201
|
Pinheiro ML, Ferraz-de-Paula V, Ribeiro A, Sakai M, Bernardi MM, Palermo-Neto J. Long-term maternal separation differentially alters serum corticosterone levels and blood neutrophil activity in A/J and C57BL/6 mouse offspring. Neuroimmunomodulation 2011; 18:184-90. [PMID: 21311204 DOI: 10.1159/000323516] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Accepted: 12/02/2010] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES In this work, we searched for maternal separation effects on serum corticosterone levels and blood neutrophil activity in adult male A/J and C57BL/6 mouse offspring. METHODS 40 male A/J mice and 40 male C57BL/6 mice were divided within each strain into two groups. Mice in the maternal separation group were separated from their mothers (1 h/day) on postnatal days 0-13. Mice in the control group were left undisturbed. On postnatal day 45, blood was drawn from all mice and used to assess neutrophil activity by flow cytometry and serum corticosterone levels by radioimmunoassay. RESULTS The results showed that each mouse strain responded differently to maternal separation, but in both cases, serum corticosterone levels were affected. In both strains, adult mice that experienced maternal separation showed lower serum corticosterone levels than control mice. In relation to control mice kept together with their mothers, the levels of serum corticosterone were 72.7 and 36.36% lower in A/J and C57BL/6 mice submitted to maternal separation, respectively. The current findings showed that maternal separation increased neutrophil activity in mice after reaching adulthood. The observed effects, although in the same direction, differed between A/J and C57BL/6 mice. Maternal separation increased both the percentage and intensity of phagocytosis in C57BL/6 mice, but had no effects on A/J mice. Furthermore, maternal separation increased basal and propidium iodide-labeled Staphylococcus aureus-induced oxidative burst in A/J mice but did not affect oxidative burst in C57BL/6 mice. Finally, phorbol myristate acetate-induced oxidative burst increased in both strains. CONCLUSION These results indicate that early maternal separation increases innate immunity, most likely by modifying hypothalamus-pituitary-adrenal axis activity. This suggests that maternal separation is a good model for stress which produces long-term neuroimmune changes whatever the animal species and strain used.
Collapse
Affiliation(s)
- Milena Lobão Pinheiro
- Laboratory of Neuroimmunomodulation, Department of Pathology, School of Veterinary Medicine, University of São Paulo, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
202
|
Daoura L, Haaker J, Nylander I. Early environmental factors differentially affect voluntary ethanol consumption in adolescent and adult male rats. Alcohol Clin Exp Res 2010; 35:506-15. [PMID: 21143247 DOI: 10.1111/j.1530-0277.2010.01367.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Previous studies using the maternal separation (MS) model have shown that environmental factors early in life affect adult ethanol consumption. Prolonged MS is related to enhanced propensity for high adult ethanol intake when compared to short MS. Less is known about the environmental impact on adolescent ethanol intake. In this study, the aim was to compare establishment of voluntary ethanol consumption in adolescent and adult rats subjected to different rearing conditions. METHODS Wistar rat pups were separated from their mother 0 minutes (MS0), 15 minutes (MS15), or 360 minutes (MS360) daily during postnatal days (PNDs) 1 to 20. After weaning, the male rats were divided into two groups; rats were given free access to water, 5 and 20% ethanol at either PND 26 or 68. Ethanol was provided in 24-hour sessions three times per week for 5 weeks. RESULTS MS resulted in altered ethanol consumption patterns around the pubertal period but otherwise the rearing conditions had little impact on ethanol consumption in adolescents. In adults, the establishment of ethanol consumption was dependent on the rearing condition. The adult MS0 and MS15 rats had a stable ethanol intake, whereas the MS360 rats increased both their ethanol intake and preference over time. CONCLUSIONS With the use of intermittent access to ethanol, new data were provided, which confirm the notion that MS360 represents a risk environment related to higher ethanol intake compared to MS15. The adolescent rats had higher ethanol intake than adult rats but the consumption was independent of rearing condition. Experiences during the first three postnatal weeks thus affect the establishment of voluntary ethanol consumption differently in adolescent and adult rats. Further studies are now warranted to examine the consequences of a combination of early environmental influence and high adolescent ethanol intake.
Collapse
Affiliation(s)
- Loudin Daoura
- Department of Pharmaceutical Biosciences, Division of Pharmacology, Uppsala University, Sweden.
| | | | | |
Collapse
|
203
|
D’Andrea I, Gracci F, Alleva E, Branchi I. Early social enrichment provided by communal nest increases resilience to depression-like behavior more in female than in male mice. Behav Brain Res 2010; 215:71-6. [DOI: 10.1016/j.bbr.2010.06.030] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Revised: 06/21/2010] [Accepted: 06/25/2010] [Indexed: 11/29/2022]
|
204
|
Lucchina L, Carola V, Pitossi F, Depino AM. Evaluating the interaction between early postnatal inflammation and maternal care in the programming of adult anxiety and depression-related behaviors. Behav Brain Res 2010; 213:56-65. [DOI: 10.1016/j.bbr.2010.04.032] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Revised: 04/09/2010] [Accepted: 04/19/2010] [Indexed: 01/03/2023]
|
205
|
Monroy E, Hernández-Torres E, Flores G. Maternal separation disrupts dendritic morphology of neurons in prefrontal cortex, hippocampus, and nucleus accumbens in male rat offspring. J Chem Neuroanat 2010; 40:93-101. [DOI: 10.1016/j.jchemneu.2010.05.005] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Revised: 05/17/2010] [Accepted: 05/17/2010] [Indexed: 10/19/2022]
|
206
|
Oreland S, Gustafsson-Ericson L, Nylander I. Short- and long-term consequences of different early environmental conditions on central immunoreactive oxytocin and arginine vasopressin levels in male rats. Neuropeptides 2010; 44:391-8. [PMID: 20591479 DOI: 10.1016/j.npep.2010.06.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Revised: 04/28/2010] [Accepted: 06/01/2010] [Indexed: 10/19/2022]
Abstract
Numerous studies have provided evidence for an important role for the neuropeptides oxytocin (OT) and arginine vasopressin (AVP) in establishment of social behaviour early in life, such as mother-pup interactions. However, there are few reports examining the consequences of early-life experiences on OT and AVP in male offspring. We have used the maternal separation (MS) model to study the effect of different early environmental conditions in rats. The purpose was to study OT and AVP in rats subjected to prolonged daily MS (360 min, MS360), short daily MS (15 min, MS15) and conventional animal facility rearing (AFR) during postnatal days 1-21. In addition, the influence of the presence or absence of littermates during MS, i.e. litter-wise (l) or individual (i) MS, was assessed. The immunoreactive (ir) peptide levels were measured in the hypothalamus, amygdala and pituitary gland of 3 and 10 weeks old male rats. Assessment in 3-week-old rats revealed that MS15 was associated with low ir OT levels in the hypothalamus and amygdala and high levels in the pituitary gland compared with the MS360 and AFR condition. In the amygdala, differences between groups were also detected in adulthood. MS studies commonly use either MS15 or AFR as a control for prolonged MS. The present results show differences in MS360 rats as compared to MS15 but not AFR rats. Consequently, comparisons between prolonged MS with either short periods of MS or AFR will generate divergent results, hence, making the outcome of MS difficult to compare between studies. Moreover, the different early environments had no effect on ir AVP levels. In conclusion, OT in the amygdala was most sensitive to MS. Besides both short- and long-term consequences, distinct effects were seen after litter and individual separation, respectively. We propose that environmentally induced alterations in OT transmission due to disrupted mother-pup interactions early in life may cause altered susceptibility to challenges later in life.
Collapse
Affiliation(s)
- Sadia Oreland
- Department of Pharmaceutical Biosciences, Division of Pharmacology, Uppsala University, Uppsala, Sweden
| | | | | |
Collapse
|
207
|
George ED, Bordner KA, Elwafi HM, Simen AA. Maternal separation with early weaning: a novel mouse model of early life neglect. BMC Neurosci 2010; 11:123. [PMID: 20920223 PMCID: PMC2955691 DOI: 10.1186/1471-2202-11-123] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Accepted: 09/29/2010] [Indexed: 12/31/2022] Open
Abstract
Background Childhood adversity is associated with increased risk for mood, anxiety, impulse control, and substance disorders. Although genetic and environmental factors contribute to the development of such disorders, the neurobiological mechanisms involved are poorly understood. A reliable mouse model of early life adversity leading to lasting behavioral changes would facilitate progress in elucidating the molecular mechanisms underlying these adverse effects. Maternal separation is a commonly used model of early life neglect, but has led to inconsistent results in the mouse. Results In an effort to develop a mouse model of early life neglect with long-lasting behavioral effects in C57BL/6 mice, we designed a new maternal separation paradigm that we call Maternal Separation with Early Weaning (MSEW). We tested the effects of MSEW on C57BL/6 mice as well as the genetically distinct DBA/2 strain and found significant MSEW effects on several behavioral tasks (i.e., the open field, elevated plus maze, and forced swim test) when assessed more than two months following the MSEW procedure. Our findings are consistent with MSEW causing effects within multiple behavioral domains in both strains, and suggest increased anxiety, hyperactivity, and behavioral despair in the MSEW offspring. Analysis of pup weights and metabolic parameters showed no evidence for malnutrition in the MSEW pups. Additionally, strain differences in many of the behavioral tests suggest a role for genetic factors in the response to early life neglect. Conclusions These results suggest that MSEW may serve as a useful model to examine the complex behavioral abnormalities often apparent in individuals with histories of early life neglect, and may lead to greater understanding of these later life outcomes and offer insight into novel therapeutic strategies.
