201
|
Dattoli AA, Carty BL, Kochendoerfer AM, Morgan C, Walshe AE, Dunleavy EM. Asymmetric assembly of centromeres epigenetically regulates stem cell fate. J Cell Biol 2020; 219:133868. [PMID: 32328637 PMCID: PMC7147107 DOI: 10.1083/jcb.201910084] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/10/2019] [Accepted: 02/10/2020] [Indexed: 02/07/2023] Open
Abstract
Centromeres are epigenetically defined by CENP-A–containing chromatin and are essential for cell division. Previous studies suggest asymmetric inheritance of centromeric proteins upon stem cell division; however, the mechanism and implications of selective chromosome segregation remain unexplored. We show that Drosophila female germline stem cells (GSCs) and neuroblasts assemble centromeres after replication and before segregation. Specifically, CENP-A deposition is promoted by CYCLIN A, while excessive CENP-A deposition is prevented by CYCLIN B, through the HASPIN kinase. Furthermore, chromosomes inherited by GSCs incorporate more CENP-A, making stronger kinetochores that capture more spindle microtubules and bias segregation. Importantly, symmetric incorporation of CENP-A on sister chromatids via HASPIN knockdown or overexpression of CENP-A, either alone or together with its assembly factor CAL1, drives stem cell self-renewal. Finally, continued CENP-A assembly in differentiated cells is nonessential for egg development. Our work shows that centromere assembly epigenetically drives GSC maintenance and occurs before oocyte meiosis.
Collapse
Affiliation(s)
- Anna Ada Dattoli
- Centre for Chromosome Biology, Biomedical Sciences, National University of Ireland Galway, Galway, Ireland, UK
| | - Ben L Carty
- Centre for Chromosome Biology, Biomedical Sciences, National University of Ireland Galway, Galway, Ireland, UK
| | - Antje M Kochendoerfer
- Centre for Chromosome Biology, Biomedical Sciences, National University of Ireland Galway, Galway, Ireland, UK
| | - Conall Morgan
- Centre for Chromosome Biology, Biomedical Sciences, National University of Ireland Galway, Galway, Ireland, UK
| | - Annie E Walshe
- Centre for Chromosome Biology, Biomedical Sciences, National University of Ireland Galway, Galway, Ireland, UK
| | - Elaine M Dunleavy
- Centre for Chromosome Biology, Biomedical Sciences, National University of Ireland Galway, Galway, Ireland, UK
| |
Collapse
|
202
|
Pesenti E, Liskovykh M, Okazaki K, Mallozzi A, Reid C, Abad MA, Jeyaprakash AA, Kouprina N, Larionov V, Masumoto H, Earnshaw WC. Analysis of Complex DNA Rearrangements during Early Stages of HAC Formation. ACS Synth Biol 2020; 9:3267-3287. [PMID: 33289546 PMCID: PMC7754191 DOI: 10.1021/acssynbio.0c00326] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Human artificial chromosomes (HACs) are important tools for epigenetic engineering, for measuring chromosome instability (CIN), and for possible gene therapy. However, their use in the latter is potentially limited because the input HAC-seeding DNA can undergo an unpredictable series of rearrangements during HAC formation. As a result, after transfection and HAC formation, each cell clone contains a HAC with a unique structure that cannot be precisely predicted from the structure of the HAC-seeding DNA. Although it has been reported that these rearrangements can happen, the timing and mechanism of their formation has yet to be described. Here we synthesized a HAC-seeding DNA with two distinct structural domains and introduced it into HT1080 cells. We characterized a number of HAC-containing clones and subclones to track DNA rearrangements during HAC establishment. We demonstrated that rearrangements can occur early during HAC formation. Subsequently, the established HAC genomic organization is stably maintained across many cell generations. Thus, early stages in HAC formation appear to at least occasionally involve a process of DNA shredding and shuffling that resembles chromothripsis, an important hallmark of many cancer types. Understanding these events during HAC formation has critical implications for future efforts aimed at synthesizing and exploiting synthetic human chromosomes.
Collapse
Affiliation(s)
- Elisa Pesenti
- Wellcome
Trust Centre for Cell Biology, Edinburgh EH9 3BF, United Kingdom,
| | - Mikhail Liskovykh
- National
Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Koei Okazaki
- Kazusa
DNA Research Institute, Kisarazu 292-0818, Japan
| | - Alessio Mallozzi
- Wellcome
Trust Centre for Cell Biology, Edinburgh EH9 3BF, United Kingdom
| | - Caitlin Reid
- Wellcome
Trust Centre for Cell Biology, Edinburgh EH9 3BF, United Kingdom
| | - Maria Alba Abad
- Wellcome
Trust Centre for Cell Biology, Edinburgh EH9 3BF, United Kingdom
| | | | - Natalay Kouprina
- National
Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Vladimir Larionov
- National
Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | | | | |
Collapse
|
203
|
Taylor SJ, Pelisch F. Chromosome segregation during female meiosis in C. elegans: A tale of pushing and pulling. J Cell Biol 2020; 219:e202011035. [PMID: 33211077 PMCID: PMC7716380 DOI: 10.1083/jcb.202011035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The role of the kinetochore during meiotic chromosome segregation in C. elegans oocytes has been a matter of controversy. Danlasky et al. (2020. J. Cell. Biol.https://doi.org/10.1083/jcb.202005179) show that kinetochore proteins KNL-1 and KNL-3 are required for early stages of anaphase during female meiosis, suggesting a new kinetochore-based model of chromosome segregation.
Collapse
Affiliation(s)
| | - Federico Pelisch
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| |
Collapse
|
204
|
Abstract
Silencing of the spindle assembly checkpoint involves two protein phosphatases, PP1 and PP2A-B56, that are thought to extinguish checkpoint signaling through dephosphorylation of a checkpoint scaffold at kinetochores. In this issue, Cordeiro et al. (2020. J. Cell Biol.https://doi.org/10.1083/jcb.202002020) now show that a critical function of these phosphatases in checkpoint silencing is removal of Polo kinase at kinetochores, which would otherwise autonomously sustain the checkpoint.
Collapse
Affiliation(s)
| | - Simonetta Piatti
- Centre de Recherche en Biologie cellulaire de Montpellier, University of Montpellier, Centre National de la Recherche Scientifique, Montpellier, France
| |
Collapse
|
205
|
Ng CT, Ladinsky MS, Gan L. Serial Cryomicrotomy of Saccharomyces cerevisiae for Serial Electron Cryotomography. Bio Protoc 2020; 10:e3831. [PMID: 33659481 DOI: 10.21769/bioprotoc.3831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 09/18/2020] [Accepted: 09/28/2020] [Indexed: 11/02/2022] Open
Abstract
Electron cryotomography (cryo-ET) is an increasingly popular technique to study cellular structures and macromolecules in situ. Due to poor penetration of electrons through thick biological samples, the vitreously frozen samples for cryo-ET need to be thin. For frozen-hydrated cells, such samples can be produced either by cryomicrotomy or cryo-FIB-milling. As a result, a tomogram of such a sample contains information of a small fraction of the entire cell volume, making it challenging to image rare structures in the cell or to determine the distribution of scattered structures. Here, we describe the tools and workflow that we designed to facilitate serial cryomicrotomy, which makes possible the exploration of a larger volume of individual cells at molecular resolution. We successfully used serial cryomicrotomy to locate and image the Dam1/DASH complex located at microtubule plus ends inside mitotic Saccharomyces cerevisiae cells.
Collapse
Affiliation(s)
- Cai Tong Ng
- Centre of BioImaging Sciences, Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Mark S Ladinsky
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, USA
| | - Lu Gan
- Centre of BioImaging Sciences, Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|
206
|
Zhang Z, Bellini D, Barford D. Crystal structure of the Cenp-HIKHead-TW sub-module of the inner kinetochore CCAN complex. Nucleic Acids Res 2020; 48:11172-11184. [PMID: 32976599 PMCID: PMC7641736 DOI: 10.1093/nar/gkaa772] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/31/2020] [Accepted: 09/11/2020] [Indexed: 11/12/2022] Open
Abstract
Kinetochores are large multi-subunit complexes that attach centromeric chromatin to microtubules of the mitotic spindle, enabling sister chromatid segregation in mitosis. The inner kinetochore constitutive centromere associated network (CCAN) complex assembles onto the centromere-specific Cenp-A nucleosome (Cenp-ANuc), thereby coupling the centromere to the microtubule-binding outer kinetochore. CCAN is a conserved 14-16 subunit complex composed of discrete modules. Here, we determined the crystal structure of the Saccharomyces cerevisiae Cenp-HIKHead-TW sub-module, revealing how Cenp-HIK and Cenp-TW interact at the conserved Cenp-HIKHead-Cenp-TW interface. A major interface is formed by the C-terminal anti-parallel α-helices of the histone fold extension (HFE) of the Cenp-T histone fold domain (HFD) combining with α-helix H3 of Cenp-K to create a compact three α-helical bundle. We fitted the Cenp-HIKHead-TW sub-module to the previously determined cryo-EM map of the S. cerevisiae CCAN-Cenp-ANuc complex. This showed that the HEAT repeat domain of Cenp-IHead and C-terminal HFD of Cenp-T of the Cenp-HIKHead-TW sub-module interact with the nucleosome DNA gyre at a site close to the Cenp-ANuc dyad axis. Our structure provides a framework for understanding how Cenp-T links centromeric Cenp-ANuc to the outer kinetochore through its HFD and N-terminal Ndc80-binding motif, respectively.
Collapse
Affiliation(s)
- Ziguo Zhang
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Dom Bellini
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - David Barford
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| |
Collapse
|
207
|
Hadders MA, Hindriksen S, Truong MA, Mhaskar AN, Wopken JP, Vromans MJM, Lens SMA. Untangling the contribution of Haspin and Bub1 to Aurora B function during mitosis. J Cell Biol 2020; 219:133700. [PMID: 32027339 PMCID: PMC7054988 DOI: 10.1083/jcb.201907087] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 11/26/2019] [Accepted: 12/12/2019] [Indexed: 12/18/2022] Open
Abstract
Aurora B kinase is essential for faithful chromosome segregation during mitosis. During (pro)metaphase, Aurora B is concentrated at the inner centromere by the kinases Haspin and Bub1. However, how Haspin and Bub1 collaborate to control Aurora B activity at centromeres remains unclear. Here, we show that either Haspin or Bub1 activity is sufficient to recruit Aurora B to a distinct chromosomal locus. Moreover, we identified a small, Bub1 kinase–dependent Aurora B pool that supported faithful chromosome segregation in otherwise unchallenged cells. Joined inhibition of Haspin and Bub1 activities fully abolished Aurora B accumulation at centromeres. While this impaired the correction of erroneous KT–MT attachments, it did not compromise the mitotic checkpoint, nor the phosphorylation of the Aurora B kinetochore substrates Hec1, Dsn1, and Knl1. This suggests that Aurora B substrates at the kinetochore are not phosphorylated by centromere-localized pools of Aurora B, and calls for a reevaluation of the current spatial models for how tension affects Aurora B–dependent kinetochore phosphorylation.
Collapse
Affiliation(s)
- Michael A Hadders
- Oncode Institute and Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Sanne Hindriksen
- Oncode Institute and Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - My Anh Truong
- Oncode Institute and Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Aditya N Mhaskar
- Oncode Institute and Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - J Pepijn Wopken
- Oncode Institute and Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Martijn J M Vromans
- Oncode Institute and Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Susanne M A Lens
- Oncode Institute and Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
208
|
Broad AJ, DeLuca KF, DeLuca JG. Aurora B kinase is recruited to multiple discrete kinetochore and centromere regions in human cells. J Cell Biol 2020; 219:133701. [PMID: 32028528 PMCID: PMC7055008 DOI: 10.1083/jcb.201905144] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 11/26/2019] [Accepted: 01/08/2020] [Indexed: 12/13/2022] Open
Abstract
Aurora B kinase has a critical role in regulating attachments between kinetochores and spindle microtubules during mitosis. Early in mitosis, kinase activity at kinetochores is high to promote attachment turnover, and in later mitosis, activity decreases to ensure attachment stabilization. Aurora B localizes prominently to inner centromeres, and a population of the kinase is also detected at kinetochores. How Aurora B is recruited to and evicted from these regions to regulate kinetochore-microtubule attachments remains unclear. Here, we identified and investigated discrete populations of Aurora B at the centromere/kinetochore region. An inner centromere pool is recruited by Haspin phosphorylation of histone H3, and a kinetochore-proximal outer centromere pool is recruited by Bub1 phosphorylation of histone H2A. Finally, a third pool resides ~20 nm outside of the inner kinetochore protein CENP-C in early mitosis and does not require either the Bub1/pH2A/Sgo1 or Haspin/pH3 pathway for localization or activity. Our results suggest that distinct molecular pathways are responsible for Aurora B recruitment to centromeres and kinetochores.
