201
|
Ospina-Rojas I, Murakami A, Duarte C, Nascimento G, Garcia E, Sakamoto M, Nunes R. Leucine and valine supplementation of low-protein diets for broiler chickens from 21 to 42 days of age. Poult Sci 2017; 96:914-922. [DOI: 10.3382/ps/pew319] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Accepted: 07/31/2016] [Indexed: 11/20/2022] Open
|
202
|
Chalvon-Demersay T, Blachier F, Tomé D, Blais A. Animal Models for the Study of the Relationships between Diet and Obesity: A Focus on Dietary Protein and Estrogen Deficiency. Front Nutr 2017; 4:5. [PMID: 28373974 PMCID: PMC5357654 DOI: 10.3389/fnut.2017.00005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 03/01/2017] [Indexed: 01/26/2023] Open
Abstract
Obesity is an increasing major public health concern asking for dietary strategies to limit weight gain and associated comorbidities. In this review, we present animal models, particularly rats and mice, which have been extensively used by scientists to understand the consequences of diet quality on weight gain and health. Notably, modulation of dietary protein quantity and/or quality has been shown to exert huge effects on body composition homeostasis through the modulation of food intake, energy expenditure, and metabolic pathways. Interestingly, the perinatal window appears to represent a critical period during which the protein intake of the dam can impact the offspring’s weight gain and feeding behavior. Animal models are also widely used to understand the processes and mechanisms that contribute to obesity at different physiological and pathophysiological stages. An interesting example of such aspect is the situation of decreased estrogen level occurring at menopause, which is linked to weight gain and decreased energy expenditure. To study metabolic disorders associated with such situation, estrogen withdrawal in ovariectomized animal models to mimic menopause are frequently used. According to many studies, clear species-specific differences exist between rats and mice that need to be taken into account when results are extrapolated to humans.
Collapse
Affiliation(s)
- Tristan Chalvon-Demersay
- UMR Physiologie de la Nutrition et du Comportement Alimentaire, AgroParisTech, INRA, Université Paris-Saclay , Paris , France
| | - François Blachier
- UMR Physiologie de la Nutrition et du Comportement Alimentaire, AgroParisTech, INRA, Université Paris-Saclay , Paris , France
| | - Daniel Tomé
- UMR Physiologie de la Nutrition et du Comportement Alimentaire, AgroParisTech, INRA, Université Paris-Saclay , Paris , France
| | - Anne Blais
- UMR Physiologie de la Nutrition et du Comportement Alimentaire, AgroParisTech, INRA, Université Paris-Saclay , Paris , France
| |
Collapse
|
203
|
De Jong KA, Lopaschuk GD. Complex Energy Metabolic Changes in Heart Failure With Preserved Ejection Fraction and Heart Failure With Reduced Ejection Fraction. Can J Cardiol 2017; 33:860-871. [PMID: 28579160 DOI: 10.1016/j.cjca.2017.03.009] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 03/14/2017] [Accepted: 03/14/2017] [Indexed: 12/11/2022] Open
Abstract
Alterations in cardiac energy metabolism contribute to the severity of heart failure. However, the energy metabolic changes that occur in heart failure are complex, and are dependent not only on the severity and type of heart failure present, but also on the coexistence of common comorbidities such as obesity and type 2 diabetes. In this article we review the cardiac energy metabolic changes that occur in heart failure. An emphasis is made on distinguishing the differences in cardiac energy metabolism between heart failure with preserved ejection fraction (HFpEF) and heart failure with reduced ejection fraction (HFrEF) and in clarifying the common misconceptions surrounding the fate of fatty acids and glucose in the failing heart. The major key points from this article are: (1) mitochondrial oxidative capacity is reduced in HFpEF and HFrEF; (2) fatty acid oxidation is increased in HFpEF and reduced in HFrEF (however, oxidative metabolism of fatty acids in HFrEF still exceeds that of glucose); (3) glucose oxidation is decreased in HFpEF and HFrEF; (4) there is an uncoupling between glucose uptake and oxidation in HFpEF and HFrEF, resulting in an increased rate of glycolysis; (5) ketone body oxidation is increased in HFrEF, which might further reduce fatty acid and glucose oxidation; and finally, (6) branched chain amino acid oxidation is impaired in HFrEF. The understanding of these changes in cardiac energy metabolism in heart failure are essential to allow the development of metabolic modulators in the treatment of heart failure.
Collapse
Affiliation(s)
- Kirstie A De Jong
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Gary D Lopaschuk
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
204
|
Bonet ML, Mercader J, Palou A. A nutritional perspective on UCP1-dependent thermogenesis. Biochimie 2017; 134:99-117. [DOI: 10.1016/j.biochi.2016.12.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 12/23/2016] [Indexed: 12/16/2022]
|
205
|
Soumeh EA, Hedemann MS, Poulsen HD, Corrent E, van Milgen J, Nørgaard JV. Nontargeted LC-MS Metabolomics Approach for Metabolic Profiling of Plasma and Urine from Pigs Fed Branched Chain Amino Acids for Maximum Growth Performance. J Proteome Res 2016; 15:4195-4207. [PMID: 27704848 DOI: 10.1021/acs.jproteome.6b00184] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The metabolic response in plasma and urine of pigs when feeding an optimum level of branched chain amino acids (BCAAs) for best growth performance is unknown. The objective of the current study was to identify the metabolic phenotype associated with the BCAAs intake level that could be linked to the animal growth performance. Three dose-response studies were carried out to collect blood and urine samples from pigs fed increasing levels of Ile, Val, or Leu followed by a nontargeted LC-MS approach to characterize the metabolic profile of biofluids when dietary BCAAs are optimum for animal growth. Results showed that concentrations of plasma hypoxanthine and tyrosine (Tyr) were higher while concentrations of glycocholic acid, tauroursodeoxycholic acid, and taurocholic acid were lower when the dietary Ile was optimum. Plasma 3-methyl-2-oxovaleric acid and creatine were lower when dietary Leu was optimum. The optimum dietary Leu resulted in increased urinary excretion of ascorbic acid and choline and relatively decreased excretion of 2-aminoadipic acid, acetyl-dl-valine, Ile, 2-methylbutyrylglycine, and Tyr. In conclusion, plasma glycocholic acid and taurocholic acid were discriminating metabolites to the optimum dietary Ile. The optimum dietary Leu was associated with reduced plasma creatine and urinary 2-aminoadipic acid and elevated urinary excretion of ascorbic acid and choline. The optimum dietary Val had a less pronounced metabolic response reflected in plasma or urine than other BCAA.
Collapse
Affiliation(s)
- Elham A Soumeh
- Department of Animal Science, Aarhus University, Foulum , DK-8830 Tjele, Denmark
| | - Mette S Hedemann
- Department of Animal Science, Aarhus University, Foulum , DK-8830 Tjele, Denmark
| | - Hanne D Poulsen
- Department of Animal Science, Aarhus University, Foulum , DK-8830 Tjele, Denmark
| | | | | | - Jan V Nørgaard
- Department of Animal Science, Aarhus University, Foulum , DK-8830 Tjele, Denmark
| |
Collapse
|
206
|
Liver BCATm transgenic mouse model reveals the important role of the liver in maintaining BCAA homeostasis. J Nutr Biochem 2016; 40:132-140. [PMID: 27886623 DOI: 10.1016/j.jnutbio.2016.10.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 10/19/2016] [Accepted: 10/25/2016] [Indexed: 01/08/2023]
Abstract
Unlike other amino acids, the branched-chain amino acids (BCAAs) largely bypass first-pass liver degradation due to a lack of hepatocyte expression of the mitochondrial branched-chain aminotransferase (BCATm). This sets up interorgan shuttling of BCAAs and liver-skeletal muscle cooperation in BCAA catabolism. To explore whether complete liver catabolism of BCAAs may impact BCAA shuttling in peripheral tissues, the BCATm gene was stably introduced into mouse liver. Two transgenic mouse lines with low and high hepatocyte expression of the BCATm transgene (LivTg-LE and LivTg-HE) were created and used to measure liver and plasma amino acid concentrations and determine whether the first two BCAA enzymatic steps in liver, skeletal muscle, heart and kidney were impacted. Expression of the hepatic BCATm transgene lowered the concentrations of hepatic BCAAs while enhancing the concentrations of some nonessential amino acids. Extrahepatic BCAA metabolic enzymes and plasma amino acids were largely unaffected, and no growth rate or body composition differences were observed in the transgenic animals as compared to wild-type mice. Feeding the transgenic animals a high-fat diet did not reverse the effect of the BCATm transgene on the hepatic BCAA catabolism, nor did the high-fat diet cause elevation in plasma BCAAs. However, the high-fat-diet-fed BCATm transgenic animals experienced attenuation in the mammalian target of rapamycin (mTOR) pathway in the liver and had impaired blood glucose tolerance. These results suggest that complete liver BCAA metabolism influences the regulation of glucose utilization during diet-induced obesity.
Collapse
|
207
|
Xiao F, Du Y, Lv Z, Chen S, Zhu J, Sheng H, Guo F. Effects of essential amino acids on lipid metabolism in mice and humans. J Mol Endocrinol 2016; 57:223-231. [PMID: 27613820 DOI: 10.1530/jme-16-0116] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 09/07/2016] [Indexed: 01/29/2023]
Abstract
Eight amino acids are considered essential for human nutrition, and three of them, including leucine, isoleucine and valine, are called as branched-chain amino acids (BCAAs). We recently discovered that dietary deficiency of any BCAA for 7 days rapidly reduces the abdominal fat mass in mice. The goal of this study was to investigate (1) whether dietary deficiency of the other five essential amino acids (EAAs), including phenylalanine, threonine, tryptophan, methionine and lysine, would produce similar effects and (2) whether an association between serum AAs and obesity was observed in humans in Chinese Han population. Similar to BCAAs deprivation, dietary deficiency of any of these five EAAs for 7 days significantly reduced abdominal fat mass, which is likely caused by increased energy expenditure. Expression of genes and proteins related to lipolysis, however, were differentially regulated by different EAAs. These results suggest a crucial role of EAAs deprivation on lipid metabolism in mice. Our human studies revealed that levels of four EAAs (leucine, isoleucine, valine and phenylalanine) were elevated in obese humans compared with those in lean controls in Chinese Han population. Based on the results obtained from mice, we speculate that these four EAAs might play important roles in human obesity.
Collapse
Affiliation(s)
- Fei Xiao
- Key Laboratory of Nutrition and MetabolismInstitute for Nutritional Sciences, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, The Graduate School of the Chinese Academy of Sciences, Shanghai, China
| | - Ying Du
- Key Laboratory of Nutrition and MetabolismInstitute for Nutritional Sciences, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, The Graduate School of the Chinese Academy of Sciences, Shanghai, China
| | - Ziquan Lv
- Key Laboratory of Nutrition and MetabolismInstitute for Nutritional Sciences, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, The Graduate School of the Chinese Academy of Sciences, Shanghai, China
| | - Shanghai Chen
- Key Laboratory of Nutrition and MetabolismInstitute for Nutritional Sciences, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, The Graduate School of the Chinese Academy of Sciences, Shanghai, China
| | - Jianmin Zhu
- Shanghai Xuhui Central HospitalShanghai, China
| | | | - Feifan Guo
- Key Laboratory of Nutrition and MetabolismInstitute for Nutritional Sciences, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, The Graduate School of the Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
208
|
Neis EPJG, Sabrkhany S, Hundscheid I, Schellekens D, Lenaerts K, Olde Damink SW, Blaak EE, Dejong CHC, Rensen SS. Human splanchnic amino-acid metabolism. Amino Acids 2016; 49:161-172. [PMID: 27714515 PMCID: PMC5241341 DOI: 10.1007/s00726-016-2344-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 09/29/2016] [Indexed: 02/06/2023]
Abstract
Plasma levels of several amino acids are correlated with metabolic dysregulation in obesity and type 2 diabetes. To increase our understanding of human amino-acid metabolism, we aimed to determine splanchnic interorgan amino-acid handling. Twenty patients planned to undergo a pylorus preserving pancreatico-duodenectomy were included in this study. Blood was sampled from the portal vein, hepatic vein, superior mesenteric vein, inferior mesenteric vein, splenic vein, renal vein, and the radial artery during surgery. The difference between arterial and venous concentrations of 21 amino acids was determined using liquid chromatography as a measure of amino-acid metabolism across a given organ. Whereas glutamine was significantly taken up by the small intestine (121.0 ± 23.8 µmol/L; P < 0.0001), citrulline was released (−36.1 ± 4.6 µmol/L; P < 0.0001). This, however, was not seen for the colon. Interestingly, the liver showed a small, but a significant uptake of citrulline from the circulation (4.8 ± 1.6 µmol/L; P = 0.0138) next to many other amino acids. The kidneys showed a marked release of serine and alanine into the circulation (−58.0 ± 4.4 µmol/L and −61.8 ± 5.2 µmol/L, P < 0.0001), and a smaller, but statistically significant release of tyrosine (−12.0 ± 1.3 µmol/L, P < 0.0001). The spleen only released taurine (−9.6 ± 3.3 µmol/L; P = 0.0078). Simultaneous blood sampling in different veins provides unique qualitative and quantitative information on integrative amino-acid physiology, and reveals that the well-known intestinal glutamine–citrulline pathway appears to be functional in the small intestine but not in the colon.
