201
|
Abstract
The Picornaviridae are a diverse family of RNA viruses including many pathogens of medical and veterinary importance. Classically considered "nonenveloped," recent studies show that some picornaviruses, notably hepatitis A virus (HAV; genus Hepatovirus) and some members of the Enterovirus genus, are released from cells nonlytically in membranous vesicles. To better understand the biogenesis of quasi-enveloped HAV (eHAV) virions, we conducted a quantitative proteomics analysis of eHAV purified from cell-culture supernatant fluids by isopycnic ultracentrifugation. Amino acid-coded mass tagging (AACT) with stable isotopes followed by tandem mass spectrometry sequencing and AACT quantitation of peptides provided unambiguous identification of proteins associated with eHAV versus unrelated extracellular vesicles with similar buoyant density. Multiple peptides were identified from HAV capsid proteins (53.7% coverage), but none from nonstructural proteins, indicating capsids are packaged as cargo into eHAV vesicles via a highly specific sorting process. Other eHAV-associated proteins (n = 105) were significantly enriched for components of the endolysosomal system (>60%, P < 0.001) and included many common exosome-associated proteins such as the tetraspanin CD9 and dipeptidyl peptidase 4 (DPP4) along with multiple endosomal sorting complex required for transport III (ESCRT-III)-associated proteins. Immunoprecipitation confirmed that DPP4 is displayed on the surface of eHAV produced in cell culture or present in sera from humans with acute hepatitis A. No LC3-related peptides were identified by mass spectrometry. RNAi depletion studies confirmed that ESCRT-III proteins, particularly CHMP2A, function in eHAV biogenesis. In addition to identifying surface markers of eHAV vesicles, the results support an exosome-like mechanism of eHAV egress involving endosomal budding of HAV capsids into multivesicular bodies.
Collapse
|
202
|
Aguilera ER, Erickson AK, Jesudhasan PR, Robinson CM, Pfeiffer JK. Plaques Formed by Mutagenized Viral Populations Have Elevated Coinfection Frequencies. mBio 2017; 8:e02020-16. [PMID: 28292984 PMCID: PMC5350468 DOI: 10.1128/mbio.02020-16] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 02/14/2017] [Indexed: 02/05/2023] Open
Abstract
The plaque assay is a common technique used to measure virus concentrations and is based upon the principle that each plaque represents a single infectious unit. As such, the number of plaques is expected to correlate linearly with the virus dilution plated, and each plaque should be formed by a single founder virus. Here, we examined whether more than one virus can contribute to plaque formation. By using genetic and phenotypic assays with genetically marked polioviruses, we found that multiple parental viruses are present in 5 to 7% of plaques, even at an extremely low multiplicity of infection. We demonstrated through visual and biophysical assays that, like many viral stocks, our viral stocks contain both single particles and aggregates. These data suggest that aggregated virions are capable of inducing coinfection and chimeric plaque formation. In fact, inducing virion aggregation via exposure to low pH increased coinfection in a flow cytometry-based assay. We hypothesized that plaques generated by viruses with high mutation loads may have higher coinfection frequencies due to processes restoring fitness, such as complementation and recombination. Indeed, we found that coinfection frequency correlated with mutation load, with 17% chimeric plaque formation for heavily mutagenized viruses. Importantly, the frequency of chimeric plaques may be underestimated by up to threefold, since coinfection with the same parental virus cannot be scored in our assay. This work indicates that more than one virus can contribute to plaque formation and that coinfection may assist plaque formation in situations where the amount of genome damage is high.IMPORTANCE One of the most common methods to quantify viruses is the plaque assay, where it is generally presumed that each plaque represents a single infectious virus. Using genetically marked polioviruses, we demonstrate that a plaque can contain more than one parental virus, likely due to aggregates within virus stocks that induce coinfection of a cell. A relatively small number of plaques are the products of coinfection for our standard virus stocks. However, mutagenized virus stocks with increased genome damage give rise to a higher amount of plaques that are chimeric. These results suggest that coinfection may aid plaque formation of viruses with genome damage, possibly due to processes such as complementation and recombination. Overall, our results suggest that the relationship between viral dilution and plaque number may not be linear, particularly for mutagenized viral populations.
Collapse
Affiliation(s)
- Elizabeth R Aguilera
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Andrea K Erickson
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Palmy R Jesudhasan
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Christopher M Robinson
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Julie K Pfeiffer
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
203
|
Wang CY, Xu ZB, Wang JP, Jiao Y, Zhang B. Rb deficiency accelerates progression of carcinoma of the urinary bladder in vivo and in vitro through inhibiting autophagy and apoptosis. Int J Oncol 2017; 50:1221-1232. [PMID: 28259945 DOI: 10.3892/ijo.2017.3889] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 01/24/2017] [Indexed: 11/06/2022] Open
Abstract
Urinary bladder cancer is known as a common cancer diagnosed across the world and results in significant mortality and morbidity rates among patients. The retinoblastoma (Rb) protein, as a main tumor suppressor, controls cellular responses to potentially oncogenic stimulation. Rb phosphorylation could disrupt E2F complex formation, resulting in diverse transcription factor dysfunction. In our study, we investigated how Rb is involved in controlling urinary bladder cancer progression. The results indicate that Rb expression is reduced in mice with urinary bladder tumor, and its suppression leads to urinary bladder cancer progression in vivo and in vitro. Rb mutation directly results in tumor size with lower survival rate in vivo. Rb knockdown in vitro promoted bladder tumor cell proliferation, migration and invasion. Interestingly, Rb knockout and knockdown result in autophagy and apoptosis inhibition via suppressing p53 and caspase-3 signaling pathways, enhancing bladder cancer development in vitro and in vivo. These findings reveal that Rb deficiency accelerated urinary bladder cancer progression, exposing an important role of Rb in suppressing urinary bladder cancer for treatment in the future.
Collapse
Affiliation(s)
- Cheng-Yuan Wang
- Department of Urology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Zhi-Bin Xu
- Department of Urology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Jiang-Ping Wang
- Department of Urology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Yong Jiao
- Department of Urology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Bo Zhang
- Department of Urology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| |
Collapse
|
204
|
Altan-Bonnet N. Lipid Tales of Viral Replication and Transmission. Trends Cell Biol 2017; 27:201-213. [PMID: 27838086 PMCID: PMC5318230 DOI: 10.1016/j.tcb.2016.09.011] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Revised: 09/26/2016] [Accepted: 09/29/2016] [Indexed: 12/22/2022]
Abstract
Positive-strand RNA viruses are the largest group of RNA viruses on Earth and cellular membranes are critical for all aspects of their life cycle, from entry and replication to exit. In particular, membranes serve as platforms for replication and as carriers to transmit these viruses to other cells, the latter either as an envelope surrounding a single virus or as the vesicle containing a population of viruses. Notably, many animal and human viruses appear to induce and exploit phosphatidylinositol 4-phosphate/cholesterol-enriched membranes for replication, whereas many plant and insect-vectored animal viruses utilize phosphatidylethanolamine/cholesterol-enriched membranes for the same purpose; and phosphatidylserine-enriched membrane carriers are widely used by both single and populations of viruses for transmission. Here I discuss the implications for viral pathogenesis and therapeutic development of this remarkable convergence on specific membrane lipid blueprints for replication and transmission.
Collapse
Affiliation(s)
- Nihal Altan-Bonnet
- Laboratory of Host-Pathogen Dynamics, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
205
|
Abstract
The discovery of the molecular machinery of autophagy, namely Atg proteins, was awarded with the Nobel prize in physiology and medicine to Yoshinori Ohsumi in 2016. While this machinery was originally identified by its ability to allow cells to survive starvation via lysosomal degradation to recycle cellular components, it has recently become apparent that it also is used by cells to secrete cytoplasmic constituents. Furthermore, viruses have learned to use this Atg supported exocytosis to exit cells, acquire envelopes in the cytosol and select lipids into their surrounding membranes that might allow for increased robustness of their virions and altered infection behavior. Along these lines, picornaviruses exit infected cells in packages wrapped into autophagic membranes, herpesviruses recruit autophagic membranes into their envelopes and para- as well as orthomyxoviruses redirect autophagic membranes to the cell membrane, which increases the robustness of their envelope that they acquire at this site. These recent findings open a new exciting field on the regulation of degradation vs. release of autophagic membranes and will be discussed in this minireview.
Collapse
Affiliation(s)
- Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zurich Zurich, Switzerland
| |
Collapse
|
206
|
|
207
|
Mauthe M, Reggiori F. Using microbes as a key tool to unravel the mechanism of autophagy and the functions of the ATG proteins. MICROBIAL CELL 2016; 4:1-5. [PMID: 28357383 PMCID: PMC5354549 DOI: 10.15698/mic2017.01.550] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The study of microbe infections has always been a very effective approach to unveil and dissect cellular pathways. Autophagy is not an exception. Although some of the breakthrough discoveries in the field were obtained using yeast, pathogens have been and still are a great tool to discover and characterize new molecular and functional aspects of autophagy. Research on pathogens has helped to acquire knowledge about selective types of autophagy and the assembly of the autophagy machinery, i.e the autophagy-related (ATG) proteins, but also about alternative cellular roles of this pathway, such as secretion. Finally, microbes have also served to discover and characterize unconventional functions of the ATG proteins, which are uncoupled from their role in autophagy. In our recent study, we have taken advantage of viruses as a screening tool to determine the extent of the unconventional functions of the ATG proteome and characterize one of them.
Collapse
Affiliation(s)
- Mario Mauthe
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands. ; Department of Cell Biology, University Medical Center Utrecht, Center for Molecular Medicine, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Fulvio Reggiori
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands. ; Department of Cell Biology, University Medical Center Utrecht, Center for Molecular Medicine, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
208
|
Münz C. The Macroautophagy Machinery in Endo- and Exocytosis. J Mol Biol 2016; 429:473-485. [PMID: 27932293 DOI: 10.1016/j.jmb.2016.11.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 11/28/2016] [Accepted: 11/29/2016] [Indexed: 12/30/2022]
Abstract
Macroautophagy and the autophagy-related gene (Atg) machinery execute during their canonical function cytoplasmic constituent degradation in lysosomes. This canonical function contributes to pathogen restriction and intracellular antigen presentation on major histocompatibility complex (MHC) class II molecules to CD4+ T cells. However, in the recent years, it has become clear that the Atg machinery is also used for other membrane transport functions, including endocytosis and exocytosis. This review describes these non-canonical functions in the context of antigen presentation on MHC class I and II molecules to CD8+ and CD4+ T cells, respectively, and during viral replication. Future studies will need to address how the Atg machinery is modified for these non-canonical functions, gets recruited to the respective sites of membrane modification, and recruits alternative Atg interactors to execute endo- and exocytosis instead of macroautophagy.
