201
|
Carreras P, Gonzalez I, Gallardo M, Ortiz-Ruiz A, Martinez-Lopez J. Droplet Microfluidics for the ex Vivo Expansion of Human Primary Multiple Myeloma Cells. MICROMACHINES 2020; 11:E261. [PMID: 32121351 PMCID: PMC7143882 DOI: 10.3390/mi11030261] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/21/2020] [Accepted: 02/25/2020] [Indexed: 12/04/2022]
Abstract
We previously reported a new approach for micromanipulation and encapsulation of human stem cells using a droplet-based microfluidic device We demonstrated the possibility of encapsulating and culturing difficult-to-preserve primary human hematopoietic stem cells using an engineered double layered bead composed by an inner layer of alginate and an outer layer of puramatrix constructed using a soft technology without the use of any external force. In this work, we use this micro manipulation technique to build a 3D scaffold as a biomimetic model to recapitulate the niche of patient-derived multiple myeloma cells (MM cell) using a multilayered 3D tissue scaffold constructed in a microfluidic device and cultured in 10% FBS culture medium. In the current study, we included the use of this biomimetic model comprising supporting human Mesenchymal stem cells to show the mid-term survival of MM cells in the proposed structures. We found that the generated microniches were suitable for the maintenance of MM cells with and without supporting cells. Additionally, cultured MM cells in droplets were exposed to both Bortezomib and Lenalidomide to test their toxicity in the cultured patient derived cells. Results indicate that the maintained MM cells were consistently responding to the applied medication, opening a wide field of possibilities to use the presented micro device as an ex vivo platform for drug screening.
Collapse
Affiliation(s)
- Pilar Carreras
- CSIC, Spanish National Research Council, 28006 Madrid, Spain;
- Hospital 12 Octubre, Hematology Department, Research institute i+12, 28040 Madrid, Spain; (M.G.); (A.O.-R.); (J.M.-L.)
| | - Iciar Gonzalez
- CSIC, Spanish National Research Council, 28006 Madrid, Spain;
| | - Miguel Gallardo
- Hospital 12 Octubre, Hematology Department, Research institute i+12, 28040 Madrid, Spain; (M.G.); (A.O.-R.); (J.M.-L.)
- CNIO, Spanish national cancer research Centre, Hematological malignancies research unit, 28029 Madrid, Spain
| | - Alejandra Ortiz-Ruiz
- Hospital 12 Octubre, Hematology Department, Research institute i+12, 28040 Madrid, Spain; (M.G.); (A.O.-R.); (J.M.-L.)
- CNIO, Spanish national cancer research Centre, Hematological malignancies research unit, 28029 Madrid, Spain
| | - Joaquin Martinez-Lopez
- Hospital 12 Octubre, Hematology Department, Research institute i+12, 28040 Madrid, Spain; (M.G.); (A.O.-R.); (J.M.-L.)
- CNIO, Spanish national cancer research Centre, Hematological malignancies research unit, 28029 Madrid, Spain
- UCM, Complutense University Madrid, Medical faculty, 28040 Madrid, Spain
| |
Collapse
|
202
|
Zareei A, Jiang H, Chittiboyina S, Zhou J, Marin BP, Lelièvre SA, Rahimi R. A lab-on-chip ultrasonic platform for real-time and nondestructive assessment of extracellular matrix stiffness. LAB ON A CHIP 2020; 20:778-788. [PMID: 31951245 DOI: 10.1039/c9lc00926d] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Extracellular matrix (ECM) mechanical stiffness and its dynamic change is one of the main cues that directly affects the differentiation and proliferation of normal cells as well as the progression of disease processes such as fibrosis and cancer. Recent advancements in biomaterials have enabled a wide range of polymer matrices that could mimic the ECM of different tissues for a wide range of in vitro basic research and drug discovery. However, most of the technologies utilized to quantify the stiffness of such ECM are either destructive or expensive, and therefore are unsuitable for the in situ, long-term monitoring of variations in ECM stiffness for on-chip cell culture applications. This work demonstrates a novel noninvasive on-chip platform for characterization of ECM stiffness in vitro, by monitoring ultrasonic wave attenuation through the targeted material. The device is composed of a pair of millimeter scale ultrasonic transmitter and receiver transducers with the test medium placed in between them. The transmitter generates an ultrasonic wave that propagates through the material, triggers the piezoelectric receiver and generates a corresponding electrical signal. The characterization reveals a linear (r2 = 0.86) decrease in the output voltage of the piezoelectric receiver with an average sensitivity of -15.86 μV kPa-1 by increasing the stiffnesses of hydrogels (from 4.3 kPa to 308 kPa made with various dry-weight concentrations of agarose and gelatin). The ultrasonic stiffness sensing is also demonstrated to successfully monitor dynamic changes in a simulated in vitro tissue by gradually changing the polymerization density of an agarose gel, as a proof-of-concept towards future use for 3D cell culture and drug screening. In situ long-term ultrasonic signal stability and thermal assessment of the device demonstrates its high robust performance even after two days of continuous operation, with negligible (<0.5 °C) heating of the hydrogel in contact with the piezoelectric transducers. In vitro biocompatibility assessment of the device with mammary fibroblasts further assures that the materials used in the platform did not produce a toxic response and cells remained viable under the applied ultrasound signals in the device.
Collapse
Affiliation(s)
- Amin Zareei
- School of Materials Engineering, Purdue University, West Lafayette, IN 47907, USA. and Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
| | - Hongjie Jiang
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA and School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Shirisha Chittiboyina
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA and Department of Basic Medical Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Jiawei Zhou
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA and School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Beatriz Plaza Marin
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA and Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Sophie A Lelièvre
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA and Department of Basic Medical Sciences, Purdue University, West Lafayette, IN 47907, USA and Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | - Rahim Rahimi
- School of Materials Engineering, Purdue University, West Lafayette, IN 47907, USA. and Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
203
|
Legøy TA, Vethe H, Abadpour S, Strand BL, Scholz H, Paulo JA, Ræder H, Ghila L, Chera S. Encapsulation boosts islet-cell signature in differentiating human induced pluripotent stem cells via integrin signalling. Sci Rep 2020; 10:414. [PMID: 31942009 PMCID: PMC6962451 DOI: 10.1038/s41598-019-57305-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 12/27/2019] [Indexed: 12/20/2022] Open
Abstract
Cell replacement therapies hold great therapeutic potential. Nevertheless, our knowledge of the mechanisms governing the developmental processes is limited, impeding the quality of differentiation protocols. Generating insulin-expressing cells in vitro is no exception, with the guided series of differentiation events producing heterogeneous cell populations that display mixed pancreatic islet phenotypes and immaturity. The achievement of terminal differentiation ultimately requires the in vivo transplantation of, usually, encapsulated cells. Here we show the impact of cell confinement on the pancreatic islet signature during the guided differentiation of alginate encapsulated human induced pluripotent stem cells (hiPSCs). Our results show that encapsulation improves differentiation by significantly reshaping the proteome landscape of the cells towards an islet-like signature. Pathway analysis is suggestive of integrins transducing the encapsulation effect into intracellular signalling cascades promoting differentiation. These analyses provide a molecular framework for understanding the confinement effects on hiPSCs differentiation while confirming its importance for this process.
Collapse
Affiliation(s)
- Thomas Aga Legøy
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Heidrun Vethe
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Shadab Abadpour
- Hybrid Technology Hub-Centre of Excellence, Faculty of Medicine, University of Oslo, Oslo, Norway.,Institute for Surgical Research and Department of Transplant Medicine, Oslo University Hospital, Oslo, Norway
| | - Berit L Strand
- NOBIPOL, Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Hanne Scholz
- Hybrid Technology Hub-Centre of Excellence, Faculty of Medicine, University of Oslo, Oslo, Norway.,Institute for Surgical Research and Department of Transplant Medicine, Oslo University Hospital, Oslo, Norway
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Helge Ræder
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Pediatrics, Haukeland University Hospital, Bergen, Norway
| | - Luiza Ghila
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Simona Chera
- Department of Clinical Science, University of Bergen, Bergen, Norway.
| |
Collapse
|
204
|
Bonani W, Cagol N, Maniglio D. Alginate Hydrogels: A Tool for 3D Cell Encapsulation, Tissue Engineering, and Biofabrication. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1250:49-61. [PMID: 32601937 DOI: 10.1007/978-981-15-3262-7_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A wide variety of hydrogels have been proposed for tissue engineering applications, cell encapsulation, and bioinks for bioprinting applications. Cell-laden hydrogel constructs rely on natural hydrogels such as alginate, agarose, chitosan, collagen, gelatin, fibroin, and hyaluronic acid (HA), as well as on synthetic hydrogels such as poloxamers (Pluronics®) and polyethylene glycol (PEG). Alginate has become more and more important in the last years, thanks to the possibility to prepare alginate hydrogels suitable for cell encapsulation mainly because of the mild and reversible cross-linking conditions. In this paper alginate will be described in detail with respect to its chemistry, cross-linking behavior, biocompatibility, manufacturing capacity, and possible modifications.
Collapse
Affiliation(s)
- Walter Bonani
- Directorate for Nuclear Safety and Security, European Commission, Joint Research Centre, Karlsruhe, Germany.,Department of Industrial Engineering and BIOtech Research Center, University of Trento, Trento, Italy
| | - Nicola Cagol
- Department of Industrial Engineering and BIOtech Research Center, University of Trento, Trento, Italy
| | - Devid Maniglio
- Department of Industrial Engineering and BIOtech Research Center, University of Trento, Trento, Italy.
| |
Collapse
|
205
|
Espona-Noguera A, Ciriza J, Cañibano-Hernández A, Saenz Del Burgo L, Pedraz JL. Immobilization of INS1E Insulin-Producing Cells Within Injectable Alginate Hydrogels. Methods Mol Biol 2020; 2100:395-405. [PMID: 31939138 DOI: 10.1007/978-1-0716-0215-7_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Alginate has demonstrated high applicability as a matrix-forming biomaterial for cell immobilization due to its ability to make hydrogels combined with cells in a rapid and non-toxic manner in physiological conditions, while showing excellent biocompatibility, preserving immobilized cell viability and function. Moreover, depending on its application, alginate hydrogel physicochemical properties such as porosity, stiffness, gelation time, and injectability can be tuned. This technology has been applied to several cell types that are able to produce therapeutic factors. In particular, alginate has been the most commonly used material in pancreatic islet entrapment for type 1 diabetes mellitus treatment. This chapter compiles information regarding the alginate handling, and we describe the most important steps and recommendations to immobilize insulin-producing cells within a tuned injectable alginate hydrogel using a syringe-based mixing system, detailing how to assess the viability and the biological functionality of the embedded cells.
Collapse
Affiliation(s)
- Albert Espona-Noguera
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Jesús Ciriza
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Alberto Cañibano-Hernández
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Laura Saenz Del Burgo
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain.
- Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain.
| | - Jose Luis Pedraz
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain.
- Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain.
| |
Collapse
|
206
|
Pinto C, Estrada MF, Brito C. In Vitro and Ex Vivo Models - The Tumor Microenvironment in a Flask. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1219:431-443. [PMID: 32130713 DOI: 10.1007/978-3-030-34025-4_23] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Experimental tumor modeling has long supported the discovery of fundamental mechanisms of tumorigenesis and tumor progression, as well as provided platforms for the development of novel therapies. Still, the attrition rates observed today in clinical translation could be, in part, mitigated by more accurate recapitulation of environmental cues in research and preclinical models. The increasing understanding of the decisive role that tumor microenvironmental cues play in the outcome of drug response urges its integration in preclinical tumor models. In this chapter we review recent developments concerning in vitro and ex vivo approaches.
Collapse
Affiliation(s)
- Catarina Pinto
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Marta F Estrada
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Catarina Brito
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal.
| |
Collapse
|
207
|
Maity S, Chatterjee A, Ganguly J. Stimuli-responsive sugar-derived hydrogels: A modern approach in cancer biology. GREEN APPROACHES IN MEDICINAL CHEMISTRY FOR SUSTAINABLE DRUG DESIGN 2020:617-649. [DOI: 10.1016/b978-0-12-817592-7.00018-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
208
|
The fate of mesenchymal stem cells is greatly influenced by the surface chemistry of silica nanoparticles in 3D hydrogel-based culture systems. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 106:110259. [DOI: 10.1016/j.msec.2019.110259] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 09/18/2019] [Accepted: 09/25/2019] [Indexed: 12/17/2022]
|
209
|
Chaicharoenaudomrung N, Kunhorm P, Noisa P. Three-dimensional cell culture systems as an in vitro platform for cancer and stem cell modeling. World J Stem Cells 2019; 11:1065-1083. [PMID: 31875869 PMCID: PMC6904866 DOI: 10.4252/wjsc.v11.i12.1065] [Citation(s) in RCA: 250] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 10/09/2019] [Accepted: 11/05/2019] [Indexed: 02/06/2023] Open
Abstract
Three-dimensional (3D) culture systems are becoming increasingly popular due to their ability to mimic tissue-like structures more effectively than the monolayer cultures. In cancer and stem cell research, the natural cell characteristics and architectures are closely mimicked by the 3D cell models. Thus, the 3D cell cultures are promising and suitable systems for various proposes, ranging from disease modeling to drug target identification as well as potential therapeutic substances that may transform our lives. This review provides a comprehensive compendium of recent advancements in culturing cells, in particular cancer and stem cells, using 3D culture techniques. The major approaches highlighted here include cell spheroids, hydrogel embedding, bioreactors, scaffolds, and bioprinting. In addition, the progress of employing 3D cell culture systems as a platform for cancer and stem cell research was addressed, and the prominent studies of 3D cell culture systems were discussed.
Collapse
Affiliation(s)
- Nipha Chaicharoenaudomrung
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Phongsakorn Kunhorm
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Parinya Noisa
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| |
Collapse
|
210
|
Liver Cancer: Current and Future Trends Using Biomaterials. Cancers (Basel) 2019; 11:cancers11122026. [PMID: 31888198 PMCID: PMC6966667 DOI: 10.3390/cancers11122026] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/11/2019] [Accepted: 12/13/2019] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common type of cancer diagnosed and the second leading cause of death worldwide. Despite advancement in current treatments for HCC, the prognosis for this cancer is still unfavorable. This comprehensive review article focuses on all the current technology that applies biomaterials to treat and study liver cancer, thus showing the versatility of biomaterials to be used as smart tools in this complex pathologic scenario. Specifically, after introducing the liver anatomy and pathology by focusing on the available treatments for HCC, this review summarizes the current biomaterial-based approaches for systemic delivery and implantable tools for locally administrating bioactive factors and provides a comprehensive discussion of the specific therapies and targeting agents to efficiently deliver those factors. This review also highlights the novel application of biomaterials to study HCC, which includes hydrogels and scaffolds to tissue engineer 3D in vitro models representative of the tumor environment. Such models will serve to better understand the tumor biology and investigate new therapies for HCC. Special focus is given to innovative approaches, e.g., combined delivery therapies, and to alternative approaches-e.g., cell capture-as promising future trends in the application of biomaterials to treat HCC.
Collapse
|
211
|
The Comparative Cytotoxic Effects of Apis mellifera Crude Venom on MCF-7 Breast Cancer Cell Line in 2D and 3D Cell Cultures. Int J Pept Res Ther 2019. [DOI: 10.1007/s10989-019-09979-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
212
|
Cascone S, Lamberti G. Hydrogel-based commercial products for biomedical applications: A review. Int J Pharm 2019; 573:118803. [PMID: 31682963 DOI: 10.1016/j.ijpharm.2019.118803] [Citation(s) in RCA: 214] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 10/14/2019] [Accepted: 10/15/2019] [Indexed: 12/19/2022]
Abstract
Hydrogels are hydrophilic polymer networks, able to absorb large amount of water, increasing their volume and showing a plethora of different material behaviors. Since their first practical application, dating from sixties of last century, they have been employed in several fields of biomedical sciences. After more than half a century of industrial uses, nowadays a lot of hydrogels are currently on the market for different purposes, and offering a wide spectra of features. In this review, even if it is virtually impossible to list all the commercial products based on hydrogels for biomedical applications, an extensive analysis of those materials that have reached the market has been carried out. The hydrogel-based materials used for drug delivery, wound dressing, tissue engineering, the building of contact lens, and hygiene products are enlisted and briefly described. A detailed snapshot of the set of these products that have reached the commercial maturity has been then obtained and presented. For each class of application, the basics of requirements are described, and then the materials are listed and classified on the basis of their chemical nature. For each product the commercial name, the producer, the chemical nature and the main characteristics are reported.
Collapse
Affiliation(s)
- Sara Cascone
- Department of Industrial Engineering, University of Salerno, 84084 Fisciano, SA, Italy.
| | - Gaetano Lamberti
- Department of Industrial Engineering, University of Salerno, 84084 Fisciano, SA, Italy
| |
Collapse
|
213
|
Khanal S, Bhattarai SR, Sankar J, Bhandari RK, Macdonald JM, Bhattarai N. Nano-fibre Integrated Microcapsules: A Nano-in-Micro Platform for 3D Cell Culture. Sci Rep 2019; 9:13951. [PMID: 31562351 PMCID: PMC6765003 DOI: 10.1038/s41598-019-50380-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 09/09/2019] [Indexed: 01/25/2023] Open
Abstract
Nano-in-micro (NIM) system is a promising approach to enhance the performance of devices for a wide range of applications in disease treatment and tissue regeneration. In this study, polymeric nanofibre-integrated alginate (PNA) hydrogel microcapsules were designed using NIM technology. Various ratios of cryo-ground poly (lactide-co-glycolide) (PLGA) nanofibres (CPN) were incorporated into PNA hydrogel microcapsule. Electrostatic encapsulation method was used to incorporate living cells into the PNA microcapsules (~500 µm diameter). Human liver carcinoma cells, HepG2, were encapsulated into the microcapsules and their physio-chemical properties were studied. Morphology, stability, and chemical composition of the PNA microcapsules were analysed by light microscopy, fluorescent microscopy, scanning electron microscopy (SEM), Fourier-Transform Infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA). The incorporation of CPN caused no significant changes in the morphology, size, and chemical structure of PNA microcapsules in cell culture media. Among four PNA microcapsule products (PNA-0, PNA-10, PNA-30, and PNA-50 with size 489 ± 31 µm, 480 ± 40 µm, 473 ± 51 µm and 464 ± 35 µm, respectively), PNA-10 showed overall suitability for HepG2 growth with high cellular metabolic activity, indicating that the 3D PNA-10 microcapsule could be suitable to maintain better vitality and liver-specific metabolic functions. Overall, this novel design of PNA microcapsule and the one-step method of cell encapsulation can be a versatile 3D NIM system for spontaneous generation of organoids with in vivo like tissue architectures, and the system can be useful for numerous biomedical applications, especially for liver tissue engineering, cell preservation, and drug toxicity study.
Collapse
Affiliation(s)
- Shalil Khanal
- 0000 0001 0287 4439grid.261037.1Department of Applied Science and Technology, North Carolina A&T State University, Greensboro, NC USA ,0000 0001 0287 4439grid.261037.1Department of Chemical, Biological, and Bioengineering, North Carolina A&T State University, Greensboro, NC USA
| | - Shanta R. Bhattarai
- 0000 0001 0287 4439grid.261037.1Department of Chemistry, North Carolina A&T State University, Greensboro, NC USA ,0000 0001 0287 4439grid.261037.1Department of Biology, North Carolina A&T State University, Greensboro, NC USA ,0000 0001 0671 255Xgrid.266860.cDepartment of Biology, University of North Carolina Greensboro, Greensboro, NC USA
| | - Jagannathan Sankar
- 0000 0001 0287 4439grid.261037.1Department of Mechanical Engineering, North Carolina A&T State University, Greensboro, NC USA
| | - Ramji K. Bhandari
- 0000 0001 0671 255Xgrid.266860.cDepartment of Biology, University of North Carolina Greensboro, Greensboro, NC USA
| | - Jeffrey M. Macdonald
- 0000 0001 1034 1720grid.410711.2Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC USA
| | - Narayan Bhattarai
- 0000 0001 0287 4439grid.261037.1Department of Chemical, Biological, and Bioengineering, North Carolina A&T State University, Greensboro, NC USA
| |
Collapse
|
214
|
Rodriguez S, Lau H, Corrales N, Heng J, Lee S, Stiner R, Alexander M, Lakey JRT. Characterization of chelator-mediated recovery of pancreatic islets from barium-stabilized alginate microcapsules. Xenotransplantation 2019; 27:e12554. [PMID: 31495985 DOI: 10.1111/xen.12554] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 07/29/2019] [Accepted: 08/07/2019] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Islet recovery from within alginate-based microcapsules is necessary for certain analytical assays like flow cytometry; however, this technology has not been widely characterized. In this study, we explore the ability of EDTA, EGTA, and sodium citrate to induce reverse alginate polymerization via chelation and assess the toxicity of each chelator on pancreatic islets. METHODS EDTA, EGTA, and sodium citrate were used to dissolve single-layered Ba2+ alginate encapsulated islets and the rate of capsule breakdown calculated from analysis of imaging data. The effect of chelator exposure on islet viability and recovery was assessed using flow cytometry, while glucose-stimulated insulin release (GSIR) assay was used to measure effects on islet function. RESULTS EGTA demonstrated the most rapid microcapsule dissolving rate followed by EDTA and sodium citrate. Islet recovery was significantly better when encapsulated islets were treated with EDTA than EGTA and Na+ citrate. A decrease in viability and increase in apoptotic cells were observed when encapsulated islets were treated with Na+ citrate compared to islets treated with EDTA and EGTA. Islets treated with EDTA and EGTA demonstrated comparable stimulation index values to non-treated control. Conversely, islets treated with Na+ citrate exhibited significantly decreased SI values compared to control. All chelator groups showed significantly lower insulin secretion than non-treated islets. CONCLUSION Islet recovery from alginate microcapsule is possible using common chelators like Na+ citrate, EDTA, and EGTA. Chelation of encapsulated islets using EDTA demonstrated the most efficient dissolving capabilities with the least toxicity toward islet recovery and health.