Collapse
Affiliation(s)
- Evelien P J G Neis
- Top Institute Food and Nutrition, P.O. Box 557, 6700 AN, Wageningen, The Netherlands.,Department of General Surgery, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
| | - S Sabrkhany
- CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre, P.O. Box 5800, 6229 HX, Maastricht, The Netherlands.,GROW School for Oncology and Developmental Biology, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - I Hundscheid
- Department of General Surgery, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
| | - D Schellekens
- Department of General Surgery, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
| | - K Lenaerts
- Top Institute Food and Nutrition, P.O. Box 557, 6700 AN, Wageningen, The Netherlands.,Department of General Surgery, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
| | - S W Olde Damink
- Department of General Surgery, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
| | - E E Blaak
- Top Institute Food and Nutrition, P.O. Box 557, 6700 AN, Wageningen, The Netherlands.,CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre, P.O. Box 5800, 6229 HX, Maastricht, The Netherlands
| | - C H C Dejong
- Top Institute Food and Nutrition, P.O. Box 557, 6700 AN, Wageningen, The Netherlands.,Department of General Surgery, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands.,Department of Human Biology, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University, 6229 ER, Maastricht, The Netherlands
| | - Sander S Rensen
- Department of General Surgery, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands.
| |
Collapse
|
209
|
Guo X, Huang C, Lian K, Wang S, Zhao H, Yan F, Zhang X, Zhang J, Xie H, An R, Tao L. BCKA down-regulates mTORC2-Akt signal and enhances apoptosis susceptibility in cardiomyocytes. Biochem Biophys Res Commun 2016; 480:106-113. [PMID: 27697526 DOI: 10.1016/j.bbrc.2016.09.162] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 09/29/2016] [Indexed: 12/15/2022]
Abstract
Diabetic mellitus (DM) portends poor prognosis concerning pressure overloaded heart disease. Branched-chain amino acids (BCAAs), elements of essential amino acids, have been found altered in its catabolism in diabetes decades ago. However, the relationship between BCAAs and DM induced deterioration of pressure overloaded heart disease remains controversial. This study is aimed to investigate the particular effect of BCKA, a metabolite of BCAA, on myocardial injury induced by pressure overloaded. Primary cardiomyocytes were incubated with or without BCKA and followed by treatment with isoproterenol (ISO); then cell viability was detected by CCK8 and apoptosis was examined by TUNNEL stain and caspase-3 activity analysis. Compared to non-BCKA incubated group, BCKA incubation decreased cell survival and increased apoptosis concentration dependently. Furthermore, Western blot assay showed that mTORC2-Akt pathway was significantly inactivated by BCKA incubation. Moreover, overexpression of rictor, a vital component of mTORC2, significantly abolished the adverse effects of BCKA on apoptosis susceptibility of cardiomyocytes. These results indicate that BCKA contribute to vulnerability of cardiomyocytes in stimulated stress via inactivation of mTORC2-Akt pathway.
Collapse
Affiliation(s)
- Xiong Guo
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Chong Huang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Kun Lian
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Shan Wang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Huishou Zhao
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Feng Yan
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Xiaomeng Zhang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Jinglong Zhang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Huaning Xie
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Rui An
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Ling Tao
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
210
|
Kam J, Puranik S, Yadav R, Manwaring HR, Pierre S, Srivastava RK, Yadav RS. Dietary Interventions for Type 2 Diabetes: How Millet Comes to Help. FRONTIERS IN PLANT SCIENCE 2016; 7:1454. [PMID: 27729921 PMCID: PMC5037128 DOI: 10.3389/fpls.2016.01454] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 09/12/2016] [Indexed: 05/04/2023]
Abstract
Diabetes has become a highly problematic and increasingly prevalent disease world-wide. It has contributed toward 1.5 million deaths in 2012. Management techniques for diabetes prevention in high-risk as well as in affected individuals, beside medication, are mainly through changes in lifestyle and dietary regulation. Particularly, diet can have a great influence on life quality for those that suffer from, as well as those at risk of, diabetes. As such, considerations on nutritional aspects are required to be made to include in dietary intervention. This review aims to give an overview on the general consensus of current dietary and nutritional recommendation for diabetics. In light of such recommendation, the use of plant breeding, conventional as well as more recently developed molecular marker-based breeding and biofortification, are discussed in designing crops with desired characteristics. While there are various recommendations available, dietary choices are restricted by availability due to geo-, political-, or economical- considerations. This particularly holds true for countries such as India, where 65 million people (up from 50 million in 2010) are currently diabetic and their numbers are rising at an alarming rate. Millets are one of the most abundant crops grown in India as well as in Africa, providing a staple food source for many poorest of the poor communities in these countries. The potentials of millets as a dietary component to combat the increasing prevalence of global diabetes are highlighted in this review.
Collapse
Affiliation(s)
- Jason Kam
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Gogerddan, AberystwythUK
| | - Swati Puranik
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Gogerddan, AberystwythUK
| | - Rama Yadav
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Gogerddan, AberystwythUK
| | - Hanna R. Manwaring
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Gogerddan, AberystwythUK
| | - Sandra Pierre
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Gogerddan, AberystwythUK
| | - Rakesh K. Srivastava
- International Crops Research Institute for the Semi-Arid Tropics, PatancheruIndia
| | - Rattan S. Yadav
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Gogerddan, AberystwythUK
| |
Collapse
|
211
|
Halder A, Zhang M, Chi Q. Electroactive and biocompatible functionalization of graphene for the development of biosensing platforms. Biosens Bioelectron 2016; 87:764-771. [PMID: 27649333 DOI: 10.1016/j.bios.2016.09.030] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 08/31/2016] [Accepted: 09/09/2016] [Indexed: 10/21/2022]
Abstract
Design and synthesis of low-cost, highly stable, electroactive and biocompatible material is one of the key steps for the advancement of electrochemical biosensing systems. To this end, we have explored a facile way for the successful synthesis of redox active and bioengineering of reduced graphene oxide (RGO) for the development of versatile biosensing platform. A highly branched polymer (PEI) is used for reduction and simultaneous derivation of graphene oxide (GO) to form a biocompatible polymeric matrix on RGO nanosheet. Ferrocene redox moieties are then wired onto RGO nanosheets through the polymer matrix. The as-prepared functional composite is electrochemically active and enables to accommodate enzymes stably. For proof-of-concept studies, two crucial redox enzymes for biosensors (i.e. cholesterol oxidase and glucose oxidase) are targeted. The enzyme integrated and RGO supported biosensing hybrid systems show high stability, excellent selectivity, good reproducibility and fast sensing response. As measured, the detection limit of the biosensors for glucose and cholesterol is 5µM and 0.5µM (S/N=3), respectively. The linear response range of the biosensor is from 0.1 to 15.5mM for glucose and from 2.5 to 25µM for cholesterol. Furthermore, this biosensing platform shows good anti-interference ability and reasonable stability. The nanohybrid biosensing materials can be combined with screen-printed electrodes, which are successfully used for measuring the glucose and cholesterol level of real human serum samples.
Collapse
Affiliation(s)
- Arnab Halder
- Department of Chemistry, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Minwei Zhang
- Department of Chemistry, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Qijin Chi
- Department of Chemistry, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark.
| |
Collapse
|
212
|
Jiao J, Han SF, Zhang W, Xu JY, Tong X, Yin XB, Yuan LX, Qin LQ. Chronic leucine supplementation improves lipid metabolism in C57BL/6J mice fed with a high-fat/cholesterol diet. Food Nutr Res 2016; 60:31304. [PMID: 27616737 PMCID: PMC5018683 DOI: 10.3402/fnr.v60.31304] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 08/04/2016] [Accepted: 08/05/2016] [Indexed: 12/20/2022] Open
Abstract
Background Leucine supplementation has been reported to improve lipid metabolism. However, lipid metabolism in adipose tissues and liver has not been extensively studied for leucine supplementation in mice fed with a high-fat/cholesterol diet (HFCD). Design C57BL/6J mice were fed a chow diet, HFCD, HFCD supplemented with 1.5% leucine (HFCD+1.5% Leu group) or 3% leucine (HFCD+3% Leu group) for 24 weeks. The body weight, peritoneal adipose weight, total cholesterol (TC), triglyceride in serum and liver, and serum adipokines were analyzed. In addition, expression levels of proteins associated with hepatic lipogenesis, adipocyte lipolysis, and white adipose tissue (WAT) browning were determined. Results Mice in the HFCD group developed obesity and deteriorated lipid metabolism. Compared with HFCD, leucine supplementation lowered weight gain and TC levels in circulation and the liver without changing energy intake. The decrease in body fat was supported by histological examination in the WAT and liver. Furthermore, serum levels of proinflammatory adipokines, such as leptin, IL-6, and tumor necrosis factor-alpha, were significantly decreased by supplemented leucine. At the protein level, leucine potently decreased the hepatic lipogenic enzymes (fatty acid synthase and acetyl-coenzyme A carboxylase) and corresponding upstream proteins. In epididymal WAT, the reduced expression levels of two major lipases by HFCD, namely phosphorylated hormone-sensitive lipase and adipose triglyceride lipase, were reversed when leucine was supplemented. Uncoupling protein 1, β3 adrenergic receptors, peroxisome proliferator-activated receptor g coactivator-1α, and fibroblast growth factor 21 were involved in the thermogenic program and WAT browning. Leucine additionally upregulated their protein expression in both WAT and interscapular brown adipose tissue. Conclusion This study demonstrated that chronic leucine supplementation reduced the body weight and improved the lipid profile of mice fed with a HFCD. This beneficial effect was ascribed to hepatic lipogenesis, adipocyte lipolysis, and WAT browning.
Collapse
Affiliation(s)
- Jun Jiao
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, China
| | - Shu-Fen Han
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, China
| | - Wei Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, China
| | - Jia-Ying Xu
- School of Radiation Medicine and Protection, Soochow University, Suzhou, China.,Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Xing Tong
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, China
| | - Xue-Bin Yin
- Jiangsu Bio-Engineering Research Centre of Selenium, Suzhou, China
| | - Lin-Xi Yuan
- Jiangsu Bio-Engineering Research Centre of Selenium, Suzhou, China
| | - Li-Qiang Qin
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Disease, Soochow University, Suzhou, China;
| |
Collapse
|
213
|
Rajan S, Shankar K, Beg M, Varshney S, Gupta A, Srivastava A, Kumar D, Mishra RK, Hussain Z, Gayen JR, Gaikwad AN. Chronic hyperinsulinemia reduces insulin sensitivity and metabolic functions of brown adipocyte. J Endocrinol 2016; 230:275-90. [PMID: 27340034 DOI: 10.1530/joe-16-0099] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 06/22/2016] [Indexed: 01/02/2023]
Abstract
The growing pandemics of diabetes have become a real threat to world economy. Hyperinsulinemia and insulin resistance are closely associated with the pathophysiology of type 2 diabetes. In pretext of brown adipocytes being considered as the therapeutic strategy for the treatment of obesity and insulin resistance, we have tried to understand the effect of hyperinsulinemia on brown adipocyte function. We here with for the first time report that hyperinsulinemia-induced insulin resistance in brown adipocyte is also accompanied with reduced insulin sensitivity and brown adipocyte characteristics. CI treatment decreased expression of brown adipocyte-specific markers (such as PRDM16, PGC1α, and UCP1) and mitochondrial content as well as activity. CI-treated brown adipocytes showed drastic decrease in oxygen consumption rate (OCR) and spare respiratory capacity. Morphological study indicates increased accumulation of lipid droplets in CI-treated brown adipocytes. We have further validated these findings in vivo in C57BL/6 mice implanted with mini-osmotic insulin pump for 8weeks. CI treatment in mice leads to increased body weight gain, fat mass and impaired glucose intolerance with reduced energy expenditure and insulin sensitivity. CI-treated mice showed decreased BAT characteristics and function. We also observed increased inflammation and ER stress markers in BAT of CI-treated animals. The above results conclude that hyperinsulinemia has deleterious effect on brown adipocyte function, making it susceptible to insulin resistance. Thus, the above findings have greater implication in designing approaches for the treatment of insulin resistance and diabetes via recruitment of brown adipocytes.
