201
|
Zhang J, Ji C, Zhang H, Shi H, Mao F, Qian H, Xu W, Wang D, Pan J, Fang X, Santos HA, Zhang X. Engineered neutrophil-derived exosome-like vesicles for targeted cancer therapy. SCIENCE ADVANCES 2022; 8:eabj8207. [PMID: 35020437 PMCID: PMC8754405 DOI: 10.1126/sciadv.abj8207] [Citation(s) in RCA: 142] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Neutrophils are the most abundant innate immune cells in human circulation; however, their derived exosomes have been rarely studied for tumor treatment. Here, we reported that exosomes from neutrophils (N-Ex) induce tumor cell apoptosis by delivering cytotoxic proteins and activating caspase signaling pathway. In addition, we decorated N-Ex with superparamagnetic iron oxide nanoparticles (SPIONs) to achieve higher tumor-targeting therapeutic effect. We further fabricated exosome-like nanovesicles from neutrophils (NNVs) at high yield. Compared with liposome-loaded doxorubicin (DOX) and natural NNVs, DOX-loaded NNVs show an improved inhibition of tumor cell proliferation. Moreover, DOX-loaded, SPION-decorated NNVs selectively accumulate at the tumor sites under an external magnetic field, effectively restraining tumor growth and extensively prolonging the survival rate in mice. Overall, a simple and effective method to engineer N-Ex and NNVs at clinical applicable scale was developed, which enables the efficient and safe drug delivery for targeted and combined tumor therapy.
Collapse
Affiliation(s)
- Jiahui Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 212013 Zhenjiang, China
| | - Cheng Ji
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 212013 Zhenjiang, China
| | - Hongbo Zhang
- Pharmaceutical Sciences Laboratory, Åbo Akademi University, 20520 Turku, Finland
- Turku Biosciences Center, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Hui Shi
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 212013 Zhenjiang, China
| | - Fei Mao
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 212013 Zhenjiang, China
| | - Hui Qian
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 212013 Zhenjiang, China
| | - Wenrong Xu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 212013 Zhenjiang, China
| | - Dongqing Wang
- Department of Radiology, Affiliated Hospital of Jiangsu University, Jiangsu University, 212001 Zhenjiang, China
| | - Jianming Pan
- School of Chemistry and Chemical Engineering, Jiangsu University, 212013 Zhenjiang, China
| | - Xinjian Fang
- Department of Oncology, Lianyungang Hospital Affiliated to Jiangsu University, Lianyungang, Jiangsu 222000, China
- Corresponding author. (X.Z.); (H.A.S.); (X.F.)
| | - Hélder A. Santos
- Department of Biomedical Engineering, University Medical Center Groningen/University of Groningen, W.J. Kolff Institute for Biomedical Engineering and Materials Science, Ant. Deusinglaan 1, 9713 AV Groningen, Netherlands
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
- Corresponding author. (X.Z.); (H.A.S.); (X.F.)
| | - Xu Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 212013 Zhenjiang, China
- Corresponding author. (X.Z.); (H.A.S.); (X.F.)
| |
Collapse
|
202
|
Choi H, Yim H, Park C, Ahn SH, Ahn Y, Lee A, Yang H, Choi C. Targeted Delivery of Exosomes Armed with Anti-Cancer Therapeutics. MEMBRANES 2022; 12:membranes12010085. [PMID: 35054611 PMCID: PMC8782002 DOI: 10.3390/membranes12010085] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/25/2021] [Accepted: 01/03/2022] [Indexed: 02/04/2023]
Abstract
Among extracellular vesicles, exosomes have gained great attention for their role as therapeutic vehicles for delivering various active pharmaceutical ingredients (APIs). Exosomes “armed” with anti-cancer therapeutics possess great potential for an efficient intracellular delivery of anti-cancer APIs and enhanced targetability to tumor cells. Various technologies are being developed to efficiently incorporate anti-cancer APIs such as genetic materials (miRNA, siRNA, mRNA), chemotherapeutics, and proteins into exosomes and to induce targeted delivery to tumor burden by exosomal surface modification. Exosomes can incorporate the desired therapeutic molecules via direct exogenous methods (e.g., electroporation and sonication) or indirect methods by modifying cells to produce “armed” exosomes. The targeted delivery of “armed” exosomes to tumor burden could be accomplished either by “passive” targeting using the natural tropism of exosomes or by “active” targeting via the surface engineering of exosomal membranes. Although anti-cancer exosome therapeutics demonstrated promising results in preclinical studies, success in clinical trials requires thorough validation in terms of chemistry, manufacturing, and control techniques. While exosomes possess multiple advantages over synthetic nanoparticles, challenges remain in increasing the loading efficiency of anti-cancer agents into exosomes, as well as establishing quantitative and qualitative analytical methods for monitoring the delivery of in vivo administered exosomes and exosome-incorporated anti-cancer agents to the tumor parenchyma.
Collapse
Affiliation(s)
- Hojun Choi
- ILIAS Biologics Inc., Daejeon 34014, Korea; (H.C.); (H.Y.); (C.P.); (S.-H.A.); (Y.A.); (A.L.)
| | - Hwayoung Yim
- ILIAS Biologics Inc., Daejeon 34014, Korea; (H.C.); (H.Y.); (C.P.); (S.-H.A.); (Y.A.); (A.L.)
| | - Cheolhyoung Park
- ILIAS Biologics Inc., Daejeon 34014, Korea; (H.C.); (H.Y.); (C.P.); (S.-H.A.); (Y.A.); (A.L.)
| | - So-Hee Ahn
- ILIAS Biologics Inc., Daejeon 34014, Korea; (H.C.); (H.Y.); (C.P.); (S.-H.A.); (Y.A.); (A.L.)
| | - Yura Ahn
- ILIAS Biologics Inc., Daejeon 34014, Korea; (H.C.); (H.Y.); (C.P.); (S.-H.A.); (Y.A.); (A.L.)
| | - Areum Lee
- ILIAS Biologics Inc., Daejeon 34014, Korea; (H.C.); (H.Y.); (C.P.); (S.-H.A.); (Y.A.); (A.L.)
| | - Heekyoung Yang
- In Vivo Pharmacology, 1ST Biotherapeutics Inc., Seongnam-si 13493, Korea;
| | - Chulhee Choi
- ILIAS Biologics Inc., Daejeon 34014, Korea; (H.C.); (H.Y.); (C.P.); (S.-H.A.); (Y.A.); (A.L.)
- Department of Bio and Brain Engineering, KAIST, Daejeon 34141, Korea
- Correspondence: ; Tel.: +82-42-863-4450
| |
Collapse
|
203
|
Attaran S, Bissell MJ. The role of tumor microenvironment and exosomes in dormancy and relapse. Semin Cancer Biol 2022; 78:35-44. [PMID: 34757184 PMCID: PMC9605861 DOI: 10.1016/j.semcancer.2021.09.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 09/10/2021] [Accepted: 09/12/2021] [Indexed: 12/13/2022]
Abstract
Recent advancements in the field of cancer have established that the process of metastasis is organ-specific with tumor cell dissemination occurring in the very early stages of disease. Pre-metastatic niches are actively remodeled and transformed by both primary tumor specific factors and by influences from the extracellular matrix.Although improvements in cancer therapies have significantly improved outcomes in patients with early stage disease, the risk of recurrence and relapse leading to mortality remains high. Recent studies have emerged highlighting the influence of dormant tumor cells and exosomes as key players in cancer relapse. In this review we discuss the critical mediators of tumor progression and their link to cancer dormancy, while also exploring possible therapeutics for targeting relapse.
Collapse
Affiliation(s)
- Shireen Attaran
- Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, United States.
| | - Mina J Bissell
- Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, United States
| |
Collapse
|
204
|
Kong H, Kim SB. Exosomal Communication Between the Tumor Microenvironment and Innate Immunity and Its Therapeutic Application. Immune Netw 2022; 22:e38. [DOI: 10.4110/in.2022.22.e38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 11/05/2022] Open
Affiliation(s)
- Hyunseok Kong
- Department of Animal Resource Science, Sahmyook University, Seoul 01795, Korea
| | - Sang Bum Kim
- College of Pharmacy, Sahmyook University, Seoul 01795, Korea
| |
Collapse
|
205
|
Cytokine-enhanced cytolytic activity of exosomes from NK Cells. Cancer Gene Ther 2022; 29:734-749. [PMID: 34316033 PMCID: PMC9209332 DOI: 10.1038/s41417-021-00352-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/09/2021] [Accepted: 05/18/2021] [Indexed: 02/06/2023]
Abstract
Natural killer (NK) cells play key roles in immune surveillance against tumors and viral infection. NK cells distinguish abnormal cells from healthy cells by cell-cell interaction with cell surface proteins and then attack target cells via multiple mechanisms. In addition, extracellular vesicles (EVs) derived from NK cells (NK-EVs), including exosomes, possess cytotoxic capacity against tumor cells, but their characteristics and regulation by cytokines remain unknown. Here, we report that EVs derived from human NK-92 cells stimulated with IL-15 + IL-21 show enhanced cytotoxic capacity against tumor cells. Major cytolytic granules, granzyme B and granzyme H, are enriched by IL-15 + IL-21 stimulation in NK-EVs; however, knockout experiments reveal those cytolytic granules are independent of enhanced cytotoxic capacity. To find out the key molecules, mass spectrometry analyses were performed with different cytokine conditions, no cytokine, IL-15, IL-21, or IL-15 + IL-21. We then found that CD226 (DNAM-1) on NK-EVs is enriched by IL-15 + IL-21 stimulation and that blocking antibodies against CD226 reduced the cytolytic activity of NK-EVs. We also show NK-EVs are taken up by target cells via macropinocytosis. Collectively, our findings elucidate the novel properties of NK-EVs and the mechanism of their incorporation into target cells.
Collapse
|
206
|
Alghamdi M, Alamry SA, Bahlas SM, Uversky VN, Redwan EM. Circulating extracellular vesicles and rheumatoid arthritis: a proteomic analysis. Cell Mol Life Sci 2021; 79:25. [PMID: 34971426 PMCID: PMC11072894 DOI: 10.1007/s00018-021-04020-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 12/14/2022]
Abstract
Circulating extracellular vesicles (EVs) are membrane-bound nanoparticles secreted by most cells for intracellular communication and transportation of biomolecules. EVs carry proteins, lipids, nucleic acids, and receptors that are involved in human physiology and pathology. EV cargo is variable and highly related to the type and state of the cellular origin. Three subtypes of EVs have been identified: exosomes, microvesicles, and apoptotic bodies. Exosomes are the smallest and the most well-studied class of EVs that regulate different biological processes and participate in several diseases, such as cancers and autoimmune diseases. Proteomic analysis of exosomes succeeded in profiling numerous types of proteins involved in disease development and prognosis. In rheumatoid arthritis (RA), exosomes revealed a potential function in joint inflammation. These EVs possess a unique function, as they can transfer specific autoantigens and mediators between distant cells. Current proteomic data demonstrated that exosomes could provide beneficial effects against autoimmunity and exert an immunosuppressive action, particularly in RA. Based on these observations, effective therapeutic strategies have been developed for arthritis and other inflammatory disorders.
Collapse
Affiliation(s)
- Mohammed Alghamdi
- Biological Sciences Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
- Laboratory Department, University Medical Services Center, King Abdulaziz University, P.O. Box 80200, Jeddah, 21589, Saudi Arabia
| | - Sultan Abdulmughni Alamry
- Immunology Diagnostic Laboratory Department, King Abdulaziz University Hospital, P.O Box 80215, Jeddah, 21589, Saudi Arabia
| | - Sami M Bahlas
- Department of Internal Medicine, Faculty of Medicine, King Abdulaziz University, P.O. Box 80215, Jeddah, 21589, Saudi Arabia
| | - Vladimir N Uversky
- Biological Sciences Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Elrashdy M Redwan
- Biological Sciences Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia.
