201
|
Chiu ML, Gilliland GL. Engineering antibody therapeutics. Curr Opin Struct Biol 2016; 38:163-73. [PMID: 27525816 DOI: 10.1016/j.sbi.2016.07.012] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 07/15/2016] [Accepted: 07/18/2016] [Indexed: 02/07/2023]
Abstract
The successful introduction of antibody-based protein therapeutics into the arsenal of treatments for patients has within a few decades fostered intense innovation in the production and engineering of antibodies. Reviewed here are the methods currently used to produce antibodies along with how our knowledge of the structural and functional characterization of immunoglobulins has resulted in the engineering of antibodies to produce protein therapeutics with unique properties, both biological and biophysical, that are leading to novel therapeutic approaches. Antibody engineering includes the introduction of the antibody combining site (variable regions) into a host of architectures including bi and multi-specific formats that further impact the therapeutic properties leading to further advantages and successes in patient treatment.
Collapse
Affiliation(s)
- Mark L Chiu
- Janssen Research & Development LLC, 1400 McKean Road, Spring House, PA 19477, USA.
| | - Gary L Gilliland
- Janssen Research & Development LLC, 1400 McKean Road, Spring House, PA 19477, USA.
| |
Collapse
|
202
|
Characterization of Chemical and Physical Modifications of Human Serum Albumin by Capillary Zone Electrophoresis. Methods Mol Biol 2016. [PMID: 27473488 DOI: 10.1007/978-1-4939-4014-1_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2025]
Abstract
Therapeutic proteins can easily undergo chemical or physical changes during their manufacturing, purification, and storage. These modifications might change or reduce their biological activity. Therefore, it is important to have analytical methodologies that are able to reliably detect, characterize, and quantify degradation products in formulations. Capillary Zone Electrophoresis (CZE) is very well suited for the analysis of proteins due to its relatively easiness of implementation, separation efficiency, and resolving power. We describe here a CZE method that allows separating more than nine forms in therapeutic albumin, including oxidized, glycated, and truncated forms. This method uses a polyethylene oxide (PEO) coating and a buffer composed of HEPES and SDS at physiological pH. The method is reproducible (RSD < 0.5 and 4 % for migration times and peak areas, respectively) and allows quantitation of albumin forms in pharmaceutical preparations.
Collapse
|
203
|
Abstract
Fragmentation in the hinge region of an IgG1 monoclonal antibody (mAb) can affect product stability, potentially causing changes in potency and efficacy. Metals ions, such as Cu(2+), can bind to the mAb and undergo hydrolysis or oxidation, which can lead to cleavage of the molecule. To better understand the mechanism of Cu(2+)-mediated mAb fragmentation, hinge region cleavage products and their rates of formation were studied as a function of pH with and without Cu(2+). More detailed analysis of the chemical changes was investigated using model linear and cyclic peptides (with the sequence of SCDKTHTC) derived from the upper hinge region of the mAb. Cu(2+) mediated fragmentation was determined to be predominantly via a hydrolytic pathway in solution. The sites and products of hydrolytic cleavage are pH and strain dependent. In more acidic environments, rates of Cu(2+) induced hinge fragmentation are significantly slower than at higher pH. Although the degradation reaction rates between the linear and cyclic peptides are not significantly different, the products of degradation vary. mAb fragmentation can be reduced by modifying His, which is a potential metal binding site and a known ligand in other metalloproteins. These results suggest that a charge may contribute to stabilization of a specific molecular structure involved in hydrolysis, leading to the possible formation of a copper binding pocket that causes increased susceptibility of the hinge region to degradation.
Collapse
Affiliation(s)
- Zephania Kwong Glover
- a Late Stage Pharmaceutical Development; Genentech, Inc. ; South San Francisco , CA USA
| | | | | | | | | |
Collapse
|
204
|
Wong JJH, Wright SK, Ghozalli I, Mehra R, Furuya K, Katayama DS. Simultaneous High-Throughput Conformational and Colloidal Stability Screening Using a Fluorescent Molecular Rotor Dye, 4-(4-(Dimethylamino)styryl)-N-Methylpyridinium Iodide (DASPMI). ACTA ACUST UNITED AC 2016; 21:842-50. [PMID: 27138878 DOI: 10.1177/1087057116646553] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 02/03/2016] [Indexed: 11/16/2022]
Abstract
Technologies to improve the throughput for screening protein formulations are continuously evolving. The purpose of this article is to highlight novel applications of a molecular rotor dye, 4-(4-(dimethylamino)styryl)-N-methylpyridinium iodide (DASPMI) in screening for the conformational stability, colloidal stability, and subtle pretransition dynamics of protein structures during early formulation development. The measurement of the apparent unfolding temperature (Tm) for a monoclonal antibody in the presence of Tween 80 was conducted and data were compared to the results of differential scanning calorimetry (DSC) measurements. Additionally, measuring the fluorescence intensity of DASPMI as a function of protein concentration shows consistent correlation to the diffusion interaction parameter (kD) for two distinct monoclonal antibody formulations measured by DLS. Lastly, due to the sensitivity of the molecular rotor dye to changes in microviscosity (ηmicro), subtle pretransition dynamics were discernable for two monoclonal antibody formulations that correlate with findings by red-edge excitation shift (REES) experiments. This novel application of molecular rotor dyes offers a valuable and promising approach for streamlining the early formulation development process due to low material consumption and rapid analysis time in a 96-well plate format.
Collapse
Affiliation(s)
- Jensen J H Wong
- Analytical Science Department, Analytical and Formulation Development, Boehringer Ingelheim, Fremont, CA, USA
| | - Sara K Wright
- Analytical Science Department, Analytical and Formulation Development, Boehringer Ingelheim, Fremont, CA, USA
| | - Irene Ghozalli
- Analytical Science Department, Analytical and Formulation Development, Boehringer Ingelheim, Fremont, CA, USA
| | - Rajni Mehra
- Analytical Science Department, Analytical and Formulation Development, Boehringer Ingelheim, Fremont, CA, USA
| | - Kenji Furuya
- Analytical Science Department, Analytical and Formulation Development, Boehringer Ingelheim, Fremont, CA, USA
| | - Derrick S Katayama
- Analytical Science Department, Analytical and Formulation Development, Boehringer Ingelheim, Fremont, CA, USA
| |
Collapse
|
205
|
Yadav V, Varum F, Bravo R, Furrer E, Basit AW. Gastrointestinal stability of therapeutic anti-TNF α IgG1 monoclonal antibodies. Int J Pharm 2016; 502:181-7. [DOI: 10.1016/j.ijpharm.2016.02.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 02/09/2016] [Accepted: 02/09/2016] [Indexed: 02/08/2023]
|
206
|
Barnett GV, Razinkov VI, Kerwin BA, Hillsley A, Roberts CJ. Acetate- and Citrate-Specific Ion Effects on Unfolding and Temperature-Dependent Aggregation Rates of Anti-Streptavidin IgG1. J Pharm Sci 2016; 105:1066-73. [DOI: 10.1016/j.xphs.2015.12.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 12/15/2015] [Accepted: 12/15/2015] [Indexed: 01/20/2023]
|
207
|
Production, Characterization, and Biological Evaluation of Well-Defined IgG1 Fc Glycoforms as a Model System for Biosimilarity Analysis. J Pharm Sci 2016; 105:559-574. [PMID: 26869419 DOI: 10.1016/j.xphs.2015.11.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 10/27/2015] [Accepted: 10/29/2015] [Indexed: 12/18/2022]
Abstract
Four different well-defined IgG1 Fc glycoforms are proposed as a model system to examine important biological and physicochemical features for protein drug biosimilar analyses. The IgG1 Fc glycoforms were produced by yeast expression combined with in vitro enzymatic synthesis as a series of sequentially truncated high-mannose IgG1 Fc glycoforms with an anticipated range of biological activity and structural stability. Initial characterization with mass spectrometry, SDS-PAGE, size exclusion HPLC, and capillary isoelectric focusing confirmed that the glycoproteins are overall highly similar with the only major difference being glycosylation state. Binding to the activating Fc receptor, FcγRIIIa was used to evaluate the potential biological activity of the IgG1 Fc glycoproteins. Two complementary methods using biolayer interferometry, 1 with protein G-immobilized IgG1 Fc and the other with streptavidin-immobilized FcγRIIIa, were developed to assess FcγRIIIa affinity in kinetic binding studies. The high-mannose IgG1 Fc and Man5-IgG1 Fc glycoforms were highly similar to one another with high affinity for FcγRIIIa, whereas GlcNAc-Fc had weak affinity, and the nonglycosylated N297Q-Fc had no measurable affinity for FcγRIIIa. These 4 IgG1 Fc glycoforms were also evaluated in terms of physical and chemical stability profiles and then used as a model system to mathematically assess overall biosimilarity, as described in a series of companion articles.
