. CONCLUSIONS A protocol for preclinical drug development in the baboon was optimized. Methotrexate suppressed P. knowlesi malaria in baboons. These findings warrant further characterization of methotrexate for use in combination therapy.
Collapse
Affiliation(s)
- M Ichagichu
- Department of Tropical and Infectious Diseases, Institute of Primate Research, Karen, Nairobi, Kenya
| | | | | | | | | | | | | |
Collapse
|
206
|
Nguyen ML, Goff T, Gibble J, Steele WR, Leiby DA. Analyzing actual risk in malaria-deferred donors through selective serologic testing. Transfusion 2012; 53:1736-43. [DOI: 10.1111/trf.12004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 09/25/2012] [Accepted: 09/28/2012] [Indexed: 11/26/2022]
|
207
|
Barber BE, William T, Dhararaj P, Anderios F, Grigg MJ, Yeo TW, Anstey NM. Epidemiology of Plasmodium knowlesi malaria in north-east Sabah, Malaysia: family clusters and wide age distribution. Malar J 2012; 11:401. [PMID: 23216947 PMCID: PMC3528466 DOI: 10.1186/1475-2875-11-401] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 11/28/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The simian parasite Plasmodium knowlesi is a common cause of human malaria in Malaysian Borneo, with a particularly high incidence in Kudat, Sabah. Little is known however about the epidemiology in this substantially deforested region. METHODS Malaria microscopy records at Kudat District Hospital were retrospectively reviewed from January 2009-November 2011. Demographics, and PCR results if available, were recorded for each positive result. Medical records were reviewed for patients suspected of representing family clusters, and families contacted for further information. Rainfall data were obtained from the Malaysian Meteorological Department. RESULTS "Plasmodium malariae" mixed or mono-infection was diagnosed by microscopy in 517/653 (79%) patients. Of these, PCR was performed in 445 (86%) and was positive for P. knowlesi mono-infection in 339 (76%). Patients with knowlesi malaria demonstrated a wide age distribution (median 33, IQR 20-50, range 0.7-89 years) with P. knowlesi predominating in all age groups except those <5 years old, where numbers approximated those of Plasmodium falciparum and Plasmodium vivax. Two contemporaneous family clusters were identified: a father with two children (aged 10-11 years); and three brothers (aged one-11 years), all with PCR-confirmed knowlesi malaria. Cases of P. knowlesi demonstrated significant seasonal variation, and correlated with rainfall in the preceding three to five months. CONCLUSIONS Plasmodium knowlesi is the most common cause of malaria admissions to Kudat District Hospital. The wide age distribution and presence of family clusters suggest that transmission may be occurring close to or inside people's homes, in contrast to previous reports from densely forested areas of Sarawak. These findings have significant implications for malaria control. Prospective studies of risk factors, vectors and transmission dynamics of P. knowlesi in Sabah, including potential for human-to-human transmission, are needed.
Collapse
Affiliation(s)
- Bridget E Barber
- Global Health Division, Menzies School of Health Research, PO Box 41096, Casuarina 0810,, Northern Territory, Australia
| | | | | | | | | | | | | |
Collapse
|
208
|
Abstract
PURPOSE OF REVIEW The emergence of Plasmodium knowlesi, a parasite of Southeast Asian macaques, into the human population is ongoing and widespread across Southeast Asia. Humans entering P. knowlesi transmission areas are at risk. Patients present with uncomplicated, complicated and fatal disease, therefore prompt accurate diagnosis and treatment are essential. This review focuses on recent descriptions of asymptomatic and symptomatic infections in children, pathophysiology in adults, treatment and diagnosis, and highlights the importance of monitoring transmission and host-switch events. RECENT FINDINGS New reports on P. knowlesi infections identify regional differences in aetiology and vector species. Parasitaemia is associated with disease severity and specific diagnostic tools are required. Treatment failures have not been reported. The severe form of P. knowlesi malaria can be compared with severe falciparum malaria to inform the pathophysiology of both infections. SUMMARY P. knowlesi presents new challenges to malaria-control efforts in Southeast Asia. Sensitive and specific diagnostic tools are required for communities and travellers at risk. Currently P. knowlesi transmission appears to occur away from human settlements. However, ongoing host-switch events from macaques to humans cannot be excluded. Changes in P. knowlesi transmission across the region should be monitored to preempt outbreaks of this virulent pathogen.
