201
|
Yaron JR, Zhang L, Guo Q, Awo EA, Burgin M, Schutz LN, Zhang N, Kilbourne J, Daggett-Vondras J, Lowe KM, Lucas AR. Recombinant Myxoma Virus-Derived Immune Modulator M-T7 Accelerates Cutaneous Wound Healing and Improves Tissue Remodeling. Pharmaceutics 2020; 12:E1003. [PMID: 33105865 PMCID: PMC7690590 DOI: 10.3390/pharmaceutics12111003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/16/2020] [Accepted: 10/21/2020] [Indexed: 12/26/2022] Open
Abstract
Complex dermal wounds represent major medical and financial burdens, especially in the context of comorbidities such as diabetes, infection and advanced age. New approaches to accelerate and improve, or "fine tune" the healing process, so as to improve the quality of cutaneous wound healing and management, are the focus of intense investigation. Here, we investigate the topical application of a recombinant immune modulating protein which inhibits the interactions of chemokines with glycosaminoglycans, reducing damaging or excess inflammation responses in a splinted full-thickness excisional wound model in mice. M-T7 is a 37 kDa-secreted, virus-derived glycoprotein that has demonstrated therapeutic efficacy in numerous animal models of inflammatory immunopathology. Topical treatment with recombinant M-T7 significantly accelerated wound healing when compared to saline treatment alone. Healed wounds exhibited properties of improved tissue remodeling, as determined by collagen maturation. M-T7 treatment accelerated the rate of peri-wound angiogenesis in the healing wounds with increased levels of TNF, VEGF and CD31. The immune cell response after M-T7 treatment was associated with a retention of CCL2 levels, and increased abundances of arginase-1-expressing M2 macrophages and CD4 T cells. Thus, topical treatment with recombinant M-T7 promotes a pro-resolution environment in healing wounds, and has potential as a novel treatment approach for cutaneous tissue repair.
Collapse
Affiliation(s)
- Jordan R. Yaron
- Center for Personalized Diagnostics and Center for Immunotherapy, Vaccines and Virotherapy, The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; (J.R.Y.); (Q.G.); (E.A.A.); (M.B.); (L.N.S.); (N.Z.)
| | - Liqiang Zhang
- Center for Personalized Diagnostics and Center for Immunotherapy, Vaccines and Virotherapy, The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; (J.R.Y.); (Q.G.); (E.A.A.); (M.B.); (L.N.S.); (N.Z.)
| | - Qiuyun Guo
- Center for Personalized Diagnostics and Center for Immunotherapy, Vaccines and Virotherapy, The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; (J.R.Y.); (Q.G.); (E.A.A.); (M.B.); (L.N.S.); (N.Z.)
| | - Enkidia A. Awo
- Center for Personalized Diagnostics and Center for Immunotherapy, Vaccines and Virotherapy, The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; (J.R.Y.); (Q.G.); (E.A.A.); (M.B.); (L.N.S.); (N.Z.)
| | - Michelle Burgin
- Center for Personalized Diagnostics and Center for Immunotherapy, Vaccines and Virotherapy, The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; (J.R.Y.); (Q.G.); (E.A.A.); (M.B.); (L.N.S.); (N.Z.)
| | - Lauren N. Schutz
- Center for Personalized Diagnostics and Center for Immunotherapy, Vaccines and Virotherapy, The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; (J.R.Y.); (Q.G.); (E.A.A.); (M.B.); (L.N.S.); (N.Z.)
| | - Nathan Zhang
- Center for Personalized Diagnostics and Center for Immunotherapy, Vaccines and Virotherapy, The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; (J.R.Y.); (Q.G.); (E.A.A.); (M.B.); (L.N.S.); (N.Z.)
| | - Jacquelyn Kilbourne
- Department of Animal Care and Technologies, Arizona State University, Tempe, AZ 85287, USA; (J.K.); (J.D.-V.); (K.M.L.)
| | - Juliane Daggett-Vondras
- Department of Animal Care and Technologies, Arizona State University, Tempe, AZ 85287, USA; (J.K.); (J.D.-V.); (K.M.L.)
| | - Kenneth M. Lowe
- Department of Animal Care and Technologies, Arizona State University, Tempe, AZ 85287, USA; (J.K.); (J.D.-V.); (K.M.L.)
| | - Alexandra R. Lucas
- Center for Personalized Diagnostics and Center for Immunotherapy, Vaccines and Virotherapy, The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; (J.R.Y.); (Q.G.); (E.A.A.); (M.B.); (L.N.S.); (N.Z.)
| |
Collapse
|
202
|
Shen Q, Reedijk M. Notch Signaling and the Breast Cancer Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1287:183-200. [PMID: 33034033 DOI: 10.1007/978-3-030-55031-8_12] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Notch promotes breast cancer progression through tumor initiating cell maintenance, tumor cell fate specification, proliferation, survival, and motility. In addition, Notch is recognized as a decisive mechanism in regulating various juxtacrine and paracrine communications in the tumor microenvironment (TME). In this chapter, we review recent studies on stress-mediated Notch activation within the TME and sequelae such as angiogenesis, extracellular matrix remodeling, changes in the innate and adaptive immunophenotype, and therapeutic perspectives.
Collapse
Affiliation(s)
- Qiang Shen
- Department of Surgical Oncology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Michael Reedijk
- Department of Surgical Oncology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.
| |
Collapse
|
203
|
Wei X, Valenzuela NM, Rossetti M, Sosa RA, Nevarez-Mejia J, Fishbein GA, Mulder A, Dhar J, Keslar KS, Baldwin WM, Fairchild RL, Hou J, Reed EF. Antibody-induced vascular inflammation skews infiltrating macrophages to a novel remodeling phenotype in a model of transplant rejection. Am J Transplant 2020; 20:2686-2702. [PMID: 32320528 PMCID: PMC7529968 DOI: 10.1111/ajt.15934] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/15/2020] [Accepted: 04/07/2020] [Indexed: 01/25/2023]
Abstract
HLA donor-specific antibodies (DSAs) binding to vascular endothelial cells of the allograft trigger inflammation, vessel injury, and antibody-mediated rejection (AMR). Accumulation of intragraft-recipient macrophages is a histological characteristic of AMR, which portends worse outcome. HLA class I (HLA I) DSAs enhance monocyte recruitment by activating endothelial cells and engaging FcγRs, but the DSA-activated donor endothelial influence on macrophage differentiation is unknown. In this study, we explored the consequence of DSA-activated endothelium on infiltrating monocyte differentiation. Here we show that cardiac allografts from murine recipients treated with MHC I DSA upregulated genes related to monocyte transmigration and Fc receptor stimulation. Human monocytes co-cultured with HLA I IgG-stimulated primary human endothelium promoted monocyte differentiation into CD68+ CD206+ CD163+ macrophages (M(HLA I IgG)), whereas HLA I F(ab')2 stimulated endothelium solely induced higher CD206 (M(HLA I F(ab')2 )). Both macrophage subtypes exhibited significant changes in discrete cytokines/chemokines and unique gene expression profiles. Cross-comparison of gene transcripts between murine DSA-treated cardiac allografts and human co-cultured macrophages identified overlapping genes. These findings uncover the role of HLA I DSA-activated endothelium in monocyte differentiation, and point to a novel, remodeling phenotype of infiltrating macrophages that may contribute to vascular injury.
Collapse
Affiliation(s)
- Xuedong Wei
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, California
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Nicole M. Valenzuela
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Maura Rossetti
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Rebecca A. Sosa
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Jessica Nevarez-Mejia
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Gregory A. Fishbein
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Arend Mulder
- Department of Immunohaematology and Bloodtransfusion, Leiden University Medical Center, Leiden, Netherlands
| | - Jayeeta Dhar
- Lerner Research Institute and Transplant Center, Cleveland Clinic, Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Karen S. Keslar
- Lerner Research Institute and Transplant Center, Cleveland Clinic, Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - William M. Baldwin
- Lerner Research Institute and Transplant Center, Cleveland Clinic, Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Robert L. Fairchild
- Lerner Research Institute and Transplant Center, Cleveland Clinic, Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Jianquan Hou
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Elaine F. Reed
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, California
| |
Collapse
|
204
|
Miyamoto Y, Schirripa M, Suenaga M, Cao S, Zhang W, Okazaki S, Berger MD, Matsusaka S, Yang D, Ning Y, Baba H, Loupakis F, Lonardi S, Pietrantonio F, Borelli B, Cremolini C, Yamaguchi T, Lenz HJ. A polymorphism in the cachexia-associated gene INHBA predicts efficacy of regorafenib in patients with refractory metastatic colorectal cancer. PLoS One 2020; 15:e0239439. [PMID: 32970737 PMCID: PMC7514061 DOI: 10.1371/journal.pone.0239439] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 09/05/2020] [Indexed: 01/06/2023] Open
Abstract
Activin/myostatin signaling has a critical role not only in cachexia but also in tumor angiogenesis. Cachexia is a frequent complication among patients with advanced cancer and heavily pretreated patients. We aimed to evaluate the prognostic significance of cachexia-associated genetic variants in refractory metastatic colorectal cancer (mCRC) patients treated with regorafenib. Associations between twelve single nucleotide polymorphisms in 8 genes (INHBA, MSTN, ALK4, TGFBR1, ALK7, ACVR2B, SMAD2, FOXO3) and clinical outcome were evaluated in mCRC patients of three cohorts: a discovery cohort of 150 patients receiving regorafenib, a validation cohort of 80 patients receiving regorafenib and a control cohort of 128 receiving TAS-102. In the discovery cohort, patients with any G variant in FOXO3 rs12212067 had a significantly lower response rate (P = 0.031) and overall survival (OS) than those with a T/T in univariate analysis (4.5 vs. 7.6 months, hazard ratio [HR] = 1.63, 95% confidence interval [CI] = 1.09-2.46, P = 0.012). Among female patients, those with any G variant in INHBA rs2237432 had a significantly longer OS than those with an A/A in both univariate (7.6 vs. 4.3 months, HR = 0.57, 95%CI = 0.34-0.95, P = 0.021) and multivariable (HR = 0.53, 95%CI = 0.29-0.94, adjusted P = 0.031) analysis. This association was confirmed in female patients of the validation cohort, though without statistical significance (P = 0.059). Conversely, female patients with any G allele in the control group receiving TAS-102 did not show a longer OS. This was the first study evaluating the associations between polymorphisms in cachexia-associated genes and outcomes in refractory mCRC patients treated with regorafenib. Further studies should be conducted to confirm these associations.
Collapse
Affiliation(s)
- Yuji Miyamoto
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America
| | - Marta Schirripa
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America
| | - Mitsukuni Suenaga
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America
| | - Shu Cao
- Department of Preventive Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America
| | - Wu Zhang
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America
| | - Satoshi Okazaki
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America
| | - Martin D. Berger
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America
| | - Satoshi Matsusaka
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America
| | - Dongyun Yang
- Department of Preventive Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America
| | - Yan Ning
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Fotios Loupakis
- Unit of Medical Oncology 1, Department of Clinical and Experimental Oncology, Istituto Oncologico Veneto, IRCCS, Padua, Italy
| | - Sara Lonardi
- Unit of Medical Oncology 1, Department of Clinical and Experimental Oncology, Istituto Oncologico Veneto, IRCCS, Padua, Italy
| | - Filippo Pietrantonio
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Beatrice Borelli
- Polo Oncologico, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Chiara Cremolini
- Polo Oncologico, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Toshiharu Yamaguchi
- Department of Gastroenterological Surgery, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Heinz-Josef Lenz
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America
| |
Collapse
|
205
|
Shu Y, Cheng P. Targeting tumor-associated macrophages for cancer immunotherapy. Biochim Biophys Acta Rev Cancer 2020; 1874:188434. [PMID: 32956767 DOI: 10.1016/j.bbcan.2020.188434] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 09/07/2020] [Accepted: 09/07/2020] [Indexed: 02/07/2023]
Abstract
Macrophages are important effector cells of the innate immune system and are also major components of the tumor microenvironment (TME). Macrophages that are abundant in the TME are called tumor-associated macrophages (TAMs). As TAMs promote strong tumor angiogenesis and support tumor cell survival, they are closely related to tumor growth. Several studies have demonstrated that reducing the density or effects of TAMs can inhibit the growth of tumors, making them targets for cancer immunotherapy, which has become a research hot spot. Several clinical and preclinical trials have studied drugs that inhibit the effects of and reduce the population of phagocytes that target TAMs achieve cancer immunotherapy. In this paper, we summarize the various methods of targeting TAMs for tumor immunotherapy, focusing on TAM mechanisms, sources, and polarization.
Collapse
Affiliation(s)
- Yongheng Shu
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Ping Cheng
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PR China.
| |
Collapse
|
206
|
Welc SS, Wehling-Henricks M, Antoun J, Ha TT, Tous I, Tidball JG. Differential Effects of Myeloid Cell PPARδ and IL-10 in Regulating Macrophage Recruitment, Phenotype, and Regeneration following Acute Muscle Injury. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 205:1664-1677. [PMID: 32817369 PMCID: PMC7484367 DOI: 10.4049/jimmunol.2000247] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 07/21/2020] [Indexed: 12/17/2022]
Abstract
Changes in macrophage phenotype in injured muscle profoundly influence regeneration. In particular, the shift of macrophages from a proinflammatory (M1 biased) phenotype to a proregenerative (M2 biased) phenotype characterized by expression of CD206 and CD163 is essential for normal repair. According to the current canonical mechanism regulating for M1/M2 phenotype transition, signaling through PPARδ is necessary for obtaining the M2-biased phenotype. Our findings confirm that the murine myeloid cell-targeted deletion of Ppard reduces expression in vitro of genes that are activated in M2-biased macrophages; however, the mutation in mice in vivo increased numbers of CD206+ M2-biased macrophages and did not reduce the expression of phenotypic markers of M2-biased macrophages in regenerating muscle. Nevertheless, the mutation impaired CCL2-mediated chemotaxis of macrophages and slowed revascularization of injured muscle. In contrast, null mutation of IL-10 diminished M2-biased macrophages but produced no defects in muscle revascularization. Our results provide two significant findings. First, they illustrate that mechanisms that regulate macrophage phenotype transitions in vitro are not always predictive of mechanisms that are most important in vivo. Second, they show that mechanisms that regulate macrophage phenotype transitions differ in different in vivo environments.