Collapse
|
208
|
Abstract
The Fc-fusion mimetic RpR 2̲ was prepared by disulfide bridging conjugation using PEG in the place of the Fc.
Collapse
Affiliation(s)
- H. Khalili
- UCL School of Pharmacy
- University College London
- London WC1N 1AX
- UK
- NIHR Biomedical Research Centre
| | - P. T. Khaw
- NIHR Biomedical Research Centre
- Moorfields Eye Hospital and UCL Institute of Ophthalmology
- London
- UK
| | - S. Brocchini
- UCL School of Pharmacy
- University College London
- London WC1N 1AX
- UK
- NIHR Biomedical Research Centre
| |
Collapse
|
209
|
Gregoritza M, Messmann V, Goepferich AM, Brandl FP. Design of hydrogels for delayed antibody release utilizing hydrophobic association and Diels–Alder chemistry in tandem. J Mater Chem B 2016; 4:3398-3408. [DOI: 10.1039/c6tb00223d] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydrophobic association enables delayed antibody release from hydrogels cross-linked via Diels–Alder reaction.
Collapse
Affiliation(s)
- Manuel Gregoritza
- Department of Pharmaceutical Technology
- Faculty of Chemistry and Pharmacy
- University of Regensburg
- 93040 Regensburg
- Germany
| | - Viktoria Messmann
- Department of Pharmaceutical Technology
- Faculty of Chemistry and Pharmacy
- University of Regensburg
- 93040 Regensburg
- Germany
| | - Achim M. Goepferich
- Department of Pharmaceutical Technology
- Faculty of Chemistry and Pharmacy
- University of Regensburg
- 93040 Regensburg
- Germany
| | - Ferdinand P. Brandl
- Department of Pharmaceutical Technology
- Faculty of Chemistry and Pharmacy
- University of Regensburg
- 93040 Regensburg
- Germany
| |
Collapse
|
210
|
Ly HGT, Absillis G, Parac-Vogt TN. Influence of the amino acid side chain on peptide bond hydrolysis catalyzed by a dimeric Zr(iv)-substituted Keggin type polyoxometalate. NEW J CHEM 2016. [DOI: 10.1039/c5nj00561b] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Structurally different dipeptides were hydrolyzed by [{α-PW11O39Zr-(μ-OH)(H2O)}2]8−. The rate constants were dependent on bulkiness and chemical nature of the dipeptide.
Collapse
|
211
|
|
212
|
Fekete S, Guillarme D, Sandra P, Sandra K. Chromatographic, Electrophoretic, and Mass Spectrometric Methods for the Analytical Characterization of Protein Biopharmaceuticals. Anal Chem 2015; 88:480-507. [DOI: 10.1021/acs.analchem.5b04561] [Citation(s) in RCA: 171] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Szabolcs Fekete
- School
of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Boulevard d’Yvoy 20, 1211 Geneva 4, Switzerland
| | - Davy Guillarme
- School
of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Boulevard d’Yvoy 20, 1211 Geneva 4, Switzerland
| | - Pat Sandra
- Research Institute for Chromatography (RIC), President Kennedypark 26, 8500 Kortrijk, Belgium
| | - Koen Sandra
- Research Institute for Chromatography (RIC), President Kennedypark 26, 8500 Kortrijk, Belgium
| |
Collapse
|
213
|
Lian Z, Wu Q, Wang T. Identification and characterization of a -1 reading frameshift in the heavy chain constant region of an IgG1 recombinant monoclonal antibody produced in CHO cells. MAbs 2015; 8:358-70. [PMID: 26652198 PMCID: PMC4966638 DOI: 10.1080/19420862.2015.1116658] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 10/27/2015] [Accepted: 11/01/2015] [Indexed: 01/16/2023] Open
Abstract
Frameshifts lead to complete alteration of the intended amino acid sequences, and therefore may affect the biological activities of protein therapeutics and pose potential immunogenicity risks. We report here the identification and characterization of a novel -1 frameshift variant in a recombinant IgG1 therapeutic monoclonal antibody (mAb) produced in Chinese hamster ovary cells during the cell line selection studies. The variant was initially observed as an atypical post-monomer fragment peak in size exclusion chromatography. Characterization of the fragment peak using intact and reduced liquid chromatography-mass spectrometry (LC-MS) analyses determined that the fragment consisted of a normal light chain disulfide-linked to an aberrant 26 kDa fragment that could not be assigned to any HC fragment even after considering common modifications. Further analysis using LC-MS/MS peptide mapping revealed that the aberrant fragment contained the expected HC amino acid sequence (1-232) followed by a 20-mer novel sequence corresponding to expression of heavy chain DNA sequence in the -1 reading frame. Examination of the DNA sequence around the frameshift initiation site revealed that a mononucleotide repeat GGGGGG located in the IgG1 HC constant region was most likely the structural root cause of the frameshift. Rapid identification of the frameshift allowed us to avoid use of a problematic cell line containing the frameshift as the production cell line. The frameshift reported here may be observed in other mAb products and the hypothesis-driven analytical approaches employed here may be valuable for rapid identification and characterization of frameshift variants in other recombinant proteins.
Collapse
Affiliation(s)
- Zhirui Lian
- Bioproduct Research and Development, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - Qindong Wu
- Bioproduct Research and Development, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - Tongtong Wang
- Bioproduct Research and Development, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA
| |
Collapse
|
214
|
Ly HGT, Mihaylov T, Absillis G, Pierloot K, Parac-Vogt TN. Reactivity of Dimeric Tetrazirconium(IV) Wells-Dawson Polyoxometalate toward Dipeptide Hydrolysis Studied by a Combined Experimental and Density Functional Theory Approach. Inorg Chem 2015; 54:11477-92. [PMID: 26599585 DOI: 10.1021/acs.inorgchem.5b02122] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Detailed kinetic studies on the hydrolysis of glycylglycine (Gly-Gly) in the presence of the dimeric tetrazirconium(IV)-substituted Wells-Dawson-type polyoxometalate Na14[Zr4(P2W16O59)2(μ3-O)2(OH)2(H2O)4] · 57H2O (1) were performed by a combination of (1)H, (13)C, and (31)P NMR spectroscopies. The catalyst was shown to be stable under a broad range of reaction conditions. The effect of pD on the hydrolysis of Gly-Gly showed a bell-shaped profile with the fastest hydrolysis observed at pD 7.4. The observed rate constant for the hydrolysis of Gly-Gly at pD 7.4 and 60 °C was 4.67 × 10(-7) s(-1), representing a significant acceleration as compared to the uncatalyzed reaction. (13)C NMR data were indicative for coordination of Gly-Gly to 1 via its amide oxygen and amine nitrogen atoms, resulting in a hydrolytically active complex. Importantly, the effective hydrolysis of a series of Gly-X dipeptides with different X side chain amino acids in the presence of 1 was achieved, and the observed rate constant was shown to be dependent on the volume, chemical nature, and charge of the X amino acid side chain. To give a mechanistic explanation of the observed catalytic hydrolysis of Gly-Gly, a detailed quantum-chemical study was performed. The theoretical results confirmed the nature of the experimentally suggested binding mode in the hydrolytically active complex formed between Gly-Gly and 1. To elucidate the role of 1 in the hydrolytic process, both the uncatalyzed and the polyoxometalate-catalyzed reactions were examined. In the rate-determining step of the uncatalyzed Gly-Gly hydrolysis, a carboxylic oxygen atom abstracts a proton from a solvent water molecule and the nascent OH nucleophile attacks the peptide carbon atom. Analogous general-base activity of the free carboxylic group was found to take place also in the case of polyoxometalate-catalyzed hydrolysis as the main catalytic effect originates from the -C═O···Zr(IV) binding.