Collapse
Affiliation(s)
- Elizabeth D George
- Yale University School of Medicine, Department of Psychiatry, New Haven, CT 06511, USA
| | | | | | | |
Collapse
|
208
|
Gruss M, Abraham A, Schäble S, Becker S, Braun K. Cognitive training during infancy and adolescence accelerates adult associative learning: critical impact of age, stimulus contingency and training intensity. Neurobiol Learn Mem 2010; 94:329-40. [PMID: 20670685 DOI: 10.1016/j.nlm.2010.07.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Revised: 07/09/2010] [Accepted: 07/21/2010] [Indexed: 11/29/2022]
Abstract
A growing body of evidence supports the hypothesis that juvenile cognitive training shapes neural networks and behavior, and thereby determines the adult's capacity for learning and memory. In particular, we have shown that infant rats, even though they do not develop an active avoidance strategy in a two-way active avoidance task, show as adults accelerated learning in the same learning task. This indicates that a memory trace was formed in the infant rats, which most likely is recruited during adult training. To identify the learning conditions, which are essential prerequisites to form this memory trace in infancy or adolescence, we investigated the critical impact of: (i) age, (ii) CS-UCS contingency, and (iii) pre-training intensity on this facilitating effect. We observed: (i) an age-dependent improvement of avoidance learning, (ii) that the beneficial impact of infant or adolescent pre-training on adult learning increases with the age at pre-training, (iii) that CS-UCS contingency during infant pre-training was most efficient to accelerate adult learning, (iv) that pre-training intensity (i.e. number of pre-training trials) was positively correlated with the pre-training induced acceleration of adult learning, and (v) that infant rats, compared to adolescent rats, need a higher training intensity to show learning improvement as adults. These results indicate that infant rats develop a goal-oriented escape strategy, which during adult training is replaced by an avoidance strategy, facilitated by the recruitment of the CS-UCS association, which has been learned during infant training. Based on these results the future challenge will be to identify the specific contribution of prefronto-limbic circuits in infant and adult learning in relation to their functional maturation.
Collapse
Affiliation(s)
- Michael Gruss
- Department of Zoology/Developmental Neurobiology, Institute of Biology, Otto von Guericke University Magdeburg, Germany.
| | | | | | | | | |
Collapse
|
209
|
Effects of early rearing conditions on cognitive performance in prepubescent male and female rats. Neurobiol Learn Mem 2010; 94:91-9. [DOI: 10.1016/j.nlm.2010.04.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2009] [Revised: 03/18/2010] [Accepted: 04/14/2010] [Indexed: 11/24/2022]
|
210
|
Litvin Y, Tovote P, Pentkowski NS, Zeyda T, King LB, Vasconcellos AJ, Dunlap C, Spiess J, Blanchard DC, Blanchard RJ. Maternal separation modulates short-term behavioral and physiological indices of the stress response. Horm Behav 2010; 58:241-9. [PMID: 20298695 DOI: 10.1016/j.yhbeh.2010.03.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Revised: 02/26/2010] [Accepted: 03/08/2010] [Indexed: 01/23/2023]
Abstract
Early-life stress produces an anxiogenic profile in adulthood, presumably by activating the otherwise quiescent hypothalamic-pituitary-adrenal (HPA) axis during the vulnerable 'stress hyporesponsive period'. While the long-term effects of such early-life manipulations have been extensively characterized, little is known of the short-term effects. Here, we compared the short-term effects of two durations of maternal separation stress and one unseparated group (US) on behavioral and physiological indices of the stress response in rat pups. Separations included 3h on each of 12days, from postnatal day (PND) 2 to 13 (MS2-13) and 3days of daily, 6-h separation from PND11-13 (MS11-13). On PND14 (Experiment 1), both MS2-13 and MS11-13 produced marked reductions in freezing toward an adult male conspecific along with reduced levels of glucocorticoid type 2 (GR) and CRF type-1 (CRF(1)) receptor mRNA in the hippocampus. Group MS2-13 but not MS11-13 produced deficits in stressor-induced corticosterone secretion, accompanied by reductions in body weight. Our results suggest that GR and/or CRF(1) levels, not solely the magnitude of corticosterone secretion, may be involved in the modulation of freezing. In a second experiment, we aimed to extend these findings by testing male and female separated and unseparated pups' unconditioned defensive behaviors to cat odor on PND26, and subsequent cue+context conditioning and extinction throughout postnatal days 27-32. Our results show that maternal separation produced reductions in unconditioned freezing on PND26, with MS2-13 showing stronger deficits than MS11-13. However, separation did not affect any other defensive behaviors. Furthermore, separated rats failed to show conditioned freezing, although they did avoid the no-odor block conditioned cue. There were no sex differences other than weight. We suggest that maternal separation may have produced these changes by disrupting normal development of hippocampal regions involved in olfactory-mediated freezing, not in mechanisms of learning and memory per se. These findings may have direct relevance for understanding the mechanisms by which early-life adverse experiences produce short-term and lasting psychopathologies.
Collapse
Affiliation(s)
- Yoav Litvin
- Department of Psychology, University of Hawaii, 2430 Campus Rd., Honolulu, HI 96822, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
211
|
Solas M, Aisa B, Mugueta MC, Del Río J, Tordera RM, Ramírez MJ. Interactions between age, stress and insulin on cognition: implications for Alzheimer's disease. Neuropsychopharmacology 2010; 35:1664-73. [PMID: 20182419 PMCID: PMC3055481 DOI: 10.1038/npp.2010.13] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
There is much interest in understanding the mechanisms responsible for interactions among stress, aging, memory and Alzheimer's disease. Glucocorticoid secretion associated with early life stress may contribute to the variability of the aging process and to the development of neuro- and psychopathologies. Maternal separation (MS), a model of early life stress in which rats experience 3 h of daily separation from the dam during the first 3 weeks of life, was used to study the interactions between stress and aging. Young (3 months) MS rats showed an altered hypothalamic-pituitary-adrenal (HPA) axis reactivity, depressive-like behavior in the Porsolt swimming test and cognitive impairments in the Morris water maze and new object recognition test that persisted in aged (18 months) rats. Levels of insulin receptor, phosphorylated insulin receptor and markers of downstream signaling pathways (pAkt, pGSK3 beta, pTau, and pERK1 levels) were significantly decreased in aged rats. There was a significant decrease in pERK2 and in the plasticity marker ARC in MS aged rats compared with single MS or aged rats. It is interesting to note that there was a significant increase in the C99 : C83 ratio, A beta levels, and BACE1 levels the hippocampus of MS aged rats, suggesting that in aged rats subjected to early life stress, there was an increase in the amyloidogenic processing of amyloid precursor protein (APP). These results are integrated in a tentative mechanism through which aging interplay with stress to influence cognition as the basis of Alzheimer disease (AD). The present results may provide the proof-of-concept for the use of glucocorticoid-/insulin-related drugs in the treatment of AD.
Collapse
Affiliation(s)
- Maite Solas
- Department of Pharmacology, School of Medicine, Center for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Bárbara Aisa
- Department of Pharmacology, School of Medicine, Center for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - María C Mugueta
- Clinical Chemistry Department, University Clinic of Navarra, University of Navarra, Pamplona, Spain
| | - Joaquín Del Río
- Department of Pharmacology, School of Medicine, Center for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Rosa M Tordera
- Department of Pharmacology, School of Medicine, Center for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - María J Ramírez
- Department of Pharmacology, School of Medicine, Center for Applied Medical Research, University of Navarra, Pamplona, Spain,Department of Pharmacology, University of Navarra, Center for Applied Medical Research, C/ Irunlarrea, 1, Pamplona, 31008, Spain, Tel: +34 948 425 600; Fax: +34 948 425 649; E-mail:
| |
Collapse
|
212
|
Daoura L, Hjalmarsson M, Oreland S, Nylander I, Roman E. Postpartum Behavioral Profiles in Wistar Rats Following Maternal Separation - Altered Exploration and Risk-Assessment Behavior in MS15 Dams. Front Behav Neurosci 2010; 4:37. [PMID: 20617189 PMCID: PMC2896302 DOI: 10.3389/fnbeh.2010.00037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Accepted: 06/01/2010] [Indexed: 12/02/2022] Open
Abstract
The rodent maternal separation (MS) model is frequently used to investigate the impact of early environmental factors on adult neurobiology and behavior. The majority of MS studies assess effects in the offspring and few address the consequences of repeated pup removal in the dam. Such studies are of interest since alterations detected in offspring subjected to MS may, at least in part, be mediated by variations in maternal behavior and the amount of maternal care provided by the dam. The aim of this study was to investigate how daily short (15 min; MS15) and prolonged (360 min; MS360) periods of MS affects the dam by examining postpartum behavioral profiles using the multivariate concentric square field (MCSF) test. The dams were tested on postpartum days 24-25, i.e., just after the end of the separation period and weaning. The results reveal a lower exploratory drive and lower risk-assessment behavior in MS15 dams relative to MS360 or animal facility reared dams. The present results contrast some of the previously reported findings and provide new information about early post-weaning behavioral characteristics in a multivariate setting. Plausible explanations for the results are provided including a discussion how the present results fit into the maternal mediation hypothesis.
