201
|
Dual targeting of dengue virus virions and NS1 protein with the heparan sulfate mimic PG545. Antiviral Res 2019; 168:121-127. [PMID: 31085206 DOI: 10.1016/j.antiviral.2019.05.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/16/2019] [Accepted: 05/09/2019] [Indexed: 01/08/2023]
Abstract
Dengue virus (DENV) is the most prevalent mosquito-borne flavivirus that infects humans. At present, there are no specific antiviral drugs to treat DENV infection and vaccine development has met with challenges. DENV encodes two glycosaminoglycan (GAG) binding proteins; Envelope (E) and non-structural protein 1 (NS1). While previous work has validated the use of GAG analogues as inhibitors of E mediated virus-cell attachment, their potential for antiviral intervention in NS1 protein toxicity has not yet been explored. Here, we investigate the potential of the heparan sulfate mimetic PG545 as a dual purpose compound to target both DENV virion infectivity and NS1 function. In comparison to a non-sulfated analogue, we show that PG545 potently inhibits DENV infectivity with no cytotoxic effect. Against NS1, PG545 completely blocks the induction of cellular activation and abolishes NS1-mediated disruption of endothelial monolayer integrity. Furthermore, PG545 treatment moderately improves survival from lethal DENV challenge in a murine model. At peak disease, PG545-treated mice have lower viremia, circulating NS1 and serum TNF-α. Consistent with anti-NS1 activity, PG545 treatment also reduces systemic vascular leakage caused by DENV infection in vivo. Taken together, these findings demonstrate that the dual targeting of DENV virions and NS1 using GAG analogues offers a new avenue for DENV drug development.
Collapse
|
202
|
Borges MB, Marchevsky RS, Carvalho Pereira R, da Silva Mendes Y, Almeida Mendes LG, Diniz-Mendes L, Cruz MA, Tahmaoui O, Baudart S, Freire M, Homma A, Schneider-Ohrum K, Vaughn DW, Vanloubbeeck Y, Lorin C, Malice MP, Caride E, Warter L. Detection of post-vaccination enhanced dengue virus infection in macaques: An improved model for early assessment of dengue vaccines. PLoS Pathog 2019; 15:e1007721. [PMID: 31009499 PMCID: PMC6497418 DOI: 10.1371/journal.ppat.1007721] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 05/02/2019] [Accepted: 03/20/2019] [Indexed: 01/08/2023] Open
Abstract
The need for improved dengue vaccines remains since the only licensed vaccine, Dengvaxia, shows variable efficacy depending on the infecting dengue virus (DENV) type, and increases the risk of hospitalization for severe dengue in children not exposed to DENV before vaccination. Here, we developed a tetravalent dengue purified and inactivated vaccine (DPIV) candidate and characterized, in rhesus macaques, its immunogenicity and efficacy to control DENV infection by analyzing, after challenge, both viral replication and changes in biological markers associated with dengue in humans. Although DPIV elicited cross-type and long-lasting DENV-neutralizing antibody responses, it failed to control DENV infection. Increased levels of viremia/RNAemia (correlating with serum capacity at enhancing DENV infection in vitro), AST, IL-10, IL-18 and IFN-γ, and decreased levels of IL-12 were detected in some vaccinated compared to non-vaccinated monkeys, indicating the vaccination may have triggered antibody-dependent enhancement of DENV infection. The dengue macaque model has been considered imperfect due to the lack of DENV-associated clinical signs. However, here we show that post-vaccination enhanced DENV infection can be detected in this model when integrating several parameters, including characterization of DENV-enhancing antibodies, viremia/RNAemia, and biomarkers relevant to dengue in humans. This improved dengue macaque model may be crucial for early assessment of efficacy and safety of future dengue vaccines. Dengue virus (DENV) is responsible for the most widespread arboviral disease affecting humans. A pre-existing suboptimal immunity to DENV is accepted as being the major risk factor for severe dengue. Thus, if vaccination does not elicit optimal DENV-specific immunity, a vaccine might, instead, increase the risk of severe dengue in vaccinated individuals, as seen with the only licensed vaccine (Dengvaxia) in children naïve to DENV at vaccination. It is thus crucial to assess dengue vaccine safety at the earliest development stages, ideally in the preclinical stage. The dengue macaque model has been used to assess preclinical efficacy of dengue vaccines, with post-challenge DENV replication as the sole efficacy endpoint. However, this model had not predicted the Dengvaxia-associated safety signals. Here we characterized, in macaques, a dengue purified and inactivated vaccine (DPIV) candidate for its immunogenicity and efficacy/safety. Using a multiparameter approach, including characterization of viral replication and biomarkers relevant to dengue/severe dengue in humans, we were able to detect vaccine-associated safety signals in this model. While these results enabled us to discontinue at an early stage the DPIV development, this improved dengue macaque model may also be instrumental for early assessment of efficacy/safety of future dengue vaccines.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Michael A. Cruz
- Research & Development, GSK Vaccines, Rockville, Maryland, United States of America
| | | | | | | | - Akira Homma
- Bio-Manguinhos, Fiocruz, Rio de Janeiro, Brazil
| | | | - David W. Vaughn
- Research & Development, GSK Vaccines, Rockville, Maryland, United States of America
| | | | - Clarisse Lorin
- Research & Development, GSK Vaccines, Rixensart, Belgium
| | | | | | - Lucile Warter
- Research & Development, GSK Vaccines, Rixensart, Belgium
- * E-mail:
| |
Collapse
|
203
|
Riswari SF, Tunjungputri RN, Kullaya V, Garishah FM, Utari GSR, Farhanah N, Overheul GJ, Alisjahbana B, Gasem MH, Urbanus RT, de Groot PG, Lefeber DJ, van Rij RP, van der Ven A, de Mast Q. Desialylation of platelets induced by Von Willebrand Factor is a novel mechanism of platelet clearance in dengue. PLoS Pathog 2019; 15:e1007500. [PMID: 30849118 PMCID: PMC6426266 DOI: 10.1371/journal.ppat.1007500] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 03/20/2019] [Accepted: 12/03/2018] [Indexed: 11/19/2022] Open
Abstract
Thrombocytopenia and platelet dysfunction are commonly observed in patients with dengue virus (DENV) infection and may contribute to complications such as bleeding and plasma leakage. The etiology of dengue-associated thrombocytopenia is multifactorial and includes increased platelet clearance. The binding of the coagulation protein von Willebrand factor (VWF) to the platelet membrane and removal of sialic acid (desialylation) are two well-known mechanisms of platelet clearance, but whether these conditions also contribute to thrombocytopenia in dengue infection is unknown. In two observational cohort studies in Bandung and Jepara, Indonesia, we show that adult patients with dengue not only had higher plasma concentrations of plasma VWF antigen and active VWF, but that circulating platelets had also bound more VWF to their membrane. The amount of platelet-VWF binding correlated well with platelet count. Furthermore, sialic acid levels in dengue patients were significantly reduced as assessed by the binding of Sambucus nigra lectin (SNA) and Maackia amurensis lectin II (MAL-II) to platelets. Sialic acid on the platelet membrane is neuraminidase-labile, but dengue virus has no known neuraminidase activity. Indeed, no detectable activity of neuraminidase was present in plasma of dengue patients and no desialylation was found of plasma transferrin. Platelet sialylation was also not altered by in vitro exposure of platelets to DENV nonstructural protein 1 or cultured DENV. In contrast, induction of binding of VWF to glycoprotein 1b on platelets using the VWF-activating protein ristocetin resulted in the removal of platelet sialic acid by translocation of platelet neuraminidase to the platelet surface. The neuraminidase inhibitor oseltamivir reduced VWF-induced platelet desialylation. Our data demonstrate that excessive binding of VWF to platelets in dengue results in neuraminidase-mediated platelet desialylation and platelet clearance. Oseltamivir might be a novel treatment option for severe thrombocytopenia in dengue infection. Dengue is the most common arbovirus infection in the world. A decrease in the number of blood platelets is an almost universal finding in severe dengue. Binding of the coagulation protein von Willebrand factor (VWF) and loss of sialic acid residues from the platelet membrane are two main mechanisms of clearance of senescent platelets under non-pathological conditions. Here, we show that platelets from patients with acute dengue have bound more VWF and have lost sialic acid from their membrane. Sialic acid can be cleaved by the enzyme neuraminidase. We show that neuraminidase activity in the plasma is not increased and that neither dengue virus itself nor nonstructural protein 1, a protein secreted by dengue virus, cleave sialic acid from the platelet membrane. In contrast, binding of VWF to platelets results in translocation of neuraminidase to the platelet membrane and subsequent cleavage of sialic acid. This process could be inhibited by the neuraminidase inhibitor oseltamivir, a commonly used anti-influenza drug. Altogether, our results indicate that VWF binding to platelets is increased in dengue infection, leading to the removal of sialic acid and platelet clearance. Oseltamivir may prevent this process and thus represent a novel treatment option for low platelet numbers in dengue infection.
Collapse
Affiliation(s)
- Silvita Fitri Riswari
- Clinical Infectious Disease Research Center, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rahajeng N. Tunjungputri
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
- Center for Tropical and Infectious Disease (CENTRID), Faculty of Medicine Diponegoro University, Dr Kariadi Hospital, Semarang, Indonesia
| | - Vesla Kullaya
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
- Kilimanjaro Christian Medical Center, Kilimanjaro Clinical Research Institute, Moshi, Tanzania
| | - Fadel M. Garishah
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
- Center for Tropical and Infectious Disease (CENTRID), Faculty of Medicine Diponegoro University, Dr Kariadi Hospital, Semarang, Indonesia
| | - Gloria S. R. Utari
- Center for Tropical and Infectious Disease (CENTRID), Faculty of Medicine Diponegoro University, Dr Kariadi Hospital, Semarang, Indonesia
| | - Nur Farhanah
- Center for Tropical and Infectious Disease (CENTRID), Faculty of Medicine Diponegoro University, Dr Kariadi Hospital, Semarang, Indonesia
| | - Gijs J. Overheul
- Center for Tropical and Infectious Disease (CENTRID), Faculty of Medicine Diponegoro University, Dr Kariadi Hospital, Semarang, Indonesia
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bachti Alisjahbana
- Clinical Infectious Disease Research Center, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - M. Hussein Gasem
- Center for Tropical and Infectious Disease (CENTRID), Faculty of Medicine Diponegoro University, Dr Kariadi Hospital, Semarang, Indonesia
| | - Rolf T. Urbanus
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Philip. G. de Groot
- Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Dirk J. Lefeber
- Department of Neurology, Translational Metabolic Laboratory, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ronald P. van Rij
- Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Andre van der Ven
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Quirijn de Mast
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
- * E-mail:
| |
Collapse
|
204
|
Abstract
Mortality from severe dengue is low, but the economic and resource burden on health services remains substantial in endemic settings. Unfortunately, progress towards development of effective therapeutics has been slow, despite notable advances in the understanding of disease pathogenesis and considerable investment in antiviral drug discovery. For decades antibody-dependent enhancement has been the prevalent model to explain dengue pathogenesis, but it was only recently demonstrated in vivo and in clinical studies. At present, the current mainstay of management for most symptomatic dengue patients remains careful observation and prompt but judicious use of intravenous hydration therapy for those with substantial vascular leakage. Various new promising technologies for diagnosis of dengue are currently in the pipeline. New sample-in, answer-out nucleic acid amplification technologies for point-of-care use are being developed to improve performance over current technologies, with the potential to test for multiple pathogens using a single specimen. The search for biomarkers that reliably predict development of severe dengue among symptomatic individuals is also a major focus of current research efforts. The first dengue vaccine was licensed in 2015 but its performance depends on serostatus. There is an urgent need to identify correlates of both vaccine protection and disease enhancement. A crucial assessment of vector control tools should guide a research agenda for determining the most effective interventions, and how to best combine state-of-the-art vector control with vaccination.