Collapse
Affiliation(s)
- Hong Giang T Ly
- Laboratory of Bioinorganic Chemistry and ‡Laboratory of Computational Coordination Chemistry, Department of Chemistry, Katholieke Universiteit Leuven , Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Tzvetan Mihaylov
- Laboratory of Bioinorganic Chemistry and ‡Laboratory of Computational Coordination Chemistry, Department of Chemistry, Katholieke Universiteit Leuven , Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Gregory Absillis
- Laboratory of Bioinorganic Chemistry and ‡Laboratory of Computational Coordination Chemistry, Department of Chemistry, Katholieke Universiteit Leuven , Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Kristine Pierloot
- Laboratory of Bioinorganic Chemistry and ‡Laboratory of Computational Coordination Chemistry, Department of Chemistry, Katholieke Universiteit Leuven , Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Tatjana N Parac-Vogt
- Laboratory of Bioinorganic Chemistry and ‡Laboratory of Computational Coordination Chemistry, Department of Chemistry, Katholieke Universiteit Leuven , Celestijnenlaan 200F, 3001 Leuven, Belgium
| |
Collapse
|
215
|
A Novel Human scFv Library with Non-Combinatorial Synthetic CDR Diversity. PLoS One 2015; 10:e0141045. [PMID: 26484868 PMCID: PMC4613135 DOI: 10.1371/journal.pone.0141045] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 10/02/2015] [Indexed: 12/19/2022] Open
Abstract
The present work describes the construction and validation of a human scFv library with a novel design approach to synthetic complementarity determining region (CDR) diversification. The advantage of synthetic antibody libraries includes the possibility of exerting fine control over factors like framework sequences, amino acid and codon usage, and CDR diversity. However, random combinatorial synthesis of oligonucleotides for CDR sequence diversity also produces many clones with unnatural sequences and/or undesirable modification motifs. To alleviate these issues, we designed and constructed a novel semi-synthetic human scFv library with non-combinatorial, pre-designed CDR diversity and a single native human framework each for heavy, kappa, and lambda chain variable domains. Next-generation sequencing analysis indicated that the library consists of antibody clones with highly nature-like CDR sequences and the occurrence of the post-translational modification motifs is minimized. Multiple unique clones with nanomolar affinity could be isolated from the library against a number of target antigens, validating the library design strategy. The results demonstrate that it is possible to construct a functional antibody library using low, non-combinatorial synthetic CDR diversity, and provides a new strategy for the design of antibody libraries suitable for demanding applications.
Collapse
|
216
|
Dada OO, Jaya N, Valliere-Douglass J, Salas-Solano O. Characterization of acidic and basic variants of IgG1 therapeutic monoclonal antibodies based on non-denaturing IEF fractionation. Electrophoresis 2015; 36:2695-2702. [DOI: 10.1002/elps.201500219] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 07/17/2015] [Accepted: 07/28/2015] [Indexed: 01/17/2023]
Affiliation(s)
| | - Nomalie Jaya
- Department of Analytical Sciences; Seattle Genetics Inc; Bothell WA USA
| | | | | |
Collapse
|
217
|
Cortez-Jugo C, Qi A, Rajapaksa A, Friend JR, Yeo LY. Pulmonary monoclonal antibody delivery via a portable microfluidic nebulization platform. BIOMICROFLUIDICS 2015; 9:052603. [PMID: 25945147 PMCID: PMC4393410 DOI: 10.1063/1.4917181] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 03/27/2015] [Indexed: 05/06/2023]
Abstract
Nebulizers have considerable advantages over conventional inhalers for pulmonary drug administration, particularly because they do not require coordinated breath actuation to generate and deliver the aerosols. Nevertheless, besides being less amenable to miniaturization and hence portability, some nebulizers are prone to denature macromolecular drugs due to the large forces generated during aerosolization. Here, we demonstrate a novel portable acoustomicrofluidic device capable of nebulizing epidermal growth factor receptor (EGFR) monoclonal antibodies into a fine aerosol mist with a mass median aerodynamic diameter of approximately 1.1 μm, optimal for deep lung deposition via inhalation. The nebulized monoclonal antibodies were tested for their stability, immunoactivity, and pharmacological properties, which confirmed that nebulization did not cause significant degradation of the antibody. In particular, flow cytometry demonstrated that the antigen binding capability of the antibody is retained and able to reduce phosphorylation in cells overexpressing the EGFR, indicating that the aerosols generated by the device were loaded with stable and active monoclonal antibodies. The delivery of antibodies via inhalation, particularly for the treatment of lung cancer, is thus expected to enhance the efficacy of this protein therapeutic by increasing the local concentration where they are needed.
Collapse
Affiliation(s)
| | - Aisha Qi
- Micro/Nanophysics Research Laboratory, RMIT University , Melbourne, Victoria 3001, Australia
| | - Anushi Rajapaksa
- Murdoch Children's Research Institute , Parkville, Victoria 3052, Australia
| | - James R Friend
- Micro/Nanophysics Research Laboratory, RMIT University , Melbourne, Victoria 3001, Australia
| | - Leslie Y Yeo
- Micro/Nanophysics Research Laboratory, RMIT University , Melbourne, Victoria 3001, Australia
| |
Collapse
|
218
|
Bee JS, Tie L, Johnson D, Dimitrova MN, Jusino KC, Afdahl CD. Trace levels of the CHO host cell protease cathepsin D caused particle formation in a monoclonal antibody product. Biotechnol Prog 2015; 31:1360-9. [DOI: 10.1002/btpr.2150] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 07/19/2015] [Indexed: 11/05/2022]
Affiliation(s)
- Jared S. Bee
- Analytical Biotechnology; MedImmune, One MedImmune Way; Gaithersburg MD 20878
| | - Liu Tie
- Analytical Biotechnology; MedImmune, One MedImmune Way; Gaithersburg MD 20878
| | - Douglas Johnson
- Analytical Biotechnology; MedImmune, One MedImmune Way; Gaithersburg MD 20878
| | | | | | | |
Collapse
|
219
|
Vanam RP, Schneider MA, Marlow MS. Rapid quantitative analysis of monoclonal antibody heavy and light chain charge heterogeneity. MAbs 2015; 7:1118-27. [PMID: 26305772 PMCID: PMC4966340 DOI: 10.1080/19420862.2015.1085145] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 08/08/2015] [Accepted: 08/17/2015] [Indexed: 12/15/2022] Open
Abstract
An alternative method to traditional 2-dimensional gel electrophoresis (2D-PAGE) and its application in characterizing the inherent charge heterogeneity of chromatographically isolated monoclonal antibody heavy and light chains is described. This method, referred to as ChromiCE, utilizes analytical size-exclusion chromatography (SEC), performed under reducing and denaturing conditions, followed by imaged capillary isoelectric focusing (icIEF) of the chromatographically separated heavy and light chains. Under conditions suitable for the subsequent icIEF analysis, the absolute and relative SEC elution volumes of the heavy and light chains were found to be highly pH dependent, a phenomenon that can be exploited in optimizing chromatographic separation. Compared to 2D-PAGE, the ChromiCE method substantially decreases the time and labor needed to complete the analysis, improves reproducibility, and provides fully quantitative assessment of charge heterogeneity. The ChromiCE methodology was applied to a set of diverse monoclonal antibodies to demonstrate suitability for quantitative charge variant analysis of heavy and light chains. A typical application of ChromiCE in extended characterization and stability studies of a purified antibody is shown.
Collapse
Affiliation(s)
- Ram P Vanam
- Pre-Clinical Development and Protein Chemistry, Regeneron Pharmaceuticals, Inc.; Tarrytown, NY USA
| | - Michael A Schneider
- Pre-Clinical Development and Protein Chemistry, Regeneron Pharmaceuticals, Inc.; Tarrytown, NY USA
| | - Michael S Marlow
- Pre-Clinical Development and Protein Chemistry, Regeneron Pharmaceuticals, Inc.; Tarrytown, NY USA
| |
Collapse
|
220
|
Akazawa-Ogawa Y, Uegaki K, Hagihara Y. The role of intra-domain disulfide bonds in heat-induced irreversible denaturation of camelid single domain VHH antibodies. J Biochem 2015; 159:111-21. [PMID: 26289739 DOI: 10.1093/jb/mvv082] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Accepted: 07/05/2015] [Indexed: 01/14/2023] Open
Abstract
Camelid-derived single domain VHH antibodies are highly heat resistant, and the mechanism of heat-induced VHH denaturation predominantly relies on the chemical modification of amino acids. Although chemical modification of disulfide bonds has been recognized as a cause for heat-induced denaturation of many proteins, there have been no mutagenesis studies, in which the number of disulfide bonds was controlled. In this article, we examined a series of mutants of two different VHHs with single, double or no disulfide bonds, and scrutinized the effects of these disulfide bond modifications on VHH denaturation. With the exception of one mutant, the heat resistance of VHHs decreased when the number of disulfide bonds increased. The effect of disulfide bonds on heat denaturation was more striking if the VHH had a second disulfide bond, suggesting that the contribution of disulfide shuffling is significant in proteins with multiple disulfide bonds. Furthermore, our results directly indicate that removal of a disulfide bond can indeed increase the heat resistance of a protein, irrespective of the negative impact on equilibrium thermodynamic stability.