Collapse
|
209
|
Wattal C, Goel N. Infectious disease emergencies in returning travelers: special reference to malaria, dengue fever, and chikungunya. Med Clin North Am 2012; 96:1225-55. [PMID: 23102486 DOI: 10.1016/j.mcna.2012.08.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review article discusses important infectious illnesses, namely malaria, dengue, and chikungunya, in travelers returning from endemic areas. Malaria and dengue are two of the most common systemic illnesses reported in returning travelers. Because chikungunya is gaining importance, it is also briefly discussed. The clinical significance of these diseases is mainly due to the possibility of sudden deterioration with high mortality in clinically healthy looking patients. The key clinical features, their diagnosis, and treatment algorithms are discussed in detail to help in early diagnosis and appropriate clinical management of such travelers presenting in emergency departments.
Collapse
Affiliation(s)
- Chand Wattal
- Department of Clinical Microbiology and Immunology, Sir Ganga Ram Hospital, Rajinder Nagar, New Delhi, India.
| | | |
Collapse
|
210
|
Tachibana SI, Sullivan SA, Kawai S, Nakamura S, Kim HR, Goto N, Arisue N, Palacpac NMQ, Honma H, Yagi M, Tougan T, Katakai Y, Kaneko O, Mita T, Kita K, Yasutomi Y, Sutton PL, Shakhbatyan R, Horii T, Yasunaga T, Barnwell JW, Escalante AA, Carlton JM, Tanabe K. Plasmodium cynomolgi genome sequences provide insight into Plasmodium vivax and the monkey malaria clade. Nat Genet 2012; 44:1051-5. [PMID: 22863735 PMCID: PMC3759362 DOI: 10.1038/ng.2375] [Citation(s) in RCA: 156] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 07/09/2012] [Indexed: 02/05/2023]
Abstract
Plasmodium cynomolgi, a malaria parasite of Asian Old World monkeys, is the sister taxon of Plasmodium vivax, the most prevalent human malaria species outside Africa. Since P. cynomolgi shares many phenotypic, biologic and genetic characteristics of P. vivax, we generated draft genome sequences of three P. cynomolgi strains and performed comparative genomic analysis between them and P. vivax, as well as a third previously sequenced simian parasite, Plasmodium knowlesi. Here we show that genomes of the monkey malaria clade can be characterized by CNVs in multigene families involved in evasion of the human immune system and invasion of host erythrocytes. We identify genome-wide SNPs, microsatellites, and CNVs in the P. cynomolgi genome, providing a map of genetic variation for mapping parasite traits and studying parasite populations. The P. cynomolgi genome is a critical step in developing a model system for P. vivax research, and to counteract the neglect of P. vivax.
Collapse
Affiliation(s)
- Shin-Ichiro Tachibana
- Laboratory of Malariology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
211
|
Vaughan AM, Kappe SHI. Malaria vaccine development: persistent challenges. Curr Opin Immunol 2012; 24:324-31. [DOI: 10.1016/j.coi.2012.03.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 03/26/2012] [Indexed: 12/25/2022]
|
212
|
Preuss J, Jortzik E, Becker K. Glucose-6-phosphate metabolism in Plasmodium falciparum. IUBMB Life 2012; 64:603-11. [PMID: 22639416 DOI: 10.1002/iub.1047] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 04/07/2012] [Indexed: 01/13/2023]
Abstract
Malaria is still one of the most threatening diseases worldwide. The high drug resistance rates of malarial parasites make its eradication difficult and furthermore necessitate the development of new antimalarial drugs. Plasmodium falciparum is responsible for severe malaria and therefore of special interest with regard to drug development. Plasmodium parasites are highly dependent on glucose and very sensitive to oxidative stress; two observations that drew interest to the pentose phosphate pathway (PPP) with its key enzyme glucose-6-phosphate dehydrogenase (G6PD). A central position of the PPP for malaria parasites is supported by the fact that human G6PD deficiency protects to a certain degree from malaria infections. Plasmodium parasites and the human host possess a complete PPP, both of which seem to be important for the parasites. Interestingly, there are major differences between parasite and human G6PD, making the enzyme of Plasmodium a promising target for antimalarial drug design. This review gives an overview of the current state of research on glucose-6-phosphate metabolism in P. falciparum and its impact on malaria infections. Moreover, the unique characteristics of the enzyme G6PD in P. falciparum are discussed, upon which its current status as promising target for drug development is based.