Collapse
Affiliation(s)
- Annelies Wilder-Smith
- London School of Hygiene & Tropical Medicine, London, UK; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore; Heidelberg Institute of Global Health, University of Heidelberg, Heidelberg, Germany.
| | - Eng-Eong Ooi
- Duke-National University of Singapore Medical School, Singapore; Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| | - Olaf Horstick
- Heidelberg Institute of Global Health, University of Heidelberg, Heidelberg, Germany
| | - Bridget Wills
- Oxford University Clinical Research Unit, Wellcome Trust Asia Programme, Ho Chi Minh City, Vietnam; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
205
|
Lobo AM, Agelidis AM, Shukla D. Pathogenesis of herpes simplex keratitis: The host cell response and ocular surface sequelae to infection and inflammation. Ocul Surf 2019; 17:40-49. [PMID: 30317007 PMCID: PMC6340725 DOI: 10.1016/j.jtos.2018.10.002] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/26/2018] [Accepted: 10/10/2018] [Indexed: 02/08/2023]
Abstract
Herpes simplex virus type 1 (HSV) keratitis is a leading cause of infectious blindness. Clinical disease occurs variably throughout the cornea from epithelium to endothelium and recurrent HSV stromal keratitis is associated with corneal scarring and neovascularization. HSV keratitis can be associated with ocular pain and subsequent neutrophic keratopathy. Host cell interactions with HSV trigger an inflammatory cascade responsible not only for clearance of virus but also for progressive corneal opacification due to inflammatory cell infiltrate, angiogenesis, and corneal nerve loss. Current antiviral therapies target viral replication to decrease disease duration, severity and recurrence, but there are limitations to these agents. Therapies directed towards viral entry into cells, protein synthesis, inflammatory cytokines and vascular endothelial growth factor pathways in animal models represent promising new approaches to the treatment of recurrent HSV keratitis.
Collapse
Affiliation(s)
- Ann-Marie Lobo
- Department of Ophthalmology & Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA.
| | - Alex M Agelidis
- Department of Ophthalmology & Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA; Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, USA
| | - Deepak Shukla
- Department of Ophthalmology & Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA; Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
206
|
Dengue Virus NS1 Exposure Affects von Willebrand Factor Profile and Platelet Adhesion Properties of Cultured Vascular Endothelial Cells. Indian J Hematol Blood Transfus 2018; 35:502-506. [PMID: 31388264 DOI: 10.1007/s12288-018-1058-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 12/03/2018] [Indexed: 10/27/2022] Open
Abstract
Hematological abnormalities and altered vascular permeability are frequently encountered in Dengue virus infected patients, but the mechanisms that alter platelet-endothelium interactions remain incompletely understood. The DENV NS1 protein has been implicated in adverse disease outcomes. In the present study the role of NS1 protein in affecting the expression of vWF and platelet adhesion properties of endothelial cells was studied in vitro. The results suggest that vWF is down regulated in cultured endothelial cells 6 and 24 h after exposure with increase in vWF levels in culture supernatants at corresponding time points. Ultrastructural studies showed distinct evidence of endothelial cell activation morphology and degranulation of Weibel-Palade bodies in NS1 exposed cells that also showed increased platelet activation physiology. The findings suggest that changes in vWF production and secretion may be induced in endothelial cells exposed to DENV NS1 protein; and play a role in bleeding complications of severe DENV disease.
Collapse
|
207
|
Mohd Abd Razak MR, Mohmad Misnan N, Md Jelas NH, Norahmad NA, Muhammad A, Ho TCD, Jusoh B, Sastu UR, Zainol M, Wasiman MI, Muhammad H, Thayan R, Syed Mohamed AF. The effect of freeze-dried Carica papaya leaf juice treatment on NS1 and viremia levels in dengue fever mice model. Altern Ther Health Med 2018; 18:320. [PMID: 30518360 PMCID: PMC6282281 DOI: 10.1186/s12906-018-2390-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 11/27/2018] [Indexed: 01/01/2023]
Abstract
Background Carica papaya leaf juice (CPLJ) was well known for its thrombocytosis activity in rodents and dengue patients. However, the effect of CPLJ treatment on other parameters that could contribute to dengue pathogenesis such as nonstructural protein 1 (NS1) production and viremia level have never been highlighted in any clinical and in vivo studies. The aim of this study is to investigate the effect of freeze-dried CPLJ treatment on NS1 and viremia levels of dengue fever mouse model. Methods The dengue infection in mouse model was established by inoculation of non-mouse adapted New Guinea C strain dengue virus (DEN-2) in AG129 mice. The freeze-dried CPLJ compounds were identified by Ultra-High Performance Liquid Chromatography High Resolution Accurate Mass Spectrometry analysis. The infected AG129 mice were orally treated with 500 mg/kg/day and 1000 mg/kg/day of freeze-dried CPLJ, starting on day 1 post infection for 3 consecutive days. The blood samples were collected from submandibular vein for plasma NS1 assay and quantitation of viral RNA level by quantitative reverse transcription PCR. Results The AG129 mice infected with dengue virus showed marked increase in the production of plasma NS1, which was detectable on day 1 post infection, peaked on day 3 post-infection and started to decline from day 5 post infection. The infection also caused splenomegaly. Twenty-four compounds were identified in the freeze-dried CPLJ. Oral treatment with 500 mg/kg/day and 1000 mg/kg/day of freeze-dried CPLJ did not affect the plasma NS1 and dengue viral RNA levels. However, the morbidity level of infected AG129 mice were slightly decreased when treated with freeze-dried CPLJ. Conclusion Oral treatment of 500 mg/kg/day and 1000 mg/kg/day of freeze-dried CPLJ at the onset of viremia did not affect the plasma NS1 and viral RNA levels in AG129 mice infected with non-mouse adapted New Guinea C strain dengue virus. Electronic supplementary material The online version of this article (10.1186/s12906-018-2390-7) contains supplementary material, which is available to authorized users.
Collapse
|
208
|
Abstract
Arthropod-borne flaviviruses are important human pathogens that cause a diverse range of clinical conditions, including severe hemorrhagic syndromes, neurological complications and congenital malformations. Consequently, there is an urgent need to develop safe and effective vaccines, a process requiring better understanding of the immunological mechanisms involved during infection. Decades of research suggest a paradoxical role of the immune response against flaviviruses: although the immune response is crucial for the control, clearance and prevention of infection, poor clinical outcomes are commonly associated with virus-specific immunity and immunopathogenesis. This relationship is further complicated by the high homology among viruses and the implication of cross-reactive immune responses in protection and pathogenesis. This Review examines the dual role of the adaptive immune response against flaviviruses, particularly emphasizing the most recent findings regarding cross-reactive T cell and antibody responses, and the effects that these concepts have on vaccine-development endeavors.
Collapse
|
209
|
Ramirez L, Betanzos A, Raya-Sandino A, González-Mariscal L, Del Angel RM. Dengue virus enters and exits epithelial cells through both apical and basolateral surfaces and perturbs the apical junctional complex. Virus Res 2018; 258:39-49. [PMID: 30278191 DOI: 10.1016/j.virusres.2018.09.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 09/17/2018] [Accepted: 09/26/2018] [Indexed: 01/06/2023]
Abstract
Dengue is the most relevant mosquito-borne viral disease in the world. It has been estimated that 390 million infections of dengue occur each year. Dengue virus (DENV) infection can be asymptomatic or can produce a self-limited febrile illness called dengue fever (DF) or a severe form of the infection called severe dengue. In some viruses, the entry and egress from cells, occur in a specific domain of polarized endothelial and epithelial cells. In this study, we investigated whether the entry and release of DENV was polarized in epithelial cells, and evaluated the effect of DENV infection on cellular junctions of epithelial cells. We used MDCK epithelial cells, which serve as an excellent model to study a functional barrier due to the presence of an apical junctional complex (AJC), and showed that entry and release of DENV from the cells, is bipolar. Additionally, we performed paracellular flux, diffusion of membrane lipid, immunofluorescence and immunoblotting assays to evaluate the integrity of the AJC during DENV infection. We observed that at later stages of infection, DENV altered the barrier function causing a decrease in the transepithelial electrical resistance and the degradation and delocalization of TJ and AJ proteins. The present study contributes to understand how DENV traverse epithelia in order to cause a productive infection, and provides insights into the mechanism of DENV pathogenesis.
Collapse
Affiliation(s)
| | - Abigail Betanzos
- Departamento de Infectómica y Patogénesis Molecular, Mexico; Conacyt, Mexico
| | - Arturo Raya-Sandino
- Departamento de Fisiología, Biofísicay Neurociencias. CINVESTAV-IPN, Mexico, D.F., Mexico
| | | | | |
Collapse
|
210
|
Castillo JA, Naranjo JS, Rojas M, Castaño D, Velilla PA. Role of Monocytes in the Pathogenesis of Dengue. Arch Immunol Ther Exp (Warsz) 2018; 67:27-40. [DOI: 10.1007/s00005-018-0525-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 09/03/2018] [Indexed: 11/29/2022]
|
211
|
Abstract
Sepsis in children is typically presumed to be bacterial in origin until proven otherwise, but frequently bacterial cultures ultimately return negative. Although viruses may be important causative agents of culture-negative sepsis worldwide, the incidence, disease burden and mortality of viral-induced sepsis is poorly elucidated. Consideration of viral sepsis is critical as its recognition carries implications on appropriate use of antibacterial agents, infection control measures, and, in some cases, specific, time-sensitive antiviral therapies. This review outlines our current understanding of viral sepsis in children and addresses its epidemiology and pathophysiology, including pathogen-host interaction during active infection. Clinical manifestation, diagnostic testing, and management options unique to viral infections will be outlined.