Collapse
Affiliation(s)
- Amanda J Broad
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO
| | - Keith F DeLuca
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO
| | - Jennifer G DeLuca
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO
| |
Collapse
|
209
|
Matveevsky S, Tretiakov A, Kashintsova A, Bakloushinskaya I, Kolomiets O. Meiotic Nuclear Architecture in Distinct Mole Vole Hybrids with Robertsonian Translocations: Chromosome Chains, Stretched Centromeres, and Distorted Recombination. Int J Mol Sci 2020; 21:E7630. [PMID: 33076404 PMCID: PMC7589776 DOI: 10.3390/ijms21207630] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 10/13/2020] [Indexed: 11/24/2022] Open
Abstract
Genome functioning in hybrids faces inconsistency. This mismatch is manifested clearly in meiosis during chromosome synapsis and recombination. Species with chromosomal variability can be a model for exploring genomic battles with high visibility due to the use of advanced immunocytochemical methods. We studied synaptonemal complexes (SC) and prophase I processes in 44-chromosome intraspecific (Ellobius tancrei × E. tancrei) and interspecific (Ellobius talpinus × E. tancrei) hybrid mole voles heterozygous for 10 Robertsonian translocations. The same pachytene failures were found for both types of hybrids. In the intraspecific hybrid, the chains were visible in the pachytene stage, then 10 closed SC trivalents formed in the late pachytene and diplotene stage. In the interspecific hybrid, as a rule, SC trivalents composed the SC chains and rarely could form closed configurations. Metacentrics involved with SC trivalents had stretched centromeres in interspecific hybrids. Linkage between neighboring SC trivalents was maintained by stretched centromeric regions of acrocentrics. This centromeric plasticity in structure and dynamics of SC trivalents was found for the first time. We assume that stretched centromeres were a marker of altered nuclear architecture in heterozygotes due to differences in the ancestral chromosomal territories of the parental species. Restructuring of the intranuclear organization and meiotic disturbances can contribute to the sterility of interspecific hybrids, and lead to the reproductive isolation of studied species.
Collapse
Affiliation(s)
- Sergey Matveevsky
- Laboratory of Cytogenetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia; (A.T.); (A.K.); (O.K.)
| | - Artemii Tretiakov
- Laboratory of Cytogenetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia; (A.T.); (A.K.); (O.K.)
| | - Anna Kashintsova
- Laboratory of Cytogenetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia; (A.T.); (A.K.); (O.K.)
| | - Irina Bakloushinskaya
- Laboratory of Genome Evolution and Mechanisms of Speciation, Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia;
| | - Oxana Kolomiets
- Laboratory of Cytogenetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia; (A.T.); (A.K.); (O.K.)
| |
Collapse
|
210
|
Kuhl LM, Makrantoni V, Recknagel S, Vaze AN, Marston AL, Vader G. A dCas9-Based System Identifies a Central Role for Ctf19 in Kinetochore-Derived Suppression of Meiotic Recombination. Genetics 2020; 216:395-408. [PMID: 32843356 PMCID: PMC7536843 DOI: 10.1534/genetics.120.303384] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/23/2020] [Indexed: 11/18/2022] Open
Abstract
In meiosis, crossover (CO) formation between homologous chromosomes is essential for faithful segregation. However, misplaced meiotic recombination can have catastrophic consequences on genome stability. Within pericentromeres, COs are associated with meiotic chromosome missegregation. In organisms ranging from yeast to humans, pericentromeric COs are repressed. We previously identified a role for the kinetochore-associated Ctf19 complex (Ctf19c) in pericentromeric CO suppression. Here, we develop a dCas9/CRISPR-based system that allows ectopic targeting of Ctf19c-subunits. Using this approach, we query sufficiency in meiotic CO suppression, and identify Ctf19 as a mediator of kinetochore-associated CO control. The effect of Ctf19 is encoded in its NH2-terminal tail, and depends on residues important for the recruitment of the Scc2-Scc4 cohesin regulator. This work provides insight into kinetochore-derived control of meiotic recombination. We establish an experimental platform to investigate and manipulate meiotic CO control. This platform can easily be adapted in order to investigate other aspects of chromosome biology.
Collapse
Affiliation(s)
- Lisa-Marie Kuhl
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund 44227, Germany
| | - Vasso Makrantoni
- The Wellcome Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, EH9 3BF, United Kingdom
| | - Sarah Recknagel
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund 44227, Germany
| | - Animish N Vaze
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund 44227, Germany
| | - Adele L Marston
- The Wellcome Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, EH9 3BF, United Kingdom
| | - Gerben Vader
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund 44227, Germany
- International Max Planck Research School (IMPRS) in Chemical and Molecular Biology, Max Planck Institute of Molecular Physiology, Dortmund 44227, Germany
| |
Collapse
|
211
|
Ying Z, Yang J, Li W, Wang X, Zhu Z, Jiang W, Li C, Sha O. Astrin: A Key Player in Mitosis and Cancer. Front Cell Dev Biol 2020; 8:866. [PMID: 32984344 PMCID: PMC7484939 DOI: 10.3389/fcell.2020.00866] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/11/2020] [Indexed: 12/04/2022] Open
Abstract
Astrin, which is a spindle-associated protein, was found to be closely related to mitotic spindle formation and maintenance. It interacts with other spindle-related proteins to play a key role in maintaining the attachment of the kinetochore-microtubule and integrity of centrosomes and promoting the centriole duplication. In addition, Astrin was quite recently found to be abnormally highly expressed in a variety of cancers. Astrin promotes the development of cancer by participating in various molecular pathways and is considered as a potential prognostic and survival predictor.
Collapse
Affiliation(s)
- Zhenguang Ying
- Department of Anatomy, Histology and Developmental Biology, School of Basic Medical Sciences, Shenzhen University Health Science Centre, Shenzhen, China
| | - Jing Yang
- Department of Anatomy, Histology and Developmental Biology, School of Basic Medical Sciences, Shenzhen University Health Science Centre, Shenzhen, China
| | - Wei Li
- Department of Anatomy, Histology and Developmental Biology, School of Basic Medical Sciences, Shenzhen University Health Science Centre, Shenzhen, China
| | - Xia Wang
- Department of Anatomy, Histology and Developmental Biology, School of Basic Medical Sciences, Shenzhen University Health Science Centre, Shenzhen, China
| | - Zeyao Zhu
- Department of Anatomy, Histology and Developmental Biology, School of Basic Medical Sciences, Shenzhen University Health Science Centre, Shenzhen, China
| | - Weipeng Jiang
- School of Dentistry, Shenzhen University Health Science Centre, Shenzhen, China
| | - Chunman Li
- Department of Anatomy, Histology and Developmental Biology, School of Basic Medical Sciences, Shenzhen University Health Science Centre, Shenzhen, China
| | - Ou Sha
- Department of Anatomy, Histology and Developmental Biology, School of Basic Medical Sciences, Shenzhen University Health Science Centre, Shenzhen, China.,School of Dentistry, Shenzhen University Health Science Centre, Shenzhen, China
| |
Collapse
|
212
|
Hoffmann S, Izquierdo HM, Gamba R, Chardon F, Dumont M, Keizer V, Hervé S, McNulty SM, Sullivan BA, Manel N, Fachinetti D. A genetic memory initiates the epigenetic loop necessary to preserve centromere position. EMBO J 2020; 39:e105505. [PMID: 32945564 PMCID: PMC7560200 DOI: 10.15252/embj.2020105505] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 08/10/2020] [Accepted: 08/25/2020] [Indexed: 12/18/2022] Open
Abstract
Centromeres are built on repetitive DNA sequences (CenDNA) and a specific chromatin enriched with the histone H3 variant CENP‐A, the epigenetic mark that identifies centromere position. Here, we interrogate the importance of CenDNA in centromere specification by developing a system to rapidly remove and reactivate CENP‐A (CENP‐AOFF/ON). Using this system, we define the temporal cascade of events necessary to maintain centromere position. We unveil that CENP‐B bound to CenDNA provides memory for maintenance on human centromeres by promoting de novo CENP‐A deposition. Indeed, lack of CENP‐B favors neocentromere formation under selective pressure. Occasionally, CENP‐B triggers centromere re‐activation initiated by CENP‐C, but not CENP‐A, recruitment at both ectopic and native centromeres. This is then sufficient to initiate the CENP‐A‐based epigenetic loop. Finally, we identify a population of CENP‐A‐negative, CENP‐B/C‐positive resting CD4+ T cells capable to re‐express and reassembles CENP‐A upon cell cycle entry, demonstrating the physiological importance of the genetic memory.
Collapse
Affiliation(s)
| | | | - Riccardo Gamba
- Institut Curie, CNRS, UMR 144, PSL Research University, Paris, France
| | - Florian Chardon
- Institut Curie, CNRS, UMR 144, PSL Research University, Paris, France
| | - Marie Dumont
- Institut Curie, CNRS, UMR 144, PSL Research University, Paris, France
| | - Veer Keizer
- Institut Curie, CNRS, UMR 144, PSL Research University, Paris, France
| | - Solène Hervé
- Institut Curie, CNRS, UMR 144, PSL Research University, Paris, France
| | - Shannon M McNulty
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Beth A Sullivan
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Nicolas Manel
- Institut Curie, PSL Research University, INSERM U932, Paris, France
| | | |
Collapse
|
213
|
Liang C, Zhang Z, Chen Q, Yan H, Zhang M, Zhou L, Xu J, Lu W, Wang F. Centromere-localized Aurora B kinase is required for the fidelity of chromosome segregation. J Cell Biol 2020; 219:133535. [PMID: 31868888 PMCID: PMC7041694 DOI: 10.1083/jcb.201907092] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 11/14/2019] [Accepted: 11/18/2019] [Indexed: 12/23/2022] Open
Abstract
Aurora B kinase plays an essential role in chromosome bi-orientation, which is a prerequisite for equal segregation of chromosomes during mitosis. However, it remains largely unclear whether centromere-localized Aurora B is required for faithful chromosome segregation. Here we show that histone H3 Thr-3 phosphorylation (H3pT3) and H2A Thr-120 phosphorylation (H2ApT120) can independently recruit Aurora B. Disrupting H3pT3-mediated localization of Aurora B at the inner centromere impedes the decline in H2ApT120 during metaphase and causes H2ApT120-dependent accumulation of Aurora B at the kinetochore-proximal centromere. Consequently, silencing of the spindle assembly checkpoint (SAC) is delayed, whereas the fidelity of chromosome segregation is negligibly affected. Further eliminating an H2ApT120-dependent pool of Aurora B restores proper timing for SAC silencing but increases chromosome missegregation. Our data indicate that H2ApT120-mediated localization of Aurora B compensates for the loss of an H3pT3-dependent pool of Aurora B to correct improper kinetochore-microtubule attachments. This study provides important insights into how centromeric Aurora B regulates SAC and kinetochore attachment to microtubules to ensure error-free chromosome segregation.
Collapse
Affiliation(s)
- Cai Liang
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhenlei Zhang
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qinfu Chen
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Haiyan Yan
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Miao Zhang
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Linli Zhou
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Junfen Xu
- Department of Gynecological Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Weiguo Lu
- Department of Gynecological Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Women's Reproductive Health Key Research Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Fangwei Wang
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China.,Department of Gynecological Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
214
|
Kinetochore-microtubule coupling mechanisms mediated by the Ska1 complex and Cdt1. Essays Biochem 2020; 64:337-347. [PMID: 32844209 DOI: 10.1042/ebc20190075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/03/2020] [Accepted: 08/06/2020] [Indexed: 11/17/2022]
Abstract
The faithful segregation of duplicated sister chromatids rely on the remarkable ability of kinetochores to sustain stable load bearing attachments with the dynamic plus ends of kinetochore-microtubules (kMTs). The outer layer of the kinetochore recruits several motor and non-motor microtubule-associated proteins (MAPs) that help the kinetochores establish and maintain a load bearing dynamic attachment with kMTs. The primary kMT-binding protein, the Ndc80 complex (Ndc80c), which is highly conserved among diverse organisms from yeast to humans, performs this essential function with assistance from other MAPs. These MAPs are not an integral part of the kinetochore, but they localize to the kinetochore periodically throughout mitosis and regulate the strength of the kinetochore microtubule attachments. Here, we attempt to summarize the recent advances that have been made toward furthering our understanding of this co-operation between the Ndc80c and these MAPs, focusing on the spindle and kinetochore-associated 1 (Ska1) complex (Ska1c) and Cdc10-dependent transcript 1 (Cdt1) in humans.