Collapse
Affiliation(s)
- Steven S Welc
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Michelle Wehling-Henricks
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095
| | - Jacqueline Antoun
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095
| | - Tracey T Ha
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095
| | - Isabella Tous
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095
| | - James G Tidball
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095;
- Molecular, Cellular and Integrative Physiology Program, University of California, Los Angeles, Los Angeles, CA 90095; and
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095
| |
Collapse
|
207
|
Zhou Y, Li J, Han B, Zhong R, Zhong H. Schwann cells promote lung cancer proliferation by promoting the M2 polarization of macrophages. Cell Immunol 2020; 357:104211. [PMID: 32977156 DOI: 10.1016/j.cellimm.2020.104211] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/13/2020] [Accepted: 08/31/2020] [Indexed: 12/13/2022]
Abstract
The interplay between immune cells and tumor cells determines the fate of tumorigenesis. Targeting the abnormal immune response of tumors has been recently achieved great success in some patients. Emerging evidence demonstrated the nervous system plays vital roles in immune regulation, but if the nervous system affects the immune-tumor response and the possible mechanism involved remain largely unexplored. Here, we report that Schwann cells, the major component of the peripheral nervous system (PNS), induce M2 polarization of macrophages by secreting cytokines and chemokines, and these polarized macrophages promote the proliferation of lung cancer cells. We cocultured peripheral blood mononuclear cells (PBMCs) with Schwann cells or treated PBMCs with the culture supernatant of Schwann cells. We found that both treatments induced M2 polarization of the macrophages in peripheral blood mononuclear cell cultures. We performed a bioinformatic analysis of the transcriptome of Schwann cells and analyzed cytokines and chemokines by ELISAs. We found that Schwann cells secreted high levels of CCL2, CXCL5, CXCL12, and CXCL8. CCL2 promotes the M2 polarization of macrophages. Furthermore, we isolated CD14-positive macrophages that were cocultured with the Schwann cells and treated A549 and H1299 lung cancer cells with these macrophages. We found that the Schwann cell-polarized macrophages increased the proliferation of the lung cancer cells. Our study sheds new light on the involvement of the PNS in the regulation of tumor progression via a "Schwann cell"-"immune cell"-"tumor cell" axis.
Collapse
Affiliation(s)
- Yan Zhou
- Department of Pulmonary Disease, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jingwen Li
- Department of Pulmonary Disease, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Baohui Han
- Department of Pulmonary Disease, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Runbo Zhong
- Department of Pulmonary Disease, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China.
| | - Hua Zhong
- Department of Pulmonary Disease, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
208
|
Caligiuri A, Pastore M, Lori G, Raggi C, Di Maira G, Marra F, Gentilini A. Role of Chemokines in the Biology of Cholangiocarcinoma. Cancers (Basel) 2020; 12:cancers12082215. [PMID: 32784743 PMCID: PMC7463556 DOI: 10.3390/cancers12082215] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/03/2020] [Accepted: 08/05/2020] [Indexed: 02/07/2023] Open
Abstract
Cholangiocarcinoma (CCA), a heterogeneous tumor with poor prognosis, can arise at any level in the biliary tree. It may derive from epithelial cells in the biliary tracts and peribiliary glands and possibly from progenitor cells or even hepatocytes. Several risk factors are responsible for CCA onset, however an inflammatory milieu nearby the biliary tree represents the most common condition favoring CCA development. Chemokines play a key role in driving the immunological response upon liver injury and may sustain tumor initiation and development. Chemokine receptor-dependent pathways influence the interplay among various cellular components, resulting in remodeling of the hepatic microenvironment towards a pro-inflammatory, pro-fibrogenic, pro-angiogenic and pre-neoplastic setting. Moreover, once tumor develops, chemokine signaling may influence its progression. Here we review the role of chemokines in the regulation of CCA development and progression, and the modulation of angiogenesis, metastasis and immune control. The potential role of chemokines and their receptors as possible biomarkers and/or therapeutic targets for hepatobiliary cancer is also discussed.
Collapse
Affiliation(s)
| | | | | | | | | | - Fabio Marra
- Correspondence: (F.M.); (A.G.); Tel.: +39-055-2758095 or +39-055-2758498 or +39-055-2758499 (F.M.); +39-055-2751801 (A.G.)
| | - Alessandra Gentilini
- Correspondence: (F.M.); (A.G.); Tel.: +39-055-2758095 or +39-055-2758498 or +39-055-2758499 (F.M.); +39-055-2751801 (A.G.)
| |
Collapse
|
209
|
Gawriluk TR, Simkin J, Hacker CK, Kimani JM, Kiama SG, Ezenwa VO, Seifert AW. Complex Tissue Regeneration in Mammals Is Associated With Reduced Inflammatory Cytokines and an Influx of T Cells. Front Immunol 2020; 11:1695. [PMID: 32849592 PMCID: PMC7427103 DOI: 10.3389/fimmu.2020.01695] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/25/2020] [Indexed: 12/12/2022] Open
Abstract
While mammals tend to repair injuries, other adult vertebrates like salamanders and fish regenerate damaged tissue. One prominent hypothesis offered to explain an inability to regenerate complex tissue in mammals is a bias during healing toward strong adaptive immunity and inflammatory responses. Here we directly test this hypothesis by characterizing part of the immune response during regeneration in spiny mice (Acomys cahirinus and Acomys percivali) vs. fibrotic repair in Mus musculus. By directly quantifying cytokines during tissue healing, we found that fibrotic repair was associated with a greater release of pro-inflammatory cytokines (i.e., IL-6, CCL2, and CXCL1) during acute inflammation in the wound microenvironment. However, reducing inflammation via COX-2 inhibition was not sufficient to reduce fibrosis or induce a regenerative response, suggesting that inflammatory strength does not control how an injury heals. Although regeneration was associated with lower concentrations of many inflammatory markers, we measured a comparatively larger influx of T cells into regenerating ear tissue and detected a local increase in the T cell associated cytokines IL-12 and IL-17 during the proliferative phase of regeneration. Taken together, our data demonstrate that a strong adaptive immune response is not antagonistic to regeneration and that other mechanisms likely explain the distribution of regenerative ability in vertebrates.
Collapse
Affiliation(s)
- Thomas R. Gawriluk
- Department of Biology, University of Kentucky, Lexington, KY, United States
| | - Jennifer Simkin
- Department of Biology, University of Kentucky, Lexington, KY, United States
| | - Corin K. Hacker
- Department of Biology, University of Kentucky, Lexington, KY, United States
| | - John M. Kimani
- Department of Veterinary Anatomy and Physiology, University of Nairobi, Nairobi, Kenya
| | - Stephen G. Kiama
- Department of Veterinary Anatomy and Physiology, University of Nairobi, Nairobi, Kenya
| | - Vanessa O. Ezenwa
- Odum School of Ecology, University of Georgia, Athens, GA, United States
- Department of Infectious Disease, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Ashley W. Seifert
- Department of Biology, University of Kentucky, Lexington, KY, United States
- Department of Veterinary Anatomy and Physiology, University of Nairobi, Nairobi, Kenya
| |
Collapse
|
210
|
Zhong Q, Fang Y, Lai Q, Wang S, He C, Li A, Liu S, Yan Q. CPEB3 inhibits epithelial-mesenchymal transition by disrupting the crosstalk between colorectal cancer cells and tumor-associated macrophages via IL-6R/STAT3 signaling. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:132. [PMID: 32653013 PMCID: PMC7353816 DOI: 10.1186/s13046-020-01637-4] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 07/01/2020] [Indexed: 02/08/2023]
Abstract
Background Crosstalk between cancer cells and tumor-associated macrophages (TAMs) mediates tumor progression in colorectal cancer (CRC). Cytoplasmic polyadenylation element binding protein 3 (CPEB3) has been shown to exhibit tumor-suppressive role in CRC. Methods The expression of CPEB3, CD68, CD86 and CD163 was determined in CRC tissues. SW480 or HCT116 cells overexpressing CPEB3 and LoVo or RKO cells with CPEB3 knockdown were constructed. Stably transfected CRC cells were co-cultured with THP-1 macrophages to determine the malignant phenotype of CRC cells, macrophage polarization, and secretory signals. The inhibition of CPEB3 on tumor progression and M2-like TAM polarization was confirmed in nude mice. Results Decreased CPEB3 expression in CRC was associated with fewer CD86+ TAMs and more CD163+ TAMs. CPEB3 knockdown in CRC cells increased the number of CD163+ TAMs and the expression of IL1RA, IL-6, IL-4 and IL-10 in TAM supernatants. TAMs enhanced CRC cell proliferation and invasion via IL-6, and then activated the IL-6R/STAT3 pathway in CRC cells. However, CPEB3 reduced the IL-6R protein levels by directly binding to IL-6R mRNA, leading to decreased phosphorylated-STAT3 expression in CRC cells. CCL2 was significantly increased in CPEB3 knockdown cells, while CCL2 antibody treatment rescued the effect of CPEB3 knockdown in promoting CD163+ TAM polarization. Eventually, we confirmed that CPEB3 inhibits tumor progression and M2-like TAM polarization in vivo. Conclusions CPEB3 is involved in the crosstalk between CRC cells and TAMs by targeting IL-6R/STAT3 signaling.
Collapse
Affiliation(s)
- Qian Zhong
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, 1838th North Guangzhou Avenue, Guangzhou, 510515, China
| | - Yuxin Fang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, 1838th North Guangzhou Avenue, Guangzhou, 510515, China
| | - Qiuhua Lai
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, 1838th North Guangzhou Avenue, Guangzhou, 510515, China
| | - Shanci Wang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, 1838th North Guangzhou Avenue, Guangzhou, 510515, China
| | - Chengcheng He
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, 1838th North Guangzhou Avenue, Guangzhou, 510515, China
| | - Aimin Li
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, 1838th North Guangzhou Avenue, Guangzhou, 510515, China.
| | - Side Liu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, 1838th North Guangzhou Avenue, Guangzhou, 510515, China.
| | - Qun Yan
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, 1838th North Guangzhou Avenue, Guangzhou, 510515, China.
| |
Collapse
|
211
|
Arnaud-Sampaio VF, Rabelo ILA, Bento CA, Glaser T, Bezerra J, Coutinho-Silva R, Ulrich H, Lameu C. Using Cytometry for Investigation of Purinergic Signaling in Tumor-Associated Macrophages. Cytometry A 2020; 97:1109-1126. [PMID: 32633884 DOI: 10.1002/cyto.a.24035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/25/2020] [Accepted: 04/01/2020] [Indexed: 02/06/2023]
Abstract
Tumor-associated macrophages are widely recognized for their importance in guiding pro-tumoral or antitumoral responses. Mediating inflammation or immunosuppression, these cells support many key events in cancer progression: cell growth, chemotaxis, invasiveness, angiogenesis and cell death. The communication between cells in the tumor microenvironment strongly relies on the secretion and recognition of several molecules, including damage-associated molecular patterns (DAMPs), such as adenosine triphosphate (ATP). Extracellular ATP (eATP) and its degradation products act as signaling molecules and have extensively described roles in immune response and inflammation, as well as in cancer biology. These multiple functions highlight the purinergic system as a promising target to investigate the interplay between macrophages and cancer cells. Here, we reviewed purinergic signaling pathways connecting cancer cells and macrophages, a yet poorly investigated field. Finally, we present a new tool for the characterization of macrophage phenotype within the tumor. Image cytometry emerges as a cutting-edge tool, capable of providing a broad set of information on cell morphology, expression of specific markers, and its cellular or subcellular localization, preserving cell-cell interactions within the tumor section and providing high statistical strength in small-sized experiments. Thus, image cytometry allows deeper investigation of tumor heterogeneity and interactions between these cells. © 2020 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
| | - Izadora L A Rabelo
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Carolina A Bento
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Talita Glaser
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Jean Bezerra
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Robson Coutinho-Silva
- Laboratory of Immunophysiology, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Henning Ulrich
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Claudiana Lameu
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
212
|
Tsetsarkin KA, Acklin JA, Liu G, Kenney H, Teterina NL, Pletnev AG, Lim JK. Zika virus tropism during early infection of the testicular interstitium and its role in viral pathogenesis in the testes. PLoS Pathog 2020; 16:e1008601. [PMID: 32614902 PMCID: PMC7331987 DOI: 10.1371/journal.ppat.1008601] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 05/05/2020] [Indexed: 12/18/2022] Open
Abstract
Sexual transmission and persistence of Zika virus (ZIKV) in the testes pose new challenges for controlling virus outbreaks and developing live-attenuated vaccines. It has been shown that testicular infection of ZIKV is initiated in the testicular interstitium, followed by spread of the virus in the seminiferous tubules. This leads to testicular damage and/or viral dissemination into the epididymis and eventually into semen. However, it remains unknown which cell types are targeted by ZIKV in the testicular interstitium, and what is the specific order of infectious events leading to ZIKV invasion of the seminiferous tubules. Here, we demonstrate that interstitial leukocytes expressing mir-511-3p microRNA are the initial targets of ZIKV in the testes, and infection of mir-511-3p-expressing cells in the testicular interstitium is necessary for downstream infection of the seminiferous tubules. Mir-511-3p is expressed concurrently with CD206, a marker of lineage 2 (M2) macrophages and monocyte derived dendritic cells (moDCs). Selective restriction of ZIKV infection of CD206-expressing M2 macrophages/moDCs results in the attenuation of macrophage-associated inflammatory responses in vivo and prevents the disruption of the Sertoli cell barrier in vitro. Finally, we show that targeting of viral genome for mir-511-3p significantly attenuates early ZIKV replication not only in the testes, but also in many peripheral organs, including spleen, epididymis, and pancreas. This incriminates M2 macrophages/moDCs as important targets for visceral ZIKV replication following hematogenous dissemination of the virus from the site of infection.