Collapse
Affiliation(s)
- Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, CH-8057, Switzerland.
| |
Collapse
|
209
|
Too IHK, Yeo H, Sessions OM, Yan B, Libau EA, Howe JLC, Lim ZQ, Suku-Maran S, Ong WY, Chua KB, Wong BS, Chow VTK, Alonso S. Enterovirus 71 infection of motor neuron-like NSC-34 cells undergoes a non-lytic exit pathway. Sci Rep 2016; 6:36983. [PMID: 27849036 PMCID: PMC5111112 DOI: 10.1038/srep36983] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 10/20/2016] [Indexed: 01/08/2023] Open
Abstract
Enterovirus 71 (EV71) causing Hand, Foot and Mouth Disease, is regarded as the most important neurotropic virus worldwide. EV71 is believed to replicate in muscles and infect motor neurons to reach the central nervous system (CNS). To further investigate the mechanisms involved, we have employed the motor neuron cell line NSC-34. NSC-34 cells were permissive to EV71 and virus production yields were strain-dependent with differential efficacy at the entry, replication and egress steps. Furthermore, unlike all the other cell lines previously reported, EV71-infected NSC-34 cells neither displayed cytopathic effect nor underwent apoptosis. Instead, autophagy was markedly up-regulated and virus-containing autophagic vacuoles were isolated from the culture supernatant, providing the first experimental evidence that EV71 can adopt a non-lytic exit pathway. Finally, the ability of EV71 to infect productively NSC-34 cells correlated with its ability to invade the CNS in vivo, supporting the relevance of NSC-34 cells to study the intrinsic neurovirulence of EV71 strains.
Collapse
Affiliation(s)
- Issac Horng Khit Too
- Department of Microbiology &Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 117456, Singapore.,Immunology Programme, Life Sciences Institute, CeLS building, 28 Medical Drive, National University of Singapore, 117456, Singapore
| | - Huimin Yeo
- Department of Microbiology &Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 117456, Singapore.,Immunology Programme, Life Sciences Institute, CeLS building, 28 Medical Drive, National University of Singapore, 117456, Singapore
| | - October Michael Sessions
- Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, 8 College Road, 169857, Singapore
| | - Benedict Yan
- Department of Laboratory Medicine, 5 Lower Kent Ridge Road, National University Hospital, 119074, Singapore
| | - Eshele Anak Libau
- Department of Microbiology &Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 117456, Singapore.,Immunology Programme, Life Sciences Institute, CeLS building, 28 Medical Drive, National University of Singapore, 117456, Singapore
| | - Josephine L C Howe
- Department of Microbiology &Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 117456, Singapore
| | - Ze Qin Lim
- Department of Microbiology &Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 117456, Singapore.,Immunology Programme, Life Sciences Institute, CeLS building, 28 Medical Drive, National University of Singapore, 117456, Singapore
| | - Shalini Suku-Maran
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, 117456, Singapore.,Neurobiology and Ageing Programme, Life Sciences Institute, CeLS building, 28 Medical Drive, National University of Singapore, 117456, Singapore
| | - Wei-Yi Ong
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, 117456, Singapore.,Neurobiology and Ageing Programme, Life Sciences Institute, CeLS building, 28 Medical Drive, National University of Singapore, 117456, Singapore
| | - Kaw Bing Chua
- Temasek Life Sciences Laboratory, 5 A Engineering Drive 1, National University of Singapore, 117411, Singapore
| | - Boon Seng Wong
- Neurobiology and Ageing Programme, Life Sciences Institute, CeLS building, 28 Medical Drive, National University of Singapore, 117456, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, CeLS building, 28 Medical Drive, National University of Singapore, 117456, Singapore
| | - Vincent T K Chow
- Department of Microbiology &Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 117456, Singapore
| | - Sylvie Alonso
- Department of Microbiology &Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 117456, Singapore.,Immunology Programme, Life Sciences Institute, CeLS building, 28 Medical Drive, National University of Singapore, 117456, Singapore
| |
Collapse
|
210
|
The Transcriptome of Rhabdomyosarcoma Cells Infected with Cytolytic and Non-Cytolytic Variants of Coxsackievirus B2 Ohio-1. PLoS One 2016; 11:e0164548. [PMID: 27760161 PMCID: PMC5070843 DOI: 10.1371/journal.pone.0164548] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 09/07/2016] [Indexed: 11/19/2022] Open
Abstract
The transcriptomes of cells infected with lytic and non-lytic variants of coxsackievirus B2 Ohio-1 (CVB2O) were analyzed using next generation sequencing. This approach was selected with the purpose of elucidating the effects of lytic and non-lytic viruses on host cell transcription. Total RNA was extracted from infected cells and sequenced. The resulting reads were subsequently mapped against the human and CVB2O genomes. The amount of intracellular RNA was measured, indicating lower proportions of human RNA in the cells infected with the lytic virus compared to the non-lytic virus after 48 hours. This may be explained by reduced activity of the cellular transcription/translation machinery in lytic enteroviral replication due to activities of the enteroviral proteases 2A and/or 3C. Furthermore, differential expression in the cells infected with the two virus variants was identified and a number of transcripts were singled out as possible answers to the question of how the viruses interact with the host cells, resulting in lytic or non-lytic infections.
Collapse
|
211
|
Münz C. Autophagy Beyond Intracellular MHC Class II Antigen Presentation. Trends Immunol 2016; 37:755-763. [PMID: 27667710 DOI: 10.1016/j.it.2016.08.017] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 08/31/2016] [Accepted: 08/31/2016] [Indexed: 01/09/2023]
Abstract
Autophagy is a group of cellular pathways that deliver cytoplasmic constituents for lysosomal degradation. The peptides generated from these pathways can be presented by MHC II molecules, making autophagy an important source of antigens for CD4+ T cells. In addition, modules of the molecular machinery of autophagy were found in recent years to also influence extracellular antigen processing for MHC Class I and Class II presentation, as well as regulation of MHC Class I surface expression. These studies paint a more complicated picture of how regulation of individual autophagy proteins influences adaptive immunity. The respective pathways, especially in regard to their net outcome for CD4+ helper and CD8+ cytotoxic T cell responses in vivo, will be discussed in this review.
Collapse
Affiliation(s)
- Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland.
| |
Collapse
|
212
|
Zhai X, Bai B, Yu B, Wang T, Wang H, Wang Y, Li H, Tong L, Wang Y, Zhang F, Zhao W, Zhong Z. Coxsackievirus B3 Induces Autophagic Response in Cardiac Myocytes in vivo. BIOCHEMISTRY (MOSCOW) 2016; 80:1001-9. [PMID: 26547068 DOI: 10.1134/s0006297915080052] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Viral myocarditis is a common disease that contributes to dilated cardiomyopathy or heart failure. Coxsackievirus B (CVB) is one of the major causative pathogens of viral myocarditis. Previous studies have shown that autophagy is exploited to promote CVB replication in cell lines. To study whether cardiac myocytes respond to CVB infection in a similar way, viral myocarditis was established by the inoculation of 3-week-old BALB/c mice with CVB3. Electron microscopic observation showed that autophagosome-like vesicles were induced in the cardiac myocytes of mice infected by CVB3 at 3, 5, and 7 days after viral infection. The lipidated microtubule-associated protein 1 light chain 3 (LC3), LC3-II, was also significantly increased in both myocardium and the cardiac myocytes extracted from the ventricles of mice infected with CVB3. The increased LC3-II coincided with high level of viral RNA and proteins in both myocardium and isolated cardiac myocytes. Moreover, viral protein synthesis was significantly decreased in primary cardiac myocytes by the treatment with 3-methyladenine, an inhibitor of autophagy. The expression and the phosphorylation of extracellular signal regulated kinase (ERK) were also increased in both myocardium and in the isolated cardiac myocytes of the virus-infected mice, while the interplay of ERK with autophagic response remains to be studied. This study demonstrated that cardiac myocytes respond to CVB3 infection by increased formation of autophagosomes in vivo, which might be exploited for viral replication.
Collapse
Affiliation(s)
- Xia Zhai
- Department of Microbiology, Harbin Medical University, Harbin, 150086, China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
213
|
Schneider DJ, Speth JM, Peters-Golden M. Signed, Sealed, Delivered: Microenvironmental Modulation of Extracellular Vesicle-Dependent Immunoregulation in the Lung. Front Cell Dev Biol 2016; 4:94. [PMID: 27626032 PMCID: PMC5004409 DOI: 10.3389/fcell.2016.00094] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 08/18/2016] [Indexed: 12/26/2022] Open
Abstract
Unconventional secretion and subsequent uptake of molecular cargo via extracellular vesicles (EVs) is an important mechanism by which cells can exert paracrine effects. While this phenomenon has been widely characterized in the context of their ability to promote inflammation, less is known about the ability of EVs to transfer immunosuppressive cargo. Maintenance of normal physiology in the lung requires suppression of potentially damaging inflammatory responses to the myriad of insults to which it is continually exposed. Recently, our laboratory has reported the ability of alveolar macrophages (AMs) to secrete suppressors of cytokine signaling (SOCS) proteins within microvesicles (MVs) and exosomes (Exos). Uptake of these EVs by alveolar epithelial cells (AECs) resulted in inhibition of pro-inflammatory STAT activation in response to cytokines. Moreover, AM packaging of SOCS within EVs could be rapidly tuned in response to exogenous or AEC-derived substances. In this article we will highlight gaps in knowledge regarding microenvironmental modulation of cargo packaging and utilization as well as EV secretion and uptake. Advances in these areas are critical for improving understanding of intercellular communication in the immune system and for therapeutic application of artificial vesicles aimed at treatment of diseases characterized by dysregulated inflammation.
Collapse
Affiliation(s)
- Daniel J Schneider
- Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School USA
| | - Jennifer M Speth
- Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School USA
| | - Marc Peters-Golden
- Division of Pulmonary and Critical Care Medicine, University of Michigan Medical SchoolUSA; Graduate Program in Immunology, University of Michigan Medical SchoolUSA
| |
Collapse
|
214
|
Abstract
Viruses have developed a spectrum of ways to modify cellular pathways to hijack the cell machinery for the synthesis of their nucleic acid and proteins. Similarly, they use intracellular vesicular mechanisms of trafficking for their assembly and eventual release, with a number of viruses acquiring their envelope from internal or plasma cell membranes. There is an increasing number of reports on viral exploitation of cell secretome pathways to avoid recognition and stimulation of the immune response. Extracellular vesicles (EV) containing viral particles have been shown to shield viruses after exiting the host cell, in some cases challenging the boundaries between viral groups traditionally characterised as enveloped and non-enveloped. Apart from viral particles, EV can spread the virus also carrying viral genome and can modify the target cells through their cargo of virus-coded miRNAs and proteins as well as selectively packaged cellular mRNAs, miRNAs, proteins and lipids, differing in composition and quantities from the cell of origin.