Collapse
|
215
|
Wu S, Grishchuk EL. Structural view of the yeast Dam1 complex, a ring-shaped molecular coupler for the dynamic microtubule end. Essays Biochem 2020; 64:359-370. [PMID: 32579171 PMCID: PMC8159575 DOI: 10.1042/ebc20190079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/25/2020] [Accepted: 05/27/2020] [Indexed: 11/17/2022]
Abstract
In a dividing eukaryotic cell, proper chromosome segregation requires the dynamic yet persistent attachment of kinetochores to spindle microtubules. In the budding yeast Saccharomyces cerevisiae, this function is especially crucial because each kinetochore is attached to a single microtubule; consequently, loss of attachment could lead to unrecoverable chromosome loss. The highly specialized heterodecameric Dam1 protein complex achieves this coupling by assembling into a microtubule-encircling ring that glides near the end of the dynamic microtubule to mediate chromosome motion. In recent years, we have learned a great deal about the structural properties of the Dam1 heterodecamer, its mechanism of self-assembly into rings, and its tethering to the kinetochore by the elongated Ndc80 complex. The most remarkable progress has resulted from defining the fine structures of helical bundles within Dam1 heterodecamer. In this review, we critically analyze structural observations collected by diverse approaches with the goal of obtaining a unified view of Dam1 ring architecture. A considerable consistency between different studies supports a coherent model of the circular core of the Dam1 ring. However, there are persistent uncertainties about the composition of ring protrusions and flexible extensions, as well as their roles in mediating ring core assembly and interactions with the Ndc80 complex and microtubule.
Collapse
Affiliation(s)
- Shaowen Wu
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ekaterina L. Grishchuk
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, Moscow 117997, Russia
| |
Collapse
|
216
|
N-Terminus Does Not Govern Protein Turnover of Schizosaccharomyces pombe CENP-A. Int J Mol Sci 2020; 21:ijms21176175. [PMID: 32859127 PMCID: PMC7503380 DOI: 10.3390/ijms21176175] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/18/2020] [Accepted: 08/21/2020] [Indexed: 12/15/2022] Open
Abstract
Centromere integrity underlies an essential framework for precise chromosome segregation and epigenetic inheritance. Although centromeric DNA sequences vary among different organisms, all eukaryotic centromeres comprise a centromere-specific histone H3 variant, centromeric protein A (CENP-A), on which other centromeric proteins assemble into the kinetochore complex. This complex connects chromosomes to mitotic spindle microtubules to ensure accurate partitioning of the genome into daughter cells. Overexpression of CENP-A is associated with many cancers and is correlated with its mistargeting, forming extra-centromeric kinetochore structures. The mislocalization of CENP-A can be counteracted by proteolysis. The amino (N)-terminal domain (NTD) of CENP-A has been implicated in this regulation and shown to be dependent on the proline residues within this domain in Saccharomyces cerevisiae CENP-A, Cse4. We recently identified a proline-rich GRANT motif in the NTD of Schizosaccharomyces pombe CENP-A (SpCENP-A) that regulates the centromeric targeting of CENP-A via binding to the CENP-A chaperone Sim3. Here, we investigated whether the NTD is required to confer SpCENP-A turnover (i.e., counter stability) using various truncation mutants of SpCENP-A. We show that sequential truncation of the NTD did not improve the stability of the protein, indicating that the NTD of SpCENP-A does not drive turnover of the protein. Instead, we reproduced previous observations that heterochromatin integrity is important for SpCENP-A stability, and showed that this occurs in an NTD-independent manner. Cells bearing the null mutant of the histone H3 lysine 9 methyltransferase Clr4 (Δclr4), which have compromised constitutive heterochromatin integrity, showed reductions in the proportion of SpCENP-A in the chromatin-containing insoluble fraction of the cell extract, suggesting that heterochromatin may promote SpCENP-A chromatin incorporation. Thus, a disruption in heterochromatin may result in the delocalization of SpCENP-A from chromatin, thus exposing it to protein turnover. Taken together, we show that the NTD is not required to confer SpCENP-A protein turnover.
Collapse
|
217
|
Otake K, Ohzeki JI, Shono N, Kugou K, Okazaki K, Nagase T, Yamakawa H, Kouprina N, Larionov V, Kimura H, Earnshaw WC, Masumoto H. CENP-B creates alternative epigenetic chromatin states permissive for CENP-A or heterochromatin assembly. J Cell Sci 2020; 133:jcs243303. [PMID: 32661090 PMCID: PMC7438015 DOI: 10.1242/jcs.243303] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 06/29/2020] [Indexed: 01/03/2023] Open
Abstract
CENP-B binds to CENP-B boxes on centromeric satellite DNAs (known as alphoid DNA in humans). CENP-B maintains kinetochore function through interactions with CENP-A nucleosomes and CENP-C. CENP-B binding to transfected alphoid DNA can induce de novo CENP-A assembly, functional centromere and kinetochore formation, and subsequent human artificial chromosome (HAC) formation. Furthermore, CENP-B also facilitates H3K9 (histone H3 lysine 9) trimethylation on alphoid DNA, mediated by Suv39h1, at ectopic alphoid DNA integration sites. Excessive heterochromatin invasion into centromere chromatin suppresses CENP-A assembly. It is unclear how CENP-B controls such different chromatin states. Here, we show that the CENP-B acidic domain recruits histone chaperones and many chromatin modifiers, including the H3K36 methylase ASH1L, as well as the heterochromatin components Suv39h1 and HP1 (HP1α, β and γ, also known as CBX5, CBX1 and CBX3, respectively). ASH1L facilitates the formation of open chromatin competent for CENP-A assembly on alphoid DNA. These results indicate that CENP-B is a nexus for histone modifiers that alternatively promote or suppress CENP-A assembly by mutually exclusive mechanisms. Besides the DNA-binding domain, the CENP-B acidic domain also facilitates CENP-A assembly de novo on transfected alphoid DNA. CENP-B therefore balances CENP-A assembly and heterochromatin formation on satellite DNA.
Collapse
Affiliation(s)
- Koichiro Otake
- Laboratory of Chromosome Engineering, Department of Frontier Research and Development, Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu 292-0818, Japan
| | - Jun-Ichirou Ohzeki
- Laboratory of Chromosome Engineering, Department of Frontier Research and Development, Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu 292-0818, Japan
| | - Nobuaki Shono
- Laboratory of Chromosome Engineering, Department of Frontier Research and Development, Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu 292-0818, Japan
| | - Kazuto Kugou
- Laboratory of Chromosome Engineering, Department of Frontier Research and Development, Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu 292-0818, Japan
| | - Koei Okazaki
- Laboratory of Chromosome Engineering, Department of Frontier Research and Development, Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu 292-0818, Japan
| | - Takahiro Nagase
- Public Relations and Research Promotion Group, Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu 292-0818, Japan
| | - Hisashi Yamakawa
- Clinical Analysis Team, Department of Omics Research and Development, Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu 292-0818, Japan
| | - Natalay Kouprina
- Genome Structure and Function Group, Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Vladimir Larionov
- Genome Structure and Function Group, Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hiroshi Kimura
- Cell Biology Unit, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - William C Earnshaw
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Hiroshi Masumoto
- Laboratory of Chromosome Engineering, Department of Frontier Research and Development, Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu 292-0818, Japan
| |
Collapse
|
218
|
Hara M, Fukagawa T. Dynamics of kinetochore structure and its regulations during mitotic progression. Cell Mol Life Sci 2020; 77:2981-2995. [PMID: 32052088 PMCID: PMC11104943 DOI: 10.1007/s00018-020-03472-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 12/27/2019] [Accepted: 01/28/2020] [Indexed: 12/12/2022]
Abstract
Faithful chromosome segregation during mitosis in eukaryotes requires attachment of the kinetochore, a large protein complex assembled on the centromere of each chromosome, to the spindle microtubules. The kinetochore is a structural interface for the microtubule attachment and provides molecular surveillance mechanisms that monitor and ensure the precise microtubule attachment as well, including error correction and spindle assembly checkpoint. During mitotic progression, the kinetochore undergoes dynamic morphological changes that are observable through electron microscopy as well as through fluorescence microscopy. These structural changes might be associated with the kinetochore function. In this review, we summarize how the dynamics of kinetochore morphology are associated with its functions and discuss recent findings on the switching of protein interaction networks in the kinetochore during cell cycle progression.
Collapse
Affiliation(s)
- Masatoshi Hara
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan.
| | - Tatsuo Fukagawa
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan.
| |
Collapse
|
219
|
Gazengel K, Lebreton L, Lapalu N, Amselem J, Guillerm-Erckelboudt AY, Tagu D, Daval S. pH effect on strain-specific transcriptomes of the take-all fungus. PLoS One 2020; 15:e0236429. [PMID: 32730288 PMCID: PMC7392285 DOI: 10.1371/journal.pone.0236429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 07/06/2020] [Indexed: 11/18/2022] Open
Abstract
The soilborne fungus Gaeumannomyces tritici (G. tritici) causes the take-all disease on wheat roots. Ambient pH has been shown to be critical in different steps of G. tritici life cycle such as survival in bulk soil, saprophytic growth, and pathogenicity on plants. There are however intra-specific variations and we previously found two types of G. tritici strains that grow preferentially either at acidic pH or at neutral/alkaline pH; gene expression involved in pH-signal transduction pathway and pathogenesis was differentially regulated in two strains representative of these types. To go deeper in the description of the genetic pathways and the understanding of this adaptative mechanism, transcriptome sequencing was achieved on two strains (PG6 and PG38) which displayed opposite growth profiles in two pH conditions (acidic and neutral). PG6, growing better at acidic pH, overexpressed in this condition genes related to cell proliferation. In contrast, PG38, which grew better at neutral pH, overexpressed in this condition genes involved in fatty acids and amino acid metabolisms, and genes potentially related to pathogenesis. This strain also expressed stress resistance mechanisms at both pH, to assert a convenient growth under various ambient pH conditions. These differences in metabolic pathway expression between strains at different pH might buffer the effect of field or soil variation in wheat fields, and explain the success of the pathogen.
Collapse
Affiliation(s)
- Kévin Gazengel
- IGEPP, INRAE, Institut Agro, Univ Rennes, Le Rheu, France
- * E-mail:
| | | | - Nicolas Lapalu
- AgroParisTech, INRAE, Université Paris-Saclay, BIOGER, Thiverval-Grignon, France
| | - Joëlle Amselem
- INRAE, Université Paris-Saclay, URGI, Versailles, France
| | | | - Denis Tagu
- IGEPP, INRAE, Institut Agro, Univ Rennes, Le Rheu, France
| | | |
Collapse
|
220
|
Martins NMC, Cisneros-Soberanis F, Pesenti E, Kochanova NY, Shang WH, Hori T, Nagase T, Kimura H, Larionov V, Masumoto H, Fukagawa T, Earnshaw WC. H3K9me3 maintenance on a human artificial chromosome is required for segregation but not centromere epigenetic memory. J Cell Sci 2020; 133:jcs242610. [PMID: 32576667 PMCID: PMC7390644 DOI: 10.1242/jcs.242610] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 06/11/2020] [Indexed: 12/24/2022] Open
Abstract
Most eukaryotic centromeres are located within heterochromatic regions. Paradoxically, heterochromatin can also antagonize de novo centromere formation, and some centromeres lack it altogether. In order to investigate the importance of heterochromatin at centromeres, we used epigenetic engineering of a synthetic alphoidtetO human artificial chromosome (HAC), to which chimeric proteins can be targeted. By tethering the JMJD2D demethylase (also known as KDM4D), we removed heterochromatin mark H3K9me3 (histone 3 lysine 9 trimethylation) specifically from the HAC centromere. This caused no short-term defects, but long-term tethering reduced HAC centromere protein levels and triggered HAC mis-segregation. However, centromeric CENP-A was maintained at a reduced level. Furthermore, HAC centromere function was compatible with an alternative low-H3K9me3, high-H3K27me3 chromatin signature, as long as residual levels of H3K9me3 remained. When JMJD2D was released from the HAC, H3K9me3 levels recovered over several days back to initial levels along with CENP-A and CENP-C centromere levels, and mitotic segregation fidelity. Our results suggest that a minimal level of heterochromatin is required to stabilize mitotic centromere function but not for maintaining centromere epigenetic memory, and that a homeostatic pathway maintains heterochromatin at centromeres.This article has an associated First Person interview with the first authors of the paper.