Collapse
Affiliation(s)
- Konstantin A. Tsetsarkin
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Joshua A. Acklin
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Guangping Liu
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Heather Kenney
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Natalia L. Teterina
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Alexander G. Pletnev
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Jean K. Lim
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| |
Collapse
|
213
|
Luque-Martin R, Mander PK, Leenen PJM, Winther MPJ. Classic and new mediators for in vitro modelling of human macrophages. J Leukoc Biol 2020; 109:549-560. [PMID: 32592421 PMCID: PMC7984372 DOI: 10.1002/jlb.1ru0620-018r] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 02/06/2023] Open
Abstract
Macrophages are key immune cells in the activation and regulation of immune responses. These cells are present in all tissues under homeostatic conditions and in many disease settings. Macrophages can exhibit a wide range of phenotypes depending on local and systemic cues that drive the differentiation and activation process. Macrophage heterogeneity is also defined by their ontogeny. Tissue macrophages can either derive from circulating blood monocytes or are seeded as tissue-resident macrophages during embryonic development. In humans, the study of in vivo-generated macrophages is often difficult with laborious and cell-changing isolation procedures. Therefore, translatable, reproducible, and robust in vitro models for human macrophages in health and disease are necessary. Most of the methods for studying monocyte-derived macrophages are based on the use of limited factors to differentiate the monocytes into macrophages. Current knowledge shows that the in vivo situation is more complex, and a wide range of molecules in the tissue microenvironment promote and impact on monocyte to macrophage differentiation as well as activation. In this review, macrophage heterogeneity is discussed and the human in vitro models that can be applied for research, especially for monocyte-derived macrophages. We also focus on new molecules (IL-34, platelet factor 4, etc.) used to generate macrophages expressing different phenotypes.
Collapse
Affiliation(s)
- Rosario Luque-Martin
- Amsterdam University Medical Centers, University of Amsterdam, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | | | - Pieter J M Leenen
- Erasmus University Medical Center, Department of Immunology, Rotterdam, The Netherlands
| | - Menno P J Winther
- Amsterdam University Medical Centers, University of Amsterdam, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands.,Institute for Cardiovascular Prevention (IPEK), Munich, Germany
| |
Collapse
|
214
|
Oweida AJ, Darragh L, Phan A, Binder D, Bhatia S, Mueller A, Court BV, Milner D, Raben D, Woessner R, Heasley L, Nemenoff R, Clambey E, Karam SD. STAT3 Modulation of Regulatory T Cells in Response to Radiation Therapy in Head and Neck Cancer. J Natl Cancer Inst 2020; 111:1339-1349. [PMID: 30863843 DOI: 10.1093/jnci/djz036] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/25/2019] [Accepted: 03/11/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Radioresistance represents a major problem in the treatment of head and neck cancer (HNC) patients. To improve response, understanding tumor microenvironmental factors that contribute to radiation resistance is important. Regulatory T cells (Tregs) are enriched in numerous cancers and can dampen the response to radiation by creating an immune-inhibitory microenvironment. The purpose of this study was to investigate mechanisms of Treg modulation by radiation in HNC. METHODS We utilized an orthotopic mouse model of HNC. Anti-CD25 was used for Treg depletion. Image-guided radiation was delivered to a dose of 10 Gy. Flow cytometry was used to analyze abundance and function of intratumoral immune cells. Enzyme-linked immunosorbent assay was performed to assess secreted factors. For immune-modulating therapies, anti-PD-L1, anti-CTLA-4, and STAT3 antisense oligonucleotide (ASO) were used. All statistical tests were two-sided. RESULTS Treatment with anti-CD25 and radiation led to tumor eradication (57.1%, n = 4 of 7 mice), enhanced T-cell cytotoxicity compared with RT alone (CD4 effector T cells [Teff]: RT group mean = 5.37 [ 0.58] vs RT + αCD25 group mean =10.71 [0.67], P = .005; CD8 Teff: RT group mean = 9.98 [0.81] vs RT + αCD25 group mean =16.88 [2.49], P = .01) and induced tumor antigen-specific memory response (100.0%, n = 4 mice). In contrast, radiation alone or when combined with anti-CTLA4 did not lead to durable tumor control (0.0%, n = 7 mice). STAT3 inhibition in combination with radiation, but not as a single agent, improved tumor growth delay, decreased Tregs, myeloid-derived suppressor cells, and M2 macrophages and enhanced effector T cells and M1 macrophages. Experiments in nude mice inhibited the benefit of STAT3 ASO and radiation. CONCLUSION We propose that STAT3 inhibition is a viable and potent therapeutic target against Tregs. Our data support the design of clinical trials integrating STAT3 ASO in the standard of care for cancer patients receiving radiation.
Collapse
|
215
|
Neophytou CM, Pierides C, Christodoulou MI, Costeas P, Kyriakou TC, Papageorgis P. The Role of Tumor-Associated Myeloid Cells in Modulating Cancer Therapy. Front Oncol 2020; 10:899. [PMID: 32656079 PMCID: PMC7325995 DOI: 10.3389/fonc.2020.00899] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/07/2020] [Indexed: 12/20/2022] Open
Abstract
Myeloid cells include various cellular subtypes that are distinguished into mononuclear and polymorphonuclear cells, derived from either common myeloid progenitor cells (CMPs) or myeloid stem cells. They play pivotal roles in innate immunity since, following invasion by pathogens, myeloid cells are recruited and initiate phagocytosis and secretion of inflammatory cytokines into local tissues. Moreover, mounting evidence suggests that myeloid cells may also regulate cancer development by infiltrating the tumor to directly interact with cancer cells or by affecting the tumor microenvironment. Importantly, mononuclear phagocytes, including macrophages and dendritic cells (DCs), can have either a positive or negative impact on the efficacy of chemotherapy, radiotherapy as well as targeted anti-cancer therapies. Tumor-associated macrophages (TAMs), profusely found in the tumor stroma, can promote resistance to chemotherapeutic drugs, such as Taxol and Paclitaxel, whereas the suppression of TAMs can lead to an improved radiotherapy outcome. On the contrary, the presence of TAMs may be beneficial for targeted therapies as they can facilitate the accumulation of large quantities of nanoparticles carrying therapeutic compounds. Tumor infiltrating DCs, however, are generally thought to enhance cytotoxic therapies, including those using anthracyclines. This review focuses on the role of tumor-infiltrating and stroma myeloid cells in modulating tumor responses to various treatments. We herein report the impact of myeloid cells in a number of therapeutic approaches across a wide range of malignancies, as well as the efforts toward the elimination of myeloid cells or the exploitation of their presence for the enhancement of therapeutic efficacy against cancer.
Collapse
Affiliation(s)
- Christiana M Neophytou
- European University Research Centre, Nicosia, Cyprus.,Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus
| | - Chryso Pierides
- The Center for the Study of Haematological Malignancies, Nicosia, Cyprus
| | | | - Paul Costeas
- The Center for the Study of Haematological Malignancies, Nicosia, Cyprus.,The Cyprus Cancer Research Institute, Nicosia, Cyprus
| | | | - Panagiotis Papageorgis
- European University Research Centre, Nicosia, Cyprus.,Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus
| |
Collapse
|
216
|
Sakamaki Y, Ozdemir J, Perez AD, Heidrick Z, Watson O, Tsuji M, Salmon C, Batta-Mpouma J, Azzun A, Lomonte V, Du Y, Stenken J, Woo-Kim J, Beyzavi MH. Maltotriose Conjugated Metal-Organic Frameworks for Selective Targeting and Photodynamic Therapy of Triple Negative Breast Cancer Cells and Tumor Associated Macrophages. ADVANCED THERAPEUTICS 2020; 3. [PMID: 33072859 DOI: 10.1002/adtp.202000029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Herein, we report a nano-MOF conjugated to maltotriose as a new DDS. MA-PCN-224-0.1Mn/0.9Zn showed its ability to target cancer and TAM. This novel MOF is an effective PDT agent and shows little dark toxicity, MA-PCN-224-0.1Mn/0.9Zn uptakes selectively into cancer cells. A well-suited size control methodology was used so that the nano-scaled MOFs may take advantage of the EPR effect. This development of a nano-scale MOF for PDT that is conjugated to a cancer targeting ligand represents a meaningful development for the use of MOFs as drug delivery systems.
Collapse
Affiliation(s)
- Yoshie Sakamaki
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - John Ozdemir
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Alda Diaz Perez
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Zachary Heidrick
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Olivia Watson
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Miu Tsuji
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Chirstopher Salmon
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Joseph Batta-Mpouma
- Department of Biological and Agricultural Engineering, Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Anthony Azzun
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Valerie Lomonte
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Yuchun Du
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Julie Stenken
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Jin Woo-Kim
- Department of Biological and Agricultural Engineering, Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - M Hassan Beyzavi
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| |
Collapse
|
217
|
Mola S, Foisy S, Boucher G, Major F, Beauchamp C, Karaky M, Goyette P, Lesage S, Rioux JD. A transcriptome-based approach to identify functional modules within and across primary human immune cells. PLoS One 2020; 15:e0233543. [PMID: 32469933 PMCID: PMC7259617 DOI: 10.1371/journal.pone.0233543] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 05/07/2020] [Indexed: 11/20/2022] Open
Abstract
Genome-wide transcriptomic analyses have provided valuable insight into fundamental biology and disease pathophysiology. Many studies have taken advantage of the correlation in the expression patterns of the transcriptome to infer a potential biologic function of uncharacterized genes, and multiple groups have examined the relationship between co-expression, co-regulation, and gene function on a broader scale. Given the unique characteristics of immune cells circulating in the blood, we were interested in determining whether it was possible to identify functional co-expression modules in human immune cells. Specifically, we sequenced the transcriptome of nine immune cell types from peripheral blood cells of healthy donors and, using a combination of global and targeted analyses of genes within co-expression modules, we were able to determine functions for these modules that were cell lineage-specific or shared among multiple cell lineages. In addition, our analyses identified transcription factors likely important for immune cell lineage commitment and/or maintenance.
Collapse
Affiliation(s)
- Saraï Mola
- Centre de recherche, Institut de cardiologie de Montréal, Montréal, Québec, Canada
| | - Sylvain Foisy
- Centre de recherche, Institut de cardiologie de Montréal, Montréal, Québec, Canada
| | - Gabrielle Boucher
- Centre de recherche, Institut de cardiologie de Montréal, Montréal, Québec, Canada
| | - François Major
- Unité de recherche en ingénierie des ARN, Institut de recherche en immunologie et en cancérologie, Montréal, Québec, Canada
- Département d’informatique et de recherche opérationnelle, Université de Montréal, Montréal, Québec, Canada
- Département de biochimie et médecine moléculaire, Université de Montréal, Montréal, Québec, Canada
| | - Claudine Beauchamp
- Centre de recherche, Institut de cardiologie de Montréal, Montréal, Québec, Canada
| | - Mohamad Karaky
- Centre de recherche, Institut de cardiologie de Montréal, Montréal, Québec, Canada
| | - Philippe Goyette
- Centre de recherche, Institut de cardiologie de Montréal, Montréal, Québec, Canada
| | - Sylvie Lesage
- Centre de recherche, Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, Québec, Canada
| | - John D. Rioux
- Centre de recherche, Institut de cardiologie de Montréal, Montréal, Québec, Canada
- Département de biochimie et médecine moléculaire, Université de Montréal, Montréal, Québec, Canada
- * E-mail:
| |
Collapse
|
218
|
Abstract
In the infarcted myocardium, cardiomyocyte necrosis triggers an intense inflammatory reaction that not only is critical for cardiac repair, but also contributes to adverse remodeling and to the pathogenesis of heart failure. Both CC and CXC chemokines are markedly induced in the infarcted heart, bind to endothelial glycosaminoglycans, and regulate leukocyte trafficking and function. ELR+ CXC chemokines (such as CXCL8) control neutrophil infiltration, whereas CC chemokines (such as CCL2) mediate recruitment of mononuclear cells. Moreover, some members of the chemokine family (such as CXCL10 and CXCL12) may mediate leukocyte-independent actions, directly modulating fibroblast and vascular cell function. This review manuscript discusses our understanding of the role of the chemokines in regulation of injury, repair, and remodeling following myocardial infarction. Although several chemokines may be promising therapeutic targets in patients with myocardial infarction, clinical implementation of chemokine-based therapeutics is hampered by the broad effects of the chemokines in both injury and repair.
Collapse
|
219
|
Lundberg R, Toft MF, Metzdorff SB, Hansen CHF, Licht TR, Bahl MI, Hansen AK. Human microbiota-transplanted C57BL/6 mice and offspring display reduced establishment of key bacteria and reduced immune stimulation compared to mouse microbiota-transplantation. Sci Rep 2020; 10:7805. [PMID: 32385373 PMCID: PMC7211022 DOI: 10.1038/s41598-020-64703-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 04/20/2020] [Indexed: 02/07/2023] Open
Abstract
Transplantation of germ-free (GF) mice with microbiota from mice or humans stimulates the intestinal immune system in disparate ways. We transplanted a human microbiota into GF C57BL/6 mice and a murine C57BL/6 microbiota into GF C57BL/6 mice and Swiss-Webster (SW) mice. Mice were bred to produce an offspring generation. 56% of the Operational Taxonomic Units (OTUs) present in the human donor microbiota established in the recipient mice, whereas 81% of the C57BL/6 OTUs established in the recipient C57BL/6 and SW mice. Anti-inflammatory bacteria such as Faecalibacterium and Bifidobacterium from humans were not transferred to mice. Expression of immune-related intestinal genes was lower in human microbiota-mice and not different between parent and offspring generation. Expression of intestinal barrier-related genes was slightly higher in human microbiota-mice. Cytokines and chemokines measured in plasma were differentially present in human and mouse microbiota-mice. Minor differences in microbiota and gene expression were found between transplanted mice of different genetics. It is concluded that important immune-regulating bacteria are lost when transplanting microbiota from humans to C57BL/6 mice, and that the established human microbiota is a weak stimulator of the murine immune system. The results are important for study design considerations in microbiota transplantation studies involving immunological parameters.