Collapse
Affiliation(s)
- Juraj Petrik
- Scottish National Blood Transfusion Service and University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
215
|
Illuminating the Sites of Enterovirus Replication in Living Cells by Using a Split-GFP-Tagged Viral Protein. mSphere 2016; 1:mSphere00104-16. [PMID: 27390781 PMCID: PMC4935779 DOI: 10.1128/msphere.00104-16] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 06/02/2016] [Indexed: 12/13/2022] Open
Abstract
Enteroviruses induce the formation of membranous structures (replication organelles [ROs]) with a unique protein and lipid composition specialized for genome replication. Electron microscopy has revealed the morphology of enterovirus ROs, and immunofluorescence studies have been conducted to investigate their origin and formation. Yet, immunofluorescence analysis of fixed cells results in a rather static view of RO formation, and the results may be compromised by immunolabeling artifacts. While live-cell imaging of ROs would be preferred, enteroviruses encoding a membrane-anchored viral protein fused to a large fluorescent reporter have thus far not been described. Here, we tackled this constraint by introducing a small tag from a split-GFP system into an RO-resident enterovirus protein. This new tool bridges a methodological gap by circumventing the need for immunolabeling fixed cells and allows the study of the dynamics and formation of enterovirus ROs in living cells. Like all other positive-strand RNA viruses, enteroviruses generate new organelles (replication organelles [ROs]) with a unique protein and lipid composition on which they multiply their viral genome. Suitable tools for live-cell imaging of enterovirus ROs are currently unavailable, as recombinant enteroviruses that carry genes that encode RO-anchored viral proteins tagged with fluorescent reporters have not been reported thus far. To overcome this limitation, we used a split green fluorescent protein (split-GFP) system, comprising a large fragment [strands 1 to 10; GFP(S1-10)] and a small fragment [strand 11; GFP(S11)] of only 16 residues. The GFP(S11) (GFP with S11 fragment) fragment was inserted into the 3A protein of the enterovirus coxsackievirus B3 (CVB3), while the large fragment was supplied by transient or stable expression in cells. The introduction of GFP(S11) did not affect the known functions of 3A when expressed in isolation. Using correlative light electron microscopy (CLEM), we showed that GFP fluorescence was detected at ROs, whose morphologies are essentially identical to those previously observed for wild-type CVB3, indicating that GFP(S11)-tagged 3A proteins assemble with GFP(S1-10) to form GFP for illumination of bona fide ROs. It is well established that enterovirus infection leads to Golgi disintegration. Through live-cell imaging of infected cells expressing an mCherry-tagged Golgi marker, we monitored RO development and revealed the dynamics of Golgi disassembly in real time. Having demonstrated the suitability of this virus for imaging ROs, we constructed a CVB3 encoding GFP(S1-10) and GFP(S11)-tagged 3A to bypass the need to express GFP(S1-10) prior to infection. These tools will have multiple applications in future studies on the origin, location, and function of enterovirus ROs. IMPORTANCE Enteroviruses induce the formation of membranous structures (replication organelles [ROs]) with a unique protein and lipid composition specialized for genome replication. Electron microscopy has revealed the morphology of enterovirus ROs, and immunofluorescence studies have been conducted to investigate their origin and formation. Yet, immunofluorescence analysis of fixed cells results in a rather static view of RO formation, and the results may be compromised by immunolabeling artifacts. While live-cell imaging of ROs would be preferred, enteroviruses encoding a membrane-anchored viral protein fused to a large fluorescent reporter have thus far not been described. Here, we tackled this constraint by introducing a small tag from a split-GFP system into an RO-resident enterovirus protein. This new tool bridges a methodological gap by circumventing the need for immunolabeling fixed cells and allows the study of the dynamics and formation of enterovirus ROs in living cells.
Collapse
|
216
|
Abstract
Autophagy describes catabolic pathways that deliver cytoplasmic constituents for lysosomal degradation. Since major histocompatibility complex (MHC) molecules sample protein degradation products and present them to T cells for adaptive immunity, it is maybe not too surprising that autophagy contributes to this protein antigen processing for MHC presentation. However, the recently recognized breath of pathways, by which autophagy contributes to MHC antigen processing, is exciting. Macroautophagy does not only seem to deliver intracellular but facilitates also extracellular antigen processing by lysosomal hydrolysis for MHC class II presentation. Moreover, even MHC class I molecules that usually display proteasomal products are regulated by macroautophagy, probably using a pool of these molecules outside the endoplasmic reticulum, where MHC class I molecules are loaded with peptide during canonical MHC class I antigen processing. This review aims to summarize these recent developments and point out gaps of knowledge, which should be filled by further investigation, in order to harness the different antigen-processing pathways via autophagy for vaccine improvement.
Collapse
Affiliation(s)
- Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
217
|
Ravindran MS, Bagchi P, Cunningham CN, Tsai B. Opportunistic intruders: how viruses orchestrate ER functions to infect cells. Nat Rev Microbiol 2016; 14:407-420. [PMID: 27265768 PMCID: PMC5272919 DOI: 10.1038/nrmicro.2016.60] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Viruses exploit the functions of the endoplasmic reticulum (ER) to promote both early and later stages of their life cycle, including entry, translation, replication, assembly, morphogenesis and egress. This observation reveals a shared principle that underlies virus–host cell relationships. Viral entry often requires disassembly of the incoming virus particle. This is best exemplified in the case of polyomavirus entry, in which ER-associated machineries are hijacked to disassemble the virus and promote entry to the cytosol en route to the nucleus. Many enveloped viruses, such as HIV and influenza virus, co-opt the ER-associated protein biosynthetic machinery to translate their genome and produce structural proteins that are necessary for the formation of virus particles and non-structural proteins that are essential during genome replication. Replication of the viral genome, particularly for positive-sense RNA ((+)RNA) viruses including hepatitis C virus (HCV), dengue virus (DENV) and West Nile virus (WNV), occurs in virus-induced membranous structures that are most often derived from the ER. The formation of these structures requires morphological changes to the ER membrane, involving membrane rearrangements that are induced by viral non-structural proteins that are targeted to the ER. As virus assembly is often coupled to genome replication, the assembly process frequently relies on the ER membrane. This strategy is seen for both RNA and DNA viruses. Morphogenesis of assembled virus particles can also take advantage of the ER. This is best observed in the non-enveloped rotavirus, for which a transient enveloped intermediate is converted to the mature and infectious particle in the lumen of the ER. After maturation in the ER, progeny virus particles egress the host through the ER-dependent secretory pathway, which provides a physical conduit to the extracellular environment. The overall observations that the ER actively promotes all steps of viral infection have therapeutic implications. The development of chemical inhibitors of selective ER-associated components is emerging as a potential avenue of antiviral therapy, provided that these inhibitors have minimal toxicity to the host cell.
Many host structures are vital for viral infection and the endoplasmic reticulum (ER), in particular, is essential. In this Review, Tsai and colleagues highlight examples of subversion of the ER by diverse viruses to promote all stages of their life cycle, from entry to egress. Viruses subvert the functions of their host cells to replicate and form new viral progeny. The endoplasmic reticulum (ER) has been identified as a central organelle that governs the intracellular interplay between viruses and hosts. In this Review, we analyse how viruses from vastly different families converge on this unique intracellular organelle during infection, co-opting some of the endogenous functions of the ER to promote distinct steps of the viral life cycle from entry and replication to assembly and egress. The ER can act as the common denominator during infection for diverse virus families, thereby providing a shared principle that underlies the apparent complexity of relationships between viruses and host cells. As a plethora of information illuminating the molecular and cellular basis of virus–ER interactions has become available, these insights may lead to the development of crucial therapeutic agents.
Collapse
Affiliation(s)
- Madhu Sudhan Ravindran
- Department of Cell and Developmental Biology, University of Michigan Medical School, 109 Zina Pitcher Place, Room 3043, Ann Arbor, Michigan 48109, USA
| | - Parikshit Bagchi
- Department of Cell and Developmental Biology, University of Michigan Medical School, 109 Zina Pitcher Place, Room 3043, Ann Arbor, Michigan 48109, USA
| | - Corey Nathaniel Cunningham
- Department of Cell and Developmental Biology, University of Michigan Medical School, 109 Zina Pitcher Place, Room 3043, Ann Arbor, Michigan 48109, USA
| | - Billy Tsai
- Department of Cell and Developmental Biology, University of Michigan Medical School, 109 Zina Pitcher Place, Room 3043, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
218
|
van Dongen HM, Masoumi N, Witwer KW, Pegtel DM. Extracellular Vesicles Exploit Viral Entry Routes for Cargo Delivery. Microbiol Mol Biol Rev 2016; 80:369-86. [PMID: 26935137 PMCID: PMC4867369 DOI: 10.1128/mmbr.00063-15] [Citation(s) in RCA: 207] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Extracellular vesicles (EVs) have emerged as crucial mediators of intercellular communication, being involved in a wide array of key biological processes. Eukaryotic cells, and also bacteria, actively release heterogeneous subtypes of EVs into the extracellular space, where their contents reflect their (sub)cellular origin and the physiologic state of the parent cell. Within the past 20 years, presumed subtypes of EVs have been given a rather confusing diversity of names, including exosomes, microvesicles, ectosomes, microparticles, virosomes, virus-like particles, and oncosomes, and these names are variously defined by biogenesis, physical characteristics, or function. The latter category, functions, in particular the transmission of biological signals between cells in vivo and how EVs control biological processes, has garnered much interest. EVs have pathophysiological properties in cancer, neurodegenerative disorders, infectious disease, and cardiovascular disease, highlighting possibilities not only for minimally invasive diagnostic applications but also for therapeutic interventions, like macromolecular drug delivery. Yet, in order to pursue therapies involving EVs and delivering their cargo, a better grasp of EV targeting is needed. Here, we review recent progress in understanding the molecular mechanisms underpinning EV uptake by receptor-ligand interactions with recipient cells, highlighting once again the overlap of EVs and viruses. Despite their highly heterogeneous nature, EVs require common viral entry pathways, and an unanticipated specificity for cargo delivery is being revealed. We discuss the challenges ahead in delineating specific roles for EV-associated ligands and cellular receptors.
