2551
|
Kikkert M, Doolman R, Dai M, Avner R, Hassink G, van Voorden S, Thanedar S, Roitelman J, Chau V, Wiertz E. Human HRD1 Is an E3 Ubiquitin Ligase Involved in Degradation of Proteins from the Endoplasmic Reticulum. J Biol Chem 2004; 279:3525-34. [PMID: 14593114 DOI: 10.1074/jbc.m307453200] [Citation(s) in RCA: 304] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The ubiquitin system plays an important role in endoplasmic reticulum (ER)-associated degradation of proteins that are misfolded, that fail to associate with their oligomerization partners, or whose levels are metabolically regulated. E3 ubiquitin ligases are key enzymes in the ubiquitination process as they recognize the substrate and facilitate coupling of multiple ubiquitin units to the protein that is to be degraded. The Saccharomyces cerevisiae ER-resident E3 ligase Hrd1p/Der3p functions in the metabolically regulated degradation of 3-hydroxy-3-methylglutaryl-coenzyme A reductase and additionally facilitates the degradation of a number of misfolded proteins from the ER. In this study we characterized the structure and function of the putative human orthologue of yeast Hrd1p/Der3p, designated human HRD1. We show that human HRD1 is a non-glycosylated, stable ER protein with a cytosolic RING-H2 finger domain. In the presence of the ubiquitin-conjugating enzyme UBC7, the RING-H2 finger has in vitro ubiquitination activity for Lys(48)-specific polyubiquitin linkage, suggesting that human HRD1 is an E3 ubiquitin ligase involved in protein degradation. Human HRD1 appears to be involved in the basal degradation of 3-hydroxy-3-methylglutaryl-coenzyme A reductase but not in the degradation that is regulated by sterols. Additionally we show that human HRD1 is involved in the elimination of two model ER-associated degradation substrates, TCR-alpha and CD3-delta.
Collapse
Affiliation(s)
- Marjolein Kikkert
- Department of Medical Microbiology, Leiden University Medical Center, P. O. Box 9600, 2300 RC Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
2552
|
Abstract
The proteasome is a multicatalytic protein complex whose principal task is the degradation of a large array of proteins within the cell. Its substrates include proteins involved in cell cycle regulation, tumor suppression, apoptosis, transcription, and angiogenesis, among others. This makes the inhibition of the proteasome a promising novel therapeutic approach to cancer treatment. Bortezomib (Velcade) is the first proteasome inhibitor to have shown anti-cancer activity and reached clinical trials. Preclinical and early clinical trials in both solid tumors and hematological malignancies demonstrate that bortezomib is a relatively well-tolerated and active agent, either alone or in combination with traditional chemotherapeutic drugs. Clinical trials that may help delineate the role of bortezomib in the treatment solid tumors either as single agent or in combination are ongoing.
Collapse
Affiliation(s)
- David J Park
- Division of Medical Oncology, University of Southern California/Norris Comprehensive Cancer Center, Los Angeles, USA
| | | |
Collapse
|
2553
|
Abstract
Regulating protein stability and turnover is a key task in the cell. Besides lysosomes, ubiquitin-mediated proteasomal degradation comprises the major proteolytic pathway in eukaryotes. Proteins destined for degradation by the proteasome are conjugated by a 'tag', a ubiquitin chain to a lysine, through an extensively regulated enzymatic cascade. The ubiquitylated proteins are subsequently targeted for degradation by the 26S proteasome, the major proteolytic machinery for ubiquitylated proteins in the cell. Ubiquitylation can be considered as another covalent post-translational modification and signal, comparable to acetylation, glycosylation, methylation, and phosphorylation. However, ubiquitylation has multiple roles in addition to targeting proteins for degradation. Depending on the number of ubiquitin moieties and the linkages made, ubiquitin also plays an important role in DNA repair, protein sorting and virus budding. Unregulated degradation of proteins, or abnormally stable proteins, interfere with several regulatory pathways, and the ubiquitin-proteasome pathway is affected in a number of diseases, such as neurodegenerative diseases, cellular atrophies and malignancies. Therefore, dissecting the ubiquitin-proteasome pathway and identifying proteins involved in conjunction with the signals required for specific degradation of certain substrates, would help in developing novel therapeutic approaches to treat diseases where the ubiquitin-proteasome pathway is impaired.
Collapse
Affiliation(s)
- Pia Roos-Mattjus
- Department of Biology, Abo Akademi University, Turku Centre for Biotechnology, Abo Akademi University & University of Turku, Turku, Finland
| | | |
Collapse
|
2554
|
Archibald JM, Keeling PJ. Actin and Ubiquitin Protein Sequences Support a Cercozoan/Foraminiferan Ancestry for the Plasmodiophorid Plant Pathogens. J Eukaryot Microbiol 2004; 51:113-8. [PMID: 15068273 DOI: 10.1111/j.1550-7408.2004.tb00172.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The plasmodiophorids are a group of eukaryotic intracellular parasites that cause disease in a variety of economically significant crops. Plasmodiophorids have traditionally been considered fungi but have more recently been suggested to be members of the Cercozoa, a morphologically diverse group of amoeboid, flagellate, and amoeboflagellate protists. The recognition that Cercozoa constitute a monophyletic lineage has come from phylogenetic analyses of small subunit ribosomal RNA genes. Protein sequence data have suggested that the closest relatives of Cercozoa are the Foraminifera. To further test a cercozoan origin for the plasmodiophorids, we isolated actin genes from Plasmodiophora brassicae, Sorosphaera veronicae, and Spongospora subterranea, and polyubiquitin gene fragments from P. brassicae and S. subterranea. We also isolated actin genes from the chlorarachniophyte Lotharella globosa. In protein phylogenies of actin, the plasmodiophorid sequences consistently branch with Cercozoa and Foraminifera, and weakly branch as the sister group to the foraminiferans. The plasmodiophorid polyubiquitin sequences contain a single amino acid residue insertion at the functionally important processing point between ubiquitin monomers, the same place in which an otherwise unique insertion exists in the cercozoan and foraminiferan proteins. Taken together, these results indicate that plasmodiophorids are indeed related to Cercozoa and Foraminifera, although the relationships amongst these groups remain unresolved.
Collapse
Affiliation(s)
- John M Archibald
- Canadian Institute for Advanced Research, Program in Evolutionary Biology, Department of Botany, University of British Columbia, 3529-6270 University Blvd., Vancouver, British Columbia V6T 1Z4, Canada
| | | |
Collapse
|
2555
|
Abstract
Much of plant physiology, growth, and development is controlled by the selective removal of short-lived regulatory proteins. One important proteolytic pathway involves the small protein ubiquitin (Ub) and the 26S proteasome, a 2-MDa protease complex. In this pathway, Ub is attached to proteins destined for degradation; the resulting Ub-protein conjugates are then recognized and catabolized by the 26S proteasome. This review describes our current understanding of the pathway in plants at the biochemical, genomic, and genetic levels, using Arabidopsis thaliana as the model. Collectively, these analyses show that the Ub/26S proteasome pathway is one of the most elaborate regulatory mechanisms in plants. The genome of Arabidopsis encodes more than 1400 (or >5% of the proteome) pathway components that can be connected to almost all aspects of its biology. Most pathway components participate in the Ub-ligation reactions that choose with exquisite specificity which proteins should be ubiquitinated. What remains to be determined is the identity of the targets, which may number in the thousands in plants.
Collapse
Affiliation(s)
- Jan Smalle
- Department of Genetics, 445 Henry Mall, University of Wisconsin-Madison, Madison, Wisconsin 53706-1574, USA
| | | |
Collapse
|
2556
|
Abstract
Two papers published in 1984 by the Varshavsky laboratory revealed that the ubiquitin/proteasome pathway is the principal system for degradation of short-lived proteins in mammalian cells, setting the stage for future demonstrations of this pathway's many regulatory roles. This perspective discusses the impact of those papers and highlights some of the subsequent insights that have led to our current appreciation of the breadth of ubiquitin-mediated signaling.