Collapse
Affiliation(s)
- Sujith Rajan
- Division of PharmacologyCSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India Academy of Scientific and Innovative ResearchCSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Kripa Shankar
- Division of PharmacologyCSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Muheeb Beg
- Division of PharmacologyCSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Salil Varshney
- Division of PharmacologyCSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Abhishek Gupta
- Division of PharmacologyCSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Ankita Srivastava
- Division of PharmacologyCSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India Academy of Scientific and Innovative ResearchCSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Durgesh Kumar
- Division of PharmacologyCSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India Academy of Scientific and Innovative ResearchCSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Raj K Mishra
- SIPS Superspeciality HospitalLucknow, Uttar Pradesh, India
| | - Zakir Hussain
- Division of PharmacokineticsCSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Jiaur R Gayen
- Division of PharmacokineticsCSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Anil N Gaikwad
- Division of PharmacologyCSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India Academy of Scientific and Innovative ResearchCSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| |
Collapse
|
214
|
Imanaka K, Ohkawa K, Tatsumi T, Katayama K, Inoue A, Imai Y, Oshita M, Iio S, Mita E, Fukui H, Yamada A, Nakanishi F, Inada M, Doi Y, Suzuki K, Kaneko A, Marubashi S, Ito Y, Fukui K, Sakamori R, Yakushijin T, Hiramatsu N, Hayashi N, Takehara T. Impact of branched-chain amino acid supplementation on survival in patients with advanced hepatocellular carcinoma treated with sorafenib: A multicenter retrospective cohort study. Hepatol Res 2016; 46:1002-10. [PMID: 26690886 DOI: 10.1111/hepr.12640] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 12/13/2015] [Accepted: 12/15/2015] [Indexed: 02/08/2023]
Abstract
AIM The therapeutic efficacy of branched-chain amino acid (BCAA) when added to sorafenib has not been fully assessed in patients with advanced hepatocellular carcinoma (HCC). This multicenter study investigated whether BCAA supplementation improves prognosis in patients with advanced HCC who underwent sorafenib treatment. METHODS This retrospective analysis included 256 patients with advanced HCC treated with sorafenib, including 55 who did and 201 who did not receive BCAA supplementation. Clinical characteristics and outcomes in relation to Child-Pugh classification were compared in the two groups. Statistical analyses of univariate, multivariate and propensity score-based procedures were used for this study. RESULTS Assessment of 216 Child-Pugh A patients showed that median overall survival was significantly longer in patients with BCAA supplementation than in those without it (440 vs 299 days, P = 0.023). Multivariate analysis showed that BCAA supplementation (P = 0.023), low α-fetoprotein (<100 ng/mL) (P < 0.001), less progressive Barcelona Clinic Liver Cancer stage (A and B) (P = 0.007) and male sex (P = 0.018) were significant independent contributors to better overall survival. The significantly longer overall survival by BCAA supplementation was verified in the analysis using the propensity score in combination with the inverse probability of treatment weighted adjustment (P = 0.026). Assessment of the 40 Child-Pugh B patients showed no significant differences in overall survival between patients with and without BCAA supplementation. CONCLUSION BCAA supplementation may be a valuable adjunctive therapy for improving prognosis in sorafenib-treated Child-Pugh A patients with advanced HCC.
Collapse
Affiliation(s)
- Kazuho Imanaka
- Department of Hepatobiliary and Pancreatic Oncology, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka, Japan
| | - Kazuyoshi Ohkawa
- Department of Hepatobiliary and Pancreatic Oncology, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka, Japan
| | - Tomohide Tatsumi
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kazuhiro Katayama
- Department of Hepatobiliary and Pancreatic Oncology, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka, Japan
| | - Atsuo Inoue
- Department of Gastroenterology and Hepatology, Osaka General Medical Center, Osaka, Japan
| | - Yasuharu Imai
- Department of Gastroenterology, Ikeda Municipal Hospital, Ikeda, Japan
| | - Masahide Oshita
- Department of Internal Medicine, Osaka Police Hospital, Osaka, Japan
| | - Sadaharu Iio
- Department of Gastroenterology, Higashiosaka City Central Hospital, Higashiosaka, Japan
| | - Eiji Mita
- Department of Gastroenterology, National Hospital Organization Osaka National Hospital, Osaka, Japan
| | - Hiroyuki Fukui
- Department of Gastroenterology, Yao Municipal Hospital, Yao, Japan
| | - Akira Yamada
- Department of Gastroenterology, Sumitomo Hospital, Osaka, Japan
| | - Fumihiko Nakanishi
- Department of Gastroenterology, National Hospital Organization Osaka Minami Medical Center, Kawachinagano, Japan
| | - Masami Inada
- Department of Gastroenterology, Toyonaka Municipal Hospital, Toyonaka, Japan
| | - Yoshinori Doi
- Department of Gastroenterology, Otemae Hospital, Osaka, Japan
| | - Kunio Suzuki
- Department of Gastroenterology, Saiseikai Senri Hospital, Suita, Japan
| | - Akira Kaneko
- Department of Gastroenterology, NTT West Osaka Hospital, Osaka, Japan
| | - Shigeru Marubashi
- Department of Surgery, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka, Japan
| | - Yuri Ito
- Center for Cancer Control and Statistics, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka, Japan
| | - Keisuke Fukui
- Center for Cancer Control and Statistics, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka, Japan
| | - Ryotaro Sakamori
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Takayuki Yakushijin
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Naoki Hiramatsu
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Norio Hayashi
- Department of Gastroenterology, Kansai Rousai Hospital, Amagasaki, Japan
| | - Tetsuo Takehara
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | | |
Collapse
|
215
|
Associations between branched chain amino acid intake and biomarkers of adiposity and cardiometabolic health independent of genetic factors: A twin study. Int J Cardiol 2016; 223:992-998. [PMID: 27591698 PMCID: PMC5074005 DOI: 10.1016/j.ijcard.2016.08.307] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 08/19/2016] [Indexed: 01/23/2023]
Abstract
Background Conflicting data exist on the impact of dietary and circulating levels of branched chain amino acids (BCAA) on cardiometabolic health and it is unclear to what extent these relations are mediated by genetics. Methods In a cross-sectional study of 1997 female twins we examined associations between BCAA intake, measured using food frequency-questionnaires, and a range of markers of cardiometabolic health, including DXA-measured body fat, blood pressure, HOMA-IR, high-sensitivity C-reactive protein (hs-CRP) and lipids. We also measured plasma concentrations of BCAA and known metabolites of amino acid metabolism using untargeted mass spectrometry. Using a within-twin design, multivariable analyses were used to compare the associations between BCAA intake and endpoints of cardiometabolic health, independently of genetic confounding. Results Higher BCAA intake was significantly associated with lower HOMA-IR (− 0.1, P-trend 0.02), insulin (− 0.5 μU/mL, P-trend 0.03), hs-CRP − 0.3 mg/L, P-trend 0.01), systolic blood pressure (− 2.3 mmHg, P-trend 0.01) and waist-to-height ratio (− 0.01, P-trend 0.04), comparing extreme quintiles of intake. These associations persisted in within-pair analysis for monozygotic twins for insulin resistance (P < 0.01), inflammation (P = 0.03), and blood pressure (P = 0.04) suggesting independence from genetic confounding. There was no association between BCAA intake and plasma concentrations, although two metabolites previously associated with obesity were inversely associated with BCAA intake (alpha-hydroxyisovalerate and trans-4-hydroxyproline). Conclusions Higher intakes of BCAA were associated, independently of genetics, with lower insulin resistance, inflammation, blood pressure and adiposity-related metabolites. The BCAA intake associated with our findings is easily achievable in the habitual diet.
Collapse
|
216
|
Baum JI, Washington TA, Shouse SA, Bottje W, Dridi S, Davis G, Smith D. Leucine supplementation at the onset of high-fat feeding does not prevent weight gain or improve glycemic regulation in male Sprague-Dawley rats. J Physiol Biochem 2016; 72:781-789. [DOI: 10.1007/s13105-016-0516-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 08/11/2016] [Indexed: 12/15/2022]
|
217
|
Yang Z, Huang S, Zou D, Dong D, He X, Liu. N, Liu W, Huang L. Metabolic shifts and structural changes in the gut microbiota upon branched-chain amino acid supplementation in middle-aged mice. Amino Acids 2016; 48:2731-2745. [DOI: 10.1007/s00726-016-2308-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 08/04/2016] [Indexed: 02/06/2023]
|
218
|
Yao K, Duan Y, Li F, Tan B, Hou Y, Wu G, Yin Y. Leucine in Obesity: Therapeutic Prospects. Trends Pharmacol Sci 2016; 37:714-727. [PMID: 27256112 DOI: 10.1016/j.tips.2016.05.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/08/2016] [Accepted: 05/10/2016] [Indexed: 02/07/2023]
|
219
|
Zheng Y, Li Y, Qi Q, Hruby A, Manson JE, Willett WC, Wolpin BM, Hu FB, Qi L. Cumulative consumption of branched-chain amino acids and incidence of type 2 diabetes. Int J Epidemiol 2016; 45:1482-1492. [PMID: 27413102 DOI: 10.1093/ije/dyw143] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2016] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Plasma branched-chain amino acids (BCAAs, including leucine, isoleucine and valine) were recently related to risk of type 2 diabetes (T2D). Dietary intake is the only source of BCAAs; however, little is known about whether habitual dietary intake of BCAAs affects risk of T2D. METHODS We assessed associations between cumulative consumption of BCAAs and risk of T2D among participants from three prospective cohorts: the Nurses' Health Study (NHS; followed from 1980 to 2012); NHS II (followed from 1991 to 2011); and the Health Professionals Follow-up Study (HPFS; followed from 1986 to 2010). RESULTS We documented 16 097 incident T2D events during up to 32 years of follow-up. After adjustment for demographics and traditional risk factors, higher total BCAA intake was associated with an increased risk of T2D in men and women. In the meta-analysis of all cohorts, comparing participants in the highest quintile with those in the lowest quintile of intake, hazard ratios (95%confidence intervals) were for leucine 1.13 (1.07-1.19), for isoleucine 1.13 (1.07-1.19) and for valine 1.11 (1.05-1.17) (all P for trend < 0.001). In a healthy subsample, higher dietary BCAAs were significantly associated with higher plasma levels of these amino acids (P for trend = 0.01). CONCLUSIONS Our data suggest that high consumption of BCAAs is associated with an increased risk of T2D.
Collapse
Affiliation(s)
- Yan Zheng
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Yanping Li
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Qibin Qi
- Department of Epidemiology & Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Adela Hruby
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - JoAnn E Manson
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Walter C Willett
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Brian M Wolpin
- Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Frank B Hu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Lu Qi
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA .,Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
| |
Collapse
|
220
|
Ananieva EA, Powell JD, Hutson SM. Leucine Metabolism in T Cell Activation: mTOR Signaling and Beyond. Adv Nutr 2016; 7:798S-805S. [PMID: 27422517 PMCID: PMC4942864 DOI: 10.3945/an.115.011221] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In connection with the increasing interest in metabolic regulation of the immune response, this review discusses current advances in understanding the role of leucine and leucine metabolism in T lymphocyte (T cell) activation. T cell activation during the development of an immune response depends on metabolic reprogramming to ensure that sufficient nutrients and energy are taken up by the highly proliferating T cells. Leucine has been described as an important essential amino acid and a nutrient signal that activates complex 1 of the mammalian target of rapamycin (mTORC1), which is a critical regulator of T cell proliferation, differentiation, and function. The role of leucine in these processes is further discussed in relation to amino acid transporters, leucine-degrading enzymes, and other metabolites of leucine metabolism. A new model of T cell regulation by leucine is proposed and outlines a chain of events that leads to the activation of mTORC1 in T cells.