Collapse
Affiliation(s)
- Neha Gupta
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Robert Richter
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Stephen Robert
- Division of Pediatric Critical Care Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Michele Kong
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
212
|
Weidenfeld S, Kuebler WM. Shedding First Light on the Alveolar Epithelial Glycocalyx. Am J Respir Cell Mol Biol 2018; 59:283-284. [DOI: 10.1165/rcmb.2018-0108ed] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Sarah Weidenfeld
- Institute of PhysiologyCharité–Universitätsmedizin BerlinBerlin, Germany
| | - Wolfgang M. Kuebler
- Institute of PhysiologyCharité–Universitätsmedizin BerlinBerlin, Germany
- Keenan Research Centre for Biomedical ScienceSt. Michael’s HospitalToronto, Canada
- Department of Surgeryand
- Department of PhysiologyUniversity of TorontoToronto, Canada
| |
Collapse
|
213
|
Zika virus infection of first-trimester human placentas: utility of an explant model of replication to evaluate correlates of immune protection ex vivo. Curr Opin Virol 2018; 27:48-56. [PMID: 29172071 DOI: 10.1016/j.coviro.2017.11.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 11/09/2017] [Indexed: 01/08/2023]
Abstract
The emergence of congenital Zika virus (ZIKV) disease, with its devastating effects on the fetus, has prompted development of vaccines and examination of how ZIKV breaches the maternal-fetal barrier. Infection of placental and decidual tissue explants has demonstrated cell types at the uterine-placental interface susceptible to infection and suggests routes for transmission across the placenta and amniochorionic membrane. ZIKV replicates in proliferating Hofbauer cells within chorionic villi in placentas from severe congenital infection. Explants of anchoring villi recapitulate placental architecture and early-stage development and suggest infected Hofbauer cells disseminate virus to fetal blood vessels. ZIKV infection of explants represents a surrogate human model for evaluating protection against transmission by antibodies in vaccine recipients and passive immune formulations and novel therapeutics.
Collapse
|
214
|
Affiliation(s)
- Ingrid Fleming
- From the Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany.
| |
Collapse
|
215
|
Abstract
Why certain viruses cross the physical barrier of the human placenta but others do not is incompletely understood. Over the past 20 years, we have gained deeper knowledge of intrauterine infection and routes of viral transmission. This review focuses on human viruses that replicate in the placenta, infect the fetus, and cause birth defects, including rubella virus, varicella-zoster virus, parvovirus B19, human cytomegalovirus (CMV), Zika virus (ZIKV), and hepatitis E virus type 1. Detailed discussions include ( a) the architecture of the uterine-placental interface, ( b) studies of placental explants ex vivo that provide insights into the infection and spread of CMV and ZIKV to the fetal compartment and how these viruses undermine early development, and ( c) novel treatments and vaccines that limit viral replication and have the potential to reduce dissemination, vertical transmission and the occurrence of congenital disease.
Collapse
Affiliation(s)
- Lenore Pereira
- Department of Cell and Tissue Biology, School of Dentistry, University of California, San Francisco, California 94143, USA;
| |
Collapse
|
216
|
Glasner DR, Puerta-Guardo H, Beatty PR, Harris E. The Good, the Bad, and the Shocking: The Multiple Roles of Dengue Virus Nonstructural Protein 1 in Protection and Pathogenesis. Annu Rev Virol 2018; 5:227-253. [PMID: 30044715 DOI: 10.1146/annurev-virology-101416-041848] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Dengue virus (DENV) is the most prevalent medically important mosquito-borne virus in the world. Upon DENV infection of a host cell, DENV nonstructural protein 1 (NS1) can be found intracellularly as a monomer, associated with the cell surface as a dimer, and secreted as a hexamer into the bloodstream. NS1 plays a variety of roles in the viral life cycle, particularly in RNA replication and immune evasion of the complement pathway. Over the past several years, key roles for NS1 in the pathogenesis of severe dengue disease have emerged, including direct action of the protein on the vascular endothelium and triggering release of vasoactive cytokines from immune cells, both of which result in endothelial hyperpermeability and vascular leak. Importantly, the adaptive immune response generates a robust response against NS1, and its potential contribution to dengue vaccines is also discussed.
Collapse
Affiliation(s)
- Dustin R Glasner
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, California 94720-3370, USA; , , ,
| | - Henry Puerta-Guardo
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, California 94720-3370, USA; , , ,
| | - P Robert Beatty
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, California 94720-3370, USA; , , ,
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, California 94720-3370, USA; , , ,
| |
Collapse
|
217
|
Chen HR, Lai YC, Yeh TM. Dengue virus non-structural protein 1: a pathogenic factor, therapeutic target, and vaccine candidate. J Biomed Sci 2018; 25:58. [PMID: 30037331 PMCID: PMC6057007 DOI: 10.1186/s12929-018-0462-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 07/13/2018] [Indexed: 02/05/2023] Open
Abstract
Dengue virus (DENV) infection is the most common mosquito-transmitted viral infection. DENV infection can cause mild dengue fever or severe dengue hemorrhagic fever (DHF)/dengue shock syndrome (DSS). Hemorrhage and vascular leakage are two characteristic symptoms of DHF/DSS. However, due to the limited understanding of dengue pathogenesis, no satisfactory therapies to treat nor vaccine to prevent dengue infection are available, and the mortality of DHF/DSS is still high. DENV nonstructural protein 1 (NS1), which can be secreted in patients’ sera, has been used as an early diagnostic marker for dengue infection for many years. However, the roles of NS1 in dengue-induced vascular leakage were described only recently. In this article, the pathogenic roles of DENV NS1 in hemorrhage and vascular leakage are reviewed, and the possibility of using NS1 as a therapeutic target and vaccine candidate is discussed.
Collapse
Affiliation(s)
- Hong-Ru Chen
- The Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yen-Chung Lai
- The Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Trai-Ming Yeh
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
218
|
Secretion of Nonstructural Protein 1 of Dengue Virus from Infected Mosquito Cells: Facts and Speculations. J Virol 2018; 92:JVI.00275-18. [PMID: 29720514 DOI: 10.1128/jvi.00275-18] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Dengue virus nonstructural protein 1 (NS1) is a multifunctional glycoprotein. For decades, the notion in the field was that NS1 is secreted exclusively from vertebrate cells and not from mosquito cells. However, recent evidence shows that mosquito cells also secrete NS1 efficiently. In this review, we discuss the evidence for secretion of NS1 of dengue virus, and of other flaviviruses, from mosquito cells, differences between NS1 secreted from mosquito and NS1 secreted from vertebrate cells, and possible roles of soluble NS1 in the insect flavivirus vector.
Collapse
|
219
|
Nunes PCG, Nogueira RMR, Heringer M, Chouin-Carneiro T, Damasceno Dos Santos Rodrigues C, de Filippis AMB, Lima MDRQ, Dos Santos FB. NS1 Antigenemia and Viraemia Load: Potential Markers of Progression to Dengue Fatal Outcome? Viruses 2018; 10:E326. [PMID: 29903980 PMCID: PMC6024368 DOI: 10.3390/v10060326] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 02/22/2018] [Accepted: 03/01/2018] [Indexed: 01/29/2023] Open
Abstract
Dengue is a worldwide problem characterized by a multifactorial pathogenesis. Considering the viral components, it is known that high viremia or high levels of the secreted nonstructural protein 1 (NS1) may be associated with a more severe disease. We aimed to characterize the NS1 antigenemia and viremia in dengue fatal and non-fatal cases, as potential markers of progression to a fatal outcome. NS1 antigenemia and viremia were determined in Brazilian dengue fatal cases (n = 40) and non-fatal cases (n = 40), representative of the four dengue virus (DENV) serotypes. Overall, the fatal cases presented higher NS1 levels and viremia. Moreover, the fatal cases from secondary infections showed significantly higher NS1 levels than the non-fatal ones. Here, irrespective of the disease outcome, DENV-1 cases presented higher NS1 levels than the other serotypes. However, DENV-2 and DENV-4 fatal cases had higher NS1 antigenemia than the non-fatal cases with the same serotype. The viremia in the fatal cases was higher than in the non-fatal ones, with DENV-3 and DENV-4 presenting higher viral loads. Viral components, such as NS1 and viral RNA, may be factors influencing the disease outcome. However, the host immune status, comorbidities, and access to adequate medical support cannot be ruled out as interfering in the disease outcome.
Collapse
Affiliation(s)
- Priscila Conrado Guerra Nunes
- Viral Immunology Laboratory (LIV), Oswaldo Cruz Institute-FIOCRUZ, Avenida Brasil, 4365. Manguinhos, Rio de Janeiro 21040-360, Brazil.
- Flavivirus Laboratory (LABFLA), Oswaldo Cruz Institute-FIOCRUZ, Avenida Brasil, 4365. Manguinhos, Rio de Janeiro 21040-360, Brazil.
| | - Rita Maria Ribeiro Nogueira
- Flavivirus Laboratory (LABFLA), Oswaldo Cruz Institute-FIOCRUZ, Avenida Brasil, 4365. Manguinhos, Rio de Janeiro 21040-360, Brazil.
| | - Manoela Heringer
- Viral Immunology Laboratory (LIV), Oswaldo Cruz Institute-FIOCRUZ, Avenida Brasil, 4365. Manguinhos, Rio de Janeiro 21040-360, Brazil.
| | - Thaís Chouin-Carneiro
- Viral Immunology Laboratory (LIV), Oswaldo Cruz Institute-FIOCRUZ, Avenida Brasil, 4365. Manguinhos, Rio de Janeiro 21040-360, Brazil.
- Hematozoa Transmittors Mosquitoes Laboratory, Oswaldo Cruz Institute, Rio de Janeiro 21040-360, Brazil.
| | | | - Ana Maria Bispo de Filippis
- Flavivirus Laboratory (LABFLA), Oswaldo Cruz Institute-FIOCRUZ, Avenida Brasil, 4365. Manguinhos, Rio de Janeiro 21040-360, Brazil.
| | - Monique da Rocha Queiroz Lima
- Viral Immunology Laboratory (LIV), Oswaldo Cruz Institute-FIOCRUZ, Avenida Brasil, 4365. Manguinhos, Rio de Janeiro 21040-360, Brazil.
| | - Flávia Barreto Dos Santos
- Viral Immunology Laboratory (LIV), Oswaldo Cruz Institute-FIOCRUZ, Avenida Brasil, 4365. Manguinhos, Rio de Janeiro 21040-360, Brazil.
| |
Collapse
|
220
|
Dogné S, Flamion B, Caron N. Endothelial Glycocalyx as a Shield Against Diabetic Vascular Complications: Involvement of Hyaluronan and Hyaluronidases. Arterioscler Thromb Vasc Biol 2018; 38:1427-1439. [PMID: 29880486 PMCID: PMC6039403 DOI: 10.1161/atvbaha.118.310839] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 05/21/2018] [Indexed: 12/24/2022]
Abstract
The endothelial glycocalyx (EG), which covers the apical surface of the endothelial cells and floats into the lumen of the vessels, is a key player in vascular integrity and cardiovascular homeostasis. The EG is composed of PGs (proteoglycans), glycoproteins, glycolipids, and glycosaminoglycans, in particular hyaluronan (HA). HA seems to be implicated in most of the functions described for EG such as creating a space between blood and the endothelium, controlling vessel permeability, restricting leukocyte and platelet adhesion, and allowing an appropriate endothelial response to flow variation through mechanosensing. The amount of HA in the EG may be regulated by HYAL (hyaluronidase) 1, the most active somatic hyaluronidase. HYAL1 seems enriched in endothelial cells through endocytosis from the bloodstream. The role of the other main somatic hyaluronidase, HYAL2, in the EG is uncertain. Damage to the EG, accompanied by shedding of one or more of its components, is an early sign of various pathologies including diabetes mellitus. Shedding increases the blood or plasma concentration of several EG components, such as HA, heparan sulfate, and syndecan. The plasma levels of these molecules can then be used as sensitive markers of EG degradation. This has been shown in type 1 and type 2 diabetic patients. Recent experimental studies suggest that preserving the size and amount of EG HA in the face of diabetic insults could be a useful novel therapeutic strategy to slow diabetic complications. One way to achieve this goal, as suggested by a murine model of HYAL1 deficiency, may be to inhibit the function of HYAL1. The same approach may succeed in other pathological situations involving endothelial dysfunction and EG damage.