Collapse
Affiliation(s)
- Loudin Daoura
- Department of Pharmaceutical Biosciences, Division of Pharmacology, Uppsala UniversityUppsala, Sweden
| | - My Hjalmarsson
- Department of Pharmaceutical Biosciences, Division of Pharmacology, Uppsala UniversityUppsala, Sweden
| | - Sadia Oreland
- Department of Pharmaceutical Biosciences, Division of Pharmacology, Uppsala UniversityUppsala, Sweden
| | - Ingrid Nylander
- Department of Pharmaceutical Biosciences, Division of Pharmacology, Uppsala UniversityUppsala, Sweden
| | - Erika Roman
- Department of Pharmaceutical Biosciences, Division of Pharmacology, Uppsala UniversityUppsala, Sweden
| |
Collapse
|
213
|
Stress inoculation facilitates active avoidance learning of the semi-precocial rodent Octodon degus. Behav Brain Res 2010; 213:293-303. [PMID: 20580648 DOI: 10.1016/j.bbr.2010.05.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Accepted: 05/11/2010] [Indexed: 01/20/2023]
Abstract
A growing body of evidence highlights the impact of the early social environment for the adequate development of brain and behavior in animals and humans. Disturbances of this environment were found to be both maladaptive and adaptive to emotional and cognitive function. Using the semi-precocial, biparental rodent Octodon degus, we aimed to examine (i) the impact of age (juvenile/adult), sex (male/female), and (ii) "motivation" to solve the task (by applying increasing foot-shock-intensities) on two-way active avoidance (TWA) learning in socially reared degus, and (iii) whether early life stress inoculation by 1h daily parental separation during the first three weeks of life has maladaptive or adaptive consequences on cognitive function as measured by TWA learning. Our results showed that (i) juvenile degus, unlike altricial rats of the same age, can successfully learn the TWA task comparable to adults, and (ii) that learning performance improves with increasing "task motivation", irrespective of age and sex. Furthermore, we revealed that (iii) stress inoculation improves avoidance learning, particularly in juvenile males, quantitatively and qualitatively depending on "task motivation". In conclusion, the present study describes for the first time associative learning in O. degus and its modulation by early life stress experience as an animal model to study the underlying mechanisms of learning and memory in the stressed and unstressed brain. Although, stress is commonly viewed as being maladaptive, our data indicate that early life stress inoculation triggers developmental cascades of adaptive functioning, which may improve cognitive and emotional processing of stressors later in life.
Collapse
|
214
|
Koehnle TJ, Rinaman L. Early experience alters limbic forebrain Fos responses to a stressful interoceptive stimulus in young adult rats. Physiol Behav 2010; 100:105-15. [PMID: 20159026 PMCID: PMC2920142 DOI: 10.1016/j.physbeh.2010.02.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Accepted: 02/09/2010] [Indexed: 12/16/2022]
Abstract
The present study examined whether manipulation of the early life experience of rat pups might alter the later ability of an interoceptive challenge to recruit central neural circuits that receive visceral sensory signals and generate stress responses. For this purpose, litters were exposed to daily maternal separation for either 15min (MS-15) or 180min (MS-180) from postnatal days (P)1 to P10. Pups in control litters were raised under standard conditions (i.e., no separations). Similar to previous reports in adult rats, adolescent rats (P35-45) with a developmental history of MS-15 displayed less anxiety-like behavior on the elevated plus maze compared to control and MS-180 rats. As young adults (P50-60), rats were anesthetized and perfused with fixative 90min after viscerosensory stimulation via lithium chloride (LiCl, 0.15M, 1% BW, i.p.) or saline control. In all three rearing groups, Fos activation within brainstem and forebrain regions of interest was significantly enhanced after LiCl vs. saline. MS-15 rats tended to display fewer LiCl-activated neurons in most brain regions compared with rats in the other two rearing groups. This trend reached significance within the dorsal bed nucleus of the stria terminalis. The ability of MS-15 to alter limbic forebrain activation in rats after an interoceptive challenge may contribute to the effect of early life experience to modulate physiological and behavioral stress responses more generally.
Collapse
|
215
|
Early life influences on emotional reactivity: Evidence that social enrichment has greater effects than handling on anxiety-like behaviors, neuroendocrine responses to stress and central BDNF levels. Neurosci Biobehav Rev 2010; 34:808-20. [DOI: 10.1016/j.neubiorev.2010.02.008] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2009] [Revised: 02/10/2010] [Accepted: 02/10/2010] [Indexed: 12/20/2022]
|
216
|
Hennessy MB, Deak T, Schiml-Webb PA. Early attachment-figure separation and increased risk for later depression: potential mediation by proinflammatory processes. Neurosci Biobehav Rev 2010; 34:782-90. [PMID: 20359585 PMCID: PMC2848957 DOI: 10.1016/j.neubiorev.2009.03.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Revised: 03/12/2009] [Accepted: 03/29/2009] [Indexed: 02/04/2023]
Abstract
Early maternal separation and other disruptions of attachment relations are known to increase risk for the later onset of depressive illness in vulnerable individuals. It is suggested here that sensitization involving proinflammatory processes may contribute to this effect. This argument is based on: (1) current notions of the role of proinflammatory cytokines in depressive illness; (2) evidence that proinflammatory cytokines mediate depressive-like behavior during separation in a rodent model of infant attachment; and (3) comparisons of the effects of early proinflammatory activation versus maternal separation on later proinflammatory activity and biobehavioral processes related to depression. The possible interaction of proinflammatory processes and corticotropin-releasing factor in the sensitization process is discussed.
Collapse
Affiliation(s)
- Michael B Hennessy
- Department of Psychology, Wright State University, 335 Fawcett Hall, Dayton, OH 45435, USA.
| | | | | |
Collapse
|
217
|
Kinkead R, Gulemetova R. Neonatal maternal separation and neuroendocrine programming of the respiratory control system in rats. Biol Psychol 2010; 84:26-38. [DOI: 10.1016/j.biopsycho.2009.09.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Revised: 08/28/2009] [Accepted: 09/02/2009] [Indexed: 10/20/2022]
|
218
|
Rana SA, Mallet PE, Robertson BA, Wainwright PE. Effect of complete maternal and littermate deprivation on morphine-induced Fos-immunoreactivity in the adult male rat brain. Pediatr Res 2010; 67:263-7. [PMID: 19915516 DOI: 10.1203/pdr.0b013e3181ca0807] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Previous research has demonstrated that rats reared in isolation from their dam and littermates show altered behavioral responsiveness to both natural and drug-mediated rewards. This study examined the effects of complete maternal deprivation through the use of artificial rearing on neural activation after acute morphine exposure in adulthood. Male rats were either artificially reared (AR) or maternally reared (MR) from postnatal day 5 to 21. In adulthood (4 mo old), rats received a single injection of morphine sulfate (10 mg/kg) or equivolume saline 2 h before perfusion and brain extraction. Neural activation was quantified using Fos immunohistochemistry. Analyses of several brain regions revealed a consistent pattern of differences between AR and MR rats. Specifically, relative to MR rats, AR rats showed significantly greater morphine-induced Fos-immunoreactivity in brain regions associated with the mesocorticolimbic "reward" pathway. These results support the hypothesis that functional activity in reward neurocircuitry can be altered by early life experience.
Collapse
Affiliation(s)
- Shadna A Rana
- Department of Health Studies and Gerontology, University of Waterloo, Ontario, Canada.
| | | | | | | |
Collapse
|
219
|
Meyer U, Feldon J. Epidemiology-driven neurodevelopmental animal models of schizophrenia. Prog Neurobiol 2010; 90:285-326. [DOI: 10.1016/j.pneurobio.2009.10.018] [Citation(s) in RCA: 261] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Revised: 09/30/2009] [Accepted: 10/14/2009] [Indexed: 12/17/2022]
|
220
|
Abstract
A major question in the biology of stress and environmental adaptation concerns the neurobiological basis of how neuroendocrine systems governing physiological regulatory mechanisms essential for life (metabolism, immune response, organ function) become harmful. The current view is that a switch from protection to damage occurs when vulnerable phenotypes are exposed to adverse environmental conditions. In accordance with this theory, sequelae of early life social and environmental stressors, such as childhood abuse, neglect, poverty, and poor nutrition, have been associated with the emergence of mental and physical illness (i.e., anxiety, mood disorders, poor impulse control, psychosis, and drug abuse) and an increased risk of common metabolic and cardiovascular diseases later in life. Evidence from animal and human studies investigating the associations between early life experiences (including parent-infant bonding), hypothalamus-pituitary-adrenal axis activity, brain development, and health outcome provide important clues into the neurobiological mechanisms that mediate the contribution of stressful experiences to personality development and the manifestation of illness. This review summarizes our current molecular understanding of how early environment influences brain development in a manner that persists through life and highlights recent evidence from rodent studies suggesting that maternal care in the first week of postnatal life establishes diverse and stable phenotypes in the offspring through epigenetic modification of genes expressed in the brain that shape neuroendocrine and behavioral stress responsivity throughout life.