- Therapeutic and Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications, New Borg EL-Arab, 21934, Alexandria, Egypt.
| |
Collapse
|
207
|
Yang P, Peng Y, Feng Y, Xu Z, Feng P, Cao J, Chen Y, Chen X, Cao X, Yang Y, Jie J. Immune Cell-Derived Extracellular Vesicles - New Strategies in Cancer Immunotherapy. Front Immunol 2021; 12:771551. [PMID: 34956197 PMCID: PMC8694098 DOI: 10.3389/fimmu.2021.771551] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/22/2021] [Indexed: 12/22/2022] Open
Abstract
Immune cell-derived extracellular vesicles (EVs) have increasingly become the focus of research due to their unique characteristics and bioinspired applications. They are lipid bilayer membrane nanosized vesicles harboring a range of immune cell-derived surface receptors and effector molecules from parental cells. Immune cell-derived EVs are important mediators of intercellular communication that regulate specific mechanisms of adaptive and innate immune responses. However, the mechanisms underlying the antitumor effects of EVs are still being explored. Importantly, immune cell-derived EVs have some unique features, including accessibility, storage, ability to pass through blood-brain and blood-tumor barriers, and loading of various effector molecules. Immune cell-derived EVs have been directly applied or engineered as potent antitumor vaccines or for the diagnosis of clinical diseases. More research applications involving genetic engineering, membrane engineering, and cargo delivery strategies have improved the treatment efficacy of EVs. Immune cell-derived EV-based therapies are expected to become a separate technique or to complement immunotherapy, radiotherapy, chemotherapy and other therapeutic modalities. This review aims to provide a comprehensive overview of the characteristics and functions of immune cell-derived EVs derived from adaptive (CD4+ T, CD8+ T and B cells) and innate immune cells (macrophages, NK cells, DCs, and neutrophils) and discuss emerging therapeutic opportunities and prospects in cancer treatment.
Collapse
Affiliation(s)
- Pengxiang Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
- Department of Clinical Laboratory, The First People’s Hospital of Nantong, Affiliated Hospital 2 of Nantong University, Nantong, China
- Institute of Cancer Prevention and Treatment, Heilongjiang Academy of Medical Science, Harbin Medical University, Harbin, China
| | - Yong Peng
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yuan Feng
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Zhuoying Xu
- Department of Pathology, Nantong Hospital of Traditional Chinese Medicine, Affiliated Traditional Chinese Medicine Hospital of Nantong University, Nantong, China
| | - Panfeng Feng
- Department of Pharmacy, The First People’s Hospital of Nantong, Affiliated Hospital 2 of Nantong University, Nantong, China
| | - Jie Cao
- Department of Pathology, The First People’s Hospital of Nantong, Affiliated Hospital 2 of Nantong University, Nantong, China
| | - Ying Chen
- Department of Oncology, The First People’s Hospital of Nantong, Affiliated Hospital 2 of Nantong University, Nantong, China
| | - Xiang Chen
- Department of Clinical Laboratory, The First People’s Hospital of Nantong, Affiliated Hospital 2 of Nantong University, Nantong, China
| | - Xingjian Cao
- Department of Clinical Laboratory, The First People’s Hospital of Nantong, Affiliated Hospital 2 of Nantong University, Nantong, China
| | - Yumin Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Jing Jie
- Department of Clinical Laboratory, The First People’s Hospital of Nantong, Affiliated Hospital 2 of Nantong University, Nantong, China
| |
Collapse
|
208
|
Zhang Y, Xie C, Liu Y, Shang F, Shao R, Yu J, Wu C, Yao X, Liu D, Wang Z. Synthesis, biological activities and docking studies of pleuromutilin derivatives with piperazinyl urea linkage. J Enzyme Inhib Med Chem 2021; 36:764-775. [PMID: 33733986 PMCID: PMC7993385 DOI: 10.1080/14756366.2021.1900163] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/25/2021] [Accepted: 03/03/2021] [Indexed: 11/29/2022] Open
Abstract
Antibiotics resistance is becoming increasingly common, involving almost all antibiotics on the market. Diseases caused by drug resistant bacteria, such as MRSA, have high mortality and negatively affect public health. The development of new drugs would be an effective means of solving this problem. Modifications based on bioactive natural products could greatly shorten drug development time and improve success rate. Pleuromutilin, a natural product from the basidiomycete bacterial species, is a promising antibiotic candidate. In this study, a series of novel pleuromutilin derivatives possessing piperazinyl urea linkage were efficiently synthesised, and their antibacterial activities and bactericidal properties were evaluated via MIC, MBC and Time-kill kinetics assays. The results showed that all compounds exhibited potent activities against tested strains, especially MRSA strains with MIC values as low as 0.125 μg/mL; 8 times lower than that of marketed antibiotic Tiamulin. Docking studies indicate substituted piperazinyl urea derivatives could provide hydrogen bonds and initiate π-π stacking between molecules and surrounding residues.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Department of Chemistry, School of Science, Xihua University, Chengdu, China
- Yibin Key Laboratory of Research and Application of Small Organic Chiral Molecules, Yibin Research Institute of Xihua University, Yibin, China
| | - Chuan Xie
- Department of Chemistry, School of Science, Xihua University, Chengdu, China
| | - Yang Liu
- Department of Chemistry, School of Science, Xihua University, Chengdu, China
| | - Feng Shang
- Department of Chemistry, School of Science, Xihua University, Chengdu, China
| | - Rushiya Shao
- Department of Chemistry, School of Science, Xihua University, Chengdu, China
| | - Jing Yu
- Kampo Medicine Pharmacology Research Laboratory, Graduate School of Pharmaceutical Sciences, Yokohama University of Pharmacy, Yokohama-shi, Japan
| | - Chunxia Wu
- Department of Chemistry, School of Science, Xihua University, Chengdu, China
| | - Xinghui Yao
- Department of Chemistry, School of Science, Xihua University, Chengdu, China
| | - Dongfang Liu
- Department of Chemistry, School of Science, Xihua University, Chengdu, China
| | - Zhouyu Wang
- Department of Chemistry, School of Science, Xihua University, Chengdu, China
- Yibin Key Laboratory of Research and Application of Small Organic Chiral Molecules, Yibin Research Institute of Xihua University, Yibin, China
| |
Collapse
|
209
|
Transformable vesicles for cancer immunotherapy. Adv Drug Deliv Rev 2021; 179:113905. [PMID: 34331988 DOI: 10.1016/j.addr.2021.113905] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/22/2021] [Accepted: 07/24/2021] [Indexed: 02/06/2023]
Abstract
Immunotherapy that utilizes the human immune system to fight cancer represents a revolutionary method for cancer treatment. Immunotherapeutic agents that trigger the immune response should be carefully delivered to the desired site to maximize immunotherapy effectiveness and minimize side effects. Vesicles offer the possibility of encapsulating both hydrophilic and hydrophobic drugs and thus serve as a promising delivery tool. As multiple irreconcilable requirements exist at different transport stages, developing vesicles transformable in response to given stimuli is of great significance. In this review, we first introduced various vesicle types used for immunotherapy. Furthermore, the typical stimuli that trigger vesicle transformation and the usually generated transformation styles were described. Focusing on three aspects of antigen-presenting cell (APC)/T cell activation, tumor microenvironment (TME) amelioration, and immunogenic cell death (ICD)-induced immunotherapy, we reviewed recently reported transformable vesicles for tumor treatment. Finally, we put forward possible directions for future research and clinical translation.
Collapse
|
210
|
Extracellular Vesicles Tropism: A Comparative Study between Passive Innate Tropism and the Active Engineered Targeting Capability of Lymphocyte-Derived EVs. MEMBRANES 2021; 11:membranes11110886. [PMID: 34832115 PMCID: PMC8617986 DOI: 10.3390/membranes11110886] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/12/2021] [Accepted: 11/16/2021] [Indexed: 12/12/2022]
Abstract
Cellular communications take place thanks to a well-connected network of chemical–physical signals, biomolecules, growth factors, and vesicular messengers that travel inside or between cells. A deep knowledge of the extracellular vesicle (EV) system allows for a better understanding of the whole series of phenomena responsible for cell proliferation and death. To this purpose, here, a thorough immuno-phenotypic characterization of B-cell EV membranes is presented. Furthermore, the cellular membrane of B lymphocytes, Burkitt lymphoma, and human myeloid leukemic cells were characterized through cytofluorimetry assays and fluorescent microscopy analysis. Through cytotoxicity and internalization tests, the tropism of B lymphocyte-derived EVs was investigated toward the parental cell line and two different cancer cell lines. In this study, an innate capability of passive targeting of the native EVs was distinguished from the active targeting capability of monoclonal antibody-engineered EVs, able to selectively drive the vesicles, enhancing their internalization into the target cancer cells. In particular, the specific targeting ability of anti-CD20 engineered EVs towards Daudi cells, highly expressing CD20 marker on their cell membrane, was proved, while almost no internalization events were observed in HL60 cells, since they did not express an appreciable amount of the CD20 marker on their plasma membranes.
Collapse
|
211
|
Biomembrane-based nanostructures for cancer targeting and therapy: From synthetic liposomes to natural biomembranes and membrane-vesicles. Adv Drug Deliv Rev 2021; 178:113974. [PMID: 34530015 DOI: 10.1016/j.addr.2021.113974] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/29/2021] [Accepted: 09/08/2021] [Indexed: 12/14/2022]
Abstract
The translational success of liposomes in chemotherapeutics has already demonstrated the great potential of biomembrane-based nanostructure in effective drug delivery. Meanwhile, increasing efforts are being dedicated to the application of naturally derived lipid membranes, including cellular membranes and extracellular vesicles in anti-cancer therapies. While synthetic liposomes support superior multifunctional flexibility, natural biomembrane materials possess interesting biomimetic properties and can also be further engineered for intelligent design. Despite being remarkably different from each other in production and composition, the phospholipid bilayer structure in common allows liposomes, cell membrane-derived nanomaterials, and extracellular vesicles to be modified, functionalized, and exploited in many similar manners against challenges posed by tumor-targeted drug delivery. This review will summarize the recent advancements in engineering the membrane-derived nanostructures with "intelligent" modules to respond, regulate, and target tumor cells and the microenvironment to fight against malignancy. We will also discuss perspectives of combining engineered functionalities with naturally occurring activity for enhanced cancer therapy.
Collapse
|
212
|
Tan J, Wen Y, Li M. Emerging biosensing platforms for quantitative detection of exosomes as diagnostic biomarkers. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214111] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
213
|
Garofalo C, De Marco C, Cristiani CM. NK Cells in the Tumor Microenvironment as New Potential Players Mediating Chemotherapy Effects in Metastatic Melanoma. Front Oncol 2021; 11:754541. [PMID: 34712615 PMCID: PMC8547654 DOI: 10.3389/fonc.2021.754541] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/27/2021] [Indexed: 12/13/2022] Open
Abstract
Until the last decade, chemotherapy was the standard treatment for metastatic cutaneous melanoma, even with poor results. The introduction of immune checkpoints inhibitors (ICIs) radically changed the outcome, increasing 5-year survival from 5% to 60%. However, there is still a large portion of unresponsive patients that would need further therapies. NK cells are skin-resident innate cytotoxic lymphocytes that recognize and kill virus-infected as well as cancer cells thanks to a balance between inhibitory and activating signals delivered by surface molecules expressed by the target. Since NK cells are equipped with cytotoxic machinery but lack of antigen restriction and needing to be primed, they are nowadays gaining attention as an alternative to T cells to be exploited in immunotherapy. However, their usage suffers of the same limitations reported for T cells, that is the loss of immunogenicity by target cells and the difficulty to penetrate and be activated in the suppressive tumor microenvironment (TME). Several evidence showed that chemotherapy used in metastatic melanoma therapy possess immunomodulatory properties that may restore NK cells functions within TME. Here, we will discuss the capability of such chemotherapeutics to: i) up-regulate melanoma cells susceptibility to NK cell-mediated killing, ii) promote NK cells infiltration within TME, iii) target other immune cell subsets that affect NK cells activities. Alongside traditional systemic melanoma chemotherapy, a new pharmacological strategy based on nanocarriers loaded with chemotherapeutics is developing. The use of nanotechnologies represents a very promising approach to improve drug tolerability and effectiveness thanks to the targeted delivery of the therapeutic molecules. Here, we will also discuss the recent developments in using nanocarriers to deliver anti-cancer drugs within the melanoma microenvironment in order to improve chemotherapeutics effects. Overall, we highlight the possibility to use standard chemotherapeutics, possibly delivered by nanosystems, to enhance NK cells anti-tumor cytotoxicity. Combined with immunotherapies targeting NK cells, this may represent a valuable alternative approach to treat those patients that do not respond to current ICIs.