Collapse
Affiliation(s)
- Samuel Rodriguez
- Department of Surgery, University of California Irvine, Orange, CA, USA
| | - Hien Lau
- Department of Surgery, University of California Irvine, Orange, CA, USA
| | - Nicole Corrales
- Department of Surgery, University of California Irvine, Orange, CA, USA
| | - Jennifer Heng
- Department of Surgery, University of California Irvine, Orange, CA, USA
| | - Sarah Lee
- Department of Surgery, University of California Irvine, Orange, CA, USA
| | - Rachel Stiner
- Department of Surgery, University of California Irvine, Orange, CA, USA
| | - Michael Alexander
- Department of Surgery, University of California Irvine, Orange, CA, USA
| | - Jonathan R T Lakey
- Department of Surgery, University of California Irvine, Orange, CA, USA.,Department of Biomedical Engineering, University of California Irvine, Orange, CA, USA
| |
Collapse
|
215
|
Salaris F, Rosa A. Construction of 3D in vitro models by bioprinting human pluripotent stem cells: Challenges and opportunities. Brain Res 2019; 1723:146393. [PMID: 31425681 DOI: 10.1016/j.brainres.2019.146393] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/11/2019] [Accepted: 08/14/2019] [Indexed: 12/26/2022]
Abstract
Three-dimensional (3D) printing of biological material, or 3D bioprinting, is a rapidly expanding field with interesting applications in tissue engineering and regenerative medicine. Bioprinters use cells and biocompatible materials as an ink (bioink) to build 3D structures representative of organs and tissues, in a controlled manner and with micrometric resolution. Human embryonic (hESCs) and induced (hiPSCs) pluripotent stem cells are ideally able to provide all cell types found in the human body. A limited, but growing, number of recent reports suggest that cells derived by differentiation of hESCs and hiPSCs can be used as building blocks in bioprinted human 3D models, reproducing the cellular variety and cytoarchitecture of real tissues. In this review we will illustrate these examples, which include hepatic, cardiac, vascular, corneal and cartilage tissues, and discuss challenges and opportunities of bioprinting more demanding cell types, such as neurons, obtained from human pluripotent stem cells.
Collapse
Affiliation(s)
- Federico Salaris
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy; Center for Life Nano Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy
| | - Alessandro Rosa
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy; Center for Life Nano Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy.
| |
Collapse
|
216
|
Kim BG, Sung JS, Jang Y, Cha YJ, Kang S, Han HH, Lee JH, Cho NH. Compression-induced expression of glycolysis genes in CAFs correlates with EMT and angiogenesis gene expression in breast cancer. Commun Biol 2019; 2:313. [PMID: 31428701 PMCID: PMC6694123 DOI: 10.1038/s42003-019-0553-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 07/17/2019] [Indexed: 12/12/2022] Open
Abstract
Tumor growth increases compressive stress within a tissue, which is associated with solid tumor progression. However, very little is known about how compressive stress contributes to tumor progression. Here, we show that compressive stress induces glycolysis in human breast cancer associated fibroblast (CAF) cells and thereby contributes to the expression of epithelial to mesenchymal (EMT)- and angiogenesis-related genes in breast cancer cells. Lactate production was increased in compressed CAF cells, in a manner dependent on the expression of metabolic genes ENO2, HK2, and PFKFB3. Conditioned medium from compressed CAFs promoted the proliferation of breast cancer cells and the expression of EMT and/or angiogenesis-related genes. In patient tissues with high compressive stress, the expression of compression-induced metabolic genes was significantly and positively correlated with EMT and/or angiogenesis-related gene expression and metastasis size. These findings illustrate a mechanotransduction pathway involving stromal glycolysis that may be relevant also for other solid tumours.
Collapse
Affiliation(s)
- Baek Gil Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, South Korea
- Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Jin Sol Sung
- Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Yeonsue Jang
- Department of Pathology, Yonsei University College of Medicine, Seoul, South Korea
| | - Yoon Jin Cha
- Department of Pathology, Yonsei University College of Medicine, Seoul, South Korea
| | - Suki Kang
- Department of Pathology, Yonsei University College of Medicine, Seoul, South Korea
- Severance Biomedical Science Institute (SBSI), Yonsei University College of Medicine, Seoul, South Korea
| | - Hyun Ho Han
- Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Joo Hyun Lee
- Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Nam Hoon Cho
- Department of Pathology, Yonsei University College of Medicine, Seoul, South Korea
- Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
- Severance Biomedical Science Institute (SBSI), Yonsei University College of Medicine, Seoul, South Korea
- Global 5-5-10 System Biology, Yonsei University, Seoul, South Korea
| |
Collapse
|
217
|
De Lora JA, Fencl FA, Macias Gonzalez AD, Bandegi A, Foudazi R, Lopez GP, Shreve AP, Carroll NJ. Oil-Free Acoustofluidic Droplet Generation for Multicellular Tumor Spheroid Culture. ACS APPLIED BIO MATERIALS 2019; 2:4097-4105. [DOI: 10.1021/acsabm.9b00617] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Jacqueline A. De Lora
- Department of Chemical and Biological Engineering and Center for Biomedical Engineering, University of New Mexico, Albuquerque, New Mexico 87131,United States
| | - Frank A. Fencl
- Department of Chemical and Biological Engineering and Center for Biomedical Engineering, University of New Mexico, Albuquerque, New Mexico 87131,United States
| | - Aidira D.Y. Macias Gonzalez
- Department of Chemical and Biological Engineering and Center for Biomedical Engineering, University of New Mexico, Albuquerque, New Mexico 87131,United States
| | - Alireza Bandegi
- Department of Chemical and Materials Engineering, New Mexico State University, Las Cruces, New Mexico 88003, United States
| | - Reza Foudazi
- Department of Chemical and Materials Engineering, New Mexico State University, Las Cruces, New Mexico 88003, United States
| | - Gabriel P. Lopez
- Department of Chemical and Biological Engineering and Center for Biomedical Engineering, University of New Mexico, Albuquerque, New Mexico 87131,United States
| | - Andrew P. Shreve
- Department of Chemical and Biological Engineering and Center for Biomedical Engineering, University of New Mexico, Albuquerque, New Mexico 87131,United States
| | - Nick J. Carroll
- Department of Chemical and Biological Engineering and Center for Biomedical Engineering, University of New Mexico, Albuquerque, New Mexico 87131,United States
| |
Collapse
|
218
|
Tresoldi C, Pacheco DP, Formenti E, Pellegata AF, Mantero S, Petrini P. Shear-resistant hydrogels to control permeability of porous tubular scaffolds in vascular tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 105:110035. [PMID: 31546369 DOI: 10.1016/j.msec.2019.110035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 06/18/2019] [Accepted: 07/29/2019] [Indexed: 12/13/2022]
Abstract
Aiming to perfuse porous tubular scaffolds for vascular tissue engineering (VTE) with controlled flow rate, prevention of leakage through the scaffold lumen is required. A gel coating made of 8% w/v alginate and 6% w/v gelatin functionalized with fibronectin was produced using a custom-made bioreactor-based method. Different volumetric proportions of alginate and gelatin were tested (50/50, 70/30, and 90/10). Gel swelling and stability, and rheological, and uniaxial tensile tests reveal superior resistance to the aggressive biochemical microenvironment, and their ability to withstand physiological deformations (~10%) and wall shear stresses (5-20 dyne/cm2). These are prerequisites to maintain the physiologic phenotypes of vascular smooth muscle cells and endothelial cells (ECs), mimicking blood vessels microenvironment. Gels can induce ECs proliferation and colonization, especially in the presence of fibronectin and higher percentages of gelatin. The custom-designed bioreactor enables the development of reproducible and homogeneous tubular gel coating. The permeability tests show the effectiveness of tubular scaffolds coated with 70/30 alginate/gelatin gel to occlude wadding pores, and therefore prevent leakages. The synthesized double-layered tubular scaffolds coated with alginate/gelatin gel and fibronectin represent both promising substrate for ECs and effective leakproof scaffolds, when subjected to pulsatile perfusion, for VTE applications.
Collapse
Affiliation(s)
- Claudia Tresoldi
- Dipartimento di Chimica, Materiali e Ingegneria Chimica, 'G. Natta' Politecnico di Milano, Piazza L. da Vinci, Milano, Italy
| | - Daniela P Pacheco
- Dipartimento di Chimica, Materiali e Ingegneria Chimica, 'G. Natta' Politecnico di Milano, Piazza L. da Vinci, Milano, Italy
| | - Elisa Formenti
- Dipartimento di Chimica, Materiali e Ingegneria Chimica, 'G. Natta' Politecnico di Milano, Piazza L. da Vinci, Milano, Italy
| | - Alessandro Filippo Pellegata
- Dipartimento di Chimica, Materiali e Ingegneria Chimica, 'G. Natta' Politecnico di Milano, Piazza L. da Vinci, Milano, Italy
| | - Sara Mantero
- Dipartimento di Chimica, Materiali e Ingegneria Chimica, 'G. Natta' Politecnico di Milano, Piazza L. da Vinci, Milano, Italy.
| | - Paola Petrini
- Dipartimento di Chimica, Materiali e Ingegneria Chimica, 'G. Natta' Politecnico di Milano, Piazza L. da Vinci, Milano, Italy
| |
Collapse
|
219
|
Halib N, Ahmad I, Grassi M, Grassi G. The remarkable three-dimensional network structure of bacterial cellulose for tissue engineering applications. Int J Pharm 2019; 566:631-640. [PMID: 31195074 DOI: 10.1016/j.ijpharm.2019.06.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 05/21/2019] [Accepted: 06/06/2019] [Indexed: 12/15/2022]
Abstract
Cellulose is a natural homopolymer, composed of β-1,4- anhydro-d-glucopyranose units. Unlike plant cellulose, bacterial cellulose (BC), obtained from species belonging to the genera of Acetobacter, Rhizobium, Agrobacterium, and Sarcina through various cultivation methods and techniques, is produced in its pure form. BC is produced in the form of gel-like, never dry sheet with tremendous mechanical properties. Containing up to 99% of water, BC hydrogel is considered biocompatible thus finding robust applications in the health industry. Moreover, BC three-dimensional structure closely resembles the extracellular matrix (ECM) of living tissue. In this review, we focus on the porous BC morphology particularly suited to host oxygen and nutrients thus providing conducive environment for cell growth and proliferation. The remarkable BC porous morphology makes this biological material a promising templet for the generation of 3D tissue culture and possibly for tissue-engineered scaffolds.