Collapse
Affiliation(s)
- Ian C G Weaver
- Developmental and Stem Cell Biology Program, Hospital for Sick Children, Toronto Medical Discovery East Tower, Medical & Related Sciences (MaRS) CentreToronto, Ontario, Canada M5G 1X8.
| |
Collapse
|
221
|
Črnčec R, Matthey S, Nemeth D. Infant sleep problems and emotional health: a review of two behavioural approaches. J Reprod Infant Psychol 2010. [DOI: 10.1080/02646830903294995] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
222
|
Kinkead R, Montandon G, Bairam A, Lajeunesse Y, Horner R. Neonatal maternal separation disrupts regulation of sleep and breathing in adult male rats. Sleep 2010; 32:1611-20. [PMID: 20041597 DOI: 10.1093/sleep/32.12.1611] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
STUDY OBJECTIVES Neonatal maternal separation (NMS) disrupts development of cardiorespiratory regulation. Adult male rats previously subjected to NMS are hypertensive and show a hypoxic ventilatory response greater than that of controls. These results have been obtained in awake or anesthetised animals, and the consequences of NMS on respiratory control during normal sleep are unknown. This study tested the following. HYPOTHESES NMS augments respiratory variability across sleep-wake states, and NMS-related enhancement of the hypoxic ventilatory response occurs during sleep. METHODS Two groups of adult rats were used: controls (no treatment) and rats subjected to NMS. Ventilatory activity, coefficient of variation, and hypoxic ventilatory response were compared between groups and across sleep-wake states. SUBJECTS Male Sprague Dawley rats-NMS: n=11; controls: n=10. Pups subjected to NMS were isolated from their mother for 3 hours per day from postnatal days 3 to 12. Controls were undisturbed. MEASUREMENTS AND RESULTS At adulthood, sleep-wake states were monitored by telemetry, and ventilatory activity was measured using whole-body plethysmography. Sleep and breathing were measured for 2.5 hours (in the morning) while the rats were breathing room air. Data were analysed in 20-second epochs. Rats were then exposed to a brief (90-sec) hypoxic episode (nadir = 12% O2) to measure the hypoxic ventilatory response. The coefficient of variability for tidal volume and breathing frequency decreased during sleep but remained more elevated in NMS rats than in controls. During non-rapid eye movement sleep, the breathing-frequency response to hypoxia of NMS rats was significantly greater than that of controls. CONCLUSION Neonatal maternal separation results in persistent disruption of respiratory control during sleep.
Collapse
Affiliation(s)
- Richard Kinkead
- Centre de Recherche du CHUQ, Hôpital St-François d'Assise, Université Laval, Québec, Canada.
| | | | | | | | | |
Collapse
|
223
|
Kosten TA, Kehoe P. Immediate and enduring effects of neonatal isolation on maternal behavior in rats. Int J Dev Neurosci 2010; 28:53-61. [PMID: 19782745 PMCID: PMC2815133 DOI: 10.1016/j.ijdevneu.2009.09.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Revised: 09/17/2009] [Accepted: 09/19/2009] [Indexed: 11/29/2022] Open
Abstract
Previously, we showed that neonatal isolation (1-hisolation/day from dam, litter, and nest on PND 2-9) facilitates cocaine self-administration and increases extracellular dopamine responses in ventral striatum after stimulant administration in adulthood. Recent studies suggest that enduring alterations in neurobehavioral responses associated with early life manipulations reflect changes in maternal behavior. Thus, we sought to determine if neonatal isolation alters maternal care and if dams with neonatal isolation experience as pups showed differential maternal care towards their pups. In Experiment 1, litters were assigned to one of three conditions: neonatal isolation, handled (5-min separation of dam from litter), or non-handled (no separation). Maternal behaviors were rated on PND 2-9 for 60-min immediately following reunion of mother and litter. In Experiment 2, female rats with or without neonatal isolation experience were assigned to either the neonatal isolation or non-handled litter condition and maternal behaviors rated. Dams of isolated and handled litters spent more time licking pups and less time picking up pups to put outside the nest than dams of non-handled litters. Further, dams of isolated and handled vs. non-handled litters showed less non-maternal behaviors of burrowing and grooming. Neonatal isolation-experienced dams with isolated litters failed to increase pup-licking and decrease non-maternal behaviors. Rather, these dams picked up pups to place outside the nest more than non-handled-experienced dams. Neonatal isolation alters maternal behavior that, in turn, may shape neurobehavioral responses of offspring including effects on maternal care. Such changes may reflect epigenetic effects resulting from changes in maternal behavior.
Collapse
Affiliation(s)
- Therese A Kosten
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, United States.
| | | |
Collapse
|
224
|
Oreland S, Nylander I, Pickering C. Prolonged maternal separation decreases granule cell number in the dentate gyrus of 3‐week‐old male rats. Int J Dev Neurosci 2010; 28:139-44. [DOI: 10.1016/j.ijdevneu.2009.12.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 12/17/2009] [Accepted: 12/27/2009] [Indexed: 11/15/2022] Open
Affiliation(s)
- Sadia Oreland
- Uppsala UniversityDepartment of Pharmaceutical BiosciencesDivision of PharmacologyBox 591SE‐75124UppsalaSweden
| | - Ingrid Nylander
- Uppsala UniversityDepartment of Pharmaceutical BiosciencesDivision of PharmacologyBox 591SE‐75124UppsalaSweden
| | - Chris Pickering
- Uppsala UniversityDepartment of Pharmaceutical BiosciencesDivision of PharmacologyBox 591SE‐75124UppsalaSweden
| |
Collapse
|
225
|
Aisa BÃ, Elizalde N, Tordera R, Lasheras B, Del RÃo J, RamÃrez MJ. Effects of neonatal stress on markers of synaptic plasticity in the hippocampus: Implications for spatial memory. Hippocampus 2009; 19:1222-31. [DOI: 10.1002/hipo.20586] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
226
|
Weber BC, Manfredo HN, Rinaman L. A potential gastrointestinal link between enhanced postnatal maternal care and reduced anxiety-like behavior in adolescent rats. Behav Neurosci 2009; 123:1178-84. [PMID: 20001102 PMCID: PMC2881464 DOI: 10.1037/a0017659] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Early life experience impacts emotional development in the infant. In rat pups, repeated, brief (i.e., 15 min) maternal separation (MS15) during the first 1-2 postnatal weeks has been shown to increase active maternal care and to reduce later anxiety-like behavior in the offspring. We hypothesized that the anxiolytic effect of MS15 is partly due to increased intestinal release of cholecystokinin (CCK) in rat pups as a result of increased maternal contact. We predicted that rats with a history of MS15 would display less anxiety in the elevated plus maze (EPMZ) and novelty-suppressed feeding (NSF) tests, as compared with nonseparated (NS) controls, and that the anxiolytic effect of MS15 would be attenuated in rats in which daily MS15 was accompanied by systemic administration of a CCK-1 receptor antagonist (i.e., devazepide). Treatment groups included NS control litters, litters exposed to MS15 from postnatal days (P)1-10, inclusive, and litters exposed to MS15 with concurrent subcutaneous injection of devazepide or vehicle. Litters were undisturbed after P10 and were weaned on P21. Subsets of adolescent males from each litter were tested in the EPMZ on P40-41, while others were tested for NSF on P50-52. As predicted, rats with a developmental history of MS15 displayed reduced anxiety-like behavior in the EPMZ and NSF tests. The anxiolytic effect of MS15 was preserved in vehicle-treated rats, but was reversed in devazepide-treated rats. These results support the view that endogenous CCK-1 receptor signaling in infants is a potential pathway through which maternal-pup interactions regulate the development and functional organization of emotional circuits that control anxiety-like behavior in the offspring.