Collapse
Affiliation(s)
- Cecile M Pickart
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
2557
|
Wirth KG, Ricci R, Giménez-Abián JF, Taghybeeglu S, Kudo NR, Jochum W, Vasseur-Cognet M, Nasmyth K. Loss of the anaphase-promoting complex in quiescent cells causes unscheduled hepatocyte proliferation. Genes Dev 2004; 18:88-98. [PMID: 14724179 PMCID: PMC314282 DOI: 10.1101/gad.285404] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2003] [Accepted: 11/10/2003] [Indexed: 12/24/2022]
Abstract
The anaphase-promoting complex or cyclosome (APC/C) is an ubiquitin protein ligase that together with Cdc20 and Cdh1 targets mitotic proteins for degradation by the proteosome. APC-Cdc20 activity during mitosis triggers anaphase by destroying securin and cyclins. APC-Cdh1 promotes degradation of cyclins and other proteins during G(1). We show that loss of APC/C during embryogenesis is early lethal before embryonic day E6.5 (E6.5). To investigate the role of APC/C in quiescent cells, we conditionally inactivated the subunit Apc2 in mice. Deletion of Apc2 in quiescent hepatocytes caused re-entry into the cell cycle and arrest in metaphase, resulting in liver failure. Re-entry into the cell cycle either occurred without any proliferative stimulus or could be easily induced. We demonstrate that the APC has an additional function to prevent hepatocytes from unscheduled re-entry into the cell cycle.
Collapse
Affiliation(s)
- Karin G Wirth
- Research Institute of Molecular Pathology (IMP), A-1030 Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
2558
|
Pastushok L, Xiao W. DNA Postreplication Repair Modulated by Ubiquitination and Sumoylation. ADVANCES IN PROTEIN CHEMISTRY 2004; 69:279-306. [PMID: 15588847 DOI: 10.1016/s0065-3233(04)69010-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Landon Pastushok
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, Canada
| | | |
Collapse
|
2559
|
Mori T, Li Y, Hata H, Kochi H. NIRF is a ubiquitin ligase that is capable of ubiquitinating PCNP, a PEST-containing nuclear protein. FEBS Lett 2003; 557:209-14. [PMID: 14741369 DOI: 10.1016/s0014-5793(03)01495-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We previously reported the association of a novel Np95/ICBP90-like RING finger protein (NIRF) with a novel PEST-containing nuclear protein (PCNP). NIRF is a nuclear protein with a ubiquitin-like domain, a PHD finger, a YDG/SRA domain, Rb-binding motifs and a RING finger. In this study, we showed that NIRF has auto-ubiquitination activity, the hallmark of a ubiquitin ligase. PCNP was readily ubiquitinated in 293 and COS-7 cells, and NIRF ubiquitinated PCNP in vitro as well as in vivo. Considering that NIRF is implicated in cell cycle regulation, these findings suggest that NIRF and PCNP are a ubiquitin ligase and its substrate, respectively, and may constitute a novel signaling pathway with some relation to cell proliferation.
Collapse
Affiliation(s)
- Tsutomu Mori
- Department of Biochemistry, Fukushima Medical University, School of Medicine, 1 Hikarigaoka, Fukushima, Fukushima 960-1295, Japan
| | | | | | | |
Collapse
|
2560
|
Abstract
The proto-oncoprotein Hdm2 is a member of the RING finger-type family of ubiquitin-protein ligases E3. The RING finger domain is assumed to mediate the specific interaction of an E3 with its cognate ubiquitin-conjugating enzyme E2, which catalyzes the covalent attachment of ubiquitin to substrate proteins. In addition, the RING finger domain of Hdm2 is involved in Hdm2 homooligomer formation and has the capacity to bind to RNA in a sequence-specific manner. Here we report that interaction with nucleic acids interferes with both Hdm2/Hdm2 complex formation and auto-ubiquitination of Hdm2 in vitro. Furthermore, although binding of Hdm2 to the tumor suppressor p53 is not inhibited by nucleic acids, Hdm2-mediated ubiquitination of p53 is significantly decreased. Taken together, these results provide the first example of an E3 whose activity can be regulated by direct interaction with nucleic acids.
Collapse
Affiliation(s)
- Laëtitia K Linares
- Center for Biochemistry, Faculty of Medicine, and Center for Molecular Medicine, University of Cologne, Joseph-Stelzmann-Str. 52, 50931 Köln, Germany
| | | |
Collapse
|
2561
|
Angers A, Ramjaun AR, McPherson PS. The HECT domain ligase itch ubiquitinates endophilin and localizes to the trans-Golgi network and endosomal system. J Biol Chem 2003; 279:11471-9. [PMID: 14684745 DOI: 10.1074/jbc.m309934200] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Endophilin A1 is an SH3 domain-containing protein functioning in membrane trafficking on the endocytic pathway. We have identified the E3 ubiquitin ligase itch/AIP4 as an endophilin A1-binding partner. Itch belongs to the Nedd4/Rsp5p family of proteins and contains an N-terminal C2 domain, four WW domains and a catalytic HECT domain. Unlike other Nedd4/Rsp5p family members, itch possesses a short proline-rich domain that mediates its binding to the SH3 domain of endophilin A1. Itch ubiquitinates endophilin A1 and the SH3/proline-rich domain interaction facilitates this activity. Interestingly, itch co-localizes with markers of the endosomal system in a C2 domain-dependent manner and upon EGF stimulation, endophilin A1 translocates to an EGF-positive endosomal compartment where it colocalizes with itch. Moreover, EGF treatment of cells stimulates endophilin A1 ubiquitination. We have thus identified endophilin A1 as a substrate for the endosome-localized ubiquitin ligase itch. This interaction may be involved in ubiquitin-mediated sorting mechanisms operating at the level of endosomes.
Collapse
Affiliation(s)
- Annie Angers
- Department of Neurology and Neurosurgery, Montréal Neurological Institute, McGill University, 3801 University St., Montréal, Quebec H3A 2B4, Canada.
| | | | | |
Collapse
|
2562
|
Zhang Y. Transcriptional regulation by histone ubiquitination and deubiquitination. Genes Dev 2003; 17:2733-40. [PMID: 14630937 DOI: 10.1101/gad.1156403] [Citation(s) in RCA: 284] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Yi Zhang
- Department of Biochemistry and Biophysics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, North Carolina 27599, USA.
| |
Collapse
|
2563
|
Nie L, Xu M, Vladimirova A, Sun XH. Notch-induced E2A ubiquitination and degradation are controlled by MAP kinase activities. EMBO J 2003; 22:5780-92. [PMID: 14592976 PMCID: PMC275424 DOI: 10.1093/emboj/cdg567] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Notch signals are important for lymphocyte development but downstream events that follow Notch signaling are not well understood. Here, we report that signaling through Notch modulates the turnover of E2A proteins including E12 and E47, which are basic helix-loop-helix proteins crucial for B and T lymphocyte development. Notch-induced degradation requires phosphorylation of E47 by p42/p44 MAP kinases. Expression of the intracellular domain of Notch1 (N1-IC) enhances the association of E47 with the SCF(Skp2) E3 ubiquitin ligase and ubiquitination of E47, followed by proteasome-mediated degradation. Furthermore, N1-IC induces E2A degradation in B and T cells in the presence of activated MAP kinases. Activation of endogenous Notch receptors by treatment of splenocytes with anti-IgM or anti-CD3 plus anti-CD28 also leads to E2A degradation, which is blocked by the inhibitors of Notch activation or proteasome function. Notch-induced E2A degradation depends on the function of its downstream effector, RBP-Jkappa, probably to activate target genes involved in the ubiquitination of E2A proteins. Thus we propose that Notch regulates lymphocyte differentiation by controlling E2A protein turnover.