Collapse
Affiliation(s)
- Yoko Akazawa-Ogawa
- National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan
| | - Koichi Uegaki
- National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan
| | - Yoshihisa Hagihara
- National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan
| |
Collapse
|
221
|
Brühlmann D, Jordan M, Hemberger J, Sauer M, Stettler M, Broly H. Tailoring recombinant protein quality by rational media design. Biotechnol Prog 2015; 31:615-29. [DOI: 10.1002/btpr.2089] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 03/04/2015] [Indexed: 02/07/2023]
Affiliation(s)
- David Brühlmann
- Merck Serono SA, Corsier-sur-Vevey, Biotech Process Sciences, Zone Industrielle B; CH-1809 Fenil-sur-Corsier Switzerland
- Dept. of Biotechnology and Biophysics; Julius-Maximilians-Universität Würzburg, Biozentrum; Am Hubland DE-97074 Würzburg Germany
| | - Martin Jordan
- Merck Serono SA, Corsier-sur-Vevey, Biotech Process Sciences, Zone Industrielle B; CH-1809 Fenil-sur-Corsier Switzerland
| | - Jürgen Hemberger
- Inst. for Biochemical Engineering and Analytics; University of Applied Sciences Giessen; Wiesenstrasse 14, DE-35390 Giessen Germany
| | - Markus Sauer
- Dept. of Biotechnology and Biophysics; Julius-Maximilians-Universität Würzburg, Biozentrum; Am Hubland DE-97074 Würzburg Germany
| | - Matthieu Stettler
- Merck Serono SA, Corsier-sur-Vevey, Biotech Process Sciences, Zone Industrielle B; CH-1809 Fenil-sur-Corsier Switzerland
| | - Hervé Broly
- Merck Serono SA, Corsier-sur-Vevey, Biotech Process Sciences, Zone Industrielle B; CH-1809 Fenil-sur-Corsier Switzerland
| |
Collapse
|
222
|
Barnett GV, Razinkov VI, Kerwin BA, Laue TM, Woodka AH, Butler PD, Perevozchikova T, Roberts CJ. Specific-Ion Effects on the Aggregation Mechanisms and Protein–Protein Interactions for Anti-streptavidin Immunoglobulin Gamma-1. J Phys Chem B 2015; 119:5793-804. [DOI: 10.1021/acs.jpcb.5b01881] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Gregory V. Barnett
- Department
of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | | | - Bruce A. Kerwin
- Drug
Product Development, Amgen Inc., Seattle, Washington 98119, United States
| | - Thomas M. Laue
- Department
of Molecular, Cellular, and Medical Biosciences, University of New Hampshire, Durham, New Hampshire 03824, United States
| | - Andrea H. Woodka
- National Institutes of Standards and Technology Center for Neutron Research, Gaithersburg, Maryland 20899, United States
| | - Paul D. Butler
- National Institutes of Standards and Technology Center for Neutron Research, Gaithersburg, Maryland 20899, United States
| | - Tatiana Perevozchikova
- Department
of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Christopher J. Roberts
- Department
of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
223
|
Hehle VK, Lombardi R, van Dolleweerd CJ, Paul MJ, Di Micco P, Morea V, Benvenuto E, Donini M, Ma JKC. Site-specific proteolytic degradation of IgG monoclonal antibodies expressed in tobacco plants. PLANT BIOTECHNOLOGY JOURNAL 2015; 13:235-45. [PMID: 25283551 DOI: 10.1111/pbi.12266] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 08/11/2014] [Accepted: 08/16/2014] [Indexed: 05/25/2023]
Abstract
Plants are promising hosts for the production of monoclonal antibodies (mAbs). However, proteolytic degradation of antibodies produced both in stable transgenic plants and using transient expression systems is still a major issue for efficient high-yield recombinant protein accumulation. In this work, we have performed a detailed study of the degradation profiles of two human IgG1 mAbs produced in plants: an anti-HIV mAb 2G12 and a tumour-targeting mAb H10. Even though they use different light chains (κ and λ, respectively), the fragmentation pattern of both antibodies was similar. The majority of Ig fragments result from proteolytic degradation, but there are only a limited number of plant proteolytic cleavage events in the immunoglobulin light and heavy chains. All of the cleavage sites identified were in the proximity of interdomain regions and occurred at each interdomain site, with the exception of the VL /CL interface in mAb H10 λ light chain. Cleavage site sequences were analysed, and residue patterns characteristic of proteolytic enzymes substrates were identified. The results of this work help to define common degradation events in plant-produced mAbs and raise the possibility of predicting antibody degradation patterns 'a priori' and designing novel stabilization strategies by site-specific mutagenesis.
Collapse
Affiliation(s)
- Verena K Hehle
- Molecular Immunology Unit, Division of Clinical Sciences, St. George's University of London, London, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
224
|
Formolo T, Ly M, Levy M, Kilpatrick L, Lute S, Phinney K, Marzilli L, Brorson K, Boyne M, Davis D, Schiel J. Determination of the NISTmAb Primary Structure. ACS SYMPOSIUM SERIES 2015. [DOI: 10.1021/bk-2015-1201.ch001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Affiliation(s)
- Trina Formolo
- Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Mass Spectrometry and Biophysical Characterization, Analytical Research and Development, BioTherapeutics Pharmaceutical Sciences, Pfizer, Inc., Andover, Massachusetts 01810, United States
- Janssen Research and Development, LLC, Spring House, Pennsylvania 19002, United States
- Center for Drug Evaluation and Research, Office of Testing and Research, Division of Pharmaceutical Analysis, U.S. Food and Drug Administration, Saint Louis, Missouri 63110, United States
- Center for Drug Evaluation and Research, Office of Biotechnology Products, Division of Monoclonal Antibodies, U.S Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Mellisa Ly
- Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Mass Spectrometry and Biophysical Characterization, Analytical Research and Development, BioTherapeutics Pharmaceutical Sciences, Pfizer, Inc., Andover, Massachusetts 01810, United States
- Janssen Research and Development, LLC, Spring House, Pennsylvania 19002, United States
- Center for Drug Evaluation and Research, Office of Testing and Research, Division of Pharmaceutical Analysis, U.S. Food and Drug Administration, Saint Louis, Missouri 63110, United States
- Center for Drug Evaluation and Research, Office of Biotechnology Products, Division of Monoclonal Antibodies, U.S Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Michaella Levy
- Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Mass Spectrometry and Biophysical Characterization, Analytical Research and Development, BioTherapeutics Pharmaceutical Sciences, Pfizer, Inc., Andover, Massachusetts 01810, United States
- Janssen Research and Development, LLC, Spring House, Pennsylvania 19002, United States
- Center for Drug Evaluation and Research, Office of Testing and Research, Division of Pharmaceutical Analysis, U.S. Food and Drug Administration, Saint Louis, Missouri 63110, United States
- Center for Drug Evaluation and Research, Office of Biotechnology Products, Division of Monoclonal Antibodies, U.S Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Lisa Kilpatrick
- Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Mass Spectrometry and Biophysical Characterization, Analytical Research and Development, BioTherapeutics Pharmaceutical Sciences, Pfizer, Inc., Andover, Massachusetts 01810, United States
- Janssen Research and Development, LLC, Spring House, Pennsylvania 19002, United States
- Center for Drug Evaluation and Research, Office of Testing and Research, Division of Pharmaceutical Analysis, U.S. Food and Drug Administration, Saint Louis, Missouri 63110, United States
- Center for Drug Evaluation and Research, Office of Biotechnology Products, Division of Monoclonal Antibodies, U.S Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Scott Lute
- Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Mass Spectrometry and Biophysical Characterization, Analytical Research and Development, BioTherapeutics Pharmaceutical Sciences, Pfizer, Inc., Andover, Massachusetts 01810, United States
- Janssen Research and Development, LLC, Spring House, Pennsylvania 19002, United States
- Center for Drug Evaluation and Research, Office of Testing and Research, Division of Pharmaceutical Analysis, U.S. Food and Drug Administration, Saint Louis, Missouri 63110, United States
- Center for Drug Evaluation and Research, Office of Biotechnology Products, Division of Monoclonal Antibodies, U.S Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Karen Phinney
- Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Mass Spectrometry and Biophysical Characterization, Analytical Research and Development, BioTherapeutics Pharmaceutical Sciences, Pfizer, Inc., Andover, Massachusetts 01810, United States