Collapse
Affiliation(s)
- Janina Preuss
- Chair of Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University, Giessen, Germany
| | | | | |
Collapse
|
213
|
Abstract
Background Recent findings of Plasmodium in African apes have changed our perspectives on the evolution of malarial parasites in hominids. However, phylogenetic analyses of primate malarias are still missing information from Southeast Asian apes. In this study, we report molecular data for a malaria parasite lineage found in orangutans. Methodology/Principal Findings We screened twenty-four blood samples from Pongo pygmaeus (Kalimantan, Indonesia) for Plasmodium parasites by PCR. For all the malaria positive orangutan samples, parasite mitochondrial genomes (mtDNA) and two antigens: merozoite surface protein 1 42 kDa (MSP-142) and circumsporozoite protein gene (CSP) were amplified, cloned, and sequenced. Fifteen orangutans tested positive and yielded 5 distinct mitochondrial haplotypes not previously found. The haplotypes detected exhibited low genetic divergence among them, indicating that they belong to one species. We report phylogenetic analyses using mitochondrial genomes, MSP-142 and CSP. We found that the orangutan malaria parasite lineage was part of a monophyletic group that includes all the known non-human primate malaria parasites found in Southeast Asia; specifically, it shares a recent common ancestor with P. inui (a macaque parasite) and P. hylobati (a gibbon parasite) suggesting that this lineage originated as a result of a host switch. The genetic diversity of MSP-142 in orangutans seems to be under negative selection. This result is similar to previous findings in non-human primate malarias closely related to P. vivax. As has been previously observed in the other Plasmodium species found in non-human primates, the CSP shows high polymorphism in the number of repeats. However, it has clearly distinctive motifs from those previously found in other malarial parasites. Conclusion The evidence available from Asian apes indicates that these parasites originated independently from those found in Africa, likely as the result of host switches from other non-human primates.
Collapse
|
214
|
Abstract
Recent studies have revealed a remarkable molecular diversity of Plasmodium parasites in great apes in Africa, as well as parasite exchange events between these primates and humans. We review the different points of view proposed on the origin of human malaria, and discuss ape Plasmodium parasites as a source of human outbreaks.
Collapse
Affiliation(s)
- L Duval
- Maladies Infectieuses et Vecteurs, Écologie, Génétique, Évolution et Contrôle, Institut de Recherche pour le Développement, Montpellier, France.
| | | |
Collapse
|
215
|
Nkhoma SC, Nair S, Cheeseman IH, Rohr-Allegrini C, Singlam S, Nosten F, Anderson TJC. Close kinship within multiple-genotype malaria parasite infections. Proc Biol Sci 2012; 279:2589-98. [PMID: 22398165 PMCID: PMC3350702 DOI: 10.1098/rspb.2012.0113] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Malaria infections containing multiple parasite genotypes are ubiquitous in nature, and play a central role in models of recombination, intra-host dynamics, virulence, sex ratio, immunity and drug resistance evolution in Plasmodium. While these multiple infections (MIs) are often assumed to result from superinfection (bites from multiple infected mosquitoes), we know remarkably little about their composition or generation. We isolated 336 parasite clones from eight patients from Malawi (high transmission) and six from Thailand (low transmission) by dilution cloning. These were genotyped using 384 single-nucleotide polymorphisms, revealing 22 independent haplotypes in Malawi (2–6 per MI) and 15 in Thailand (2–5 per MI). Surprisingly, all six patients from Thailand and six of eight from Malawi contained related haplotypes, and haplotypes were more similar within- than between-infections. These results argue against a simple superinfection model. Instead, the observed kinship patterns may be explained by inoculation of multiple related haploid sporozoites from single mosquito bites, by immune suppression of parasite subpopulations within infections, and serial transmission of related parasites between people. That relatedness is maintained in endemic areas in the face of repeated bites from infected mosquitoes has profound implications for understanding malaria transmission, immunity and intra-host dynamics of co-infecting parasite genotypes.