Collapse
Affiliation(s)
- Lei Nie
- Immunobiology and Cancer Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK 73104, USA
| | | | | | | |
Collapse
|
2564
|
Abstract
Exogenously and endogenously originated signals are propagated within the cell by functional and physical networks of proteins, leading to numerous biological outcomes. Many protein-protein interactions take place between binding domains and short peptide motifs. Frequently, these interactions are inducible by upstream signaling events, in which case one of the two binding surfaces may be created by a posttranslational modification. Here, we discuss two protein networks. One, the EH-network, is based on the Eps15 homology (EH) domain, which binds to peptides containing the sequence Asp-Pro-Phe (NPF). The other, which we define as the monoubiquitin (mUb) network, relies on monoubiquitination, which is emerging as an important posttranslational modification that regulates protein function. Both networks were initially implicated in the control of plasma membrane receptor endocytosis and in the regulation of intracellular trafficking routes. The ramifications of these two networks, however, appear to extend into many other aspects of cell physiology as well, such as transcriptional regulation, actin cytoskeleton remodeling, and DNA repair. The focus of this review is to integrate available knowledge of the EH- and mUb networks with predictions of genetic and physical interactions stemming from functional genomics approaches.
Collapse
Affiliation(s)
- Simona Polo
- Istituto FIRC di Oncologia Molecolare, Via Adamello 16, 20139 Milan, Italy
| | | | | | | |
Collapse
|
2565
|
Kus BM, Caldon CE, Andorn-Broza R, Edwards AM. Functional interaction of 13 yeast SCF complexes with a set of yeast E2 enzymes in vitro. Proteins 2003; 54:455-67. [PMID: 14747994 DOI: 10.1002/prot.10620] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
SCF complexes are multi-subunit ubiquitin ligases that, in concert with the E1 and E2 ubiquitination enzymes, catalyze the ubiquination of specific target proteins. Only three yeast SCFs have been reconstituted and characterized to date; each of these ubiquitinates its target protein with the E2 Cdc34. We have reconstituted and purified 1 known and 12 novel yeast SCF complexes, and explored the ability of these complexes to function with 5 different purified E2 enzymes; Ubc1, Cdc34, Ubc4, Ubc8 and Ubc11. We have found that the ubiquitination of Sic1 by the reconstituted SCF(Cdc4) complex was specifically catalyzed by two of the five E2 enzymes tested in vitro; Cdc34 and Ubc4. We also show that at least eight of the purified SCF complexes clearly ubiquitinated their F-box proteins in vitro, lending support for a regulatory mechanism in which F-box proteins catalyze their own destruction. The autoubiquitination of each F-box was in some cases catalyzed only by Cdc34, and in other cases preferentially catalyzed by Ubc4. Ubc4 thus interacts with multiple SCFs in vitro, and the interactions among SCF and E2 components of the ubiquitination machinery may allow further diversification of the roles of SCFs in vivo.
Collapse
Affiliation(s)
- Bart M Kus
- Banting and Best Department of Medical Research, University of Toronto, Ontario
| | | | | | | |
Collapse
|
2566
|
Li M, Brooks CL, Wu-Baer F, Chen D, Baer R, Gu W. Mono- Versus Polyubiquitination: Differential Control of p53 Fate by Mdm2. Science 2003; 302:1972-5. [PMID: 14671306 DOI: 10.1126/science.1091362] [Citation(s) in RCA: 592] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Although Mdm2-mediated ubiquitination is essential for both degradation and nuclear export of p53, the molecular basis for the differential effects of Mdm2 remains unknown. Here we show that low levels of Mdm2 activity induce monoubiquitination and nuclear export of p53, whereas high levels promote p53's polyubiquitination and nuclear degradation. A p53-ubiquitin fusion protein that mimics monoubiquitinated p53 was found to accumulate in the cytoplasm in an Mdm2-independent manner, indicating that monoubiquitination is critical for p53 trafficking. These results clarify the nature of ubiquitination-mediated p53 regulation and suggest that distinct mechanisms regulate p53 function in accordance with the levels of Mdm2 activity.
Collapse
Affiliation(s)
- Muyang Li
- Institute for Cancer Genetics and Department of Pathology, College of Physicians & Surgeons, Columbia University, 1150 St. Nicholas Avenue, New York, NY 10032, USA
| | | | | | | | | | | |
Collapse
|
2567
|
Jones JM, Gellert M. Autoubiquitylation of the V(D)J recombinase protein RAG1. Proc Natl Acad Sci U S A 2003; 100:15446-51. [PMID: 14671314 PMCID: PMC307587 DOI: 10.1073/pnas.2637012100] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
V(D)J recombination, the rearrangement of gene segments to assemble Ig and T cell receptor coding regions, is vital to B and T lymphocyte development. Here, we demonstrate that the V(D)J recombinase protein RAG1 undergoes ubiquitylation in cells. In vitro, the RING finger domain of RAG1 acts as a ubiquitin ligase that mediates its own ubiquitylation at a highly conserved K residue in the RAG1 amino-terminal region. Ubiquitylation is best supported by a specific ubiquitin-conjugating enzyme, UbcH3/CDC34, and requires an intact RAG1 RING finger motif. Disruption of the RING finger and certain RAG1 N-terminal truncations are associated with immunodeficiency in human patients, suggesting that RAG1's ubiquitin ligase is required for its biological role in lymphocyte development.
Collapse
Affiliation(s)
- Jessica M Jones
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Building 5/Room 241, Bethesda, MD 20892, USA
| | | |
Collapse
|
2568
|
Koizumi S, Yamada H. DNA Microarray Analysis of Altered Gene Expression in Cadmium‐exposed Human Cells. J Occup Health 2003; 45:331-4. [PMID: 14676411 DOI: 10.1539/joh.45.331] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Cadmium (Cd) is a heavy metal known to be toxic and carcinogenic, but its mechanism of action remains to be elucidated. Development of the DNA microarray technology has recently made the comprehensive analysis of gene expression possible, and it could be a powerful tool also in toxicological studies. With microarray slides containing 7,000-9,000 genes, we have been studying the gene expression profiles of a human cell line exposed to Cd. By exposure to a non-lethal concentration of Cd, 46 upregulated and 10 downregulated genes whose expression levels changed twofold or greater were observed. The expression of genes related to cellular protection and damage control mechanisms such as those encoding metallothioneins, anti-oxidant proteins and heat shock proteins was simultaneously induced. In addition, altered expression of many genes involved in signaling, metabolism and so on was newly observed. As a whole, a number of genes appear to be coordinately regulated toward survival from Cd toxicity. When cells were exposed to a higher concentration of Cd, more remarkable effects were observed both in the number of affected genes and in the extent of altered expression. These findings will contribute to the understanding of the complicated biological effects of Cd.
Collapse
Affiliation(s)
- Shinji Koizumi
- Department of Hazard Assessment, National Institute of Industrial Health, Kawasaki, Japan
| | | |
Collapse
|
2569
|
Abstract
The inhibitor of apoptosis (IAP) genes constitute a highly conserved family found in organisms as diverse as insects and mammals. These genes encode proteins that directly bind and inhibit caspases, and thus play a critical role in deciding cell fate. The IAPs are in turn regulated by endogenous proteins (second mitochondrial activator of caspases and Omi) that are released from the mitochondria during apoptosis. Overexpression of the IAPs, particularly the X-chromosome-linked IAP, has been shown to be protective in a variety of experimental animal models of human neurodegenerative diseases. Furthermore, overexpression of one or more of the IAPs in cancer cell lines and primary tumor samples appears to be a frequent event. IAP gene amplification and translocation events provide genetic evidence that further strengthens the case for classifying the IAPs as oncogenes. Therapeutic strategies that interfere with IAP expression or function are under investigation as an adjuvant to conventional chemotherapy- and radiation-based cancer therapy. This paper reviews the structure and function of the IAP family members and their inhibitors, and surveys the available evidence for IAP dysregulation in cancer.