Collapse
Affiliation(s)
- Nadia Halib
- Department of Basic Sciences & Oral Biology, Faculty of Dentistry, Universiti Sains Islam Malaysia, Kuala Lumpur 55100, Malaysia.
| | - Ishak Ahmad
- Centre for Advanced Materials and Renewable Resources, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
| | - Mario Grassi
- Department of Engineering and Architecture, Trieste University, via Valerio 6, I-34127 Trieste, Italy
| | - Gabriele Grassi
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, I-34149 Trieste, Italy
| |
Collapse
|
220
|
Park SH, Lee SJ. Advanced molecular interaction in Cu2+-alginate beads with high M/G ratio for the intercalation of Li+ and Mg2+ ions. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.03.080] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
221
|
Tridimensional alginate disks of tunable topologies for mammalian cell encapsulation. Anal Biochem 2019; 574:31-33. [DOI: 10.1016/j.ab.2019.03.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/17/2019] [Accepted: 03/18/2019] [Indexed: 11/20/2022]
|
222
|
Colomb W, Osmond M, Durfee C, Krebs MD, Sarkar SK. Imaging and Analysis of Cellular Locations in Three-Dimensional Tissue Models. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2019; 25:753-761. [PMID: 30853032 DOI: 10.1017/s1431927619000102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The absence of quantitative in vitro cell-extracellular matrix models represents an important bottleneck for basic research and human health. Randomness of cellular distributions provides an opportunity for the development of a quantitative in vitro model. However, quantification of the randomness of random cell distributions is still lacking. In this paper, we have imaged cellular distributions in an alginate matrix using a multiview light sheet microscope and developed quantification metrics of randomness by modeling it as a Poisson process, a process that has constant probability of occurring in space or time. We imaged fluorescently labeled human mesenchymal stem cells embedded in an alginate matrix of thickness greater than 5 mm with axial resolution, the mean full width at half maximum of the axial intensity profiles of fluorescent particles. Simulated randomness agrees well with the experiments. Quantification of distributions and validation by simulations will enable quantitative study of cell-matrix interactions in tissue models.
Collapse
Affiliation(s)
- Warren Colomb
- Department of Physics,Colorado School of Mines,Golden, Colorado,USA
| | - Matthew Osmond
- Department of Chemical & Biological Engineering,Colorado School of Mines,Golden, Colorado,USA
| | - Charles Durfee
- Department of Physics,Colorado School of Mines,Golden, Colorado,USA
| | - Melissa D Krebs
- Department of Chemical & Biological Engineering,Colorado School of Mines,Golden, Colorado,USA
| | - Susanta K Sarkar
- Department of Physics,Colorado School of Mines,Golden, Colorado,USA
| |
Collapse
|
223
|
Guo J, Xing C, Yuan H, Chai R, Zhan Y. Oligo (p-Phenylene Vinylene)/Polyisocyanopeptide Biomimetic Composite Hydrogel-Based Three-Dimensional Cell Culture System for Anticancer and Antibacterial Therapeutics. ACS APPLIED BIO MATERIALS 2019; 2:2520-2527. [DOI: 10.1021/acsabm.9b00217] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Jingqi Guo
- Key Laboratory of Hebei Province for Molecular Biophysics, Institute of Biophysics, Hebei University of Technology, Tianjin 300401, P.R. China
| | - Chengfen Xing
- Key Laboratory of Hebei Province for Molecular Biophysics, Institute of Biophysics, Hebei University of Technology, Tianjin 300401, P.R. China
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, P.R. China
| | - Hongbo Yuan
- Key Laboratory of Hebei Province for Molecular Biophysics, Institute of Biophysics, Hebei University of Technology, Tianjin 300401, P.R. China
| | - Ran Chai
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, P.R. China
| | - Yong Zhan
- Key Laboratory of Hebei Province for Molecular Biophysics, Institute of Biophysics, Hebei University of Technology, Tianjin 300401, P.R. China
| |
Collapse
|
224
|
Baert Y, Dvorakova-Hortova K, Margaryan H, Goossens E. Mouse in vitro spermatogenesis on alginate-based 3D bioprinted scaffolds. Biofabrication 2019; 11:035011. [PMID: 30921781 DOI: 10.1088/1758-5090/ab1452] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In vitro spermatogenesis (IVS) has already been successfully achieved in rodents by organotypic and soft matrix culture systems. However, the former does not allow single cell input, and the latter presents as a simple thick layer in which all cells are embedded. We explored a new culture system using a mouse model by employing an alginate-based hydrogel and 3D bioprinting, to control scaffold design and cell deposition. We produced testicular constructs consisting of printed cell-free scaffolds (CFS) with prepubertal testicular cells (TC) in their easy-to-access macropores. Here, the pores represented the only cell compartment (TC/CFS). Double-cell compartment testicular constructs were achieved by culturing magnetic-activated cell sorting-enriched epithelial cells in the pores of interstitial cell-laden scaffolds (CD49f+/CLS). Cell spheres formed in the pores in the weeks following cell seeding on both CFS and CLS. Although restoration of the tubular architecture was not observed, patches of post-meiotic cells including elongated spermatids were found in 66% of TC/CFS. Differentiation up to the level of round spermatids and elongated spermatids was observed in all and 33% of CD49f+/CLS constructs, respectively. Organ culture served as the reference method for IVS, with complete spermatogenesis identified in 80% of cultivated prepubertal tissue fragments. So far, this is the first report applying a 3D bioprinting approach for IVS. Further optimization of the scaffold design and seeding parameters might be permissive for tubular architecture recreation and thereby increase the efficiency of IVS in printed testicular constructs. While it remains to be tested whether the gametes generated on the alginate-based scaffolds can support embryogenesis following IVF, this IVS approach might be useful for (patho)physiological studies and drug-screening applications.
Collapse
Affiliation(s)
- Yoni Baert
- Biology of the Testis, Research Laboratory for Reproduction, Genetics and Regenerative Medicine, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, B-1090 Brussels, Belgium. Polymer Chemistry & Biomaterials Research Group, Department of Organic Chemistry, Ghent University, Krijgslaan 281 S4 Bis, B-9000 Ghent, Belgium
| | | | | | | |
Collapse
|
225
|
Kumar L, Brice J, Toberer L, Klein-Seetharaman J, Knauss D, Sarkar SK. Antimicrobial biopolymer formation from sodium alginate and algae extract using aminoglycosides. PLoS One 2019; 14:e0214411. [PMID: 30913239 PMCID: PMC6435147 DOI: 10.1371/journal.pone.0214411] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 03/12/2019] [Indexed: 12/13/2022] Open
Abstract
Antimicrobial biopolymers provide a biodegradable, sustainable, safe, and cheap approach to drug delivery and wound dressing to control bacterial infection and improve wound healing respectively. Here, we report a one-step method of making antimicrobial alginate polymer from sodium alginate and aqueous extract of Wakame using antibiotic aminoglycosides. Thin layer chromatography of commercially available sodium alginate and Wakame extract showed similar oligosaccharide profiles. Screening of six aminoglycosides showed that kanamycin disulfate and neomycin sulfate produces the highest amount of biopolymer; however, kanamycin disulfate produces the most malleable and form fitting biopolymer. Image texture analysis of biopolymers showed similar quantification parameters for all the six aminoglycosides. Weight of alginate polymer as a function of aminoglycoside concentration follows a growth model of prion protein, consistent with the aggregating nature of both processes. Slow release of antibiotics and the resulting zone of inhibition against E. coli DH5α were observed by agar well diffusion assay. Inexpensive method of production and slow release of antibiotics will enable diverse applications of antimicrobial alginate biopolymer reported in this paper.
Collapse
Affiliation(s)
- Lokender Kumar
- Department of Physics, Colorado School of Mines, Golden, Colorado, United States of America
| | - John Brice
- Department of Physics, Colorado School of Mines, Golden, Colorado, United States of America
| | - Linda Toberer
- Department of Physics, Colorado School of Mines, Golden, Colorado, United States of America
| | | | - Daniel Knauss
- Department of Chemistry, Colorado School of Mines, Golden, Colorado, United States of America
| | - Susanta K. Sarkar
- Department of Physics, Colorado School of Mines, Golden, Colorado, United States of America
| |
Collapse
|
226
|
The Effect of Sodium Alginate on Chlorite and Serpentine in Chalcopyrite Flotation. MINERALS 2019. [DOI: 10.3390/min9030196] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Chlorite and serpentine are common magnesium-containing gangue minerals in copper sulfide flotation. In this study, sodium alginate, a natural hydrophilic polysaccharide, was introduced as a selective depressant for these gangue minerals. Micro-flotation tests were conducted on both single minerals and synthetic mixtures. The flotation results showed that sodium alginate could simultaneously depress the flotation of chlorite and serpentine effectively, but seldom influenced the floatability of chalcopyrite at pH 9. In the ternary mixture flotation, a concentrate with a Cu grade of 31% could be achieved at Cu recovery of 90%. The selective depression of chlorite and serpentine was also validated by the real ore flotation experiments. The selective depression mechanism was investigated through adsorption tests, zeta potential measurements, and FTIR analyses. The adsorption density results implied that sodium alginate selectively adsorbed on the surface of phyllosilicates, but no adsorption on the chalcopyrite surface was observed. The zeta potential results showed that the sodium alginate could selectively decrease the surface charge of chlorite and serpentine. The FTIR results revealed the chemical adsorption of sodium alginate on the chlorite and serpentine surface and no form of adsorption on chalcopyrite, agreeing well with the adsorption density results. On the basis of these results, a selective adsorption model of sodium alginate on the mineral surface was proposed.
Collapse
|
227
|
McNamara MC, Sharifi F, Okuzono J, Montazami R, Hashemi NN. Microfluidic Manufacturing of Alginate Fibers with Encapsulated Astrocyte Cells. ACS APPLIED BIO MATERIALS 2019; 2:1603-1613. [DOI: 10.1021/acsabm.9b00022] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
228
|
Witte K, Rodrigo-Navarro A, Salmeron-Sanchez M. Bacteria-laden microgels as autonomous three-dimensional environments for stem cell engineering. Mater Today Bio 2019; 2:100011. [PMID: 32159146 PMCID: PMC7061548 DOI: 10.1016/j.mtbio.2019.100011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/30/2019] [Accepted: 06/05/2019] [Indexed: 02/08/2023] Open
Abstract
A one-step microfluidic system is developed in this study which enables the encapsulation of stem cells and genetically engineered non-pathogenic bacteria into a so-called three-dimensional (3D) pearl lace-like microgel of alginate with high level of monodispersity and cell viability. The alginate-based microgel constitutes living materials that control stem cell differentiation in either an autonomous or heteronomous manner. The bacteria (Lactococcus lactis) encapsulated within the construct surface display adhesion fragments (III7-10 fragment of human fibronectin) for integrin binding while secreting growth factors (recombinant human bone morphogenetic protein-2) to induce osteogenic differentiation of human bone marrow-derived mesenchymal stem cells. We concentrate on interlinked pearl lace microgels that enabled us to prototype a low-cost 3D bioprinting platform with highly tunable properties.