- Janssen Research and Development, LLC, Spring House, Pennsylvania 19002, United States
- Center for Drug Evaluation and Research, Office of Testing and Research, Division of Pharmaceutical Analysis, U.S. Food and Drug Administration, Saint Louis, Missouri 63110, United States
- Center for Drug Evaluation and Research, Office of Biotechnology Products, Division of Monoclonal Antibodies, U.S Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Lisa Marzilli
- Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Mass Spectrometry and Biophysical Characterization, Analytical Research and Development, BioTherapeutics Pharmaceutical Sciences, Pfizer, Inc., Andover, Massachusetts 01810, United States
- Janssen Research and Development, LLC, Spring House, Pennsylvania 19002, United States
- Center for Drug Evaluation and Research, Office of Testing and Research, Division of Pharmaceutical Analysis, U.S. Food and Drug Administration, Saint Louis, Missouri 63110, United States
- Center for Drug Evaluation and Research, Office of Biotechnology Products, Division of Monoclonal Antibodies, U.S Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Kurt Brorson
- Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Mass Spectrometry and Biophysical Characterization, Analytical Research and Development, BioTherapeutics Pharmaceutical Sciences, Pfizer, Inc., Andover, Massachusetts 01810, United States
- Janssen Research and Development, LLC, Spring House, Pennsylvania 19002, United States
- Center for Drug Evaluation and Research, Office of Testing and Research, Division of Pharmaceutical Analysis, U.S. Food and Drug Administration, Saint Louis, Missouri 63110, United States
- Center for Drug Evaluation and Research, Office of Biotechnology Products, Division of Monoclonal Antibodies, U.S Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Michael Boyne
- Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Mass Spectrometry and Biophysical Characterization, Analytical Research and Development, BioTherapeutics Pharmaceutical Sciences, Pfizer, Inc., Andover, Massachusetts 01810, United States
- Janssen Research and Development, LLC, Spring House, Pennsylvania 19002, United States
- Center for Drug Evaluation and Research, Office of Testing and Research, Division of Pharmaceutical Analysis, U.S. Food and Drug Administration, Saint Louis, Missouri 63110, United States
- Center for Drug Evaluation and Research, Office of Biotechnology Products, Division of Monoclonal Antibodies, U.S Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Darryl Davis
- Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Mass Spectrometry and Biophysical Characterization, Analytical Research and Development, BioTherapeutics Pharmaceutical Sciences, Pfizer, Inc., Andover, Massachusetts 01810, United States
- Janssen Research and Development, LLC, Spring House, Pennsylvania 19002, United States
- Center for Drug Evaluation and Research, Office of Testing and Research, Division of Pharmaceutical Analysis, U.S. Food and Drug Administration, Saint Louis, Missouri 63110, United States
- Center for Drug Evaluation and Research, Office of Biotechnology Products, Division of Monoclonal Antibodies, U.S Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - John Schiel
- Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Mass Spectrometry and Biophysical Characterization, Analytical Research and Development, BioTherapeutics Pharmaceutical Sciences, Pfizer, Inc., Andover, Massachusetts 01810, United States
- Janssen Research and Development, LLC, Spring House, Pennsylvania 19002, United States
- Center for Drug Evaluation and Research, Office of Testing and Research, Division of Pharmaceutical Analysis, U.S. Food and Drug Administration, Saint Louis, Missouri 63110, United States
- Center for Drug Evaluation and Research, Office of Biotechnology Products, Division of Monoclonal Antibodies, U.S Food and Drug Administration, Silver Spring, Maryland 20993, United States
| |
Collapse
|
225
|
Li W, Kerwin JL, Schiel J, Formolo T, Davis D, Mahan A, Benchaar SA. Structural Elucidation of Post-Translational Modifications in Monoclonal Antibodies. ACS SYMPOSIUM SERIES 2015. [DOI: 10.1021/bk-2015-1201.ch003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Wenzhou Li
- Amgen Inc., Thousand Oaks, California 91320, United States
- Sanovas Inc., Sausalito, California 94965, United States
- Analytical Chemistry Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Janssen Research and Development, LLC, Spring House, Pennsylvania 19477, United States
| | - James L. Kerwin
- Amgen Inc., Thousand Oaks, California 91320, United States
- Sanovas Inc., Sausalito, California 94965, United States
- Analytical Chemistry Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Janssen Research and Development, LLC, Spring House, Pennsylvania 19477, United States
| | - John Schiel
- Amgen Inc., Thousand Oaks, California 91320, United States
- Sanovas Inc., Sausalito, California 94965, United States
- Analytical Chemistry Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Janssen Research and Development, LLC, Spring House, Pennsylvania 19477, United States
| | - Trina Formolo
- Amgen Inc., Thousand Oaks, California 91320, United States
- Sanovas Inc., Sausalito, California 94965, United States
- Analytical Chemistry Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Janssen Research and Development, LLC, Spring House, Pennsylvania 19477, United States
| | - Darryl Davis
- Amgen Inc., Thousand Oaks, California 91320, United States
- Sanovas Inc., Sausalito, California 94965, United States
- Analytical Chemistry Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Janssen Research and Development, LLC, Spring House, Pennsylvania 19477, United States
| | - Andrew Mahan
- Amgen Inc., Thousand Oaks, California 91320, United States
- Sanovas Inc., Sausalito, California 94965, United States
- Analytical Chemistry Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Janssen Research and Development, LLC, Spring House, Pennsylvania 19477, United States
| | - Sabrina A. Benchaar
- Amgen Inc., Thousand Oaks, California 91320, United States
- Sanovas Inc., Sausalito, California 94965, United States
- Analytical Chemistry Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Janssen Research and Development, LLC, Spring House, Pennsylvania 19477, United States
| |
Collapse
|
226
|
Ishii Y, Imamoto Y, Yamamoto R, Tsukahara M, Wakamatsu K. Comparison of Antibody Molecules Produced from Two Cell Lines with Contrasting Productivities and Aggregate Contents. Biol Pharm Bull 2015; 38:306-16. [DOI: 10.1248/bpb.b14-00729] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yoichi Ishii
- Graduate School of Engineering, Gunma University
- Bio-process Research and Development Laboratories, Kyowa Hakko Kirin Co., Ltd
| | - Yasufumi Imamoto
- Bio-process Research and Development Laboratories, Kyowa Hakko Kirin Co., Ltd
| | - Rie Yamamoto
- Bio-process Research and Development Laboratories, Kyowa Hakko Kirin Co., Ltd
| | | | | |
Collapse
|
227
|
Tian X, Vestergaard B, Thorolfsson M, Yang Z, Rasmussen HB, Langkilde AE. In-depth analysis of subclass-specific conformational preferences of IgG antibodies. IUCRJ 2015; 2:9-18. [PMID: 25610623 PMCID: PMC4285876 DOI: 10.1107/s205225251402209x] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 10/07/2014] [Indexed: 05/19/2023]
Abstract
IgG subclass-specific differences in biological function and in vitro stability are often referred to variations in the conformational flexibility, while this flexibility has rarely been characterized. Here, small-angle X-ray scattering data from IgG1, IgG2 and IgG4 antibodies, which were designed with identical variable regions, were thoroughly analysed by the ensemble optimization method. The extended analysis of the optimized ensembles through shape clustering reveals distinct subclass-specific conformational preferences, which provide new insights for understanding the variations in physical/chemical stability and biological function of therapeutic antibodies. Importantly, the way that specific differences in the linker region correlate with the solution structure of intact antibodies is revealed, thereby visualizing future potential for the rational design of antibodies with designated physicochemical properties and tailored effector functions. In addition, this advanced computational approach is applicable to other flexible multi-domain systems and extends the potential for investigating flexibility in solutions of macromolecules by small-angle X-ray scattering.