Collapse
Affiliation(s)
- Brittany C. Weber
- Department of Neuroscience, University of Pittsburgh, Pittsburgh PA 15260
| | | | - Linda Rinaman
- Department of Neuroscience, University of Pittsburgh, Pittsburgh PA 15260
| |
Collapse
|
227
|
Jia R, Tai F, An S, Zhang X, Broders H. Effects of neonatal paternal deprivation or early deprivation on anxiety and social behaviors of the adults in mandarin voles. Behav Processes 2009; 82:271-8. [DOI: 10.1016/j.beproc.2009.07.006] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Revised: 07/18/2009] [Accepted: 07/18/2009] [Indexed: 10/20/2022]
|
228
|
Aisa B, Gil-Bea FJ, Marcos B, Tordera R, Lasheras B, Del Río J, Ramírez MJ. Neonatal stress affects vulnerability of cholinergic neurons and cognition in the rat: involvement of the HPA axis. Psychoneuroendocrinology 2009; 34:1495-505. [PMID: 19505767 DOI: 10.1016/j.psyneuen.2009.05.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Revised: 04/03/2009] [Accepted: 05/07/2009] [Indexed: 11/15/2022]
Abstract
Adverse experiences early in life may sensitize specific neurocircuits to subsequent stressors. We have evaluated in maternal separation (MS) rats, an animal paradigm of early-life stress, the effects of a selective cholinergic lesion on cognitive function as well as susceptibility of cholinergic neurons to the lesion. MS rats subjected to a cholinergic lesion by administration of the immunotoxin 192 IgG-saporin, showed significant decreases in both choline acetyltransferase (ChAT) and acetylcholinesterase (AChE) activity compared to control lesioned rats. Morris water maze results revealed a significant impairment in learning and memory function in MS adult rats and further cognitive deficits after the lesion. The lesion of cholinergic neurons induced a significant decrease in glucocorticoid receptor density in MS rats, accompanied by increases in CRF mRNA expression. Decreases in NGF and increases in NGF-p75NTR expression have also been found in MS rats. Our results suggest that vulnerability of basal forebrain cholinergic nerve cells might be affected by the HPA axis. The present data are discussed not only in terms of conditions that occur during ageing or Alzheimer disease, but also regarding a purported involvement of the cholinergic system in the regulation of HPA axis activity.
Collapse
Affiliation(s)
- Bárbara Aisa
- Department of Pharmacology, School of Medicine, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain
| | | | | | | | | | | | | |
Collapse
|
229
|
Campbell JC, Szumlinski KK, Kippin TE. Contribution of early environmental stress to alcoholism vulnerability. Alcohol 2009; 43:547-54. [PMID: 19913199 DOI: 10.1016/j.alcohol.2009.09.029] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Revised: 05/06/2009] [Accepted: 08/11/2009] [Indexed: 11/29/2022]
Abstract
The most problematic aspects of alcohol abuse disorder are excessive alcohol consumption and the inability to refrain from alcohol consumption during attempted abstinence. The root causes that predispose certain individuals to these problems are poorly understood but are believed to be produced by a combination of genetic and environmental factors. Early environmental trauma alters neurodevelopmental trajectories that can predispose an individual to a number of neuropsychiatric disorders, including substance abuse. Prenatal stress (PNS) is a well-established protocol that produces perturbations in nervous system development, resulting in behavioral alterations that include hyperresponsiveness to stress, novelty, and psychomotor stimulant drugs (e.g., cocaine, amphetamine). Moreover, PNS animals exhibit enduring alterations in basal and cocaine-induced changes in dopamine and glutamate transmission within limbic structures, which exhibit pathology in drug addiction and alcoholism, suggesting that these alterations may contribute to an increased propensity to self-administer large amounts of drugs of abuse or to relapse after periods of drug withdrawal. Given that cocaine and alcohol have actions on common limbic neural substrates (albeit by different mechanisms), we hypothesized that PNS would elevate the motivation for, and consumption of, alcohol. Accordingly, we have found that male C57BL/6J mice subject to PNS exhibit higher operant responding and consume more alcohol during alcohol reinforcement as adults. Alterations in glutamate and dopamine neurotransmission within the forebrain structures appear to contribute to the PNS-induced predisposition to high alcohol intake and are induced by excessive alcohol intake. Accordingly, we are exploring the interactions between neurochemical changes produced by PNS and changes induced by consumption of alcohol in adulthood to model the biological bases of high vulnerability to alcohol abuse.
Collapse
Affiliation(s)
- Joannalee C Campbell
- Department of Psychology, University of California, Santa Barbara, CA 93106-9660, USA
| | | | | |
Collapse
|
230
|
Veenema AH. Early life stress, the development of aggression and neuroendocrine and neurobiological correlates: what can we learn from animal models? Front Neuroendocrinol 2009; 30:497-518. [PMID: 19341763 DOI: 10.1016/j.yfrne.2009.03.003] [Citation(s) in RCA: 180] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2008] [Revised: 03/16/2009] [Accepted: 03/18/2009] [Indexed: 11/17/2022]
Abstract
Early life stress (child and adolescent abuse, neglect and trauma) induces robust alterations in emotional and social functioning resulting in enhanced risk for the development of psychopathologies such as mood and aggressive disorders. Here, an overview is given on recent findings in primate and rodent models of early life stress, demonstrating that chronic deprivation of early maternal care as well as chronic deprivation of early physical interactions with peers are profound risk factors for the development of inappropriate aggressive behaviors. Alterations in the hypothalamic-pituitary-adrenocortical (HPA), vasopressin and serotonin systems and their relevance for the regulation of aggression are discussed. Data suggest that social deprivation-induced inappropriate forms of aggression are associated with high or low HPA axis (re)activity and a generally lower functioning of the serotonin system in adulthood. Moreover, genetic and epigenetic modifications in HPA and serotonin systems influence the outcome of early life stress and may even moderate adverse effects of early social deprivation on aggression. A more comprehensive study of aggression, neuroendocrine, neurobiological and (epi)genetic correlates of early life stress using animal models is necessary to provide a better understanding of the invasive aggressive deficits observed in humans exposed to child maltreatment.
Collapse
Affiliation(s)
- Alexa H Veenema
- Department of Behavioral Neuroendocrinology, Institute of Zoology, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
231
|
Takatsuru Y, Yoshitomo M, Nemoto T, Eto K, Nabekura J. Maternal separation decreases the stability of mushroom spines in adult mice somatosensory cortex. Brain Res 2009; 1294:45-51. [DOI: 10.1016/j.brainres.2009.07.092] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Revised: 07/24/2009] [Accepted: 07/25/2009] [Indexed: 12/01/2022]
|
232
|
Hauser J, Feldon J, Pryce CR. Direct and dam-mediated effects of prenatal dexamethasone on emotionality, cognition and HPA axis in adult Wistar rats. Horm Behav 2009; 56:364-75. [PMID: 19616002 DOI: 10.1016/j.yhbeh.2009.07.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Revised: 07/03/2009] [Accepted: 07/07/2009] [Indexed: 11/30/2022]
Abstract
Prenatal stress can affect foetal neurodevelopment and result in increased risk of depression in adulthood. It promotes increased maternal hypothalamo-pituitary-adrenal gland (HPA) secretion of glucocorticoid (GC), leading to increased foetal and maternal GC receptor activity. Prenatal GC receptor activity is also increased during prenatal treatment with dexamethasone (DEX), which is commonly prescribed as a prophylactic treatment of preterm delivery associated morbid symptoms. Here, we exposed pregnant Wistar rats to 0.1 mg/kg/d DEX during the last week of pregnancy and performed cross-fostering at birth. In the adult offspring we then studied the effects of prenatal DEX exposure per se and the effects of rearing by a dam exposed to prenatal DEX. Offspring were assessed in the following paradigms testing biobehavioural processes that are altered in depression: progressive ratio schedule of reinforcement (anhedonia), Porsolt forced swim test (behavioural despair), US pre-exposure active avoidance (learned helplessness), Morris water maze (spatial memory) and HPA axis activity (altered HPA function). Responsiveness to a physical stressor in terms of HPA activity was increased in male offspring exposed prenatally to DEX. Despite this increased HPA axis reactivity, we observed no alteration of the assessed behaviours in offspring exposed prenatally to DEX. We observed impairment in spatial memory in offspring reared by DEX exposed dams, independently of prenatal treatment. This study does not support the hypothesis that prenatal DEX exposure leads to depression-like symptoms in rats, despite the observed sex-specific programming effect on HPA axis. It does however emphasise the importance of rearing environment on adult cognitive performances.