Collapse
Affiliation(s)
- Cinzia Garofalo
- Department of Experimental and Clinical Medicine, "Magna Græcia" University of Catanzaro, Catanzaro, Italy
| | - Carmela De Marco
- Department of Experimental and Clinical Medicine, "Magna Græcia" University of Catanzaro, Catanzaro, Italy
| | - Costanza Maria Cristiani
- Department of Experimental and Clinical Medicine, "Magna Græcia" University of Catanzaro, Catanzaro, Italy
| |
Collapse
|
214
|
Bioengineering of Extracellular Vesicles: Exosome-Based Next-Generation Therapeutic Strategy in Cancer. Bioengineering (Basel) 2021; 8:bioengineering8100139. [PMID: 34677212 PMCID: PMC8533396 DOI: 10.3390/bioengineering8100139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/02/2021] [Accepted: 10/05/2021] [Indexed: 12/17/2022] Open
Abstract
Extracellular nano vesicles and exosomes hold compelling evidence in intercellular communication. Exosomal intracellular signal transduction is mediated by the transfer of cargo proteins, lipids, micro (mi)RNAs, long noncoding (lnc)RNAs, small interfering (si)RNAs, DNA, and other functional molecules that play a pivotal role in regulating tumor growth and metastasis. However, emerging research trends indicate that exosomes may be used as a promising tool in anticancer treatment. This review features a majority of the bioengineering applications of fabricated exosomal cargoes. It also encompasses how the manipulation and delivery of specific cargoes-noncoding RNAs (ncRNAs), recombinant proteins, immune-modulators, chemotherapeutic drugs, and other small molecules-may serve as a precise therapeutic approach in cancer management.
Collapse
|
215
|
Battaglia L, Scomparin A, Dianzani C, Milla P, Muntoni E, Arpicco S, Cavalli R. Nanotechnology Addressing Cutaneous Melanoma: The Italian Landscape. Pharmaceutics 2021; 13:1617. [PMID: 34683910 PMCID: PMC8540596 DOI: 10.3390/pharmaceutics13101617] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/22/2021] [Accepted: 09/29/2021] [Indexed: 12/20/2022] Open
Abstract
Cutaneous melanoma is one of the most aggressive solid tumors, with a low survival for the metastatic stage. Currently, clinical melanoma treatments include surgery, chemotherapy, targeted therapy, immunotherapy and radiotherapy. Of note, innovative therapeutic regimens concern the administration of multitarget drugs in tandem, in order to improve therapeutic efficacy. However, also, if this drug combination is clinically relevant, the patient's response is not yet optimal. In this scenario, nanotechnology-based delivery systems can play a crucial role in the clinical treatment of advanced melanoma. In fact, their nano-features enable targeted drug delivery at a cellular level by overcoming biological barriers. Various nanomedicines have been proposed for the treatment of cutaneous melanoma, and a relevant number of them are undergoing clinical trials. In Italy, researchers are focusing on the pharmaceutical development of nanoformulations for malignant melanoma therapy. The present review reports an overview of the main melanoma-addressed nanomedicines currently under study in Italy, alongside the state of the art of melanoma therapy. Moreover, the latest Italian advances concerning the pre-clinical evaluation of nanomedicines for melanoma are described.
Collapse
Affiliation(s)
- Luigi Battaglia
- . Department of Drug Science and Technology, University of Torino, 10125 Turin, Italy; (L.B.); (A.S.); (C.D.); (P.M.); (E.M.); (S.A.)
| | - Anna Scomparin
- . Department of Drug Science and Technology, University of Torino, 10125 Turin, Italy; (L.B.); (A.S.); (C.D.); (P.M.); (E.M.); (S.A.)
- . Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Chiara Dianzani
- . Department of Drug Science and Technology, University of Torino, 10125 Turin, Italy; (L.B.); (A.S.); (C.D.); (P.M.); (E.M.); (S.A.)
| | - Paola Milla
- . Department of Drug Science and Technology, University of Torino, 10125 Turin, Italy; (L.B.); (A.S.); (C.D.); (P.M.); (E.M.); (S.A.)
| | - Elisabetta Muntoni
- . Department of Drug Science and Technology, University of Torino, 10125 Turin, Italy; (L.B.); (A.S.); (C.D.); (P.M.); (E.M.); (S.A.)
| | - Silvia Arpicco
- . Department of Drug Science and Technology, University of Torino, 10125 Turin, Italy; (L.B.); (A.S.); (C.D.); (P.M.); (E.M.); (S.A.)
| | - Roberta Cavalli
- . Department of Drug Science and Technology, University of Torino, 10125 Turin, Italy; (L.B.); (A.S.); (C.D.); (P.M.); (E.M.); (S.A.)
| |
Collapse
|
216
|
Vergani E, Daveri E, Vallacchi V, Bergamaschi L, Lalli L, Castelli C, Rodolfo M, Rivoltini L, Huber V. Extracellular vesicles in anti-tumor immunity. Semin Cancer Biol 2021; 86:64-79. [PMID: 34509614 DOI: 10.1016/j.semcancer.2021.09.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/07/2021] [Indexed: 12/19/2022]
Abstract
To what extent extracellular vesicles (EVs) can impact anti-tumor immune responses has only started to get unraveled. Their nanometer dimensions, their growing number of subtypes together with the difficulties in defining their origin hamper their investigation. The existence of tumor cell lines facilitated advance in cancer EV understanding, while capturing information about phenotypes and functions of immune cell EVs in this context is more complex. The advent of immunotherapy with immune checkpoint inhibitors has further deepened the need to dissect the impact of EVs during immune activation and response, not least to contribute unraveling and preventing the generation of resistance occurring in the majority of patients. Here we discuss the factors that influence anddrive the immune response in cancer patients in the context of cancer therapeutics and the roles or possible functions that EVs can have in this scenario. With immune cell-derived EVs as leitmotiv, we will journey from EV discovery and subtypes through physiological and pathological functions, from similarities with tumor EVs to measures to revert detrimental consequences on immune responses to cancer.
Collapse
Affiliation(s)
- Elisabetta Vergani
- Unit of Immunotherapy of Human Tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133, Milan, Italy
| | - Elena Daveri
- Unit of Immunotherapy of Human Tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133, Milan, Italy
| | - Viviana Vallacchi
- Unit of Immunotherapy of Human Tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133, Milan, Italy
| | - Laura Bergamaschi
- Unit of Immunotherapy of Human Tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133, Milan, Italy
| | - Luca Lalli
- Unit of Immunotherapy of Human Tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133, Milan, Italy
| | - Chiara Castelli
- Unit of Immunotherapy of Human Tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133, Milan, Italy
| | - Monica Rodolfo
- Unit of Immunotherapy of Human Tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133, Milan, Italy
| | - Licia Rivoltini
- Unit of Immunotherapy of Human Tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133, Milan, Italy
| | - Veronica Huber
- Unit of Immunotherapy of Human Tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133, Milan, Italy.
| |
Collapse
|
217
|
Mikelez-Alonso I, Magadán S, González-Fernández Á, Borrego F. Natural killer (NK) cell-based immunotherapies and the many faces of NK cell memory: A look into how nanoparticles enhance NK cell activity. Adv Drug Deliv Rev 2021; 176:113860. [PMID: 34237404 DOI: 10.1016/j.addr.2021.113860] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/21/2021] [Accepted: 07/01/2021] [Indexed: 12/16/2022]
Abstract
Natural killer (NK) cells are lymphocytes able to exert potent antitumor and antiviral functions by different means. Besides their classification as innate lymphoid cells (ILCs), NK cells exhibit memory-like and memory responses after cytokine preactivation, viral infections and hapten exposure. Multiple NK cell-based immunotherapies have been developed and are currently being tested, including the possibility to translate the NK cell memory responses into the clinic. Nevertheless, still there is a need to improve these therapies, especially for the treatment of solid tumors, and nanotechnology represents an attractive option to increase NK cell effector functions against transformed cells. In this article, we review the basis of NK cell activity, the diversity of the NK cell memory responses and the current NK cell-based immunotherapies that are being used in the clinic. Furthermore, we take a look into nanotechnology-based strategies targeting NK cells to modulate their responses for effective immunotherapy.
Collapse
Affiliation(s)
- Idoia Mikelez-Alonso
- Biocruces Bizkaia Health Research Institute, Immunopathology Group, Barakaldo, Spain; Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia - San Sebastián, Spain
| | - Susana Magadán
- CINBIO, Universidade de Vigo, Immunology Group, Vigo, Spain; Galicia Sur Health Research Institute (IIS-GS), Hospital Alvaro Cunqueiro, Vigo, Spain
| | - África González-Fernández
- CINBIO, Universidade de Vigo, Immunology Group, Vigo, Spain; Galicia Sur Health Research Institute (IIS-GS), Hospital Alvaro Cunqueiro, Vigo, Spain
| | - Francisco Borrego
- Biocruces Bizkaia Health Research Institute, Immunopathology Group, Barakaldo, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
218
|
Zhao Y, Li X, Zhang W, Yu L, Wang Y, Deng Z, Liu M, Mo S, Wang R, Zhao J, Liu S, Hao Y, Wang X, Ji T, Zhang L, Wang C. Trends in the biological functions and medical applications of extracellular vesicles and analogues. Acta Pharm Sin B 2021; 11:2114-2135. [PMID: 34522580 PMCID: PMC8424226 DOI: 10.1016/j.apsb.2021.03.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/19/2021] [Accepted: 03/01/2021] [Indexed: 12/18/2022] Open
Abstract
Natural extracellular vesicles (EVs) play important roles in many life processes such as in the intermolecular transfer of substances and genetic information exchanges. Investigating the origins and working mechanisms of natural EVs may provide an understanding of life activities, especially regarding the occurrence and development of diseases. Additionally, due to their vesicular structure, EVs (in small molecules, nucleic acids, proteins, etc.) could act as efficient drug-delivery carriers. Herein, we describe the sources and biological functions of various EVs, summarize the roles of EVs in disease diagnosis and treatment, and review the application of EVs as drug-delivery carriers. We also assess the challenges and perspectives of EVs in biomedical applications.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University and Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing 100005, China
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Xiaolu Li
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Wenbo Zhang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Lanlan Yu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Yang Wang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Zhun Deng
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Mingwei Liu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Shanshan Mo
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Ruonan Wang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Jinming Zhao
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University and Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing 100005, China
| | - Shuli Liu
- Department of Clinical Laboratory, Peking University Civil Aviation School of Clinical Medicine, Beijing 100123, China
| | - Yun Hao
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University and Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing 100005, China
| | - Xiangdong Wang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University and Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing 100005, China
| | - Tianjiao Ji
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Luo Zhang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University and Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing 100005, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Chenxuan Wang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| |
Collapse
|
219
|
Zhang H, Yang M, Wu X, Li Q, Li X, Zhao Y, Du F, Chen Y, Wu Z, Xiao Z, Shen J, Wen Q, Hu W, Cho CH, Chen M, Zhou Y, Li M. The distinct roles of exosomes in tumor-stroma crosstalk within gastric tumor microenvironment. Pharmacol Res 2021; 171:105785. [PMID: 34311072 DOI: 10.1016/j.phrs.2021.105785] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/19/2021] [Accepted: 07/22/2021] [Indexed: 02/07/2023]
Abstract
Gastric cancer (GC) development is a complex process displaying polytropic cell and molecular landscape within gastric tumor microenvironment (TME). Stromal cells in TME, including fibroblasts, endothelial cells, mesenchymal stem cells, and various immune cells, support tumor growth, metastasis, and recurrence, functioning as the soil for gastric tumorigenesis. Importantly, exosomes secreted by either stromal cells or tumor cells during tumor-stroma crosstalk perform as crucial transporter of agents including RNAs and proteins for cell-cell communication in GC pathogenesis. Therefore, given the distinct roles of exosomes secreted by various cell types in GC TME, increasing evidence has indicated that exosomes present as new biomarkers for GC diagnosis and prognosis and shed light on novel approaches for GC treatment.
Collapse
Affiliation(s)
- Hanyu Zhang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China; Nanchong Key Laboratory of Individualized Drug Therapy, Department of Pharmacy, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong 637000, Sichuan, China
| | - Min Yang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Qianxiu Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Xin Li
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Zhigui Wu
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Qinglian Wen
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Wei Hu
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen 518000, Guangzhou, China
| | - Chi Hin Cho
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China; School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | - Meijuan Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China.
| | - Yejiang Zhou
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China.