Collapse
Affiliation(s)
- Elitsa A Ananieva
- Department of Biochemistry and Nutrition, Des Moines University, Des Moines, IA;
| | - Jonathan D Powell
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD; and
| | - Susan M Hutson
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA
| |
Collapse
|
221
|
Lund J. Important Nuances on Leucine and Adipose Browning. Trends Pharmacol Sci 2016; 37:730-731. [PMID: 27352989 DOI: 10.1016/j.tips.2016.06.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 06/09/2016] [Indexed: 02/03/2023]
Affiliation(s)
- Jens Lund
- Obesity Research Section, Department of Nutrition, Exercise, and Sports, University of Copenhagen, 1958 Frederiksberg C, Denmark; Section for Metabolic Imaging and Liver Metabolism, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark.
| |
Collapse
|
222
|
Leucine stimulates PPARβ/δ-dependent mitochondrial biogenesis and oxidative metabolism with enhanced GLUT4 content and glucose uptake in myotubes. Biochimie 2016; 128-129:1-7. [PMID: 27345255 DOI: 10.1016/j.biochi.2016.06.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 06/15/2016] [Indexed: 02/08/2023]
Abstract
Leucine stimulates anabolic and catabolic processes in skeletal muscle, however little is known about the effects of leucine on peroxisome proliferator-activated receptor (PPAR) activity. This work characterized the effects of 24-h leucine treatment on metabolic parameters and protein expression in cultured myotubes. Leucine significantly increased PPARβ/δ expression as well as markers of mitochondrial biogenesis, leading to significantly increased mitochondrial content and oxidative metabolism in a PPARβ/δ-dependent manner. However, leucine-treated cells did not display significant alterations in uncoupling protein expression or oxygen consumed per relative mitochondrial content suggesting leucine-mediated increases in oxidative metabolism are a function of increased mitochondrial content and not altered mitochondrial efficiency. Leucine treatment also increased GLUT4 content and glucose uptake as well as PPARγ and FAS expression leading to increased total lipid content. Leucine appears to activate PPAR activity leading to increased mitochondrial biogenesis and elevated substrate oxidation, while simultaneously promoting substrate/lipid storage and protein synthesis.
Collapse
|
223
|
Duan Y, Duan Y, Li F, Li Y, Guo Q, Ji Y, Tan B, Li T, Yin Y. Effects of supplementation with branched-chain amino acids to low-protein diets on expression of genes related to lipid metabolism in skeletal muscle of growing pigs. Amino Acids 2016; 48:2131-44. [PMID: 27156063 DOI: 10.1007/s00726-016-2223-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 03/24/2016] [Indexed: 11/29/2022]
Abstract
Branched-chain amino acids (BCAA), including leucine (Leu), isoleucine (Ile), and valine (Val), play critical roles in energy homeostasis and lipid metabolism in addition to their other functions, such as in protein metabolism. This study investigated the effects of different dietary BCAA ratios on the intramuscular fat (IMF) content and fatty acid composition in different location of skeletal muscles, including the longissimus dorsi (LD), biceps femoris (BF), and psoas major (PM) muscles of growing pigs, and also examined the mRNA expression levels of genes involved in lipid metabolism in these muscle tissues. The experiment was performed on 40 growing pigs (Large White × Landrace) with a similar initial weight (9.85 ± 0.35 kg). The pigs were randomly assigned to one of five diets: diet A was a positive control and contained 20 % crude protein (CP) with a Leu:Ile:Val ratio of 1:0.51:0.63 according to the recommendation of the National Research Council (NRC); for diets B to E, the CP level was reduced to 17 %, and the Leu:Ile:Val ratios were 1:1:1, 1:0.75:0.75, 1:0.51:0.63, and 1:0.25:0.25, respectively. No significant difference was observed in the average feed intake and feed efficiency of the pigs fed the low protein diet (17 % CP) with BCAA treatments relative to the positive control. However, there was a tendency for increased feed efficiency of the 1:0.75:0.75 group compared with the 1:1:1 group (P = 0.09). The BCAA ratio of 1:0.75:0.75 (17 % CP) increased the IMF content of BF muscle (P < 0.01). Moreover, varied dietary BCAA supplementation with a reduced protein level had different effects on the fatty acid composition of the LD, BF, and PM muscles. The BCAA ratio of 1:0.51:0.63-1:0.75:0.75 (17 % CP) significantly lowered the ratio of n-6 to n-3 polyunsaturated fatty acid in these muscles compared with the positive control group (20 % CP). This effect was associated with an increase in mRNA expression levels of acetyl-CoA carboxylase, lipoprotein lipase, fatty acid transport protein, and fatty acid binding protein 4 in the muscles (P < 0.05). The results indicated that the reduced protein diet (17 % CP) with the BCAA ratio within 1:0.25:0.25-1:0.75:0.75 could increase the IMF content in BF muscle and significantly improve the fatty acid composition in different skeletal muscles accompanied by changes in the expression of genes involved in lipid metabolism, compared with those in the pigs that received adequate dietary protein (20 %), which might result in improved eating quality and nutritional value of the meat.
Collapse
Affiliation(s)
- Yehui Duan
- Key Laboratory of Agroecology in Subtropical Region, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central China, Research Center for Healthy Breeding Livestock and Poultry, Hunan Engineering and Research Center for Animal and Poultry Science, Institute of Subtropical Agriculture, Ministry of Agriculture, Chinese Academy of Science, No. 644 Yuanda Road, Furong District, Changsha, 410125, Hunan, China.,University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Yangmiao Duan
- University of Chinese Academy of Sciences, Beijing, 100039, China.,Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Fengna Li
- Key Laboratory of Agroecology in Subtropical Region, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central China, Research Center for Healthy Breeding Livestock and Poultry, Hunan Engineering and Research Center for Animal and Poultry Science, Institute of Subtropical Agriculture, Ministry of Agriculture, Chinese Academy of Science, No. 644 Yuanda Road, Furong District, Changsha, 410125, Hunan, China. .,Hunan Co-Innovation Center of Animal Production Safety (CICAPS), Changsha, 410125, China.
| | - Yinghui Li
- Key Laboratory of Agroecology in Subtropical Region, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central China, Research Center for Healthy Breeding Livestock and Poultry, Hunan Engineering and Research Center for Animal and Poultry Science, Institute of Subtropical Agriculture, Ministry of Agriculture, Chinese Academy of Science, No. 644 Yuanda Road, Furong District, Changsha, 410125, Hunan, China.,University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Qiuping Guo
- Key Laboratory of Agroecology in Subtropical Region, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central China, Research Center for Healthy Breeding Livestock and Poultry, Hunan Engineering and Research Center for Animal and Poultry Science, Institute of Subtropical Agriculture, Ministry of Agriculture, Chinese Academy of Science, No. 644 Yuanda Road, Furong District, Changsha, 410125, Hunan, China.,University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Yujiao Ji
- Key Laboratory of Agroecology in Subtropical Region, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central China, Research Center for Healthy Breeding Livestock and Poultry, Hunan Engineering and Research Center for Animal and Poultry Science, Institute of Subtropical Agriculture, Ministry of Agriculture, Chinese Academy of Science, No. 644 Yuanda Road, Furong District, Changsha, 410125, Hunan, China
| | - Bie Tan
- Key Laboratory of Agroecology in Subtropical Region, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central China, Research Center for Healthy Breeding Livestock and Poultry, Hunan Engineering and Research Center for Animal and Poultry Science, Institute of Subtropical Agriculture, Ministry of Agriculture, Chinese Academy of Science, No. 644 Yuanda Road, Furong District, Changsha, 410125, Hunan, China.,Hunan Co-Innovation Center of Animal Production Safety (CICAPS), Changsha, 410125, China.,Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, Changsha, 410128, China
| | - Tiejun Li
- Key Laboratory of Agroecology in Subtropical Region, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central China, Research Center for Healthy Breeding Livestock and Poultry, Hunan Engineering and Research Center for Animal and Poultry Science, Institute of Subtropical Agriculture, Ministry of Agriculture, Chinese Academy of Science, No. 644 Yuanda Road, Furong District, Changsha, 410125, Hunan, China
| | - Yulong Yin
- Key Laboratory of Agroecology in Subtropical Region, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central China, Research Center for Healthy Breeding Livestock and Poultry, Hunan Engineering and Research Center for Animal and Poultry Science, Institute of Subtropical Agriculture, Ministry of Agriculture, Chinese Academy of Science, No. 644 Yuanda Road, Furong District, Changsha, 410125, Hunan, China. .,Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, Changsha, 410128, China. .,School of Biology, Hunan Normal University, Changsha, 410018, China.
| |
Collapse
|
224
|
Fedry J, Blais A, Even PC, Piedcoq J, Fromentin G, Gaudichon C, Azzout-Marniche D, Tomé D. Urinary metabolic profile predicts high-fat diet sensitivity in the C57Bl6/J mouse. J Nutr Biochem 2016; 31:88-97. [PMID: 27133427 DOI: 10.1016/j.jnutbio.2015.12.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 11/20/2015] [Accepted: 12/21/2015] [Indexed: 01/04/2023]
Abstract
To prevent the development of adiposity-associated metabolic diseases, early biomarkers are needed. Such markers could bring insight to understand the complexity of susceptibility to obesity. Urine and plasma metabolomics fingerprints have been successfully associated with metabolic dysfunctions. Fat resistance (FR) was found to be associated with higher urinary levels of acylglycines and leucine. However, no differences were observed before the diet switch. In this context, we aimed at characterizing metabolic signatures predictive of resistance or sensitivity to fat in the C57Bl6/J mouse model. Urinary metabolic profiles of FR (n=15) and fat sensitivity (FS) mice (n=14) were performed on liquid chromatography-mass spectrometry. Urinary and plasma metabolic profiles were first collected at baseline (during low-fat diet), then after 10weeks of high-fat (HF) feeding. Mice were sorted a posteriori into FS and FR based on their final adiposity. After HF feeding for 10weeks, FS mice tended to have lower plasma levels of β-hydroxybutyrate than FR ones. Urinary metabolic profiles showed that baseline levels of octanoylglycine, leucine and valine were significantly lower in FS mice. Moreover, expressions in the adipose tissue of Baat and Glyat mRNA were lower in FS than in FR mice. In muscle, mRNA encoding CaD and UbE2b tended to be lower in FS mice than in FR mice (P=.056 and P=.071, respectively). The data show that lower levels of urinary octanoylglycine, leucine and valine are potential predictive biomarkers of FS and could be related to a lower stimulation in adipose acyl-coenzyme A conjugation to glycine and to muscle protein breakdown.