Collapse
Affiliation(s)
| | | | - Elisa Pesenti
- Wellcome Trust Centre for Cell Biology, Edinburgh, UK
| | | | - Wei-Hao Shang
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Tetsuya Hori
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | | | - Hiroshi Kimura
- Cell Biology Unit, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Vladimir Larionov
- National Cancer Institute, National Institutes of Health, Bethesda, USA
| | | | - Tatsuo Fukagawa
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | | |
Collapse
|
221
|
Bonner MK, Haase J, Saunders H, Gupta H, Li BI, Kelly AE. The Borealin dimerization domain interacts with Sgo1 to drive Aurora B-mediated spindle assembly. Mol Biol Cell 2020; 31:2207-2218. [PMID: 32697622 PMCID: PMC7550704 DOI: 10.1091/mbc.e20-05-0341] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The chromosomal passenger complex (CPC), which includes the kinase Aurora B, is a master regulator of meiotic and mitotic processes that ensure the equal segregation of chromosomes. Sgo1 is thought to play a major role in the recruitment of the CPC to chromosomes, but the molecular mechanism and contribution of Sgo1-dependent CPC recruitment is currently unclear. Using Xenopus egg extracts and biochemical reconstitution, we found that Sgo1 interacts directly with the dimerization domain of the CPC subunit Borealin. Borealin and the PP2A phosphatase complex can bind simultaneously to the coiled-coil domain of Sgo1, suggesting that Sgo1 can integrate Aurora B and PP2A activities to modulate Aurora B substrate phosphorylation. A Borealin mutant that specifically disrupts the Sgo1–Borealin interaction results in defects in CPC chromosomal recruitment and Aurora B–dependent spindle assembly, but not in spindle assembly checkpoint signaling at unattached kinetochores. These findings establish a direct molecular connection between Sgo1 and the CPC and have major implications for the different functions of Aurora B, which promote the proper interaction between spindle microtubules and chromosomes.
Collapse
Affiliation(s)
- Mary Kate Bonner
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, NIH, Bethesda, MD 20892
| | - Julian Haase
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, NIH, Bethesda, MD 20892
| | - Hayden Saunders
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, NIH, Bethesda, MD 20892
| | - Hindol Gupta
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, NIH, Bethesda, MD 20892
| | - Biyun Iris Li
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, NIH, Bethesda, MD 20892
| | - Alexander E Kelly
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, NIH, Bethesda, MD 20892
| |
Collapse
|
222
|
Hsieh CL, Xia J, Lin H. MIWI prevents aneuploidy during meiosis by cleaving excess satellite RNA. EMBO J 2020; 39:e103614. [PMID: 32677148 DOI: 10.15252/embj.2019103614] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 06/10/2020] [Accepted: 06/16/2020] [Indexed: 01/01/2023] Open
Abstract
MIWI, a murine member of PIWI proteins mostly expressed during male meiosis, is crucial for piRNA biogenesis, post-transcriptional regulation, and spermiogenesis. However, its meiotic function remains unknown. Here, we report that MIWI deficiency alters meiotic kinetochore assembly, significantly increases chromosome misalignment at the meiosis metaphase I plate, and causes chromosome mis-segregation. Consequently, Miwi-deficient mice show elevated aneuploidy in metaphase II and spermatid death. Furthermore, in Miwi-null and Miwi slicer-deficient mutants, major and minor satellite RNAs from centromeric and pericentromeric satellite repeats accumulate in excess. Over-expression of satellite repeats in wild-type spermatocytes also causes elevated chromosome misalignment, whereas reduction of both strands of major or minor satellite RNAs results in lower frequencies of chromosome misalignment. We show that MIWI, guided by piRNA, cleaves major satellite RNAs, generating RNA fragments that may form substrates for subsequent Dicer cleavage. Furthermore, Dicer cleaves all satellite RNAs in conjunction with MIWI. These findings reveal a novel mechanism in which MIWI- and Dicer-mediated cleavage of the satellite RNAs prevents the over-expression of satellite RNAs, thus ensuring proper kinetochore assembly and faithful chromosome segregation during meiosis.
Collapse
Affiliation(s)
- Chia-Ling Hsieh
- Yale Stem Cell Center and Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Jing Xia
- Yale Stem Cell Center and Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Haifan Lin
- Yale Stem Cell Center and Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
223
|
Hertzler JI, Simonovitch SI, Albertson RM, Weiner AT, Nye DMR, Rolls MM. Kinetochore proteins suppress neuronal microtubule dynamics and promote dendrite regeneration. Mol Biol Cell 2020; 31:2125-2138. [PMID: 32673176 PMCID: PMC7530905 DOI: 10.1091/mbc.e20-04-0237-t] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Kinetochores connect centromeric chromatin to spindle microtubules during mitosis. Neurons are postmitotic, so it was surprising to identify transcripts of structural kinetochore (KT) proteins and regulatory chromosome passenger complex (CPC) and spindle assembly checkpoint (SAC) proteins in Drosophila neurons after dendrite injury. To test whether these proteins function during dendrite regeneration, postmitotic RNA interference (RNAi) was performed and dendrites or axons were removed using laser microsurgery. Reduction of KT, CPC, and SAC proteins decreased dendrite regeneration without affecting axon regeneration. To understand whether neuronal functions of these proteins rely on microtubules, we analyzed microtubule behavior in uninjured neurons. The number of growing plus, but not minus, ends increased in dendrites with reduced KT, CPC, and SAC proteins, while axonal microtubules were unaffected. Increased dendritic microtubule dynamics was independent of dual leucine zipper kinase (DLK)-mediated stress but was rescued by concurrent reduction of γ-tubulin, the core microtubule nucleation protein. Reduction of γ-tubulin also rescued dendrite regeneration in backgrounds containing kinetochore RNAi transgenes. We conclude that kinetochore proteins function postmitotically in neurons to suppress dendritic microtubule dynamics by inhibiting nucleation.
Collapse
Affiliation(s)
- James I Hertzler
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802
| | - Samantha I Simonovitch
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802
| | - Richard M Albertson
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802.,MSTP Program, Milton S. Hershey College of Medicine, Hershey, PA 17033
| | - Alexis T Weiner
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802
| | - Derek M R Nye
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802.,MSTP Program, Milton S. Hershey College of Medicine, Hershey, PA 17033
| | - Melissa M Rolls
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802
| |
Collapse
|
224
|
Renda F, Magidson V, Tikhonenko I, Fisher R, Miles C, Mogilner A, Khodjakov A. Effects of malleable kinetochore morphology on measurements of intrakinetochore tension. Open Biol 2020; 10:200101. [PMID: 32634373 PMCID: PMC7571466 DOI: 10.1098/rsob.200101] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The distance between fluorescent spots formed by various kinetochore proteins (delta) is commonly interpreted as a manifestation of intrakinetochore tension (IKT) caused by microtubule-mediated forces. However, large-scale changes of the kinetochore architecture (such as its shape or dimensions) may also contribute to the value of delta. To assess contributions of these non-elastic changes, we compare behaviour of delta values in human kinetochores with small yet mechanically malleable kinetochores against compound kinetochores in Indian muntjac (IM) cells whose architecture remains constant. Due to the micrometre-scale length of kinetochore plates in IM, their shape and orientation are discernible in conventional light microscopy, which enables precise measurements of IKT independent of contributions from changes in overall architecture of the organelle. We find that delta in IM kinetochores remains relatively constant when microtubule-mediated forces are suppressed by Taxol, but it prominently decreases upon detachment of microtubules. By contrast, large decreases of delta observed in Taxol-treated human cells coincide with prominent changes in length and curvature of the kinetochore plate. These observations, supported by computational modelling, suggest that at least 50% of the decrease in delta in human cells reflects malleable reorganization of kinetochore architecture rather than elastic recoil due to IKT.
Collapse
Affiliation(s)
- Fioranna Renda
- New York State Department of Health, Wadsworth Center, Albany, NY, USA
| | - Valentin Magidson
- New York State Department of Health, Wadsworth Center, Albany, NY, USA
| | - Irina Tikhonenko
- New York State Department of Health, Wadsworth Center, Albany, NY, USA
| | - Rebecca Fisher
- New York State Department of Health, Wadsworth Center, Albany, NY, USA
| | - Christopher Miles
- Courant Institute and Department of Biology, New York University, New York, NY, USA
| | - Alex Mogilner
- Courant Institute and Department of Biology, New York University, New York, NY, USA
| | - Alexey Khodjakov
- New York State Department of Health, Wadsworth Center, Albany, NY, USA.,Rensselaer Polytechnic Institute, Troy, NY, USA
| |
Collapse
|
225
|
Benzi G, Piatti S. Killing two birds with one stone: how budding yeast Mps1 controls chromosome segregation and spindle assembly checkpoint through phosphorylation of a single kinetochore protein. Curr Genet 2020; 66:1037-1044. [PMID: 32632756 DOI: 10.1007/s00294-020-01091-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 12/11/2022]
Abstract
During mitosis, the identical sister chromatids of each chromosome must attach through their kinetochores to microtubules emanating from opposite spindle poles. This process, referred to as chromosome biorientation, is essential for equal partitioning of the genetic information to the two daughter cells. Defects in chromosome biorientation can give rise to aneuploidy, a hallmark of cancer and genetic diseases. A conserved surveillance mechanism called spindle assembly checkpoint (SAC) prevents the onset of anaphase until biorientation is attained. Key to chromosome biorientation is an error correction mechanism that allows kinetochores to establish proper bipolar attachments by disengaging faulty kinetochore-microtubule connections. Error correction relies on the Aurora B and Mps1 kinases that also promote SAC signaling, raising the possibility that they are part of a single sensory device responding to improper attachments and concomitantly controlling both their disengagement and a temporary mitotic arrest. In budding yeast, Aurora B and Mps1 promote error correction independently from one another, but while the substrates of Aurora B in this process are at least partially known, the mechanism underlying the involvement of Mps1 in the error correction pathway is unknown. Through the characterization of a novel mps1 mutant and an unbiased genetic screen for extragenic suppressors, we recently gained evidence that a common mechanism based on Mps1-dependent phosphorylation of the Knl1/Spc105 kinetochore scaffold and subsequent recruitment of the Bub1 kinase is critical for the function of Mps1 in chromosome biorientation as well as for SAC activation (Benzi et al. EMBO Rep, 2020).
Collapse
Affiliation(s)
- Giorgia Benzi
- CRBM, University of Montpellier, CNRS, 1919 Route de Mende, 34293, Montpellier, France
| | - Simonetta Piatti
- CRBM, University of Montpellier, CNRS, 1919 Route de Mende, 34293, Montpellier, France.
| |
Collapse
|
226
|
Barbosa J, Conde C, Sunkel C. RZZ-SPINDLY-DYNEIN: you got to keep 'em separated. Cell Cycle 2020; 19:1716-1726. [PMID: 32544383 PMCID: PMC7469663 DOI: 10.1080/15384101.2020.1780382] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 10/24/2022] Open
Abstract
To maintain genome stability, chromosomes must be equally distributed among daughter cells at the end of mitosis. The accuracy of chromosome segregation requires sister-kinetochores to stably attach to microtubules emanating from opposite spindle poles. However, initial kinetochore-microtubule interactions are able to turnover so that defective attachment configurations that typically arise during early mitosis may be corrected. Growing evidence supports a role for the RZZ complex in preventing the stabilization of erroneous kinetochore-microtubule attachments. This inhibitory function of RZZ toward end-on attachments is relieved by DYNEIN-mediated transport of the complex as chromosomes congress and appropriate interactions with microtubules are established. However, it remains unclear how DYNEIN is antagonized to prevent premature RZZ removal. We recently described a new mechanism that sheds new light on this matter. We found that POLO kinase phosphorylates the DYNEIN adaptor SPINDLY to promote the uncoupling between RZZ and DYNEIN. Elevated POLO activity during prometaphase ensures that RZZ is retained at kinetochores to allow the dynamic turnover of kinetochore-microtubule interactions and prevent the stabilization of erroneous attachments. Here, we discuss additional interpretations to explain a model for POLO-dependent regulation of the RZZ-SPINDLY-DYNEIN module during mitosis.