Collapse
Affiliation(s)
- Jonas Hauser
- Behavioural Neurobiology Laboratory, Swiss Federal Institute of Technology Zurich, Schwerzenbach, Switzerland
| | | | | |
Collapse
|
233
|
Curley JP, Davidson S, Bateson P, Champagne FA. Social enrichment during postnatal development induces transgenerational effects on emotional and reproductive behavior in mice. Front Behav Neurosci 2009; 3:25. [PMID: 19826497 PMCID: PMC2759344 DOI: 10.3389/neuro.08.025.2009] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Accepted: 08/19/2009] [Indexed: 11/13/2022] Open
Abstract
Across species there is evidence that the quality of the early social environment can have a profound impact on neurobiology and behavior. In the present study we explore the effect of communal rearing conditions (three dams with three litters per cage) during the postnatal period on offspring (F1) and grand-offspring (F2) anxiety-like and maternal behavior in Balb/c mice. Females rearing pups in communal nests exhibited increased levels of postpartum maternal care and communal rearing was found to abolish sex-differences in weaning weights. In adulthood, communally reared offspring were observed to display reduced anxiety-like behavior when placed in a novel environment. When rearing their own offspring under standard conditions, communally reared females demonstrated higher levels of motivation to retrieve pups, built higher quality nests, and exhibited higher levels of postpartum care compared to standard reared females. When exposed to an intruder male, communally reared females were more subordinate and less aggressive. F2 offspring of communally reared females were observed to engage in reduced anxiety-like behavior, have larger litter sizes and an increased frequency of nursing on PND 1. Analysis of neuropeptide receptor levels suggest that a communal rearing environment may exert sustained effects on behavior through modification of oxytocin and vasopressin (V1a) receptor densities. Though Balb-C mice are often considered "socially-incompetent" and high in anxiety-like behavior, our findings suggest that through enrichment of the postnatal environment, these behavioral and neuroendocrine deficits may be attenuated both within and across generations.
Collapse
Affiliation(s)
- James P Curley
- Department of Psychology, Columbia University New York, NY, USA
| | | | | | | |
Collapse
|
234
|
Faturi CB, Tiba PA, Kawakami SE, Catallani B, Kerstens M, Suchecki D. Disruptions of the mother-infant relationship and stress-related behaviours: altered corticosterone secretion does not explain everything. Neurosci Biobehav Rev 2009; 34:821-34. [PMID: 19751762 DOI: 10.1016/j.neubiorev.2009.09.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Revised: 08/19/2009] [Accepted: 09/05/2009] [Indexed: 01/15/2023]
Abstract
The hypothalamic-pituitary-adrenal (HPA) axis is the main neuroendocrine system of response to stress, and an imbalance of this system's activity is believed to be at the core of numerous psychiatric pathologies. During the neonatal period, the glucocorticoid response to stress is maintained at low levels by specific maternal behaviours, which is essential for proper brain development. Effective evaluation of the impact of increased secretion of corticosterone during an essentially anabolic developmental period on adulthood behaviour involved separation of the neonate from its mother for periods ranging from 3 to 24h. It has been shown that disinhibition of the stress response is achieved by such procedures. The pioneering studies by Seymour Levine set the stage for a prolific and promising field of study that may help neuroscientists unveil the neurobiological underpinnings of stress-related disorders. Based on a series of studies, we propose that maternal separation and maternal deprivation change stress-related behaviours, but that corticosterone seem to be only partially involved in these changes in adulthood. It appears that extra-hypothalamic corticotrophin-releasing factor and neurotransmitter systems may be the primary mediators of these behavioural outcomes.
Collapse
|
235
|
Shao F, Jin J, Meng Q, Liu M, Xie X, Lin W, Wang W. Pubertal isolation alters latent inhibition and DA in nucleus accumbens of adult rats. Physiol Behav 2009; 98:251-7. [DOI: 10.1016/j.physbeh.2009.05.021] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Revised: 05/18/2009] [Accepted: 05/22/2009] [Indexed: 11/28/2022]
|
236
|
Oreland S, Pickering C, Gökturk C, Oreland L, Arborelius L, Nylander I. Two repeated maternal separation procedures differentially affect brain 5-hydroxytryptamine transporter and receptors in young and adult male and female rats. Brain Res 2009; 1305 Suppl:S37-49. [PMID: 19728999 DOI: 10.1016/j.brainres.2009.08.069] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Revised: 07/30/2009] [Accepted: 08/07/2009] [Indexed: 12/29/2022]
Abstract
Early environment is a known determinant for individual differences in vulnerability for adult psychopathology, e.g., ethanol addiction. One underlying mechanism could be dysfunction in serotonergic neurotransmission. This study focused on the methodological considerations regarding an animal model for studying effects of early environment, maternal separation (MS), using two different paradigms. Age- and sex-specific effects on brain stem 5-hydroxytryptamine (5-HT) transporter and receptors were examined. Male and female rat pups were assigned to either litter-wise MS for 15 or 360 min (MS15l or MS360l) or individual MS for 15 or 360 min (MS15i or MS360i) daily during postnatal days 1-21. Normal animal facility reared rats were used as controls. Analyses were performed in young and adult rats. As compared to the other males, MS15l males had lower 5-HT(1A) and 5-HT(2C) receptor mRNA expression at both ages, lower 5-HT(2A) receptor mRNA when young and lower 5-HTT mRNA expression when adult. In contrast, adult MS15l females had higher 5-HT(2C) receptor mRNA expression than other female rats. The strong impact of MS15l on 5-HT-related genes was either transient or persistent depending on sex and fewer effects on gene expression were observed in females than in males. This study shows the importance of tactile contact for the consequences of short but not prolonged MS, as evidenced by major differences between MS15l and MS15i. The results suggest that MS15i is less suitable than MS15l to simulate a protective environment in studies of, for instance, ethanol addiction processes.
Collapse
Affiliation(s)
- Sadia Oreland
- Department of Pharmaceutical Biosciences, Division of Pharmacology, Uppsala University, P.O. Box 591, SE-751 24 Uppsala, Sweden.
| | | | | | | | | | | |
Collapse
|
237
|
Trujillo V, Masseroni ML, Levin G, Suárez MM. Tianeptine Influence on Plasmatic Catecholamine Levels and Anxiety Index in Rats Under Variable Chronic Stress After Early Maternal Separation. Int J Neurosci 2009; 119:1210-27. [DOI: 10.1080/00207450802324713] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
238
|
Zimmerberg B, Foote HE, Van Kempen TA. Olfactory association learning and brain-derived neurotrophic factor in an animal model of early deprivation. Dev Psychobiol 2009; 51:333-44. [PMID: 19308959 DOI: 10.1002/dev.20373] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Animal models can serve to explore neural mechanisms underlying the effects of stressful early experiences on behaviors supporting attachment. Neonatal rats primarily use olfaction for attachment, and Brain-Derived Neurotrophic Factor (BDNF) may be a key transcription target in olfactory association learning. In this experiment, neonatal male and female rats were isolated individually for 3 hr daily in the first week of life while their dams were left with partial litters (Early Deprivation, ED) or remained undisturbed (Control). At 1 week of age, subjects were tested using a 2-day classical conditioning paradigm. The conditioned group (O/M) was exposed to a novel odor paired with a milk infusion. Three additional groups included an unpaired odor and milk exposure group (O/M unP), an odor exposure alone group (O/NM), and neither an odor nor a milk group (NO/NM). Learning the odor association, as revealed in a position preference for the novel odor, was accompanied by an increase in hippocampal BDNF in O/M subjects from undisturbed Control litters. BDNF levels were also positively related to degree of preference for the odor in the O/M Control group. ED subjects did not make the classically conditioned odor association and did not show an increase in hippocampal BDNF. ED increased BDNF levels in the olfactory bulb compared to Controls regardless of training group; individual levels were not correlated with performance because samples were pooled. These results suggest that changes in the transcription of BDNF may underlie some of the long-term consequences of the early stress of maternal separation.
Collapse
Affiliation(s)
- Betty Zimmerberg
- Department of Psychology, Program in Neuroscience, Williams College, Williamstown, MA 01267, USA.
| | | | | |
Collapse
|
239
|
Treatment with escitalopram but not desipramine decreases escape latency times in a learned helplessness model using juvenile rats. Psychopharmacology (Berl) 2009; 205:249-59. [PMID: 19387616 DOI: 10.1007/s00213-009-1535-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Accepted: 03/29/2009] [Indexed: 01/24/2023]
Abstract
RATIONALE The pharmacological treatment of depression in children and adolescents is different from that of adults due to the lack of efficacy of certain antidepressants in the pediatric age group. Our current understanding of why these differences occur is very limited. OBJECTIVES To develop more effective treatments, a juvenile animal model of depression was tested to validate it as a possible model to specifically study pediatric depression. MATERIALS AND METHODS Procedures for use with juvenile rats at postnatal day (PND) 21 and 28 were adapted from the adult learned helplessness model in which, 24 h after exposure to inescapable stress, animals are unable to remove themselves from an easily escapable stressor. Rats were treated for 7 days with either the selective serotonin reuptake inhibitor escitalopram at 10 mg/kg or the tricyclic antidepressant desipramine at 3, 10, or 15 mg/kg to determine if treatment could decrease escape latency times. RESULTS Escitalopram treatment was effective at decreasing escape latency times in all ages tested. Desipramine treatment did not decrease escape latency times for PND 21 rats, but did decrease times for PND 28 and adult animals. CONCLUSIONS The learned helplessness model with PND 21 rats predicts the efficacy of escitalopram and the lack of efficacy of desipramine seen in the treatment of pediatric depression. These findings suggest that the use of PND 21 rats in a modified learned helplessness procedure may be a valuable model of human pediatric depression that can predict pediatric antidepressant efficacy and be used to study antidepressant mechanisms involved in pediatric depression.