Collapse
Affiliation(s)
- Sophie Dogné
- From the Molecular Physiology Research Unit-URPhyM, Namur Research Institute for Life Sciences (NARILIS), University of Namur (Unamur), Belgium.
| | - Bruno Flamion
- From the Molecular Physiology Research Unit-URPhyM, Namur Research Institute for Life Sciences (NARILIS), University of Namur (Unamur), Belgium
| | - Nathalie Caron
- From the Molecular Physiology Research Unit-URPhyM, Namur Research Institute for Life Sciences (NARILIS), University of Namur (Unamur), Belgium
| |
Collapse
|
221
|
Keramagi AR, Skariyachan S. Prediction of binding potential of natural leads against the prioritized drug targets of chikungunya and dengue viruses by computational screening. 3 Biotech 2018; 8:274. [PMID: 29868312 PMCID: PMC5971020 DOI: 10.1007/s13205-018-1303-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 05/22/2018] [Indexed: 01/07/2023] Open
Abstract
The current study aimed to assess the binding potential of herbal lead molecules against the prioritized molecular targets of chikungunya virus (CHIKV) and dengue virus (DENV) by computational virtual screening and suggests a novel therapeutic intervention. Based on the metabolic pathway analysis and virulent functions, the non-structural and envelop proteins present in CHIKV and DENV were identified as putative drug targets. The structures of the protein not available in their native forms were computationally predicted by homology modeling. The lead compounds from 43 herbal sources were screened and their drug likeliness and pharmacokinetics properties were computationally predicted. The binding potential of selected phytoligands against the prioritized drug targets were analyzed by molecular docking studies. This study revealed that Kaempferol (3,5,7-trihydroxy-2-(4-hydroxyphenyl)chromen-4-one) and Chymopain (disodium;4,5-dihydroxybenzene-1,3-disulfonate), natural flavonols present in Carica papaya and Gossypetin (3, 5, 7, 8, 3', 4'-hexahydroxyflavone), a natural flavonoid available in Hibiscus sabdariffa were demonstrated promising good binding potential with minimum binding energy (kcal/mol) and maximum stabilizing interactions to the putative drug targets of CHIKV and DENV. The selected lead molecules demonstrated ideal drug likeliness, ADMET (adsorption, distribution, excretion, metabolism and toxicity) features required for the drug development. The molecular docking studies suggested that the presence of these compounds probably responsible for the antiviral properties of Carica papaya, which was traditionally known as therapeutic remedy for dengue viral infections. This study provides profound insight for the experimental validation of the applied approach and industrial scale-up of the suggested herbal lead molecules as promising lead candidates against CHIKV and DENV infections.
Collapse
Affiliation(s)
- Ambika R. Keramagi
- Department of Biotechnology, Dayananda Sagar College of Engineering, Bangalore, Karnataka India
| | - Sinosh Skariyachan
- Department of Biotechnology, Dayananda Sagar College of Engineering, Bangalore, Karnataka India
- Visvesvaraya Technological University, Belagavi, India
| |
Collapse
|
222
|
Anupriya MG, Singh S, Hulyalkar NV, Sreekumar E. Sphingolipid signaling modulates trans-endothelial cell permeability in dengue virus infected HMEC-1 cells. Prostaglandins Other Lipid Mediat 2018; 136:44-54. [PMID: 29733947 DOI: 10.1016/j.prostaglandins.2018.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 03/01/2018] [Accepted: 05/03/2018] [Indexed: 12/07/2022]
Abstract
Dengue has emerged as a major mosquito-borne disease in the tropics and subtropics. In severe dengue, enhanced microvascular endothelial permeability leads to plasma leakage. Direct dengue virus (DENV) infection in human microvascular endothelial cells (HMEC-1) can enhance trans-endothelial leakage. Using a microarray-based analysis, we identified modulation of key endothelial cell signaling pathways in DENV-infected HMEC-1 cells. One among them was the sphingolipid pathway that regulates vascular barrier function. Sphingosine-1-phosphate receptor 2 (S1PR2) and S1PR5 showed significant up-regulation in the microarray data. In DENV-infected cells, the kinetics of S1PR2 transcript expression and enhanced in vitro trans-endothelial permeability showed a correlation. We also observed an internalization and cytoplasmic translocation of VE-Cadherin, a component of adherens junctions (AJ), upon infection indicating AJ disassembly. Further, inhibition of S1PR2 signaling by a specific pharmacological inhibitor prevented translocation of VE-Cadherin, thus helping AJ maintenance, and abrogated DENV-induced trans-endothelial leakage. Our results show that sphingolipid signaling, especially that involving S1PR2, plays a critical role in vascular leakage in dengue.
Collapse
Affiliation(s)
- M G Anupriya
- Molecular Virology laboratory, Rajiv Gandhi Centre for Biotechnology (RGCB), Thycaud P.O., Thiruvananthapuram, 695014, Kerala, India; Research Scholar, University of Kerala, India
| | - Sneha Singh
- Molecular Virology laboratory, Rajiv Gandhi Centre for Biotechnology (RGCB), Thycaud P.O., Thiruvananthapuram, 695014, Kerala, India; Research Scholar, University of Kerala, India
| | - Neha Vijay Hulyalkar
- Molecular Virology laboratory, Rajiv Gandhi Centre for Biotechnology (RGCB), Thycaud P.O., Thiruvananthapuram, 695014, Kerala, India
| | - Easwaran Sreekumar
- Molecular Virology laboratory, Rajiv Gandhi Centre for Biotechnology (RGCB), Thycaud P.O., Thiruvananthapuram, 695014, Kerala, India.
| |
Collapse
|
223
|
Agelidis AM, Hadigal SR, Jaishankar D, Shukla D. Viral Activation of Heparanase Drives Pathogenesis of Herpes Simplex Virus-1. Cell Rep 2018; 20:439-450. [PMID: 28700944 DOI: 10.1016/j.celrep.2017.06.041] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 05/26/2017] [Accepted: 06/16/2017] [Indexed: 12/28/2022] Open
Abstract
Herpes simplex virus-1 (HSV-1) causes lifelong recurrent pathologies without a cure. How infection by HSV-1 triggers disease processes, especially in the immune-privileged avascular human cornea, remains a major unresolved puzzle. It has been speculated that a cornea-resident molecule must tip the balance in favor of pro-inflammatory and pro-angiogenic conditions observed with herpetic, as well as non-herpetic, ailments of the cornea. Here, we demonstrate that heparanase (HPSE), a host enzyme, is the molecular trigger for multiple pathologies associated with HSV-1 infection. In human corneal epithelial cells, HSV-1 infection upregulates HPSE in a manner dependent on HSV-1 infected cell protein 34.5. HPSE then relocates to the nucleus to regulate cytokine production, inhibits wound closure, enhances viral spread, and thus generates a toxic local environment. Overall, our findings implicate activated HPSE as a driver of viral pathogenesis and call for further attention to this host protein in infection and other inflammatory disorders.
Collapse
Affiliation(s)
- Alex M Agelidis
- Ocular Virology Laboratory, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1855 West Taylor Street, M/C 648, Chicago, IL 60612, USA; Department of Microbiology and Immunology, College of Medicine, E-704 Medical Sciences Building, University of Illinois at Chicago, 835 South Wolcott Avenue, M/C 790, Chicago, IL 60612, USA
| | - Satvik R Hadigal
- Ocular Virology Laboratory, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1855 West Taylor Street, M/C 648, Chicago, IL 60612, USA
| | - Dinesh Jaishankar
- Ocular Virology Laboratory, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1855 West Taylor Street, M/C 648, Chicago, IL 60612, USA; Department of Bioengineering, University of Illinois at Chicago, 851 South Morgan Street, M/C 063, Chicago, IL 60607, USA
| | - Deepak Shukla
- Ocular Virology Laboratory, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1855 West Taylor Street, M/C 648, Chicago, IL 60612, USA; Department of Microbiology and Immunology, College of Medicine, E-704 Medical Sciences Building, University of Illinois at Chicago, 835 South Wolcott Avenue, M/C 790, Chicago, IL 60612, USA; Department of Bioengineering, University of Illinois at Chicago, 851 South Morgan Street, M/C 063, Chicago, IL 60607, USA.
| |
Collapse
|
224
|
Chen HR, Chao CH, Liu CC, Ho TS, Tsai HP, Perng GC, Lin YS, Wang JR, Yeh TM. Macrophage migration inhibitory factor is critical for dengue NS1-induced endothelial glycocalyx degradation and hyperpermeability. PLoS Pathog 2018; 14:e1007033. [PMID: 29702687 PMCID: PMC6044858 DOI: 10.1371/journal.ppat.1007033] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 07/13/2018] [Accepted: 04/16/2018] [Indexed: 12/22/2022] Open
Abstract
Vascular leakage is one of the salient characteristics of severe dengue. Nonstructural protein 1 (NS1) of dengue virus (DENV) can stimulate endothelial cells to secrete endothelial hyperpermeability factor, macrophage migration inhibitory factor (MIF), and the glycocalyx degradation factor heparanase 1 (HPA-1). However, it is unclear whether MIF is directly involved in NS1-induced glycocalyx degradation. In this study, we observed that among NS1, MIF and glycocalyx degradation-related molecules, the HPA-1, metalloproteinase 9 (MMP-9) and syndecan 1 (CD138) serum levels were all increased in dengue patients, and only NS1 and MIF showed a positive correlation with the CD138 level in severe patients. To further characterize and clarify the relationship between MIF and CD138, we used recombinant NS1 to stimulate human cells in vitro and challenge mice in vivo. Our tabulated results suggested that NS1 stimulation could induce human endothelial cells to secrete HPA-1 and immune cells to secrete MMP-9, resulting in endothelial glycocalyx degradation and hyperpermeability. Moreover, HPA-1, MMP-9, and CD138 secretion after NS1 stimulation was blocked by MIF inhibitors or antibodies both in vitro and in mice. Taken together, these results suggest that MIF directly engages in dengue NS1-induced glycocalyx degradation and that targeting MIF may represent a possible therapeutic approach for preventing dengue-induced vascular leakage.