Collapse
Affiliation(s)
- Xinsheng Tian
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, Copenhagen 2100, Denmark
| | - Bente Vestergaard
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, Copenhagen 2100, Denmark
| | - Matthias Thorolfsson
- Biopharmaceuticals Research Unit, Novo Nordisk A/S, Novo Nordisk Park 1, 2760 Måløv, Denmark
| | - Zhiru Yang
- Biopharmaceuticals Research Unit, Novo Nordisk A/S, Life Science Park Road 29, Beijing 102206, People’s Republic of China
| | - Hanne B. Rasmussen
- Biopharmaceuticals Research Unit, Novo Nordisk A/S, Novo Nordisk Park 1, 2760 Måløv, Denmark
| | - Annette E. Langkilde
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, Copenhagen 2100, Denmark
- Correspondence e-mail:
| |
Collapse
|
228
|
Remmele RL, Bee JS, Phillips JJ, Mo WD, Higazi DR, Zhang J, Lindo V, Kippen AD. Characterization of Monoclonal Antibody Aggregates and Emerging Technologies. ACS SYMPOSIUM SERIES 2015. [DOI: 10.1021/bk-2015-1202.ch005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Richard L. Remmele
- Analytical Biotechnology, Biopharmaceutical Development, MedImmune One MedImmune Way, Gaithersburg, Maryland 20878, United States
- Analytical Biotechnology, Biopharmaceutical Development, MedImmune Granta Park, Cambridge CB21 6GH, United Kingdom
| | - Jared S. Bee
- Analytical Biotechnology, Biopharmaceutical Development, MedImmune One MedImmune Way, Gaithersburg, Maryland 20878, United States
- Analytical Biotechnology, Biopharmaceutical Development, MedImmune Granta Park, Cambridge CB21 6GH, United Kingdom
| | - Jonathan J. Phillips
- Analytical Biotechnology, Biopharmaceutical Development, MedImmune One MedImmune Way, Gaithersburg, Maryland 20878, United States
- Analytical Biotechnology, Biopharmaceutical Development, MedImmune Granta Park, Cambridge CB21 6GH, United Kingdom
| | - Wenjun David Mo
- Analytical Biotechnology, Biopharmaceutical Development, MedImmune One MedImmune Way, Gaithersburg, Maryland 20878, United States
- Analytical Biotechnology, Biopharmaceutical Development, MedImmune Granta Park, Cambridge CB21 6GH, United Kingdom
| | - Daniel R. Higazi
- Analytical Biotechnology, Biopharmaceutical Development, MedImmune One MedImmune Way, Gaithersburg, Maryland 20878, United States
- Analytical Biotechnology, Biopharmaceutical Development, MedImmune Granta Park, Cambridge CB21 6GH, United Kingdom
| | - Jifeng Zhang
- Analytical Biotechnology, Biopharmaceutical Development, MedImmune One MedImmune Way, Gaithersburg, Maryland 20878, United States
- Analytical Biotechnology, Biopharmaceutical Development, MedImmune Granta Park, Cambridge CB21 6GH, United Kingdom
| | - Vivian Lindo
- Analytical Biotechnology, Biopharmaceutical Development, MedImmune One MedImmune Way, Gaithersburg, Maryland 20878, United States
- Analytical Biotechnology, Biopharmaceutical Development, MedImmune Granta Park, Cambridge CB21 6GH, United Kingdom
| | - Alistair D. Kippen
- Analytical Biotechnology, Biopharmaceutical Development, MedImmune One MedImmune Way, Gaithersburg, Maryland 20878, United States
- Analytical Biotechnology, Biopharmaceutical Development, MedImmune Granta Park, Cambridge CB21 6GH, United Kingdom
| |
Collapse
|
229
|
Mammalian cell-produced therapeutic proteins: heterogeneity derived from protein degradation. Curr Opin Biotechnol 2014; 30:198-204. [DOI: 10.1016/j.copbio.2014.07.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 07/22/2014] [Accepted: 07/27/2014] [Indexed: 12/24/2022]
|
230
|
Chumsae C, Zhou LL, Shen Y, Wohlgemuth J, Fung E, Burton R, Radziejewski C, Zhou ZS. Discovery of a chemical modification by citric acid in a recombinant monoclonal antibody. Anal Chem 2014; 86:8932-6. [PMID: 25136741 PMCID: PMC4165448 DOI: 10.1021/ac502179m] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 08/19/2014] [Indexed: 01/07/2023]
Abstract
Recombinant therapeutic monoclonal antibodies exhibit a high degree of heterogeneity that can arise from various post-translational modifications. The formulation for a protein product is to maintain a specific pH and to minimize further modifications. Generally Recognized as Safe (GRAS), citric acid is commonly used for formulation to maintain a pH at a range between 3 and 6 and is generally considered chemically inert. However, as we reported herein, citric acid covalently modified a recombinant monoclonal antibody (IgG1) in a phosphate/citrate-buffered formulation at pH 5.2 and led to the formation of so-called "acidic species" that showed mass increases of 174 and 156 Da, respectively. Peptide mapping revealed that the modification occurred at the N-terminus of the light chain. Three additional antibodies also showed the same modification but displayed different susceptibilities of the N-termini of the light chain, heavy chain, or both. Thus, ostensibly unreactive excipients under certain conditions may increase heterogeneity and acidic species in formulated recombinant monoclonal antibodies. By analogy, other molecules (e.g., succinic acid) with two or more carboxylic acid groups and capable of forming an anhydride may exhibit similar reactivities. Altogether, our findings again reminded us that it is prudent to consider formulations as a potential source for chemical modifications and product heterogeneity.
Collapse
Affiliation(s)
- Chris Chumsae
- Protein
Analytics, Process Sciences, AbbVie Bioresearch
Center, Worcester, Massachusetts 01605, United States
- Barnett
Institute of Chemical and Biological Analysis, Department of Chemistry
and Chemical Biology, Northeastern University, Boston, Massachusetts 02115-5000, United States
| | - Liqiang Lisa Zhou
- Protein
Analytics, Process Sciences, AbbVie Bioresearch
Center, Worcester, Massachusetts 01605, United States
| | - Yang Shen
- Protein
Analytics, Process Sciences, AbbVie Bioresearch
Center, Worcester, Massachusetts 01605, United States
| | - Jessica Wohlgemuth
- NBE
Analytical Research and Development, AbbVie, Ludwigshafen 67061, Germany
| | - Emma Fung
- Biologics, AbbVie
Bioresearch Center, Worcester, Massachusetts 01605, United States
| | - Randall Burton
- Protein
Analytics, Process Sciences, AbbVie Bioresearch
Center, Worcester, Massachusetts 01605, United States
| | - Czeslaw Radziejewski
- Protein
Analytics, Process Sciences, AbbVie Bioresearch
Center, Worcester, Massachusetts 01605, United States
| | - Zhaohui Sunny Zhou
- Barnett
Institute of Chemical and Biological Analysis, Department of Chemistry
and Chemical Biology, Northeastern University, Boston, Massachusetts 02115-5000, United States
| |
Collapse
|
231
|
Turker NS, Heidari P, Kucherlapati R, Kucherlapati M, Mahmood U. An EGFR targeted PET imaging probe for the detection of colonic adenocarcinomas in the setting of colitis. Am J Cancer Res 2014; 4:893-903. [PMID: 25057314 PMCID: PMC4107290 DOI: 10.7150/thno.9425] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 06/04/2014] [Indexed: 12/13/2022] Open
Abstract
Colorectal cancer is a serious complication associated with inflammatory bowel disease, often indistinguishable by screening with conventional FDG PET probes. We have developed an alternative EGFR-targeted PET imaging probe that may be used to overcome this difficulty, and successfully assessed its utility for neoplastic lesion detection in preclinical models. Cetuximab F(ab′)2 fragments were enzymatically generated, purified, and DOTA-conjugated. Radiolabeling was performed with 67Ga for cell based studies and 64Cu for in vivo imaging. Competitive binding studies were performed on CT26 cells to assess affinity (KD) and receptors per cell (Bmax). In vivo imaging using the EGFR targeted PET probe and 18F FDG was performed on CT26 tumor bearing mice in both control and dextran sodium sulfate (DSS) induced colitis settings. Spontaneous adenomas in genetically engineered mouse (GEM) models of colon cancer were additionally imaged. The EGFR imaging agent was generated with high purity (> 98%), with a labeling efficiency of 60 ± 5% and ≥99% radiochemical purity. The KD was 6.6 ± 0.7 nM and the Bmax for CT26 cells was 3.3 ± 0.1 × 106 receptors/cell. Target to background ratios (TBR) for CT26 tumors compared to colonic uptake demonstrated high values for both 18F-FDG (3.95 ± 0.13) and the developed 64Cu-DOTA-cetuximab-F(ab′)2 probe (4.42 ± 0.11) in control mice. The TBR for the EGFR targeted probe remained high (3.78 ± 0.06) in the setting of colitis, while for 18F FDG, this was markedly reduced (1.54 ± 0.08). Assessment of the EGFR targeted probe in the GEM models demonstrated a correlation between radiotracer uptake in spontaneous colonic lesions and the EGFR staining level ex vivo. A clinically translatable PET imaging probe was successfully developed to assess EGFR. The imaging agent can detect colonic tumors with a high TBR for detection of in situ lesions in the setting of colitis, and opens the possibility for a new approach for screening high-risk patients.