Collapse
|
240
|
Troakes C, Ingram CD. Anxiety behaviour of the male rat on the elevated plus maze: associated regional increase in c-fos mRNA expression and modulation by early maternal separation. Stress 2009; 12:362-9. [PMID: 19051121 DOI: 10.1080/10253890802506391] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Stressful stimuli cause region-specific increases in c-fos expression within the rat brain. Early maternal separation (EMS) is a model of early life adversity that results in long lasting changes to stress and anxiety responses. This study examined the regional distribution of c-fos mRNA after exposure to the elevated plus-maze (EPM) and how EMS altered this pattern. On each of post-natal days 5-21 pups were separated from the dam for 6 h -- control rats remained undisturbed. At 70 days old, male offspring were either exposed to the EPM or left undisturbed in the home cage. After exposure to the EPM, c-fos mRNA expression was significantly increased in specific brain areas, including cingulate cortex, medial amygdala and hippocampus. EMS rats displayed greater anxiety behaviour on the EPM vs. controls. Although EMS caused no overall effect on basal c-fos mRNA, a significant interaction between treatment group and exposure to the EPM occurred in the dentate gyrus and piriform cortex, with lower EPM-induced mRNA levels in EMS rats. The region-specific increase in c-fos mRNA reflects activation of neural circuits associated with EPM-induced anxiety. The effect of EMS on this activation in the two regions suggests these areas may contribute to the differential response to the anxiogenic stress of the EPM.
Collapse
Affiliation(s)
- C Troakes
- Psychobiology Research Group, Institute of Neuroscience, University of Newcastle upon Tyne, Medical School, Framlington Place, Newcastle upon Tyne, UK.
| | | |
Collapse
|
241
|
Rivarola MA, Suárez MM. Early maternal separation and chronic variable stress in adulthood changes the neural activity and the expression of glucocorticoid receptor in limbic structures. Int J Dev Neurosci 2009; 27:567-74. [PMID: 19563881 DOI: 10.1016/j.ijdevneu.2009.06.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Revised: 06/04/2009] [Accepted: 06/20/2009] [Indexed: 01/15/2023] Open
Abstract
There is increasing evidence that early adverse experience contributes to the development of stress susceptibility, and increases the onset of stress-related psychiatric disorders in stressful environments in adulthood. This study addressed whether or not prolonged maternal separation, a well-established model of early stress, affects adult limbic areas related to the regulation of the hypothalamic-pituitary-adrenal axis in exposure to chronic variable stress in adulthood. Rats were subjected to daily maternal separation for 4.5h during postnatal days 1-21. As adults, the animals were exposed to a variable chronic stress paradigm of 24 days. Persistent changes were assessed in glucocorticoid receptor density and Fos activity in the anterodorsal thalamic nuclei, mammillary nuclei and retrosplenial cortex. Immunohistochemical analysis revealed that adult maternally separated animals had increased levels of c-Fos immunoreactivity in the anterodorsal thalamic nuclei as well as in the mammillary nuclei compared to normal non-maternally separated animals. Chronic variable stress in maternally separated and non-maternally separated animals diminished glucocorticoid receptor density in the anterodorsal thalamic nuclei but not in the rest of the nuclei analyzed. These results indicate that c-Fos immunoreactivity as well as glucocorticoid receptor expression in the anterodorsal thalamic nuclei and mammillary nuclei exhibit long-term alterations in adult rats following repeated maternal separation and subsequent stress exposure. Recognition of these adaptations helps to define the brain regions and neural circuitry associated with persistent alterations induced by early life environment and the development of stress-associated disorders.
Collapse
Affiliation(s)
- María Angélica Rivarola
- Facultad de Ciencias Exactas Físicas y Naturales, Universidad Nacional de Córdoba, Velez Sarsfield 299, X5000JJC Córdoba, Argentina.
| | | |
Collapse
|
242
|
Curley JP, Jordan ER, Swaney WT, Izraelit A, Kammel S, Champagne FA. The meaning of weaning: influence of the weaning period on behavioral development in mice. Dev Neurosci 2009; 31:318-31. [PMID: 19546569 DOI: 10.1159/000216543] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Accepted: 12/29/2009] [Indexed: 01/03/2023] Open
Abstract
Maternal care during the first week postpartum has long-term consequences for offspring development in rodents. However, mother-infant interactions continue well beyond this period, with several physiological and behavioral changes occurring between days 18 and 28 PN. In the present study, we investigate the long-term effects on offspring behavior of being weaned at day 21 PN versus day 28 PN. We found that male and female offspring engage in higher initial levels of social interaction if weaned at day 28 PN, as well as sexually dimorphic changes in exploratory behavior. Females who were themselves weaned earlier also appeared to wean their own pups earlier. Sex-specific effects of weaning age were found on levels of oxytocin and vasopressin V1a receptor density in the hypothalamus, central nucleus of the amygdala and nucleus accumbens. These results indicate that altering weaning age in mice may be a useful model for investigating the development of sexual dimorphism in neurobiology and behavior.
Collapse
Affiliation(s)
- James P Curley
- Department of Psychology, Columbia University, New York, N.Y. 10027, USA
| | | | | | | | | | | |
Collapse
|
243
|
Seidel K, Helmeke C, Poeggel G, Braun K. Repeated neonatal separation stress alters the composition of neurochemically characterized interneuron subpopulations in the rodent dentate gyrus and basolateral amygdala. Dev Neurobiol 2008; 68:1137-52. [PMID: 18506823 DOI: 10.1002/dneu.20651] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Emotional experience during early life has been shown to interfere with the development of excitatory synaptic networks in the prefrontal cortex, hippocampus, and the amygdala of rodents and primates. The aim of the present study was to investigate a developmental "homoeostatic synaptic plasticity" hypothesis and to test whether stress-induced changes of excitatory synaptic composition are counterbalanced by parallel changes of inhibitory synaptic networks. The impact of repeated early separation stress on the development of two GABAergic neuronal subpopulations was quantitatively analyzed in the brain of the semiprecocial rodent Octodon degus. Assuming that PARV- and CaBP-D28k-expression are negatively correlated to the level of inhibitory activity, the previously described reduced density of excitatory spine synapses in the dentate gyrus of stressed animals appears to be "amplified" by elevated GABAergic inhibition, reflected by reduced PARV- (down to 85%) and CaBP-D28k-immunoreactivity (down to 74%). In opposite direction, the previously observed elevated excitatory spine density in the CA1 region of stressed animals appears to be amplified by reduced inhibition, reflected by elevated CaPB-D28k-immunoreactivity (up to 149%). In the (baso)lateral amygdala, the previously described reduction of excitatory spine synapses appears to be "compensated" by reduced inhibitory activity, reflected by dramatically elevated PARV- (up to 395%) and CaPB-D28k-immunoreactivity (up to 327%). No significant differences were found in the central nucleus of the amygdala, the piriform, and somatosensory cortices and in the hypothalamic paraventricular nucleus. Thus during stress-evoked neuronal and synaptic reorganization, a homeostatic balance between excitation and inhibition is not maintained in all regions of the juvenile brain.
Collapse
Affiliation(s)
- Katja Seidel
- Institute for Biology, Department of Zoology/Developmental Neurobiology, Otto-von-Guericke University, 39118 Magdeburg, Germany
| | | | | | | |
Collapse
|
244
|
Choy KHC, de Visser Y, Nichols NR, van den Buuse M. Combined neonatal stress and young-adult glucocorticoid stimulation in rats reduce BDNF expression in hippocampus: effects on learning and memory. Hippocampus 2008; 18:655-67. [PMID: 18398848 DOI: 10.1002/hipo.20425] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Epidemiological studies suggest that multiple developmental disruptions are involved in the etiology of psychiatric illnesses including schizophrenia. In addition, altered expression of brain-derived neurotrophic factor (BDNF) has been implicated in these illnesses. In the present study, we examined the combined long-term effect of an early stress, in the form of maternal deprivation, and a later stress, simulated by chronic young-adult treatment with the stress hormone, corticosterone, on BDNF expression in the hippocampus of rats. To assess whether there were behavioral effects, which may correlate with the BDNF changes, learning and memory was tested in the Y-maze test for short term spatial memory, the Morris water maze for long-term spatial memory, and the T-maze test for working memory. Four groups of rats received either no stress, maternal deprivation, corticosterone treatment, or both. Dorsal hippocampus sections obtained from parallel groups were used for BDNF mRNA in situ hybridization. Rats which had undergone both maternal deprivation and corticosterone treatment displayed a unique and significant 25-35% reduction of BDNF expression in the dentate gyrus (DG), and similar trends in the CA1 and CA3 regions of the hippocampus. These "two-hit" animals exhibited a learning delay in the Morris water maze test, a marked deficit in the Y-maze, but little change in the T-maze test. However, some aspects of cognition were also altered in rats with either maternal deprivation or corticosterone treatment. This study demonstrates a persistent effect of two developmental disruptions on BDNF expression in the hippocampus, with parallel, but not completely correlative changes in learning and memory.