Collapse
Affiliation(s)
- Juliette Fedry
- UMR PNCA Nutrition Physiology and Ingestive Behavior, AgroParisTech, INRA, Université Paris-Saclay, Paris, France
| | - Anne Blais
- UMR PNCA Nutrition Physiology and Ingestive Behavior, AgroParisTech, INRA, Université Paris-Saclay, Paris, France
| | - Patrick C Even
- UMR PNCA Nutrition Physiology and Ingestive Behavior, AgroParisTech, INRA, Université Paris-Saclay, Paris, France
| | - Julien Piedcoq
- UMR PNCA Nutrition Physiology and Ingestive Behavior, AgroParisTech, INRA, Université Paris-Saclay, Paris, France
| | - Gilles Fromentin
- UMR PNCA Nutrition Physiology and Ingestive Behavior, AgroParisTech, INRA, Université Paris-Saclay, Paris, France
| | - Claire Gaudichon
- UMR PNCA Nutrition Physiology and Ingestive Behavior, AgroParisTech, INRA, Université Paris-Saclay, Paris, France
| | - Dalila Azzout-Marniche
- UMR PNCA Nutrition Physiology and Ingestive Behavior, AgroParisTech, INRA, Université Paris-Saclay, Paris, France.
| | - Daniel Tomé
- UMR PNCA Nutrition Physiology and Ingestive Behavior, AgroParisTech, INRA, Université Paris-Saclay, Paris, France
| |
Collapse
|
225
|
Associations among circulating branched-chain amino acids and tyrosine with muscle volume and glucose metabolism in individuals without diabetes. Nutrition 2016; 32:531-8. [DOI: 10.1016/j.nut.2015.11.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 11/02/2015] [Accepted: 11/03/2015] [Indexed: 02/07/2023]
|
226
|
Boutry C, El-Kadi SW, Suryawan A, Steinhoff-Wagner J, Stoll B, Orellana RA, Nguyen HV, Kimball SR, Fiorotto ML, Davis TA. Pulsatile delivery of a leucine supplement during long-term continuous enteral feeding enhances lean growth in term neonatal pigs. Am J Physiol Endocrinol Metab 2016; 310:E699-E713. [PMID: 26884386 PMCID: PMC4835946 DOI: 10.1152/ajpendo.00479.2015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 02/09/2016] [Indexed: 01/06/2023]
Abstract
Neonatal pigs are used as a model to study and optimize the clinical treatment of infants who are unable to maintain oral feeding. Using this model, we have shown previously that pulsatile administration of leucine during continuous feeding over 24 h via orogastric tube enhanced protein synthesis in skeletal muscle compared with continuous feeding alone. To determine the long-term effects of leucine pulses, neonatal piglets (n = 11-12/group) were continuously fed formula via orogastric tube for 21 days, with an additional parenteral infusion of either leucine (CON + LEU; 800 μmol·kg-1·h-1) or alanine (CON + ALA) for 1 h every 4 h. The results show that body and muscle weights and lean gain were ∼25% greater, and fat gain was 48% lower in CON + LEU than CON + ALA; weights of other tissues were unaffected by treatment. Fractional protein synthesis rates in longissimus dorsi, gastrocnemius, and soleus muscles were ∼30% higher in CON + LEU compared with CON + ALA and were associated with decreased Deptor abundance and increased mTORC1, mTORC2, 4E-BP1, and S6K1 phosphorylation, SNAT2 abundance, and association of eIF4E with eIF4G and RagC with mTOR. There were no treatment effects on PKB, eIF2α, eEF2, or PRAS40 phosphorylation, Rheb, SLC38A9, v-ATPase, LAMTOR1, LAMTOR2, RagA, RagC, and LAT1 abundance, the proportion of polysomes to nonpolysomes, or the proportion of mRNAs encoding rpS4 or rpS8 associated with polysomes. Our results demonstrate that pulsatile delivery of a leucine supplement during 21 days of continuous enteral feeding enhances lean growth by stimulating the mTORC1-dependent translation initiation pathway, leading to protein synthesis in skeletal muscle of neonates.
Collapse
Affiliation(s)
- Claire Boutry
- United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas; and
| | - Samer W El-Kadi
- United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas; and
| | - Agus Suryawan
- United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas; and
| | - Julia Steinhoff-Wagner
- United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas; and
| | - Barbara Stoll
- United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas; and
| | - Renán A Orellana
- United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas; and
| | - Hanh V Nguyen
- United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas; and
| | - Scot R Kimball
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Marta L Fiorotto
- United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas; and
| | - Teresa A Davis
- United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas; and
| |
Collapse
|
227
|
Bourgoin-Voillard S, Goron A, Seve M, Moinard C. Regulation of the proteome by amino acids. Proteomics 2016; 16:831-46. [DOI: 10.1002/pmic.201500347] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 12/30/2015] [Accepted: 01/12/2016] [Indexed: 12/14/2022]
Affiliation(s)
- Sandrine Bourgoin-Voillard
- Plateforme de Protéomique PROMETHEE; IAB; University Grenoble Alpes; Grenoble France
- Plateforme de Protéomique PROMETHEE, Institut de Biologie et de Pathologie; CHU de Grenoble; Grenoble France
- Plateforme de Protéomique PROMETHEE; IAB; INSERM; Grenoble France
| | - Arthur Goron
- Laboratory of Fundamental and Applied Bioenergetics (LBFA); University Grenoble Alpes; Grenoble France
- Laboratory of Fundamental and Applied Bioenergetics (LBFA); INSERM; Grenoble France
| | - Michel Seve
- Plateforme de Protéomique PROMETHEE; IAB; University Grenoble Alpes; Grenoble France
- Plateforme de Protéomique PROMETHEE, Institut de Biologie et de Pathologie; CHU de Grenoble; Grenoble France
- Plateforme de Protéomique PROMETHEE; IAB; INSERM; Grenoble France
| | - Christophe Moinard
- Laboratory of Fundamental and Applied Bioenergetics (LBFA); University Grenoble Alpes; Grenoble France
- Laboratory of Fundamental and Applied Bioenergetics (LBFA); INSERM; Grenoble France
| |
Collapse
|
228
|
Suppression of Endogenous Glucose Production by Isoleucine and Valine and Impact of Diet Composition. Nutrients 2016; 8:79. [PMID: 26891318 PMCID: PMC4772043 DOI: 10.3390/nu8020079] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 01/06/2016] [Accepted: 02/01/2016] [Indexed: 01/15/2023] Open
Abstract
Leucine has been shown to acutely inhibit hepatic glucose production in rodents by a mechanism requiring its metabolism to acetyl-CoA in the mediobasal hypothalamus (MBH). In the early stages, all branched-chain amino acids (BCAA) are metabolized by a shared set of enzymes to produce a ketoacid, which is later metabolized to acetyl-CoA. Consequently, isoleucine and valine may also modulate glucose metabolism. To examine this possibility we performed intrahypothalamic infusions of isoleucine or valine in rats and assessed whole body glucose kinetics under basal conditions and during euglycemic pancreatic clamps. Furthermore, because high fat diet (HFD) consumption is known to interfere with central glucoregulation, we also asked whether the action of BCAAs was affected by HFD. We fed rats a lard-rich diet for a short interval and examined their response to central leucine. The results showed that both isoleucine and valine individually lowered blood glucose by decreasing liver glucose production. Furthermore, the action of the BCAA leucine was markedly attenuated by HFD feeding. We conclude that all three BCAAs centrally modulate glucose metabolism in the liver and that their action is disrupted by HFD-induced insulin resistance.
Collapse
|
229
|
Zhao Y, Dai XY, Zhou Z, Zhao GX, Wang X, Xu MJ. Leucine supplementation via drinking water reduces atherosclerotic lesions in apoE null mice. Acta Pharmacol Sin 2016; 37:196-203. [PMID: 26687933 DOI: 10.1038/aps.2015.88] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 09/01/2015] [Indexed: 01/28/2023]
Abstract
AIM Recent evidence suggests that the essential amino acid leucine may be involved in systemic cholesterol metabolism. In this study, we investigated the effects of leucine supplementation on the development of atherosclerosis in apoE null mice. METHODS ApoE null mice were fed with chow supplemented with leucine (1.5% w/v) in drinking water for 8 week. Aortic atherosclerotic lesions were examined using Oil Red O staining. Plasma lipoprotein-cholesterol levels were measured with fast protein liquid chromatography. Hepatic gene expression was detected using real-time PCR and Western blot analyses. RESULTS Leucine supplementation resulted in 57.6% reduction of aortic atherosclerotic lesion area in apoE null mice, accompanied by 41.2% decrease of serum LDL-C levels and 40.2% increase of serum HDL-C levels. The body weight, food intake and blood glucose level were not affected by leucine supplementation. Furthermore, leucine supplementation increased the expression of Abcg5 and Abcg8 (that were involved in hepatic cholesterol efflux) by 1.28- and 0.86-fold, respectively, and significantly increased their protein levels. Leucine supplementation also increased the expression of Srebf1, Scd1 and Pgc1b (that were involved in hepatic triglyceride metabolism) by 3.73-, 1.35- and 1.71-fold, respectively. Consequently, leucine supplementation resulted in 51.77% reduction of liver cholesterol content and 2.2-fold increase of liver triglyceride content. Additionally, leucine supplementation did not affect the serum levels of IL-6, IFN-γ, TNF-α, IL-10 and IL-12, but markedly decreased the serum level of MCP-1. CONCLUSION Leucine supplementation effectively attenuates atherosclerosis in apoE null mice by improving the plasma lipid profile and reducing systemic inflammation.
Collapse
|
230
|
Meneghello C, Segat D, Fortunati E. Insulin-driven translational capacity is impaired in primary fibroblasts of Prader Willi. Intractable Rare Dis Res 2016; 5:17-24. [PMID: 26989644 PMCID: PMC4761579 DOI: 10.5582/irdr.2015.01041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Prader-Willi (PW) syndrome is a rare genetic disorder characterized by hypothalamic-pituitary abnormalities and severe hypotonia, hyperphagia, behavioural and psychiatric problems. Absence of satiety leads to severe obesity and frequently to diabetes. Furthermore, adult patients suffer from a severe loss of muscle mass, which severely impacts their quality of life. The mechanisms underlying alterations in muscle growth in PW remain to be clarified. In this study we explored the hypothesis that, in PW cells, alterations of protein synthesis are determined by dysfunctions in the promotion of cell growth. In order to study the molecular changes leading to dysfunction in protein translation, primary fibroblasts derived from four PW patients and five control subjects were used to study the insulin-mediated signaling pathway implicated in the control of protein synthesis by immunoblotting. Here we present, for the first time, evidences that the protein translation response to insulin is impaired in PW fibroblasts. Insulin alone has a major upregulatory effect on protein kinase B (AKT), glycogen synthase kinase (GSK3beta), while phosphorylation of p70S6K1 protein elongation factor controlled by mammalian target of rapamycin complex I (mTORC1) is reduced. In addition, we provide data that the response to insulin in PW cells can be restored by previous treatment with the amino acid L-Leucine (L-Leu). Our experiments in primary cell cultures demonstrate an impairment of insulin signaling that can be rescued by supplementation with the branched aminoacid L-Leu, indicating a possible therapeutic approach for alleviating muscle mass loss in PW patients.
Collapse
Affiliation(s)
| | - Daniela Segat
- “Mauro Baschirotto” Institute for Rare Diseases - B.I.R.D., Vicenza. Italy
| | - Elisabetta Fortunati
- “Mauro Baschirotto” Institute for Rare Diseases - B.I.R.D., Vicenza. Italy
- Address correspondence to: Dr. Elisabetta Fortunati, “Mauro Baschirotto” Institute for Rare Diseases - B.I.R.D., 36023 Costozza di Longare, Vicenza. Italy. E-mail:
| |
Collapse
|
231
|
Cavallaro NL, Garry J, Shi X, Gerszten RE, Anderson EJ, Walford GA. A pilot, short-term dietary manipulation of branched chain amino acids has modest influence on fasting levels of branched chain amino acids. Food Nutr Res 2016; 60:28592. [PMID: 26781817 PMCID: PMC4717153 DOI: 10.3402/fnr.v60.28592] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 12/10/2015] [Accepted: 12/11/2015] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Elevated fasting levels of branched chain amino acids (BCAAs: valine, isoleucine, leucine) in venous blood are associated with a variety of metabolic impairments, including increased risk of type 2 diabetes (T2D). Fasting BCAA levels are influenced by non-dietary factors. However, it is unknown whether fasting BCAAs can be altered through manipulation of dietary intake alone. OBJECTIVE To test whether a specific dietary intervention, using differences in BCAA intake, alters fasting BCAA levels independent of other factors. DESIGN Five healthy male volunteers underwent 4 days of a low and 4 days of a high BCAA content dietary intervention (ClinicalTrials.gov [NCT02110602]). All food and supplements were provided. Fasting BCAAs were measured from venous blood samples by mass spectrometry at baseline and after each intervention. RESULTS Diets were isocaloric; contained equal percentages of calories from carbohydrate, fats, and protein; and differed from each other in BCAA content (1.5±0.1 vs. 14.0±0.6 g for valine; 4.5±0.9 g vs. 13.8±0.5 g for isoleucine; 2.1±0.2 g vs. 27.1±1.0 g for leucine; p<0.0001 for all). Fasting valine was significantly lower (p=0.02) and fasting isoleucine and leucine were numerically lower following the low BCAA content vs. the high BCAA content diet levels. The inter-individual response to the dietary interventions was variable and not explained by adherence. CONCLUSION Short-term dietary manipulation of BCAA intake led to modest changes in fasting levels of BCAAs. The approach from our pilot study can be expanded to test the metabolic implications of dietary BCAA manipulation.