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China.
| |
Collapse
|
220
|
Cochran AM, Kornbluth J. Extracellular Vesicles From the Human Natural Killer Cell Line NK3.3 Have Broad and Potent Anti-Tumor Activity. Front Cell Dev Biol 2021; 9:698639. [PMID: 34368150 PMCID: PMC8343581 DOI: 10.3389/fcell.2021.698639] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/30/2021] [Indexed: 12/16/2022] Open
Abstract
Natural killer (NK) cells are critical mediators of immune function, responsible for rapid destruction of tumor cells. They kill primarily through the release of granules containing potent cytolytic molecules. NK cells also release these molecules within membrane-bound exosomes and microvesicles - collectively known as extracellular vesicles (EV). Here we report the characterization and anti-tumor function of EVs isolated from NK3.3 cells, a well described clonal normal human NK cell line. We show that NK3.3 EVs contain the cytolytic molecules perforin, granzymes A and B, and granulysin, and an array of common EV proteins. We previously reported that the E3 ubiquitin ligase, natural killer lytic-associated molecule (NKLAM), is localized to NK granules and is essential for maximal NK killing; here we show it is present in the membrane of NK3.3 EVs. NK3.3-derived EVs also carry multiple RNA species, including miRNAs associated with anti-tumor activity. We demonstrate that NK3.3 EVs inhibit proliferation and induce caspase-mediated apoptosis and cell death of an array of both hematopoietic and non-hematopoietic tumor cell lines. This effect is tumor cell specific; normal cells are unaffected by EV treatment. By virtue of their derivation from a healthy donor and ability to be expanded to large numbers, NK3.3 EVs have the potential to be an effective, safe, and universal immunotherapeutic agent.
Collapse
Affiliation(s)
- Allyson M. Cochran
- Department of Pathology, Saint Louis University School of Medicine, St. Louis, MO, United States
| | - Jacki Kornbluth
- Department of Pathology, Saint Louis University School of Medicine, St. Louis, MO, United States
- St. Louis VA Medical Center, St. Louis, MO, United States
| |
Collapse
|
221
|
Shan X, Zhang C, Mai C, Hu X, Cheng N, Chen W, Peng D, Wang L, Ji Z, Xie Y. The Biogenesis, Biological Functions, and Applications of Macrophage-Derived Exosomes. Front Mol Biosci 2021; 8:715461. [PMID: 34368234 PMCID: PMC8333870 DOI: 10.3389/fmolb.2021.715461] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/09/2021] [Indexed: 12/11/2022] Open
Abstract
Macrophage-derived exosomes have been implicated on the modulation of inflammatory processes. Recent studies have shown that macrophage-derived exosomes contribute to the progression of many diseases such as cancer, atherosclerosis, diabetes and heart failure. This review describes the biogenesis of macrophage-derived exosomes and their biological functions in different diseases. In addition, the challenges facing the use of macrophage-derived exosomes as delivery tools for drugs, genes, and proteins in clinical applications are described. The application of macrophage-derived exosomes in the diagnosis and treatment of diseases is also discussed.
Collapse
Affiliation(s)
- Xiaoxiao Shan
- School of Pharmacy, Anhui Academy of Chinese Medicine, , Anhui University of Traditional Chinese MedicineHefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China.,Anhui Province Key Laboratory of Pharmaceutical Technology and Application, Hefei, China
| | - Caiyun Zhang
- School of Pharmacy, Anhui Academy of Chinese Medicine, , Anhui University of Traditional Chinese MedicineHefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China.,Anhui Province Key Laboratory of Pharmaceutical Technology and Application, Hefei, China
| | - Chutian Mai
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Avenida Wai Long, China
| | - Xuerui Hu
- School of Pharmacy, Anhui Academy of Chinese Medicine, , Anhui University of Traditional Chinese MedicineHefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China.,Anhui Province Key Laboratory of Pharmaceutical Technology and Application, Hefei, China
| | - Nuo Cheng
- School of Pharmacy, Anhui Academy of Chinese Medicine, , Anhui University of Traditional Chinese MedicineHefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China.,Anhui Province Key Laboratory of Pharmaceutical Technology and Application, Hefei, China
| | - Weidong Chen
- School of Pharmacy, Anhui Academy of Chinese Medicine, , Anhui University of Traditional Chinese MedicineHefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China.,Anhui Province Key Laboratory of Pharmaceutical Technology and Application, Hefei, China
| | - Daiyin Peng
- School of Pharmacy, Anhui Academy of Chinese Medicine, , Anhui University of Traditional Chinese MedicineHefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Lei Wang
- School of Pharmacy, Anhui Academy of Chinese Medicine, , Anhui University of Traditional Chinese MedicineHefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China.,Anhui Province Key Laboratory of Pharmaceutical Technology and Application, Hefei, China
| | - Zhaojie Ji
- School of Pharmacy, Anhui Academy of Chinese Medicine, , Anhui University of Traditional Chinese MedicineHefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Ying Xie
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Avenida Wai Long, China
| |
Collapse
|
222
|
Pelissier Vatter FA, Cioffi M, Hanna SJ, Castarede I, Caielli S, Pascual V, Matei I, Lyden D. Extracellular vesicle- and particle-mediated communication shapes innate and adaptive immune responses. J Exp Med 2021; 218:212439. [PMID: 34180950 PMCID: PMC8241538 DOI: 10.1084/jem.20202579] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/25/2021] [Accepted: 06/02/2021] [Indexed: 02/06/2023] Open
Abstract
Intercellular communication among immune cells is vital for the coordination of proper immune responses. Extracellular vesicles and particles (EVPs) act as messengers in intercellular communication, with important consequences for target cell and organ physiology in both health and disease. Under normal physiological conditions, immune cell-derived EVPs participate in immune responses by regulating innate and adaptive immune responses. EVPs play a major role in antigen presentation and immune activation. On the other hand, immune cell-derived EVPs exert immunosuppressive and regulatory effects. Consequently, EVPs may contribute to pathological conditions, such as autoimmune and inflammatory diseases, graft rejection, and cancer progression and metastasis. Here, we provide an overview of the role of EVPs in immune homeostasis and pathophysiology, with a particular focus on their contribution to innate and adaptive immunity and their potential use for immunotherapies.
Collapse
Affiliation(s)
- Fanny A Pelissier Vatter
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY
| | - Michele Cioffi
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY
| | - Samer J Hanna
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY
| | - Ines Castarede
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY.,Swiss Institute for Experimental Cancer Research, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Simone Caielli
- Drukier Institute for Children's Health and Department of Pediatrics, Weill Cornell Medicine, New York, NY
| | - Virginia Pascual
- Drukier Institute for Children's Health and Department of Pediatrics, Weill Cornell Medicine, New York, NY
| | - Irina Matei
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY
| | - David Lyden
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY
| |
Collapse
|
223
|
Wang X, Xiang Z, Liu Y, Huang C, Pei Y, Wang X, Zhi H, Wong WHS, Wei H, Ng IOL, Lee PPW, Chan GCF, Lau YL, Tu W. Exosomes derived from Vδ2-T cells control Epstein-Barr virus-associated tumors and induce T cell antitumor immunity. Sci Transl Med 2021; 12:12/563/eaaz3426. [PMID: 32998970 DOI: 10.1126/scitranslmed.aaz3426] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 05/07/2020] [Accepted: 06/29/2020] [Indexed: 12/14/2022]
Abstract
Treatment of life-threatening Epstein-Barr virus (EBV)-associated tumors remains a great challenge, especially for patients with relapsed or refractory disease. Here, we found that exosomes derived from phosphoantigen-expanded Vδ2-T cells (Vδ2-T-Exos) contained death-inducing ligands (FasL and TRAIL), an activating receptor for natural killer (NK) cells (NKG2D), immunostimulatory ligands (CD80 and CD86), and antigen-presenting molecules (MHC class I and II). Vδ2-T-Exos targeted and efficiently killed EBV-associated tumor cells through FasL and TRAIL pathways and promoted EBV antigen-specific CD4 and CD8 T cell expansion. Administration of Vδ2-T-Exos effectively controlled EBV-associated tumors in Rag2-/-γc-/- and humanized mice. Because expanding Vδ2-T cells and preparing autologous Vδ2-T-Exos from cancer patients ex vivo in large scale is challenging, we explored the antitumor activity of allogeneic Vδ2-T-Exos in humanized mouse cancer models. Here, we found that allogeneic Vδ2-T-Exos had more effective antitumor activity than autologous Vδ2-T-Exos in humanized mice; the allogeneic Vδ2-T-Exos increased the infiltration of T cells into tumor tissues and induced more robust CD4 and CD8 T cell-mediated antitumor immunity. Compared with exosomes derived from NK cells (NK-Exos) with direct cytotoxic antitumor activity or dendritic cells (DC-Exos) that induced T cell antitumor responses, Vδ2-T-Exos directly killed tumor cells and induced T cell-mediated antitumor response, thus resulting in more effective control of EBV-associated tumors. This study provided proof of concept for the strategy of using Vδ2-T-Exos, especially allogeneic Vδ2-T-Exos, to treat EBV-associated tumors.
Collapse
Affiliation(s)
- Xiwei Wang
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Zheng Xiang
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Yinping Liu
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Chunyu Huang
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Yujun Pei
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Xia Wang
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Hui Zhi
- Biostatistics and Clinical Research Methodology Unit, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Wilfred Hing-Sang Wong
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Haiming Wei
- Institute of Immunology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Irene Oi-Lin Ng
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Pamela Pui-Wah Lee
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Godfrey Chi-Fung Chan
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Yu-Lung Lau
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Wenwei Tu
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China.
| |
Collapse
|
224
|
Itabashi Y, Ravichandran R, Bansal S, Bharat A, Hachem R, Bremner R, Smith M, Mohanakumar T. Decline in Club Cell Secretory Proteins, Exosomes Induction and Immune Responses to Lung Self-antigens, Kα1 Tubulin and Collagen V, Leading to Chronic Rejection After Human Lung Transplantation. Transplantation 2021; 105:1337-1346. [PMID: 32890135 PMCID: PMC7917153 DOI: 10.1097/tp.0000000000003428] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND Chronic lung allograft dysfunction (CLAD), is a major hurdle for long-term lung allograft survival after lung transplant and roughly 50% of lung transplant recipients (LTxRs) develop CLAD within 5 years. The mechanisms of CLAD development remain unknown. Donor-specific immune responses to HLA and lung self-antigens (SAgs) are vital to the pathogenesis of CLAD. Reduction in Club cell secretory protein (CCSP) has been reported in bronchoalveolar lavage (BAL) fluid samples from LTxRs with bronchiolitis obliterans syndrome (BOS). CCSP levels in BAL fluid and development of antibodies to lung SAgs in plasma were determined by ELISA. Cytokines in BAL fluid were analyzed by 30-plex Luminex panel. Exosomes from BAL fluid or plasma were analyzed for SAgs, natural killer (NK) cells markers, and cytotoxic molecules. RESULTS We demonstrate that LTxRs with BOS have lower CCSP levels up to 9 months before BOS diagnosis. LTxRs with antibodies to SAgs 1-year posttransplant also developed DSA (43%) and had lower CCSP. BOS with lower CCSP also induced Interleukin-8 and reduced vascular endothelial growth factor. Exosomes from BOS contained increased SAgs, NK cells markers, and cytotoxic molecules. CONCLUSIONS We conclude lower CCSP leads to inflammation, pro-inflammatory cytokine production, immune responses to HLA and SAgs, and induction of exosomes. For the first time, we demonstrate that CCSP loss results in exosome release from NK cells capable of stimulating innate and adaptive immunity posttransplant. This increases the risk of BOS, suggesting a role of NK cell exosomes in CLAD development.
Collapse
Affiliation(s)
- Yoshihiro Itabashi
- Norton Thoracic Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ
| | | | - Sandhya Bansal
- Norton Thoracic Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ
| | - Ankit Bharat
- Department of Surgery, University of Chicago, Chicago, IL, United States
| | - Ramsey Hachem
- Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, MO
| | - Ross Bremner
- Norton Thoracic Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ
| | - Michael Smith
- Norton Thoracic Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ
| | - T. Mohanakumar
- Norton Thoracic Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ
| |
Collapse
|
225
|
Wu F, Xie M, Hun M, She Z, Li C, Luo S, Chen X, Wan W, Wen C, Tian J. Natural Killer Cell-Derived Extracellular Vesicles: Novel Players in Cancer Immunotherapy. Front Immunol 2021; 12:658698. [PMID: 34093547 PMCID: PMC8176011 DOI: 10.3389/fimmu.2021.658698] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/10/2021] [Indexed: 01/15/2023] Open
Abstract
Natural killer (NK) cells are critical components of host innate immunity and function as the first line of defense against tumors and viral infection. There is increasing evidence that extracellular vesicles (EVs) are involved in the antitumor activity of NK cells. NK cell-derived EVs (NKEVs) carrying cargo such as cytotoxic proteins, microRNAs, and cytokines employ multiple mechanisms to kill tumor cells, but also exhibit immunomodulatory activity by stimulating other immune cells. Several studies have reported that NKEVs can reverse immune suppression under tolerogenic conditions and contribute to NK-mediated immune surveillance against tumors. Thus, NKEVs are a promising tool for cancer immunotherapy. In this review, we describe the biological effects and potential applications of NKEVs in antitumor immunity.