Collapse
Affiliation(s)
- Randi Lundberg
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1871, Frederiksberg C, Denmark.
- Internal Research and Development, Taconic Biosciences, 4623, Lille Skensved, Denmark.
- Chr. Hansen, 2970, Hoersholm, Denmark.
| | - Martin F Toft
- Internal Research and Development, Taconic Biosciences, 4623, Lille Skensved, Denmark
- QM Diagnostics, 6534, AT Nijmegen, The Netherlands
| | - Stine B Metzdorff
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1871, Frederiksberg C, Denmark
| | - Camilla H F Hansen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1871, Frederiksberg C, Denmark
| | - Tine R Licht
- National Food Institute, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Martin I Bahl
- National Food Institute, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Axel K Hansen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1871, Frederiksberg C, Denmark
| |
Collapse
|
220
|
Long W, Quan J, Liu Y, Li J, Gong Q, Jiang H. 7ND protein exerts inhibitory effects on both osteoclast differentiation in vitro and lipopolysaccharide‑induced bone erosion in vivo. Mol Med Rep 2020; 22:97-104. [PMID: 32377737 PMCID: PMC7248529 DOI: 10.3892/mmr.2020.11119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 02/25/2020] [Indexed: 11/29/2022] Open
Abstract
Excessive numbers of osteoclasts are responsible for inflammation-induced osteolysis. Identification of osteoclast-targeting agents may facilitate the development of a novel therapeutic approach for the treatment of pathological bone loss. Seven-amino acid truncated (7ND) protein, a mutant form of monocyte chemoattractant protein-1 (MCP-1), functions as a competitive inhibitor of MCP-1. However, the effects of 7ND protein on osteoclast differentiation remain unknown. Therefore, in the present study, the effects of 7ND protein on osteoclast differentiation induced by tumour necrosis factor superfamily member 11 were investigated. In the present study, 7ND protein inhibited the osteoclast differentiation of peripheral blood mononuclear cells without influencing cell proliferation. Furthermore, to evaluate the effects of 7ND protein in vivo, a lipopolysaccharide (LPS)-induced calvarial bone erosion animal model was established. The 7ND protein remarkably attenuated LPS-induced bone resorption, as assessed by micro-computed tomography and histological analysis. Taken together, the present results suggested the feasibility of local delivery of 7ND protein to mitigate osteoclast differentiation and LPS-induced osteolysis, which may represent a potential approach to treat inflammatory bone destruction.
Collapse
Affiliation(s)
- Weilin Long
- Department of Stomatology, The Third Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Jingjing Quan
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Yiwen Liu
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Jing Li
- Department of Stomatology, Affiliated Longhua People's Hospital, Southern Medical University, Shenzhen, Guangdong 518000, P.R. China
| | - Qimei Gong
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Hongwei Jiang
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| |
Collapse
|
221
|
Melcher V, Graf M, Interlandi M, Moreno N, de Faria FW, Kim SN, Kastrati D, Korbanka S, Alfert A, Gerß J, Meyer zu Hörste G, Hartmann W, Frühwald MC, Dugas M, Schüller U, Hasselblatt M, Albert TK, Kerl K. Macrophage-tumor cell interaction promotes ATRT progression and chemoresistance. Acta Neuropathol 2020; 139:913-936. [PMID: 31848709 DOI: 10.1007/s00401-019-02116-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/12/2019] [Accepted: 12/13/2019] [Indexed: 12/12/2022]
Abstract
Atypical teratoid/rhabdoid tumors (ATRT) are known for their heterogeneity concerning pathophysiology and outcome. However, predictive factors within distinct subgroups still need to be uncovered. Using multiplex immunofluorescent staining and single-cell RNA sequencing we unraveled distinct compositions of the immunological tumor microenvironment (TME) across ATRT subgroups. CD68+ cells predominantly infiltrate ATRT-SHH and ATRT-MYC and are a negative prognostic factor for patients' survival. Within the murine ATRT-MYC and ATRT-SHH TME, Cd68+ macrophages are core to intercellular communication with tumor cells. In ATRT-MYC distinct tumor cell phenotypes express macrophage marker genes. These cells are involved in the acquisition of chemotherapy resistance in our relapse xenograft mouse model. In conclusion, the tumor cell-macrophage interaction contributes to ATRT-MYC heterogeneity and potentially to tumor recurrence.
Collapse
|
222
|
Minopoli M, Sarno S, Di Carluccio G, Azzaro R, Costantini S, Fazioli F, Gallo M, Apice G, Cannella L, Rea D, Stoppelli MP, Boraschi D, Budillon A, Scotlandi K, De Chiara A, Carriero MV. Inhibiting Monocyte Recruitment to Prevent the Pro-Tumoral Activity of Tumor-Associated Macrophages in Chondrosarcoma. Cells 2020; 9:E1062. [PMID: 32344648 PMCID: PMC7226304 DOI: 10.3390/cells9041062] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/21/2020] [Accepted: 04/23/2020] [Indexed: 12/27/2022] Open
Abstract
Chondrosarcomas (CHS) are malignant cartilaginous neoplasms with diverse morphological features, characterized by resistance to chemo- and radiation therapies. In this study, we investigated the role of tumor-associated macrophages (TAM)s in tumor tissues from CHS patients by immunohistochemistry. Three-dimensional organotypic co-cultures were set up in order to evaluate the contribution of primary human CHS cells in driving an M2-like phenotype in monocyte-derived primary macrophages, and the capability of macrophages to promote growth and/or invasiveness of CHS cells. Finally, with an in vivo model of primary CHS cells engrafted in nude mice, we tested the ability of a potent peptide inhibitor of cell migration (Ac-d-Tyr-d-Arg-Aib-d-Arg-NH2, denoted RI-3) to reduce recruitment and infiltration of monocytes into CHS neoplastic lesions. We found a significant correlation between alternatively activated M2 macrophages and intratumor microvessel density in both conventional and dedifferentiated CHS human tissues, suggesting a link between TAM abundance and vascularization in CHS. In 3D and non-contact cu-culture models, soluble factors produced by CHS induced a M2-like phenotype in macrophages that, in turn, increased motility, invasion and matrix spreading of CHS cells. Finally, we present evidence that RI-3 successfully prevent both recruitment and infiltration of monocytes into CHS tissues, in nude mice.
Collapse
Affiliation(s)
- Michele Minopoli
- Neoplastic Progression Unit, Istituto Nazionale Tumori IRCCS ‘Fondazione G. Pascale’, Naples 80131, Italy; (M.M.); (G.D.C.)
| | - Sabrina Sarno
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Gioconda Di Carluccio
- Neoplastic Progression Unit, Istituto Nazionale Tumori IRCCS ‘Fondazione G. Pascale’, Naples 80131, Italy; (M.M.); (G.D.C.)
| | - Rosa Azzaro
- Transfusion Medicine Unit, Istituto Nazionale Tumori IRCCS ‘Fondazione G. Pascale’, 80131 Naples, Italy;
| | - Susan Costantini
- Experimental Pharmacology Unit, Istituto Nazionale Tumori IRCCS ‘Fondazione G. Pascale’, 80131 Naples, Italy; (S.C.); (A.B.)
| | - Flavio Fazioli
- Division of Musculoskeletal Surgery, Istituto Nazionale Tumori IRCCS ‘Fondazione G. Pascale’, 80131 Naples, Italy; (F.F.); (M.G.)
| | - Michele Gallo
- Division of Musculoskeletal Surgery, Istituto Nazionale Tumori IRCCS ‘Fondazione G. Pascale’, 80131 Naples, Italy; (F.F.); (M.G.)
| | - Gaetano Apice
- Division of Medical Oncology, Istituto Nazionale Tumori IRCCS ‘Fondazione G. Pascale’, 80131 Naples, Italy; (G.A.); (L.C.)
| | - Lucia Cannella
- Division of Medical Oncology, Istituto Nazionale Tumori IRCCS ‘Fondazione G. Pascale’, 80131 Naples, Italy; (G.A.); (L.C.)
| | - Domenica Rea
- Animal Facility, Istituto Nazionale Tumori IRCCS ‘Fondazione G. Pascale’, 80131 Naples, Italy;
| | | | - Diana Boraschi
- Institute of Biochemistry and Cell Biology, National Research Council, 80131 Naples, Italy;
| | - Alfredo Budillon
- Experimental Pharmacology Unit, Istituto Nazionale Tumori IRCCS ‘Fondazione G. Pascale’, 80131 Naples, Italy; (S.C.); (A.B.)
| | - Katia Scotlandi
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| | - Annarosaria De Chiara
- Pathology Unit, Istituto Nazionale Tumori IRCCS ‘Fondazione G. Pascale’, 80131 Naples, Italy;
| | - Maria Vincenza Carriero
- Neoplastic Progression Unit, Istituto Nazionale Tumori IRCCS ‘Fondazione G. Pascale’, Naples 80131, Italy; (M.M.); (G.D.C.)
| |
Collapse
|
223
|
Alsheikh AJ, Dasinger JH, Abais-Battad JM, Fehrenbach DJ, Yang C, Cowley AW, Mattson DL. CCL2 mediates early renal leukocyte infiltration during salt-sensitive hypertension. Am J Physiol Renal Physiol 2020; 318:F982-F993. [PMID: 32150444 DOI: 10.1152/ajprenal.00521.2019] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Studies examining mechanisms of Dahl salt-sensitive (SS) hypertension have implicated the infiltration of leukocytes in the kidneys, which contribute to renal disease and elevated blood pressure. However, the signaling pathways by which leukocytes traffic to the kidneys remain poorly understood. The present study nominated a signaling pathway by analyzing a kidney RNA sequencing data set from SS rats fed either a low-salt (0.4% NaCl) diet or a high-salt (4.0% NaCl) diet. From this analysis, chemokine (C-C motif) ligand 2 (CCL2) and chemokine (C-C motif) receptor 2 (CCR2) were nominated as a potential pathway modifying renal leukocyte infiltration and contributing to SS hypertension. The functional role of the CCL2/CCR2 pathway was tested by daily administration of CCR2 antagonist (RS-102895 at 5 mg·kg-1·day-1 in DMSO) or DMSO vehicle for 3 or 21 days by intraperitoneal injections during the high salt challenge. Blood pressure, renal leukocyte infiltration, and renal damage were evaluated. The results demonstrated that RS-102895 treatment ameliorated renal damage (urinary albumin excretion; 43.4 ± 5.1 vs. 114.7 ± 15.2 mg/day in vehicle, P < 0.001) and hypertension (144.3 ± 2.2 vs. 158.9 ± 4.8 mmHg in vehicle, P < 0.001) after 21 days of high-salt diet. It was determined that renal leukocyte infiltration was blunted by day 3 of the high-salt diet (1.4 ± 0.1 vs. 1.9 ± 0.2 in vehicle × 106 CD45+ cells/kidney, P = 0.034). An in vitro chemotaxis assay validated the effect of RS-102895 on leukocyte chemotaxis toward CCL2. The results suggest that increased CCL2 in SS kidneys is important in the early recruitment of leukocytes, and blockade of this recruitment by administering RS-102895 subsequently blunted the renal damage and hypertension.
Collapse
Affiliation(s)
- Ammar J Alsheikh
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - John Henry Dasinger
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Justine M Abais-Battad
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Daniel J Fehrenbach
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Chun Yang
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Allen W Cowley
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - David L Mattson
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia
| |
Collapse
|
224
|
Cao C, Tarlé S, Kaigler D. Characterization of the immunomodulatory properties of alveolar bone-derived mesenchymal stem cells. Stem Cell Res Ther 2020; 11:102. [PMID: 32138791 PMCID: PMC7059346 DOI: 10.1186/s13287-020-01605-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/22/2020] [Accepted: 02/14/2020] [Indexed: 02/07/2023] Open
Abstract
Background Recently, mesenchymal stem cells (MSCs) have been shown to have immunomodulatory properties which hold promise for their clinical use to treat inflammatory conditions. Relative to bone marrow-derived MSCs (BMSCs), which are typically isolated from the iliac crest, we have recently demonstrated that MSCs can be predictably isolated from the alveolar bone (aBMSCs) by less invasive means. As such, the aim of this study was to characterize the immunomodulatory properties of aBMSCs relative to BMSCs. Methods aBMSCs isolated from the human alveolar bone and BMSCs isolated from the human bone marrow of the iliac crest were cultured in the same conditions. Cytokine arrays and enzyme-linked immunosorbent assays (ELISA) of a conditioned medium were used to evaluate differences in the secretion of cytokines. In different functional assays, aBMSCs and BMSCs were cocultured with different types of immune cells including THP-1 monocytes, macrophages, and peripheral blood mononuclear cells (PBMCs) to evaluate their effects on important immune cell functions including proliferation, differentiation, and activation. Results The protein arrays identified interleukin (IL)-6 and monocyte chemoattractant protein (MCP)-1 to be the major cytokines secreted by aBMSCs and BMSCs. ELISA determined that aBMSCs secreted 268.64 ± 46.96 pg/mL of IL-6 and 196.14 ± 97.31 pg/mL of MCP-1 per microgram of DNA, while BMSCs secreted 774.86 ± 414.29 pg/mL of IL-6 and 856.37 ± 433.03 pg/mL of MCP-1 per microgram of DNA. The results of the coculture studies showed that aBMSCs exhibited immunosuppressive effects on monocyte activation and T cell activation and proliferation similar to BMSCs. Both aBMSCs and BMSCs drove macrophages into an anti-inflammatory phenotype with increased phagocytic ability. Taken together, these data suggest that aBMSCs have potent immunomodulatory properties comparable to those of BMSCs. Conclusions The findings of this study have important implications for the development of immunomodulatory stem cell therapies aimed to treat inflammatory conditions using aBMSCs, a more feasible tissue source of MSCs.