Collapse
Affiliation(s)
| | - Jamie Garry
- Metabolism & Nutrition Research, Clinical Research Center, Massachusetts General Hospital, Boston, MA, USA.,Harvard Catalyst Clinical Translational Science Center, Harvard Medical School, Boston, MA, USA
| | - Xu Shi
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Robert E Gerszten
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA.,Cardiology Division, Massachusetts General Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Ellen J Anderson
- Metabolism & Nutrition Research, Clinical Research Center, Massachusetts General Hospital, Boston, MA, USA.,Harvard Catalyst Clinical Translational Science Center, Harvard Medical School, Boston, MA, USA.,Diabetes Research Center, Diabetes Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Geoffrey A Walford
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA.,Diabetes Research Center, Diabetes Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA;
| |
Collapse
|
232
|
Zhang H, Wang J, Liu Y, Gong L, Sun B. Rice bran proteins and their hydrolysates modulate cholesterol metabolism in mice on hypercholesterolemic diets. Food Funct 2016; 7:2747-53. [DOI: 10.1039/c6fo00044d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The hypolipidemic properties of defatted rice bran protein (DRBP), fresh rice bran protein (FRBP), DRBP hydrolysates (DRBPH), and FRBP hydrolysates (FRBPH) were determined in mice on high fat diets for four weeks.
Collapse
Affiliation(s)
- Huijuan Zhang
- Innovation Center for Food Nutrition and Human Health
- Beijing Technology & Business University (BTBU)
- Beijing 100048
- China
| | - Jing Wang
- Innovation Center for Food Nutrition and Human Health
- Beijing Technology & Business University (BTBU)
- Beijing 100048
- China
- Key Laboratory of Space Nutrition and Food Engineering
| | - Yingli Liu
- Innovation Center for Food Nutrition and Human Health
- Beijing Technology & Business University (BTBU)
- Beijing 100048
- China
| | - Lingxiao Gong
- Innovation Center for Food Nutrition and Human Health
- Beijing Technology & Business University (BTBU)
- Beijing 100048
- China
| | - Baoguo Sun
- Innovation Center for Food Nutrition and Human Health
- Beijing Technology & Business University (BTBU)
- Beijing 100048
- China
| |
Collapse
|
233
|
Xu W, Bai K, He J, Su W, Dong L, Zhang L, Wang T. Leucine improves growth performance of intrauterine growth retardation piglets by modifying gene and protein expression related to protein synthesis. Nutrition 2016; 32:114-21. [DOI: 10.1016/j.nut.2015.07.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Revised: 05/31/2015] [Accepted: 07/07/2015] [Indexed: 01/10/2023]
|
234
|
Platt KM, Charnigo RJ, Shertzer HG, Pearson KJ. Branched-Chain Amino Acid Supplementation in Combination with Voluntary Running Improves Body Composition in Female C57BL/6 Mice. J Diet Suppl 2015; 13:473-86. [PMID: 26716948 DOI: 10.3109/19390211.2015.1112866] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Exercise is an inexpensive intervention that may be used to reduce obesity and its consequences. In addition, many individuals who regularly exercise utilize dietary supplements to enhance their exercise routine and to accelerate fat loss or increase lean mass. Branched-chain amino acids (BCAAs) are a popular supplement and have been shown to produce a number of beneficial effects in rodent models and humans. Therefore, we hypothesized that BCAA supplementation would protect against high fat diet (HFD)-induced glucose intolerance and obesity in mice with and without access to exercise. We subjected 80 female C57BL/6 mice to a paradigm of HFD feeding, exercise in the form of voluntary wheel running, and BCAA supplementation in the drinking water for 16 weeks (n = 10 per group). Body weight was monitored weekly, while food and water consumption were recorded twice weekly. During the 5th, 10th, and 15th weeks of treatment, glucose tolerance and body composition were analyzed. Exercise significantly improved glucose tolerance in both control-fed and HFD-fed mice. BCAA supplementation, however, did not significantly alter glucose tolerance in any treatment group. While BCAA supplements did not improve lean to fat mass ratio in sedentary mice, it significantly augmented the effects of exercise on this parameter.
Collapse
Affiliation(s)
- Kristen M Platt
- a Department of Pharmacology and Nutritional Sciences, College of Medicine , University of Kentucky , Lexington , KY , USA
| | - Richard J Charnigo
- b Department of Biostatistics, College of Public Health , University of Kentucky , Lexington , KY , USA
| | - Howard G Shertzer
- c Department of Environmental Health and Center for Environmental Genetics , University of Cincinnati Medical Center , Cincinnati , OH , USA
| | - Kevin J Pearson
- a Department of Pharmacology and Nutritional Sciences, College of Medicine , University of Kentucky , Lexington , KY , USA
| |
Collapse
|
235
|
Yokota SI, Ando M, Aoyama S, Nakamura K, Shibata S. Leucine restores murine hepatic triglyceride accumulation induced by a low-protein diet by suppressing autophagy and excessive endoplasmic reticulum stress. Amino Acids 2015; 48:1013-1021. [PMID: 26707165 DOI: 10.1007/s00726-015-2149-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 12/01/2015] [Indexed: 02/07/2023]
Abstract
Although it is known that a low-protein diet induces hepatic triglyceride (TG) accumulation in both rodents and humans, little is known about the underlying mechanism. In the present study, we modeled hepatic TG accumulation by inducing dietary protein deficiency in mice and aimed to determine whether certain amino acids could prevent low-protein diet-induced TG accumulation in the mouse liver. Mice fed a diet consisting of 3 % casein (3C diet) for 7 days showed hepatic TG accumulation with up-regulation of TG synthesis for the Acc gene and down-regulation of TG-rich lipoprotein secretion from hepatocytes for Mttp genes. Supplementing the 3 % casein diet with essential amino acids, branched-chain amino acids, or the single amino acid leucine rescued hepatic TG accumulation. In the livers of mice fed the 3 % casein diet, we observed a decrease in the levels of the autophagy substrate p62, an increase in the expression levels of the autophagy marker LC3-II, and an increase in the splicing of the endoplasmic reticulum (ER) stress-dependent Xbp1 gene. Leucine supplementation to the 3 % casein diet did not affect genes related to lipid metabolism, but inhibited the decrease in p62, the increase in LC3-II, and the increase in Xbp1 splicing levels in the liver. Our results suggest that ER stress responses and activated autophagy play critical roles in low-protein diet-induced hepatic TG accumulation in mice, and that leucine suppresses these two major protein degradation systems. This study contributes to understanding the mechanisms of hepatic disorders of lipid metabolism.
Collapse
Affiliation(s)
- Shin-Ichi Yokota
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, 162-8480, Japan
- Consolidated Research Institute for Advanced Science and Medical Care, Waseda University, Tokyo, Japan
| | - Midori Ando
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, 162-8480, Japan
| | - Shinya Aoyama
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, 162-8480, Japan
| | - Kawai Nakamura
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, 162-8480, Japan
| | - Shigenobu Shibata
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, 162-8480, Japan.
| |
Collapse
|
236
|
Li YC, Li Y, Liu LY, Chen Y, Zi TQ, Du SS, Jiang YS, Feng RN, Sun CH. The Ratio of Dietary Branched-Chain Amino Acids is Associated with a Lower Prevalence of Obesity in Young Northern Chinese Adults: An Internet-Based Cross-Sectional Study. Nutrients 2015; 7:9573-9589. [PMID: 26593945 PMCID: PMC4663614 DOI: 10.3390/nu7115486] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 11/03/2015] [Accepted: 11/11/2015] [Indexed: 12/27/2022] Open
Abstract
This study aims to examine the association between the ratio of dietary branched chain amino acids (BCAA) and risk of obesity among young northern Chinese adults. A total of 948 randomly recruited participants were asked to finish our internet-based dietary questionnaire for the Chinese (IDQC). Associations between dietary BCAA ratio and prevalence of overweight/obesity and abdominal obesity were analyzed. Furthermore, 90 subjects were randomly selected to explore the possible mechanism. Dietary BCAA ratio in obese participants was significantly lower than non-obese participants. We found negative correlations between the ratio of dietary BCAA and body mass index (BMI) (r = -0.197, p < 0.001) or waist circumference (r = -0.187, p < 0.001). Compared with those in the first quartile, the multivariable-adjusted OR (95% CI) of the 3rd and 4th quartiles of dietary BCAA ratio for overweight/obesity were 0.508 (0.265-0.972) and 0.389 (0.193-0.783), respectively (all p < 0.05). After stratification by gender, the significance still existed in the 3rd and 4th quartile in males and the 4th quartile in females. For abdominal obesity, the multivariable-adjusted OR (95% CI) of the 3rd and 4th quartile of dietary BCAA ratio were 0.351 (0.145-0.845) and 0.376 (0.161-0.876), respectively (all p < 0.05). This significance was stronger in males. Further studies indicated that dietary BCAA ratio was inversely associated with 2-h postprandial glucose (2 h-PG) and status of inflammation. In conclusion, a higher ratio of dietary BCAA is inversely associated with prevalence of obesity, postprandial glucose and status of inflammation in young northern Chinese adults.
Collapse
Affiliation(s)
- Yan-Chuan Li
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin 150086, China.
| | - Ying Li
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin 150086, China.
| | - Li-Yan Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin 150086, China.
| | - Yang Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin 150086, China.
| | - Tian-Qi Zi
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin 150086, China.
| | - Shan-Shan Du
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin 150086, China.
| | - Yong-Shuai Jiang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150086, China.
| | - Ren-Nan Feng
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin 150086, China.
| | - Chang-Hao Sun
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin 150086, China.
| |
Collapse
|
237
|
Leucine-induced anabolic-catabolism: two sides of the same coin. Amino Acids 2015; 48:321-36. [DOI: 10.1007/s00726-015-2109-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 09/28/2015] [Indexed: 10/22/2022]
|
238
|
Moore WT, Bowser SM, Fausnacht DW, Staley LL, Suh KS, Liu D. Beta Cell Function and the Nutritional State: Dietary Factors that Influence Insulin Secretion. Curr Diab Rep 2015; 15:76. [PMID: 26294335 DOI: 10.1007/s11892-015-0650-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Approximately 366 million people worldwide have been diagnosed with type-2 diabetes (T2D). Chronic insulin resistance, decreased functional β-cell mass, and elevated blood glucose are defining characteristics of T2D. Great advances have been made in understanding the pathogenesis of T2D with respect to the effects of dietary macronutrient composition and energy intake on β-cell physiology and glucose homeostasis. It has been further established that obesity is a leading pathogenic factor for developing insulin resistance. However, insulin resistance may not progress to T2D unless β-cells are unable to secret an adequate amount of insulin to compensate for decreased insulin sensitivity. Therefore, pancreatic β-cell dysfunction plays an important role in the development of overt diabetes. This paper reviews recent research findings on the effects of several micronutrients (zinc, vitamin D, iron, vitamin A), leucine, and the phytochemical, genistein on pancreatic β-cell physiology with emphasis on their effects on insulin secretion, specifically in the context of T2D.