Collapse
Affiliation(s)
- Feifeng Wu
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Min Xie
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Marady Hun
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhou She
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Cuifang Li
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Senlin Luo
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoyu Chen
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wuqing Wan
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Chuan Wen
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jidong Tian
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
226
|
Huang D, Chen J, Hu D, Xie F, Yang T, Li Z, Wang X, Xiao Y, Zhong J, Jiang Y, Zhang X, Zhong T. Advances in Biological Function and Clinical Application of Small Extracellular Vesicle Membrane Proteins. Front Oncol 2021; 11:675940. [PMID: 34094979 PMCID: PMC8172959 DOI: 10.3389/fonc.2021.675940] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 04/30/2021] [Indexed: 12/15/2022] Open
Abstract
Small extracellular vesicles are membrane-bound vesicles secreted into extracellular spaces by virtually all types of cells. These carry a large number of membrane proteins on their surface that are incorporated during their biogenesis in cells. The composition of the membrane proteins hence bears the signature of the cells from which they originate. Recent studies have suggested that the proteins on these small extracellular vesicles can serve as biomarkers and target proteins for the diagnosis and treatment of diseases. This article classifies small extracellular vesicle membrane proteins and summarizes their pathophysiological functions in the diagnosis and treatment of diseases.
Collapse
Affiliation(s)
- Defa Huang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China.,Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jie Chen
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China.,Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Die Hu
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China.,Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Fangfang Xie
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China.,Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Tong Yang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China.,Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Zhengzhe Li
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China.,Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Xiaoxing Wang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China.,Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Yongwei Xiao
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China.,Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jianing Zhong
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Yu Jiang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Xiaokang Zhang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China.,Department of Preventive Medicine, Gannan Medical University, Ganzhou, China
| | - Tianyu Zhong
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China.,Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China.,Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China.,Precision Medicine Center, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| |
Collapse
|
227
|
Therapeutic Silencing of BCL-2 Using NK Cell-Derived Exosomes as a Novel Therapeutic Approach in Breast Cancer. Cancers (Basel) 2021; 13:cancers13102397. [PMID: 34063475 PMCID: PMC8156181 DOI: 10.3390/cancers13102397] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/29/2021] [Accepted: 05/12/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Overexpression of the antiapoptotic protein BCL-2 is correlated with estrogen receptor (ER) expression in breast cancer and plays an important role for disease pathophysiology. Here, we conceptualized a novel treatment strategy by targeting ER+ breast cancer with NK cell-derived exosomes used as a carrier for BCL-2 targeted siRNAs. With this new approach, we successfully enhanced killing ability of NK cell derived exosomes by silencing of BCL-2 overexpression. Abstract Overexpression of the anti-apoptotic protein BCL-2 is frequently observed in multiple malignancies, including about 85% of patients with estrogen receptor positive (ER+) breast cancer. Besides being studied as a prognostic marker, BCL-2 is investigated as a therapeutic target in ER+ breast cancer. Here, we introduce a new exosome-based strategy to target BCL-2 using genetically modified natural killer (NK) cells. The NK cell line NK92MI was lentivirally transduced to express and load BCL-2 siRNAs (siBCL-2) into exosomes (NKExos) and then evaluated for its potential to treat ER+ breast cancer. Transfected NK92MI cells produced substantial levels of BCL-2 siRNAs, without substantially affecting NK cell viability or effector function and led to loading of siBCL-2 in NKExos. Remarkably, targeting BCL-2 via siBCL-2 NKExos led to enhanced intrinsic apoptosis in breast cancer cells, without affecting non-malignant cells. Together, our prototypical results for BCL-2 in breast cancer provide proof of concept for a novel strategy to utilize NKExos as a natural delivery vector for siRNA targeting of oncogenes.
Collapse
|
228
|
Li S, Xu J, Qian J, Gao X. Engineering extracellular vesicles for cancer therapy: recent advances and challenges in clinical translation. Biomater Sci 2021; 8:6978-6991. [PMID: 33155579 DOI: 10.1039/d0bm01385d] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Extracellular vesicles (EVs) are receiving increasing attention in recent years in the field of cancer treatment. EVs contain specific contents closely related to their donor cells, such as miRNAs, proteins and dsDNAs. As endogenous vesicles, EVs naturally have the characteristics of low toxicity and low immunogenicity and can stably pass through the circulatory system to reach the recipient cells, which make them good carriers to deliver therapeutic agents such as nucleic acid sequences and chemotherapeutics. In many preclinical studies and clinical trials, EVs have demonstrated their unlimited advantages in the field of cancer therapy. However, there are still some challenges that restrict their clinical application, such as yield, heterogeneity, safety, and specificity. In this review, we will focus on the latest breakthrough of EVs in the field of cancer treatment and discuss the challenges in the clinical translation of EVs.
Collapse
Affiliation(s)
- Sha Li
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, 131 Dong An Road, Shanghai 200032, China.
| | | | | | | |
Collapse
|
229
|
Extracellular vesicles in immunomodulation and tumor progression. Nat Immunol 2021; 22:560-570. [PMID: 33753940 PMCID: PMC9389600 DOI: 10.1038/s41590-021-00899-0] [Citation(s) in RCA: 321] [Impact Index Per Article: 80.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 02/03/2021] [Indexed: 01/31/2023]
Abstract
Extracellular vesicles have emerged as prominent regulators of the immune response during tumor progression. EVs contain a diverse repertoire of molecular cargo that plays a critical role in immunomodulation. Here, we identify the role of EVs as mediators of communication between cancer and immune cells. This expanded role of EVs may shed light on the mechanisms behind tumor progression and provide translational diagnostic and prognostic tools for immunologists.
Collapse
|
230
|
Li X, Liu Y, Zheng S, Zhang T, Wu J, Sun Y, Zhang J, Liu G. Role of exosomes in the immune microenvironment of ovarian cancer. Oncol Lett 2021; 21:377. [PMID: 33777201 PMCID: PMC7988709 DOI: 10.3892/ol.2021.12638] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 01/27/2021] [Indexed: 12/12/2022] Open
Abstract
Exosomes are excretory vesicles that can deliver a variety of bioactive cargo molecules to the extracellular environment. Accumulating evidence demonstrates exosome participation in intercellular communication, immune response, inflammatory response and they even play an essential role in affecting the tumor immune microenvironment. The role of exosomes in the immune microenvironment of ovarian cancer is mainly divided into suppression and stimulation. On one hand exosomes can stimulate the innate and adaptive immune systems by activating dendritic cells (DCs), natural killer cells and T cells, allowing these immune cells exert an antitumorigenic effect. On the other hand, ovarian cancer-derived exosomes initiate cross-talk with immunosuppressive effector cells, which subsequently cause immune evasion; one of the hallmarks of cancer. Exosomes induce the polarization of macrophages in M2 phenotype and induce apoptosis of lymphocytes and DCs. Exosomes further activate additional immunosuppressive effector cells (myeloid-derived suppressor cells and regulatory T cells) that induce fibroblasts to differentiate into cancer-associated fibroblasts. Exosomes also induce the tumorigenicity of mesenchymal stem cells to exert additional immune suppression. Furthermore, besides mediating the intercellular communication, exosomes carry microRNAs (miRNAs), proteins and lipids to the tumor microenvironment, which collectively promotes ovarian cancer cells to proliferate, invade and tumors to metastasize. Studying proteins, lipids and miRNAs carried by exosomes could potentially be used as an early diagnostic marker of ovarian cancer for designing treatment strategies.
Collapse
Affiliation(s)
- Xiao Li
- Department of Obstetrics and Gynecology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Yang Liu
- Department of Obstetrics and Gynecology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Shuangshuang Zheng
- Department of Obstetrics and Gynecology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Tianyu Zhang
- Department of Obstetrics and Gynecology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Jing Wu
- Department of Obstetrics and Gynecology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Yue Sun
- Department of Obstetrics and Gynecology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Jingzi Zhang
- Department of Obstetrics and Gynecology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Guoyan Liu
- Department of Gynecology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| |
Collapse
|
231
|
Lone SN, Bhat AA, Wani NA, Karedath T, Hashem S, Nisar S, Singh M, Bagga P, Das BC, Bedognetti D, Reddy R, Frenneaux MP, El-Rifai W, Siddiqi MA, Haris M, Macha MA. miRNAs as novel immunoregulators in cancer. Semin Cell Dev Biol 2021; 124:3-14. [PMID: 33926791 DOI: 10.1016/j.semcdb.2021.04.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 04/07/2021] [Accepted: 04/13/2021] [Indexed: 02/06/2023]
Abstract
The immune system is a well-known vital regulator of tumor growth, and one of the main hallmarks of cancer is evading the immune system. Immune system deregulation can lead to immune surveillance evasion, sustained cancer growth, proliferation, and metastasis. Tumor-mediated disruption of the immune system is accomplished by different mechanisms that involve extensive crosstalk with the immediate microenvironment, which includes endothelial cells, immune cells, and stromal cells, to create a favorable tumor niche that facilitates the development of cancer. The essential role of non-coding RNAs such as microRNAs (miRNAs) in the mechanism of cancer cell immune evasion has been highlighted in recent studies. miRNAs are small non-coding RNAs that regulate a wide range of post-transcriptional gene expression in a cell. Recent studies have focused on the function that miRNAs play in controlling the expression of target proteins linked to immune modulation. Studies show that miRNAs modulate the immune response in cancers by regulating the expression of different immune-modulatory molecules associated with immune effector cells, such as macrophages, dendritic cells, B-cells, and natural killer cells, as well as those present in tumor cells and the tumor microenvironment. This review explores the relationship between miRNAs, their altered patterns of expression in tumors, immune modulation, and the functional control of a wide range of immune cells, thereby offering detailed insights on the crosstalk of tumor-immune cells and their use as prognostic markers or therapeutic agents.
Collapse
Affiliation(s)
- Saife N Lone
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, Jammu & Kashmir, India
| | - Ajaz A Bhat
- Molecular and Metabolic Imaging Laboratory, Cancer Research Department, Sidra Medicine, Doha, Qatar
| | - Nissar A Wani
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, Jammu & Kashmir, India
| | | | - Sheema Hashem
- Molecular and Metabolic Imaging Laboratory, Cancer Research Department, Sidra Medicine, Doha, Qatar
| | - Sabah Nisar
- Molecular and Metabolic Imaging Laboratory, Cancer Research Department, Sidra Medicine, Doha, Qatar
| | - Mayank Singh
- Dr. B. R. Ambedkar Institute Rotary Cancer Hospital (BRAIRCH), AIIMS, New Delhi, India
| | - Puneet Bagga
- Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Bhudev Chandra Das
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Uttar Pradesh, India
| | - Davide Bedognetti
- Laboratory of Cancer Immunogenomics, Cancer Research Department, Sidra Medicine, Doha, Qatar; Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy; College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Ravinder Reddy
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, USA
| | | | - Wael El-Rifai
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Mushtaq A Siddiqi
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, India
| | - Mohammad Haris
- Molecular and Metabolic Imaging Laboratory, Cancer Research Department, Sidra Medicine, Doha, Qatar; Laboratory Animal Research Center, Qatar University, Doha, Qatar.
| | - Muzafar A Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, India.
| |
Collapse
|
232
|
Hu HJ, Liang X, Li HL, Wang HY, Gu JF, Sun LY, Xiao J, Hu JQ, Ni AM, Liu XY. Enhanced anti-melanoma efficacy through a combination of the armed oncolytic adenovirus ZD55-IL-24 and immune checkpoint blockade in B16-bearing immunocompetent mouse model. Cancer Immunol Immunother 2021; 70:3541-3555. [PMID: 33903973 PMCID: PMC8571158 DOI: 10.1007/s00262-021-02946-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 04/14/2021] [Indexed: 12/22/2022]
Abstract
Although the recent treatment in melanoma through the use of anti-PD-1 immunotherapy is successful, the efficacy of this approach remains to be improved. Here, we explore the feasibility of combination strategy with the armed oncolytic adenovirus ZD55-IL-24 and PD-1 blockade. We find that combination therapy with localized ZD55-IL-24 and systemic PD-1 blockade leads to synergistic inhibition of both local and distant established tumors in B16-bearing immunocompetent mouse model. Our further mechanism investigation reveals that synergistic therapeutic effect is associated with marked promotion of tumor immune infiltration and recognition in both local and distant tumors as well as spleens. PD-1 blockade has no obvious effect on promotion of tumor immune infiltration and recognition. Localized therapy with ZD55-IL-24, however, can help PD-1 blockade to overcome the limitation of relatively low tumor immune infiltration and recognition. This study provides a rationale for investigation of such combination therapy in the clinic.