Collapse
Affiliation(s)
- Peter Liston
- Children's Hospital of Eastern Ontario, Research Institute, 401 Smyth Raod, Ottawa, Canada K1H 8L1
| | | | | |
Collapse
|
2570
|
Zhang DD, Hannink M. Distinct cysteine residues in Keap1 are required for Keap1-dependent ubiquitination of Nrf2 and for stabilization of Nrf2 by chemopreventive agents and oxidative stress. Mol Cell Biol 2003; 23:8137-51. [PMID: 14585973 PMCID: PMC262403 DOI: 10.1128/mcb.23.22.8137-8151.2003] [Citation(s) in RCA: 1176] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A common feature of diverse chemopreventive agents is the ability to activate expression of a genetic program that protects cells from reactive chemical species that, if left unchecked, would cause mutagenic DNA damage. The bZIP transcription factor Nrf2 has emerged as a key regulator of this cancer-preventive genetic program. Nrf2 is normally sequestered in the cytoplasm by a protein known as Keap1. Chemopreventive agents allow Nrf2 to escape from Keap1-mediated repression, although the molecular mechanism(s) responsible for activation of Nrf2 is not understood. In this report, we demonstrate that Keap1 does not passively sequester Nrf2 in the cytoplasm but actively targets Nrf2 for ubiquitination and degradation by the proteosome under basal culture conditions. We have identified two critical cysteine residues in Keap1, C273 and C288, that are required for Keap1-dependent ubiquitination of Nrf2. Both sulforaphane, a chemopreventive isothiocyanate, and oxidative stress enable Nrf2 to escape Keap1-dependent degradation, leading to stabilization of Nrf2, increased nuclear localization of Nrf2, and activation of Nrf2-dependent cancer-protective genes. We have identified a third cysteine residue in Keap1, C151, that is uniquely required for inhibition of Keap1-dependent degradation of Nrf2 by sulforaphane and oxidative stress. This cysteine residue is also required for a novel posttranslational modification to Keap1 that is induced by oxidative stress. We propose that Keap1 is a component of a novel E3 ubiquitin ligase complex that is specifically targeted for inhibition by both chemopreventive agents and oxidative stress.
Collapse
Affiliation(s)
- Donna D Zhang
- Department of Biochemistry, University of Missouri-Columbia, Columbia, MO 65212, USA
| | | |
Collapse
|
2571
|
Abstract
Sorting of transmembrane proteins to endosomes and lysosomes is mediated by signals present within the cytosolic domains of the proteins. Most signals consist of short, linear sequences of amino acid residues. Some signals are referred to as tyrosine-based sorting signals and conform to the NPXY or YXXO consensus motifs. Other signals known as dileucine-based signals fit [DE]XXXL[LI] or DXXLL consensus motifs. All of these signals are recognized by components of protein coats peripherally associated with the cytosolic face of membranes. YXXO and [DE]XXXL[LI] signals are recognized with characteristic fine specificity by the adaptor protein (AP) complexes AP-1, AP-2, AP-3, and AP-4, whereas DXXLL signals are recognized by another family of adaptors known as GGAs. Several proteins, including clathrin, AP-2, and Dab2, have been proposed to function as recognition proteins for NPXY signals. YXXO and DXXLL signals bind in an extended conformation to the mu2 subunit of AP-2 and the VHS domain of the GGAs, respectively. Phosphorylation events regulate signal recognition. In addition to peptide motifs, ubiquitination of cytosolic lysine residues also serves as a signal for sorting at various stages of the endosomal-lysosomal system. Conjugated ubiquitin is recognized by UIM, UBA, or UBC domains present within many components of the internalization and lysosomal targeting machinery. This complex array of signals and recognition proteins ensures the dynamic but accurate distribution of transmembrane proteins to different compartments of the endosomal-lysosomal system.
Collapse
Affiliation(s)
- Juan S Bonifacino
- Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
2572
|
Kwon YT, Xia Z, An JY, Tasaki T, Davydov IV, Seo JW, Sheng J, Xie Y, Varshavsky A. Female lethality and apoptosis of spermatocytes in mice lacking the UBR2 ubiquitin ligase of the N-end rule pathway. Mol Cell Biol 2003; 23:8255-71. [PMID: 14585983 PMCID: PMC262401 DOI: 10.1128/mcb.23.22.8255-8271.2003] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Substrates of the ubiquitin-dependent N-end rule pathway include proteins with destabilizing N-terminal residues. UBR1(-/-) mice, which lacked the pathway's ubiquitin ligase E3alpha, were viable and retained the N-end rule pathway. The present work describes the identification and analysis of mouse UBR2, a homolog of UBR1. We demonstrate that the substrate-binding properties of UBR2 are highly similar to those of UBR1, identifying UBR2 as the second E3 of the mammalian N-end rule pathway. UBR2(-/-) mouse strains were constructed, and their viability was found to be dependent on both gender and genetic background. In the strain 129 (inbred) background, the UBR2(-/-) genotype was lethal to most embryos of either gender. In the 129/B6 (mixed) background, most UBR2(-/-) females died as embryos, whereas UBR2(-/-) males were viable but infertile, owing to the postnatal degeneration of the testes. The gross architecture of UBR2(-/-) testes was normal and spermatogonia were intact as well, but UBR2(-/-) spermatocytes were arrested between leptotene/zygotene and pachytene and died through apoptosis. A conspicuous defect of UBR2(-/-) spermatocytes was the absence of intact synaptonemal complexes. We conclude that the UBR2 ubiquitin ligase and, hence, the N-end rule pathway are required for male meiosis and spermatogenesis and for an essential aspect of female embryonic development.
Collapse
Affiliation(s)
- Yong Tae Kwon
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, 3501 Terrace Street, Pittsburgh, PA 15261, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
2573
|
Soares L, Seroogy C, Skrenta H, Anandasabapathy N, Lovelace P, Chung CD, Engleman E, Fathman CG. Two isoforms of otubain 1 regulate T cell anergy via GRAIL. Nat Immunol 2003; 5:45-54. [PMID: 14661020 DOI: 10.1038/ni1017] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2003] [Accepted: 10/28/2003] [Indexed: 11/08/2022]
Abstract
The active ubiquitin E3 ligase GRAIL is crucial in the induction of CD4 T cell anergy. Here we show that GRAIL is associated with and regulated by two isoforms of the ubiquitin-specific protease otubain 1. In lethally irradiated mice reconstituted with bone marrow cells from T cell receptor-transgenic mice retrovirally transduced to express the genes encoding these proteases, otubain 1-expressing cells contained negligible amounts of endogenous GRAIL, proliferated well and produced large amounts of interleukin 2 after antigenic stimulation. In contrast, cells expressing the alternatively spliced isoform, otubain 1 alternative reading frame 1, contained large amounts of endogenous GRAIL and were functionally anergic, and they proliferated poorly and produced undetectable interleukin 2 when stimulated in a similar way. Thus, these two proteins have opposing epistatic functions in controlling the stability of GRAIL expression and the resultant anergy phenotype in T cells.
Collapse
Affiliation(s)
- Luis Soares
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | | | | | | | | | | | |
Collapse
|
2574
|
Wójcik C, Yano M, DeMartino GN. RNA interference of valosin-containing protein (VCP/p97) reveals multiple cellular roles linked to ubiquitin/proteasome-dependent proteolysis. J Cell Sci 2003; 117:281-92. [PMID: 14657277 DOI: 10.1242/jcs.00841] [Citation(s) in RCA: 196] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
We have used RNA interference (RNAi) to examine the functional relationship between valosin-containing protein (VCP/p97/Cdc48p/TER94) ATPase and the ubiquitin-proteasome system (UPS) in Drosophila S2 and human HeLa cells. In both cell types, RNAi of VCP (and, to a lesser extent, of certain VCP-interacting proteins) caused significant accumulation of high-molecular-weight conjugates of ubiquitin, an indication of inhibited UPS function. However, decreased VCP levels did not directly inhibit proteasome activity. In HeLa cells, polyubiquitinated proteins accumulated as dispersed aggregates rather than as single aggresomes, even in the presence of proteasome inhibitors, which normally promote aggresome formation. RNAi of VCP caused extensive vacuolization of the cytoplasm, and proteasome inhibitors exaggerated this feature. RNAi of VCP had little effect on S2 cell proliferation but blocked cell-cycle progression and induced mitotic abnormalities and apoptosis in HeLa cells. These results indicate that VCP plays an important general role in mediating the function of the UPS, probably by interacting with potential proteasome substrates before they are degraded by the proteasome.