Collapse
Affiliation(s)
- William T Moore
- Department of Human Nutrition, Foods and Exercises, College of Agricultural and Life Sciences, Virginia Tech Corporate Research Center, 1981 Kraft Drive, Blacksburg, VA, 24061, USA
| | | | | | | | | | | |
Collapse
|
239
|
Dong J, Li YJ, Xu R, Ikizler TA, Wang HY. Ketoacid Supplementation Partially Improves Metabolic Parameters in Patients on Peritoneal Dialysis. Perit Dial Int 2015; 35:736-42. [PMID: 26374833 DOI: 10.3747/pdi.2014.00151] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 12/12/2014] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED ♦ BACKGROUND A low protein diet supplemented with ketoacids has been shown to improve the metabolic profile, including insulin resistance, in patients with chronic kidney disease (CKD), but whether ketoacids alone exert similar effects is unknown. In this prospective randomized controlled trial, we aimed to evaluate the effects of ketoacid supplementation on insulin resistance, systemic inflammation, oxidative stress and endothelial dysfunction among 100 CKD patients undergoing peritoneal dialysis (PD). ♦ METHODS Patients from one Chinese PD center were randomly assigned to take ketoacids (12 tablets per day) (n = 50) versus a control group (n = 50) for 6 months in an open-label parallelarm design. Daily protein intake of 0.8 - 1.2 g/kg/d and daily energy intake of 25 - 35 kcal/kg/d was prescribed to both groups. Insulin resistance was evaluated using homeostatic model assessment (HOMA-IR) index as the primary outcome. We assessed systemic inflammation using high-sensitive C-reactive protein (hs-CRP) and interleukin-6 (IL-6), oxidative stress using plasma oxidized low density lipoprotein (oxLDL), adipokines using leptin and adiponectin and endothelial dysfunction using serum soluble intercellular adhesion molecule-1 (sICAM) and soluble vascular adhesion molecule-1 (sVCAM) as secondary outcomes. ♦ RESULTS There were no significant differences in baseline characteristics between the 2 groups except a slightly higher age in patients assigned to the intervention. A total of 89% of participants completed the 6-month intervention. There was no significant difference in the change of HOMA-IR values from baseline between groups after adjusting for baseline age, gender, body mass index and HOMA-IR. For secondary outcomes, hs-CRP varied significantly between groups (p = 0.02), increasing over time for the control group while remaining stable for the ketoacid group. Similarly, the leptin/adiponectin ratio (LAR) differed between groups (p < 0.001), remaining stable in the ketoacid group but increasing in the control group. ♦ CONCLUSION Ketoacid therapy administered for 6 months had no effect on HOMA-IR but resulted in improvements in hs-CRP and LAR, suggesting metabolic benefit. Future studies are needed to confirm these results and any potential benefit in vascular health of PD patients.
Collapse
Affiliation(s)
- Jie Dong
- Renal Division, Department of Medicine, Peking University First Hospital; Institute of Nephrology, Peking University; Key Laboratory of Renal Disease, Ministry of Health; Key Laboratory of Renal Disease, Ministry of Education; Beijing, 100034, China
| | - Yan-Jun Li
- Renal Division, Department of Medicine, Peking University First Hospital; Institute of Nephrology, Peking University; Key Laboratory of Renal Disease, Ministry of Health; Key Laboratory of Renal Disease, Ministry of Education; Beijing, 100034, China
| | - Rong Xu
- Renal Division, Department of Medicine, Peking University First Hospital; Institute of Nephrology, Peking University; Key Laboratory of Renal Disease, Ministry of Health; Key Laboratory of Renal Disease, Ministry of Education; Beijing, 100034, China
| | - Talat Alp Ikizler
- Division of Nephrology, Vanderbilt University Medical Center, Nashville, TN, United States Vanderbilt Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Hai-Yan Wang
- Renal Division, Department of Medicine, Peking University First Hospital; Institute of Nephrology, Peking University; Key Laboratory of Renal Disease, Ministry of Health; Key Laboratory of Renal Disease, Ministry of Education; Beijing, 100034, China
| |
Collapse
|
240
|
Lynch CJ, Kimball SR, Xu Y, Salzberg AC, Kawasawa YI. Global deletion of BCATm increases expression of skeletal muscle genes associated with protein turnover. Physiol Genomics 2015; 47:569-80. [PMID: 26351290 DOI: 10.1152/physiolgenomics.00055.2015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 09/04/2015] [Indexed: 01/04/2023] Open
Abstract
Consumption of a protein-containing meal by a fasted animal promotes protein accretion in skeletal muscle, in part through leucine stimulation of protein synthesis and indirectly through repression of protein degradation mediated by its metabolite, α-ketoisocaproate. Mice lacking the mitochondrial branched-chain aminotransferase (BCATm/Bcat2), which interconverts leucine and α-ketoisocaproate, exhibit elevated protein turnover. Here, the transcriptomes of gastrocnemius muscle from BCATm knockout (KO) and wild-type mice were compared by next-generation RNA sequencing (RNA-Seq) to identify potential adaptations associated with their persistently altered nutrient signaling. Statistically significant changes in the abundance of 1,486/∼39,010 genes were identified. Bioinformatics analysis of the RNA-Seq data indicated that pathways involved in protein synthesis [eukaryotic initiation factor (eIF)-2, mammalian target of rapamycin, eIF4, and p70S6K pathways including 40S and 60S ribosomal proteins], protein breakdown (e.g., ubiquitin mediated), and muscle degeneration (apoptosis, atrophy, myopathy, and cell death) were upregulated. Also in agreement with our previous observations, the abundance of mRNAs associated with reduced body size, glycemia, plasma insulin, and lipid signaling pathways was altered in BCATm KO mice. Consistently, genes encoding anaerobic and/or oxidative metabolism of carbohydrate, fatty acids, and branched chain amino acids were modestly but systematically reduced. Although there was no indication that muscle fiber type was different between KO and wild-type mice, a difference in the abundance of mRNAs associated with a muscular dystrophy phenotype was observed, consistent with the published exercise intolerance of these mice. The results suggest transcriptional adaptations occur in BCATm KO mice that along with altered nutrient signaling may contribute to their previously reported protein turnover, metabolic and exercise phenotypes.
Collapse
Affiliation(s)
- Christopher J Lynch
- Department of Cellular and Molecular Physiology, College of Medicine, Penn State University, Hershey, Pennsylvania;
| | - Scot R Kimball
- Department of Cellular and Molecular Physiology, College of Medicine, Penn State University, Hershey, Pennsylvania
| | - Yuping Xu
- Department of Cellular and Molecular Physiology, College of Medicine, Penn State University, Hershey, Pennsylvania
| | - Anna C Salzberg
- The Institute for Personalized Medicine, College of Medicine, Penn State University, Hershey, Pennsylvania
| | - Yuka Imamura Kawasawa
- The Institute for Personalized Medicine, College of Medicine, Penn State University, Hershey, Pennsylvania; Department of Pharmacology, College of Medicine, Penn State University, Hershey, Pennsylvania; and Department of Biochemistry and Molecular Biology, College of Medicine, Penn State University, Hershey, Pennsylvania
| |
Collapse
|
241
|
Rossi F, Alberto B, Jessica C, Simona B. Diets containing dairy foods positively affects weight and fat loss and cytokines blood levels in premenopausal obese women. MEDITERRANEAN JOURNAL OF NUTRITION AND METABOLISM 2015. [DOI: 10.3233/mnm-150035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Filippo Rossi
- Istituto di Scienze degli alimenti e della Nutrizione, Facoltà di Scienze Agrarie, Alimentari ed Ambientali, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, Piacenza, Italy
| | - Battezzati Alberto
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l’Ambiente, Sezione di Nutrizione Umana, Facoltà di Scienze Agrarie e Alimentari, Università degli Studi, Via Colombo 60, Milano, Italy
| | - Capraro Jessica
- Istituto di Scienze degli alimenti e della Nutrizione, Facoltà di Scienze Agrarie, Alimentari ed Ambientali, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, Piacenza, Italy
| | - Bertoli Simona
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l’Ambiente, Sezione di Nutrizione Umana, Facoltà di Scienze Agrarie e Alimentari, Università degli Studi, Via Colombo 60, Milano, Italy
| |
Collapse
|
242
|
The role of leucine and its metabolites in protein and energy metabolism. Amino Acids 2015; 48:41-51. [DOI: 10.1007/s00726-015-2067-1] [Citation(s) in RCA: 191] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 07/29/2015] [Indexed: 01/30/2023]
|
243
|
Etxeberria U, De La Garza AL, Martínez JA, Milagro FI. Biocompounds Attenuating the Development of Obesity and Insulin Resistance Produced by a High-fat Sucrose Diet. Nat Prod Commun 2015. [DOI: 10.1177/1934578x1501000826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The use of biocompounds as agents with potential anti-obesity effects might be a feasible alternative to the prescription of traditional drugs in the near future. The goal of the present study was to screen five different compounds in relation to their ability to prevent body weight gain and ameliorate obesity-associated metabolic impairments, namely insulin resistance. For this purpose, seventy Wistar rats were randomly assigned into seven experimental groups. A standard diet-fed control group (control, n=10); a high-fat, high-sucrose diet-fed group (HFS, n=10) and five experimental groups which were fed the HFS diet supplemented with one of the following biocompounds; curcumin (100 mg/kg bw, n=10), chlorogenic acid (50 mg/kg bw, n=10), coumaric acid (100 mg/kg bw, n=10), naringin (100 mg/kg bw, n=10) and leucine (1 % of diet, n=10). These results confirm the effectiveness of all the compounds to reduce significantly food efficiency, despite the significant higher food intake. Moreover, visceral fat mass percentage was significantly decreased after naringin and coumaric acid supplementation. In fact, this finding might be related to the considerable amelioration of HOMA-IR index detected in naringin-treated animals. A significant reduction in serum insulin levels and an improvement in the intraperitoneal glucose tolerance test and AUC were found in leucine- and coumaric acid-treated rats, respectively. In summary, the tested biocompounds, particularly naringin, coumaric acid and leucine, showed potential benefits in the prevention of obesity-related complications in rats, at least at the proved doses.
Collapse
Affiliation(s)
- Usune Etxeberria
- Department of Nutrition, Food Science and Physiology, Centre for Nutrition Research, University of Navarra, C/Irunlarrea 1,31008 Pamplona, Spain
| | - Ana Laura De La Garza
- Department of Nutrition, Food Science and Physiology, Centre for Nutrition Research, University of Navarra, C/Irunlarrea 1,31008 Pamplona, Spain
| | - J. Alfredo Martínez
- Department of Nutrition, Food Science and Physiology, Centre for Nutrition Research, University of Navarra, C/Irunlarrea 1,31008 Pamplona, Spain
- CIBERobn Physiopathology of Obesity and Nutrition, Carlos III Health Research Institute, Madrid, Spain
| | - Fermín I. Milagro
- Department of Nutrition, Food Science and Physiology, Centre for Nutrition Research, University of Navarra, C/Irunlarrea 1,31008 Pamplona, Spain
- CIBERobn Physiopathology of Obesity and Nutrition, Carlos III Health Research Institute, Madrid, Spain
| |
Collapse
|
244
|
Affiliation(s)
- Xiaoping Chen
- Department of Endocrinology, China-Japan Friendship Hospital Beijing, China
| | - Wenying Yang
- Department of Endocrinology, China-Japan Friendship Hospital Beijing, China
| |
Collapse
|
245
|
Douris N, Melman T, Pecherer JM, Pissios P, Flier JS, Cantley LC, Locasale JW, Maratos-Flier E. Adaptive changes in amino acid metabolism permit normal longevity in mice consuming a low-carbohydrate ketogenic diet. Biochim Biophys Acta Mol Basis Dis 2015; 1852:2056-65. [PMID: 26170063 DOI: 10.1016/j.bbadis.2015.07.009] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 06/30/2015] [Accepted: 07/07/2015] [Indexed: 10/23/2022]
Abstract
Ingestion of very low-carbohydrate ketogenic diets (KD) is associated with weight loss, lowering of glucose and insulin levels and improved systemic insulin sensitivity. However, the beneficial effects of long-term feeding have been the subject of debate. We therefore studied the effects of lifelong consumption of this diet in mice. Complete metabolic analyses were performed after 8 and 80weeks on the diet. In addition we performed a serum metabolomic analysis and examined hepatic gene expression. Lifelong consumption of KD had no effect on morbidity or mortality (KD vs. Chow, 676 vs. 630days) despite hepatic steatosis and inflammation in KD mice. The KD fed mice lost weight initially as previously reported (Kennnedy et al., 2007) and remained lighter and had less fat mass; KD consuming mice had higher levels of energy expenditure, improved glucose homeostasis and higher circulating levels of β-hydroxybutyrate and triglycerides than chow-fed controls. Hepatic expression of the critical metabolic regulators including fibroblast growth factor 21 were also higher in KD-fed mice while expression levels of lipogenic enzymes such as stearoyl-CoA desaturase-1 was reduced. Metabolomic analysis revealed compensatory changes in amino acid metabolism, primarily involving down-regulation of catabolic processes, demonstrating that mice eating KD can shift amino acid metabolism to conserve amino acid levels. Long-term KD feeding caused profound and persistent metabolic changes, the majority of which are seen as health promoting, and had no adverse effects on survival in mice.