Collapse
Affiliation(s)
- João Barbosa
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- i3S, Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Porto, Portugal
| | - Carlos Conde
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- i3S, Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Porto, Portugal
| | - Claudio Sunkel
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- i3S, Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Porto, Portugal
- ICBAS - Instituto de Ciência Biomédicas Abel Salazar da Universidade do Porto, Porto, Portugal
| |
Collapse
|
227
|
Zeeshan M, Pandey R, Ferguson DJP, Tromer EC, Markus R, Abel S, Brady D, Daniel E, Limenitakis R, Bottrill AR, Le Roch KG, Holder AA, Waller RF, Guttery DS, Tewari R. Real-time dynamics of Plasmodium NDC80 reveals unusual modes of chromosome segregation during parasite proliferation. J Cell Sci 2020; 134:jcs245753. [PMID: 32501284 PMCID: PMC7340582 DOI: 10.1242/jcs.245753] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 04/29/2020] [Indexed: 12/24/2022] Open
Abstract
Eukaryotic cell proliferation requires chromosome replication and precise segregation to ensure daughter cells have identical genomic copies. Species of the genus Plasmodium, the causative agents of malaria, display remarkable aspects of nuclear division throughout their life cycle to meet some peculiar and unique challenges to DNA replication and chromosome segregation. The parasite undergoes atypical endomitosis and endoreduplication with an intact nuclear membrane and intranuclear mitotic spindle. To understand these diverse modes of Plasmodium cell division, we have studied the behaviour and composition of the outer kinetochore NDC80 complex, a key part of the mitotic apparatus that attaches the centromere of chromosomes to microtubules of the mitotic spindle. Using NDC80-GFP live-cell imaging in Plasmodium berghei, we observe dynamic spatiotemporal changes during proliferation, including highly unusual kinetochore arrangements during sexual stages. We identify a very divergent candidate for the SPC24 subunit of the NDC80 complex, previously thought to be missing in Plasmodium, which completes a canonical, albeit unusual, NDC80 complex structure. Altogether, our studies reveal the kinetochore to be an ideal tool to investigate the non-canonical modes of chromosome segregation and cell division in Plasmodium.
Collapse
Affiliation(s)
- Mohammad Zeeshan
- School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
| | - Rajan Pandey
- School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
| | - David J P Ferguson
- Nuffield Department of Clinical Laboratory Science, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
- Department of Biological and Medical Sciences, Faculty of Health and Life Science, Oxford Brookes University, Gipsy Lane, Oxford OX3 0BP, UK
| | - Eelco C Tromer
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | - Robert Markus
- School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
| | - Steven Abel
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, CA 92521, USA
| | - Declan Brady
- School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
| | - Emilie Daniel
- School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
| | | | - Andrew R Bottrill
- School of Life Sciences, Gibbelt Hill Campus, University of Warwick, Coventry CV4 7AL, UK
| | - Karine G Le Roch
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, CA 92521, USA
| | - Anthony A Holder
- Malaria Parasitology Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Ross F Waller
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | - David S Guttery
- Leicester Cancer Research Centre, University of Leicester, Leicester LE2 7LX, UK
| | - Rita Tewari
- School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
| |
Collapse
|
228
|
Allan LA, Camacho Reis M, Ciossani G, Huis In 't Veld PJ, Wohlgemuth S, Kops GJ, Musacchio A, Saurin AT. Cyclin B1 scaffolds MAD1 at the kinetochore corona to activate the mitotic checkpoint. EMBO J 2020. [PMID: 32202322 DOI: 10.1525/embj.2019103180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023] Open
Abstract
Cyclin B:CDK1 is the master kinase regulator of mitosis. We show here that, in addition to its kinase functions, mammalian Cyclin B also scaffolds a localised signalling pathway to help preserve genome stability. Cyclin B1 localises to an expanded region of the outer kinetochore, known as the corona, where it scaffolds the spindle assembly checkpoint (SAC) machinery by binding directly to MAD1. In vitro reconstitutions map the key binding interface to a few acidic residues in the N-terminal region of MAD1, and point mutations in this sequence abolish MAD1 corona localisation and weaken the SAC. Therefore, Cyclin B1 is the long-sought-after scaffold that links MAD1 to the corona, and this specific pool of MAD1 is needed to generate a robust SAC response. Robustness arises because Cyclin B1:MAD1 localisation loses dependence on MPS1 kinase after the corona has been established, ensuring that corona-localised MAD1 can still be phosphorylated when MPS1 activity is low. Therefore, this study explains how corona-MAD1 generates a robust SAC signal, and it reveals a scaffolding role for the key mitotic kinase, Cyclin B1:CDK1, which ultimately helps to inhibit its own degradation.
Collapse
Affiliation(s)
- Lindsey A Allan
- Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee, UK
| | - Magda Camacho Reis
- Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee, UK
| | - Giuseppe Ciossani
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Pim J Huis In 't Veld
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Sabine Wohlgemuth
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Geert Jpl Kops
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Andrea Musacchio
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Adrian T Saurin
- Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee, UK
| |
Collapse
|
229
|
Allan LA, Camacho Reis M, Ciossani G, Huis in ‘t Veld PJ, Wohlgemuth S, Kops GJPL, Musacchio A, Saurin AT. Cyclin B1 scaffolds MAD1 at the kinetochore corona to activate the mitotic checkpoint. EMBO J 2020; 39:e103180. [PMID: 32202322 PMCID: PMC7298293 DOI: 10.15252/embj.2019103180] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 01/20/2020] [Accepted: 03/02/2020] [Indexed: 11/28/2022] Open
Abstract
Cyclin B:CDK1 is the master kinase regulator of mitosis. We show here that, in addition to its kinase functions, mammalian Cyclin B also scaffolds a localised signalling pathway to help preserve genome stability. Cyclin B1 localises to an expanded region of the outer kinetochore, known as the corona, where it scaffolds the spindle assembly checkpoint (SAC) machinery by binding directly to MAD1. In vitro reconstitutions map the key binding interface to a few acidic residues in the N-terminal region of MAD1, and point mutations in this sequence abolish MAD1 corona localisation and weaken the SAC. Therefore, Cyclin B1 is the long-sought-after scaffold that links MAD1 to the corona, and this specific pool of MAD1 is needed to generate a robust SAC response. Robustness arises because Cyclin B1:MAD1 localisation loses dependence on MPS1 kinase after the corona has been established, ensuring that corona-localised MAD1 can still be phosphorylated when MPS1 activity is low. Therefore, this study explains how corona-MAD1 generates a robust SAC signal, and it reveals a scaffolding role for the key mitotic kinase, Cyclin B1:CDK1, which ultimately helps to inhibit its own degradation.
Collapse
Affiliation(s)
- Lindsey A Allan
- Division of Cellular MedicineSchool of MedicineUniversity of DundeeDundeeUK
| | - Magda Camacho Reis
- Division of Cellular MedicineSchool of MedicineUniversity of DundeeDundeeUK
| | - Giuseppe Ciossani
- Department of Mechanistic Cell BiologyMax Planck Institute of Molecular PhysiologyDortmundGermany
| | - Pim J Huis in ‘t Veld
- Department of Mechanistic Cell BiologyMax Planck Institute of Molecular PhysiologyDortmundGermany
| | - Sabine Wohlgemuth
- Department of Mechanistic Cell BiologyMax Planck Institute of Molecular PhysiologyDortmundGermany
| | - Geert JPL Kops
- Oncode InstituteHubrecht Institute—KNAW and University Medical Centre UtrechtUtrechtThe Netherlands
| | - Andrea Musacchio
- Department of Mechanistic Cell BiologyMax Planck Institute of Molecular PhysiologyDortmundGermany
| | - Adrian T Saurin
- Division of Cellular MedicineSchool of MedicineUniversity of DundeeDundeeUK
| |
Collapse
|
230
|
Kixmoeller K, Allu PK, Black BE. The centromere comes into focus: from CENP-A nucleosomes to kinetochore connections with the spindle. Open Biol 2020; 10:200051. [PMID: 32516549 PMCID: PMC7333888 DOI: 10.1098/rsob.200051] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Eukaryotic chromosome segregation relies upon specific connections from DNA to the microtubule-based spindle that forms at cell division. The chromosomal locus that directs this process is the centromere, where a structure called the kinetochore forms upon entry into mitosis. Recent crystallography and single-particle electron microscopy have provided unprecedented high-resolution views of the molecular complexes involved in this process. The centromere is epigenetically specified by nucleosomes harbouring a histone H3 variant, CENP-A, and we review recent progress on how it differentiates centromeric chromatin from the rest of the chromosome, the biochemical pathway that mediates its assembly and how two non-histone components of the centromere specifically recognize CENP-A nucleosomes. The core centromeric nucleosome complex (CCNC) is required to recruit a 16-subunit complex termed the constitutive centromere associated network (CCAN), and we highlight recent structures reported of the budding yeast CCAN. Finally, the structures of multiple modular sub-complexes of the kinetochore have been solved at near-atomic resolution, providing insight into how connections are made to the CCAN on one end and to the spindle microtubules on the other. One can now build molecular models from the DNA through to the physical connections to microtubules.
Collapse
Affiliation(s)
- Kathryn Kixmoeller
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Penn Center for Genome Integrity, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Graduate Program in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Praveen Kumar Allu
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Penn Center for Genome Integrity, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ben E Black
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Penn Center for Genome Integrity, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Graduate Program in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
231
|
Killinger K, Böhm M, Steinbach P, Hagemann G, Blüggel M, Jänen K, Hohoff S, Bayer P, Herzog F, Westermann S. Auto-inhibition of Mif2/CENP-C ensures centromere-dependent kinetochore assembly in budding yeast. EMBO J 2020; 39:e102938. [PMID: 32515113 PMCID: PMC7360964 DOI: 10.15252/embj.2019102938] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 04/27/2020] [Accepted: 05/12/2020] [Indexed: 11/28/2022] Open
Abstract
Kinetochores are chromatin‐bound multi‐protein complexes that allow high‐fidelity chromosome segregation during mitosis and meiosis. Kinetochore assembly is exclusively initiated at chromatin containing Cse4/CENP‐A nucleosomes. The molecular mechanisms ensuring that subcomplexes assemble efficiently into kinetochores only at centromeres, but not anywhere else, are incompletely understood. Here, we combine biochemical and genetic experiments to demonstrate that auto‐inhibition of the conserved kinetochore subunit Mif2/CENP‐C contributes to preventing unscheduled kinetochore assembly in budding yeast cells. We show that wild‐type Mif2 is attenuated in its ability to bind a key downstream component in the assembly pathway, the Mtw1 complex, and that addition of Cse4 nucleosomes overcomes this inhibition. By exchanging the N‐terminus of Mif2 with its functional counterpart from Ame1/CENP‐U, we have created a Mif2 mutant which bypasses the Cse4 requirement for Mtw1 binding in vitro, thereby shortcutting kinetochore assembly. Expression of this Mif2 mutant in cells leads to mis‐localization of the Mtw1 complex and causes pronounced chromosome segregation defects. We propose that auto‐inhibition of Mif2/CENP‐C constitutes a key concept underlying the molecular logic of kinetochore assembly.
Collapse
Affiliation(s)
- Kerstin Killinger
- Department of Molecular Genetics, Faculty of Biology, Center of Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Miriam Böhm
- Department of Molecular Genetics, Faculty of Biology, Center of Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Philine Steinbach
- Department of Molecular Genetics, Faculty of Biology, Center of Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Götz Hagemann
- Department of Biochemistry, Gene Center, Ludwig-Maximilians-Universität München, München, Germany
| | - Mike Blüggel
- Structural and Medicinal Biochemistry, Faculty of Biology, Center of Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Karolin Jänen
- Department of Molecular Genetics, Faculty of Biology, Center of Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Simone Hohoff
- Department of Molecular Genetics, Faculty of Biology, Center of Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Peter Bayer
- Structural and Medicinal Biochemistry, Faculty of Biology, Center of Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Franz Herzog
- Department of Biochemistry, Gene Center, Ludwig-Maximilians-Universität München, München, Germany
| | - Stefan Westermann
- Department of Molecular Genetics, Faculty of Biology, Center of Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
232
|
Abstract
Centromeres in eukaryotes can be classified into three categories: point centromeres, regional centromeres, or holocentric. Now, a hybrid-type centromere is found in a pathogenic fungus that lacks the key kinetochore component CENP-A.