Collapse
Affiliation(s)
- Chen Cao
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, 1011 N. University, Ann Arbor, MI, 48109, USA
| | - Susan Tarlé
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, 1011 N. University, Ann Arbor, MI, 48109, USA
| | - Darnell Kaigler
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, 1011 N. University, Ann Arbor, MI, 48109, USA. .,Department of Biomedical Engineering, College of Engineering, University of Michigan, 1011 N. University, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
225
|
Jaeschke H, Ramachandran A. Mechanisms and pathophysiological significance of sterile inflammation during acetaminophen hepatotoxicity. Food Chem Toxicol 2020; 138:111240. [PMID: 32145352 DOI: 10.1016/j.fct.2020.111240] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/26/2020] [Accepted: 02/28/2020] [Indexed: 02/07/2023]
Abstract
Acetaminophen (APAP) is a widely used analgesic drug, which can cause severe liver injury after an overdose. The intracellular signaling mechanisms of APAP-induced cell death such as reactive metabolite formation, mitochondrial dysfunction and nuclear DNA fragmentation have been extensively studied. Hepatocyte necrosis releases damage-associated molecular patterns (DAMPs) which activate cytokine and chemokine formation in macrophages. These signals activate and recruit neutrophils, monocytes and other leukocytes into the liver. While this sterile inflammatory response removes necrotic cell debris and promotes tissue repair, the capability of leukocytes to also cause tissue injury makes this a controversial topic. This review summarizes the literature on the role of various DAMPs, cytokines and chemokines, and the pathophysiological function of Kupffer cells, neutrophils, monocytes and monocyte-derived macrophages, and NK and NKT cells during APAP hepatotoxicity. Careful evaluation of results and experimental designs of studies dealing with the inflammatory response after APAP toxicity provide very limited evidence for aggravation of liver injury but support of the hypothesis that these leukocytes promote tissue repair. In addition, many cytokines and chemokines modulate tissue injury by affecting the intracellular signaling events of cell death rather than toxicity of leukocytes. Reasons for the controversial results in this area are also discussed.
Collapse
Affiliation(s)
- Hartmut Jaeschke
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| | - Anup Ramachandran
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| |
Collapse
|
226
|
Abuawad A, Mbadugha C, Ghaemmaghami AM, Kim DH. Metabolic characterisation of THP-1 macrophage polarisation using LC-MS-based metabolite profiling. Metabolomics 2020; 16:33. [PMID: 32114632 PMCID: PMC7049298 DOI: 10.1007/s11306-020-01656-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 02/24/2020] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Macrophages constitute a heterogeneous population of functionally distinct cells involved in several physiological and pathological processes. They display remarkable plasticity by changing their phenotype and function in response to environmental cues representing a spectrum of different functional phenotypes. The so-called M1 and M2 macrophages are often considered as representative of pro- and anti-inflammatory ends of such spectrum. Metabolomics approach is a powerful tool providing important chemical information about the cellular phenotype of living systems, and the changes in their metabolic pathways in response to various perturbations. OBJECTIVES This study aimed to characterise M1 and M2 phenotypes in THP-1 macrophages in order to identify characteristic metabolites of each polarisation state. METHODS Herein, untargeted liquid chromatography (LC)-mass spectrometry (MS)-based metabolite profiling was applied to characterise the metabolic profile of M1-like and M2-like THP-1 macrophages. RESULTS The results showed that M1 and M2 macrophages have distinct metabolic profiles. Sphingolipid and pyrimidine metabolism was significantly changed in M1 macrophages whereas arginine, proline, alanine, aspartate and glutamate metabolism was significantly altered in M2 macrophages. CONCLUSION This study represents successful application of LC-MS metabolomics approach to characterise M1 and M2 macrophages providing functional readouts that show unique metabolic signature for each phenotype. These data could contribute to a better understanding of M1 and M2 functional properties and could pave the way for developing new therapeutics targeting different immune diseases.
Collapse
Affiliation(s)
- Alaa Abuawad
- Division of Advanced Materials and Healthcare Technologies, Centre for Analytical Bioscience, School of Pharmacy, University of Nottingham, Nottingham, UK
- Department of Pharmaceutical Sciences and Pharmaceutics, Faculty of Pharmacy, Applied Science Private University, Amman, Jordan
| | - Chidimma Mbadugha
- Division of Immunology, School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK
| | - Amir M Ghaemmaghami
- Division of Immunology, School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK
| | - Dong-Hyun Kim
- Division of Advanced Materials and Healthcare Technologies, Centre for Analytical Bioscience, School of Pharmacy, University of Nottingham, Nottingham, UK.
| |
Collapse
|
227
|
Secreted Factors and EV-miRNAs Orchestrate the Healing Capacity of Adipose Mesenchymal Stem Cells for the Treatment of Knee Osteoarthritis. Int J Mol Sci 2020; 21:ijms21051582. [PMID: 32111031 PMCID: PMC7084308 DOI: 10.3390/ijms21051582] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 12/28/2022] Open
Abstract
Mesenchymal stem cells (MSCs) derived from adipose tissue and used either as expanded cells or minimally manipulated cell preparations showed positive clinical outcomes in regenerative medicine approaches based on tissue restoration and inflammation control, like in osteoarthritis (OA). Recently, MSCs’ healing capacity has been ascribed to the large array of soluble factors, including soluble cytokines/chemokines and miRNAs conveyed within extracellular vesicles (EVs). Therefore, in this study, 200 secreted cytokines, chemokines and growth factors via ELISA, together with EV-embedded miRNAs via high-throughput techniques, were scored in adipose-derived MSCs (ASCs) cultivated under inflammatory conditions, mimicking OA synovial fluid. Both factors (through most abundantly expressed TIMP1, TIMP2, PLG and CTSS) and miRNAs (miR-24-3p, miR-222-3p and miR-193b-3p) suggested a strong capacity for ASCs to reduce matrix degradation activities, as those activated in OA cartilage, and switch synovial macrophages, often characterized by an M1 inflammatory polarization, towards an M2 phenotype. Moreover, the crucial importance of selecting the target tissue is discussed, showing how a focused search may greatly improve potency prediction and explain clinical outcomes. In conclusion, herein presented data shed light about the way ASCs regulate cell homeostasis and regenerative pathways in an OA-resembling environment, therefore suggesting a rationale for the use of MSC-enriched clinical products, such as stromal vascular fraction and microfragmented adipose tissue, in joint pathologies.
Collapse
|
228
|
Li K, Liang Z, Zhang J, Zuo X, Sun J, Zheng Q, Song J, Ding T, Hu X, Wang Z. Attenuation of the inflammatory response and polarization of macrophages by photobiomodulation. Lasers Med Sci 2020; 35:1509-1518. [PMID: 32065300 DOI: 10.1007/s10103-019-02941-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 12/22/2019] [Indexed: 12/11/2022]
Abstract
In spinal cord injury (SCI), inflammation is a major mediator of damage and loss of function and is regulated primarily by the bone marrow-derived macrophages (BMDMs). Photobiomodulation (PBM) or low-level light stimulation is known to have anti-inflammatory effects and has previously been used in the treatment of SCI, although its precise cellular mechanisms remain unclear. In the present study, the effect of PBM at 810 nm on classically activated BMDMs was evaluated to investigate the mechanisms underlying its anti-inflammatory effects. BMDMs were cultured and irradiated (810 nm, 2 mW/cm2) following stimulation with lipopolysaccharide and interferon-γ. CCK-8 assay, 2',7'-dichlorofluorescein diacetate assay, and ELISA and western blot analysis were performed to measure cell viability, reactive oxygen species production, and inflammatory marker production, respectively. PBM irradiation of classically activated macrophages significantly increased the cell viability and inhibited reactive oxygen species generation. PBM suppressed the expression of a marker of classically activated macrophages, inducible nitric oxide synthase; decreased the mRNA expression and secretion of pro-inflammatory cytokines, tumor necrosis factor alpha, and interleukin-1 beta; and increased the secretion of monocyte chemotactic protein 1. Exposure to PBM likewise significantly reduced the expression and phosphorylation of NF-κB p65 in classically activated BMDMs. Taken together, these results suggest that PBM can successfully modulate inflammation and polarization in classically activated BMDMs. The present study provides a theoretical basis to support wider clinical application of PBM in the treatment of SCI.
Collapse
Affiliation(s)
- Kun Li
- Xijing Orthopaedics Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Zhuowen Liang
- Xijing Orthopaedics Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jiawei Zhang
- Xijing Orthopaedics Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xiaoshuang Zuo
- Xijing Orthopaedics Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jiakai Sun
- Xijing Orthopaedics Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Qiao Zheng
- Xijing Orthopaedics Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jiwei Song
- Xijing Orthopaedics Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Tan Ding
- Xijing Orthopaedics Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xueyu Hu
- Xijing Orthopaedics Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| | - Zhe Wang
- Xijing Orthopaedics Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| |
Collapse
|
229
|
Mesenchymal stromal cell derived CCL2 is required for accelerated wound healing. Sci Rep 2020; 10:2642. [PMID: 32060374 PMCID: PMC7021763 DOI: 10.1038/s41598-020-59174-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/07/2019] [Indexed: 01/12/2023] Open
Abstract
Mesenchymal stromal cells (MSC) have immunomodulatory effects impacting macrophages, promoting polarisation towards a reparative phenotype. CCL2 is a potent cytokine involved in the recruitment of macrophages. We hypothesised that MSC derived CCL2 may be involved in the MSC therapeutic effect by facilitating macrophage repolarisation. To further delineate this mechanism, MSC isolated from CCL2 deficient mice (MSC-KO) were applied to excisional wounds in wild-type (WT) mice. CCL2 deficiency in MSC completely abrogated the therapeutic response compared to MSC-WT. MSC-KO were unable to repolarise macrophages to the same extent as WT and this was accompanied by a reduced angiogenesis and re-epithelialisation of the wounds at day 10. This study demonstrates that MSC derived CCL2 is required for MSC induced accelerated wound healing. The role of CCL2 in the interaction between MSC and Macrophages has not been previously demonstrated in accelerated wound healing. CCL2 has a potent effect on the ability to reduce the inflammatory response through local recruitment of macrophages. This research highlights CCL2 as a possible target for augmentation of MSC therapy to enhance therapeutic potential.
Collapse
|
230
|
Robichon K, Patel V, Connor B, La Flamme AC. Clozapine reduces infiltration into the CNS by targeting migration in experimental autoimmune encephalomyelitis. J Neuroinflammation 2020; 17:53. [PMID: 32050980 PMCID: PMC7014621 DOI: 10.1186/s12974-020-01733-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 02/03/2020] [Indexed: 12/21/2022] Open
Abstract
Background Atypical antipsychotic agents, such as clozapine, are used to treat schizophrenia and other psychiatric disorders by a mechanism that is believed to involve modulating the immune system. Multiple sclerosis is an immune-mediated neurological disease, and recently, clozapine was shown to reduce disease severity in an animal model of MS, experimental autoimmune encephalomyelitis (EAE). However, the mode of action by which clozapine reduces disease in this model is poorly understood. Methods Because the mode of action by which clozapine reduces neuroinflammation is poorly understood, we used the EAE model to elucidate the in vivo and in vitro effects of clozapine. Results In this study, we report that clozapine treatment reduced the infiltration of peripheral immune cells into the central nervous system (CNS) and that this correlated with reduced expression of the chemokines CCL2 and CCL5 transcripts in the brain and spinal cord. We assessed to what extent immune cell populations were affected by clozapine treatment and we found that clozapine targets the expression of chemokines by macrophages and primary microglia. Furthermore, in addition to decreasing CNS infiltration by reducing chemokine expression, we found that clozapine directly inhibits chemokine-induced migration of immune cells. This direct target on the immune cells was not mediated by a change in receptor expression on the immune cell surface but by decreasing downstream signaling via these receptors leading to a reduced migration. Conclusions Taken together, our study indicates that clozapine protects against EAE by two different mechanisms; first, by reducing the chemoattractant proteins in the CNS; and second, by direct targeting the migration potential of peripheral immune cells.
Collapse
Affiliation(s)
- Katharina Robichon
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand.,Centre for Biodiscovery Wellington Victoria University of Wellington, Wellington, New Zealand
| | - Vimal Patel
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand.,Centre for Biodiscovery Wellington Victoria University of Wellington, Wellington, New Zealand
| | - Bronwen Connor
- Department of Pharmacology and Clinical Pharmacology, Centre for Brain Research, School of Medical Science, Faculty of Medical and Health Science, University of Auckland, Auckland, New Zealand
| | - Anne Camille La Flamme
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand. .,Centre for Biodiscovery Wellington Victoria University of Wellington, Wellington, New Zealand. .,Malaghan Institute of Medical Research, Wellington, New Zealand.
| |
Collapse
|
231
|
Ruiz-Alcaraz AJ, Martínez-Banaclocha H, Marín-Sánchez P, Carmona-Martínez V, Iniesta-Albadalejo MA, Tristán-Manzano M, Tapia-Abellán A, García-Peñarrubia P, Machado-Linde F, Pelegrín P, Martínez-Esparza M. Isolation of functional mature peritoneal macrophages from healthy humans. Immunol Cell Biol 2020; 98:114-126. [PMID: 31709677 DOI: 10.1111/imcb.12305] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 10/29/2019] [Accepted: 11/06/2019] [Indexed: 12/12/2022]
Abstract
Macrophages play an important role in the inflammatory response. Their various biological functions are induced by different membrane receptors, including Toll-like receptors, which trigger several intracellular signaling cascades and activate the inflammasomes, which in turn elicit the release of inflammatory mediators such as cytokines. In this study, we present a novel method for the isolation of human mature peritoneal macrophages. This method can be easily implemented by gynecologists who routinely perform laparoscopy for sterilization by tubal ligation or surgically intervene in benign gynecological pathologies. Our method confirms that macrophages are the main peritoneal leukocyte subpopulation isolated from the human peritoneum in homeostasis. We showed that primary human peritoneal macrophages present phagocytic and oxidative activities, and respond to activation of the main proinflammatory pathways such as Toll-like receptors and inflammasomes, resulting in the secretion of different proinflammatory cytokines. Therefore, this method provides a useful tool for characterizing primary human macrophages as control cells for studies of molecular inflammatory pathways in steady-state conditions and for comparing them with those obtained from pathologies involving the peritoneal cavity. Furthermore, it will facilitate advances in the screening of anti-inflammatory compounds in the human system.