Collapse
Affiliation(s)
- Hai-Jun Hu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xiu Liang
- School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Hai-Lang Li
- Department of Pharmacy, Xiamen Medical College, Xiamen, 361023, China
| | - Huai-Yuan Wang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jin-Fa Gu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Lan-Ying Sun
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jing Xiao
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jin-Qing Hu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Ai-Min Ni
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Xin-Yuan Liu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
233
|
St-Pierre F, Bhatia S, Chandra S. Harnessing Natural Killer Cells in Cancer Immunotherapy: A Review of Mechanisms and Novel Therapies. Cancers (Basel) 2021; 13:1988. [PMID: 33924213 PMCID: PMC8074597 DOI: 10.3390/cancers13081988] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/01/2021] [Accepted: 04/16/2021] [Indexed: 12/15/2022] Open
Abstract
Natural killer (NK) cells are lymphocytes that are integral to the body's innate immunity, resulting in a rapid immune response to stressed or infected cells in an antigen-independent manner. The innate immune system plays an important role in the recognition of tumor-derived stress-related factors and is critical to subsequent adaptive immune responses against tumor antigens. The aim of this review is to discuss mechanisms by which tumor cells evade NK cells and to outline strategies that harness NK cells for cancer immunotherapy. We discuss strategies to relieve the exhausted state of NK cells, recent therapies focused on targeting NK-cell-specific activating and inhibitory receptors, the use of cytokines IL-2 and IL-15 to stimulate autologous or allogeneic NK cells, and ongoing trials exploring the use of genetically modified NK cells and chimeric antigen-receptor-modified NK (CAR-NK) cells.
Collapse
Affiliation(s)
- Frederique St-Pierre
- Division of Hematology Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60208, USA;
| | - Shailender Bhatia
- Division of Medical Oncology, Fred Hutchinson Cancer Research Center, University of Washington, Seattle, WA 98195, USA;
| | - Sunandana Chandra
- Division of Hematology Oncology, Robert H. Lurie Comprehensive Cancer, Northwestern University, Chicago, IL 60208, USA
| |
Collapse
|
234
|
Chen Q, Li Y, Liu Y, Xu W, Zhu X. Exosomal Non-coding RNAs-Mediated Crosstalk in the Tumor Microenvironment. Front Cell Dev Biol 2021; 9:646864. [PMID: 33912560 PMCID: PMC8072401 DOI: 10.3389/fcell.2021.646864] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/15/2021] [Indexed: 01/18/2023] Open
Abstract
Exosomes are secreted by different types of cells in tumor microenvironment (TME) and participate in multiple biological processes of tumors. Non-coding RNAs (ncRNAs) enveloped in exosomes and released to the TME are shown to be involved in tumorigenesis and development, as well as act as important intracellular communication mediators. However, the understanding on the exact regulatory functions and substrates of exosomal RNA is still at an early stage. In this review, we provided an overview on recent studies on exosomes mediating the modulation of both tumor cells and immune cells, then summarized the exosomal ncRNAs [such as microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs)] secreted by tumor cells and stromal cells that exhibited potential capabilities to regulate tumor cell growth, progression, metastasis, drug resistance, and immune response. Our review may hopefully inspire a deeper understanding on the ncRNAs’ function as useful biomarkers for the diagnosis, prognosis, and as novel targets therapy for cancer.
Collapse
Affiliation(s)
- Qi Chen
- Department of Oncology and Central Laboratory, Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China.,International Genome Center, Jiangsu University, Zhenjiang, China
| | - Yuefeng Li
- Affiliated People Hospital of Jiangsu University, Zhenjiang, China
| | - Yueqin Liu
- Department of Oncology and Central Laboratory, Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Wenlin Xu
- Department of Oncology and Central Laboratory, Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xiaolan Zhu
- Department of Oncology and Central Laboratory, Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China.,Reproduction Medicine Center, Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China.,International Genome Center, Jiangsu University, Zhenjiang, China
| |
Collapse
|
235
|
Zhang X, Zhang H, Gu J, Zhang J, Shi H, Qian H, Wang D, Xu W, Pan J, Santos HA. Engineered Extracellular Vesicles for Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005709. [PMID: 33644908 DOI: 10.1002/adma.202005709] [Citation(s) in RCA: 237] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 10/22/2020] [Indexed: 05/12/2023]
Abstract
Extracellular vesicles (EVs) have emerged as a novel cell-free strategy for the treatment of many diseases including cancer. As a result of their natural properties to mediate cell-to-cell communication and their high physiochemical stability and biocompatibility, EVs are considered as excellent delivery vehicles for a variety of therapeutic agents such as nucleic acids and proteins, drugs, and nanomaterials. Increasing studies have shown that EVs can be modified, engineered, or designed to improve their efficiency, specificity, and safety for cancer therapy. Herein, a comprehensive overview of the recent advances in the strategies and methodologies of engineering EVs for scalable production and improved cargo-loading and tumor-targeting is provided. Additionally, the potential applications of engineered EVs in cancer therapy are discussed by presenting prominent examples, and the opportunities and challenges for translating engineered EVs into clinical practice are evaluated.
Collapse
Affiliation(s)
- Xu Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Hongbo Zhang
- Pharmaceutical Sciences Laboratory and Turku Bioscience Centre, Åbo Akademi University, Turku, 20520, Finland
- Department of Radiology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, 212001, P. R. China
| | - Jianmei Gu
- Department of Clinical Laboratory Medicine, Nantong Tumor Hospital, Nantong, 226361, P. R. China
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Jiayin Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Hui Shi
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Hui Qian
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Dongqing Wang
- Department of Radiology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, 212001, P. R. China
| | - Wenrong Xu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Jianming Pan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, FI-00014, Finland
| |
Collapse
|
236
|
Jahromi LP, Shahbazi M, Maleki A, Azadi A, Santos HA. Chemically Engineered Immune Cell-Derived Microrobots and Biomimetic Nanoparticles: Emerging Biodiagnostic and Therapeutic Tools. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2002499. [PMID: 33898169 PMCID: PMC8061401 DOI: 10.1002/advs.202002499] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 11/26/2020] [Indexed: 05/16/2023]
Abstract
Over the past decades, considerable attention has been dedicated to the exploitation of diverse immune cells as therapeutic and/or diagnostic cell-based microrobots for hard-to-treat disorders. To date, a plethora of therapeutics based on alive immune cells, surface-engineered immune cells, immunocytes' cell membranes, leukocyte-derived extracellular vesicles or exosomes, and artificial immune cells have been investigated and a few have been introduced into the market. These systems take advantage of the unique characteristics and functions of immune cells, including their presence in circulating blood and various tissues, complex crosstalk properties, high affinity to different self and foreign markers, unique potential of their on-demand navigation and activity, production of a variety of chemokines/cytokines, as well as being cytotoxic in particular conditions. Here, the latest progress in the development of engineered therapeutics and diagnostics inspired by immune cells to ameliorate cancer, inflammatory conditions, autoimmune diseases, neurodegenerative disorders, cardiovascular complications, and infectious diseases is reviewed, and finally, the perspective for their clinical application is delineated.
Collapse
Affiliation(s)
- Leila Pourtalebi Jahromi
- Drug Research ProgramDivision of Pharmaceutical Chemistry and TechnologyFaculty of PharmacyUniversity of HelsinkiHelsinkiFI‐00014Finland
- Pharmaceutical Sciences Research CenterShiraz University of Medical SciencesShiraz71468‐64685Iran
- Present address:
Helmholtz Institute for Pharmaceutical Research SaarlandHelmholtz Centre for Infection ResearchBiogenic Nanotherapeutics GroupCampus E8.1Saarbrücken66123Germany
| | - Mohammad‐Ali Shahbazi
- Drug Research ProgramDivision of Pharmaceutical Chemistry and TechnologyFaculty of PharmacyUniversity of HelsinkiHelsinkiFI‐00014Finland
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC)Zanjan University of Medical SciencesZanjan45139‐56184Iran
| | - Aziz Maleki
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC)Zanjan University of Medical SciencesZanjan45139‐56184Iran
| | - Amir Azadi
- Pharmaceutical Sciences Research CenterShiraz University of Medical SciencesShiraz71468‐64685Iran
- Department of PharmaceuticsSchool of PharmacyShiraz University of Medical SciencesShiraz71468‐64685Iran
| | - Hélder A. Santos
- Drug Research ProgramDivision of Pharmaceutical Chemistry and TechnologyFaculty of PharmacyUniversity of HelsinkiHelsinkiFI‐00014Finland
- Helsinki Institute of Life Science (HiLIFE)University of HelsinkiHelsinkiFI‐00014Finland
| |
Collapse
|
237
|
Del Vecchio F, Martinez-Rodriguez V, Schukking M, Cocks A, Broseghini E, Fabbri M. Professional killers: The role of extracellular vesicles in the reciprocal interactions between natural killer, CD8+ cytotoxic T-cells and tumour cells. J Extracell Vesicles 2021; 10:e12075. [PMID: 33815694 PMCID: PMC8015281 DOI: 10.1002/jev2.12075] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 01/27/2021] [Accepted: 02/16/2021] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) mediate the cross‐talk between cancer cells and the cells of the surrounding Tumour Microenvironment (TME). Professional killer cells include Natural Killer (NK) cells and CD8+ Cytotoxic T‐lymphocytes (CTLs), which represent some of the most effective immune defense mechanisms against cancer cells. Recent evidence supports the role of EVs released by NK cells and CTLs in killing cancer cells, paving the road to a possible therapeutic role for such EVs. This review article provides the state‐of‐the‐art knowledge on the role of NK‐ and CTL‐derived EVs as anticancer agents, focusing on the different functions of different sub‐types of EVs. We also reviewed the current knowledge on the effects of cancer‐derived EVs on NK cells and CTLs, identifying areas for future investigation in the emerging new field of EV‐mediated immunotherapy of cancer.
Collapse
Affiliation(s)
- Filippo Del Vecchio
- University of Hawai'i Cancer Center Cancer Biology Program University of Hawai'i at Manoa Honolulu Hawaii USA
| | - Verena Martinez-Rodriguez
- University of Hawai'i Cancer Center Cancer Biology Program University of Hawai'i at Manoa Honolulu Hawaii USA.,Department of Cell and Molecular Biology John A. Burns School of Medicine University of Hawai'i at Manoa Honolulu Hawaii USA
| | - Monique Schukking
- University of Hawai'i Cancer Center Cancer Biology Program University of Hawai'i at Manoa Honolulu Hawaii USA.,Department of Molecular Biosciences & Bioengineering University of Hawai'i at Manoa Honolulu Hawaii USA
| | - Alexander Cocks
- University of Hawai'i Cancer Center Cancer Biology Program University of Hawai'i at Manoa Honolulu Hawaii USA
| | - Elisabetta Broseghini
- University of Hawai'i Cancer Center Cancer Biology Program University of Hawai'i at Manoa Honolulu Hawaii USA.,Department of Experimental, Diagnostic and Specialty Medicine (DIMES) University of Bologna Bologna Italy
| | - Muller Fabbri
- University of Hawai'i Cancer Center Cancer Biology Program University of Hawai'i at Manoa Honolulu Hawaii USA
| |
Collapse
|
238
|
Yin T, Xin H, Yu J, Teng F. The role of exosomes in tumour immunity under radiotherapy: eliciting abscopal effects? Biomark Res 2021; 9:22. [PMID: 33789758 PMCID: PMC8011088 DOI: 10.1186/s40364-021-00277-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/19/2021] [Indexed: 12/11/2022] Open
Abstract
As a curative treatment of localized tumours or as palliative control, radiotherapy (RT) has long been known to kill tumour cells and trigger the release of proinflammatory factors and immune cells to elicit an immunological response to cancer. As a crucial part of the tumour microenvironment (TME), exosomes, which are double-layered nanometre-sized vesicles, can convey molecules, present antigens, and mediate cell signalling to regulate tumour immunity via their contents. Different contents result in different effects of exosomes. The abscopal effect is a systemic antitumour effect that occurs outside of the irradiated field and is associated with tumour regression. This effect is mediated through the immune system, mainly via cell-mediated immunity, and results from a combination of inflammatory cytokine cascades and immune effector cell activation. Although the abscopal effect has been observed in various malignancies for many years, it is still a rarely identified clinical event. Researchers have indicated that exosomes can potentiate abscopal effects to enhance the effects of radiation, but the specific mechanisms are still unclear. In addition, radiation can affect exosome release and composition, and irradiated cells release exosomes with specific contents that change the cellular immune status. Hence, fully understanding how radiation affects tumour immunity and the interaction between specific exosomal contents and radiation may be a potential strategy to maximize the efficacy of cancer therapy. The optimal application of exosomes as novel immune stimulators is under active investigation and is described in this review.