Collapse
Affiliation(s)
- Bungo Akiyoshi
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK.
| |
Collapse
|
233
|
Prc1-rich kinetochores are required for error-free acentrosomal spindle bipolarization during meiosis I in mouse oocytes. Nat Commun 2020; 11:2652. [PMID: 32461611 PMCID: PMC7253481 DOI: 10.1038/s41467-020-16488-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 05/01/2020] [Indexed: 12/18/2022] Open
Abstract
Acentrosomal meiosis in oocytes represents a gametogenic challenge, requiring spindle bipolarization without predefined bipolar cues. While much is known about the structures that promote acentrosomal microtubule nucleation, less is known about the structures that mediate spindle bipolarization in mammalian oocytes. Here, we show that in mouse oocytes, kinetochores are required for spindle bipolarization in meiosis I. This process is promoted by oocyte-specific, microtubule-independent enrichment of the antiparallel microtubule crosslinker Prc1 at kinetochores via the Ndc80 complex. In contrast, in meiosis II, cytoplasm that contains upregulated factors including Prc1 supports kinetochore-independent pathways for spindle bipolarization. The kinetochore-dependent mode of spindle bipolarization is required for meiosis I to prevent chromosome segregation errors. Human oocytes, where spindle bipolarization is reportedly error prone, exhibit no detectable kinetochore enrichment of Prc1. This study reveals an oocyte-specific function of kinetochores in acentrosomal spindle bipolarization in mice, and provides insights into the error-prone nature of human oocytes. Oocyte meiosis must achieve spindle bipolarization without predefined spatial cues. Yoshida et al. demonstrate that spindle bipolarization during meiosis I in mouse oocytes requires kinetochores to prevent chromosome segregation errors, a phenomenon that does not occur in error-prone human oocytes.
Collapse
|
234
|
Schubert V, Neumann P, Marques A, Heckmann S, Macas J, Pedrosa-Harand A, Schubert I, Jang TS, Houben A. Super-Resolution Microscopy Reveals Diversity of Plant Centromere Architecture. Int J Mol Sci 2020; 21:E3488. [PMID: 32429054 PMCID: PMC7278974 DOI: 10.3390/ijms21103488] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/11/2020] [Accepted: 05/11/2020] [Indexed: 12/20/2022] Open
Abstract
Centromeres are essential for proper chromosome segregation to the daughter cells during mitosis and meiosis. Chromosomes of most eukaryotes studied so far have regional centromeres that form primary constrictions on metaphase chromosomes. These monocentric chromosomes vary from point centromeres to so-called "meta-polycentromeres", with multiple centromere domains in an extended primary constriction, as identified in Pisum and Lathyrus species. However, in various animal and plant lineages centromeres are distributed along almost the entire chromosome length. Therefore, they are called holocentromeres. In holocentric plants, centromere-specific proteins, at which spindle fibers usually attach, are arranged contiguously (line-like), in clusters along the chromosomes or in bands. Here, we summarize findings of ultrastructural investigations using immunolabeling with centromere-specific antibodies and super-resolution microscopy to demonstrate the structural diversity of plant centromeres. A classification of the different centromere types has been suggested based on the distribution of spindle attachment sites. Based on these findings we discuss the possible evolution and advantages of holocentricity, and potential strategies to segregate holocentric chromosomes correctly.
Collapse
Affiliation(s)
- Veit Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466 Seeland, Germany; (S.H.); (I.S.); (A.H.)
| | - Pavel Neumann
- Biology Centre, Czech Academy of Sciences, 37005 České Budějovice, Czech Republic; (P.N.); (J.M.); (T.-S.J.)
| | - André Marques
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany;
| | - Stefan Heckmann
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466 Seeland, Germany; (S.H.); (I.S.); (A.H.)
| | - Jiri Macas
- Biology Centre, Czech Academy of Sciences, 37005 České Budějovice, Czech Republic; (P.N.); (J.M.); (T.-S.J.)
| | - Andrea Pedrosa-Harand
- Department of Botany, Federal University of Pernambuco (UFPE), Recife 50670-901, Pernambuco, Brazil;
| | - Ingo Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466 Seeland, Germany; (S.H.); (I.S.); (A.H.)
| | - Tae-Soo Jang
- Biology Centre, Czech Academy of Sciences, 37005 České Budějovice, Czech Republic; (P.N.); (J.M.); (T.-S.J.)
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Korea
| | - Andreas Houben
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466 Seeland, Germany; (S.H.); (I.S.); (A.H.)
| |
Collapse
|
235
|
Hamilton GE, Helgeson LA, Noland CL, Asbury CL, Dimitrova YN, Davis TN. Reconstitution reveals two paths of force transmission through the kinetochore. eLife 2020; 9:56582. [PMID: 32406818 PMCID: PMC7367685 DOI: 10.7554/elife.56582] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/13/2020] [Indexed: 01/23/2023] Open
Abstract
Partitioning duplicated chromosomes equally between daughter cells is a microtubule-mediated process essential to eukaryotic life. A multi-protein machine, the kinetochore, drives chromosome segregation by coupling the chromosomes to dynamic microtubule tips, even as the tips grow and shrink through the gain and loss of subunits. The kinetochore must harness, transmit, and sense mitotic forces, as a lack of tension signals incorrect chromosome-microtubule attachment and precipitates error correction mechanisms. But though the field has arrived at a ‘parts list’ of dozens of kinetochore proteins organized into subcomplexes, the path of force transmission through these components has remained unclear. Here we report reconstitution of functional Saccharomyces cerevisiae kinetochore assemblies from recombinantly expressed proteins. The reconstituted kinetochores are capable of self-assembling in vitro, coupling centromeric nucleosomes to dynamic microtubules, and withstanding mitotically relevant forces. They reveal two distinct pathways of force transmission and Ndc80c recruitment.
Collapse
Affiliation(s)
- Grace E Hamilton
- Department of Biochemistry, University of Washington, Seattle, United States
| | - Luke A Helgeson
- Department of Biochemistry, University of Washington, Seattle, United States
| | - Cameron L Noland
- Department of Structural Biology, Genentech Inc, South San Francisco, United States
| | - Charles L Asbury
- Department of Physiology and Biophysics, University of Washington, Seattle, United States
| | - Yoana N Dimitrova
- Department of Structural Biology, Genentech Inc, South San Francisco, United States
| | - Trisha N Davis
- Department of Biochemistry, University of Washington, Seattle, United States
| |
Collapse
|
236
|
Voutsadakis IA. Clinical Implications of Chromosomal Instability (CIN) and Kinetochore Abnormalities in Breast Cancers. Mol Diagn Ther 2020; 23:707-721. [PMID: 31372940 DOI: 10.1007/s40291-019-00420-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Genetic instability is a defining property of cancer cells and is the basis of various lesions including point mutations, copy number alterations and translocations. Chromosomal instability (CIN) is part of the genetic instability of cancer and consists of copy number alterations in whole or parts of cancer cell chromosomes. CIN is observed in differing degrees in most cancers. In breast cancer, CIN is commonly part of the genomic landscape of the disease and has a higher incidence in aggressive sub-types. Tumor suppressors that are commonly mutated or disabled in cancer, such as p53 and pRB, play roles in protection against CIN, and as a result, their dysfunction contributes to the establishment or tolerance of CIN. Several structural and regulatory proteins of the centromeres and kinetochore, the complex structure that is responsible for the correct distribution of genetic material in the daughter cells during mitosis, are direct or, mostly, indirect transcription targets of p53 and pRB. Thus, despite the absence of structural defects in genes encoding for centromere and kinetochore components, dysfunction of these tumor suppressors may have profound implications for the correct function of the mitotic apparatus contributing to CIN. CIN and its prognostic and therapeutic implications in breast cancer are discussed in this article.
Collapse
Affiliation(s)
- Ioannis A Voutsadakis
- Algoma District Cancer Program, Sault Area Hospital, 750 Great Northern Road, Sault Ste Marie, ON, P6B 0A8, Canada. .,Section of Internal Medicine, Division of Clinical Sciences, Northern Ontario School of Medicine, Sudbury, ON, Canada.
| |
Collapse
|
237
|
Auckland P, Roscioli E, Coker HLE, McAinsh AD. CENP-F stabilizes kinetochore-microtubule attachments and limits dynein stripping of corona cargoes. J Cell Biol 2020; 219:e201905018. [PMID: 32207772 PMCID: PMC7199848 DOI: 10.1083/jcb.201905018] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 11/04/2019] [Accepted: 02/19/2020] [Indexed: 01/14/2023] Open
Abstract
Accurate chromosome segregation demands efficient capture of microtubules by kinetochores and their conversion to stable bioriented attachments that can congress and then segregate chromosomes. An early event is the shedding of the outermost fibrous corona layer of the kinetochore following microtubule attachment. Centromere protein F (CENP-F) is part of the corona, contains two microtubule-binding domains, and physically associates with dynein motor regulators. Here, we have combined CRISPR gene editing and engineered separation-of-function mutants to define how CENP-F contributes to kinetochore function. We show that the two microtubule-binding domains make distinct contributions to attachment stability and force transduction but are dispensable for chromosome congression. We further identify a specialized domain that functions to limit the dynein-mediated stripping of corona cargoes through a direct interaction with Nde1. This antagonistic activity is crucial for maintaining the required corona composition and ensuring efficient kinetochore biorientation.
Collapse
Affiliation(s)
- Philip Auckland
- Centre for Mechanochemical Cell Biology & Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Emanuele Roscioli
- Centre for Mechanochemical Cell Biology & Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Helena Louise Elvidge Coker
- Computing and Advanced Microscopy Development Unit, Warwick Medical School, University of Warwick, Coventry, UK
| | - Andrew D. McAinsh
- Centre for Mechanochemical Cell Biology & Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| |
Collapse
|
238
|
Ishii M, Akiyoshi B. Characterization of unconventional kinetochore kinases KKT10 and KKT19 in Trypanosoma brucei. J Cell Sci 2020; 133:jcs240978. [PMID: 32184264 PMCID: PMC7197874 DOI: 10.1242/jcs.240978] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 03/02/2020] [Indexed: 12/23/2022] Open
Abstract
The kinetochore is a macromolecular protein complex that drives chromosome segregation in eukaryotes. Unlike most eukaryotes that have canonical kinetochore proteins, evolutionarily divergent kinetoplastids, such as Trypanosoma brucei, have unconventional kinetochore proteins. T. brucei also lacks a canonical spindle checkpoint system, and it therefore remains unknown how mitotic progression is regulated in this organism. Here, we characterized, in the procyclic form of T. brucei, two paralogous kinetochore proteins with a CLK-like kinase domain, KKT10 and KKT19, which localize at kinetochores in metaphase but disappear at the onset of anaphase. We found that these proteins are functionally redundant. Double knockdown of KKT10 and KKT19 led to a significant delay in the metaphase to anaphase transition. We also found that phosphorylation of two kinetochore proteins, KKT4 and KKT7, depended on KKT10 and KKT19 in vivo Finally, we showed that the N-terminal part of KKT7 directly interacts with KKT10 and that kinetochore localization of KKT10 depends not only on KKT7 but also on the KKT8 complex. Our results reveal that kinetochore localization of KKT10 and KKT19 is tightly controlled to regulate the metaphase to anaphase transition in T. bruceiThis article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Midori Ishii
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Bungo Akiyoshi
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| |
Collapse
|
239
|
Roscioli E, Germanova TE, Smith CA, Embacher PA, Erent M, Thompson AI, Burroughs NJ, McAinsh AD. Ensemble-Level Organization of Human Kinetochores and Evidence for Distinct Tension and Attachment Sensors. Cell Rep 2020; 31:107535. [PMID: 32348762 PMCID: PMC7196887 DOI: 10.1016/j.celrep.2020.107535] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 02/10/2020] [Accepted: 03/27/2020] [Indexed: 12/13/2022] Open
Abstract
Kinetochores are multi-protein machines that form dynamic attachments to microtubules and control chromosome segregation. High fidelity is ensured because kinetochores can monitor attachment status and tension, using this information to activate checkpoints and error-correction mechanisms. To explore how kinetochores achieve this, we used two- and three-color subpixel fluorescence localization to define how proteins from six major complexes (CCAN, MIS12, NDC80, KNL1, RZZ, and SKA) and the checkpoint proteins Bub1, Mad1, and Mad2 are organized in the human kinetochore. This reveals how the outer kinetochore has a high nematic order and is largely invariant to the loss of attachment or tension, except for two mechanical sensors. First, Knl1 unravels to relay tension, and second, NDC80 undergoes jackknifing and loss of nematic order under microtubule detachment, with only the latter wired up to the checkpoint signaling system. This provides insight into how kinetochores integrate mechanical signals to promote error-free chromosome segregation.