Collapse
Affiliation(s)
- Kwok Ho Christopher Choy
- Behavioural Neuroscience Laboratory, Mental Health Research Institute of Victoria, Melbourne, Australia
| | | | | | | |
Collapse
|
245
|
Rivarola MA, Dalmasso C, Valdez DJ, Vivas LM, Suárez MM. Early maternal separation and chronic variable stress as adults differentially affect Fos expression in the anterodorsal thalami nuclei. Int J Neurosci 2008; 118:735-48. [PMID: 18446587 DOI: 10.1080/00207450701750430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The present study examined the participation of the anterodorsal thalamic nuclei (ADTN) in mediating the long-term effects of early maternal separation on the stress/hypothalamic-pituitary-adrenal axis response of adult animals. The study measured Fos and glucocorticoid receptor immunoreactivity (GR-ir) in the ADTN of maternally separated female rats subsequently exposed to variable chronic stress. Maternal separation increased the number of neurons immunoreactive to Fos in the ADTN of chronically stressed adult rats. GR-ir was absent in the ADTN. Linking these results with previous endocrine evidence led the authors to propose a dual role of these nuclei. Maternal separation and chronic stress enhance the neuronal activity of the ADTN, nevertheless it is not regulated, at least directly, via GR.
Collapse
Affiliation(s)
- María Angélica Rivarola
- Facultad de Ciencias Exactas Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina.
| | | | | | | | | |
Collapse
|
246
|
Ognibene E, Adriani W, Caprioli A, Ghirardi O, Ali SF, Aloe L, Laviola G. The effect of early maternal separation on brain derived neurotrophic factor and monoamine levels in adult heterozygous reeler mice. Prog Neuropsychopharmacol Biol Psychiatry 2008; 32:1269-76. [PMID: 18501492 DOI: 10.1016/j.pnpbp.2008.03.023] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 03/28/2008] [Accepted: 03/28/2008] [Indexed: 01/19/2023]
Abstract
OBJECTIVE AND METHODS The reeler heterozygous (HZ) mice have provided a model for studying the relationship between reelin (a protein of extracellular matrix) haploinsufficiency and the emergence of neuropsychiatric diseases. In a neurodevelopmental framework, the enduring consequences of early maternal separation (5 h/day during the first postnatal week, or handling controls, H) were studied in reeler HZ and wild type (WT) mice at adulthood. The modulatory effects of a chronic treatment with the atypical antipsychotic olanzapine (OLZ, 1.5 mg/kg for 40 days) were also investigated. RESULTS Early maternal separation had long-term effects on brain plasticity, with a reduction of brain- and glial- derived neurotrophic factor (BDNF and GDNF) in several brain areas of mice, but such a consequence was less marked in the HZ genotype. On the other hand, treatment with OLZ did not affect at all the GDNF but led to an increase of BDNF levels in maternally separated (SEP) mice, an effect which was far more marked in the HZ genotype. Brain levels of serotonin (5-HT) were markedly increased, striatal dopamine (DA) was increased, whereas metabolites and turnover were decreased, in SEP mice of both genotypes. The spontaneous home-cage activity was generally lower in HZ than WT mice, and OLZ treatment contrasted this hypoactivity profile. Maternal separation also decreased the interest toward an unknown mouse proposed as a social stimulus, but only in WT mice. CONCLUSION We investigated the interplay between genetic vulnerability (reelin haploinsufficiency), the outcome of early stressful experiences, and the efficacy of the antipsychotic drug therapy. The reeler HZ genotype exhibited a slightly lower sensitivity to the environmental insult as well as an enhanced response to the atypical antipsychotic treatment.
Collapse
Affiliation(s)
- Elisa Ognibene
- Section of Behavioral Neuroscience, Dept. Cell Biology and Neuroscience, Istituto Superiore di Sanità, Roma, Italy
| | | | | | | | | | | | | |
Collapse
|
247
|
Toth E, Avital A, Leshem M, Richter-Levin G, Braun K. Neonatal and juvenile stress induces changes in adult social behavior without affecting cognitive function. Behav Brain Res 2008; 190:135-9. [DOI: 10.1016/j.bbr.2008.02.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2007] [Revised: 01/24/2008] [Accepted: 02/11/2008] [Indexed: 10/22/2022]
|
248
|
Aisa B, Tordera R, Lasheras B, Del Río J, Ramírez MJ. Effects of maternal separation on hypothalamic-pituitary-adrenal responses, cognition and vulnerability to stress in adult female rats. Neuroscience 2008; 154:1218-26. [PMID: 18554808 DOI: 10.1016/j.neuroscience.2008.05.011] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Revised: 04/08/2008] [Accepted: 05/13/2008] [Indexed: 12/26/2022]
Abstract
We studied the long term effects of neonatal stress in female rats and subsequent responses to stress when adults. Female rats that experienced maternal separation (MS) showed in adulthood depressive-like behavior in the forced swimming test and cognitive impairments in the novel object recognition test, which were reverted by the glucocorticoid receptor antagonist mifepristone or the beta-adrenoceptor antagonist propranolol. Markers of HPA axis (corticosterone levels, CRF mRNA levels in the paraventricular nucleus and glucocorticoid receptor density in the hippocampus) were altered by MS, suggesting that an altered HPA axis function may be associated to behavioral and cognitive deficits in MS female rats. In addition, MS rats were found to be more vulnerable to chronic stress than controls as shown by decreases in open field activity, increases in immobility time in the forced swim test, and changes in markers of HPA axis (decreases in the density of glucocorticoid receptors). These present findings are discussed in terms of gender differences in adulthood.
Collapse
Affiliation(s)
- B Aisa
- Department of Pharmacology, School of Medicine, University of Navarra, Pamplona, Spain
| | | | | | | | | |
Collapse
|
249
|
Pietropaolo S, Singer P, Feldon J, Yee BK. The postweaning social isolation in C57BL/6 mice: preferential vulnerability in the male sex. Psychopharmacology (Berl) 2008; 197:613-28. [PMID: 18317735 DOI: 10.1007/s00213-008-1081-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2007] [Accepted: 01/10/2008] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Social deprivation during early life can severely affect mental health later in adulthood, leading to the development of behavioural traits associated with several major psychiatric disorders including schizophrenia. This has led to the application of social isolation in laboratory animals to model the impact of environmental factors on the aetiopathology of schizophrenia. However, controversy exists over the precise behavioural profile and the robustness of some of the reported effects of social isolation rearing. MATERIALS AND METHODS Here, we evaluated the efficacy of postweaning social isolation to induce schizophrenia-related behavioural deficits in C57BL/6 mice of both sexes. RESULTS The effects of social isolation clearly differed between sexes: isolated male but not female mice exhibited multiple habituation deficits and enhanced locomotor reaction to amphetamine. DISCUSSION The preferential vulnerability in the male sex corresponds well with the earlier disease onset and poorer prognosis in male relative to female schizophrenic patients. In contrast, we observed no evidence for a disruption of sensorimotor gating in the prepulse inhibition paradigm despite the efficacy of social isolation to alter startle reactivity. With both success and failure in the induction of schizophrenia-related endophenotypes, the present study thus provides important characterizations and qualifications to the application of the social isolation model in mice. CONCLUSIONS We conclude that social isolation in mice represents a valuable tool for the examination of candidate genes within the context of the "two-hit" hypothesis of the aetiological processes in schizophrenia.
Collapse
Affiliation(s)
- Susanna Pietropaolo
- Laboratory of Behavioural Neurobiology, Swiss Federal Institute of Technology Zurich, Schorenstrasse 16, CH-8603 Schwerzenbach, Switzerland
| | | | | | | |
Collapse
|
250
|
Branchi I. The mouse communal nest: investigating the epigenetic influences of the early social environment on brain and behavior development. Neurosci Biobehav Rev 2008; 33:551-9. [PMID: 18471879 DOI: 10.1016/j.neubiorev.2008.03.011] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Revised: 03/07/2008] [Accepted: 03/19/2008] [Indexed: 10/22/2022]
Abstract
Among the epigenetic factors shaping brain and behavior during early postnatal life, social experiences have a major impact. Early social experiences are mainly of two kinds: mother-offspring and peer interaction. In rodents, the latter has so far been rarely studied. The communal nest (CN) is an innovative experimental strategy that favors an exhaustive investigation of the long-term effects not only of mother-offspring but also of peer interaction. CN is a rearing condition employed by up to 90% of mouse females in naturalistic settings and consists of a single nest where two or more mothers keep their pups together and share care-giving. Mice reared in a communal nest display relevant changes in brain function and behavior, including high levels of neural plasticity markers, such as brain-derived neurotrophic factor (BDNF), and elaborate adult social competencies. Overall, CN appears as an experimental strategy different and complementary to the ones currently used for studying how the early environment determines developmental trajectories.
Collapse
Affiliation(s)
- Igor Branchi
- Section of Behavioural Neurosciences, Department of Cell Biology, Istituto Superiore di Sanità, Viale Regina Elena 299, I-00161 Roma, Italy.
| |
Collapse
|