Collapse
Affiliation(s)
- Antonio J Ruiz-Alcaraz
- Departamento de Bioquímica, Biología Molecular (B) e Inmunología, Facultad de Medicina, IMIB-Arrixaca and Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, Murcia, Spain
| | - Helios Martínez-Banaclocha
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | - Pilar Marín-Sánchez
- Servicio de Ginecología y Obstetricia, Hospital Clínico Universitario Virgen de la Arrixaca, IMIB-Arrixaca, Murcia, Spain
| | - Violeta Carmona-Martínez
- Departamento de Bioquímica, Biología Molecular (B) e Inmunología, Facultad de Medicina, IMIB-Arrixaca and Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, Murcia, Spain
| | | | - María Tristán-Manzano
- Departamento de Bioquímica, Biología Molecular (B) e Inmunología, Facultad de Medicina, IMIB-Arrixaca and Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, Murcia, Spain
| | - Ana Tapia-Abellán
- Departamento de Bioquímica, Biología Molecular (B) e Inmunología, Facultad de Medicina, IMIB-Arrixaca and Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, Murcia, Spain
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | - Pilar García-Peñarrubia
- Departamento de Bioquímica, Biología Molecular (B) e Inmunología, Facultad de Medicina, IMIB-Arrixaca and Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, Murcia, Spain
| | - Francisco Machado-Linde
- Servicio de Ginecología y Obstetricia, Hospital General Reina Sofía, IMIB-Arrixaca, Murcia, Spain
| | - Pablo Pelegrín
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | - María Martínez-Esparza
- Departamento de Bioquímica, Biología Molecular (B) e Inmunología, Facultad de Medicina, IMIB-Arrixaca and Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, Murcia, Spain
| |
Collapse
|
232
|
Alpha-linolenic acid enhances the phagocytic and secretory functions of alternatively activated macrophages in part via changes to the oxylipin profile. Int J Biochem Cell Biol 2020; 119:105662. [DOI: 10.1016/j.biocel.2019.105662] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 11/30/2019] [Accepted: 12/03/2019] [Indexed: 12/21/2022]
|
233
|
Blanks AM, Wagamon TT, Lafratta L, Sisk MG, Senter MB, Pedersen LN, Bohmke N, Shah A, Mihalick VL, Franco RL. Impact of physical activity on monocyte subset CCR2 expression and macrophage polarization following moderate intensity exercise. Brain Behav Immun Health 2020; 2:100033. [PMID: 38377416 PMCID: PMC8474621 DOI: 10.1016/j.bbih.2019.100033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 12/20/2019] [Accepted: 12/21/2019] [Indexed: 12/01/2022] Open
Abstract
Coronary artery disease (CAD) is an immune-mediated disease in which CCR2 attracts classical, intermediate, and non-classical monocytes to the arterial intima where they differentiate to macrophages. Balance between pro-inflammatory M1 and anti-inflammatory M2 macrophages contributes to CAD prevention. Moderate to vigorous intensity physical activity (MVPA) elicits an immune response and reduces the incidence of CAD, however, the impact of prior MVPA on monocyte subset CCR2 expression and macrophage polarization following acute exercise is unknown. Purpose To determine the impact of physical activity status on monocyte subset CCR2 surface expression and macrophage polarization in response to an acute bout of moderate intensity cycle ergometry. Methods 24 healthy women and men (12 high physically active [HIACT]: ≥1500 METmin/wk MVPA & 12 low physically active [LOACT]: <600 METmin/wk MVPA) underwent an acute moderate intensity (60% VO2peak) bout of cycle ergometry for 30 min. Blood samples were collected prior to (PRE), immediately (POST), 1 h (1H), and 2 h (2H) following exercise. Monocyte CCR2 and macrophage CD86 (M1) and CD206 (M2) were analyzed by flow cytometry. Results Intermediate monocyte CCR2 decreased in response to exercise in the HIACT group (PRE: 11409.0 ± 1084.0 vs. POST: 9524.3 ± 1062.4; p = 0.034). Macrophage CD206 was lower in the LOACT compared to the HIACT group at 1H (HIACT: 67.2 ± 5.6 vs. LOACT: 50.1 ± 5.2%; p = 0.040). Macrophage CD206 at 1H was associated with both PRE (r = 0.446, p = 0.043) and POST (r = 0.464, p = 0.034) non-classical monocyte CCR2. Conclusion These data suggest that regular moderate to vigorous physical activity positively impacts both monocytes and macrophages following acute moderate intensity exercise and that this impact may contribute to the prevention of coronary artery disease.
Collapse
Affiliation(s)
- Anson M. Blanks
- Department of Kinesiology and Health Sciences, College of Humanities and Sciences, Virginia Commonwealth University, Richmond, VA, United States
| | - Thomas T. Wagamon
- Department of Kinesiology and Health Sciences, College of Humanities and Sciences, Virginia Commonwealth University, Richmond, VA, United States
| | - Lindsay Lafratta
- Department of Kinesiology and Health Sciences, College of Humanities and Sciences, Virginia Commonwealth University, Richmond, VA, United States
| | - Mabel G. Sisk
- Department of Kinesiology and Health Sciences, College of Humanities and Sciences, Virginia Commonwealth University, Richmond, VA, United States
| | - Morgan B. Senter
- Department of Kinesiology and Health Sciences, College of Humanities and Sciences, Virginia Commonwealth University, Richmond, VA, United States
| | - Lauren N. Pedersen
- Department of Kinesiology and Health Sciences, College of Humanities and Sciences, Virginia Commonwealth University, Richmond, VA, United States
| | - Natalie Bohmke
- Department of Kinesiology and Health Sciences, College of Humanities and Sciences, Virginia Commonwealth University, Richmond, VA, United States
| | - Attiya Shah
- Department of Kinesiology and Health Sciences, College of Humanities and Sciences, Virginia Commonwealth University, Richmond, VA, United States
| | - Virginia L. Mihalick
- Department of Kinesiology and Health Sciences, College of Humanities and Sciences, Virginia Commonwealth University, Richmond, VA, United States
| | - R. Lee Franco
- Department of Kinesiology and Health Sciences, College of Humanities and Sciences, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
234
|
Evaluation of the effect of GM-CSF blocking on the phenotype and function of human monocytes. Sci Rep 2020; 10:1567. [PMID: 32005854 PMCID: PMC6994676 DOI: 10.1038/s41598-020-58131-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 01/07/2020] [Indexed: 01/01/2023] Open
Abstract
Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a multipotent cytokine that prompts the proliferation of bone marrow-derived macrophages and granulocytes. In addition to its effects as a growth factor, GM-CSF plays an important role in chronic inflammatory autoimmune diseases such as multiple sclerosis and rheumatoid arthritis. Reports have identified monocytes as the primary target of GM-CSF; however, its effect on monocyte activation has been under-estimated. Here, using flow cytometry and ELISA we show that GM-CSF induces an inflammatory profile in human monocytes, which includes an upregulated expression of HLA-DR and CD86 molecules and increased production of TNF-α and IL-1β. Conversely, blockage of endogenous GM-CSF with antibody treatment not only inhibited the inflammatory profile of these cells, but also induced an immunomodulatory one, as shown by increased IL-10 production by monocytes. Further analysis with qPCR, flow cytometry and ELISA experiments revealed that GM-CSF blockage in monocytes stimulated production of the chemokine CXCL-11, which suppressed T cell proliferation. Blockade of CXCL-11 abrogated anti-GM-CSF treatment and induced inflammatory monocytes. Our findings show that anti-GM-CSF treatment induces modulatory monocytes that act in a CXCL-11-dependent manner, a mechanism that can be used in the development of novel approaches to treat chronic inflammatory autoimmune diseases.
Collapse
|
235
|
Gawriluk TR, Simkin J, Hacker CK, Kimani JM, Kiama SG, Ezenwa VO, Seifert AW. Complex Tissue Regeneration in Mammals Is Associated With Reduced Inflammatory Cytokines and an Influx of T Cells. Front Immunol 2020. [PMID: 32849592 DOI: 10.3389/fimmu.2020.01695/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2023] Open
Abstract
While mammals tend to repair injuries, other adult vertebrates like salamanders and fish regenerate damaged tissue. One prominent hypothesis offered to explain an inability to regenerate complex tissue in mammals is a bias during healing toward strong adaptive immunity and inflammatory responses. Here we directly test this hypothesis by characterizing part of the immune response during regeneration in spiny mice (Acomys cahirinus and Acomys percivali) vs. fibrotic repair in Mus musculus. By directly quantifying cytokines during tissue healing, we found that fibrotic repair was associated with a greater release of pro-inflammatory cytokines (i.e., IL-6, CCL2, and CXCL1) during acute inflammation in the wound microenvironment. However, reducing inflammation via COX-2 inhibition was not sufficient to reduce fibrosis or induce a regenerative response, suggesting that inflammatory strength does not control how an injury heals. Although regeneration was associated with lower concentrations of many inflammatory markers, we measured a comparatively larger influx of T cells into regenerating ear tissue and detected a local increase in the T cell associated cytokines IL-12 and IL-17 during the proliferative phase of regeneration. Taken together, our data demonstrate that a strong adaptive immune response is not antagonistic to regeneration and that other mechanisms likely explain the distribution of regenerative ability in vertebrates.
Collapse
Affiliation(s)
- Thomas R Gawriluk
- Department of Biology, University of Kentucky, Lexington, KY, United States
| | - Jennifer Simkin
- Department of Biology, University of Kentucky, Lexington, KY, United States
| | - Corin K Hacker
- Department of Biology, University of Kentucky, Lexington, KY, United States
| | - John M Kimani
- Department of Veterinary Anatomy and Physiology, University of Nairobi, Nairobi, Kenya
| | - Stephen G Kiama
- Department of Veterinary Anatomy and Physiology, University of Nairobi, Nairobi, Kenya
| | - Vanessa O Ezenwa
- Odum School of Ecology, University of Georgia, Athens, GA, United States.,Department of Infectious Disease, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Ashley W Seifert
- Department of Biology, University of Kentucky, Lexington, KY, United States.,Department of Veterinary Anatomy and Physiology, University of Nairobi, Nairobi, Kenya
| |
Collapse
|
236
|
Strazza M, Adam K, Smrcka AV, Lerrer S, Mor A. PLCε1 suppresses tumor growth by regulating murine T cell mobilization. Clin Exp Immunol 2019; 200:53-60. [PMID: 31867717 DOI: 10.1111/cei.13409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2019] [Indexed: 01/01/2023] Open
Abstract
Phospholipase C epsilon 1 (PLCε1) is a unique member of the phospholipase family, in that it also functions as a guanine nucleotide exchange factor (GEF) for the small GTPase Rap1. It is this function as a Rap1 GEF that gives PLCε1 an essential role in chemokine-mediated T cell adhesion. We have utilized a syngeneic tumor model, MC38 cells in C57BL/6 mice, and observed that tumors grow larger and more quickly in the absence of PLCε1. Single-cell analysis revealed an increased CD4+ /CD8+ ratio in the spleens, lymph nodes and tumors of PLCε1 knock-out tumor-bearing mice. T cells isolated from PLCε1 knock-out mice were less activated by multiple phenotypical parameters than those from wild-type mice. We additionally noted a decrease in expression of the chemokine receptors C-X-C chemokine receptor type 4 (CXCR4) and C-C motif chemokine receptor 4 (CCR4) on CD4+ T cells from the spleens, lymph nodes and tumors of PLCε1 knock-out mice compared to wild-type mice, and diminished migration of PLCε1-depleted CD3+ T cells towards stromal cell-derived factor (SDF)-1α. Based on these results, we conclude that PLCε1 is a potential regulator of tumor-infiltrating lymphocytes, functioning, at least in part, at the level of T cell trafficking and recruitment.
Collapse
Affiliation(s)
- M Strazza
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, USA
| | - K Adam
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, USA
| | - A V Smrcka
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - S Lerrer
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, USA
| | - A Mor
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
237
|
Ramirez R, Herrera AM, Ramirez J, Qian C, Melton DW, Shireman PK, Jin YF. Deriving a Boolean dynamics to reveal macrophage activation with in vitro temporal cytokine expression profiles. BMC Bioinformatics 2019; 20:725. [PMID: 31852428 PMCID: PMC6921543 DOI: 10.1186/s12859-019-3304-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 12/03/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Macrophages show versatile functions in innate immunity, infectious diseases, and progression of cancers and cardiovascular diseases. These versatile functions of macrophages are conducted by different macrophage phenotypes classified as classically activated macrophages and alternatively activated macrophages due to different stimuli in the complex in vivo cytokine environment. Dissecting the regulation of macrophage activations will have a significant impact on disease progression and therapeutic strategy. Mathematical modeling of macrophage activation can improve the understanding of this biological process through quantitative analysis and provide guidance to facilitate future experimental design. However, few results have been reported for a complete model of macrophage activation patterns. RESULTS We globally searched and reviewed literature for macrophage activation from PubMed databases and screened the published experimental results. Temporal in vitro macrophage cytokine expression profiles from published results were selected to establish Boolean network models for macrophage activation patterns in response to three different stimuli. A combination of modeling methods including clustering, binarization, linear programming (LP), Boolean function determination, and semi-tensor product was applied to establish Boolean networks to quantify three macrophage activation patterns. The structure of the networks was confirmed based on protein-protein-interaction databases, pathway databases, and published experimental results. Computational predictions of the network evolution were compared against real experimental results to validate the effectiveness of the Boolean network models. CONCLUSION Three macrophage activation core evolution maps were established based on the Boolean networks using Matlab. Cytokine signatures of macrophage activation patterns were identified, providing a possible determination of macrophage activations using extracellular cytokine measurements.