Collapse
Affiliation(s)
- Cezary Wójcik
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9040, USA
| | | | | |
Collapse
|
2575
|
Chen H, Polo S, Di Fiore PP, De Camilli PV. Rapid Ca2+-dependent decrease of protein ubiquitination at synapses. Proc Natl Acad Sci U S A 2003; 100:14908-13. [PMID: 14657369 PMCID: PMC299851 DOI: 10.1073/pnas.2136625100] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Protein ubiquitination has been implicated in the regulation of axonal growth and synaptic plasticity as well as in the pathogenesis of neurodegenerative diseases. Here we show that depolarization-dependent Ca2+ influx into synaptosomes produces a global, rapid (range of seconds), and reversible decrease of the ubiquitinated state of proteins, which correlates with the Ca2+-dependent dephosphorylation of several synaptic proteins. A similar general decrease in protein ubiquitination was observed in nonneuronal cells on Ca2+ entry induced by ionomycin. Both in synaptosomes and in nonneuronal cells, this decrease was blocked by FK506 (a calcineurin antagonist). Proteins whose ubiquitinated state was decreased include epsin 1, a substrate for the deubiquitinating enzyme fat facets/FAM, which we show here to be concentrated at synapses. These results reveal a fast regulated turnover of protein ubiquitination. In nerve terminals, protein ubiquitination may play a role both in the regulation of synaptic function, including vesicle traffic, and in the coordination of protein turnover with synaptic use.
Collapse
Affiliation(s)
- Hong Chen
- Howard Hughes Medical Institute and Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | | | | |
Collapse
|
2576
|
Saijo Y, Sullivan JA, Wang H, Yang J, Shen Y, Rubio V, Ma L, Hoecker U, Deng XW. The COP1-SPA1 interaction defines a critical step in phytochrome A-mediated regulation of HY5 activity. Genes Dev 2003; 17:2642-7. [PMID: 14597662 PMCID: PMC280614 DOI: 10.1101/gad.1122903] [Citation(s) in RCA: 352] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Arabidopsis COP1 is a constitutive repressor of photomorphogenesis that interacts with photomorphogenesis-promoting factors such as HY5 to promote their proteasome-mediated degradation. SPA1 is a repressor of phytochrome A-mediated responses to far-red light. Here we report that COP1 acts as part of a large protein complex and interacts with SPA1 in a light-dependent manner. We further demonstrate the E3 ubiquitin ligase activity of COP1 on HY5 in vitro and the alteration of that activity by SPA1. Thus, the COP1-SPA1 interaction defines a critical step in coordinating COP1-mediated ubiquitination and subsequent degradation of HY5 with PHYA signaling.
Collapse
Affiliation(s)
- Yusuke Saijo
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
2577
|
Yun J, Lee WH. Degradation of transcription repressor ZBRK1 through the ubiquitin-proteasome pathway relieves repression of Gadd45a upon DNA damage. Mol Cell Biol 2003; 23:7305-14. [PMID: 14517299 PMCID: PMC230312 DOI: 10.1128/mcb.23.20.7305-7314.2003] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Induction of gene expression in response to DNA damage is important for repairing damaged DNA for cell survival. Previously, we identified a novel zinc finger protein, ZBRK1, which contains a KRAB domain at the N terminus, eight zinc fingers at the center, and a BRCA1-binding region at the C terminus. In a BRCA1-dependent manner, ZBRK1 represses Gadd45a transcription through binding to a specific sequence in intron 3. In addition, ZBRK1-binding sequences are located at the regulatory region of many DNA damage-inducible genes, suggesting that ZBRK1 may have a role in DNA damage response. However, it is unclear how transcription repression by ZBRK1 is relieved subsequent to DNA damage. Here we report that ZBRK1 is rapidly degraded upon treatment with the DNA-damaging agents UV and methyl methanesulfonate. Specific proteasome inhibitors block DNA damage-induced degradation of ZBRK1, and the polyubiquitinated form of ZBRK1 is detectable, suggesting that the ubiquitin-proteasome pathway mediates the degradation of ZBRK1. In both BRCA1-proficient and -deficient cells, ZBRK1 is degraded with similar efficiencies independent of BRCA1 E3 ligase activity. By analysis of a series of ZBRK1 mutants, a 44-amino-acid element located between the N-terminal KRAB domain and the eight zinc fingers was found to be sufficient for the DNA damage-induced degradation of ZBRK1. Cells expressing a ZBRK1 mutant lacking the 44-amino-acid element are hypersensitive to DNA damage and are compromised for Gadd45a derepression. These results indicate that ZBRK1 is a novel target for DNA damage-induced degradation and provide a mechanistic explanation of how ZBRK1 is regulated in response to DNA damage.
Collapse
Affiliation(s)
- Jeanho Yun
- Department of Molecular Medicine and Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78245, USA
| | | |
Collapse
|
2578
|
Wu PY, Hanlon M, Eddins M, Tsui C, Rogers RS, Jensen JP, Matunis MJ, Weissman AM, Weisman AM, Weissman AM, Wolberger C, Wolberger CP, Pickart CM. A conserved catalytic residue in the ubiquitin-conjugating enzyme family. EMBO J 2003; 22:5241-50. [PMID: 14517261 PMCID: PMC204484 DOI: 10.1093/emboj/cdg501] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Ubiquitin (Ub) regulates diverse functions in eukaryotes through its attachment to other proteins. The defining step in this protein modification pathway is the attack of a substrate lysine residue on Ub bound through its C-terminus to the active site cysteine residue of a Ub-conjugating enzyme (E2) or certain Ub ligases (E3s). So far, these E2 and E3 cysteine residues are the only enzyme groups known to participate in the catalysis of conjugation. Here we show that a strictly conserved E2 asparagine residue is critical for catalysis of E2- and E2/RING E3-dependent isopeptide bond formation, but dispensable for upstream and downstream reactions of Ub thiol ester formation. In contrast, the strictly conserved histidine and proline residues immediately upstream of the asparagine are dispensable for catalysis of isopeptide bond formation. We propose that the conserved asparagine side chain stabilizes the oxyanion intermediate formed during lysine attack. The E2 asparagine is the first non-covalent catalytic group to be proposed in any Ub conjugation factor.
Collapse
Affiliation(s)
- Pei-Ying Wu
- Department of Biochemistry and Molecular Biology/Bloomberg School of Public Health, Johns Hopkins University, 615 North Wolfe Street, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2579
|
Quintin S, Mains PE, Zinke A, Hyman AA. Thembk‐2kinase is required for inactivation of MEI‐1/katanin in the one‐cellCaenorhabditis elegansembryo. EMBO Rep 2003. [DOI: 10.1038/sj.embor.7400029 7400029[pii]] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Sophie Quintin
- Max‐Planck‐Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108 D‐01307 Dresden Germany
- Genes and Development Research Group, Department of Biochemistry & Molecular Biology, University of Calgary 3330 Hospital Drive NW, Calgary Alberta Canada T2N 4N1
| | - Paul E Mains
- Max‐Planck‐Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108 D‐01307 Dresden Germany
- Genes and Development Research Group, Department of Biochemistry & Molecular Biology, University of Calgary 3330 Hospital Drive NW, Calgary Alberta Canada T2N 4N1
| | - Andrea Zinke
- Max‐Planck‐Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108 D‐01307 Dresden Germany
| | - Anthony A Hyman
- Max‐Planck‐Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108 D‐01307 Dresden Germany
| |
Collapse
|
2580
|
Quintin S, Mains PE, Zinke A, Hyman AA. The mbk-2 kinase is required for inactivation of MEI-1/katanin in the one-cell Caenorhabditis elegans embryo. EMBO Rep 2003; 4:1175-81. [PMID: 14634695 PMCID: PMC1326421 DOI: 10.1038/sj.embor.7400029] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2003] [Revised: 10/08/2003] [Accepted: 10/08/2003] [Indexed: 11/08/2022] Open
Abstract
The Caenorhabditis elegans early embryo is widely used to study the regulation of microtubule-related processes. In a screen for mutants affecting the first cell division, we isolated a temperature-sensitive mutation affecting pronuclear migration and spindle positioning, phenotypes typically linked to microtubule or centrosome defects. In the mutant, microtubules are shorter and chromosome segregation is impaired, while centrosome organization appears normal. The mutation corresponds to a strong loss of function in mbk-2, a conserved serine/threonine kinase. The microtubule-related defects are due to the postmeiotic persistence of MEI-1, a homologue of the microtubule-severing protein katanin. In addition, P-granule distribution is abnormal in mbk-2 mutants, consistent with genetic evidence that mbk-2 has other functions and with the requirement of mbk-2 activity at the one-cell stage. We propose that mbk-2 potentiates the degradation of MEI-1 and other proteins, possibly via direct phosphorylation.