Collapse
Affiliation(s)
- Nicholas Douris
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Tamar Melman
- Division of Signal Transduction, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Jordan M Pecherer
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Pavlos Pissios
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Jeffrey S Flier
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Lewis C Cantley
- Division of Signal Transduction, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA; Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Jason W Locasale
- Division of Signal Transduction, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA; Division of Nutritional Sciences, Cornell University, Ithaca, NY 14850, USA
| | - Eleftheria Maratos-Flier
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
246
|
Yuan XW, Han SF, Zhang JW, Xu JY, Qin LQ. Leucine supplementation improves leptin sensitivity in high-fat diet fed rats. Food Nutr Res 2015; 59:27373. [PMID: 26115673 PMCID: PMC4482813 DOI: 10.3402/fnr.v59.27373] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 05/29/2015] [Accepted: 06/01/2015] [Indexed: 01/09/2023] Open
Abstract
Background Several studies have reported the favorable effect of leucine supplementation on insulin resistance or insulin sensitivity. However, whether or not leucine supplementation improves leptin sensitivity remains unclear. Design Forty-eight male Sprague-Dawley rats were fed with either a high-fat diet (HFD) or HFD supplemented with 1.5, 3.0, and 4.5% leucine for 16 weeks. At the end of the experiment, serum leptin level was measured by ELISA, and leptin receptor (ObR) in the hypothalamus was examined by immunohistochemistry. The protein expressions of ObR and leptin-signaling pathway in adipose tissues were detected by western blot. Results No significant differences in body weight and food/energy intake existed among the four groups. Serum leptin levels were significantly lower, and ObR expression in the hypothalamus and adipose tissues was significantly higher in the three leucine groups than in the control group. These phenomena suggested that leptin sensitivity was improved in the leucine groups. Furthermore, the expressions of JAK2 and STAT3 (activated by ObR) were significantly higher, and that of SOCS3 (inhibits leptin signaling) was significantly lower in the three leucine groups than in the control group. Conclusions Leucine supplementation improves leptin sensitivity in rats on HFD likely by promoting leptin signaling.
Collapse
Affiliation(s)
- Xue-Wei Yuan
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Disease, Soochow University, Suzhou, China
| | - Shu-Fen Han
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Disease, Soochow University, Suzhou, China
| | - Jian-Wei Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Disease, Soochow University, Suzhou, China
| | - Jia-Ying Xu
- Key Laboratory of Radiation Biology, School of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Li-Qiang Qin
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Disease, Soochow University, Suzhou, China;
| |
Collapse
|
247
|
Bartel J, Krumsiek J, Schramm K, Adamski J, Gieger C, Herder C, Carstensen M, Peters A, Rathmann W, Roden M, Strauch K, Suhre K, Kastenmüller G, Prokisch H, Theis FJ. The Human Blood Metabolome-Transcriptome Interface. PLoS Genet 2015; 11:e1005274. [PMID: 26086077 PMCID: PMC4473262 DOI: 10.1371/journal.pgen.1005274] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 05/12/2015] [Indexed: 12/21/2022] Open
Abstract
Biological systems consist of multiple organizational levels all densely interacting with each other to ensure function and flexibility of the system. Simultaneous analysis of cross-sectional multi-omics data from large population studies is a powerful tool to comprehensively characterize the underlying molecular mechanisms on a physiological scale. In this study, we systematically analyzed the relationship between fasting serum metabolomics and whole blood transcriptomics data from 712 individuals of the German KORA F4 cohort. Correlation-based analysis identified 1,109 significant associations between 522 transcripts and 114 metabolites summarized in an integrated network, the 'human blood metabolome-transcriptome interface' (BMTI). Bidirectional causality analysis using Mendelian randomization did not yield any statistically significant causal associations between transcripts and metabolites. A knowledge-based interpretation and integration with a genome-scale human metabolic reconstruction revealed systematic signatures of signaling, transport and metabolic processes, i.e. metabolic reactions mainly belonging to lipid, energy and amino acid metabolism. Moreover, the construction of a network based on functional categories illustrated the cross-talk between the biological layers at a pathway level. Using a transcription factor binding site enrichment analysis, this pathway cross-talk was further confirmed at a regulatory level. Finally, we demonstrated how the constructed networks can be used to gain novel insights into molecular mechanisms associated to intermediate clinical traits. Overall, our results demonstrate the utility of a multi-omics integrative approach to understand the molecular mechanisms underlying both normal physiology and disease.
Collapse
Affiliation(s)
- Jörg Bartel
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Jan Krumsiek
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Katharina Schramm
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
- Institute of Human Genetics, Technische Universität München, Neuherberg, Germany
| | - Jerzy Adamski
- Institute of Experimental Genetics, Genome Analysis Center Helmholtz Zentrum München, Neuherberg, Germany
- Faculty of Experimental Genetics, Technische Universität München, Freising-Weihenstephan, Germany
- German Center for Cardiovascular Disease Research (DZHK e.V.), partner-site Munich, Munich, Germany
| | - Christian Gieger
- Institute of Genetic Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Christian Herder
- Institute of Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), partner-site Düsseldorf, Düsseldorf, Germany
| | - Maren Carstensen
- Institute of Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), partner-site Düsseldorf, Düsseldorf, Germany
| | - Annette Peters
- German Center for Cardiovascular Disease Research (DZHK e.V.), partner-site Munich, Munich, Germany
- Institute of Epidemiology II, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Cardiovascular Disease Research (DZHK e.V.), partner-site Munich, Munich, Germany
| | - Wolfgang Rathmann
- Institute of Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Michael Roden
- Institute of Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), partner-site Düsseldorf, Düsseldorf, Germany
- Department of Endocrinology and Diabetology, University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Konstantin Strauch
- Institute of Genetic Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
- Institute of Medical Informatics, Biometry and Epidemiology, Chair of Genetic Epidemiology, Ludwig-Maximilians-Universität, Munich, Germany
| | - Karsten Suhre
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, Neuherberg, Germany
- Department of Physiology and Biophysics, Weill Cornell Medical College in Qatar, Qatar Foundation, Doha, Qatar
| | - Gabi Kastenmüller
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Holger Prokisch
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
- Institute of Human Genetics, Technische Universität München, Neuherberg, Germany
| | - Fabian J. Theis
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
- Department of Mathematics, Technische Universität München, Garching, Germany
| |
Collapse
|
248
|
Asarian L, Bächler T. Neuroendocrine control of satiation. Horm Mol Biol Clin Investig 2015; 19:163-92. [PMID: 25390024 DOI: 10.1515/hmbci-2014-0010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 03/17/2014] [Indexed: 01/13/2023]
Abstract
Abstract Eating is a simple behavior with complex functions. The unconscious neuroendocrine process that stops eating and brings a meal to its end is called satiation. Energy homeostasis is mediated accomplished through the control of meal size via satiation. It involves neural integrations of phasic negative-feedback signals related to ingested food and tonic signals, such as those related to adipose tissue mass. Energy homeostasis is accomplished through adjustments in meal size brought about by changes in these satiation signals. The best understood meal-derived satiation signals arise from gastrointestinal nutrient sensing. Gastrointestinal hormones secreted during the meal, including cholecystokinin, glucagon-like peptide 1, and PYY, mediate most of these. Other physiological signals arise from activation of metabolic-sensing neurons, mainly in the hypothalamus and caudal brainstem. We review both classes of satiation signal and their integration in the brain, including their processing by melanocortin, neuropeptide Y/agouti-related peptide, serotonin, noradrenaline, and oxytocin neurons. Our review is not comprehensive; rather, we discuss only what we consider the best-understood mechanisms of satiation, with a special focus on normally operating physiological mechanisms.
Collapse
|
249
|
Reviewing the Effects of L-Leucine Supplementation in the Regulation of Food Intake, Energy Balance, and Glucose Homeostasis. Nutrients 2015; 7:3914-37. [PMID: 26007339 PMCID: PMC4446786 DOI: 10.3390/nu7053914] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 04/30/2015] [Accepted: 05/12/2015] [Indexed: 12/18/2022] Open
Abstract
Leucine is a well-known activator of the mammalian target of rapamycin (mTOR). Because mTOR signaling regulates several aspects of metabolism, the potential of leucine as a dietary supplement for treating obesity and diabetes mellitus has been investigated. The objective of the present review was to summarize and discuss the available evidence regarding the mechanisms and the effects of leucine supplementation on the regulation of food intake, energy balance, and glucose homeostasis. Based on the available evidence, we conclude that although central leucine injection decreases food intake, this effect is not well reproduced when leucine is provided as a dietary supplement. Consequently, no robust evidence indicates that oral leucine supplementation significantly affects food intake, although several studies have shown that leucine supplementation may help to decrease body adiposity in specific conditions. However, more studies are necessary to assess the effects of leucine supplementation in already-obese subjects. Finally, although several studies have found that leucine supplementation improves glucose homeostasis, the underlying mechanisms involved in these potential beneficial effects remain unknown and may be partially dependent on weight loss.
Collapse
|
250
|
Jiang Y, Rose AJ, Sijmonsma TP, Bröer A, Pfenninger A, Herzig S, Schmoll D, Bröer S. Mice lacking neutral amino acid transporter B(0)AT1 (Slc6a19) have elevated levels of FGF21 and GLP-1 and improved glycaemic control. Mol Metab 2015; 4:406-17. [PMID: 25973388 PMCID: PMC4421019 DOI: 10.1016/j.molmet.2015.02.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 02/05/2015] [Accepted: 02/09/2015] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE Type 2 diabetes arises from insulin resistance of peripheral tissues followed by dysfunction of β-cells in the pancreas due to metabolic stress. Both depletion and supplementation of neutral amino acids have been discussed as strategies to improve insulin sensitivity. Here we characterise mice lacking the intestinal and renal neutral amino acid transporter B(0)AT1 (Slc6a19) as a model to study the consequences of selective depletion of neutral amino acids. METHODS Metabolic tests, analysis of metabolite levels and signalling pathways were used to characterise mice lacking the intestinal and renal neutral amino acid transporter B(0)AT1 (Slc6a19). RESULTS Reduced uptake of neutral amino acids in the intestine and loss of neutral amino acids in the urine causes an overload of amino acids in the lumen of the intestine and reduced systemic amino acid availability. As a result, higher levels of glucagon-like peptide 1 (GLP-1) are produced by the intestine after a meal, while the liver releases the starvation hormone fibroblast growth factor 21 (FGF21). The combination of these hormones generates a metabolic phenotype that is characterised by efficient removal of glucose, particularly by the heart, reduced adipose tissue mass, browning of subcutaneous white adipose tissue, enhanced production of ketone bodies and reduced hepatic glucose output. CONCLUSIONS Reduced neutral amino acid availability improves glycaemic control. The epithelial neutral amino acid transporter B(0)AT1 could be a suitable target to treat type 2 diabetes.
Collapse
Affiliation(s)
- Yang Jiang
- Research School of Biology, The Australian National University, Canberra, ACT 0200, Australia
| | - Adam J. Rose
- Joint Research Division Molecular Metabolic Control, German Cancer Research Center, Center for Molecular Biology, Heidelberg University and Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Tjeerd P. Sijmonsma
- Joint Research Division Molecular Metabolic Control, German Cancer Research Center, Center for Molecular Biology, Heidelberg University and Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Angelika Bröer
- Research School of Biology, The Australian National University, Canberra, ACT 0200, Australia
| | - Anja Pfenninger
- Sanofi-Aventis Deutschland GmbH, Industriepark Hoechst, Frankfurt am Main 65926, Germany
| | - Stephan Herzig
- Joint Research Division Molecular Metabolic Control, German Cancer Research Center, Center for Molecular Biology, Heidelberg University and Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Dieter Schmoll
- Sanofi-Aventis Deutschland GmbH, Industriepark Hoechst, Frankfurt am Main 65926, Germany
| | - Stefan Bröer
- Research School of Biology, The Australian National University, Canberra, ACT 0200, Australia
| |
Collapse
|