Collapse
Affiliation(s)
- Emanuele Roscioli
- Centre for Mechanochemical Cell Biology, University of Warwick, Coventry, UK; Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Tsvetelina E Germanova
- Centre for Mechanochemical Cell Biology, University of Warwick, Coventry, UK; Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Christopher A Smith
- Centre for Mechanochemical Cell Biology, University of Warwick, Coventry, UK; Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Peter A Embacher
- Centre for Mechanochemical Cell Biology, University of Warwick, Coventry, UK; Mathematics Institute, University of Warwick, Coventry, UK
| | - Muriel Erent
- Centre for Mechanochemical Cell Biology, University of Warwick, Coventry, UK; Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Amelia I Thompson
- Centre for Mechanochemical Cell Biology, University of Warwick, Coventry, UK; Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Nigel J Burroughs
- Centre for Mechanochemical Cell Biology, University of Warwick, Coventry, UK; Mathematics Institute, University of Warwick, Coventry, UK.
| | - Andrew D McAinsh
- Centre for Mechanochemical Cell Biology, University of Warwick, Coventry, UK; Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK.
| |
Collapse
|
240
|
Medina‐Pritchard B, Lazou V, Zou J, Byron O, Abad MA, Rappsilber J, Heun P, Jeyaprakash AA. Structural basis for centromere maintenance by Drosophila CENP-A chaperone CAL1. EMBO J 2020; 39:e103234. [PMID: 32134144 PMCID: PMC7110144 DOI: 10.15252/embj.2019103234] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 01/25/2020] [Accepted: 02/11/2020] [Indexed: 01/08/2023] Open
Abstract
Centromeres are microtubule attachment sites on chromosomes defined by the enrichment of histone variant CENP-A-containing nucleosomes. To preserve centromere identity, CENP-A must be escorted to centromeres by a CENP-A-specific chaperone for deposition. Despite this essential requirement, many eukaryotes differ in the composition of players involved in centromere maintenance, highlighting the plasticity of this process. In humans, CENP-A recognition and centromere targeting are achieved by HJURP and the Mis18 complex, respectively. Using X-ray crystallography, we here show how Drosophila CAL1, an evolutionarily distinct CENP-A histone chaperone, binds both CENP-A and the centromere receptor CENP-C without the requirement for the Mis18 complex. While an N-terminal CAL1 fragment wraps around CENP-A/H4 through multiple physical contacts, a C-terminal CAL1 fragment directly binds a CENP-C cupin domain dimer. Although divergent at the primary structure level, CAL1 thus binds CENP-A/H4 using evolutionarily conserved and adaptive structural principles. The CAL1 binding site on CENP-C is strategically positioned near the cupin dimerisation interface, restricting binding to just one CAL1 molecule per CENP-C dimer. Overall, by demonstrating how CAL1 binds CENP-A/H4 and CENP-C, we provide key insights into the minimalistic principles underlying centromere maintenance.
Collapse
Affiliation(s)
| | - Vasiliki Lazou
- Wellcome Centre for Cell BiologyUniversity of EdinburghEdinburghUK
| | - Juan Zou
- Wellcome Centre for Cell BiologyUniversity of EdinburghEdinburghUK
| | - Olwyn Byron
- School of Life SciencesUniversity of GlasgowGlasgowUK
| | - Maria A Abad
- Wellcome Centre for Cell BiologyUniversity of EdinburghEdinburghUK
| | - Juri Rappsilber
- Wellcome Centre for Cell BiologyUniversity of EdinburghEdinburghUK,Institute of BiotechnologyTechnische Universität BerlinBerlinGermany
| | - Patrick Heun
- Wellcome Centre for Cell BiologyUniversity of EdinburghEdinburghUK
| | | |
Collapse
|
241
|
Ito KK, Watanabe K, Kitagawa D. The Emerging Role of ncRNAs and RNA-Binding Proteins in Mitotic Apparatus Formation. Noncoding RNA 2020; 6:E13. [PMID: 32245090 PMCID: PMC7151635 DOI: 10.3390/ncrna6010013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 03/09/2020] [Accepted: 03/13/2020] [Indexed: 12/14/2022] Open
Abstract
Mounting experimental evidence shows that non-coding RNAs (ncRNAs) serve a wide variety of biological functions. Recent studies suggest that a part of ncRNAs are critically important for supporting the structure of subcellular architectures. Here, we summarize the current literature demonstrating the role of ncRNAs and RNA-binding proteins in regulating the assembly of mitotic apparatus, especially focusing on centrosomes, kinetochores, and mitotic spindles.
Collapse
Affiliation(s)
| | | | - Daiju Kitagawa
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Science, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan; (K.K.I.); (K.W.)
| |
Collapse
|
242
|
Navarro AP, Cheeseman IM. Chromosome Segregation: Evolving a Plastic Chromosome-Microtubule Interface. Curr Biol 2020; 30:R174-R177. [PMID: 32097646 DOI: 10.1016/j.cub.2019.12.058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Despite a conserved requirement in mediating chromosome segregation, kinetochores display remarkable plasticity in their structure and composition. New work in holocentric insect species highlights the molecular rewiring that occurs when key structural components of the kinetochore are lost and centromere structure is changed.
Collapse
Affiliation(s)
- Alexandra P Navarro
- Whitehead Institute for Biomedical Research, and Department of Biology, Massachusetts Institute of Technology, 455 Main Street, Cambridge, MA 02142, USA
| | - Iain M Cheeseman
- Whitehead Institute for Biomedical Research, and Department of Biology, Massachusetts Institute of Technology, 455 Main Street, Cambridge, MA 02142, USA.
| |
Collapse
|
243
|
The ATAD2/ANCCA homolog Yta7 cooperates with Scm3 HJURP to deposit Cse4 CENP-A at the centromere in yeast. Proc Natl Acad Sci U S A 2020; 117:5386-5393. [PMID: 32079723 DOI: 10.1073/pnas.1917814117] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The AAA+ ATPase and bromodomain factor ATAD2/ANCCA is overexpressed in many types of cancer, but how it contributes to tumorigenesis is not understood. Here, we report that the Saccharomyces cerevisiae homolog Yta7ATAD2 is a deposition factor for the centromeric histone H3 variant Cse4CENP-A at the centromere in yeast. Yta7ATAD2 regulates the levels of centromeric Cse4CENP-A in that yta7∆ causes reduced Cse4CENP-A deposition, whereas YTA7 overexpression causes increased Cse4CENP-A deposition. Yta7ATAD2 coimmunoprecipitates with Cse4CENP-A and is associated with the centromere, arguing for a direct role of Yta7ATAD2 in Cse4CENP-A deposition. Furthermore, increasing centromeric Cse4CENP-A levels by YTA7 overexpression requires the activity of Scm3HJURP, the centromeric nucleosome assembly factor. Importantly, Yta7ATAD2 interacts in vivo with Scm3HJURP, indicating that Yta7ATAD2 is a cochaperone for Scm3HJURP The absence of Yta7 causes defects in growth and chromosome segregation with mutations in components of the inner kinetochore (CTF19/CCAN, Mif2CENP-C, Cbf1). Since Yta7ATAD2 is an AAA+ ATPase and potential hexameric unfoldase, our results suggest that it may unfold the Cse4CENP-A histone and hand it over to Scm3HJURP for subsequent deposition in the centromeric nucleosome. Furthermore, our findings suggest that ATAD2 overexpression may enhance malignant transformation in humans by misregulating centromeric CENP-A levels, thus leading to defects in kinetochore assembly and chromosome segregation.
Collapse
|
244
|
Edelmaier C, Lamson AR, Gergely ZR, Ansari S, Blackwell R, McIntosh JR, Glaser MA, Betterton MD. Mechanisms of chromosome biorientation and bipolar spindle assembly analyzed by computational modeling. eLife 2020; 9:48787. [PMID: 32053104 PMCID: PMC7311174 DOI: 10.7554/elife.48787] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 02/12/2020] [Indexed: 01/19/2023] Open
Abstract
The essential functions required for mitotic spindle assembly and chromosome biorientation and segregation are not fully understood, despite extensive study. To illuminate the combinations of ingredients most important to align and segregate chromosomes and simultaneously assemble a bipolar spindle, we developed a computational model of fission-yeast mitosis. Robust chromosome biorientation requires progressive restriction of attachment geometry, destabilization of misaligned attachments, and attachment force dependence. Large spindle length fluctuations can occur when the kinetochore-microtubule attachment lifetime is long. The primary spindle force generators are kinesin-5 motors and crosslinkers in early mitosis, while interkinetochore stretch becomes important after biorientation. The same mechanisms that contribute to persistent biorientation lead to segregation of chromosomes to the poles after anaphase onset. This model therefore provides a framework to interrogate key requirements for robust chromosome biorientation, spindle length regulation, and force generation in the spindle. Before a cell divides, it must make a copy of its genetic material and then promptly split in two. This process, called mitosis, is coordinated by many different molecular machines. The DNA is copied, then the duplicated chromosomes line up at the middle of the cell. Next, an apparatus called the mitotic spindle latches onto the chromosomes before pulling them apart. The mitotic spindle is a bundle of long, thin filaments called microtubules. It attaches to chromosomes at the kinetochore, the point where two copied chromosomes are cinched together in their middle. Proper cell division is vital for the healthy growth of all organisms, big and small, and yet some parts of the process remain poorly understood despite extensive study. Specifically, there is more to learn about how the mitotic spindle self-assembles, and how microtubules and kinetochores work together to correctly orient and segregate chromosomes into two sister cells. These nanoscale processes are happening a hundred times a minute, so computer simulations are a good way to test what we know. Edelmaier et al. developed a computer model to simulate cell division in fission yeast, a species of yeast often used to study fundamental processes in the cell. The model simulates how the mitotic spindle assembles, how its microtubules attach to the kinetochore and the force required to pull two sister chromosomes apart. Building the simulation involved modelling interactions between the mitotic spindle and kinetochore, their movement and forces applied. To test its accuracy, model simulations were compared to recordings of the mitotic spindle – including its length, structure and position – imaged from dividing yeast cells. Running the simulation, Edelmaier et al. found that several key effects are essential for the proper movement of chromosomes in mitosis. This includes holding chromosomes in the correct orientation as the mitotic spindle assembles and controlling the relative position of microtubules as they attach to the kinetochore. Misaligned attachments must also be readily deconstructed and corrected to prevent any errors. The simulations also showed that kinetochores must begin to exert more force (to separate the chromosomes) once the mitotic spindle is attached correctly. Altogether, these findings improve the current understanding of how the mitotic spindle and its counterparts control cell division. Errors in chromosome segregation are associated with birth defects and cancer in humans, and this new simulation could potentially now be used to help make predictions about how to correct mistakes in the process.
Collapse
Affiliation(s)
| | - Adam R Lamson
- Department of Physics, University of Colorado Boulder, Boulder, United States
| | - Zachary R Gergely
- Department of Physics, University of Colorado Boulder, Boulder, United States.,Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, United States
| | - Saad Ansari
- Department of Physics, University of Colorado Boulder, Boulder, United States
| | - Robert Blackwell
- Department of Physics, University of Colorado Boulder, Boulder, United States
| | - J Richard McIntosh
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, United States
| | - Matthew A Glaser
- Department of Physics, University of Colorado Boulder, Boulder, United States
| | - Meredith D Betterton
- Department of Physics, University of Colorado Boulder, Boulder, United States.,Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, United States
| |
Collapse
|
245
|
Pandey R, Abel S, Boucher M, Wall RJ, Zeeshan M, Rea E, Freville A, Lu XM, Brady D, Daniel E, Stanway RR, Wheatley S, Batugedara G, Hollin T, Bottrill AR, Gupta D, Holder AA, Le Roch KG, Tewari R. Plasmodium Condensin Core Subunits SMC2/SMC4 Mediate Atypical Mitosis and Are Essential for Parasite Proliferation and Transmission. Cell Rep 2020; 30:1883-1897.e6. [PMID: 32049018 PMCID: PMC7016506 DOI: 10.1016/j.celrep.2020.01.033] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 11/12/2019] [Accepted: 01/08/2020] [Indexed: 02/06/2023] Open
Abstract
Condensin is a multi-subunit protein complex regulating chromosome condensation and segregation during cell division. In Plasmodium spp., the causative agent of malaria, cell division is atypical and the role of condensin is unclear. Here we examine the role of SMC2 and SMC4, the core subunits of condensin, during endomitosis in schizogony and endoreduplication in male gametogenesis. During early schizogony, SMC2/SMC4 localize to a distinct focus, identified as the centromeres by NDC80 fluorescence and chromatin immunoprecipitation sequencing (ChIP-seq) analyses, but do not form condensin I or II complexes. In mature schizonts and during male gametogenesis, there is a diffuse SMC2/SMC4 distribution on chromosomes and in the nucleus, and both condensin I and condensin II complexes form at these stages. Knockdown of smc2 and smc4 gene expression reveals essential roles in parasite proliferation and transmission. The condensin core subunits (SMC2/SMC4) form different complexes and may have distinct functions at various stages of the parasite life cycle.