Collapse
Affiliation(s)
- Sophie Quintin
- Max-Planck-Institute of Molecular Cell Biology and
Genetics, Pfotenhauerstrasse 108, D-01307 Dresden, Germany
- Genes and Development Research Group, Department of
Biochemistry & Molecular Biology, University of Calgary, 3330 Hospital
Drive NW, Calgary, Alberta, Canada T2N 4N1
| | - Paul E Mains
- Max-Planck-Institute of Molecular Cell Biology and
Genetics, Pfotenhauerstrasse 108, D-01307 Dresden, Germany
- Genes and Development Research Group, Department of
Biochemistry & Molecular Biology, University of Calgary, 3330 Hospital
Drive NW, Calgary, Alberta, Canada T2N 4N1
| | - Andrea Zinke
- Max-Planck-Institute of Molecular Cell Biology and
Genetics, Pfotenhauerstrasse 108, D-01307 Dresden, Germany
| | - Anthony A Hyman
- Max-Planck-Institute of Molecular Cell Biology and
Genetics, Pfotenhauerstrasse 108, D-01307 Dresden, Germany
- Tel: +49 351 210 1700; Fax: +49 351 210 1289;
E-mail:
| |
Collapse
|
2581
|
Hao N, Yildirim N, Wang Y, Elston TC, Dohlman HG. Regulators of G protein signaling and transient activation of signaling: experimental and computational analysis reveals negative and positive feedback controls on G protein activity. J Biol Chem 2003; 278:46506-15. [PMID: 12968019 DOI: 10.1074/jbc.m308432200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cellular responses to hormones and neurotransmitters are necessarily transient. The mating pheromone signal in yeast is typical. Signal initiation requires cell surface receptors, a G protein heterotrimer, and down-stream effectors. Signal inactivation requires Sst2, a regulator of G protein signaling (RGS) protein that accelerates GTPase activity. We conducted a quantitative analysis of RGS and G protein expression and devised computational models that describe their activity in vivo. These results indicated that pheromone-dependent transcriptional induction of the RGS protein constitutes a negative feedback loop that leads to desensitization. Modeling also suggested the presence of a positive feedback loop leading to resensitization of the pathway. In confirmation of the model, we found that the RGS protein is ubiquitinated and degraded in response to pheromone stimulation. We identified and quantitated these positive and negative feedback loops, which account for the transient response to external signals observed in vivo.
Collapse
Affiliation(s)
- Nan Hao
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-0812, USA
| | | | | | | | | |
Collapse
|
2582
|
Jimenez Del Rio M, Moreno S, Garcia-Ospina G, Buritica O, Uribe CS, Lopera F, Velez-Pardo C. Autosomal recessive juvenile parkinsonism Cys212Tyr
mutation in parkin renders lymphocytes susceptible to dopamine- and iron-mediated apoptosis. Mov Disord 2003; 19:324-30. [PMID: 15022188 DOI: 10.1002/mds.10670] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mutations in parkin are implicated in the pathogenesis of autosomal recessive juvenile parkinsonism (AR-JP) disease. We show that homozygote Cys212Tyr parkin mutation in AR-JP patients renders lymphocytes sensitive to dopamine, iron and hydrogen peroxide stimuli. Indeed, dopamine-induced apoptosis by four alternative mechanisms converging on caspase-3 activation and apoptotic morphology: (1) NF-kappaB-dependent pathway; mitochondrial dysfunction either by (2) H(2)O(2) or (3) hydroxyl exposure and (4) increase of unfolded-protein stress. We also demonstrate that 17beta-estradiol and testosterone prevent homozygote lymphocytes from oxidative stressors-evoked apoptosis. These results may contribute to understanding the relationship between genetic and environmental factors and iron in AR-JP.
Collapse
Affiliation(s)
- Marlene Jimenez Del Rio
- School of Medicine, Department of Internal Medicine, Neurology Service, Neuroscience Research Programme, University of Antioquia, Medellin, Colombia.
| | | | | | | | | | | | | |
Collapse
|
2583
|
Abstract
Protein ubiquitination has been implicated recently in neural development, plasticity, and degeneration. We previously identified ZNRF1/nin283, a protein with a unique, evolutionarily conserved C-terminal domain containing a juxtaposed zinc finger/RING finger combination. Here we describe the identification of a closely related protein, ZNRF2, thus defining a novel family of ZNRF E3 ubiquitin ligases. Both ZNRF1 and ZNRF2 have E3 ubiquitin ligase activity and are highly expressed in the nervous system, particularly during development. In neurons, ZNRF proteins are located in different compartments within the presynaptic terminal: ZNRF1 is associated with synaptic vesicle membranes, whereas ZNRF2 is present in presynaptic plasma membranes. Mutant ZNRF proteins with a disrupted RING finger, a domain necessary for their E3 function, can each inhibit Ca2+-dependent exocytosis in PC12 cells. These data suggest that ZNRF proteins play a role in the establishment and maintenance of neuronal transmission and plasticity via their ubiquitin ligase activity.
Collapse
|
2584
|
Heessen S, Dantuma NP, Tessarz P, Jellne M, Masucci MG. Inhibition of ubiquitin/proteasome-dependent proteolysis inSaccharomyces cerevisiaeby a Gly-Ala repeat. FEBS Lett 2003; 555:397-404. [PMID: 14644450 DOI: 10.1016/s0014-5793(03)01296-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The glycine-alanine (GA) repeat of the Epstein-Barr virus nuclear antigen-1 inhibits in cis ubiquitin-dependent proteolysis in mammalian cells through a yet unknown mechanism. In the present study we demonstrate that the GA repeat targets an evolutionarily conserved step in proteolysis since it can prevent the degradation of proteasomal substrates in the yeast Saccharomyces cerevisiae. Insertion of yeast codon-optimised recombinant GA (rGA) repeats of different length in green fluorescent protein reporters harbouring N-end rule or ubiquitin fusion degradation signals resulted in efficient stabilisation of these substrates. Protection was also achieved in rpn10delta yeast suggesting that this polyubiquitin binding protein is not required for the rGA effect. The conserved effect of the GA repeat in yeast opens the possibility for the use of genetic screens to unravel its mode of action.
Collapse
Affiliation(s)
- Stijn Heessen
- Microbiology and Tumor Biology Center, Karolinska Institutet, Box 280, S-171 77 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
2585
|
Bornhauser BC, Johansson C, Lindholm D. Functional activities and cellular localization of the ezrin, radixin, moesin (ERM) and RING zinc finger domains in MIR. FEBS Lett 2003; 553:195-9. [PMID: 14550572 DOI: 10.1016/s0014-5793(03)01010-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Myosin regulatory light chain interacting protein (MIR) belongs to the ezrin, radixin, moesin (ERM) family of proteins involved in membrane cytoskeleton interactions and cell dynamics. MIR contains, beside the ERM domain, a RING zinc finger region. Immunocytochemistry showed that full-length MIR and the subdomains localize differently in cells. Cell fractionation revealed a similar distribution of full-length MIR and the RING domain protein in the Triton X-100-insoluble fraction. The neurite outgrowth inhibitory activity of MIR was attributed to the RING domain. MIR levels were controlled in the cells depending on the intact RING domain and proteasome activity. The dynamic regulation of MIR contributes to its effects on neurite outgrowth and cell motility.