Collapse
Affiliation(s)
- Standwell C Nkhoma
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | | | | | | | | | | | | |
Collapse
|
216
|
Lucchi NW, Poorak M, Oberstaller J, DeBarry J, Srinivasamoorthy G, Goldman I, Xayavong M, da Silva AJ, Peterson DS, Barnwell JW, Kissinger J, Udhayakumar V. A new single-step PCR assay for the detection of the zoonotic malaria parasite Plasmodium knowlesi. PLoS One 2012; 7:e31848. [PMID: 22363751 PMCID: PMC3282782 DOI: 10.1371/journal.pone.0031848] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 01/13/2012] [Indexed: 11/19/2022] Open
Abstract
Background Recent studies in Southeast Asia have demonstrated substantial zoonotic transmission of Plasmodium knowlesi to humans. Microscopically, P. knowlesi exhibits several stage-dependent morphological similarities to P. malariae and P. falciparum. These similarities often lead to misdiagnosis of P. knowlesi as either P. malariae or P. falciparum and PCR-based molecular diagnostic tests are required to accurately detect P. knowlesi in humans. The most commonly used PCR test has been found to give false positive results, especially with a proportion of P. vivax isolates. To address the need for more sensitive and specific diagnostic tests for the accurate diagnosis of P. knowlesi, we report development of a new single-step PCR assay that uses novel genomic targets to accurately detect this infection. Methodology and Significant Findings We have developed a bioinformatics approach to search the available malaria parasite genome database for the identification of suitable DNA sequences relevant for molecular diagnostic tests. Using this approach, we have identified multi-copy DNA sequences distributed in the P. knowlesi genome. We designed and tested several novel primers specific to new target sequences in a single-tube, non-nested PCR assay and identified one set of primers that accurately detects P. knowlesi. We show that this primer set has 100% specificity for the detection of P. knowlesi using three different strains (Nuri, H, and Hackeri), and one human case of malaria caused by P. knowlesi. This test did not show cross reactivity with any of the four human malaria parasite species including 11 different strains of P. vivax as well as 5 additional species of simian malaria parasites. Conclusions The new PCR assay based on novel P. knowlesi genomic sequence targets was able to accurately detect P. knowlesi. Additional laboratory and field-based testing of this assay will be necessary to further validate its utility for clinical diagnosis of P. knowlesi.
Collapse
Affiliation(s)
- Naomi W. Lucchi
- Atlanta Research and Education Foundation, Decatur, Georgia, United States of America
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Mitra Poorak
- Atlanta Research and Education Foundation, Decatur, Georgia, United States of America
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Jenna Oberstaller
- Department of Genetics, University of Georgia, Athens, Georgia, United States of America
| | - Jeremy DeBarry
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, United States of America
| | - Ganesh Srinivasamoorthy
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, United States of America
| | - Ira Goldman
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Maniphet Xayavong
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Alexandre J. da Silva
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - David S. Peterson
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, United States of America
| | - John W. Barnwell
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Jessica Kissinger
- Department of Genetics, University of Georgia, Athens, Georgia, United States of America
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, United States of America
- Institute of Bioinformatics, University of Georgia, Athens, Georgia, United States of America
| | - Venkatachalam Udhayakumar
- Atlanta Research and Education Foundation, Decatur, Georgia, United States of America
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
217
|
Frech C, Chen N. Genome comparison of human and non-human malaria parasites reveals species subset-specific genes potentially linked to human disease. PLoS Comput Biol 2011; 7:e1002320. [PMID: 22215999 PMCID: PMC3245289 DOI: 10.1371/journal.pcbi.1002320] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 11/07/2011] [Indexed: 11/24/2022] Open
Abstract
Genes underlying important phenotypic differences between Plasmodium species, the causative agents of malaria, are frequently found in only a subset of species and cluster at dynamically evolving subtelomeric regions of chromosomes. We hypothesized that chromosome-internal regions of Plasmodium genomes harbour additional species subset-specific genes that underlie differences in human pathogenicity, human-to-human transmissibility, and human virulence. We combined sequence similarity searches with synteny block analyses to identify species subset-specific genes in chromosome-internal regions of six published Plasmodium genomes, including Plasmodium falciparum, Plasmodium vivax, Plasmodium knowlesi, Plasmodium yoelii, Plasmodium berghei, and Plasmodium chabaudi. To improve comparative analysis, we first revised incorrectly annotated gene models using homology-based gene finders and examined putative subset-specific genes within syntenic contexts. Confirmed subset-specific genes were then analyzed for their role in biological pathways and examined for molecular functions using publicly available databases. We identified 16 genes that are well conserved in the three primate parasites but not found in rodent parasites, including three key enzymes of the thiamine (vitamin B1) biosynthesis pathway. Thirteen genes were found to be present in both human parasites but absent in the monkey parasite P. knowlesi, including genes specifically upregulated in sporozoites or gametocytes that could be linked to parasite transmission success between humans. Furthermore, we propose 15 chromosome-internal P. falciparum-specific genes as new candidate genes underlying increased human virulence and detected a currently uncharacterized cluster of P. vivax-specific genes on chromosome 6 likely involved in erythrocyte invasion. In conclusion, Plasmodium species harbour many chromosome-internal differences in the form of protein-coding genes, some of which are potentially linked to human disease and thus promising leads for future laboratory research. With more than 250 million infections and over a million deaths each year, malaria remains one of the most devastating infectious diseases worldwide. With the availability of complete genome sequences of both human and non-human Plasmodium parasites, the causative agents of malaria, it is now possible to use comparative genomics as a tool to look for genes that are present in some but not all Plasmodium species. Such species subset-specific genes possibly underlie important phenotypic differences between malaria parasites and could provide important clues for the development of new strategies to prevent and treat malaria in humans. In this study, we performed a comprehensive computational comparison of the published genomes of six Plasmodium species, including two human (P. falciparum and P. vivax), one monkey (P. knowlesi), and three rodent malaria parasites (P. berghei, P. yoelii, and P. chabaudi). This comparison revealed many species subset-specific genes that are potentially linked to human pathogenicity, human-to-human transmissibility, and human virulence. These genes can now be examined further by targeted experimental analyses to test predicted phenotypic associations and to elucidate gene function.