Collapse
Affiliation(s)
- Rajan Pandey
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
| | - Steven Abel
- Department of Molecular, Cell and Systems Biology, University of California Riverside, 900 University Ave., Riverside, CA 92521, USA
| | - Matthew Boucher
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
| | - Richard J Wall
- Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Mohammad Zeeshan
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
| | - Edward Rea
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
| | - Aline Freville
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
| | - Xueqing Maggie Lu
- Department of Molecular, Cell and Systems Biology, University of California Riverside, 900 University Ave., Riverside, CA 92521, USA
| | - Declan Brady
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
| | - Emilie Daniel
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
| | - Rebecca R Stanway
- Institute of Cell Biology, University of Bern, Bern 3012, Switzerland
| | - Sally Wheatley
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
| | - Gayani Batugedara
- Department of Molecular, Cell and Systems Biology, University of California Riverside, 900 University Ave., Riverside, CA 92521, USA
| | - Thomas Hollin
- Department of Molecular, Cell and Systems Biology, University of California Riverside, 900 University Ave., Riverside, CA 92521, USA
| | - Andrew R Bottrill
- School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry CV4 7AL, UK
| | - Dinesh Gupta
- Translational Bioinformatics Group, International Center for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Anthony A Holder
- Malaria Parasitology Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Karine G Le Roch
- Department of Molecular, Cell and Systems Biology, University of California Riverside, 900 University Ave., Riverside, CA 92521, USA.
| | - Rita Tewari
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK.
| |
Collapse
|
246
|
Schmitz ML, Higgins JMG, Seibert M. Priming chromatin for segregation: functional roles of mitotic histone modifications. Cell Cycle 2020; 19:625-641. [PMID: 31992120 DOI: 10.1080/15384101.2020.1719585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Posttranslational modifications (PTMs) of histone proteins are important for various cellular processes including regulation of gene expression and chromatin structure, DNA damage response and chromosome segregation. Here we comprehensively review mitotic histone PTMs, in particular phosphorylations, and discuss their interplay and functions in the control of dynamic protein-protein interactions as well as their contribution to centromere and chromosome structure and function during cell division. Histone phosphorylations can create binding sites for mitotic regulators such as the chromosomal passenger complex, which is required for correction of erroneous spindle attachments and chromosome bi-orientation. Other histone PTMs can alter the structural properties of nucleosomes and the accessibility of chromatin. Epigenetic marks such as lysine methylations are maintained during mitosis and may also be important for mitotic transcription as well as bookmarking of transcriptional states to ensure the transmission of gene expression programs through cell division. Additionally, histone phosphorylation can dissociate readers of methylated histones without losing epigenetic information. Through all of these processes, mitotic histone PTMs play a functional role in priming the chromatin for faithful chromosome segregation and preventing genetic instability, one of the characteristic hallmarks of cancer cells.
Collapse
Affiliation(s)
- M Lienhard Schmitz
- Institute of Biochemistry, Medical Faculty, Member of the German Center for Lung Research, Justus-Liebig-University, Giessen, Germany
| | - Jonathan M G Higgins
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Markus Seibert
- Institute of Biochemistry, Medical Faculty, Member of the German Center for Lung Research, Justus-Liebig-University, Giessen, Germany
| |
Collapse
|
247
|
Li C, He X, Huang Z, Han L, Wu X, Li L, Xin Y, Ge J, Sha J, Yin Z, Wang Q. Melatonin ameliorates the advanced maternal age-associated meiotic defects in oocytes through the SIRT2-dependent H4K16 deacetylation pathway. Aging (Albany NY) 2020; 12:1610-1623. [PMID: 31980591 PMCID: PMC7053624 DOI: 10.18632/aging.102703] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 12/27/2019] [Indexed: 12/31/2022]
Abstract
It has been widely reported that advanced maternal age impairs oocyte quality. To date, various molecules have been discovered to be involved in this process. However, prevention of fertility issues associated with maternal age is still a challenge. In the present study, we find that both in vitro supplement and in vivo administration of melatonin are capable of alleviating the meiotic phenotypes of aged oocytes, specifically the spindle/chromosome disorganization and aneuploidy generation. Furthermore, we identify SIRT2 as a critical effector mediating the effects of melatonin on meiotic structure in old oocytes. Candidate screening shows that SIRT2-controlled deacetylation of histone H4K16 is essential for maintaining the meiotic apparatus in oocytes. Importantly, non-acetylatable-mimetic mutant H4K16R partially rescues the meiotic deficits in oocytes from reproductive aged mice. In contrast, overexpression of acetylation-mimetic mutant H4K16Q abolishes the beneficial effects of melatonin on the meiotic phenotypes in aged oocytes. To sum up, our data uncover that melatonin alleviates advanced maternal aged-associated meiotic defects in oocytes through the SIRT2-depenendet H4K16 deacetylation pathway.
Collapse
Affiliation(s)
- Congyang Li
- State Key Laboratory of Reproductive Medicine, Suzhou Municipal Hospital, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Xi He
- State Key Laboratory of Reproductive Medicine, Suzhou Municipal Hospital, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Zhenyue Huang
- State Key Laboratory of Reproductive Medicine, Suzhou Municipal Hospital, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Longsen Han
- State Key Laboratory of Reproductive Medicine, Suzhou Municipal Hospital, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Xinghan Wu
- State Key Laboratory of Reproductive Medicine, Suzhou Municipal Hospital, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Ling Li
- State Key Laboratory of Reproductive Medicine, Suzhou Municipal Hospital, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Yongan Xin
- State Key Laboratory of Reproductive Medicine, Suzhou Municipal Hospital, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Juan Ge
- State Key Laboratory of Reproductive Medicine, Suzhou Municipal Hospital, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Jiahao Sha
- State Key Laboratory of Reproductive Medicine, Suzhou Municipal Hospital, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Zhiqiang Yin
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qiang Wang
- State Key Laboratory of Reproductive Medicine, Suzhou Municipal Hospital, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
248
|
Sankaranarayanan SR, Ianiri G, Coelho MA, Reza MH, Thimmappa BC, Ganguly P, Vadnala RN, Sun S, Siddharthan R, Tellgren-Roth C, Dawson TL, Heitman J, Sanyal K. Loss of centromere function drives karyotype evolution in closely related Malassezia species. eLife 2020; 9:e53944. [PMID: 31958060 PMCID: PMC7025860 DOI: 10.7554/elife.53944] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 01/20/2020] [Indexed: 12/14/2022] Open
Abstract
Genomic rearrangements associated with speciation often result in variation in chromosome number among closely related species. Malassezia species show variable karyotypes ranging between six and nine chromosomes. Here, we experimentally identified all eight centromeres in M. sympodialis as 3-5-kb long kinetochore-bound regions that span an AT-rich core and are depleted of the canonical histone H3. Centromeres of similar sequence features were identified as CENP-A-rich regions in Malassezia furfur, which has seven chromosomes, and histone H3 depleted regions in Malassezia slooffiae and Malassezia globosa with nine chromosomes each. Analysis of synteny conservation across centromeres with newly generated chromosome-level genome assemblies suggests two distinct mechanisms of chromosome number reduction from an inferred nine-chromosome ancestral state: (a) chromosome breakage followed by loss of centromere DNA and (b) centromere inactivation accompanied by changes in DNA sequence following chromosome-chromosome fusion. We propose that AT-rich centromeres drive karyotype diversity in the Malassezia species complex through breakage and inactivation.
Collapse
Affiliation(s)
- Sundar Ram Sankaranarayanan
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific ResearchBengaluruIndia
| | - Giuseppe Ianiri
- Department of Molecular Genetics and Microbiology, Duke University Medical CenterDurhamUnited States
| | - Marco A Coelho
- Department of Molecular Genetics and Microbiology, Duke University Medical CenterDurhamUnited States
| | - Md Hashim Reza
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific ResearchBengaluruIndia
| | - Bhagya C Thimmappa
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific ResearchBengaluruIndia
| | - Promit Ganguly
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific ResearchBengaluruIndia
| | | | - Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical CenterDurhamUnited States
| | | | - Christian Tellgren-Roth
- National Genomics Infrastructure, Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala UniversityUppsalaSweden
| | - Thomas L Dawson
- Skin Research Institute Singapore, Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
- Department of Drug Discovery, Medical University of South Carolina, School of PharmacyCharlestonUnited States
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical CenterDurhamUnited States
| | - Kaustuv Sanyal
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific ResearchBengaluruIndia
| |
Collapse
|
249
|
Conti D, Gul P, Islam A, Martín-Durán JM, Pickersgill RW, Draviam VM. Kinetochores attached to microtubule-ends are stabilised by Astrin bound PP1 to ensure proper chromosome segregation. eLife 2019; 8:49325. [PMID: 31808746 PMCID: PMC6930079 DOI: 10.7554/elife.49325] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 12/01/2019] [Indexed: 12/12/2022] Open
Abstract
Microtubules segregate chromosomes by attaching to macromolecular kinetochores. Only microtubule-end attached kinetochores can be pulled apart; how these end-on attachments are selectively recognised and stabilised is not known. Using the kinetochore and microtubule-associated protein, Astrin, as a molecular probe, we show that end-on attachments are rapidly stabilised by spatially-restricted delivery of PP1 near the C-terminus of Ndc80, a core kinetochore-microtubule linker. PP1 is delivered by the evolutionarily conserved tail of Astrin and this promotes Astrin’s own enrichment creating a highly-responsive positive feedback, independent of biorientation. Abrogating Astrin:PP1-delivery disrupts attachment stability, which is not rescued by inhibiting Aurora-B, an attachment destabiliser, but is reversed by artificially tethering PP1 near the C-terminus of Ndc80. Constitutive Astrin:PP1-delivery disrupts chromosome congression and segregation, revealing a dynamic mechanism for stabilising attachments. Thus, Astrin-PP1 mediates a dynamic ‘lock’ that selectively and rapidly stabilises end-on attachments, independent of biorientation, and ensures proper chromosome segregation.
Collapse
Affiliation(s)
- Duccio Conti
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom.,Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Parveen Gul
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Asifa Islam
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - José M Martín-Durán
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Richard W Pickersgill
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Viji M Draviam
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom.,Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
250
|
Huis In 't Veld PJ, Volkov VA, Stender ID, Musacchio A, Dogterom M. Molecular determinants of the Ska-Ndc80 interaction and their influence on microtubule tracking and force-coupling. eLife 2019; 8:49539. [PMID: 31804178 PMCID: PMC6927755 DOI: 10.7554/elife.49539] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 11/26/2019] [Indexed: 12/12/2022] Open
Abstract
Errorless chromosome segregation requires load-bearing attachments of the plus ends of spindle microtubules to chromosome structures named kinetochores. How these end-on kinetochore attachments are established following initial lateral contacts with the microtubule lattice is poorly understood. Two microtubule-binding complexes, the Ndc80 and Ska complexes, are important for efficient end-on coupling and may function as a unit in this process, but precise conditions for their interaction are unknown. Here, we report that the Ska-Ndc80 interaction is phosphorylation-dependent and does not require microtubules, applied force, or several previously identified functional determinants including the Ndc80-loop and the Ndc80-tail. Both the Ndc80-tail, which we reveal to be essential for microtubule end-tracking, and Ndc80-bound Ska stabilize microtubule ends in a stalled conformation. Modulation of force-coupling efficiency demonstrates that the duration of stalled microtubule disassembly predicts whether a microtubule is stabilized and rescued by the kinetochore, likely reflecting a structural transition of the microtubule end.
Collapse
Affiliation(s)
- Pim J Huis In 't Veld
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Vladimir A Volkov
- Department of Bionanoscience, Faculty of Applied Sciences, Delft University of Technology, Delft, Netherlands
| | - Isabelle D Stender
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Andrea Musacchio
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany.,Centre for Medical Biotechnology, Faculty of Biology, University Duisburg, Essen, Germany
| | - Marileen Dogterom
- Department of Bionanoscience, Faculty of Applied Sciences, Delft University of Technology, Delft, Netherlands
| |
Collapse
|