Collapse
Affiliation(s)
- Beat C Bornhauser
- Department of Neuroscience, Neurobiology, Uppsala University, Biomedical Centre, Sweden
| | | | | |
Collapse
|
2586
|
Griffiths EK, Sanchez O, Mill P, Krawczyk C, Hojilla CV, Rubin E, Nau MM, Khokha R, Lipkowitz S, Hui CC, Penninger JM. Cbl-3-deficient mice exhibit normal epithelial development. Mol Cell Biol 2003; 23:7708-18. [PMID: 14560016 PMCID: PMC207562 DOI: 10.1128/mcb.23.21.7708-7718.2003] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2003] [Revised: 04/10/2003] [Accepted: 07/23/2003] [Indexed: 02/04/2023] Open
Abstract
Cbl family proteins are evolutionarily conserved ubiquitin ligases that negatively regulate signaling from tyrosine kinase-coupled receptors. The mammalian cbl family consists of c-Cbl, Cbl-b, and the recently cloned Cbl-3 (also known as Cbl-c). In this study, we describe the detailed expression pattern of murine Cbl-3 and report the generation and characterization of Cbl-3-deficient mice. Cbl-3 exhibits an expression pattern distinct from those of c-Cbl and Cbl-b, with high levels of Cbl-3 expression in epithelial cells of the gastrointestinal tract and epidermis, as well as the respiratory, urinary, and reproductive systems. Cbl-3 expression was not detected in nonepithelial cells, but within epithelial tissues, the levels of Cbl-3 expression varied from undetectable in the alveoli of the lungs to very strong in the cecum and colon. Despite this restricted expression pattern, Cbl-3-deficient mice were viable, healthy, and fertile and displayed no histological abnormalities up to 18 months of age. Proliferation of epithelial cells in the epidermises and gastrointestinal tracts was unaffected by the loss of Cbl-3. Moreover, Cbl-3 was not required for attenuation of epidermal growth factor-stimulated Erk activation in primary keratinocytes. Thus, Cbl-3 is dispensable for normal epithelial development and function.
Collapse
Affiliation(s)
- Emily K Griffiths
- Department of Medical Biophysics, Ontario Cancer Institute, University of Toronto, Toronto, Ontario, Canada M5G 2C1
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2587
|
Stary S, Yin XJ, Potuschak T, Schlögelhofer P, Nizhynska V, Bachmair A. PRT1 of Arabidopsis is a ubiquitin protein ligase of the plant N-end rule pathway with specificity for aromatic amino-terminal residues. PLANT PHYSIOLOGY 2003; 133:1360-6. [PMID: 14551326 PMCID: PMC281630 DOI: 10.1104/pp.103.029272] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2003] [Revised: 07/16/2003] [Accepted: 07/21/2003] [Indexed: 05/18/2023]
Abstract
The gene PRT1 of Arabidopsis, encoding a 45-kD protein with two RING finger domains, is essential for the degradation of F-dihydrofolate reductase, a model substrate of the N-end rule pathway of protein degradation. We have determined the function of PRT1 by expression in yeast (Saccharomyces cerevisiae). PRT1 can act as a ubiquitin protein ligase in the heterologous host. The identified substrates of PRT1 have an aromatic residue at their amino-terminus, indicating that PRT1 mediates degradation of N-end rule substrates with aromatic termini but not of those with aliphatic or basic amino-termini. Expression of model substrates in mutant and wild-type plants confirmed this substrate specificity. A ligase activity exclusively devoted to aromatic amino-termini of the N-end rule pathway is apparently unique to plants. The results presented also imply that other known substrates of the plant N-end rule pathway are ubiquitylated by one or more different ubiquitin protein ligases.
Collapse
Affiliation(s)
- Susanne Stary
- Institute of Botany, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
| | | | | | | | | | | |
Collapse
|
2588
|
Abstract
The COP9 signalosome (CSN) is composed of eight distinct subunits and is highly homologous to the lid sub-complex of the 26S proteasome. CSN was initially defined as a repressor of photomorphogenesis in Arabidopsis, and it has now been found to participate in diverse cellular and developmental processes in various eukaryotic organisms. Recently, CSN was revealed to have a metalloprotease activity centered in the CSN5/Jab1 subunit, which removes the post-translational modification of a ubiquitin-like protein, Nedd8/Rub1, from the cullin component of SCF ubiquitin E3 ligase (i.e., de-neddylation). In addition, CSN is associated with de-ubiquitination activity and protein kinase activities capable of phosphorylating important signaling regulators. The involvement of CSN in a number of cellular and developmental processes has been attributed to its control over ubiquitin-proteasome-mediated protein degradation.
Collapse
Affiliation(s)
- Ning Wei
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520-8104, USA.
| | | |
Collapse
|
2589
|
Yashiroda H, Tanaka K. But1 and But2 proteins bind to Uba3, a catalytic subunit of E1 for neddylation, in fission yeast. Biochem Biophys Res Commun 2003; 311:691-5. [PMID: 14623327 DOI: 10.1016/j.bbrc.2003.10.058] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
NEDD8/Rub1 is the most homologous protein to ubiquitin among the ubiquitin-like proteins, and it is covalently linked to target proteins via the C-terminal glycine residue in a manner analogous to ubiquitylation. However, the mechanism(s) involved in the regulation of the NEDD8 ligation pathway remains elusive. Using the two-hybrid system, we isolated novel genes from the Schizosaccharomyces pombe cDNA library whose products bind to Uba3, which is a catalytic protein for E1-like activity of the NEDD8 pathway. We designated these genes but1(+) and but2(+) (for proteins that bind to Uba three). But1 is a nuclear protein and its overexpression caused cell elongation, which is a common phenotype of the NEDD8 pathway defective mutant in S. pombe. Furthermore, overexpression of but1(+) in ned8-temperature sensitive mutant had a deleterious effect even under permissive temperatures. Our results suggest that But1 may have an inhibitory role in the NEDD8 pathway.
Collapse
Affiliation(s)
- Hideki Yashiroda
- Department of Molecular Oncology, Tokyo Metropolitan Institute of Medical Science, Honkomagome 3-18-22, Bunkyo-ku, Tokyo 113-8613, Japan
| | | |
Collapse
|
2590
|
Abstract
Parkinson's disease (PD) is a complex disorder with many different causes, yet they may intersect in common pathways, raising the possibility that neuroprotective agents may have broad applicability in the treatment of PD. Current evidence suggests that mitochondrial complex I inhibition may be the central cause of sporadic PD and that derangements in complex I cause alpha-synuclein aggregation, which contributes to the demise of dopamine neurons. Accumulation and aggregation of alpha-synuclein may further contribute to the death of dopamine neurons through impairments in protein handling and detoxification. Dysfunction of parkin (a ubiquitin E3 ligase) and DJ-1 could contribute to these deficits. Strategies aimed at restoring complex I activity, reducing oxidative stress and alpha-synuclein aggregation, and enhancing protein degradation may hold particular promise as powerful neuroprotective agents in the treatment of PD.
Collapse
Affiliation(s)
- Ted M Dawson
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| | | |
Collapse
|
2591
|
Magnifico A, Ettenberg S, Yang C, Mariano J, Tiwari S, Fang S, Lipkowitz S, Weissman AM. WW domain HECT E3s target Cbl RING finger E3s for proteasomal degradation. J Biol Chem 2003; 278:43169-77. [PMID: 12907674 DOI: 10.1074/jbc.m308009200] [Citation(s) in RCA: 140] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Cbl proteins have RING finger-dependent ubiquitin ligase (E3) activity that is essential for down-regulation of tyrosine kinases. Here we establish that two WW domain HECT E3s, Nedd4 and Itch, bind Cbl proteins and target them for proteasomal degradation. This is dependent on the E3 activity of the HECT E3s but not on that of Cbl. Consistent with these observations, in cells expressing the epidermal growth factor receptor, Nedd4 reverses Cbl-b effects on receptor down-regulation, ubiquitylation, and proximal events in signaling. Cbl-b also targets active Src for degradation in cells, and Nedd4 similarly reverses Cbl-mediated Src degradation. These findings establish that RING finger E3s can be substrates, not only for autoubiquitylation but also for ubiquitylation by HECT E3s and suggest an additional level of regulation for Cbl substrates including protein-tyrosine kinases.