Collapse
Affiliation(s)
- Helena M van Dongen
- Department of Pathology, Exosomes Research Group, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Niala Masoumi
- Department of Pathology, Exosomes Research Group, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Kenneth W Witwer
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - D Michiel Pegtel
- Department of Pathology, Exosomes Research Group, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
219
|
Altan-Bonnet N. Extracellular vesicles are the Trojan horses of viral infection. Curr Opin Microbiol 2016; 32:77-81. [PMID: 27232382 DOI: 10.1016/j.mib.2016.05.004] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 05/03/2016] [Indexed: 02/06/2023]
Abstract
Extracellular vesicles have recently emerged as a novel mode of viral propagation exploited by both enveloped and non-enveloped viruses. In particular non-enveloped viruses utilize the hosts' production of extracellular vesicles to exit from cells non-lytically and to hide and manipulate the immune system. Moreover, challenging the long held idea that viruses behave as independent genetic units, extracellular vesicles enable multiple viral particles and genomes to collectively traffic in and out of cells, which can promote genetic cooperativity among viral quasispecies and enhance the fitness of the overall viral population.
Collapse
Affiliation(s)
- Nihal Altan-Bonnet
- Laboratory of Host-Pathogen Dynamics, Cell Biology and Physiology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
220
|
Laitinen OH, Svedin E, Kapell S, Nurminen A, Hytönen VP, Flodström-Tullberg M. Enteroviral proteases: structure, host interactions and pathogenicity. Rev Med Virol 2016; 26:251-67. [PMID: 27145174 PMCID: PMC7169145 DOI: 10.1002/rmv.1883] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 03/22/2016] [Accepted: 03/23/2016] [Indexed: 12/22/2022]
Abstract
Enteroviruses are common human pathogens, and infections are particularly frequent in children. Severe infections can lead to a variety of diseases, including poliomyelitis, aseptic meningitis, myocarditis and neonatal sepsis. Enterovirus infections have also been implicated in asthmatic exacerbations and type 1 diabetes. The large disease spectrum of the closely related enteroviruses may be partially, but not fully, explained by differences in tissue tropism. The molecular mechanisms by which enteroviruses cause disease are poorly understood, but there is increasing evidence that the two enteroviral proteases, 2Apro and 3Cpro, are important mediators of pathology. These proteases perform the post‐translational proteolytic processing of the viral polyprotein, but they also cleave several host‐cell proteins in order to promote the production of new virus particles, as well as to evade the cellular antiviral immune responses. Enterovirus‐associated processing of cellular proteins may also contribute to pathology, as elegantly demonstrated by the 2Apro‐mediated cleavage of dystrophin in cardiomyocytes contributing to Coxsackievirus‐induced cardiomyopathy. It is likely that improved tools to identify targets for these proteases will reveal additional host protein substrates that can be linked to specific enterovirus‐associated diseases. Here, we discuss the function of the enteroviral proteases in the virus replication cycle and review the current knowledge regarding how these proteases modulate the infected cell in order to favour virus replication, including ways to avoid detection by the immune system. We also highlight new possibilities for the identification of protease‐specific cellular targets and thereby a way to discover novel mechanisms contributing to disease. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Olli H Laitinen
- BioMediTech, Finland and Fimlab Laboratories, University of Tampere, Tampere, Finland
| | - Emma Svedin
- The Center for Infectious Medicine, Department of Medicine HS, Karolinska Institutet, Stockholm, Sweden
| | - Sebastian Kapell
- The Center for Infectious Medicine, Department of Medicine HS, Karolinska Institutet, Stockholm, Sweden
| | - Anssi Nurminen
- BioMediTech, Finland and Fimlab Laboratories, University of Tampere, Tampere, Finland
| | - Vesa P Hytönen
- BioMediTech, Finland and Fimlab Laboratories, University of Tampere, Tampere, Finland
| | - Malin Flodström-Tullberg
- BioMediTech, Finland and Fimlab Laboratories, University of Tampere, Tampere, Finland.,The Center for Infectious Medicine, Department of Medicine HS, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
221
|
Fat(al) attraction: Picornaviruses Usurp Lipid Transfer at Membrane Contact Sites to Create Replication Organelles. Trends Microbiol 2016; 24:535-546. [PMID: 27020598 PMCID: PMC7126954 DOI: 10.1016/j.tim.2016.02.017] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 02/23/2016] [Accepted: 02/25/2016] [Indexed: 12/23/2022]
Abstract
All viruses that carry a positive-sense RNA genome (+RNA), such as picornaviruses, hepatitis C virus, dengue virus, and SARS- and MERS-coronavirus, confiscate intracellular membranes of the host cell to generate new compartments (i.e., replication organelles) for amplification of their genome. Replication organelles (ROs) are membranous structures that not only harbor viral proteins but also contain a specific array of hijacked host factors that create a unique lipid microenvironment optimal for genome replication. While some lipids may be locally synthesized de novo, other lipids are shuttled towards ROs. In picornavirus-infected cells, lipids are exchanged at membrane contact sites between ROs and other organelles. In this paper, we review recent advances in our understanding of how picornaviruses exploit host membrane contact site machinery to generate ROs, a mechanism that is used by some other +RNA viruses as well. Picornaviruses create replication organelles with a unique protein and lipid composition to amplify their genome. Picornaviruses hijack membrane contact site machinery to shuttle lipids to their replication organelles. Picornaviruses from different genera employ a cholesterol/PI4P counterflux mechanism to accumulate cholesterol at replication organelles.
Collapse
|
222
|
Paul P, Münz C. Autophagy and Mammalian Viruses: Roles in Immune Response, Viral Replication, and Beyond. Adv Virus Res 2016; 95:149-95. [PMID: 27112282 DOI: 10.1016/bs.aivir.2016.02.002] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Autophagy is an important cellular catabolic process conserved from yeast to man. Double-membrane vesicles deliver their cargo to the lysosome for degradation. Hence, autophagy is one of the key mechanisms mammalian cells deploy to rid themselves of intracellular pathogens including viruses. However, autophagy serves many more functions during viral infection. First, it regulates the immune response through selective degradation of immune components, thus preventing possibly harmful overactivation and inflammation. Additionally, it delivers virus-derived antigens to antigen-loading compartments for presentation to T lymphocytes. Second, it might take an active part in the viral life cycle by, eg, facilitating its release from cells. Lastly, in the constant arms race between host and virus, autophagy is often hijacked by viruses and manipulated to their own advantage. In this review, we will highlight key steps during viral infection in which autophagy plays a role. We have selected some exemplary viruses and will describe the molecular mechanisms behind their intricate relationship with the autophagic machinery, a result of host-pathogen coevolution.
Collapse
Affiliation(s)
- P Paul
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - C Münz
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
223
|
Mao L, Wu J, Shen L, Yang J, Chen J, Xu H. Enterovirus 71 transmission by exosomes establishes a productive infection in human neuroblastoma cells. Virus Genes 2016; 52:189-94. [PMID: 26837894 DOI: 10.1007/s11262-016-1292-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 01/11/2016] [Indexed: 01/10/2023]
Abstract
Exosomes are small secreted cellular vesicles for intercellular communications which contain proteins, mRNAs, and microRNAs (miRNAs). Recent studies have shown that exosomes play an important role in the transmission of infectious agents including hepatitis C virus, human immunodeficiency virus, and so on. However, the role of exosomes in the transfer of enterovirus 71 (EV71) between host cells remains unknown. In this study, we show that the exosomes derived from EV71-infected rhabdomyosarcoma cells contain EV71 RNA and capsid protein VP1, determined by quantitative reverse transcription-PCR (QRT-PCR) and Western blot analysis. The shedding of exosomes containing virus can establish a productive infection in human neuroblastoma cell line (SK-N-SH). A comparative analysis of neutralization by EV71-specific immunoglobulins showed different levels of neutralization of exosomes-mediated infection compared with free virus. In conclusion, exosomes from EV71-infected cells may play an important role in virus dissemination and are partially resisted to antibody neutralization. Our results suggest that there is an exosomal route of EV71 transmission infection.
Collapse
Affiliation(s)
- Lingxiang Mao
- Department of Clinical Laboratory, Affiliated People's Hospital, Jiangsu University, Zhenjiang, 212002, China. .,School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Jing Wu
- School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Li Shen
- Department of Clinical Laboratory, Zhenjiang Center for Disease Control and Prevention, Zhenjiang, 212001, China
| | - Jing Yang
- Department of Clinical Laboratory, Zhenjiang Center for Disease Control and Prevention, Zhenjiang, 212001, China
| | - Jianguo Chen
- Department of Clinical Laboratory, Affiliated People's Hospital, Jiangsu University, Zhenjiang, 212002, China
| | - Huaxi Xu
- School of Medicine, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
224
|
Lai JKF, Sam IC, Chan YF. The Autophagic Machinery in Enterovirus Infection. Viruses 2016; 8:v8020032. [PMID: 26828514 PMCID: PMC4776187 DOI: 10.3390/v8020032] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 01/13/2016] [Accepted: 01/19/2016] [Indexed: 02/07/2023] Open
Abstract
The Enterovirus genus of the Picornaviridae family comprises many important human pathogens, including polioviruses, rhinovirus, enterovirus A71, and enterovirus D68. They cause a wide variety of diseases, ranging from mild to severe life-threatening diseases. Currently, no effective vaccine is available against enteroviruses except for poliovirus. Enteroviruses subvert the autophagic machinery to benefit their assembly, maturation, and exit from host. Some enteroviruses spread between cells via a process described as autophagosome-mediated exit without lysis (AWOL). The early and late phases of autophagy are regulated through various lipids and their metabolizing enzymes. Some of these lipids and enzymes are specifically regulated by enteroviruses. In the present review, we summarize the current understanding of the regulation of autophagic machinery by enteroviruses, and provide updates on recent developments in this field.