Collapse
Affiliation(s)
- Hong-Ru Chen
- The Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
| | - Chiao-Hsuan Chao
- The Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
| | - Ching-Chuan Liu
- Department of Pediatrics, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
| | - Tzong-Shiann Ho
- Department of Pediatrics, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
| | - Huey-Pin Tsai
- Department of Pathology, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
| | - Guey-Chuen Perng
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
| | - Yee-Shin Lin
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
| | - Jen-Ren Wang
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
| | - Trai-Ming Yeh
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
| |
Collapse
|
225
|
Bøe OW, Sveen K, Børset M, Druey KM. Raised Serum Levels of Syndecan-1 (CD138), in a Case of Acute Idiopathic Systemic Capillary Leak Syndrome (SCLS) (Clarkson's Disease). AMERICAN JOURNAL OF CASE REPORTS 2018; 19:176-182. [PMID: 29449526 PMCID: PMC5823032 DOI: 10.12659/ajcr.906514] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Patient: Female, 49 Final Diagnosis: Systemic capillary leak syndrome (SCLS) Symptoms: Hypotension Medication: — Clinical Procedure: None Specialty: Allergology
Collapse
Affiliation(s)
- Ole Wilhelm Bøe
- Department of Medical Biochemistry, Innlandet Hospital Trust, Lillehammer, Norway
| | - Kjell Sveen
- Department of Medical Biochemistry, Innlandet Hospital Trust, Lillehammer, Norway
| | - Magne Børset
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Immunology and Transfusion Medicine, St. Olav's University Hospital, Trondheim, Norway
| | - Kirk M Druey
- Molecular Signal Transduction Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases/National Institutes of Health (NIAID/NIH), Bethesda, MD, USA
| |
Collapse
|
226
|
Transcytosis Involvement in Transport System and Endothelial Permeability of Vascular Leakage during Dengue Virus Infection. Viruses 2018; 10:v10020069. [PMID: 29419739 PMCID: PMC5850376 DOI: 10.3390/v10020069] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 01/19/2018] [Accepted: 02/01/2018] [Indexed: 12/19/2022] Open
Abstract
The major role of endothelial cells is to maintain homeostasis of vascular permeability and to preserve the integrity of vascular vessels to prevent fluid leakage. Properly functioning endothelial cells promote physiological balance and stability for blood circulation and fluid components. A monolayer of endothelial cells has the ability to regulate paracellular and transcellular pathways for transport proteins, solutes, and fluid. In addition to the paracellular pathway, the transcellular pathway is another route of endothelial permeability that mediates vascular permeability under physiologic conditions. The transcellular pathway was found to be associated with an assortment of disease pathogeneses. The clinical manifestation of severe dengue infection in humans is vascular leakage and hemorrhagic diatheses. This review explores and describes the transcellular pathway, which is an alternate route of vascular permeability during dengue infection that corresponds with the pathologic finding of intact tight junction. This pathway may be the route of albumin transport that causes endothelial dysfunction during dengue virus infection.
Collapse
|
227
|
Watterson D, Modhiran N, Muller DA, Stacey KJ, Young PR. Plugging the Leak in Dengue Shock. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1062:89-106. [PMID: 29845527 DOI: 10.1007/978-981-10-8727-1_7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Recent structural and functional advances provide fresh insight into the biology of the dengue virus non-structural protein, NS1 and suggest new avenues of research. The work of our lab and others have shown that the secreted, hexameric form of NS1 has a systemic toxic effect, inducing inflammatory cytokines and acting directly on endothelial cells to produce the hallmark of dengue disease, vascular leak. We also demonstrated that NS1 exerts its toxic activity through recognition by the innate immune receptor TLR4, mimicking the bacterial endotoxin LPS. This monograph covers the background underpinning these new findings and discusses new avenues for antiviral and vaccine intervention.
Collapse
Affiliation(s)
- Daniel Watterson
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia.
| | - Naphak Modhiran
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - David A Muller
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Katryn J Stacey
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Paul R Young
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
228
|
Sieve I, Münster-Kühnel AK, Hilfiker-Kleiner D. Regulation and function of endothelial glycocalyx layer in vascular diseases. Vascul Pharmacol 2018; 100:26-33. [DOI: 10.1016/j.vph.2017.09.002] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 09/07/2017] [Accepted: 09/08/2017] [Indexed: 12/23/2022]
|
229
|
Giraldo MI, Vargas-Cuartas O, Gallego-Gomez JC, Shi PY, Padilla-Sanabria L, Castaño-Osorio JC, Rajsbaum R. K48-linked polyubiquitination of dengue virus NS1 protein inhibits its interaction with the viral partner NS4B. Virus Res 2017; 246:1-11. [PMID: 29294313 DOI: 10.1016/j.virusres.2017.12.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 12/22/2017] [Accepted: 12/29/2017] [Indexed: 01/08/2023]
Abstract
Dengue virus (DENV) is a member of the Flaviviridae family, which is transmitted to mammalian species through arthropods, and causes dengue fever or severe dengue fever in humans. The DENV genome encodes for multiple nonstructural (NS) proteins including NS1. NS1 plays an essential role in replication by interacting with other viral proteins including NS4B, however how these interactions are regulated during virus infection is not known. By using bioinformatics, mass spectrometry analysis, and co-immunoprecipitation assays, here we show that DENV-NS1 is ubiquitinated on multiples lysine residues during DENV infection, including K189, a lysine residue previously shown to be important for efficient DENV replication. Data from in vitro and cell culture experiments indicate that dengue NS1 undergoes modification with K48-linked polyubiquitin chains, which usually target proteins to the proteasome for degradation. Furthermore, ubiquitinated NS1 was detected in lysates as well as in supernatants of human and mosquito infected cells. Ubiquitin deconjugation of NS1 using the deubiquitinase OTU resulted in increased interaction with the viral protein NS4B suggesting that ubiquitinated NS1 has reduced affinity for NS4B. In support of these data, a K189R mutation on NS1, which abrogates ubiquitination on amino acid residue 189 of NS1, also increased NS1-NS4B interactions. Our work describes a new mechanism of regulation of NS1-NS4B interactions and suggests that ubiquitination of NS1 may affect DENV replication.
Collapse
Affiliation(s)
- Maria Isabel Giraldo
- Centro de Investigaciones Biomédicas, Universidad del Quindío, Cra 15 Cl 12N, Armenia, Colombia; Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA.
| | - Oscar Vargas-Cuartas
- Centro de Investigaciones Biomédicas, Universidad del Quindío, Cra 15 Cl 12N, Armenia, Colombia.
| | - Juan Carlos Gallego-Gomez
- Grupo de Medicina Molecular y de Traslación, Universidad de Antioquia, Cra. 51 D No. 62-29, Medellin, Colombia.
| | - Pei-Yong Shi
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA.
| | | | | | - Ricardo Rajsbaum
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
230
|
Oliveira ERA, Póvoa TF, Nuovo GJ, Allonso D, Salomão NG, Basílio-de-Oliveira CA, Geraldo LHM, Fonseca CG, Lima FRS, Mohana-Borges R, Paes MV. Dengue fatal cases present virus-specific HMGB1 response in peripheral organs. Sci Rep 2017; 7:16011. [PMID: 29167501 PMCID: PMC5700165 DOI: 10.1038/s41598-017-16197-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 11/08/2017] [Indexed: 12/27/2022] Open
Abstract
Dengue is an important infectious disease that presents high incidence and yields a relevant number of fatal cases (about 20,000) every year worldwide. Despite its epidemiological relevance, there are many knowledge gaps concerning dengue pathogenesis, especially with regards to the circumstances that drive a mild clinical course to a severe disease. In this work, we investigated the participation of high mobility group box 1 (HMGB1), an important modulator of inflammation, in dengue fatal cases. Histopathological and ultrastructural analyses revealed that liver, lung and heart post-mortem samples were marked by tissue abnormalities, such as necrosis and apoptotic cell death. These observations go in line with an HMGB1-mediated response and raised concerns regarding the participation of this cytokine in promoting/perpetuating inflammation in severe dengue. Further experiments of immunohistochemistry (IHC) showed increased expression of cytoplasmic HMGB1 in dengue-extracted tissues when compared to non-dengue controls. Co-staining of DENV RNA and HMGB1 in the host cell cytoplasm, as found by in situ hybridization and IHC, confirmed the virus specific induction of the HMGB1-mediated response in these peripheral tissues. This report brings the first in-situ evidence of the participation of HMGB1 in severe dengue and highlights novel considerations in the development of dengue immunopathogenesis.
Collapse
Affiliation(s)
- Edson R A Oliveira
- Laboratóio de Modelagem Molecular, Instituto de Química Orgânica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | | | - Gerard J Nuovo
- Ohio State University Comprehensive Cancer Center, Columbus, Ohio, United States of America
- Phylogeny Inc, Powell, Ohio, United States of America
| | - Diego Allonso
- Laboratório de Genômica Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Natália G Salomão
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Carlos A Basílio-de-Oliveira
- Anatomia Patológica, Hospital Gaffrée Guinle, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luiz H M Geraldo
- Laboratório de Biologia das Células Gliais, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Celina G Fonseca
- Laboratório de Biologia das Células Gliais, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Flávia R S Lima
- Laboratório de Biologia das Células Gliais, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ronaldo Mohana-Borges
- Laboratório de Genômica Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marciano V Paes
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
231
|
Glasner DR, Ratnasiri K, Puerta-Guardo H, Espinosa DA, Beatty PR, Harris E. Dengue virus NS1 cytokine-independent vascular leak is dependent on endothelial glycocalyx components. PLoS Pathog 2017; 13:e1006673. [PMID: 29121099 PMCID: PMC5679539 DOI: 10.1371/journal.ppat.1006673] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 09/27/2017] [Indexed: 12/11/2022] Open
Abstract
Dengue virus (DENV) is the most prevalent, medically important mosquito-borne virus. Disease ranges from uncomplicated dengue to life-threatening disease, characterized by endothelial dysfunction and vascular leakage. Previously, we demonstrated that DENV nonstructural protein 1 (NS1) induces endothelial hyperpermeability in a systemic mouse model and human pulmonary endothelial cells, where NS1 disrupts the endothelial glycocalyx-like layer. NS1 also triggers release of inflammatory cytokines from PBMCs via TLR4. Here, we examined the relative contributions of inflammatory mediators and endothelial cell-intrinsic pathways. In vivo, we demonstrated that DENV NS1 but not the closely-related West Nile virus NS1 triggers localized vascular leak in the dorsal dermis of wild-type C57BL/6 mice. In vitro, we showed that human dermal endothelial cells exposed to DENV NS1 do not produce inflammatory cytokines (TNF-α, IL-6, IL-8) and that blocking these cytokines does not affect DENV NS1-induced endothelial hyperpermeability. Further, we demonstrated that DENV NS1 induces vascular leak in TLR4- or TNF-α receptor-deficient mice at similar levels to wild-type animals. Finally, we blocked DENV NS1-induced vascular leak in vivo using inhibitors targeting molecules involved in glycocalyx disruption. Taken together, these data indicate that DENV NS1-induced endothelial cell-intrinsic vascular leak is independent of inflammatory cytokines but dependent on endothelial glycocalyx components. Dengue is the most prevalent mosquito-transmitted disease in humans and a significant public health issue worldwide. Severe dengue disease is characterized by vascular leak, which can lead to shock and potentially death. We previously demonstrated that nonstructural protein 1 (NS1), the only protein secreted from dengue virus (DENV)-infected cells, can both trigger vascular leak in mice when given systemically and increase permeability in human pulmonary endothelial cells via disruption of the endothelial glycocalyx-like layer, the molecular barrier that lines blood vessels. NS1 also triggers release of inflammatory cytokines from immune cells through activation of Toll-like receptor 4 (TLR4). Here, we explored the relative contributions of inflammatory molecules and the endothelial glycocalyx-like layer to NS1-mediated pathogenesis. Using cultured human dermal endothelial cells and mice genetically deficient for TLR4 or TNF-α receptor, we showed inflammatory signaling is not required for direct DENV NS1-mediated vascular leak. In contrast, inhibition of molecules involved in glycocalyx disruption blocked DENV NS1-induced vascular leak both in mice and in vitro. Altogether, our results indicate that disruption of endothelial glycocalyx components but not production of inflammatory cytokines is required for the direct action of DENV NS1 on endothelial cells and suggest potential molecular targets for treatment of severe dengue disease.