Collapse
Affiliation(s)
- Christian Frech
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Nansheng Chen
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
- * E-mail:
| |
Collapse
|
218
|
Hobbs C, Duffy P. Drugs for malaria: something old, something new, something borrowed. F1000 BIOLOGY REPORTS 2011; 3:24. [PMID: 22076126 PMCID: PMC3206709 DOI: 10.3410/b3-24] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Malaria was estimated to cause 800,000 deaths and 225 million cases worldwide in 2010. Worryingly, the first-line treatment currently relies on a single drug class called artemisinins, and there are signs that the parasite is becoming resistant to these drugs. The good news is that new technology has given us new approaches to drug discovery. New drugs generated this way are probably 10-15 years away from the clinic. Other antimalarials that may offer hope include those rehabilitated after not being used for some time, those that act as inhibitors of resistance mechanisms, those that limit infection while allowing protective immunity to develop, and those which are drugs borrowed from other disease treatments. All of these offer new hope of turning the tables on malaria. In parallel with the effort to develop vaccines that interrupt malaria transmission, drugs that target the parasite during transmission to the mosquito or during its pre-erythrocytic development in the liver, may allow us to terminate the parasite's spread.
Collapse
Affiliation(s)
- Charlotte Hobbs
- NIH/NIAID, Laboratory of Malaria Immunology and Vaccinology12735 Twinbrook Parkway, 3W19E, Rockville, MD 20852USA
| | - Patrick Duffy
- NIH/NIAID, Laboratory of Malaria Immunology and Vaccinology, Division of Intramural Research5640 Fishers Lane, Rm. 1111 Rockville, MD 20892USA
| |
Collapse
|
219
|
Lymbery AJ, Thompson RCA. The molecular epidemiology of parasite infections: tools and applications. Mol Biochem Parasitol 2011; 181:102-16. [PMID: 22027028 DOI: 10.1016/j.molbiopara.2011.10.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 10/10/2011] [Accepted: 10/12/2011] [Indexed: 10/16/2022]
Abstract
Molecular epidemiology, broadly defined, is the application of molecular genetic techniques to the dynamics of disease in a population. In this review, we briefly describe molecular and analytical tools available for molecular epidemiological studies and then provide an overview of how they can be applied to better understand parasitic disease. A range of new molecular tools have been developed in recent years, allowing for the direct examination of parasites from clinical or environmental samples, and providing access to relatively cheap, rapid, high throughput molecular assays. At the same time, new analytical approaches, in particular those derived from coalescent theory, have been developed to provide more robust estimates of evolutionary processes and demographic parameters from multilocus, genotypic data. To date, the primary application of molecular epidemiology has been to provide specific and sensitive identification of parasites and to resolve taxonomic issues, particularly at the species level and below. Population genetic studies have also been used to determine the extent of genetic diversity among populations of parasites and the degree to which this diversity is associated with different host cycles or epidemiologically important phenotypes. Many of these studies have also shed new light on transmission cycles of parasites, particularly the extent to which zoonotic transmission occurs, and on the prevalence and importance of mixed infections with different parasite species or intraspecific variants (polyparasitism). A major challenge, and one which is now being addressed by an increasing number of studies, is to find and utilize genetic markers for complex traits of epidemiological significance, such as drug resistance, zoonotic potential and virulence.