Collapse
Affiliation(s)
- Jeffrey K F Lai
- Department of Medical Microbiology, Faculty of Medicine, University Malaya, 50603 Kuala Lumpur, Malaysia.
| | - I-Ching Sam
- Department of Medical Microbiology, Faculty of Medicine, University Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Yoke Fun Chan
- Department of Medical Microbiology, Faculty of Medicine, University Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
225
|
A Three-Dimensional Cell Culture Model To Study Enterovirus Infection of Polarized Intestinal Epithelial Cells. mSphere 2015; 1:mSphere00030-15. [PMID: 27303677 PMCID: PMC4863623 DOI: 10.1128/msphere.00030-15] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 10/26/2015] [Indexed: 11/20/2022] Open
Abstract
Despite serving as the primary entry portal for coxsackievirus B (CVB), little is known about CVB infection of the intestinal epithelium, owing at least in part to the lack of suitable in vivo models and the inability of cultured cells to recapitulate the complexity and structure associated with the gastrointestinal (GI) tract. Here, we report on the development of a three-dimensional (3-D) organotypic cell culture model of Caco-2 cells to model CVB infection of the gastrointestinal epithelium. We show that Caco-2 cells grown in 3-D using the rotating wall vessel (RWV) bioreactor recapitulate many of the properties of the intestinal epithelium, including the formation of well-developed tight junctions, apical-basolateral polarity, brush borders, and multicellular complexity. In addition, transcriptome analyses using transcriptome sequencing (RNA-Seq) revealed the induction of a number of genes associated with intestinal epithelial differentiation and/or intestinal processes in vivo when Caco-2 cells were cultured in 3-D. Applying this model to CVB infection, we found that although the levels of intracellular virus production were similar in two-dimensional (2-D) and 3-D Caco-2 cell cultures, the release of infectious CVB was enhanced in 3-D cultures at early stages of infection. Unlike CVB, the replication of poliovirus (PV) was significantly reduced in 3-D Caco-2 cell cultures. Collectively, our studies show that Caco-2 cells grown in 3-D using the RWV bioreactor provide a cell culture model that structurally and transcriptionally represents key aspects of cells in the human GI tract and can thus be used to expand our understanding of enterovirus-host interactions in intestinal epithelial cells. IMPORTANCE Coxsackievirus B (CVB), a member of the enterovirus family of RNA viruses, is associated with meningitis, pericarditis, diabetes, dilated cardiomyopathy, and myocarditis, among other pathologies. CVB is transmitted via the fecal-oral route and encounters the epithelium lining the gastrointestinal tract early in infection. The lack of suitable in vivo and in vitro models to study CVB infection of the gastrointestinal epithelium has limited our understanding of the events that surround infection of these specialized cells. Here, we report on the development of a three-dimensional (3-D) organotypic cell culture model of human intestinal epithelial cells that better models the gastrointestinal epithelium in vivo. By applying this 3-D model, which recapitulates many aspects of the gastrointestinal epithelium in vivo, to the study of CVB infection, our work provides a new cell system to model the mechanisms by which CVB infects the intestinal epithelium, which may have a profound impact on CVB pathogenesis. Podcast: A podcast concerning this article is available.
Collapse
|
226
|
Extracellular Vesicles Mediate Receptor-Independent Transmission of Novel Tick-Borne Bunyavirus. J Virol 2015; 90:873-86. [PMID: 26512089 DOI: 10.1128/jvi.02490-15] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 10/25/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Severe fever with thrombocytopenia syndrome (SFTS) virus is a newly recognized member of the genus Phlebovirus in the family Bunyaviridae. The virus was isolated from patients presenting with hemorrhagic manifestations and an initial case fatality rate of 12 to 30% was reported. Due to the recent emergence of this pathogen, there is limited knowledge on the molecular virology of SFTS virus. Recently, we reported that the SFTS virus NSs protein inhibited the activation of the beta interferon (IFN-β) promoter. Furthermore, we also found that SFTS virus NSs relocalizes key components of the IFN response into NSs-induced cytoplasmic structures. Due to the important role these structures play during SFTS virus replication, we conducted live cell imaging studies to gain further insight into the role and trafficking of these cytoplasmic structures during virus infection. We found that some of the SFTS virus NSs-positive cytoplasmic structures were secreted to the extracellular space and endocytosed by neighboring cells. We also found that these secreted structures isolated from NSs-expressing cells and SFTS virus-infected cells were positive for the viral protein NSs and the host protein CD63, a protein associated with extracellular vesicles. Electron microscopy studies also revealed that the isolated CD63-immunoprecipitated extracellular vesicles produced during SFTS virus infection contained virions. The virions harbored within these structures were efficiently delivered to uninfected cells and were able to sustain SFTS virus replication. Altogether, these results suggest that SFTS virus exploits extracellular vesicles to mediate virus receptor-independent transmission to host cells and open the avenue for novel therapeutic strategies against SFTS virus and related pathogens. IMPORTANCE SFTS virus is novel bunyavirus associated with hemorrhagic fever illness. Currently, limited information is available about SFTS virus. In the present study, we demonstrated that extracellular vesicles produced by SFTS virus-infected cells harbor infectious virions. We sought to determine whether these "infectious" extracellular vesicles can mediate transmission of the virus and confirmed that the SFTS virions were efficiently transported by these secreted structures into uninfected cells and were able to sustain efficient replication of SFTS virus. These results have significant impact on our understanding of how the novel tick-borne phleboviruses hijack cellular machineries to establish infection and point toward a novel mechanism for virus replication among arthropod-borne viruses.
Collapse
|
227
|
Salasc F, Mutuel D, Debaisieux S, Perrin A, Dupressoir T, Grenet ASG, Ogliastro M. Role of the phosphatidylinositol-3-kinase/Akt/target of rapamycin pathway during ambidensovirus infection of insect cells. J Gen Virol 2015; 97:233-245. [PMID: 26508507 DOI: 10.1099/jgv.0.000327] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The phosphatidylinositol-3-kinase (PI3K)/Akt/target of rapamycin (TOR) signalling pathway controls cell growth and survival, and is targeted by a number of viruses at different phases of their infection cycle to control translation. Whether and how insect viruses interact with this pathway remain poorly addressed. Here, we investigated the role of PI3K/Akt/TOR signalling during lethal infection of insect cells with an insect parvovirus. Using Junonia coenia densovirus (JcDV; lepidopteran ambidensovirus 1) and susceptible insect cells as experimental models, we first described JcDV cytopathology, and showed that viral infection affects cell size, cell proliferation and survival. We deciphered the role of PI3K/Akt/TOR signalling in the course of infection and found that non-structural (NS) protein expression correlates with the inhibition of TOR and the shutdown of cellular synthesis, concomitant with the burst of viral protein expression. Together, these results suggest that NS proteins control the cellular translational machinery to favour the translation of viral mRNAs at the expense of cellular mRNAs. As a consequence of TOR inhibition, cell autophagy is activated. These results highlight new functions for NS proteins in the course of multiplication of an insect parvovirus.
Collapse
Affiliation(s)
- F Salasc
- EPHE, Pathologie Comparée des Invertébrés, UMR 1333, 34000 Montpellier, France.,INRA, UMR 1333, 34000 Montpellier, France
| | - D Mutuel
- INRA, UMR 1333, 34000 Montpellier, France
| | | | - A Perrin
- INRA, UMR 1333, 34000 Montpellier, France.,Invivo Agrosolutions, 06560 Valbonne, France
| | - T Dupressoir
- EPHE, Pathologie Comparée des Invertébrés, UMR 1333, 34000 Montpellier, France.,INRA, UMR 1333, 34000 Montpellier, France
| | - A-S Gosselin Grenet
- INRA, UMR 1333, 34000 Montpellier, France.,Université de Montpellier, UMR 1333, 34000 Montpellier, France
| | | |
Collapse
|
228
|
Rossignol ED, Yang JE, Bullitt E. The Role of Electron Microscopy in Studying the Continuum of Changes in Membranous Structures during Poliovirus Infection. Viruses 2015; 7:5305-18. [PMID: 26473912 PMCID: PMC4632382 DOI: 10.3390/v7102874] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 09/01/2015] [Accepted: 09/23/2015] [Indexed: 12/26/2022] Open
Abstract
Replication of the poliovirus genome is localized to cytoplasmic replication factories that are fashioned out of a mixture of viral proteins, scavenged cellular components, and new components that are synthesized within the cell due to viral manipulation/up-regulation of protein and phospholipid synthesis. These membranous replication factories are quite complex, and include markers from multiple cytoplasmic cellular organelles. This review focuses on the role of electron microscopy in advancing our understanding of poliovirus RNA replication factories. Structural data from the literature provide the basis for interpreting a wide range of biochemical studies that have been published on virus-induced lipid biosynthesis. In combination, structural and biochemical experiments elucidate the dramatic membrane remodeling that is a hallmark of poliovirus infection. Temporal and spatial membrane modifications throughout the infection cycle are discussed. Early electron microscopy studies of morphological changes following viral infection are re-considered in light of more recent data on viral manipulation of lipid and protein biosynthesis. These data suggest the existence of distinct subcellular vesicle populations, each of which serves specialized roles in poliovirus replication processes.
Collapse
Affiliation(s)
- Evan D Rossignol
- Department of Physiology & Biophysics, Boston University School of Medicine, 700 Albany Street, W302, Boston, MA 02118-2526, USA.
| | - Jie E Yang
- Department of Physiology & Biophysics, Boston University School of Medicine, 700 Albany Street, W302, Boston, MA 02118-2526, USA.
| | - Esther Bullitt
- Department of Physiology & Biophysics, Boston University School of Medicine, 700 Albany Street, W302, Boston, MA 02118-2526, USA.
| |
Collapse
|
229
|
Abstract
A common paradigm holds that during cell-to-cell transmission, viruses behave as lone soldiers. Recently, we discovered not only that enteroviruses are transmitted via vesicles as populations of viral particles but also that this type of transmission enhances their infection efficiency (Y. H. Chen et al., Cell 160: 619-630, 2015). This mechanism could be advantageous for the overall fitness of the viral population, promoting genetic interplay by enabling viral quasispecies to collectively infect a susceptible host cell. Here, we discuss these findings in the context of viral pathogenesis and also propose that this novel type of vesicular transmission is widespread among different virus families and includes populations of both viral particles and naked viral genomes.