Collapse
Affiliation(s)
- Dustin R. Glasner
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, CA, United States of America
| | - Kalani Ratnasiri
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, CA, United States of America
| | - Henry Puerta-Guardo
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, CA, United States of America
| | - Diego A. Espinosa
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, CA, United States of America
| | - P. Robert Beatty
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, CA, United States of America
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, CA, United States of America
- * E-mail:
| |
Collapse
|
232
|
Duyen HTL, Cerny D, Trung DT, Pang J, Velumani S, Toh YX, Qui PT, Hao NV, Simmons C, Haniffa M, Wills B, Fink K. Skin dendritic cell and T cell activation associated with dengue shock syndrome. Sci Rep 2017; 7:14224. [PMID: 29079750 PMCID: PMC5660158 DOI: 10.1038/s41598-017-14640-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 10/12/2017] [Indexed: 11/17/2022] Open
Abstract
The pathogenesis of severe dengue remains unclear, particularly the mechanisms underlying the plasma leakage that results in hypovolaemic shock in a small proportion of individuals. Maximal leakage occurs several days after peak viraemia implicating immunological pathways. Skin is a highly vascular organ and also an important site of immune reactions with a high density of dendritic cells (DCs), macrophages and T cells. We obtained skin biopsies and contemporaneous blood samples from patients within 24 hours of onset of dengue shock syndrome (DSS), and from healthy controls. We analyzed cell subsets by flow cytometry, and soluble mediators and antibodies by ELISA; the percentage of migratory CD1a+ dermal DCs was significantly decreased in the DSS patients, and skin CD8+ T cells were activated, but there was no accumulation of dengue-specific antibodies. Inflammatory monocytic cells were not observed infiltrating the skin of DSS cases on whole-mount histology, although CD14dim cells disappeared from blood.
Collapse
Affiliation(s)
- Huynh Thi Le Duyen
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | - Daniela Cerny
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Dinh The Trung
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | - Jassia Pang
- Biological Resource Centre (BRC), Singapore, Singapore
| | - Sumathy Velumani
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore
| | - Ying Xiu Toh
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore
| | - Phan Tu Qui
- Hospital for Tropical Diseases, 764 Vo Van Kiet, Ho Chi Minh City, Vietnam
| | - Nguyen Van Hao
- Hospital for Tropical Diseases, 764 Vo Van Kiet, Ho Chi Minh City, Vietnam.,University of Medicine and Pharmacy of Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Cameron Simmons
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam.,Department of Microbiology and Immunology, Peter Doherty Institute, University of Melbourne, Melbourne, Australia
| | - Muzlifah Haniffa
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Bridget Wills
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam. .,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom.
| | - Katja Fink
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore. .,School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
233
|
Kaufmann SHE, Dorhoi A, Hotchkiss RS, Bartenschlager R. Host-directed therapies for bacterial and viral infections. Nat Rev Drug Discov 2017; 17:35-56. [PMID: 28935918 PMCID: PMC7097079 DOI: 10.1038/nrd.2017.162] [Citation(s) in RCA: 479] [Impact Index Per Article: 59.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Host-directed therapy (HDT) is a novel approach in the field of anti-infectives for overcoming antimicrobial resistance. HDT aims to interfere with host cell factors that are required by a pathogen for replication or persistence, to enhance protective immune responses against a pathogen, to reduce exacerbated inflammation and to balance immune reactivity at sites of pathology. HDTs encompassing the 'shock and kill' strategy or the delivery of recombinant interferons are possible approaches to treat HIV infections. HDTs that suppress the cytokine storm that is induced by some acute viral infections represent a promising concept. In tuberculosis, HDT aims to enhance the antimicrobial activities of phagocytes through phagosomal maturation, autophagy and antimicrobial peptides. HDTs also curtail inflammation through interference with soluble (such as eicosanoids or cytokines) or cellular (co-stimulatory molecules) factors and modulate granulomas to allow the access of antimicrobials or to restrict tissue damage. Numerous parallels between the immunological abnormalities that occur in sepsis and cancer indicate that the HDTs that are effective in oncology may also hold promise in sepsis. Advances in immune phenotyping, genetic screening and biosignatures will help to guide drug therapy to optimize the host response. Combinations of canonical pathogen-directed drugs and novel HDTs will become indispensable in treating emerging infections and diseases caused by drug-resistant pathogens.
Host-directed therapy (HDT) aims to interfere with host cell factors that are required by a pathogen for replication or persistence. In this Review, Kaufmannet al. describe recent progress in the development of HDTs for the treatment of viral and bacterial infections and the challenges in bringing these approaches to the clinic. Despite the recent increase in the development of antivirals and antibiotics, antimicrobial resistance and the lack of broad-spectrum virus-targeting drugs are still important issues and additional alternative approaches to treat infectious diseases are urgently needed. Host-directed therapy (HDT) is an emerging approach in the field of anti-infectives. The strategy behind HDT is to interfere with host cell factors that are required by a pathogen for replication or persistence, to enhance protective immune responses against a pathogen, to reduce exacerbated inflammation and to balance immune reactivity at sites of pathology. Although HDTs encompassing interferons are well established for the treatment of chronic viral hepatitis, novel strategies aimed at the functional cure of persistent viral infections and the development of broad-spectrum antivirals against emerging viruses seem to be crucial. In chronic bacterial infections, such as tuberculosis, HDT strategies aim to enhance the antimicrobial activities of phagocytes and to curtail inflammation through interference with soluble factors (such as eicosanoids and cytokines) or cellular factors (such as co-stimulatory molecules). This Review describes current progress in the development of HDTs for viral and bacterial infections, including sepsis, and the challenges in bringing these new approaches to the clinic.
Collapse
Affiliation(s)
- Stefan H E Kaufmann
- Department of Immunology, Max Planck Institute for Infection Biology, Charitéplatz 1, 10117 Berlin, Germany
| | - Anca Dorhoi
- Department of Immunology, Max Planck Institute for Infection Biology, Charitéplatz 1, 10117 Berlin, Germany.,Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald - Insel Riems, Germany
| | - Richard S Hotchkiss
- Departments of Anesthesiology, Medicine, and Surgery, Washington University School of Medicine, St Louis, 660 S. Euclid, St Louis, Missouri 63110, USA
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany.,German Center for Infection Research (DZIF), Heidelberg Partner Site, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany.,Division of Virus-Associated Carcinogenesis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| |
Collapse
|
234
|
Emerging Roles of Heparanase in Viral Pathogenesis. Pathogens 2017; 6:pathogens6030043. [PMID: 28927006 PMCID: PMC5618000 DOI: 10.3390/pathogens6030043] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 09/14/2017] [Accepted: 09/15/2017] [Indexed: 01/10/2023] Open
Abstract
Heparan sulfate (HS) is ubiquitously expressed on mammalian cells. It is a polysaccharide that binds growth factors, cytokines, and chemokines, and thereby controls several important physiological functions. Ironically, many human pathogens including viruses interact with it for adherence to host cells. HS functions can be regulated by selective modifications and/or selective cleavage of the sugar chains from the cell surface. In mammals, heparanase (HPSE) is the only known enzyme capable of regulating HS functions via a selective endoglycosidase activity that cleaves polymeric HS chains at internal sites. During homeostasis, HPSE expression and its endoglycosidase activity are tightly regulated; however, under stress conditions, including infection, its expression may be upregulated, which could contribute directly to the onset of several disease pathologies. Here we focus on viral infections exemplified by herpes simplex virus, dengue virus, human papillomavirus, respiratory syncytial virus, adenovirus, hepatitis C virus, and porcine respiratory and reproductive syncytial virus to summarize recent advances in understanding the highly significant, but emerging roles, of the enzyme HPSE in viral infection, spread and pathogenesis.
Collapse
|
235
|
Asymmetric synthesis and evaluation of epoxy-α-acyloxycarboxamides as selective inhibitors of cathepsin L. Bioorg Med Chem 2017; 25:4620-4627. [DOI: 10.1016/j.bmc.2017.06.048] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 06/22/2017] [Accepted: 06/27/2017] [Indexed: 01/01/2023]
|
236
|
Alcalá AC, Hernández-Bravo R, Medina F, Coll DS, Zambrano JL, del Angel RM, Ludert JE. The dengue virus non-structural protein 1 (NS1) is secreted from infected mosquito cells via a non-classical caveolin-1-dependent pathway. J Gen Virol 2017; 98:2088-2099. [DOI: 10.1099/jgv.0.000881] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Affiliation(s)
- Ana C. Alcalá
- Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, Mexico
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), CDMX, Mexico
| | - Raiza Hernández-Bravo
- Exploration and Production Research Office, Mexican Petroleum Institute (IMP), Mexico City, Mexico
| | - Fernando Medina
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), CDMX, Mexico
| | - David S. Coll
- Center of Chemistry, Venezuelan Institute for Scientific Research (IVIC), Caracas, Venezuela
| | - Jose L. Zambrano
- Center of Microbiology and Cell Biology, Venezuelan Institute for Scientific Research (IVIC), Caracas, Venezuela
| | - Rosa M. del Angel
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), CDMX, Mexico
| | - Juan E. Ludert
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), CDMX, Mexico
| |
Collapse
|
237
|
Antibodies Against Modified NS1 Wing Domain Peptide Protect Against Dengue Virus Infection. Sci Rep 2017; 7:6975. [PMID: 28765561 PMCID: PMC5539099 DOI: 10.1038/s41598-017-07308-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 06/26/2017] [Indexed: 01/10/2023] Open
Abstract
Dengue is the most common mosquito-transmitted viral infection for which an improved vaccine is still needed. Although nonstructural protein-1 (NS1) immunization can protect mice against dengue infection, molecular mimicry between NS1 and host proteins makes NS1-based vaccines challenging to develop. Based on the epitope recognized by the anti-NS1 monoclonal Ab (mAb) 33D2 which recognizes a conserved NS1 wing domain (NS1-WD) region but not host proteins, we synthesized a modified NS1-WD peptide to immunize mice. We found that both mAb 33D2 and modified NS1-WD peptide immune sera could induce complement-dependent lysis of dengue-infected but not un-infected cells in vitro. Furthermore, either active immunization with the modified NS1-WD peptide or passive transfer of mAb 33D2 efficiently protected mice against all serotypes of dengue virus infection. More importantly, dengue patients with more antibodies recognized the modified NS1-WD peptide had less severe disease. Thus, the modified NS1-WD peptide is a promising dengue vaccine candidate.