Collapse
Affiliation(s)
| | | | - M. Salmeron-Sanchez
- Center for the Cellular Microenvironment, University of Glasgow, G12 8LT, UK
| |
Collapse
|
229
|
Azandeh S, Nejad DB, Bayati V, Shakoor F, Varaa N, Cheraghian B. High mannoronic acid containing alginate affects the differentiation of Wharton's jelly-derived stem cells to hepatocyte-like cell. J Adv Pharm Technol Res 2019; 10:9-15. [PMID: 30815382 PMCID: PMC6383346 DOI: 10.4103/japtr.japtr_312_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
For transplantation of cell into injured tissues, cells should be transferred to the damaged site through an adequate carrier. Nevertheless, the nutrient-limited and hypoxic condition in the carrier can bring about broad cell death. This study set to assess the impact of alginate concentrations on the differentiation and the proliferation of cells encapsulated in alginate hydrogels. Human Wharton's Jelly-derived Mesenchymal Stem Cells (HWJ-MSCs) were encapsulated in two concentrations of alginate hydrogel. Then, the proliferation and the hepatic differentiation were evaluated with an MTT assay and the enzyme-linked immunosorbent assay software and urea production. The results demonstrated that the proliferation of cell and urea production in 1.5% alginate concentration was higher than in 2.5% alginate concentration in the hydrogels of alginate. We deduce that the optimized alginate hydrogel concentration is necessary for achieving comparable cell activities in three-dimensional culture.
Collapse
Affiliation(s)
- Saeed Azandeh
- Cellular and Molecular Research Center, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Darioush Bijan Nejad
- Cellular and Molecular Research Center, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Vahid Bayati
- Cellular and Molecular Research Center, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Foroug Shakoor
- Department of Anatomical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Negar Varaa
- Department of Anatomical Science, Faculty of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Bahman Cheraghian
- Department of Biostatistics and Epidemiology, School of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
230
|
Sabhachandani P, Sarkar S, Mckenney S, Ravi D, Evens AM, Konry T. Microfluidic assembly of hydrogel-based immunogenic tumor spheroids for evaluation of anticancer therapies and biomarker release. J Control Release 2019; 295:21-30. [PMID: 30550941 PMCID: PMC6396303 DOI: 10.1016/j.jconrel.2018.12.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 12/03/2018] [Accepted: 12/07/2018] [Indexed: 12/20/2022]
Abstract
Diffuse large B cell lymphoma (DLBCL), the most common subtype of Non-Hodgkin lymphoma, exhibits pathologic heterogeneity and a dynamic immunogenic tumor microenvironment (TME). However, the lack of preclinical in vitro models of DLBCL TME hinders optimal therapeutic screening. This study describes the development of an integrated droplet microfluidics-based platform for high-throughput generation of immunogenic DLBCL spheroids. The spheroids consist of three cell types (cancer, fibroblast and lymphocytes) in a novel hydrogel combination of alginate and puramatrix, which promoted cell adhesion and aggregation. This system facilitates dynamic analysis of cellular interaction, proliferation and therapeutic efficacy via spatiotemporal monitoring and secretome profiling. The immunomodulatory drug lenalidomide had direct anti-proliferative effect on activated B-cell like DLBCL spheroids and reduced several cytokines and other markers (e.g., CCL2, CCL3, CCL4, CD137 and ANG-1 levels) compared with untreated spheroids. Collectively, this novel spheroid platform will enable high-throughput anti-cancer therapeutic screening in a semi-automated manner.
Collapse
MESH Headings
- Alginates/chemistry
- Antineoplastic Agents/pharmacology
- Biomarkers, Tumor/analysis
- Biomarkers, Tumor/immunology
- Cell Culture Techniques/instrumentation
- Cell Culture Techniques/methods
- Cell Line
- Cell Proliferation/drug effects
- Cell Survival/drug effects
- Cells, Cultured
- Coculture Techniques/instrumentation
- Coculture Techniques/methods
- Drug Screening Assays, Antitumor/instrumentation
- Drug Screening Assays, Antitumor/methods
- Equipment Design
- Humans
- Hydrogels/chemistry
- Immunologic Factors/pharmacology
- Lab-On-A-Chip Devices
- Lenalidomide/pharmacology
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/immunology
- Spheroids, Cellular/drug effects
- Spheroids, Cellular/immunology
- Tumor Cells, Cultured/drug effects
- Tumor Cells, Cultured/immunology
Collapse
Affiliation(s)
- Pooja Sabhachandani
- Department of Pharmaceutical Sciences, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA
| | - Saheli Sarkar
- Department of Pharmaceutical Sciences, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA
| | - Seamus Mckenney
- Department of Pharmaceutical Sciences, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA
| | - Dashnamoorthy Ravi
- Division of Blood Disorders, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ
| | - Andrew M Evens
- Division of Blood Disorders, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ
| | - Tania Konry
- Department of Pharmaceutical Sciences, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA.
| |
Collapse
|
231
|
Kim H, Bae C, Kook YM, Koh WG, Lee K, Park MH. Mesenchymal stem cell 3D encapsulation technologies for biomimetic microenvironment in tissue regeneration. Stem Cell Res Ther 2019; 10:51. [PMID: 30732645 PMCID: PMC6367797 DOI: 10.1186/s13287-018-1130-8] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stem cell (MSC) encapsulation technique has long been emerged in tissue engineering as it plays an important role in implantation of stem cells to regenerate a damaged tissue. MSC encapsulation provides a mimic of a three-dimensional (3D) in vivo environment to maintain cell viability and to induce the stem cell differentiation which regulates MSC fate into multi-lineages. Moreover, the 3D matrix surrounding MSCs protects them from the human innate immune system and allows the diffusion of biomolecules such as oxygen, cytokines, and growth factors. Therefore, many technologies are being developed to create MSC encapsulation platforms with diverse materials, shapes, and sizes. The conditions of the platform are determined by the targeted tissue and translation method. This review introduces several details of MSC encapsulation technologies such as micromolding, electrostatic droplet extrusion, microfluidics, and bioprinting and their application for tissue regeneration. Lastly, some of the challenges and future direction of MSC encapsulation technologies as a cell therapy-based tissue regeneration method will be discussed.
Collapse
Affiliation(s)
- Hyerim Kim
- Program in Nanoscience and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| | - Chaewon Bae
- Program in Nanoscience and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| | - Yun-Min Kook
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, Republic of Korea
| | - Won-Gun Koh
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, Republic of Korea
| | - Kangwon Lee
- Program in Nanoscience and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea. .,Advanced Institutes of Convergence Technology, Suwon, Republic of Korea.
| | - Min Hee Park
- Program in Nanoscience and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea. .,Center for Convergence Bioceramic Materials, Korea Institute of Ceramic Engineering and Technology, Cheongju, Republic of Korea.
| |
Collapse
|
232
|
Lee SY, George JH, Nagel DA, Ye H, Kueberuwa G, Seymour LW. Optogenetic control of iPS cell-derived neurons in 2D and 3D culture systems using channelrhodopsin-2 expression driven by the synapsin-1 and calcium-calmodulin kinase II promoters. J Tissue Eng Regen Med 2019; 13:369-384. [PMID: 30550638 PMCID: PMC6492196 DOI: 10.1002/term.2786] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 09/04/2018] [Accepted: 11/30/2018] [Indexed: 01/01/2023]
Abstract
Development of an optogenetically controllable human neural network model in three-dimensional (3D) cultures can provide an investigative system that is more physiologically relevant and better able to mimic aspects of human brain function. Light-sensitive neurons were generated by transducing channelrhodopsin-2 (ChR2) into human induced pluripotent stem cell (hiPSC) derived neural progenitor cells (Axol) using lentiviruses and cell-type specific promoters. A mixed population of human iPSC-derived cortical neurons, astrocytes and progenitor cells were obtained (Axol-ChR2) upon neural differentiation. Pan-neuronal promoter synapsin-1 (SYN1) and excitatory neuron-specific promoter calcium-calmodulin kinase II (CaMKII) were used to drive reporter gene expression in order to assess the differentiation status of the targeted cells. Expression of ChR2 and characterisation of subpopulations in differentiated Axol-ChR2 cells were evaluated using flow cytometry and immunofluorescent staining. These cells were transferred from 2D culture to 3D alginate hydrogel functionalised with arginine-glycine-aspartate (RGD) and small molecules (Y-27632). Improved RGD-alginate hydrogel was physically characterised and assessed for cell viability to serve as a generic 3D culture system for human pluripotent stem cells (hPSCs) and neuronal cells. Prior to cell encapsulation, neural network activities of Axol-ChR2 cells and primary neurons were investigated using calcium imaging. Results demonstrate that functional activities were successfully achieved through expression of ChR2- by both the CaMKII and SYN1 promoters. The RGD-alginate hydrogel system supports the growth of differentiated Axol-ChR2 cells whilst allowing detection of ChR2 expression upon light stimulation. This allows precise and non-invasive control of human neural networks in 3D.
Collapse
Affiliation(s)
- Si-Yuen Lee
- Department of Oncology, Old Road Campus Research Building, University of Oxford, Oxford, UK.,Institute of Biomedical Engineering, Old Road Campus Research Building, University of Oxford, Oxford, UK
| | - Julian H George
- Institute of Biomedical Engineering, Old Road Campus Research Building, University of Oxford, Oxford, UK
| | - David A Nagel
- School of Life and Health Sciences, University of Aston, Birmingham, UK
| | - Hua Ye
- Institute of Biomedical Engineering, Old Road Campus Research Building, University of Oxford, Oxford, UK
| | - Gray Kueberuwa
- Department of Cancer Sciences, Manchester Cancer Research Centre, University of Manchester, Manchester, UK
| | - Leonard W Seymour
- Department of Oncology, Old Road Campus Research Building, University of Oxford, Oxford, UK
| |
Collapse
|
233
|
Afewerki S, Sheikhi A, Kannan S, Ahadian S, Khademhosseini A. Gelatin-polysaccharide composite scaffolds for 3D cell culture and tissue engineering: Towards natural therapeutics. Bioeng Transl Med 2019; 4:96-115. [PMID: 30680322 PMCID: PMC6336672 DOI: 10.1002/btm2.10124] [Citation(s) in RCA: 239] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/23/2018] [Accepted: 11/26/2018] [Indexed: 12/12/2022] Open
Abstract
Gelatin is a promising material as scaffold with therapeutic and regenerative characteristics due to its chemical similarities to the extracellular matrix (ECM) in the native tissues, biocompatibility, biodegradability, low antigenicity, cost-effectiveness, abundance, and accessible functional groups that allow facile chemical modifications with other biomaterials or biomolecules. Despite the advantages of gelatin, poor mechanical properties, sensitivity to enzymatic degradation, high viscosity, and reduced solubility in concentrated aqueous media have limited its applications and encouraged the development of gelatin-based composite hydrogels. The drawbacks of gelatin may be surmounted by synergistically combining it with a wide range of polysaccharides. The addition of polysaccharides to gelatin is advantageous in mimicking the ECM, which largely contains proteoglycans or glycoproteins. Moreover, gelatin-polysaccharide biomaterials benefit from mechanical resilience, high stability, low thermal expansion, improved hydrophilicity, biocompatibility, antimicrobial and anti-inflammatory properties, and wound healing potential. Here, we discuss how combining gelatin and polysaccharides provides a promising approach for developing superior therapeutic biomaterials. We review gelatin-polysaccharides scaffolds and their applications in cell culture and tissue engineering, providing an outlook for the future of this family of biomaterials as advanced natural therapeutics.