Collapse
|
232
|
Roberts CJ. Therapeutic protein aggregation: mechanisms, design, and control. Trends Biotechnol 2014; 32:372-80. [PMID: 24908382 DOI: 10.1016/j.tibtech.2014.05.005] [Citation(s) in RCA: 328] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 05/08/2014] [Accepted: 05/13/2014] [Indexed: 11/28/2022]
Abstract
Although it is well known that proteins are only marginally stable in their folded states, it is often less well appreciated that most proteins are inherently aggregation-prone in their unfolded or partially unfolded states, and the resulting aggregates can be extremely stable and long-lived. For therapeutic proteins, aggregates are a significant risk factor for deleterious immune responses in patients, and can form via a variety of mechanisms. Controlling aggregation using a mechanistic approach may allow improved design of therapeutic protein stability, as a complement to existing design strategies that target desired protein structures and function. Recent results highlight the importance of balancing protein environment with the inherent aggregation propensities of polypeptide chains.
Collapse
Affiliation(s)
- Christopher J Roberts
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
233
|
Xu CF, Zang L, Weiskopf A. Size-exclusion chromatography-mass spectrometry with m-nitrobenzyl alcohol as post-column additive for direct characterization of size variants of monoclonal antibodies. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 960:230-8. [DOI: 10.1016/j.jchromb.2014.04.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 03/07/2014] [Accepted: 04/10/2014] [Indexed: 01/30/2023]
|
234
|
D’Hondt M, Fedorova M, Peng CY, Gevaert B, Taevernier L, Hoffmann R, De Spiegeleer B. Dry heat forced degradation of buserelin peptide: Kinetics and degradant profiling. Int J Pharm 2014; 467:48-9. [DOI: 10.1016/j.ijpharm.2014.03.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 03/18/2014] [Accepted: 03/19/2014] [Indexed: 11/15/2022]
|
235
|
Rouiller Y, Périlleux A, Vesin MN, Stettler M, Jordan M, Broly H. Modulation of mAb quality attributes using microliter scale fed-batch cultures. Biotechnol Prog 2014; 30:571-83. [DOI: 10.1002/btpr.1921] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 04/23/2014] [Indexed: 01/16/2023]
Affiliation(s)
- Yolande Rouiller
- Biotech Process Sciences, Merck Serono SA; Route de Fenil 25, ZI B 1804 Corsier-sur-Vevey Switzerland
| | - Arnaud Périlleux
- Biotech Process Sciences, Merck Serono SA; Route de Fenil 25, ZI B 1804 Corsier-sur-Vevey Switzerland
| | - Marie-Noëlle Vesin
- Biotech Process Sciences, Merck Serono SA; Route de Fenil 25, ZI B 1804 Corsier-sur-Vevey Switzerland
| | - Matthieu Stettler
- Biotech Process Sciences, Merck Serono SA; Route de Fenil 25, ZI B 1804 Corsier-sur-Vevey Switzerland
| | - Martin Jordan
- Biotech Process Sciences, Merck Serono SA; Route de Fenil 25, ZI B 1804 Corsier-sur-Vevey Switzerland
| | - Hervé Broly
- Biotech Process Sciences, Merck Serono SA; Route de Fenil 25, ZI B 1804 Corsier-sur-Vevey Switzerland
| |
Collapse
|
236
|
Tian X, Langkilde AE, Thorolfsson M, Rasmussen HB, Vestergaard B. Small-angle x-ray scattering screening complements conventional biophysical analysis: comparative structural and biophysical analysis of monoclonal antibodies IgG1, IgG2, and IgG4. J Pharm Sci 2014; 103:1701-10. [PMID: 24700358 PMCID: PMC4298811 DOI: 10.1002/jps.23964] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 02/25/2014] [Accepted: 03/13/2014] [Indexed: 12/21/2022]
Abstract
A crucial step in the development of therapeutic monoclonal antibodies is the selection of robust pharmaceutical candidates and screening of efficacious protein formulations to increase the resistance toward physicochemical degradation and aggregation during processing and storage. Here, we introduce small-angle X-ray scattering (SAXS) to characterize antibody solution behavior, which strongly complements conventional biophysical analysis. First, we apply a variety of conventional biophysical techniques for the evaluation of structural, conformational, and colloidal stability and report a systematic comparison between designed humanized IgG1, IgG2, and IgG4 with identical variable regions. Then, the high information content of SAXS data enables sensitive detection of structural differences between three IgG subclasses at neutral pH and rapid formation of dimers of IgG2 and IgG4 at low pH. We reveal subclass-specific variation in intermolecular repulsion already at low and medium protein concentrations, which explains the observed improved stability of IgG1 with respect to aggregation. We show how excipients dramatically influence such repulsive effects, hence demonstrating the potential application of extensive SAXS screening in antibody selection, eventual engineering, and formulation development.
Collapse
Affiliation(s)
- Xinsheng Tian
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
237
|
Identification and analysis of endogenous SUMO1 and SUMO2/3 targets in mammalian cells and tissues using monoclonal antibodies. Nat Protoc 2014; 9:896-909. [PMID: 24651501 DOI: 10.1038/nprot.2014.053] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
SUMOylation is a protein modification that regulates the function of hundreds of proteins. Detecting endogenous SUMOylation is challenging: most small ubiquitin-related modifier (SUMO) targets are low in abundance, and only a fraction of a protein's cellular pool is typically SUMOylated. Here we present a step-by-step protocol for the enrichment of endogenous SUMO targets from mammalian cells and tissues (specifically, mouse liver), based on the use of monoclonal antibodies that are available to the scientific community. The protocol comprises (i) production of antibodies and affinity matrix, (ii) denaturing cell lysis, and (iii) SUMO immunoprecipitation followed by peptide elution. Production of affinity matrix and cell lysis requires ∼1 d. The immunoprecipitation with peptide elution can be performed in 2 d. As SUMO proteins are conserved, this protocol should also be applicable to other organisms, including many vertebrates and Drosophila melanogaster.