Collapse
Affiliation(s)
- Tianwen Yin
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Huixian Xin
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Jinming Yu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Feifei Teng
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China.
| |
Collapse
|
239
|
Kim J, Song Y, Park CH, Choi C. Platform technologies and human cell lines for the production of therapeutic exosomes. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2021; 2:3-17. [PMID: 39698504 PMCID: PMC11648496 DOI: 10.20517/evcna.2020.01] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/18/2021] [Accepted: 01/27/2021] [Indexed: 12/20/2024]
Abstract
Exosomes are extracellular vesicles secreted by most cell types and represent various biological properties depending on their producing cells. They are also known to be important mediators of intercellular communication. Recent data suggest that exosomes can mediate the therapeutic effects of their parental cells; hence, they have been in the spotlight as novel therapeutics. To develop and manufacture effective therapeutic exosomes, customized strategies are needed to use appropriate technologies for exosome engineering and to select suitable production cell lines. In this review, we provide an overview of currently available exosome engineering platform technologies for loading active pharmaceutical ingredient cargo and the types of human cells/cell lines that are being used as exosome-producing cells, particularly focusing on their characteristics, advantages, and disadvantages.
Collapse
Affiliation(s)
- Jiyoon Kim
- ILIAS Biologics Inc., Daejeon 34014, South Korea
- Authors contributed equally
| | - Yonghee Song
- ILIAS Biologics Inc., Daejeon 34014, South Korea
- Authors contributed equally
| | | | - Chulhee Choi
- ILIAS Biologics Inc., Daejeon 34014, South Korea
- Department of Bio and Brain Engineering, KAIST, Daejeon 34141, South Korea
| |
Collapse
|
240
|
Jan AT, Rahman S, Badierah R, Lee EJ, Mattar EH, Redwan EM, Choi I. Expedition into Exosome Biology: A Perspective of Progress from Discovery to Therapeutic Development. Cancers (Basel) 2021; 13:1157. [PMID: 33800282 PMCID: PMC7962655 DOI: 10.3390/cancers13051157] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 02/07/2023] Open
Abstract
Exosomes are membrane-enclosed distinct cellular entities of endocytic origin that shuttle proteins and RNA molecules intercellularly for communication purposes. Their surface is embossed by a huge variety of proteins, some of which are used as diagnostic markers. Exosomes are being explored for potential drug delivery, although their therapeutic utilities are impeded by gaps in knowledge regarding their formation and function under physiological condition and by lack of methods capable of shedding light on intraluminal vesicle release at the target site. Nonetheless, exosomes offer a promising means of developing systems that enable the specific delivery of therapeutics in diseases like cancer. This review summarizes information on donor cell types, cargoes, cargo loading, routes of administration, and the engineering of exosomal surfaces for specific peptides that increase target specificity and as such, therapeutic delivery.
Collapse
Affiliation(s)
- Arif Tasleem Jan
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, India;
| | - Safikur Rahman
- Department of Botany, MS College, BR Ambedkar Bihar University, Muzaffarpur, Bihar 842001, India;
| | - Raied Badierah
- Biological Sciences Department, Faculty of Science, and Laboratory University Hospital, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (R.B.); (E.H.M.)
| | - Eun Ju Lee
- Department of Medical Biotechnology and Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea;
| | - Ehab H. Mattar
- Biological Sciences Department, Faculty of Science, and Laboratory University Hospital, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (R.B.); (E.H.M.)
| | - Elrashdy M. Redwan
- Biological Sciences Department, Faculty of Science, and Laboratory University Hospital, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (R.B.); (E.H.M.)
| | - Inho Choi
- Department of Medical Biotechnology and Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea;
| |
Collapse
|
241
|
Hong CM, Gangadaran P, Oh JM, Rajendran RL, Gopal A, Zhu L, Ahn BC. Radioiodine labeling and in vivo trafficking of extracellular vesicles. Sci Rep 2021; 11:5041. [PMID: 33658566 PMCID: PMC7930277 DOI: 10.1038/s41598-021-84636-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 02/12/2021] [Indexed: 01/08/2023] Open
Abstract
Biodistribution and role of extracellular vesicles (EVs) are still largely unknown. Reliable tracking methods for EVs are needed. In this study, nuclear imaging using radioiodine were developed and applied for tracking EVs derived from cell lines. EVs were obtained from supernatant of thyroid cancer cell (Cal62) and natural killer cells (NK92-MI) using sequential ultracentrifuges. Sulfosuccinimidyl-3-(4-hydroxypheynyl) propionate were labeled to membrane of Cal62 and NK92-MI cell derived EVs, then the EVs were labeled with radioiodine (I-131 and I-125) using pre-coated iodination tubes (RI-EVs). In vivo gamma camera images were obtained after intravenous injection of the RI-EVs, and ex vivo biodistribution study was also performed. EVs were labeled with radioiodine and radiochemical purity of the RI-EV was more than 98%. Results of nanoparticle tracking analysis and electron microscopy showed that there was no significant difference in EVs before and after the radioiodine labeling. After intravenous injection of RI-EVs to mice, gamma camera imaging well visualized the real-time biodistribution of the RI-EVs. RI-EVs were mainly visualized at liver, spleen, and lung. Nuclear imaging system of EVs derived from thyroid cancer and NK cells using radioiodine labeling of the EVs was established. Thus, this system might be helpful for in vivo tracking of EVs.
Collapse
Affiliation(s)
- Chae Moon Hong
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, 130 Dongdeok-ro, Jung Gu, Daegu, 41944, Republic of Korea
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Prakash Gangadaran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, 130 Dongdeok-ro, Jung Gu, Daegu, 41944, Republic of Korea
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Ji Min Oh
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, 130 Dongdeok-ro, Jung Gu, Daegu, 41944, Republic of Korea
| | - Ramya Lakshmi Rajendran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, 130 Dongdeok-ro, Jung Gu, Daegu, 41944, Republic of Korea
| | - Arunnehru Gopal
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, 130 Dongdeok-ro, Jung Gu, Daegu, 41944, Republic of Korea
| | - Liya Zhu
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, 130 Dongdeok-ro, Jung Gu, Daegu, 41944, Republic of Korea
| | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, 130 Dongdeok-ro, Jung Gu, Daegu, 41944, Republic of Korea.
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea.
| |
Collapse
|
242
|
Kang Y, Niu Z, Hadlock T, Purcell E, Lo T, Zeinali M, Owen S, Keshamouni VG, Reddy R, Ramnath N, Nagrath S. On-Chip Biogenesis of Circulating NK Cell-Derived Exosomes in Non-Small Cell Lung Cancer Exhibits Antitumoral Activity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003747. [PMID: 33747745 PMCID: PMC7967048 DOI: 10.1002/advs.202003747] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/14/2020] [Indexed: 05/19/2023]
Abstract
As the recognition between natural killer (NK) cells and cancer cells does not require antigen presentation, NK cells are being actively studied for use in adoptive cell therapies in the rapidly evolving armamentarium of cancer immunotherapy. In addition to utilizing NK cells, recent studies have shown that exosomes derived from NK cells also exhibit antitumor properties. Furthermore, these NK cell-derived exosomes exhibit higher stability, greater modification potentials and less immunogenicity compared to NK cells. Therefore, technologies that allow highly sensitive and specific isolation of NK cells and NK cell-derived exosomes can enable personalized NK-mediated cancer therapeutics in the future. Here, a novel microfluidic system to collect patient-specific NK cells and on-chip biogenesis of NK-exosomes is proposed. In a small cohort of non-small cell lung cancer (NSCLC) patients, both NK cells and circulating tumor cells (CTCs) were isolated, and it is found NSCLC patients have high numbers of NK and NK-exosomes compared with healthy donors, and these concentrations show a trend of positive and negative correlations with bloodborne CTC numbers, respectively. It is further demonstrated that the NK-exosomes harvested from NK-graphene oxide chip exhibit cytotoxic effect on CTCs. This versatile system is expected to be used for patient-specific NK-based immunotherapies along with CTCs for potential prognostic/diagnostic applications.
Collapse
Affiliation(s)
- Yoon‐Tae Kang
- Department of Chemical EngineeringBiointerfaces InstituteUniversity of MichiganAnn ArborMI48109USA
| | - Zeqi Niu
- Department of Chemical EngineeringBiointerfaces InstituteUniversity of MichiganAnn ArborMI48109USA
| | - Thomas Hadlock
- Department of Chemical EngineeringBiointerfaces InstituteUniversity of MichiganAnn ArborMI48109USA
| | - Emma Purcell
- Department of Chemical EngineeringBiointerfaces InstituteUniversity of MichiganAnn ArborMI48109USA
| | - Ting‐Wen Lo
- Department of Chemical EngineeringBiointerfaces InstituteUniversity of MichiganAnn ArborMI48109USA
| | - Mina Zeinali
- Department of Chemical EngineeringBiointerfaces InstituteUniversity of MichiganAnn ArborMI48109USA
| | - Sarah Owen
- Department of Chemical EngineeringBiointerfaces InstituteUniversity of MichiganAnn ArborMI48109USA
| | | | - Rishindra Reddy
- Michigan Medicine Thoracic Surgery ClinicTaubman Center1500E Medical Center Dr. SPC 5344Ann ArborMI48109USA
| | - Nithya Ramnath
- Department of Internal MedicineUniversity of MichiganAnn ArborMI48109USA
| | - Sunitha Nagrath
- Department of Chemical EngineeringBiointerfaces InstituteUniversity of MichiganAnn ArborMI48109USA
- Rogel Cancer CenterUniversity of Michigan1500 East Medical Center DriveAnn ArborMI48109USA
| |
Collapse
|
243
|
Jiang Y, Jiang H, Wang K, Liu C, Man X, Fu Q. Hypoxia enhances the production and antitumor effect of exosomes derived from natural killer cells. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:473. [PMID: 33850870 PMCID: PMC8039676 DOI: 10.21037/atm-21-347] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Background Exosomes are a subgroup of extracellular vesicles that are naturally released by almost all types of cells. However, the factors that promote the capacity of natural killer (NK) cells to release exosomes are unclear. In this study, we investigated whether hypoxia can enhance the yield of NK cell-derived exosomes and improve the immunotherapeutic effects of these cells. Methods Exosomes from NK92 or NK92-hIL-15 cells were isolated from culture medium under normoxic (NK92-Exo and NK92-hIL-15-Exo) or hypoxic (hypoxic NK92-Exo and hypoxic NK92-hIL-15-Exo) conditions. NK92-Exo and hypoxic NK92-Exo were characterized by transmission electron microscopy (TEM), nanoparticle-tracking analysis (NTA), and western blot. Real-time cell assay, wound healing assay, flow cytometry, and western blot were then performed to assess cytotoxicity, cell proliferation, cell migration, apoptosis, and the expression levels of cytotoxicity-associated proteins. Results After 48 hours of hypoxic treatment, NK92-Exo exhibited significantly increased cytotoxicity, enhanced inhibition of cell proliferation, and elevated levels of molecules associated with NK cell cytotoxicity. The hypoxia-treated NK92-Exo and NK92-hIL-15-Exo showed increased expression of three functional proteins of NK cells-specifically FasL, perforin, and granzyme B-as compared with their NK92-Exo counterparts exposed to normoxia. Conclusions As an approach that supports overproduction of exosomes, hypoxic treatment of NK cells may serve as a promising therapeutic option for cancer immunotherapy.