Collapse
Affiliation(s)
- Samson Afewerki
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Dept. of MedicineBrigham and Women's Hospital, Harvard Medical SchoolCambridgeMA 02142
- Harvard‐MIT Division of Health Sciences and TechnologyMassachusetts Institute of TechnologyCambridgeMA 02139
| | - Amir Sheikhi
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Dept. of MedicineBrigham and Women's Hospital, Harvard Medical SchoolCambridgeMA 02142
- Harvard‐MIT Division of Health Sciences and TechnologyMassachusetts Institute of TechnologyCambridgeMA 02139
- Center for Minimally Invasive Therapeutics (C‐MIT)University of California‐Los AngelesLos AngelesCA 90095
- California NanoSystems Institute (CNSI)University of California‐Los AngelesLos AngelesCA 90095
- Dept. of BioengineeringUniversity of California‐Los AngelesLos AngelesCA 90095
| | - Soundarapandian Kannan
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Dept. of MedicineBrigham and Women's Hospital, Harvard Medical SchoolCambridgeMA 02142
- Harvard‐MIT Division of Health Sciences and TechnologyMassachusetts Institute of TechnologyCambridgeMA 02139
- Nanomedicine Division, Dept. of ZoologyPeriyar UniversitySalemTamil NaduIndia
| | - Samad Ahadian
- Center for Minimally Invasive Therapeutics (C‐MIT)University of California‐Los AngelesLos AngelesCA 90095
- California NanoSystems Institute (CNSI)University of California‐Los AngelesLos AngelesCA 90095
- Dept. of BioengineeringUniversity of California‐Los AngelesLos AngelesCA 90095
| | - Ali Khademhosseini
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Dept. of MedicineBrigham and Women's Hospital, Harvard Medical SchoolCambridgeMA 02142
- Harvard‐MIT Division of Health Sciences and TechnologyMassachusetts Institute of TechnologyCambridgeMA 02139
- Center for Minimally Invasive Therapeutics (C‐MIT)University of California‐Los AngelesLos AngelesCA 90095
- California NanoSystems Institute (CNSI)University of California‐Los AngelesLos AngelesCA 90095
- Dept. of BioengineeringUniversity of California‐Los AngelesLos AngelesCA 90095
- Dept. of Radiological Sciences, David Geffen School of MedicineUniversity of California‐Los AngelesLos AngelesCA 90095
- Dept. of Chemical and Biomolecular EngineeringUniversity of California‐Los AngelesLos AngelesCA 90095
- Dept. of Bioindustrial Technologies, College of Animal Bioscience and TechnologyKonkuk UniversitySeoulRepublic of Korea
| |
Collapse
|
234
|
|
235
|
Muhamad II, Zulkifli N, Selvakumaran SA, Lazim NAM. Bioactive Algal-Derived Polysaccharides: Multi-Functionalization, Therapeutic Potential and Biomedical Applications. Curr Pharm Des 2019; 25:1147-1162. [PMID: 31258069 DOI: 10.2174/1381612825666190618152133] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 05/30/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND In recent decades, there has been an increased interest in the utilization of polysaccharides showing biological activity for various novel applications owing to their biocompatibility, biodegradability, non-toxicity, and some specific therapeutic activities. Increasing studies have started in the past few years to develop algal polysaccharides-based biomaterials for various applications. METHODS Saccharide mapping or enzymatic profiling plays a role in quality control of polysaccharides. Whereby, in vitro and in vivo tests as well as toxicity level discriminating polysaccharides biological activities. Extraction and purification methods are performed in obtaining algal derived polysaccharides followed by chromatographic profiles of their active compounds, structural features, physicochemical properties, and reported biological activities. RESULTS Marine algae are capable of synthesizing Glycosaminoglycans (GAGs) and non-GAGs or GAG mimetics such as sulfated glycans. The cell walls of algae are rich in sulfated polysaccharides, including alginate, carrageenan, ulvan and fucoidan. These biopolymers are widely used algal-derived polysaccharides for biological and biomedical applications due to their biocompatibility and availability. They constitute biochemical compounds that have multi-functionalization, therapeutic potential and immunomodulatory abilities, making them promising bioactive products and biomaterials with a wide range of biomedical applications. CONCLUSION Algal-derived polysaccharides with clearly elucidated compositions/structures, identified cellular activities, as well as desirable physical properties have shown the potential that may create new opportunities. They could be maximally exploited to serve as therapeutic tools such as immunoregulatory agents or drug delivery vehicles. Hence, novel strategies could be applied to tailor multi-functionalization of the polysaccharides from algal species with vast biomedical application potentials.
Collapse
Affiliation(s)
- Ida Idayu Muhamad
- School of Chemical and Energy, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia
- School of Bioscience and Medical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia
| | - Nabilah Zulkifli
- School of Bioscience and Medical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia
| | - Suguna A/P Selvakumaran
- Department of Biotechnology, School of Science and Engineering, Manipal University, Nilai, Negeri Sembilan, Malaysia
| | - Nurul Asmak Md Lazim
- School of Chemical and Energy, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia
| |
Collapse
|
236
|
Alginate Materials and Dental Impression Technique: A Current State of the Art and Application to Dental Practice. Mar Drugs 2018; 17:md17010018. [PMID: 30597945 PMCID: PMC6356954 DOI: 10.3390/md17010018] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 12/19/2018] [Accepted: 12/24/2018] [Indexed: 11/17/2022] Open
Abstract
Hydrocolloids were the first elastic materials to be used in the dental field. Elastic impression materials include reversible (agar-agar), irreversible (alginate) hydrocolloids and synthetic elastomers (polysulfides, polyethers, silicones). They reproduce an imprint faithfully, providing details of a high definition despite the presence of undercuts. With the removal of the impression, being particularly rich in water, the imprints can deform but later adapt to the original shape due to the elastic properties they possess. The advantages of using alginate include the low cost, a better tolerability on the part of the patient, the ease of manipulation, the short time needed for execution, the instrumentation and the very simple execution technique and possibility of detecting a detailed impression (even in the presence of undercuts) in a single step. A comprehensive review of the current literature was conducted according to the PRISMA guidelines by accessing the NCBI PubMed database. Authors conducted a search of articles in written in English published from 2008 to 2018. All the relevant studies were included in the search with respect to the characteristics and evolution of new marine derived materials. Much progress has been made in the search for new marine derived materials. Conventional impression materials are different, and especially with the advent of digital technology, they have been suffering from a decline in research attention over the last few years. However, this type of impression material, alginates (derived from marine algae), have the advantage of being among the most used in the dental medical field.
Collapse
|
237
|
Hafeez S, Ooi HW, Morgan FLC, Mota C, Dettin M, Van Blitterswijk C, Moroni L, Baker MB. Viscoelastic Oxidized Alginates with Reversible Imine Type Crosslinks: Self-Healing, Injectable, and Bioprintable Hydrogels. Gels 2018; 4:E85. [PMID: 30674861 PMCID: PMC6318581 DOI: 10.3390/gels4040085] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/12/2018] [Accepted: 11/15/2018] [Indexed: 01/17/2023] Open
Abstract
Bioprinting techniques allow for the recreation of 3D tissue-like structures. By deposition of hydrogels combined with cells (bioinks) in a spatially controlled way, one can create complex and multiscale structures. Despite this promise, the ability to deposit customizable cell-laden structures for soft tissues is still limited. Traditionally, bioprinting relies on hydrogels comprised of covalent or mostly static crosslinks. Yet, soft tissues and the extracellular matrix (ECM) possess viscoelastic properties, which can be more appropriately mimicked with hydrogels containing reversible crosslinks. In this study, we have investigated aldehyde containing oxidized alginate (ox-alg), combined with different cross-linkers, to develop a small library of viscoelastic, self-healing, and bioprintable hydrogels. By using distinctly different imine-type dynamic covalent chemistries (DCvC), (oxime, semicarbazone, and hydrazone), rational tuning of rheological and mechanical properties was possible. While all materials showed biocompatibility, we observed that the nature of imine type crosslink had a marked influence on hydrogel stiffness, viscoelasticity, self-healing, cell morphology, and printability. The semicarbazone and hydrazone crosslinks were found to be viscoelastic, self-healing, and printable-without the need for additional Ca2+ crosslinking-while also promoting the adhesion and spreading of fibroblasts. In contrast, the oxime cross-linked gels were found to be mostly elastic and showed neither self-healing, suitable printability, nor fibroblast spreading. The semicarbazone and hydrazone gels hold great potential as dynamic 3D cell culture systems, for therapeutics and cell delivery, and a newer generation of smart bioinks.
Collapse
Affiliation(s)
- Shahzad Hafeez
- Department of Complex Tissue Regeneration, MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| | - Huey Wen Ooi
- Department of Complex Tissue Regeneration, MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| | - Francis L C Morgan
- Department of Complex Tissue Regeneration, MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| | - Carlos Mota
- Department of Complex Tissue Regeneration, MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| | - Monica Dettin
- Department of Industrial Engineering, University of Padua, 35131 Padua, Italy.
| | - Clemens Van Blitterswijk
- Department of Complex Tissue Regeneration, MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| | - Lorenzo Moroni
- Department of Complex Tissue Regeneration, MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| | - Matthew B Baker
- Department of Complex Tissue Regeneration, MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| |
Collapse
|
238
|
Legallais C, Kim D, Mihaila SM, Mihajlovic M, Figliuzzi M, Bonandrini B, Salerno S, Yousef Yengej FA, Rookmaaker MB, Sanchez Romero N, Sainz-Arnal P, Pereira U, Pasqua M, Gerritsen KGF, Verhaar MC, Remuzzi A, Baptista PM, De Bartolo L, Masereeuw R, Stamatialis D. Bioengineering Organs for Blood Detoxification. Adv Healthc Mater 2018; 7:e1800430. [PMID: 30230709 DOI: 10.1002/adhm.201800430] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 08/23/2018] [Indexed: 12/11/2022]
Abstract
For patients with severe kidney or liver failure the best solution is currently organ transplantation. However, not all patients are eligible for transplantation and due to limited organ availability, most patients are currently treated with therapies using artificial kidney and artificial liver devices. These therapies, despite their relative success in preserving the patients' life, have important limitations since they can only replace part of the natural kidney or liver functions. As blood detoxification (and other functions) in these highly perfused organs is achieved by specialized cells, it seems relevant to review the approaches leading to bioengineered organs fulfilling most of the native organ functions. There, the culture of cells of specific phenotypes on adapted scaffolds that can be perfused takes place. In this review paper, first the functions of kidney and liver organs are briefly described. Then artificial kidney/liver devices, bioartificial kidney devices, and bioartificial liver devices are focused on, as well as biohybrid constructs obtained by decellularization and recellularization of animal organs. For all organs, a thorough overview of the literature is given and the perspectives for their application in the clinic are discussed.