Collapse
Affiliation(s)
- Ricardo Ramirez
- Department of Electrical and Computer Engineering, The University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX, 78249, USA
| | - Allen Michael Herrera
- Department of Electrical and Computer Engineering, The University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX, 78249, USA
| | - Joshua Ramirez
- Department of Electrical and Computer Engineering, The University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX, 78249, USA
| | - Chunjiang Qian
- Department of Electrical and Computer Engineering, The University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX, 78249, USA
| | - David W Melton
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA, 02215, USA
| | - Paula K Shireman
- Department of Surgery, Long School of Medicine, University of Texas Health Science Center San Antonio, 7703 Floyd Curl Dr, San Antonio, TX, 78229, USA
- South Texas Veterans Health Care System, 7400 Merton Minter Blvd, San Antonio, TX, 78229, USA
| | - Yu-Fang Jin
- Department of Electrical and Computer Engineering, The University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX, 78249, USA.
| |
Collapse
|
238
|
Targeting AXL and RAGE to prevent geminin overexpression-induced triple-negative breast cancer metastasis. Sci Rep 2019; 9:19150. [PMID: 31844158 PMCID: PMC6915698 DOI: 10.1038/s41598-019-55702-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 11/28/2019] [Indexed: 02/07/2023] Open
Abstract
Dissemination of metastatic precursors from primaries is the primary reason for patient death. Dissemination encompasses tumor cells invasion of stroma, followed by intravasation through the endothelium barrier into the bloodstream. Here, we describe how geminin-overexpressing tumor cells acquire dissemination ability. Acetylated HMGB1 (Ac-HMGB1) secreted by geminin-overexpressing cells activates RAGE and CXCR4 expression on mesenchymal stem cells (MSCs) located in tumor stroma. Through secreting CXCL12, geminin-overexpressing cells recruit these CXCR4+-MSCs into the tumor. Within the tumor, MSCs differentiate into S100A4-secreting cancer-associated fibroblasts (CAFs). S100A4, in a reciprocal manner, activates geminin-overexpressing cells to secrete CCL2 that recruits M0-macrophages from the stroma into the tumor. Within the tumor, CCL2 polarizes M0-macrophages into Gas6-secreting M2-tumor-associated macrophages (M2-TAMs). In concert, geminin-overexpression, S100A4/RAGE and Gas6/AXL signaling promote the invasive and intravasation abilities in geminin-overexpressing cells through exacerbating their stemness and epithelial-to-mesenchymal phenotypes and enhancing expression and functional interaction of CD151 and α3β1-integrin in geminin-overexpressing cells. Tumors formed following injection of geminin-overexpressing cells admixed with MSCs/CAFs grew faster, metastasized earlier, especially to lungs, and were extremely sensitive to anti-c-Abl, anti-RAGE, and anti-AXL drugs. These data support an intrinsic ability in geminin-overexpressing tumor cells to promote their metastatic potential through recruitment and bi-directional interactions with MSCs/CAFs and M2-TAMs.
Collapse
|
239
|
Gschwandtner M, Derler R, Midwood KS. More Than Just Attractive: How CCL2 Influences Myeloid Cell Behavior Beyond Chemotaxis. Front Immunol 2019; 10:2759. [PMID: 31921102 PMCID: PMC6923224 DOI: 10.3389/fimmu.2019.02759] [Citation(s) in RCA: 418] [Impact Index Per Article: 69.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 11/11/2019] [Indexed: 12/15/2022] Open
Abstract
Monocyte chemoattractant protein-1 (MCP-1/CCL2) is renowned for its ability to drive the chemotaxis of myeloid and lymphoid cells. It orchestrates the migration of these cell types both during physiological immune defense and in pathological circumstances, such as autoimmune diseases including rheumatoid arthritis and multiple sclerosis, inflammatory diseases including atherosclerosis, as well as infectious diseases, obesity, diabetes, and various types of cancer. However, new data suggest that the scope of CCL2's functions may extend beyond its original characterization as a chemoattractant. Emerging evidence shows that it can impact leukocyte behavior, influencing adhesion, polarization, effector molecule secretion, autophagy, killing, and survival. The direction of these CCL2-induced responses is context dependent and, in some cases, synergistic with other inflammatory stimuli. The involvement of CCL2 signaling in multiple diseases renders it an interesting therapeutic target, although current targeting strategies have not met early expectations in the clinic. A better understanding of how CCL2 affects immune cells will be pivotal to the improvement of existing therapeutic approaches and the development of new drugs. Here, we provide an overview of the pleiotropic effects of CCL2 signaling on cells of the myeloid lineage, beyond chemotaxis, and highlight how these actions might help to shape immune cell behavior and tumor immunity.
Collapse
Affiliation(s)
- Martha Gschwandtner
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Rupert Derler
- Department of Pharmaceutical Chemistry, Institute of Pharmaceutical Sciences, University of Graz, Graz, Austria
| | - Kim S. Midwood
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
240
|
Wang Q, Schmoeckel E, Kost BP, Kuhn C, Vattai A, Vilsmaier T, Mahner S, Mayr D, Jeschke U, Heidegger HH. Higher CCL22+ Cell Infiltration is Associated with Poor Prognosis in Cervical Cancer Patients. Cancers (Basel) 2019; 11:cancers11122004. [PMID: 31842422 PMCID: PMC6966573 DOI: 10.3390/cancers11122004] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/09/2019] [Accepted: 12/11/2019] [Indexed: 12/16/2022] Open
Abstract
The chemokine CCL22 recruits regulatory T (T-reg) cells into tumor tissues and is expressed in many human tumors. However, the prognostic role of CCL22 in cervical cancer (CC) has not been determined. This study retrospectively analyzed the clinical significance of the expression of CCL22 and FOXP3 in 230 cervical cancer patients. Immunohistochemical staining analyses of CCL22 and FOXP3 were performed with a tissue microarray. Double immunofluorescence staining, cell coculture, and ELISA were used to determine CCL22 expressing cells and mechanisms. The higher number of infiltrating CCL22+ cells (CCL22high) group was associated with lymph node metastasis (p = 0.004), Fédération Internationale de Gynécologie et d’Obstétrique (FIGO) stages (p = 0.010), therapeutic strategies (p = 0.007), and survival status (p = 0.002). The number of infiltrating CCL22+ cells was positively correlated with that of infiltrating FOXP3+ cells (r = 0.210, p = 0.001). The CCL22high group had a lower overall survival rate (OS), compared to the CCL22low group (p = 0.001). However, no significant differences in progression free survival (PFS) were noted between the two groups. CCL22high was an independent predictor of shorter OS (HR, 4.985; p = 0.0001). The OS of the combination group CCL22highFOXP3high was significantly lower than that of the combination group CCL22lowFOXP3low regardless of the FIGO stage and disease subtype. CCL22highFOXP3high was an independent indictor of shorter OS (HR, 5.284; p = 0.009). The PFS of group CCL22highFOXP3high was significantly lower than that of group CCL22lowFOXP3low in cervical adenocarcinoma, but CCL22highFOXP3high was not an independent indicator (HR, 3.018; p = 0.068). CCL22 was primarily expressed in M2-like macrophages in CC and induced by cervical cancer cells. The findings of our study indicate that cervical cancer patients with elevated CCL22+ infiltrating cells require more aggressive treatment. Moreover, the results provide a basis for subsequent, comprehensive studies to advance the design of immunotherapy for cervical cancer.
Collapse
Affiliation(s)
- Qun Wang
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 80377 Munich, Germany; (Q.W.); (B.P.K.); (C.K.); (A.V.); (T.V.); (S.M.); (H.H.H.)
| | - Elisa Schmoeckel
- Department of Pathology, LMU Munich, 80377 Munich, Germany; (E.S.); (D.M.)
| | - Bernd P. Kost
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 80377 Munich, Germany; (Q.W.); (B.P.K.); (C.K.); (A.V.); (T.V.); (S.M.); (H.H.H.)
| | - Christina Kuhn
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 80377 Munich, Germany; (Q.W.); (B.P.K.); (C.K.); (A.V.); (T.V.); (S.M.); (H.H.H.)
| | - Aurelia Vattai
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 80377 Munich, Germany; (Q.W.); (B.P.K.); (C.K.); (A.V.); (T.V.); (S.M.); (H.H.H.)
| | - Theresa Vilsmaier
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 80377 Munich, Germany; (Q.W.); (B.P.K.); (C.K.); (A.V.); (T.V.); (S.M.); (H.H.H.)
| | - Sven Mahner
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 80377 Munich, Germany; (Q.W.); (B.P.K.); (C.K.); (A.V.); (T.V.); (S.M.); (H.H.H.)
| | - Doris Mayr
- Department of Pathology, LMU Munich, 80377 Munich, Germany; (E.S.); (D.M.)
| | - Udo Jeschke
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 80377 Munich, Germany; (Q.W.); (B.P.K.); (C.K.); (A.V.); (T.V.); (S.M.); (H.H.H.)
- Correspondence:
| | - Helene Hildegard Heidegger
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 80377 Munich, Germany; (Q.W.); (B.P.K.); (C.K.); (A.V.); (T.V.); (S.M.); (H.H.H.)
| |
Collapse
|
241
|
Mu J, Sun P, Ma Z, Sun P. BRD4 promotes tumor progression and NF-κB/CCL2-dependent tumor-associated macrophage recruitment in GIST. Cell Death Dis 2019; 10:935. [PMID: 31819043 PMCID: PMC6901583 DOI: 10.1038/s41419-019-2170-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 11/21/2019] [Accepted: 11/22/2019] [Indexed: 12/12/2022]
Abstract
The most commonly occurring sarcoma of the soft tissue is gastrointestinal stromal tumor (GIST). Treatment and prevention of the disease necessitate an understanding of the molecular mechanisms involved. However, the role of BRD4 in the progression of GIST is still unclear. While it is known there are abundant infiltrating tumor-associated macrophages (TAMs) in the tumor microenvironment, the exact role of these cells has yet to be studied. This work showed an upregulation of BRD4 in GIST that was associated with GIST prognosis. Through gain and loss of function studies, it was found that BRD4 promotes GIST growth and angiogenesis in vitro and in vivo. Mechanistically, BRD4 enhances CCL2 expression by activating the NF-κB signaling pathway. Furthermore, this CCL2 upregulation causes recruitment of macrophages into the tumor leading to tumor growth. A likely mechanism for interactions in the GIST microenvironment has been outlined by this work to show the role and potential use of BRD4 as a treatment target in GIST.
Collapse
Affiliation(s)
- Jianfeng Mu
- Department of Gastric and Colorectal Surgery, The First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Pengfei Sun
- Changchun Railway Medical Insurance Management Office, Changchun, Jilin Province, China
| | - Zhiming Ma
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Pengda Sun
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, Jilin Province, China.
| |
Collapse
|
242
|
A stroma-corrected ZEB1 transcriptional signature is inversely associated with antitumor immune activity in breast cancer. Sci Rep 2019; 9:17807. [PMID: 31780722 PMCID: PMC6882801 DOI: 10.1038/s41598-019-54282-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 11/06/2019] [Indexed: 12/13/2022] Open
Abstract
The epithelial-to-mesenchymal transition (EMT) is an essential developmental process which can be hijacked by cancer cells, leading to enhanced metastasis and chemoresistance in experimental models. Recent studies have linked gene expression of EMT-associated gene signatures to increased inflammatory immune response in multiple cancer types. However, these studies did not account for the potential confounding effects of gene expression by tumor-infiltrating mesenchymal stromal cells. In this study, we comprehensively dissect the associations between multiple EMT transcription factors and EMT markers with stromal and immune tumor infiltration. We find that EMT-related genes are highly correlated with intratumoral stromal cell abundance and identify a specific relationship between stroma-corrected ZEB1 expression and decreased immune activity in multiple cancer types. We derive a stroma-corrected ZEB1-activated transcriptional signature and demonstrate that this signature includes several known inhibitors of inflammation, including BMPR2. Finally, multivariate survival analysis reveals that ZEB1 and its expression signature are significantly associated with reduced overall survival in breast cancer patients. In conclusion, this study identifies a novel association between stroma-adjusted ZEB1 expression and tumor immune activity and addresses the critical issue of confounding between EMT-associated genes and tumor stromal content.
Collapse
|
243
|
Chemokine (C-C motif) ligand 2 and coronary artery disease: Tissue expression of functional and atypical receptors. Cytokine 2019; 126:154923. [PMID: 31739217 DOI: 10.1016/j.cyto.2019.154923] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 11/06/2019] [Accepted: 11/08/2019] [Indexed: 12/12/2022]
Abstract
Chemokines, particularly chemokine (C-C- motif) ligand 2 (CCL2), control leukocyte migration into the wall of the artery and regulate the traffic of inflammatory cells. CCL2 is bound to functional receptors (CCR2), but also to atypical chemokine receptors (ACKRs), which do not induce cell migration but can modify chemokine gradients. Whether atherosclerosis alters CCL2 function by influencing the expression of these receptors remains unknown. In a necropsy study, we used immunohistochemistry to explore where and to what extent CCL2 and related receptors are present in diseased arteries that caused the death of men with coronary artery disease compared with unaffected arteries. CCL2 was marginally detected in normal arteries but was more frequently found in the intima. The expression of CCL2 and related receptors was significantly increased in diseased arteries with relative differences among the artery layers. The highest relative increases were those of CCL2 and ACKR1. CCL2 expression was associated with a significant predictive value of atherosclerosis. Findings suggest the need for further insight into receptor specificity or activity and the interplay among chemokines. CCL2-associated conventional and atypical receptors are overexpressed in atherosclerotic arteries, and these may suggest new potential therapeutic targets to locally modify the overall anti-inflammatory response.