Collapse
|
238
|
Zhu S, Luo H, Liu H, Ha Y, Mays ER, Lawrence RE, Winkelmann E, Barrett AD, Smith SB, Wang M, Wang T, Zhang W. p38MAPK plays a critical role in induction of a pro-inflammatory phenotype of retinal Müller cells following Zika virus infection. Antiviral Res 2017; 145:70-81. [PMID: 28739278 DOI: 10.1016/j.antiviral.2017.07.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 07/19/2017] [Accepted: 07/21/2017] [Indexed: 01/17/2023]
Abstract
Zika virus (ZIKV) infection has been associated with ocular abnormalities such as chorioretinal atrophy, optic nerve abnormalities, posterior uveitis and idiopathic maculopathy. Yet our knowledge about ZIKV infection in retinal cells and its potential contribution to retinal pathology is still very limited. Here we found that primary Müller cells, the principal glial cells in the retina, expressed a high level of ZIKV entry cofactor AXL gene and were highly permissive to ZIKV infection. In addition, ZIKV-infected Müller cells exhibited a pro-inflammatory phenotype and produced many inflammatory and growth factors. While a number of inflammatory signaling pathways such as ERK, p38MAPK, NF-κB, JAK/STAT3 and endoplasmic reticulum stress were activated after ZIKV infection, inhibition of p38MAPK after ZIKV infection most effectively blocked ZIKV-induced inflammatory and growth molecules. In comparison to ZIKV, Dengue virus (DENV), another Flavivirus infected Müller cells more efficiently but induced much lower pro-inflammatory responses. These data suggest that Müller cells play an important role in ZIKV-induced ocular pathology by induction of inflammatory and growth factors in which the p38MAPK pathway has a central role. Blocking p38MAPK may provide a novel approach to control ZIKV-induced ocular inflammation.
Collapse
Affiliation(s)
- Shuang Zhu
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Huanle Luo
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Hua Liu
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, TX, 77555, USA; Center for Biomedical Engineering, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Yonju Ha
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Elizabeth R Mays
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Ryan E Lawrence
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Evandro Winkelmann
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Alan D Barrett
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA; Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Sylvia B Smith
- Cellular Biology and Anatomy, Augusta University, Augusta, GA, 30912, USA
| | - Min Wang
- FutraTech Inc., San Diego, CA, 92121, USA
| | - Tian Wang
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, 77555, USA.
| | - Wenbo Zhang
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, TX, 77555, USA; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, 77555, USA; Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA.
| |
Collapse
|
239
|
Heparanase Upregulation Contributes to Porcine Reproductive and Respiratory Syndrome Virus Release. J Virol 2017; 91:JVI.00625-17. [PMID: 28490587 DOI: 10.1128/jvi.00625-17] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 05/02/2017] [Indexed: 12/27/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) continues to cause substantial economic losses to the pig industry worldwide. Heparan sulfate (HS) is used by PRRSV for initial attachment to target cells. However, the role of HS in the late phase of PRRSV infection and the mechanism of virus release from host cells remain largely unknown. In this study, we showed that PRRSV infection caused a decrease in HS expression and upregulated heparanase, the only known enzyme capable of degrading HS. We subsequently demonstrated that the NF-κB signaling pathway and cathepsin L protease were involved in regulation of PRRSV infection-induced heparanase. In addition, we found that ablation of heparanase expression using small interfering RNA duplexes increased cell surface expression of HS and suppressed PRRSV replication and release, whereas overexpression of heparanase reduced HS surface expression and enhanced PRRSV replication and release. These data suggest that PRRSV activates NF-κB and cathepsin L to upregulate and process heparanase, and then the active heparanase cleaves HS, resulting in viral release. Our findings provide new insight into the molecular mechanism of PRRSV egress from host cells, which might help us to further understand PRRSV pathogenesis.IMPORTANCE Porcine reproductive and respiratory syndrome virus (PRRSV) causes great economic losses each year to the pig industry worldwide. The molecular mechanism of PRRSV release from host cells largely remains a mystery. In this study, we demonstrate that PRRSV activates NF-κB and cathepsin L to upregulate and process heparanase, and then the active heparanase is released to the extracellular space and exerts enzymatic activity to cleave heparan sulfate, resulting in viral release. Our findings provide new insight into the molecular mechanism of PRRSV egress from host cells, which might help us to further understand PRRSV pathogenesis.
Collapse
|
240
|
Suwarto S, Sasmono RT, Sinto R, Ibrahim E, Suryamin M. Association of Endothelial Glycocalyx and Tight and Adherens Junctions With Severity of Plasma Leakage in Dengue Infection. J Infect Dis 2017; 215:992-999. [PMID: 28453844 PMCID: PMC5407050 DOI: 10.1093/infdis/jix041] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 01/18/2017] [Indexed: 12/21/2022] Open
Abstract
Background. The role of vascular endothelial (VE) components in dengue infection with plasma leakage is unknown. Therefore, we conducted a study to determine the adjusted association of the endothelial glycocalyx layer (EGL) and tight and adherens junction markers with plasma leakage. Methods. A prospective observational study was conducted at Cipto Mangunkusumo Hospital and Persahabatan Hospital, Jakarta, Indonesia. Adult dengue patients admitted to the hospital on the third day of fever from November 2013 through August 2015 were included in the study. Multiple regression analysis was used to determine the adjusted association of the VE biomarkers with the severity of the plasma leakage. Results. A total of 103 dengue-infected patients participated in the study. In the critical phase, levels of syndecan-1 (odds ratio [OR] = 1.004; 95% confidence interval [CI] = 1.001–1.007) and chondroitin sulfate (OR = 1.157; 95% CI = 1.025–1.307) had an adjusted association with plasma leakage, whereas levels of syndecan-1 (OR = 1.004; 95% CI = 1.000–1.008) and claudin-5 (OR = 1.038; 95% CI = 1.004–1.074) had an adjusted association with severe plasma leakage. Conclusions. In dengue-infected patients, elevated levels of syndecan-1 and chondroitin sulfate are strongly associated with plasma leakage, and elevated levels of syndecan-1 and claudin-5 are strongly associated with severe plasma leakage.
Collapse
Affiliation(s)
- Suhendro Suwarto
- Division of Tropical and Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, Universitas Indonesia, Cipto Mangunkusumo National Hospital, Jakarta, Indonesia
| | | | - Robert Sinto
- Division of Tropical and Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, Universitas Indonesia, Cipto Mangunkusumo National Hospital, Jakarta, Indonesia
| | - Eppy Ibrahim
- Department of Internal Medicine, Persahabatan Hospital, Jakarta, Indonesia
| | - Maulana Suryamin
- Department of Internal Medicine, Persahabatan Hospital, Jakarta, Indonesia
| |
Collapse
|
241
|
Klein RS, Hunter CA. Protective and Pathological Immunity during Central Nervous System Infections. Immunity 2017; 46:891-909. [PMID: 28636958 PMCID: PMC5662000 DOI: 10.1016/j.immuni.2017.06.012] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/05/2017] [Accepted: 06/05/2017] [Indexed: 02/08/2023]
Abstract
The concept of immune privilege of the central nervous system (CNS) has dominated the study of inflammatory processes in the brain. However, clinically relevant models have highlighted that innate pathways limit pathogen invasion of the CNS and adaptive immunity mediates control of many neural infections. As protective responses can result in bystander damage, there are regulatory mechanisms that balance protective and pathological inflammation, but these mechanisms might also allow microbial persistence. The focus of this review is to consider the host-pathogen interactions that influence neurotropic infections and to highlight advances in our understanding of innate and adaptive mechanisms of resistance as key determinants of the outcome of CNS infection. Advances in these areas have broadened our comprehension of how the immune system functions in the brain and can readily overcome immune privilege.
Collapse
Affiliation(s)
- Robyn S Klein
- Departments of Medicine, Pathology and Immunology, Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Christopher A Hunter
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
242
|
Promiscuous viruses-how do viruses survive multiple unrelated hosts? Curr Opin Virol 2017; 23:125-129. [PMID: 28577474 DOI: 10.1016/j.coviro.2017.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 05/02/2017] [Accepted: 05/04/2017] [Indexed: 12/24/2022]
Abstract
Arthropod-borne viruses (arboviruses) require efficient replication in taxonomically divergent hosts in order to perpetuate in nature. This review discusses recent advances in our understanding of the phylogenetic position of arthropod-borne viruses relative to insect-specific viruses, which appear to be more common and ecological requirements for successful adoption of the 'arbovirus phenotype.' Several molecular and other mechanisms that permit replication in divergent hosts are also discussed.
Collapse
|
243
|
Malavige GN, Ogg GS. Pathogenesis of vascular leak in dengue virus infection. Immunology 2017; 151:261-269. [PMID: 28437586 DOI: 10.1111/imm.12748] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 03/26/2017] [Accepted: 04/17/2017] [Indexed: 12/31/2022] Open
Abstract
Endothelial dysfunction leading to vascular leak is the hallmark of severe dengue. Vascular leak typically becomes clinically evident 3-6 days after the onset of illness, which is known as the critical phase. This critical phase follows the period of peak viraemia, and lasts for 24-48 hr and usually shows rapid and complete reversal, suggesting that it is likely to occur as a result of inflammatory mediators, rather than infection of the endothelium. Cytokines such as tumour necrosis factor-α, which are known to be elevated in the critical phase of dengue, are likely to be contributing factors. Dengue NS1, a soluble viral protein, has also been shown to disrupt the endothelial glycocalyx and thus contribute to vascular leak, although there appears to be a discordance between the timing of NS1 antigenaemia and occurrence of vascular leak. In addition, many inflammatory lipid mediators are elevated in acute dengue viral infection such as platelet activating factor (PAF) and leukotrienes. Furthermore, many other inflammatory mediators such as vascular endothelial growth factor and angiopoietin-2 have been shown to be elevated in patients with dengue haemorrhagic fever, exerting their action in part by inducing the activity of phospholipases, which have diverse inflammatory effects including generation of PAF. Platelets have also been shown to significantly contribute to endothelial dysfunction by production of interleukin-1β through activation of the NLRP3 inflammasome and also by inducing production of inflammatory cytokines by monocytes. Drugs that block down-stream immunological mediator pathways such as PAF may also be beneficial in the treatment of severe disease.