Collapse
Affiliation(s)
- Yanan Jiang
- School of Pharmacy, Binzhou Medical University, Yantai, China.,Department of Immunology, Binzhou Medical University, Yantai, China
| | - Haiming Jiang
- Intensive Care Unit, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Kun Wang
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Chunling Liu
- Department of Immunology, Binzhou Medical University, Yantai, China
| | - Xuejing Man
- Department of Ophthalmology, Yantai Yuhuangding Hospital, Yantai, China
| | - Qiang Fu
- School of Pharmacy, Binzhou Medical University, Yantai, China.,School of Medicine, University of North Carolina at Chapel Hill, North Carolina, USA.,Shandong Cellogene Pharamaceutics Co. LTD, Yantai, China
| |
Collapse
|
244
|
Pi YN, Xia BR, Jin MZ, Jin WL, Lou G. Exosomes: Powerful weapon for cancer nano-immunoengineering. Biochem Pharmacol 2021; 186:114487. [PMID: 33647264 DOI: 10.1016/j.bcp.2021.114487] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/12/2021] [Accepted: 02/19/2021] [Indexed: 12/15/2022]
Abstract
Cancer immunotherapy (CIT) that targets the tumor immune microenvironment is regarded as a revolutionary advancement in the fight against cancer. The success and failure of CIT are due to the complexity of the immunosuppressive microenvironment. Cancer nanomedicine is a potential adjuvant therapeutic strategy for immune-based combination therapy. Exosomes are natural nanomaterials that play a pivotal role in mediating intercellular communications and package delivery in the tumor microenvironment. They affect the immune response or the effectiveness of immunotherapy. In particular, exosomal PD-L1 promotes cancer progression and resistance to immunotherapy. Exosomes possess high bioavailability, biological stability, targeting specificity, low toxicity, and immune characteristics, which indicate their potential for cancer therapy. They can be engineered to act as effective cancer therapeutic tools that activate anti-tumor immune response and start immune surveillance. In the current review, we introduce the role of exosomes in a tumor immune microenvironment, highlight the application of engineered exosomes to CIT, and discuss the challenges and prospects for clinical application.
Collapse
Affiliation(s)
- Ya-Nan Pi
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin 150086, PR China
| | - Bai-Rong Xia
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui Provincial Cancer Hospital, Hefei, Anhui 230031, PR China
| | - Ming-Zhu Jin
- Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Wei-Lin Jin
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou 730000, PR China.
| | - Ge Lou
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin 150086, PR China.
| |
Collapse
|
245
|
Qambrani A, Rehman FU, Tanziela T, Shaikh S, Semcheddine F, Du T, Liu W, Jiang H, Wang X. Biocompatible exosomes nanodrug cargo for cancer cell bioimaging and drug delivery. Biomed Mater 2021; 16:025026. [PMID: 32726764 DOI: 10.1088/1748-605x/abaaa2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Therapy against cancer remains a daunting issue for human health, despite remarkable innovations in many areas of pathology. In situ biosynthesized nanoclusters bestow a novel remedy for carcinogenic cell imaging. Exosomes have received special attention as an efficient tool for the diagnosis of various diseases, including cancers. All types of cells (healthy or diseased) generate exosomes, making them significantly unique for relevant disease diagnosis and treatment. In this contribution, we exploit the possibility of utilizing the exosomes to facilitate chemotherapeutics, viz. the combination of doxorubicin (Dox) and biosynthesized silver nanoclusters in cancer cells. Our study showed a new facile way for bioimaging of cancer cells using biosynthesized silver-DNA nanoclusters, and thus further targeting cancer cells using the relevant cancer exosomes as drug delivery cargo. After isolating exosomes from neoplastic cells, i.e. HeLa, loaded with the drug, and treating other neoplastic cells with cargo-loaded isolated exosomes, we found that cargo-loaded isolated exosomes can readily enter into the targeted cancer cells and efficiently kill these neoplastic cells. This raises the possibility of acting as a novel facile modality for target cancer theranostics with high efficiency and biocompability.
Collapse
Affiliation(s)
- Aqsa Qambrani
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096 China. Correspondence and requests for materials should be addressed to
| | | | | | | | | | | | | | | | | |
Collapse
|
246
|
Nie W, Wu G, Zhong H, Xie HY. Membrane vesicles nanotheranostic systems: sources, engineering methods, and challenges. Biomed Mater 2021; 16:022009. [PMID: 33307545 DOI: 10.1088/1748-605x/abd2c8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Extracellular vesicles (EVs) are cell secretory native components with long-circulation, good biocompatibility, and physiologic barriers cross ability. EVs derived from different donor cells inherit varying characteristics and functions from their original cells and are favorable to serve as vectors for diagnosing and treating various diseases. However, EVs nanotheranostics are still in their infancy because of their limited accumulation at lesion sites and compromised therapy efficiency. Hence, engineering modification of EVs is usually needed to further enhance their stability, biological activity, and lesion-targeting capacity. Herein, we overview the characteristics of EVs from different sources, as well as the latest developments of surface engineering and cargo loading methods. We also focus especially on advances in EVs-based disease theranostics. At the end of the review, we predict the obstacles and prospects of the future clinical application of EVs.
Collapse
Affiliation(s)
- Weidong Nie
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | | | | | | |
Collapse
|
247
|
Meng W, He C, Hao Y, Wang L, Li L, Zhu G. Prospects and challenges of extracellular vesicle-based drug delivery system: considering cell source. Drug Deliv 2021; 27:585-598. [PMID: 32264719 PMCID: PMC7178886 DOI: 10.1080/10717544.2020.1748758] [Citation(s) in RCA: 356] [Impact Index Per Article: 89.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Extracellular vesicles (EVs), including exosomes, microvesicles, and apoptotic bodies, are nanosized membrane vesicles derived from most cell types. Carrying diverse biomolecules from their parent cells, EVs are important mediators of intercellular communication and thus play significant roles in physiological and pathological processes. Owing to their natural biogenesis process, EVs are generated with high biocompatibility, enhanced stability, and limited immunogenicity, which provide multiple advantages as drug delivery systems (DDSs) over traditional synthetic delivery vehicles. EVs have been reported to be used for the delivery of siRNAs, miRNAs, protein, small molecule drugs, nanoparticles, and CRISPR/Cas9 in the treatment of various diseases. As a natural drug delivery vectors, EVs can penetrate into the tissues and be bioengineered to enhance the targetability. Although EVs' characteristics make them ideal for drug delivery, EV-based drug delivery remains challenging, due to lack of standardized isolation and purification methods, limited drug loading efficiency, and insufficient clinical grade production. In this review, we summarized the current knowledge on the application of EVs as DDS from the perspective of different cell origin and weighted the advantages and bottlenecks of EV-based DDS.
Collapse
Affiliation(s)
- Wanrong Meng
- Department of Stomatology, School of Medicine, Sichuan Cancer Hospital, Sichuan Key Laboratory of Radiation Oncology, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Chanshi He
- Department of Stomatology, School of Medicine, Sichuan Cancer Hospital, Sichuan Key Laboratory of Radiation Oncology, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Yaying Hao
- Department of Stomatology, School of Medicine, Sichuan Cancer Hospital, Sichuan Key Laboratory of Radiation Oncology, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Linlin Wang
- Department of Stomatology, School of Medicine, Sichuan Cancer Hospital, Sichuan Key Laboratory of Radiation Oncology, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Ling Li
- Department of Stomatology, School of Medicine, Sichuan Cancer Hospital, Sichuan Key Laboratory of Radiation Oncology, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Guiquan Zhu
- Department of Stomatology, School of Medicine, Sichuan Cancer Hospital, Sichuan Key Laboratory of Radiation Oncology, University of Electronic Science and Technology of China, Chengdu, PR China
| |
Collapse
|
248
|
Samuel M, Gabrielsson S. Personalized medicine and back-allogeneic exosomes for cancer immunotherapy. J Intern Med 2021; 289:138-146. [PMID: 31359504 DOI: 10.1111/joim.12963] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 04/17/2019] [Accepted: 05/13/2019] [Indexed: 12/12/2022]
Abstract
Extracellular vesicles, especially exosomes, have been explored for cancer immunotherapy. The initial studies made use of autologous B-cell or dendritic cell-derived exosomes, with the idea that MHC-peptide complexes on the exosomal surface would stimulate an MHC-restricted cancer-specific immune response. This was also verified in mouse systems, whilst the effects in human clinical systems were more modest. Several studies have explored the mechanisms for exosomal T-cell activation, and a picture emerges where the antigen-presenting cells, possibly both B cells and dendritic cells of the recipient, are needed to induce a potent T-cell response to exosomes. Therefore, the exosomes function more as an adjuvant-like delivery system of antigens, and we need to further understand the exact components that trigger the most broad and potent immune responses. Here, we describe the grounds for using allogeneic exosomes for cancer therapy, something that would greatly improve the feasibility of new exosome-based immunotherapeutic approaches to cure cancer.
Collapse
Affiliation(s)
- M Samuel
- From the, Division of Immunology and Allergy, Department of Medicine, Karolinska Institutet, Solna, Sweden.,Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - S Gabrielsson
- From the, Division of Immunology and Allergy, Department of Medicine, Karolinska Institutet, Solna, Sweden.,Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
249
|
Batista IA, Quintas ST, Melo SA. The Interplay of Exosomes and NK Cells in Cancer Biology. Cancers (Basel) 2021; 13:cancers13030473. [PMID: 33530529 PMCID: PMC7865893 DOI: 10.3390/cancers13030473] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 12/21/2022] Open
Abstract
Natural killer (NK) cells are innate lymphoid cells involved in tumor surveillance. These immune cells have the potential to fight cancer growth and metastasis, as such, their deregulation can result in tumor immune escape. Recently exosomes were described as mediators of intercellular communication between cancer and NK cells. The exact role of this subclass of extracellular vesicles (EVs), which transport genetic and molecular material to recipient cells, in NK cell biology in the context of cancer, is still an open question. Several reports have demonstrated that tumor-derived exosomes (TDEs) can exert immunomodulatory activities, including immunosuppression, thus promoting cancer progression. Some reports demonstrate that the interplay between cancer exosomes and NK cells allows tumors to escape immune regulation. On the other hand, tumor exosomes were also described to activate NK cells. Additionally, studies show that NK cell exosomes can modulate the immune system, opening up their potential as an immunotherapeutic strategy for cancer treatment. Our review will focus on the reprogramming effect of cancer exosomes on NK cells, and the immunotherapeutic potential of NK cells-derived exosomes.
Collapse
Affiliation(s)
- Inês A. Batista
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (I.A.B.); (S.T.Q.)
- IPATIMUP—Institute of Molecular Pathology and Immunology of University of Porto, 4200-135 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas de Abel Salazar, University of Porto, 4050-313 Porto, Portugal
| | - Sofia T. Quintas
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (I.A.B.); (S.T.Q.)
- IPATIMUP—Institute of Molecular Pathology and Immunology of University of Porto, 4200-135 Porto, Portugal
- FMUP—Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Sónia A. Melo
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (I.A.B.); (S.T.Q.)
- IPATIMUP—Institute of Molecular Pathology and Immunology of University of Porto, 4200-135 Porto, Portugal
- FMUP—Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Correspondence:
| |
Collapse
|
250
|
Carreira B, Acúrcio RC, Matos AI, Peres C, Pozzi S, Vaskovich‐Koubi D, Kleiner R, Bento M, Satchi‐Fainaro R, Florindo HF. Nanomedicines as Multifunctional Modulators of Melanoma Immune Microenvironment. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202000147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Barbara Carreira
- Research Institute for Medicines (iMed.ULisboa) Faculty of Pharmacy, University of Lisbon Av. Prof. Gama Pinto Lisboa 1649‐003 Portugal
| | - Rita C. Acúrcio
- Research Institute for Medicines (iMed.ULisboa) Faculty of Pharmacy, University of Lisbon Av. Prof. Gama Pinto Lisboa 1649‐003 Portugal
| | - Ana I. Matos
- Research Institute for Medicines (iMed.ULisboa) Faculty of Pharmacy, University of Lisbon Av. Prof. Gama Pinto Lisboa 1649‐003 Portugal
| | - Carina Peres
- Research Institute for Medicines (iMed.ULisboa) Faculty of Pharmacy, University of Lisbon Av. Prof. Gama Pinto Lisboa 1649‐003 Portugal
| | - Sabina Pozzi
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine Tel Aviv University Tel Aviv 6997801 Israel
| | - Daniella Vaskovich‐Koubi
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine Tel Aviv University Tel Aviv 6997801 Israel
| | - Ron Kleiner
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine Tel Aviv University Tel Aviv 6997801 Israel
| | - Mariana Bento
- Research Institute for Medicines (iMed.ULisboa) Faculty of Pharmacy, University of Lisbon Av. Prof. Gama Pinto Lisboa 1649‐003 Portugal
| | - Ronit Satchi‐Fainaro
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine Tel Aviv University Tel Aviv 6997801 Israel
| | - Helena F. Florindo
- Research Institute for Medicines (iMed.ULisboa) Faculty of Pharmacy, University of Lisbon Av. Prof. Gama Pinto Lisboa 1649‐003 Portugal
| |
Collapse
|