Collapse
Affiliation(s)
- A J Lymbery
- Fish Health Unit, School of Veterinary and Biomedical Sciences, Murdoch University, Murdoch WA 6150, Australia.
| | | |
Collapse
|
220
|
Subbarao SK. Centenary celebrations article: Plasmodium knowlesi: from macaque monkeys to humans in South-east Asia and the risk of its spread in India. J Parasit Dis 2011; 35:87-93. [PMID: 23024487 PMCID: PMC3235381 DOI: 10.1007/s12639-011-0085-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 11/09/2011] [Indexed: 10/15/2022] Open
Abstract
The identification of a large focus of Plasmodium knowlesi in Malaysian Borneo and subsequent reports from several countries in South-east Asia has led its recognition as the fifth human malaria parasite. The natural preferred hosts of this species still continue to be macaque monkeys that live in broad-leaf rain forests. This review describes the distribution of macaque monkeys, the Anopheles species belonging to the Leucosphyrus Group that have been incriminated as vectors, morphological and clinical features of this parasite, and the transmission cycles that have been identified for this parasite. As the North-eastern states of India share their borders with P. knowlesi malaria endemic countries and because travelers from countries in South-east Asia visit India and vice versa, risks of this parasite entering India and its spread are also discussed.
Collapse
Affiliation(s)
- Sarala K. Subbarao
- Division of Epidemiology and Communicable Diseases, Indian Council of Medical Research, New Delhi, India
| |
Collapse
|
221
|
|
222
|
Engel GA, Jones-Engel L. Primates and primatologists: social contexts for interspecies pathogen transmission. Am J Primatol 2011; 74:543-50. [PMID: 21932331 DOI: 10.1002/ajp.20988] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 07/25/2011] [Accepted: 07/26/2011] [Indexed: 11/09/2022]
Abstract
Humans and nonhuman primates (NHP) interact in a variety of contexts. The frequency, duration, and intensity of interspecies interaction influence the likelihood that contact results in cross-species transmission of infectious agents. In this study, we present results of a cross-sectional survey of attendees at a national conference of primatologists, characterizing their occupational exposures to NHP. Of 116 individuals who participated in the study, 68.1% reported having worked with NHP in a field setting, 68.1% in a laboratory setting, and 24.1% at a zoo or animal sanctuary. Most subjects (N=98, 84.5%) reported having worked with multiple NHP taxa, including 46 (39.7%) who had worked with more than five distinct taxa. Sixty-nine subjects (59.5%) recalled having been scratched by a NHP and 48 (41.1%) had been bitten; 32 subjects reporting being bitten more than once. Eleven subjects (9.5%) reported having been injured by a needle containing NHP tissue or body fluids. We conclude that primatologists are at high risk for exposure to NHP-borne infectious agents. Furthermore, primatologists' varied occupational activities often bring them into contact with multiple NHP species in diverse contexts and geographic areas, over extended periods of time, making them a unique population with respect to zoonotic and anthropozoonotic disease risk.
Collapse
Affiliation(s)
- G A Engel
- Swedish/Cherry Hill Family Medicine, Seattle, Washington 98195, USA
| | | |
Collapse
|
223
|
Demogines A, Truong KA, Sawyer SL. Species-specific features of DARC, the primate receptor for Plasmodium vivax and Plasmodium knowlesi. Mol Biol Evol 2011; 29:445-9. [PMID: 21878684 DOI: 10.1093/molbev/msr204] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The DARC (Duffy antigen/receptor for chemokines) gene, also called Duffy or FY, encodes a membrane-bound chemokine receptor. Two malaria parasites, Plasmodium vivax and Plasmodium knowlesi, use DARC to trigger internalization into red blood cells. Although much has been reported on the evolution of DARC null alleles, little is known about the evolution of the coding portion of this gene or the role that protein sequence divergence in this receptor may play in disease susceptibility or zoonosis. Here, we show that the Plasmodium interaction domain of DARC is nearly invariant in the human population, suggesting that coding polymorphism there is unlikely to play a role in differential susceptibility to infection. However, an analysis of DARC orthologs from 35 simian primate species reveals high levels of sequence divergence in the Plasmodium interaction domain. Signatures of positive selection in this domain indicate that species-specific mutations in the protein sequence of DARC could serve as barriers to the transmission of Plasmodium between primate species.
Collapse
Affiliation(s)
- Ann Demogines
- Section of Molecular Genetics and Microbiology, Institute for Cellular and Molecular Biology, The University of Texas at Austin.
| | | | | |
Collapse
|