Collapse
Affiliation(s)
- Gathsaurie Neelika Malavige
- Centre for Dengue Research, University of Sri Jayewardenepura, Nugegoda, Sri Lanka.,MRC Human Immunology Unit, Radcliffe Department of Medicine, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Graham S Ogg
- MRC Human Immunology Unit, Radcliffe Department of Medicine, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
244
|
Increased Serum Hyaluronic Acid and Heparan Sulfate in Dengue Fever: Association with Plasma Leakage and Disease Severity. Sci Rep 2017; 7:46191. [PMID: 28393899 PMCID: PMC5385535 DOI: 10.1038/srep46191] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 03/10/2017] [Indexed: 02/03/2023] Open
Abstract
Plasma leakage is a major pathogenic mechanism of severe dengue, but the etiology remains unclear. The association between endothelial glycocalyx integrity and vascular permeability in older adults with dengue has not been evaluated. A prospective cohort study of adults with undifferentiated fever screened for dengue by RT-PCR or NS1 antigen testing was performed. Patients were assessed daily while symptomatic and at convalescence. Serum hyaluronic acid (HA), heparan sulfate (HS) and selected cytokines (TNF-α, IL-6, IL-10) were measured on enrollment and convalescence. Patients were diagnosed as dengue fever (DF, n = 30), dengue hemorrhagic fever (DHF, n = 20) and non-dengue (ND) febrile illness (n = 11). Acute HA and HS levels were significantly higher in all dengue patients compared to ND (p = 0.0033 and p = 0.0441 respectively), but not different between DF and DHF (p = 0.3426 and p = 0.9180 respectively). Enrolment HA inversely correlated with serum albumin, protein and platelets in all dengue and DHF (p < 0.05). HA and HS in all dengue patients decreased significantly at convalescence. Serum IL-10 was significantly associated with HA in all dengue patients (p = 0.002). Serum HA and HS levels were increased in adult dengue and HA was associated with markers of disease severity. Endothelial glycocalyx damage may have a role in vascular leakage in dengue.
Collapse
|
245
|
Non-Canonical Roles of Dengue Virus Non-Structural Proteins. Viruses 2017; 9:v9030042. [PMID: 28335410 PMCID: PMC5371797 DOI: 10.3390/v9030042] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 03/06/2017] [Accepted: 03/08/2017] [Indexed: 12/15/2022] Open
Abstract
The Flaviviridae family comprises a number of human pathogens, which, although sharing structural and functional features, cause diseases with very different outcomes. This can be explained by the plurality of functions exerted by the few proteins coded by viral genomes, with some of these functions shared among members of a same family, but others being unique for each virus species. These non-canonical functions probably have evolved independently and may serve as the base to the development of specific therapies for each of those diseases. Here it is discussed what is currently known about the non-canonical roles of dengue virus (DENV) non-structural proteins (NSPs), which may account for some of the effects specifically observed in DENV infection, but not in other members of the Flaviviridae family. This review explores how DENV NSPs contributes to the physiopathology of dengue, evasion from host immunity, metabolic changes, and redistribution of cellular components during infection.
Collapse
|
246
|
Tsai JJ, Chang JS, Chang K, Chen PC, Liu LT, Ho TC, Tan SS, Chien YW, Lo YC, Perng GC. Transient Monocytosis Subjugates Low Platelet Count in Adult Dengue Patients. Biomed Hub 2017; 2:1-16. [PMID: 31988894 PMCID: PMC6945895 DOI: 10.1159/000457785] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 01/21/2017] [Indexed: 01/10/2023] Open
Abstract
Background Dengue is one of the most important vector-borne human viral diseases globally. The kinetic changes of hematological parameters of dengue in adult Taiwanese patients have seldomly been systematically investigated and characterized. Methodology/Principal Findings Serial laboratory data of 1,015 adult patients who were diagnosed with dengue virus serotype 2 (DENV2) and 3 (DENV3) infections in southern Taiwan were retrospectively examined. Prominent parameters were verified with specimens from a 2015 dengue outbreak. Higher absolute monocyte counts on day 5 in severe patients than mild fever subjects after the onset of fever was seen. The absolute number of monocytes was significantly greater in those with DENV2 than DENV3 infections in spite of subtle differences in laboratory tests. Platelet counts were lowest and activated partial thromboplastin time was highest on day 5 in patients with severe conditions. In addition, sudden downward platelet counts corresponding to a transient surge of monocytes on day 4 onward was observed. Fluorescence-activated cell sorting analysis of peripheral blood mononuclear cells obtained from acute dengue patients and experimental investigations revealed that phagocytic effects of innate immune cells contribute to thrombocytopenia in dengue patients. Conclusion Innate phagocytic cells play an essential role in low platelet counts in adult patients with dengue virus infections.
Collapse
Affiliation(s)
- Jih-Jin Tsai
- Tropical Medicine Center, Department of Internal Medicine, Tainan, Taiwan, ROC.,Division of Infectious Diseases, Department of Internal Medicine, Tainan, Taiwan, ROC.,Center for Dengue Fever Control and Research, Tainan, Taiwan, ROC.,School of Medicine, Kaohsiung Medical University, Tainan, Taiwan, ROC
| | - Jung-San Chang
- Department of Renal Care, College of Medicine, Kaohsiung Medical University, Tainan, Taiwan, ROC.,Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Tainan, Taiwan, ROC
| | - Ko Chang
- Tropical Medicine Center, Department of Internal Medicine, Tainan, Taiwan, ROC.,Division of Infectious Diseases, Department of Internal Medicine, Tainan, Taiwan, ROC.,Center for Dengue Fever Control and Research, Tainan, Taiwan, ROC.,School of Medicine, Kaohsiung Medical University, Tainan, Taiwan, ROC.,Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Tainan, Taiwan, ROC
| | - Po-Chih Chen
- Tropical Medicine Center, Department of Internal Medicine, Tainan, Taiwan, ROC.,Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Tainan, Taiwan, ROC.,Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung City, Tainan, Taiwan, ROC
| | - Li-Teh Liu
- Center for Dengue Fever Control and Research, Tainan, Taiwan, ROC.,Department of Medical Laboratory Science and Biotechnology, College of Medicine and Life Science, Chung-Hwa University of Medical Technology, Departments of Microbiology and Immunology, Tainan, Taiwan, ROC
| | - Tzu-Chuan Ho
- Departments of Microbiology and Immunology, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Sia Seng Tan
- Departments of Microbiology and Immunology, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Yu-Wen Chien
- Public Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Yu-Chih Lo
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Guey Chuen Perng
- Departments of Microbiology and Immunology, National Cheng Kung University, Tainan, Taiwan, ROC.,Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan, ROC
| |
Collapse
|
247
|
Perdomo-Celis F, Salgado DM, Narváez CF. Magnitude of viremia, antigenemia and infection of circulating monocytes in children with mild and severe dengue. Acta Trop 2017; 167:1-8. [PMID: 27986543 DOI: 10.1016/j.actatropica.2016.12.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 12/05/2016] [Accepted: 12/12/2016] [Indexed: 01/11/2023]
Abstract
Dengue is a major public health problem in tropical regions around the world. Viral and immune host factors determine the clinical courses of the infection. We analyzed the dynamics of viremia (by real-time polymerase chain reactions), antigenemia (through detection of the viral non-structural protein [NS]-1 by enzyme-linked immunosorbent assays) and the frequency of virus-infected peripheral blood mononuclear cells (PBMCs) (by multiparametric flow cytometry) in children with primary or secondary dengue virus (DENV) infection in mild to severe cases. Additionally, we evaluated the association of these factors with clinical severity and laboratory parameters. The levels of viremia and antigenemia peaked during the early days of illness and these viral parameters were correlated (rho=0.37, P=0.003). Circulating monocytes were the most naturally infected subset within the PBMCs population, with kinetics similar to those of viremia and antigenemia. The levels of viremia and antigenemia were higher in children with primary infections than in those with secondary infections (P≤0.04). Although there were no associations between the three evaluated factors and clinical severity, the levels of plasma NS1 and the frequency of dengue virus-infected monocytes correlated with prolonged coagulation times. In short, the viremia, antigenemia and infected monocytes were detected early and were not related to clinical severity. The magnitude of antigenemia and infected circulating monocytes was associated with coagulation disorders.
Collapse
Affiliation(s)
| | - Doris M Salgado
- Programa de Medicina, Facultad de Salud, Universidad Surcolombiana, Neiva, Colombia; Servicio de Pediatría, Hospital Universitario de Neiva, Neiva, Colombia
| | - Carlos F Narváez
- Programa de Medicina, Facultad de Salud, Universidad Surcolombiana, Neiva, Colombia.
| |
Collapse
|
248
|
Katzelnick LC, Coloma J, Harris E. Dengue: knowledge gaps, unmet needs, and research priorities. THE LANCET. INFECTIOUS DISEASES 2017; 17:e88-e100. [PMID: 28185868 DOI: 10.1016/s1473-3099(16)30473-x] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 08/29/2016] [Accepted: 10/18/2016] [Indexed: 01/09/2023]
Abstract
Dengue virus is a mosquito-borne pathogen that causes up to about 100 million cases of disease each year, placing a major public health, social, and economic burden on numerous low-income and middle-income countries. Major advances by investigators, vaccine developers, and affected communities are revealing new insights and enabling novel interventions and approaches to dengue prevention and control. Such research has highlighted further questions about both the basic understanding of dengue and efforts to develop new tools. In this report, the third in a Series on dengue, we discuss existing approaches to dengue diagnostics, disease prognosis, surveillance, and vector control in low-income and middle-income countries, as well as potential consequences of vaccine introduction. We also summarise current knowledge and recent insights into dengue epidemiology, immunology, and pathogenesis, and their implications for understanding natural infection and current and future vaccines.
Collapse
Affiliation(s)
- Leah C Katzelnick
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, CA, USA
| | - Josefina Coloma
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, CA, USA
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, CA, USA.
| |
Collapse
|
249
|
Sanderson RD, Elkin M, Rapraeger AC, Ilan N, Vlodavsky I. Heparanase regulation of cancer, autophagy and inflammation: new mechanisms and targets for therapy. FEBS J 2017; 284:42-55. [PMID: 27758044 PMCID: PMC5226874 DOI: 10.1111/febs.13932] [Citation(s) in RCA: 168] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 09/20/2016] [Accepted: 10/17/2016] [Indexed: 12/18/2022]
Abstract
Because of its impact on multiple biological pathways, heparanase has emerged as a major regulator of cancer, inflammation and other disease processes. Heparanase accomplishes this by degrading heparan sulfate which regulates the abundance and location of heparin-binding growth factors thereby influencing multiple signaling pathways that control gene expression, syndecan shedding and cell behavior. In addition, heparanase can act via nonenzymatic mechanisms that directly activate signaling at the cell surface. Clinical trials testing heparanase inhibitors as anticancer therapeutics are showing early signs of efficacy in patients further emphasizing the biological importance of this enzyme. This review focuses on recent developments in the field of heparanase regulation of cancer and inflammation, including the impact of heparanase on exosomes and autophagy, and novel mechanisms whereby heparanase regulates tumor metastasis, angiogenesis and chemoresistance. In addition, the ongoing development of heparanase inhibitors and their potential for treating cancer and inflammation are discussed.
Collapse
Affiliation(s)
- Ralph D. Sanderson
- Department of Pathology; Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Michael Elkin
- Sharett Oncology Institute, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Alan C. Rapraeger
- Department of Human Oncology, Wisconsin Institutes for Medical Research, Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Neta Ilan
- Cancer and Vascular Biology Research Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Israel Vlodavsky
- Cancer and Vascular Biology Research Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| |
Collapse
|
250
|
Affiliation(s)
- Rolf Hilgenfeld
- Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Lübeck, Germany.,German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems Site University of Lübeck, Lübeck, Germany
| |
Collapse
|