Collapse
|
230
|
Dorobantu CM, Albulescu L, Harak C, Feng Q, van Kampen M, Strating JRPM, Gorbalenya AE, Lohmann V, van der Schaar HM, van Kuppeveld FJM. Modulation of the Host Lipid Landscape to Promote RNA Virus Replication: The Picornavirus Encephalomyocarditis Virus Converges on the Pathway Used by Hepatitis C Virus. PLoS Pathog 2015; 11:e1005185. [PMID: 26406250 PMCID: PMC4583462 DOI: 10.1371/journal.ppat.1005185] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 09/02/2015] [Indexed: 12/12/2022] Open
Abstract
Cardioviruses, including encephalomyocarditis virus (EMCV) and the human Saffold virus, are small non-enveloped viruses belonging to the Picornaviridae, a large family of positive-sense RNA [(+)RNA] viruses. All (+)RNA viruses remodel intracellular membranes into unique structures for viral genome replication. Accumulating evidence suggests that picornaviruses from different genera use different strategies to generate viral replication organelles (ROs). For instance, enteroviruses (e.g. poliovirus, coxsackievirus, rhinovirus) rely on the Golgi-localized phosphatidylinositol 4-kinase III beta (PI4KB), while cardioviruses replicate independently of the kinase. By which mechanisms cardioviruses develop their ROs is currently unknown. Here we show that cardioviruses manipulate another PI4K, namely the ER-localized phosphatidylinositol 4-kinase III alpha (PI4KA), to generate PI4P-enriched ROs. By siRNA-mediated knockdown and pharmacological inhibition, we demonstrate that PI4KA is an essential host factor for EMCV genome replication. We reveal that the EMCV nonstructural protein 3A interacts with and is responsible for PI4KA recruitment to viral ROs. The ensuing phosphatidylinositol 4-phosphate (PI4P) proved important for the recruitment of oxysterol-binding protein (OSBP), which delivers cholesterol to EMCV ROs in a PI4P-dependent manner. PI4P lipids and cholesterol are shown to be required for the global organization of the ROs and for viral genome replication. Consistently, inhibition of OSBP expression or function efficiently blocked EMCV RNA replication. In conclusion, we describe for the first time a cellular pathway involved in the biogenesis of cardiovirus ROs. Remarkably, the same pathway was reported to promote formation of the replication sites of hepatitis C virus, a member of the Flaviviridae family, but not other picornaviruses or flaviviruses. Thus, our results highlight the convergent recruitment by distantly related (+)RNA viruses of a host lipid-modifying pathway underlying formation of viral replication sites. All positive-sense RNA viruses [(+)RNA viruses] replicate their viral genomes in tight association with reorganized membranous structures. Viruses generate these unique structures, often termed “replication organelles” (ROs), by efficiently manipulating the host lipid metabolism. While the molecular mechanisms underlying RO formation by enteroviruses (e.g. poliovirus) of the family Picornaviridae have been extensively investigated, little is known about other members belonging to this large family. This study provides the first detailed insight into the RO biogenesis of encephalomyocarditis virus (EMCV), a picornavirus from the genus Cardiovirus. We reveal that EMCV hijacks the lipid kinase phosphatidylinositol-4 kinase IIIα (PI4KA) to generate viral ROs enriched in phosphatidylinositol 4-phosphate (PI4P). In EMCV-infected cells, PI4P lipids play an essential role in virus replication by recruiting another cellular protein, oxysterol-binding protein (OSBP), to the ROs. OSBP further impacts the lipid composition of the RO membranes, by mediating the exchange of PI4P with cholesterol. This membrane-modification mechanism of EMCV is remarkably similar to that of the distantly related flavivirus hepatitis C virus (HCV), while distinct from that of the closely related enteroviruses, which recruit OSBP via another PI4K, namely PI4K IIIβ (PI4KB). Thus, EMCV and HCV represent a striking case of functional convergence in (+)RNA virus evolution.
Collapse
Affiliation(s)
- Cristina M. Dorobantu
- Department of Infectious Diseases & Immunology, Virology Division, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Lucian Albulescu
- Department of Infectious Diseases & Immunology, Virology Division, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Christian Harak
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Heidelberg, Germany
| | - Qian Feng
- Department of Infectious Diseases & Immunology, Virology Division, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Mirjam van Kampen
- Department of Infectious Diseases & Immunology, Virology Division, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Jeroen R. P. M. Strating
- Department of Infectious Diseases & Immunology, Virology Division, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Alexander E. Gorbalenya
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Volker Lohmann
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Heidelberg, Germany
| | - Hilde M. van der Schaar
- Department of Infectious Diseases & Immunology, Virology Division, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Frank J. M. van Kuppeveld
- Department of Infectious Diseases & Immunology, Virology Division, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- * E-mail:
| |
Collapse
|
231
|
Autophagy and autophagy-related proteins in the immune system. Nat Immunol 2015; 16:1014-24. [DOI: 10.1038/ni.3273] [Citation(s) in RCA: 366] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 08/17/2015] [Indexed: 02/06/2023]
|
232
|
Wen X, Cheng A, Wang M, Jia R, Zhu D, Chen S, Liu M, Sun K, Yang Q, Wu Y, Chen X. Recent advances from studies on the role of structural proteins in enterovirus infection. Future Microbiol 2015; 10:1529-42. [DOI: 10.2217/fmb.15.62] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Enteroviruses are a large group of small nonenveloped viruses that cause common and debilitating illnesses affecting humans and animals worldwide. The capsid composed by viral structural proteins packs the RNA genome. It is becoming apparent that structural proteins of enteroviruses play versatile roles in the virus–host interaction in the viral life cycle, more than just a shell. Furthermore, structural proteins to some extent may be associated with viral virulence and pathogenesis. Better understanding the roles of structural proteins in enterovirus infection may lead to the development of potential antiviral strategies. Here, we discuss recent advances from studies on the role of structural proteins in enterovirus infection and antiviral therapeutics targeted structural proteins.
Collapse
Affiliation(s)
- Xingjian Wen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Key Laboratory of Animal Disease & Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Key Laboratory of Animal Disease & Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Engineering & Technology Center for Laboratory Animals of Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Key Laboratory of Animal Disease & Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Key Laboratory of Animal Disease & Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
| | - Dekang Zhu
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Key Laboratory of Animal Disease & Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Key Laboratory of Animal Disease & Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Key Laboratory of Animal Disease & Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
| | - Kunfeng Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Key Laboratory of Animal Disease & Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Key Laboratory of Animal Disease & Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Key Laboratory of Animal Disease & Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
| | - Xiaoyue Chen
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
- Key Laboratory of Animal Disease & Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, PR China
| |
Collapse
|
233
|
Xin L, Ma X, Xiao Z, Yao H, Liu Z. Coxsackievirus B3 induces autophagy in HeLa cells via the AMPK/MEK/ERK and Ras/Raf/MEK/ERK signaling pathways. INFECTION GENETICS AND EVOLUTION 2015; 36:46-54. [PMID: 26305625 DOI: 10.1016/j.meegid.2015.08.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 08/17/2015] [Accepted: 08/20/2015] [Indexed: 12/19/2022]
Abstract
In a previous study, the number of autophagosomes increased after coxsackievirus B3 (CVB3) infection. However, the exact mechanism by which CVB3 regulates the number of autophagosomes is unclear. Earlier studies have found that infection with CVB3 activates extracellular signal-regulated kinase (ERK). ERK is essential for CVB3 replication and can increase the number of autophagosomes. In the current study, extracellular signal-regulated kinase 1/2 was activated in HeLa cells after CVB3 infection. The ERK kinase inhibitor, U0126, was then used to inhibit the activity of ERK. Treatment with U0126 led to a significant reduction in the number of autophagosomes indicating that the CVB3-induced autophagosome accumulation may have occurred via the ERK pathway. The relationship between CVB3 infection and ERK pathway activation was also investigated. The results showed that the RasGAP protein could be further cleaved, leading to the activation of the Ras/Raf/MEK (mitogen/extracellular signal-regulated kinase)/ERK pathway and that CVB3 infection could result in an increase in the concentration of calcium in the cytoplasm, resulting in mitochondrial damage, a decrease in the concentration of ATP and activation of the AMPK (AMP-activated protein kinase)/MEK/ERK pathway. In summary, CVB3 might directly or indirectly induce autophagy via AMPK/MEK/ERK and Ras/Raf/MEK/ERK signaling pathways in the host cells, representing a pivotal mechanism for CVB3 pathogenesis.
Collapse
Affiliation(s)
- Le Xin
- Department of Molecular Immunology, Capital Institute of Pediatrics, China
| | - Xiaolin Ma
- Department of Molecular Immunology, Capital Institute of Pediatrics, China
| | - Zonghui Xiao
- Department of Molecular Immunology, Capital Institute of Pediatrics, China
| | - Hailan Yao
- Department of Molecular Immunology, Capital Institute of Pediatrics, China.
| | - Zhewei Liu
- Department of Molecular Immunology, Capital Institute of Pediatrics, China.
| |
Collapse
|
234
|
Harris KG, Morosky SA, Drummond CG, Patel M, Kim C, Stolz DB, Bergelson JM, Cherry S, Coyne CB. RIP3 Regulates Autophagy and Promotes Coxsackievirus B3 Infection of Intestinal Epithelial Cells. Cell Host Microbe 2015; 18:221-32. [PMID: 26269957 PMCID: PMC4562276 DOI: 10.1016/j.chom.2015.07.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 05/27/2015] [Accepted: 07/20/2015] [Indexed: 02/02/2023]
Abstract
Receptor interacting protein kinase-3 (RIP3) is an essential kinase for necroptotic cell death signaling and has been implicated in antiviral cell death signaling upon DNA virus infection. Here, we performed high-throughput RNAi screening and identified RIP3 as a positive regulator of coxsackievirus B3 (CVB) replication in intestinal epithelial cells (IECs). RIP3 regulates autophagy, a process utilized by CVB for viral replication factory assembly, and depletion of RIP3 inhibits autophagic flux and leads to the accumulation of autophagosomes and amphisomes. Additionally, later in infection, RIP3 is cleaved by the CVB-encoded cysteine protease 3C(pro), which serves to abrogate RIP3-mediated necrotic signaling and induce a nonnecrotic form of cell death. Taken together, our results show that temporal targeting of RIP3 allows CVB to benefit from its roles in regulating autophagy while inhibiting the induction of necroptotic cell death.
Collapse
Affiliation(s)
- Katharine G Harris
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Stefanie A Morosky
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Coyne G Drummond
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Maulik Patel
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37240, USA
| | - Chonsaeng Kim
- Virus Research and Testing Group, Korea Research Institute of Chemical Technology, Daejeon 305-600, Korea
| | - Donna B Stolz
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Jeffrey M Bergelson
- Department of Pediatrics, Division of Infectious Diseases, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Sara Cherry
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Carolyn B Coyne
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15219, USA.
| |
Collapse
|
235
|
van der Linden L, Wolthers KC, van Kuppeveld FJM. Replication and Inhibitors of Enteroviruses and Parechoviruses. Viruses 2015; 7:4529-62. [PMID: 26266417 PMCID: PMC4576193 DOI: 10.3390/v7082832] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 08/03/2015] [Indexed: 01/11/2023] Open
Abstract
The Enterovirus (EV) and Parechovirus genera of the picornavirus family include many important human pathogens, including poliovirus, rhinovirus, EV-A71, EV-D68, and human parechoviruses (HPeV). They cause a wide variety of diseases, ranging from a simple common cold to life-threatening diseases such as encephalitis and myocarditis. At the moment, no antiviral therapy is available against these viruses and it is not feasible to develop vaccines against all EVs and HPeVs due to the great number of serotypes. Therefore, a lot of effort is being invested in the development of antiviral drugs. Both viral proteins and host proteins essential for virus replication can be used as targets for virus inhibitors. As such, a good understanding of the complex process of virus replication is pivotal in the design of antiviral strategies goes hand in hand with a good understanding of the complex process of virus replication. In this review, we will give an overview of the current state of knowledge of EV and HPeV replication and how this can be inhibited by small-molecule inhibitors.