Collapse
|
244
|
MCP-1/CCR-2 axis in adipocytes and cancer cell respectively facilitates ovarian cancer peritoneal metastasis. Oncogene 2019; 39:1681-1695. [PMID: 31705064 DOI: 10.1038/s41388-019-1090-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 10/21/2019] [Accepted: 10/28/2019] [Indexed: 02/08/2023]
Abstract
Ovarian cancer selective metastasizes to the omentum contributing to the poor prognosis associated with ovarian cancer. However, the mechanism underlining this propensity and therapeutic approaches to counter this process has not been fully elucidated. Here, we show that MCP-1 produced by omental adipocytes binding to its cognate receptor CCR-2 on ovarian cancer cells facilitates migration and omental metastasis by activating the PI3K/AKT/mTOR pathway and its downstream effectors HIF-1α and VEGF-A in cell lines, xenografts, and transgenic murine models. MCP-1 antibody significantly decreased tumor burden and increased survival of mice in vivo. Interestingly, metformin decreased omental metastasis at least partially by inhibiting MCP-1 secretion from adipocytes independent of direct effects on cancer cells. Together this suggests a novel target of MCP-1/CCR-2 axis that could benefit ovarian cancer patients.
Collapse
|
245
|
Kanaya N, Chang G, Wu X, Saeki K, Bernal L, Shim HJ, Wang J, Warden C, Yamamoto T, Li J, Park JS, Synold T, Vonderfecht S, Rakoff M, Neuhausen SL, Chen S. Single-cell RNA-sequencing analysis of estrogen- and endocrine-disrupting chemical-induced reorganization of mouse mammary gland. Commun Biol 2019; 2:406. [PMID: 31701034 PMCID: PMC6831695 DOI: 10.1038/s42003-019-0618-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 09/17/2019] [Indexed: 11/09/2022] Open
Abstract
Menopause is a critical window of susceptibility for its sensitivity to endocrine disrupting chemicals due to the decline of endogenous estrogen. Using a surgical menopausal (ovariectomized) mouse model, we assessed how mammary tissue was affected by both 17β-estradiol (E2) and polybrominated diphenyl ethers (PBDEs). As flame retardants in household products, PBDEs are widely detected in human serum. During physiologically-relevant exposure to E2, PBDEs enhanced E2-mediated regrowth of mammary glands with terminal end bud-like structures. Analysis of mammary gland RNA revealed that PBDEs both augmented E2-facilitated gene expression and modulated immune regulation. Through single-cell RNA sequencing (scRNAseq) analysis, E2 was found to induce Pgr expression in both Esr1+ and Esr1- luminal epithelial cells and Ccl2 expression in Esr1+ fibroblasts. PBDEs promote the E2-AREG-EGFR-M2 macrophage pathway. Our findings support that E2 + PBDE increases the risk of developing breast cancer through the expansion of estrogen-responsive luminal epithelial cells and immune modulation.
Collapse
Affiliation(s)
- Noriko Kanaya
- Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, CA USA
| | - Gregory Chang
- Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, CA USA
| | - Xiwei Wu
- Integrative Genomics Core, Beckman Research Institute of City of Hope, Duarte, CA USA
| | - Kohei Saeki
- Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, CA USA
| | - Lauren Bernal
- Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, CA USA
| | - Hyun-Jeong Shim
- Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, CA USA
| | - Jinhui Wang
- Integrative Genomics Core, Beckman Research Institute of City of Hope, Duarte, CA USA
| | - Charles Warden
- Integrative Genomics Core, Beckman Research Institute of City of Hope, Duarte, CA USA
| | - Takuro Yamamoto
- Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, CA USA
| | - Jay Li
- Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, CA USA
| | - June-Soo Park
- Environmental Chemistry Laboratory, Department of Toxic Substances Control, Berkeley, CA USA
| | - Timothy Synold
- Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, CA USA
| | - Steve Vonderfecht
- Center for Comparative Medicine, Beckman Research Institute of City of Hope, Duarte, CA USA
| | | | - Susan L. Neuhausen
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA USA
| | - Shiuan Chen
- Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, CA USA
| |
Collapse
|
246
|
Macrophage M1/M2 polarization and rheumatoid arthritis: A systematic review. Autoimmun Rev 2019; 18:102397. [DOI: 10.1016/j.autrev.2019.102397] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 05/03/2019] [Indexed: 02/06/2023]
|
247
|
Rani A, Dasgupta P, Murphy JJ. Prostate Cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:2119-2137. [DOI: 10.1016/j.ajpath.2019.07.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 07/02/2019] [Accepted: 07/25/2019] [Indexed: 02/06/2023]
|
248
|
Do DC, Mu J, Ke X, Sachdeva K, Qin Z, Wan M, Ishmael FT, Gao P. miR-511-3p protects against cockroach allergen-induced lung inflammation by antagonizing CCL2. JCI Insight 2019; 4:126832. [PMID: 31536479 DOI: 10.1172/jci.insight.126832] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 09/12/2019] [Indexed: 02/06/2023] Open
Abstract
miR-511-3p, encoded by CD206/Mrc1, was demonstrated to reduce allergic inflammation and promote alternative (M2) macrophage polarization. Here, we sought to elucidate the fundamental mechanism by which miR-511-3p attenuates allergic inflammation and promotes macrophage polarization. Compared with WT mice, the allergen-challenged Mrc1-/- mice showed increased airway hyperresponsiveness (AHR) and inflammation. However, this increased AHR and inflammation were significantly attenuated when these mice were pretransduced with adeno-associated virus-miR-511-3p (AAV-miR-511-3p). Gene expression profiling of macrophages identified Ccl2 as one of the major genes that was highly expressed in M2 macrophages but antagonized by miR-511-3p. The interaction between miR-511-3p and Ccl2 was confirmed by in silico analysis and mRNA-miR pulldown assay. Further evidence for the inhibition of Ccl2 by miR-511-3p was given by reduced levels of Ccl2 in supernatants of miR-511-3p-transduced macrophages and in bronchoalveolar lavage fluids of AAV-miR-511-3p-infected Mrc1-/- mice. Mechanistically, we demonstrated that Ccl2 promotes M1 macrophage polarization by activating RhoA signaling through Ccr2. The interaction between Ccr2 and RhoA was also supported by coimmunoprecipitation assay. Importantly, inhibition of RhoA signaling suppressed cockroach allergen-induced AHR and lung inflammation. These findings suggest a potentially novel mechanism by which miR-511-3p regulates allergic inflammation and macrophage polarization by targeting Ccl2 and its downstream Ccr2/RhoA axis.
Collapse
Affiliation(s)
- Danh C Do
- Johns Hopkins Asthma and Allergy Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jie Mu
- Johns Hopkins Asthma and Allergy Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Anesthesiology, West China School of Medicine, Sichuan University, Chengdu, China
| | - Xia Ke
- Department of Otorhinolaryngology, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Karan Sachdeva
- Johns Hopkins Asthma and Allergy Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Zili Qin
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Mei Wan
- Department of Orthopedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Faoud T Ishmael
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Pennsylvania State University Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Peisong Gao
- Johns Hopkins Asthma and Allergy Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
249
|
Branco ACCC, Pereira NZ, Yoshikawa FSY, Oliveira LMDS, Teixeira FME, Oliveira LDM, Pietrobon AJ, Torrealba MP, de Lima JF, Duarte AJDS, Sato MN. Proinflammatory profile of neonatal monocytes induced by microbial ligands is downmodulated by histamine. Sci Rep 2019; 9:13721. [PMID: 31548589 PMCID: PMC6757139 DOI: 10.1038/s41598-019-50227-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 09/04/2019] [Indexed: 01/08/2023] Open
Abstract
Although the neonatal period is characterized by relative immunological immaturity, an inflammatory response due to Toll-like receptor (TLR) activation is observed. Histamine may be one of the factors playing a role in restraining inflammation during the early stages of life. Therefore, we evaluated the responsiveness of human cord blood cells to TLR4 agonists and the immunomodulatory function of histamine in the inflammatory response. Compared with adults, mononuclear cells (MNCs) from newborns (NBs) exhibit impaired production of IFN-γ-inducible chemokines, such as CXCL10 and CXCL9, upon lipopolysaccharide (LPS) stimulation. Notably, LPS induced a 5-fold increase in CCL2 secretion in NBs. Evaluation of the effect of histamine on LPS-induced CCL2 secretion showed an inhibitory effect in the majority of adults, whereas this effect was detectable in all NBs. Histamine receptor (HR) blockage revealed partial involvement of H1R, H2R and H4R in LPS-induced CCL2 inhibition in MNCs from both NBs and adults. As monocytes are the main type of mononuclear cell that produces CCL2, we evaluated genes related to TLR signaling upon LPS stimulation. Monocytes from NBs showed up-regulation of genes associated with JAK/STAT/NF-κB and IFN signaling. Some differentially expressed genes encoding proinflammatory factors were preferentially detected in LPS-activated monocytes from NBs, and markedly down-regulated by histamine. The immunomodulatory role of histamine on CCL2 and CXCL8 was detected at the transcript and protein levels. Our findings show that NBs have enhanced CCL2 responsiveness to LPS, and that histamine acts in immune homeostasis during the neonatal period to counterbalance the robustness of TLR stimulation.
Collapse
Affiliation(s)
- Anna Cláudia Calvielli Castelo Branco
- Laboratory of Medical Investigation, LIM-56, Department of Dermatology, Tropical Medicine Institute of São Paulo, Medical School, University of São Paulo, São Paulo, Brazil.,Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Nátalli Zanete Pereira
- Laboratory of Medical Investigation, LIM-56, Department of Dermatology, Tropical Medicine Institute of São Paulo, Medical School, University of São Paulo, São Paulo, Brazil
| | - Fábio Seiti Yamada Yoshikawa
- Laboratory of Medical Investigation, LIM-56, Department of Dermatology, Tropical Medicine Institute of São Paulo, Medical School, University of São Paulo, São Paulo, Brazil
| | - Luanda Mara da Silva Oliveira
- Laboratory of Medical Investigation, LIM-56, Department of Dermatology, Tropical Medicine Institute of São Paulo, Medical School, University of São Paulo, São Paulo, Brazil
| | - Franciane Mouradian Emidio Teixeira
- Laboratory of Medical Investigation, LIM-56, Department of Dermatology, Tropical Medicine Institute of São Paulo, Medical School, University of São Paulo, São Paulo, Brazil.,Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Luana de Mendonça Oliveira
- Laboratory of Medical Investigation, LIM-56, Department of Dermatology, Tropical Medicine Institute of São Paulo, Medical School, University of São Paulo, São Paulo, Brazil
| | - Anna Julia Pietrobon
- Laboratory of Medical Investigation, LIM-56, Department of Dermatology, Tropical Medicine Institute of São Paulo, Medical School, University of São Paulo, São Paulo, Brazil.,Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Marina Passos Torrealba
- Laboratory of Medical Investigation, LIM-56, Department of Dermatology, Tropical Medicine Institute of São Paulo, Medical School, University of São Paulo, São Paulo, Brazil
| | - Josenilson Feitosa de Lima
- Laboratory of Medical Investigation, LIM-56, Department of Dermatology, Tropical Medicine Institute of São Paulo, Medical School, University of São Paulo, São Paulo, Brazil
| | - Alberto José da Silva Duarte
- Laboratory of Medical Investigation, LIM-56, Department of Dermatology, Tropical Medicine Institute of São Paulo, Medical School, University of São Paulo, São Paulo, Brazil
| | - Maria Notomi Sato
- Laboratory of Medical Investigation, LIM-56, Department of Dermatology, Tropical Medicine Institute of São Paulo, Medical School, University of São Paulo, São Paulo, Brazil. .,Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
250
|
DiGiacomo JW, Gilkes DM. Tumor Hypoxia As an Enhancer of Inflammation-Mediated Metastasis: Emerging Therapeutic Strategies. Target Oncol 2019; 13:157-173. [PMID: 29423593 DOI: 10.1007/s11523-018-0555-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Metastasis is the leading cause of cancer-related deaths. Recent research has implicated tumor inflammation as a promoter of metastasis. Myeloid, lymphoid, and mesenchymal cells in the tumor microenvironment promote inflammatory signaling amongst each other and together with cancer cells to modulate sustained inflammation, which may enhance cancer invasiveness. Tumor hypoxia, a state of reduced available oxygen present in the majority of solid tumors, acts as a prognostic factor for a worse outcome and is known to have a role in tumor inflammation through the regulation of inflammatory mediator signals in both cancer and neighboring cells in the microenvironment. Multiple methods to target tumor hypoxia have been developed and tested in clinical trials, and still more are emerging as the impacts of hypoxia become better understood. These strategies include mechanistic inhibition of the hypoxia inducible factor signaling pathway and hypoxia activated pro-drugs, leading to both anti-tumor and anti-inflammatory effects. This prompts a need for further research on the prevention of hypoxia-mediated inflammation in cancer. Hypoxia-targeting strategies seem to have the most potential for therapeutic benefit when combined with traditional chemotherapy agents. This paper will serve to summarize the role of the inflammatory response in metastasis, to discuss how hypoxia can enable or enhance inflammatory signaling, and to review established and emerging strategies to target the hypoxia-inflammation-metastasis axis.
Collapse
Affiliation(s)
- Josh W DiGiacomo
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA.,Breast & Ovarian Cancer Program, Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, 21287, USA
| | - Daniele M Gilkes
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA. .,Breast & Ovarian Cancer Program, Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, 21287, USA.
| |
Collapse
|