Collapse
Affiliation(s)
- Cécile Legallais
- UMR CNRS 7338 Biomechanics & Bioengineering; Université de technologie de Compiègne; Sorbonne Universités; 60203 Compiègne France
| | - Dooli Kim
- (Bio)artificial organs; Department of Biomaterials Science and Technology; Faculty of Science and Technology; TechMed Institute; University of Twente; P.O. Box 217 7500 AE Enschede The Netherlands
| | - Sylvia M. Mihaila
- Division of Pharmacology; Utrecht Institute for Pharmaceutical Sciences; Utrecht University; Universiteitsweg 99 3584 CG Utrecht The Netherlands
- Department of Nephrology and Hypertension; University Medical Center Utrecht and Regenerative Medicine Utrecht; Utrecht University; Heidelberglaan 100 3584 CX Utrecht The Netherlands
| | - Milos Mihajlovic
- Division of Pharmacology; Utrecht Institute for Pharmaceutical Sciences; Utrecht University; Universiteitsweg 99 3584 CG Utrecht The Netherlands
| | - Marina Figliuzzi
- IRCCS-Istituto di Ricerche Farmacologiche Mario Negri; via Stezzano 87 24126 Bergamo Italy
| | - Barbara Bonandrini
- Department of Chemistry; Materials and Chemical Engineering “Giulio Natta”; Politecnico di Milano; Piazza Leonardo da Vinci 32 20133 Milan Italy
| | - Simona Salerno
- Institute on Membrane Technology; National Research Council of Italy; ITM-CNR; Via Pietro BUCCI, Cubo 17C - 87036 Rende Italy
| | - Fjodor A. Yousef Yengej
- Department of Nephrology and Hypertension; University Medical Center Utrecht and Regenerative Medicine Utrecht; Utrecht University; Heidelberglaan 100 3584 CX Utrecht The Netherlands
| | - Maarten B. Rookmaaker
- Department of Nephrology and Hypertension; University Medical Center Utrecht and Regenerative Medicine Utrecht; Utrecht University; Heidelberglaan 100 3584 CX Utrecht The Netherlands
| | | | - Pilar Sainz-Arnal
- Instituto de Investigación Sanitaria de Aragón (IIS Aragon); 50009 Zaragoza Spain
- Instituto Aragonés de Ciencias de la Salud (IACS); 50009 Zaragoza Spain
| | - Ulysse Pereira
- UMR CNRS 7338 Biomechanics & Bioengineering; Université de technologie de Compiègne; Sorbonne Universités; 60203 Compiègne France
| | - Mattia Pasqua
- UMR CNRS 7338 Biomechanics & Bioengineering; Université de technologie de Compiègne; Sorbonne Universités; 60203 Compiègne France
| | - Karin G. F. Gerritsen
- Department of Nephrology and Hypertension; University Medical Center Utrecht and Regenerative Medicine Utrecht; Utrecht University; Heidelberglaan 100 3584 CX Utrecht The Netherlands
| | - Marianne C. Verhaar
- Department of Nephrology and Hypertension; University Medical Center Utrecht and Regenerative Medicine Utrecht; Utrecht University; Heidelberglaan 100 3584 CX Utrecht The Netherlands
| | - Andrea Remuzzi
- IRCCS-Istituto di Ricerche Farmacologiche Mario Negri; via Stezzano 87 24126 Bergamo Italy
- Department of Management; Information and Production Engineering; University of Bergamo; viale Marconi 5 24044 Dalmine Italy
| | - Pedro M. Baptista
- Instituto de Investigación Sanitaria de Aragón (IIS Aragon); 50009 Zaragoza Spain
- Department of Management; Information and Production Engineering; University of Bergamo; viale Marconi 5 24044 Dalmine Italy
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas (CIBERehd); 28029 Barcelona Spain
- Fundación ARAID; 50009 Zaragoza Spain
- Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz; 28040 Madrid Spain. Department of Biomedical and Aerospace Engineering; Universidad Carlos III de Madrid; 28911 Madrid Spain
| | - Loredana De Bartolo
- Institute on Membrane Technology; National Research Council of Italy; ITM-CNR; Via Pietro BUCCI, Cubo 17C - 87036 Rende Italy
| | - Rosalinde Masereeuw
- Division of Pharmacology; Utrecht Institute for Pharmaceutical Sciences; Utrecht University; Universiteitsweg 99 3584 CG Utrecht The Netherlands
| | - Dimitrios Stamatialis
- (Bio)artificial organs; Department of Biomaterials Science and Technology; Faculty of Science and Technology; TechMed Institute; University of Twente; P.O. Box 217 7500 AE Enschede The Netherlands
| |
Collapse
|
239
|
Sun Q, Tan SH, Chen Q, Ran R, Hui Y, Chen D, Zhao CX. Microfluidic Formation of Coculture Tumor Spheroids with Stromal Cells As a Novel 3D Tumor Model for Drug Testing. ACS Biomater Sci Eng 2018; 4:4425-4433. [DOI: 10.1021/acsbiomaterials.8b00904] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Qi Sun
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Corner Coopers and College Road, St. Lucia, Queensland 4072, Australia
| | - Say Hwa Tan
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, Brisbane, Queensland 4111, Australia
| | - Qiushui Chen
- Department of Chemistry, Tsinghua University, 30 Shuangqing Road, Haidian Qu, Beijing, 100084, P.R.China
| | - Rui Ran
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Corner Coopers and College Road, St. Lucia, Queensland 4072, Australia
| | - Yue Hui
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Corner Coopers and College Road, St. Lucia, Queensland 4072, Australia
| | - Dong Chen
- Institute of Process Equipment, College of Energy Engineering, and State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, 38 Zheda Road, Hangzhou 310027, P.R.China
| | - Chun-Xia Zhao
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Corner Coopers and College Road, St. Lucia, Queensland 4072, Australia
| |
Collapse
|
240
|
Choe G, Park J, Park H, Lee JY. Hydrogel Biomaterials for Stem Cell Microencapsulation. Polymers (Basel) 2018; 10:E997. [PMID: 30960922 PMCID: PMC6403586 DOI: 10.3390/polym10090997] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/03/2018] [Accepted: 09/03/2018] [Indexed: 12/15/2022] Open
Abstract
Stem cell transplantation has been recognized as a promising strategy to induce the regeneration of injured and diseased tissues and sustain therapeutic molecules for prolonged periods in vivo. However, stem cell-based therapy is often ineffective due to low survival, poor engraftment, and a lack of site-specificity. Hydrogels can offer several advantages as cell delivery vehicles, including cell stabilization and the provision of tissue-like environments with specific cellular signals; however, the administration of bulk hydrogels is still not appropriate to obtain safe and effective outcomes. Hence, stem cell encapsulation in uniform micro-sized hydrogels and their transplantation in vivo have recently garnered great attention for minimally invasive administration and the enhancement of therapeutic activities of the transplanted stem cells. Several important methods for stem cell microencapsulation are described in this review. In addition, various natural and synthetic polymers, which have been employed for the microencapsulation of stem cells, are reviewed in this article.
Collapse
Affiliation(s)
- Goeun Choe
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea.
| | - Junha Park
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea.
| | - Hansoo Park
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Korea.
| | - Jae Young Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea.
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea.
| |
Collapse
|
241
|
Iansante V, Dhawan A, Masmoudi F, Lee CA, Fernandez-Dacosta R, Walker S, Fitzpatrick E, Mitry RR, Filippi C. A New High Throughput Screening Platform for Cell Encapsulation in Alginate Hydrogel Shows Improved Hepatocyte Functions by Mesenchymal Stromal Cells Co-encapsulation. Front Med (Lausanne) 2018; 5:216. [PMID: 30140676 PMCID: PMC6095031 DOI: 10.3389/fmed.2018.00216] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 07/16/2018] [Indexed: 12/31/2022] Open
Abstract
Hepatocyte transplantation has emerged as an alternative to liver transplant for liver disease. Hepatocytes encapsulated in alginate microbeads have been proposed for the treatment of acute liver failure, as they are able to provide hepatic functions while the liver regenerates. Furthermore, they do not require immunosuppression, as the alginate protects the hepatocytes from the recipient's immune cells. Mesenchymal stromal cells are very attractive candidates for regenerative medicine, being able to differentiate into cells of the mesenchymal lineages and having extensive proliferative ability. When co-cultured with hepatocytes in two-dimensional cultures, they exert a trophic role, drastically improving hepatocytes survival and functions. In this study we aimed to (i) devise a high throughput system (HTS) to allow testing of a variety of different parameters for cell encapsulation and (ii) using this HTS, investigate whether mesenchymal stromal cells could have beneficial effects on the hepatocytes when co-encapsulated in alginate microbeads. Using our HTS platform, we observed some improvement of hepatocyte behavior with MSCs, subsequently confirmed in the low throughput analysis of cell function in alginate microbeads. Therefore, our study shows that mesenchymal stromal cells may be a good option to improve the function of hepatocytes microbeads. Furthermore, the platform developed may be used for HTS studies on cell encapsulation, in which several conditions (e.g., number of cells, combinations of cells, alginate modifications) could be easily compared at the same time.