Collapse
|
238
|
Adem YT, Schwarz KA, Duenas E, Patapoff TW, Galush WJ, Esue O. Auristatin Antibody Drug Conjugate Physical Instability and the Role of Drug Payload. Bioconjug Chem 2014; 25:656-64. [DOI: 10.1021/bc400439x] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yilma T. Adem
- Early Stage Pharmaceutical Development and ‡Purification
Development Department, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Kelly A. Schwarz
- Early Stage Pharmaceutical Development and ‡Purification
Development Department, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Eileen Duenas
- Early Stage Pharmaceutical Development and ‡Purification
Development Department, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Thomas W. Patapoff
- Early Stage Pharmaceutical Development and ‡Purification
Development Department, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - William J. Galush
- Early Stage Pharmaceutical Development and ‡Purification
Development Department, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Osigwe Esue
- Early Stage Pharmaceutical Development and ‡Purification
Development Department, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
239
|
Sandra K, Vandenheede I, Sandra P. Modern chromatographic and mass spectrometric techniques for protein biopharmaceutical characterization. J Chromatogr A 2014; 1335:81-103. [DOI: 10.1016/j.chroma.2013.11.057] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 11/27/2013] [Accepted: 11/29/2013] [Indexed: 10/25/2022]
|
240
|
Barton C, Spencer D, Levitskaya S, Feng J, Harris R, Schenerman MA. Heterogeneity of IgGs: Role of Production, Processing, and Storage on Structure and Function. ACS SYMPOSIUM SERIES 2014. [DOI: 10.1021/bk-2014-1176.ch003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Chris Barton
- Analytical Biotechnology, MedImmune, Gaithersburg, Maryland 20878, United States
- Genentech, Inc., South San Francisco, California 94080, United States
| | - David Spencer
- Analytical Biotechnology, MedImmune, Gaithersburg, Maryland 20878, United States
- Genentech, Inc., South San Francisco, California 94080, United States
| | - Sophia Levitskaya
- Analytical Biotechnology, MedImmune, Gaithersburg, Maryland 20878, United States
- Genentech, Inc., South San Francisco, California 94080, United States
| | - Jinhua Feng
- Analytical Biotechnology, MedImmune, Gaithersburg, Maryland 20878, United States
- Genentech, Inc., South San Francisco, California 94080, United States
| | - Reed Harris
- Analytical Biotechnology, MedImmune, Gaithersburg, Maryland 20878, United States
- Genentech, Inc., South San Francisco, California 94080, United States
| | - Mark A. Schenerman
- Analytical Biotechnology, MedImmune, Gaithersburg, Maryland 20878, United States
- Genentech, Inc., South San Francisco, California 94080, United States
| |
Collapse
|
241
|
Iwamoto N, Shimada T, Umino Y, Aoki C, Aoki Y, Sato TA, Hamada A, Nakagama H. Selective detection of complementarity-determining regions of monoclonal antibody by limiting protease access to the substrate: nano-surface and molecular-orientation limited proteolysis. Analyst 2014; 139:576-80. [DOI: 10.1039/c3an02104a] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
242
|
Neergaard MS, Nielsen AD, Parshad H, Van De Weert M. Stability of monoclonal antibodies at high-concentration: head-to-head comparison of the IgG1 and IgG4 subclass. J Pharm Sci 2013; 103:115-27. [PMID: 24282022 DOI: 10.1002/jps.23788] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 09/07/2013] [Accepted: 10/24/2013] [Indexed: 12/21/2022]
Abstract
Few studies have so far directly compared the impact of antibody subclass on protein stability. This case study investigates two mAbs (one IgG1 and one IgG4 ) with identical variable region. Investigations of mAbs that recognize similar epitopes are necessary to identify possible differences between the IgG subclasses. Both physical and chemical stability were evaluated by applying a range of methods to measure formation of protein aggregates [size-exclusion chromatography (SEC)-HPLC and UV340 nm], structural integrity (circular dichroism and FTIR), thermodynamic stability (differential scanning calorimetry), colloidal interactions (dynamic light scattering), and fragmentation and deamidation (SEC-HPLC and capillary isoelectric focusing). The impact of pH (4-9) and ionic strength (10 and 150 mM) was investigated using highly-concentrated (150 mg/mL) mAb formulations. Lower conformational stability was identified for the IgG4 resulting in increased levels of soluble aggregates. The IgG1 was chemically less stable as compared with the IgG4 , presumably because of the higher flexibility in the IgG1 hinge region. The thermodynamic stability of individual mAb domains was also addressed in detail. The stability of our mAb molecules is clearly affected by the IgG framework, and this study suggests that subclass switching may alter aggregation propensity and aggregation pathway and thus potentially improve the overall formulation stability while retaining antigen specificity.
Collapse
Affiliation(s)
- Martin S Neergaard
- Section for Biologics, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | | |
Collapse
|
243
|
Khalili H, Godwin A, Choi JW, Lever R, Khaw PT, Brocchini S. Fab-PEG-Fab as a Potential Antibody Mimetic. Bioconjug Chem 2013; 24:1870-82. [DOI: 10.1021/bc400246z] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Hanieh Khalili
- UCL
School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom
- NIHR
Biomedical Research Centre, Moorfields Eye Hospital and UCL Institute of Ophthalmology, London, EC1 V 9EL, United Kingdom
| | - Antony Godwin
- PolyTherics
Ltd, The London Bioscience Innovation Centre, 2 Royal College Street, London NW1 0NH, United Kingdom
| | - Ji-won Choi
- PolyTherics
Ltd, The London Bioscience Innovation Centre, 2 Royal College Street, London NW1 0NH, United Kingdom
| | - Rebecca Lever
- UCL
School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom
| | - Peng T. Khaw
- NIHR
Biomedical Research Centre, Moorfields Eye Hospital and UCL Institute of Ophthalmology, London, EC1 V 9EL, United Kingdom
| | - Steve Brocchini
- UCL
School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom
- NIHR
Biomedical Research Centre, Moorfields Eye Hospital and UCL Institute of Ophthalmology, London, EC1 V 9EL, United Kingdom
| |
Collapse
|
244
|
Roberts CJ, Nesta DP, Kim N. Effects of Temperature and Osmolytes on Competing Degradation Routes for an IgG1 Antibody. J Pharm Sci 2013; 102:3556-66. [DOI: 10.1002/jps.23668] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Revised: 06/06/2013] [Accepted: 06/20/2013] [Indexed: 12/13/2022]
|
245
|
Applying quality by design to glycoprotein therapeutics: experimental and computational efforts of process control. ACTA ACUST UNITED AC 2013. [DOI: 10.4155/pbp.13.4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
246
|
Gramer MJ. Product Quality Considerations for Mammalian Cell Culture Process Development and Manufacturing. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2013; 139:123-66. [DOI: 10.1007/10_2013_214] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
247
|
Beck A, Wagner-Rousset E, Ayoub D, Van Dorsselaer A, Sanglier-Cianférani S. Characterization of Therapeutic Antibodies and Related Products. Anal Chem 2012; 85:715-36. [DOI: 10.1021/ac3032355] [Citation(s) in RCA: 445] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Alain Beck
- Centre d’Immunologie Pierre Fabre (CIPF), 5 Av. Napoléon III, BP 60497, 74164 Saint-Julien-en-Genevois,
France
| | - Elsa Wagner-Rousset
- Centre d’Immunologie Pierre Fabre (CIPF), 5 Av. Napoléon III, BP 60497, 74164 Saint-Julien-en-Genevois,
France
| | - Daniel Ayoub
- Centre d’Immunologie Pierre Fabre (CIPF), 5 Av. Napoléon III, BP 60497, 74164 Saint-Julien-en-Genevois,
France
| | - Alain Van Dorsselaer
- Laboratoire de Spectrométrie
de Masse BioOrganique (LSMBO), Université de Strasbourg, IPHC, 25 rue Becquerel 67087, Strasbourg, France and CNRS, UMR7178, 67037 Strasbourg, France
| | - Sarah Sanglier-Cianférani
- Laboratoire de Spectrométrie
de Masse BioOrganique (LSMBO), Université de Strasbourg, IPHC, 25 rue Becquerel 67087, Strasbourg, France and CNRS, UMR7178, 67037 Strasbourg, France
| |
Collapse
|
248
|
Mueller M, Loh MQT, Tscheliessnig R, Tee DHY, Tan E, Bardor M, Jungbauer A. Liquid Formulations for Stabilizing IgMs During Physical Stress and Long-Term Storage. Pharm Res 2012; 30:735-50. [DOI: 10.1007/s11095-012-0914-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 10/12/2012] [Indexed: 11/24/2022]
|
249
|
Marichal-Gallardo PA, Álvarez MM. State-of-the-art in downstream processing of monoclonal antibodies: Process trends in design and validation. Biotechnol Prog 2012; 28:899-916. [DOI: 10.1002/btpr.1567] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 05/18/2012] [Indexed: 12/19/2022]
|
250
|
Eon-Duval A, Broly H, Gleixner R. Quality attributes of recombinant therapeutic proteins: An assessment of impact on safety and efficacy as part of a quality by design development approach. Biotechnol Prog 2012; 28:608-22. [DOI: 10.1002/btpr.1548] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 03/26/2012] [Indexed: 12/12/2022]
|