Collapse
Affiliation(s)
- Lonneke van der Linden
- Laboratory of Clinical Virology, Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Meibergdreef 15, Amsterdam 1105 AZ, The Netherlands.
| | - Katja C Wolthers
- Laboratory of Clinical Virology, Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Meibergdreef 15, Amsterdam 1105 AZ, The Netherlands.
| | - Frank J M van Kuppeveld
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, Utrecht 3584 CL, The Netherlands.
| |
Collapse
|
236
|
Reid CR, Airo AM, Hobman TC. The Virus-Host Interplay: Biogenesis of +RNA Replication Complexes. Viruses 2015; 7:4385-413. [PMID: 26287230 PMCID: PMC4576186 DOI: 10.3390/v7082825] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 07/21/2015] [Accepted: 07/24/2015] [Indexed: 12/22/2022] Open
Abstract
Positive-strand RNA (+RNA) viruses are an important group of human and animal pathogens that have significant global health and economic impacts. Notable members include West Nile virus, Dengue virus, Chikungunya, Severe acute respiratory syndrome (SARS) Coronavirus and enteroviruses of the Picornaviridae family.Unfortunately, prophylactic and therapeutic treatments against these pathogens are limited. +RNA viruses have limited coding capacity and thus rely extensively on host factors for successful infection and propagation. A common feature among these viruses is their ability to dramatically modify cellular membranes to serve as platforms for genome replication and assembly of new virions. These viral replication complexes (VRCs) serve two main functions: To increase replication efficiency by concentrating critical factors and to protect the viral genome from host anti-viral systems. This review summarizes current knowledge of critical host factors recruited to or demonstrated to be involved in the biogenesis and stabilization of +RNA virus VRCs.
Collapse
Affiliation(s)
- Colleen R Reid
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2E1, Canada.
| | - Adriana M Airo
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2E1, Canada.
| | - Tom C Hobman
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2E1, Canada.
- Department of Cell Biology, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| |
Collapse
|
237
|
Sin J, Mangale V, Thienphrapa W, Gottlieb RA, Feuer R. Recent progress in understanding coxsackievirus replication, dissemination, and pathogenesis. Virology 2015; 484:288-304. [PMID: 26142496 DOI: 10.1016/j.virol.2015.06.006] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 04/23/2015] [Accepted: 06/03/2015] [Indexed: 01/01/2023]
Abstract
Coxsackieviruses (CVs) are relatively common viruses associated with a number of serious human diseases, including myocarditis and meningo-encephalitis. These viruses are considered cytolytic yet can persist for extended periods of time within certain host tissues requiring evasion from the host immune response and a greatly reduced rate of replication. A member of Picornaviridae family, CVs have been historically considered non-enveloped viruses - although recent evidence suggest that CV and other picornaviruses hijack host membranes and acquire an envelope. Acquisition of an envelope might provide distinct benefits to CV virions, such as resistance to neutralizing antibodies and efficient nonlytic viral spread. CV exhibits a unique tropism for progenitor cells in the host which may help to explain the susceptibility of the young host to infection and the establishment of chronic disease in adults. CVs have also been shown to exploit autophagy to maximize viral replication and assist in unconventional release from target cells. In this article, we review recent progress in clarifying virus replication and dissemination within the host cell, identifying determinants of tropism, and defining strategies utilized by the virus to evade the host immune response. Also, we will highlight unanswered questions and provide future perspectives regarding the potential mechanisms of CV pathogenesis.
Collapse
Affiliation(s)
- Jon Sin
- Cedars-Sinai Heart Institute, 8700 Beverly Blvd., Los Angeles, CA 90048, USA
| | - Vrushali Mangale
- The Integrated Regenerative Research Institute (IRRI) at San Diego State University, Cell & Molecular Biology Joint Doctoral Program, Department of Biology, San Diego State University, San Diego, CA 92182-4614, USA
| | - Wdee Thienphrapa
- The Integrated Regenerative Research Institute (IRRI) at San Diego State University, Cell & Molecular Biology Joint Doctoral Program, Department of Biology, San Diego State University, San Diego, CA 92182-4614, USA
| | - Roberta A Gottlieb
- Cedars-Sinai Heart Institute, 8700 Beverly Blvd., Los Angeles, CA 90048, USA
| | - Ralph Feuer
- The Integrated Regenerative Research Institute (IRRI) at San Diego State University, Cell & Molecular Biology Joint Doctoral Program, Department of Biology, San Diego State University, San Diego, CA 92182-4614, USA.
| |
Collapse
|
238
|
Steele S, Brunton J, Kawula T. The role of autophagy in intracellular pathogen nutrient acquisition. Front Cell Infect Microbiol 2015; 5:51. [PMID: 26106587 PMCID: PMC4460576 DOI: 10.3389/fcimb.2015.00051] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 05/26/2015] [Indexed: 01/01/2023] Open
Abstract
Following entry into host cells intracellular pathogens must simultaneously evade innate host defense mechanisms and acquire energy and anabolic substrates from the nutrient-limited intracellular environment. Most of the potential intracellular nutrient sources are stored within complex macromolecules that are not immediately accessible by intracellular pathogens. To obtain nutrients for proliferation, intracellular pathogens must compete with the host cell for newly-imported simple nutrients or degrade host nutrient storage structures into their constituent components (fatty acids, carbohydrates, and amino acids). It is becoming increasingly evident that intracellular pathogens have evolved a wide variety of strategies to accomplish this task. One recurrent microbial strategy is to exploit host degradative processes that break down host macromolecules into simple nutrients that the microbe can use. Herein we focus on how a subset of bacterial, viral, and eukaryotic pathogens leverage the host process of autophagy to acquire nutrients that support their growth within infected cells.
Collapse
Affiliation(s)
- Shaun Steele
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina Chapel Hill, NC, USA
| | - Jason Brunton
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina Chapel Hill, NC, USA
| | - Thomas Kawula
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina Chapel Hill, NC, USA
| |
Collapse
|
239
|
Ponpuak M, Mandell MA, Kimura T, Chauhan S, Cleyrat C, Deretic V. Secretory autophagy. Curr Opin Cell Biol 2015; 35:106-16. [PMID: 25988755 DOI: 10.1016/j.ceb.2015.04.016] [Citation(s) in RCA: 395] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 04/22/2015] [Accepted: 04/23/2015] [Indexed: 12/20/2022]
Abstract
Autophagy, once viewed exclusively as a cytoplasmic auto-digestive process, has its less intuitive but biologically distinct non-degradative roles. One manifestation of these functions of the autophagic machinery is the process termed secretory autophagy. Secretory autophagy facilitates unconventional secretion of the cytosolic cargo such as leaderless cytosolic proteins, which unlike proteins endowed with the leader (N-terminal signal) peptides cannot enter the conventional secretory pathway normally operating via the endoplasmic reticulum and the Golgi apparatus. Secretory autophagy may also export more complex cytoplasmic cargo and help excrete particulate substrates. Autophagic machinery and autophagy as a process also affect conventional secretory pathways, including the constitutive and regulated secretion, as well as promote alternative routes for trafficking of integral membrane proteins to the plasma membrane. Thus, autophagy and autophagic factors are intimately intertwined at many levels with secretion and polarized sorting in eukaryotic cells.
Collapse
Affiliation(s)
- Marisa Ponpuak
- Department of Microbiology, Faculty of Science, Mahidol University, 272 Rama VI Road, Ratchathewi, Bangkok 10400, Thailand; Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, 915 Camino de Salud NE, Albuquerque, NM 87131, USA
| | - Michael A Mandell
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, 915 Camino de Salud NE, Albuquerque, NM 87131, USA
| | - Tomonori Kimura
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, 915 Camino de Salud NE, Albuquerque, NM 87131, USA
| | - Santosh Chauhan
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, 915 Camino de Salud NE, Albuquerque, NM 87131, USA
| | - Cédric Cleyrat
- Department of Pathology, University of New Mexico Health Sciences Center, 915 Camino de Salud NE, Albuquerque, NM 87131, USA
| | - Vojo Deretic
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, 915 Camino de Salud NE, Albuquerque, NM 87131, USA.
| |
Collapse
|
240
|
Influence of cellular trafficking pathway on bluetongue virus infection in ovine cells. Viruses 2015; 7:2378-403. [PMID: 25984713 PMCID: PMC4452911 DOI: 10.3390/v7052378] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 05/06/2015] [Indexed: 11/27/2022] Open
Abstract
Bluetongue virus (BTV), a non-enveloped arbovirus, causes hemorrhagic disease in ruminants. However, the influence of natural host cell proteins on BTV replication process is not defined. In addition to cell lysis, BTV also exits non-ovine cultured cells by non-lytic pathways mediated by nonstructural protein NS3 that interacts with virus capsid and cellular proteins belonging to calpactin and ESCRT family. The PPXY late domain motif known to recruit NEDD4 family of HECT ubiquitin E3 ligases is also highly conserved in NS3. In this study using a mixture of molecular, biochemical and microscopic techniques we have analyzed the importance of ovine cellular proteins and vesicles in BTV infection. Electron microscopic analysis of BTV infected ovine cells demonstrated close association of mature particles with intracellular vesicles. Inhibition of Multi Vesicular Body (MVB) resident lipid phosphatidylinositol-3-phosphate resulted in decreased total virus titre suggesting that the vesicles might be MVBs. Proteasome mediated inhibition of ubiquitin or modification of virus lacking the PPXY in NS3 reduced virus growth. Thus, our study demonstrated that cellular components comprising of MVB and exocytic pathways proteins are involved in BTV replication in ovine cells.