Collapse
Affiliation(s)
- Valeria Iansante
- Dhawan Lab at Mowat Labs, Institute of Liver Studies, King's College London, King's College Hospital, London, United Kingdom
| | - Anil Dhawan
- Paediatric Liver, GI and Nutrition Centre, King's College London, King's College Hospital, London, United Kingdom
| | - Fatma Masmoudi
- Dhawan Lab at Mowat Labs, Institute of Liver Studies, King's College London, King's College Hospital, London, United Kingdom
| | - Charlotte A Lee
- Dhawan Lab at Mowat Labs, Institute of Liver Studies, King's College London, King's College Hospital, London, United Kingdom
| | - Raquel Fernandez-Dacosta
- Dhawan Lab at Mowat Labs, Institute of Liver Studies, King's College London, King's College Hospital, London, United Kingdom
| | - Simon Walker
- Dhawan Lab at Mowat Labs, Institute of Liver Studies, King's College London, King's College Hospital, London, United Kingdom
| | - Emer Fitzpatrick
- Paediatric Liver, GI and Nutrition Centre, King's College London, King's College Hospital, London, United Kingdom
| | - Ragai R Mitry
- Dhawan Lab at Mowat Labs, Institute of Liver Studies, King's College London, King's College Hospital, London, United Kingdom
| | - Céline Filippi
- Dhawan Lab at Mowat Labs, Institute of Liver Studies, King's College London, King's College Hospital, London, United Kingdom
| |
Collapse
|
242
|
Bioactive Poly(ethylene Glycol) Acrylate Hydrogels for Regenerative Engineering. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2018. [DOI: 10.1007/s40883-018-0074-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
243
|
|
244
|
Taylor DA, Sampaio LC, Ferdous Z, Gobin AS, Taite LJ. Decellularized matrices in regenerative medicine. Acta Biomater 2018; 74:74-89. [PMID: 29702289 DOI: 10.1016/j.actbio.2018.04.044] [Citation(s) in RCA: 195] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 04/19/2018] [Accepted: 04/23/2018] [Indexed: 01/04/2023]
Abstract
Of all biologic matrices, decellularized extracellular matrix (dECM) has emerged as a promising tool used either alone or when combined with other biologics in the fields of tissue engineering or regenerative medicine - both preclinically and clinically. dECM provides a native cellular environment that combines its unique composition and architecture. It can be widely obtained from native organs of different species after being decellularized and is entitled to provide necessary cues to cells homing. In this review, the superiority of the macro- and micro-architecture of dECM is described as are methods by which these unique characteristics are being harnessed to aid in the repair and regeneration of organs and tissues. Finally, an overview of the state of research regarding the clinical use of different matrices and the common challenges faced in using dECM are provided, with possible solutions to help translate naturally derived dECM matrices into more robust clinical use. STATEMENT OF SIGNIFICANCE Ideal scaffolds mimic nature and provide an environment recognized by cells as proper. Biologically derived matrices can provide biological cues, such as sites for cell adhesion, in addition to the mechanical support provided by synthetic matrices. Decellularized extracellular matrix is the closest scaffold to nature, combining unique micro- and macro-architectural characteristics with an equally unique complex composition. The decellularization process preserves structural integrity, ensuring an intact vasculature. As this multifunctional structure can also induce cell differentiation and maturation, it could become the gold standard for scaffolds.
Collapse
|
245
|
Yeon JH, Chung SH, Baek C, Hwang H, Min J. A Simple Pipetting-based Method for Encapsulating Live Cells into Multi-layered Hydrogel Droplets. BIOCHIP JOURNAL 2018. [DOI: 10.1007/s13206-018-2307-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
246
|
Nishimura K, Morimoto Y, Mori N, Takeuchi S. Formation of Branched and Chained Alginate Microfibers Using Theta-Glass Capillaries. MICROMACHINES 2018; 9:E303. [PMID: 30424236 PMCID: PMC6187737 DOI: 10.3390/mi9060303] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 06/08/2018] [Accepted: 06/14/2018] [Indexed: 12/24/2022]
Abstract
This study proposes a microfluidic spinning method to form alginate microfibers with branched and chained structures by controlling two streams of a sodium alginate solution extruded from a theta-glass capillary (a double-compartmented glass capillary). The two streams have three flow regimes: (i) a combined flow regime (single-threaded stream), (ii) a separated flow regime (double-threaded stream), and (iii) a chained flow regime (stream of repeating single- and double-threaded streams). The flow rate of the sodium alginate solution and the tip diameter of the theta-glass capillary are the two parameters which decide the flow regime. By controlling the two parameters, we form branched (a Y-shaped structure composed of thick parent fiber and permanently divided two thin fibers) and chained (a repeating structure of single- and double-threaded fibers with constant frequency) alginate microfibers with various dimensions. Furthermore, we demonstrate the applicability of the alginate microfibers as sacrificial templates for the formation of chain-shaped microchannels with two inlets. Such microchannels could mimic the structure of blood vessels and are applicable for the research fields of fluidics including hemodynamics.
Collapse
Affiliation(s)
- Keigo Nishimura
- Center for International Research on Integrative Biomedical Systems (CIBiS), Institute of Industrial Science (IIS), The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan.
| | - Yuya Morimoto
- Center for International Research on Integrative Biomedical Systems (CIBiS), Institute of Industrial Science (IIS), The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan.
| | - Nobuhito Mori
- Center for International Research on Integrative Biomedical Systems (CIBiS), Institute of Industrial Science (IIS), The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan.
| | - Shoji Takeuchi
- Center for International Research on Integrative Biomedical Systems (CIBiS), Institute of Industrial Science (IIS), The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan.
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan.
| |
Collapse
|
247
|
Aeby EA, Misun PM, Hierlemann A, Frey O. Microfluidic Hydrogel Hanging-Drop Network for Long-Term Culturing of 3D Microtissues and Simultaneous High-Resolution Imaging. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/adbi.201800054] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Elise A. Aeby
- Bio Engineering Laboratory; Department of Biosystems Science and Engineering; ETH Zürich; Mattenstrasse 26 4058 Basel Switzerland
| | - Patrick M. Misun
- Bio Engineering Laboratory; Department of Biosystems Science and Engineering; ETH Zürich; Mattenstrasse 26 4058 Basel Switzerland
| | - Andreas Hierlemann
- Bio Engineering Laboratory; Department of Biosystems Science and Engineering; ETH Zürich; Mattenstrasse 26 4058 Basel Switzerland
| | - Olivier Frey
- Bio Engineering Laboratory; Department of Biosystems Science and Engineering; ETH Zürich; Mattenstrasse 26 4058 Basel Switzerland
| |
Collapse
|
248
|
Park J, Lee SJ, Lee H, Park SA, Lee JY. Three dimensional cell printing with sulfated alginate for improved bone morphogenetic protein-2 delivery and osteogenesis in bone tissue engineering. Carbohydr Polym 2018; 196:217-224. [PMID: 29891290 DOI: 10.1016/j.carbpol.2018.05.048] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 05/14/2018] [Accepted: 05/14/2018] [Indexed: 01/08/2023]
Abstract
Three-dimensional (3D) cell printing is a unique technique that enables free-form fabrication of cell-laden hydrogel scaffolds with controllable features and interconnected pores for tissue engineering applications. To this end, bioink materials able to offer good printability and favorable cellular interaction are highly required. Herein, we synthesized alginate sulfate, which is a structural mimic of heparin that can strongly bind with growth factors to prolong their activities, and studied its feasibility for cell printing applications. Several bio-inks composed of alginate and alginate-sulfate were studied to characterize their material properties and their utilities in 3D printing. The inclusion of alginate-sulfate in bio-inks (alginate/alginate-sulfate) did not significantly influence their rheological properties and allowed for a good 3D printing processibility with distinct pores and features. Moreover, alginate/alginate-sulfate bio-inks exhibited an improved retention of bone morphogenetic protein 2 in 3D-printed scaffolds. Osteoblastic proliferation and differentiation in vitro were promoted by alginate/alginate-sulfate 3D-printed constructs with an optimal composition of 3% alginate and 2% alginate-sulfate. We envision that bio-inks displaying prolonged interactions with growth factors will be useful for tissue engineering applications including bone regeneration.
Collapse
Affiliation(s)
- Jisun Park
- School of Materials Science and Engineering and Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, 123 Cheondam-gwagiro, Buk-gu, Gwangju 500-712, Republic of Korea; Nano Convergence & Manufacturing Systems, Korea Institute of Machinery and Materials (KIMM), 156 Gajeongbuk-ro, Yuseong-gu, Daejeon 304-343, Republic of Korea
| | - Su Jeong Lee
- Nano Convergence & Manufacturing Systems, Korea Institute of Machinery and Materials (KIMM), 156 Gajeongbuk-ro, Yuseong-gu, Daejeon 304-343, Republic of Korea
| | - Hwangjae Lee
- School of Materials Science and Engineering and Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, 123 Cheondam-gwagiro, Buk-gu, Gwangju 500-712, Republic of Korea
| | - Su A Park
- Nano Convergence & Manufacturing Systems, Korea Institute of Machinery and Materials (KIMM), 156 Gajeongbuk-ro, Yuseong-gu, Daejeon 304-343, Republic of Korea.
| | - Jae Young Lee
- School of Materials Science and Engineering and Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, 123 Cheondam-gwagiro, Buk-gu, Gwangju 500-712, Republic of Korea.
| |
Collapse
|
249
|
Ong CS, Nam L, Ong K, Krishnan A, Huang CY, Fukunishi T, Hibino N. 3D and 4D Bioprinting of the Myocardium: Current Approaches, Challenges, and Future Prospects. BIOMED RESEARCH INTERNATIONAL 2018; 2018:6497242. [PMID: 29850546 PMCID: PMC5937623 DOI: 10.1155/2018/6497242] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 03/04/2018] [Accepted: 03/15/2018] [Indexed: 12/19/2022]
Abstract
3D and 4D bioprinting of the heart are exciting notions in the modern era. However, myocardial bioprinting has proven to be challenging. This review outlines the methods, materials, cell types, issues, challenges, and future prospects in myocardial bioprinting. Advances in 3D bioprinting technology have significantly improved the manufacturing process. While scaffolds have traditionally been utilized, 3D bioprinters, which do not require scaffolds, are increasingly being employed. Improved understanding of the cardiac cellular composition and multiple strategies to tackle the issues of vascularization and viability had led to progress in this field. In vivo studies utilizing small animal models have been promising. 4D bioprinting is a new concept that has potential to advance the field of 3D bioprinting further by incorporating the fourth dimension of time. Clinical translation will require multidisciplinary collaboration to tackle the pertinent issues facing this field.
Collapse
Affiliation(s)
- Chin Siang Ong
- Division of Cardiac Surgery, Johns Hopkins Hospital, Baltimore, MD, USA
- Division of Cardiology, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Lucy Nam
- Division of Cardiac Surgery, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Kingsfield Ong
- Department of Cardiac, Thoracic and Vascular Surgery, National University Heart Centre, Singapore
| | - Aravind Krishnan
- Division of Cardiac Surgery, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Chen Yu Huang
- Division of Cardiology, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Takuma Fukunishi
- Division of Cardiac Surgery, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Narutoshi Hibino
- Division of Cardiac Surgery, Johns Hopkins Hospital, Baltimore, MD, USA
| |
Collapse
|
250
|
Methotrexate loaded alginate microparticles and effect of Ca2+ post-crosslinking: An in vitro physicochemical and biological evaluation. Int J Biol Macromol 2018; 110:294-307. [DOI: 10.1016/j.ijbiomac.2017.10.148] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 09/28/2017] [Accepted: 10/22/2017] [Indexed: 12/18/2022]
|