Collapse
|
241
|
Bird SW, Kirkegaard K. Escape of non-enveloped virus from intact cells. Virology 2015; 479-480:444-9. [PMID: 25890822 DOI: 10.1016/j.virol.2015.03.044] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Revised: 02/18/2015] [Accepted: 03/09/2015] [Indexed: 12/22/2022]
Abstract
How do viruses spread from cell to cell? Enveloped viruses acquire their surrounding membranes by budding. If a newly enveloped virus has budded through the plasma membrane, it finds itself outside the cell immediately. If it has budded through the bounding membrane of an internal compartment such as the ER, the virus finds itself in the lumen, from which it can exit the cell via the conventional secretion pathway. Thus, although some enveloped viruses destroy the cells they infect, there is no topological need to do so. On the other hand, naked viruses such as poliovirus lack an external membrane. They are protein-nucleic acid complexes within the cytoplasm or nucleus of the infected cell, like a ribosome, a spliceosome or an aggregate of Huntingtin protein. The simplest way for such a particle to pass through the single lipid bilayer that separates it from the outside of the cell would be to violate the integrity of that bilayer. Thus, it is not surprising that the primary mode of exit for non-enveloped viruses is cell lysis. However, more complex exit strategies are possible, such as the creation of new compartments whose complex topologies allow the exit of cytoplasm and its contents without violating the integrity of the cell. Here we will discuss the non-lytic spread of poliovirus and recent observations of such compartments during viral infection with several different picornaviruses.
Collapse
Affiliation(s)
- Sara W Bird
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, United States
| | - Karla Kirkegaard
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, United States; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, United States.
| |
Collapse
|
242
|
Jackson WT. Viruses and the autophagy pathway. Virology 2015; 479-480:450-6. [PMID: 25858140 DOI: 10.1016/j.virol.2015.03.042] [Citation(s) in RCA: 161] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 01/30/2015] [Accepted: 03/12/2015] [Indexed: 12/15/2022]
Abstract
Studies of the cellular autophagy pathway have exploded over the past twenty years. Now appreciated as a constitutive degradative mechanism that promotes cellular homeostasis, autophagy is also required for a variety of developmental processes, cellular stress responses, and immune pathways. Autophagy certainly acts as both an anti-viral and pro-viral pathway, and the roles of autophagy depend on the virus, the cell type, and the cellular environment. The goal of this review is to summarize, in brief, what we know so far about the relationship between autophagy and viruses, particularly for those who are not familiar with the field. With a massive amount of relevant published data, it is simply not possible to be comprehensive, or to provide a complete "parade of viruses", and apologies are offered to researchers whose work is not described herein. Rather, this review is organized around general themes regarding the relationship between autophagy and animal viruses.
Collapse
Affiliation(s)
- William T Jackson
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53211, United States.
| |
Collapse
|
243
|
Garmaroudi FS, Marchant D, Hendry R, Luo H, Yang D, Ye X, Shi J, McManus BM. Coxsackievirus B3 replication and pathogenesis. Future Microbiol 2015; 10:629-53. [DOI: 10.2217/fmb.15.5] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
ABSTRACT Viruses such as coxsackievirus B3 (CVB3) are entirely host cell-dependent parasites. Indeed, they must cleverly exploit various compartments of host cells to complete their life cycle, and consequently launch disease. Evolution has equipped this pico-rna-virus, CVB3, to use different strategies, including CVB3-induced direct damage to host cells followed by a host inflammatory response to CVB3 infection, and cell death to super-additively promote target organ tissue injury, and dysfunction. In this update, the patho-stratagems of CVB3 are explored from molecular, and systems-level approaches. In summarizing recent developments in this field, we focus particularly on mechanisms by which CVB3 can harness different host cell processes including kinases, host cell-killing and cell-eating machineries, matrix metalloproteinases and miRNAs to promote disease.
Collapse
Affiliation(s)
- Farshid S Garmaroudi
- UBC James Hogg Research Centre, Institute for Heart & Lung Health, St. Paul's Hospital, University of British Columbia, Vancouver, BC, V6Z, Canada
| | - David Marchant
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
| | - Reid Hendry
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
| | - Honglin Luo
- UBC James Hogg Research Centre, Institute for Heart & Lung Health, St. Paul's Hospital, University of British Columbia, Vancouver, BC, V6Z, Canada
| | - Decheng Yang
- UBC James Hogg Research Centre, Institute for Heart & Lung Health, St. Paul's Hospital, University of British Columbia, Vancouver, BC, V6Z, Canada
| | - Xin Ye
- UBC James Hogg Research Centre, Institute for Heart & Lung Health, St. Paul's Hospital, University of British Columbia, Vancouver, BC, V6Z, Canada
| | - Junyan Shi
- UBC James Hogg Research Centre, Institute for Heart & Lung Health, St. Paul's Hospital, University of British Columbia, Vancouver, BC, V6Z, Canada
| | - Bruce M McManus
- UBC James Hogg Research Centre, Institute for Heart & Lung Health, St. Paul's Hospital, University of British Columbia, Vancouver, BC, V6Z, Canada
- Centre of Excellence for Prevention of Organ Failure, Vancouver, BC, Canada
| |
Collapse
|
244
|
Affiliation(s)
- Nicholas J. Lennemann
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Carolyn B. Coyne
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
245
|
Ammer E, Nietzsche S, Rien C, Kühnl A, Mader T, Heller R, Sauerbrei A, Henke A. The anti-obesity drug orlistat reveals anti-viral activity. Med Microbiol Immunol 2015; 204:635-45. [DOI: 10.1007/s00430-015-0391-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 02/06/2015] [Indexed: 12/28/2022]
|
246
|
Chen YH, Du W, Hagemeijer MC, Takvorian PM, Pau C, Cali A, Brantner CA, Stempinski ES, Connelly PS, Ma HC, Jiang P, Wimmer E, Altan-Bonnet G, Altan-Bonnet N. Phosphatidylserine vesicles enable efficient en bloc transmission of enteroviruses. Cell 2015; 160:619-630. [PMID: 25679758 PMCID: PMC6704014 DOI: 10.1016/j.cell.2015.01.032] [Citation(s) in RCA: 364] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 12/13/2014] [Accepted: 01/12/2015] [Indexed: 12/17/2022]
Abstract
A central paradigm within virology is that each viral particle largely behaves as an independent infectious unit. Here, we demonstrate that clusters of enteroviral particles are packaged within phosphatidylserine (PS) lipid-enriched vesicles that are non-lytically released from cells and provide greater infection efficiency than free single viral particles. We show that vesicular PS lipids are co-factors to the relevant enterovirus receptors in mediating subsequent infectivity and transmission, in particular to primary human macrophages. We demonstrate that clustered packaging of viral particles within vesicles enables multiple viral RNA genomes to be collectively transferred into single cells. This study reveals a novel mode of viral transmission, where enteroviral genomes are transmitted from cell-to-cell en bloc in membrane-bound PS vesicles instead of as single independent genomes. This has implications for facilitating genetic cooperativity among viral quasispecies as well as enhancing viral replication.
Collapse
Affiliation(s)
- Ying-Han Chen
- Laboratory of Host-Pathogen Dynamics, National Heart Lung and Blood Institute, NIH, Bethesda, MD 20892, USA; Federated Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA
| | - WenLi Du
- Laboratory of Host-Pathogen Dynamics, National Heart Lung and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Marne C Hagemeijer
- Laboratory of Host-Pathogen Dynamics, National Heart Lung and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Peter M Takvorian
- Federated Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA
| | - Cyrilla Pau
- Federated Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA
| | - Ann Cali
- Federated Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA
| | - Christine A Brantner
- Electron Microscopy Core Facility, National Heart Lung and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Erin S Stempinski
- Electron Microscopy Core Facility, National Heart Lung and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Patricia S Connelly
- Electron Microscopy Core Facility, National Heart Lung and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Hsin-Chieh Ma
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Ping Jiang
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Eckard Wimmer
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Grégoire Altan-Bonnet
- Program in Computational Biology and Immunology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Nihal Altan-Bonnet
- Laboratory of Host-Pathogen Dynamics, National Heart Lung and Blood Institute, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
247
|
Atorvastatin induces autophagic cell death in prostate cancer cells in vitro. Mol Med Rep 2015; 11:4403-8. [DOI: 10.3892/mmr.2015.3334] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 01/23/2015] [Indexed: 11/05/2022] Open
|
248
|
Abstract
In contrast to mechanisms mediating uptake of intracellular bacterial pathogens, bacterial egress and cell-to-cell transmission are poorly understood. Previously, we showed that the transmission of pathogenic mycobacteria between phagocytic cells also depends on nonlytic ejection through an F-actin based structure, called the ejectosome. How the host cell maintains integrity of its plasma membrane during the ejection process was unknown. Here, we reveal an unexpected function for the autophagic machinery in nonlytic spreading of bacteria. We show that ejecting mycobacteria are escorted by a distinct polar autophagocytic vacuole. If autophagy is impaired, cell-to-cell transmission is inhibited, the host plasma membrane becomes compromised and the host cells die. These findings highlight a previously unidentified, highly ordered interaction between bacteria and the autophagic pathway and might represent the ancient way to ensure nonlytic egress of bacteria.
Collapse
|
249
|
Mitochondrial quality control: Easy come, easy go. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:2802-11. [PMID: 25596427 DOI: 10.1016/j.bbamcr.2014.12.041] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 12/09/2014] [Accepted: 12/25/2014] [Indexed: 02/03/2023]
Abstract
"Friends come and go but enemies accumulate." - Arthur Bloch Mitochondrial networks in eukaryotic cells are maintained via regular cycles of degradation and biogenesis. These complex processes function in concert with one another to eliminate dysfunctional mitochondria in a specific and targeted manner and coordinate the biogenesis of new organelles. This review covers the two aspects of mitochondrial turnover, focusing on the main pathways and mechanisms involved. The review also summarizes the current methods and techniques for analyzing mitochondrial turnover in vivo and in vitro, from the whole animal proteome level to the level of single organelle.
Collapse
|
250
|
Abstract
The autophagy pathway represents an evolutionarily conserved cell recycling process that is activated in response to nutrient deprivation and other stress signals. Over the years, it has been linked to an array of cellular functions. Equally, a wide range of cell-intrinsic, as well as extracellular, factors have been implicated in the induction of the autophagy pathway. Microbial infections represent one such factor that can not only activate autophagy through specific mechanisms but also manipulate the response to the invading microbe’s advantage. Moreover, in many cases, particularly among viruses, the pathway has been shown to be intricately involved in the replication cycle of the pathogen. Conversely, autophagy also plays a role in combating the infection process, both through direct destruction of the pathogen and as one of the key mediating factors in the host defense mechanisms of innate and adaptive immunity. Further, the pathway also plays a role in controlling the pathogenesis of infectious diseases by regulating inflammation. In this review, we discuss various interactions between pathogens and the cellular autophagic response and summarize the immunological functions of the autophagy pathway.
Collapse
Affiliation(s)
- Mayura Desai
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Rong Fang
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Jiaren Sun
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| |
Collapse
|