Collapse
Affiliation(s)
- Alessandra Magnifico
- Regulation of Protein Function Laboratory, Center for Cancer Research, NCI-Frederick, Frederick, MD 21702, USA
| | | | | | | | | | | | | | | |
Collapse
|
2592
|
Guterman A, Glickman MH. Complementary roles for Rpn11 and Ubp6 in deubiquitination and proteolysis by the proteasome. J Biol Chem 2003; 279:1729-38. [PMID: 14581483 DOI: 10.1074/jbc.m307050200] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Substrates destined for degradation by the 26 S proteasome are labeled with polyubiquitin chains. These chains can be dismantled by deubiquitinating enzymes (DUBs). A number of reports have identified different DUBs that can hydrolyze ubiquitin from substrates bound to the proteasome. We measured deubiquitination by both isolated lid and base-core particle subcomplexes, suggesting that at least two different DUBs are intrinsic components of 26 S proteasome holoenzymes. In agreement, we find that highly purified proteasomes contain both Rpn11 and Ubp6, situated within the lid and base subcomplexes, respectively. To study their relative contributions, we purified proteasomes from a mutant in the putative metalloprotease domain of Rpn11 and from a ubp6 null. Interestingly, in both preparations we observed slower deubiquitination rates, suggesting that Rpn11 and Ubp6 serve complementary roles. In accord, the double mutant is synthetically lethal. In contrast to WT proteasomes, proteasomes lacking the lid subcomplex or those purified from the rpn11 mutant are less sensitive to metal chelators, supporting the prediction that Rpn11 may be a metalloprotein. Treatment of proteasomes with ubiquitin-aldehyde or with cysteine modifiers also inhibited deubiquitination but simultaneously promoted degradation of a monoubiquitinated substrate along with the ubiquitin tag. Degradation is unique to 26 S proteasome holoenzymes; we could not detect degradation of a ubiquitinated protein by "lidless" proteasomes, although they were competent for deubiquitination. The fascinating observation that a single ubiquitin moiety is sufficient for targeting an otherwise stable substrate to proteasomes exposes how rapid deubiquitination of poorly ubiquitinated substrates may counteract degradation.
Collapse
Affiliation(s)
- Adi Guterman
- Department of Biology and the Institute for Catalysis Science and Technology, The Technion, 32000 Haifa, Israel
| | | |
Collapse
|
2593
|
Deffenbaugh AE, Scaglione KM, Zhang L, Moore JM, Buranda T, Sklar LA, Skowyra D. Release of ubiquitin-charged Cdc34-S - Ub from the RING domain is essential for ubiquitination of the SCF(Cdc4)-bound substrate Sic1. Cell 2003; 114:611-22. [PMID: 13678584 DOI: 10.1016/s0092-8674(03)00641-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The S. cerevisiae SCF(Cdc4) is a prototype of RING-type SCF E3s, which recruit substrates for polyubiquitination by the Cdc34 ubiquitin-conjugating enzyme. Current models propose that Cdc34 ubiquitinates the substrate while remaining bound to the RING domain. In contrast, we found that the formation of a ubiquitin thiol ester regulates the Cdc34/SCF(Cdc4) binding equilibrium by increasing the dissociation rate constant, with only a minor effect on the association rate. By using a F72VCdc34 mutant with increased affinity for the RING domain, we demonstrate that release of ubiquitin-charged Cdc34-S - Ub from the RING is essential for ubiquitination of the SCF(Cdc4)-bound substrate Sic1. Release of ubiquitin-charged E2 from E3 prior to ubiquitin transfer is a previously unrecognized step in ubiquitination, which can explain both the modification of multiple lysines on the recruited substrate and the extension of polyubiquitin chains. We discuss implications of this finding for function of other ubiquitin ligases.
Collapse
Affiliation(s)
- Andrew E Deffenbaugh
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA
| | | | | | | | | | | | | |
Collapse
|
2594
|
Abstract
Neurodegenerative diseases are morphologically featured by progressive cell loss in specific vulnerable neuronal populations of the central nervous system, often associated with cytoskeletal protein aggregates forming intracytoplasmic and/or intranuclear inclusions in neurons and/or glial cells. Most neurodegenerative disorders are now classified either according to the hitherto known genetic mechanisms or to the major components of their cellular protein inclusions. The major basic processes inducing neurodegeneration are considered multifactorial ones caused by genetic, environmental, and endogenous factors. They include abnormal protein dynamics with defective protein degradation and aggregation, many of them related to the ubiquitin-proteasomal system, oxidative stress and free radical formation, impaired bioenergetics and mitochondrial dysfunctions, and "neuroinflammatory" processes. These mechanisms that are usually interrelated in complex vitious circles finally leading to programmed cell death cascades are briefly discussed with reference to their pathogenetic role in many, albeit diverse neurodegenerative diseases, like Alzheimer disease, synucleinopathies, tauopathies, and polyglutamine disorders. The impact of protein inclusions on cell dysfunction, activation or prevention of cell death cascades are discussed, but the molecular basis for the underlying disease mechanisms remains to be elucidated.
Collapse
Affiliation(s)
- K A Jellinger
- Institute of Clinical Neurobiology, Vienna, Austria.
| |
Collapse
|
2595
|
Yamakami M, Yoshimori T, Yokosawa H. Tom1, a VHS domain-containing protein, interacts with tollip, ubiquitin, and clathrin. J Biol Chem 2003; 278:52865-72. [PMID: 14563850 DOI: 10.1074/jbc.m306740200] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The gene for Tom1 was initially identified as a specific target of the oncogene v-myb. The Tom1 protein belongs to the VHS domain-containing protein family, and it has a GAT domain in a central part as well as an N-terminal VHS domain. VHS domain-containing proteins, including Hrs/Vps27, STAM, and GGA proteins, have been implicated in intracellular trafficking and sorting, but the role of Tom1 has not yet been elucidated. In this study, we found that Tom1 binds directly with ubiquitin chains and Tollip, which was initially isolated as a mediator of interleukin-1 signaling and has a capacity to bind ubiquitin chains. Gel filtration and subsequent Western blot analysis showed that endogenous Tom1 associates with Tollip to form a complex. In addition, Tom1 was found to be capable of binding to clathrin heavy chain through a typical clathrin-binding motif. Fluorescence microscopic analysis revealed that green fluorescent protein-Tom1 was localized predominantly in the cytoplasm, whereas its mutant with deletion of the clathrin-binding motif had a diffuse localization throughout the cell. Thus, we propose that a Tom1-Tollip complex functions as a factor that links polyubiquitinated proteins to clathrin.
Collapse
Affiliation(s)
- Megumi Yamakami
- Department of Biochemistry, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | | | | |
Collapse
|
2596
|
El Refy A, Perazza D, Zekraoui L, Valay JG, Bechtold N, Brown S, Hülskamp M, Herzog M, Bonneville JM. The Arabidopsis KAKTUS gene encodes a HECT protein and controls the number of endoreduplication cycles. Mol Genet Genomics 2003; 270:403-14. [PMID: 14530964 DOI: 10.1007/s00438-003-0932-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2003] [Accepted: 09/16/2003] [Indexed: 12/22/2022]
Abstract
In animals and plants, many cell types switch from mitotic cycles to endoreduplication cycles during differentiation. Little is known about the way in which the number of endoreduplication cycles is controlled in such endopolyploid cells. In this study we have characterized at the molecular level three mutations in the Arabidopsis gene KAKTUS ( KAK), which were previously shown specifically to repress endoreduplication in trichomes. We show that KAK is also involved in the regulation of the number of endoreduplication cycles in various organs that are devoid of trichomes. KAK encodes a protein with sequence similarity to HECT domain proteins. As this class of proteins is known to be involved in ubiquitin-mediated protein degradation, our finding suggests that the number of endoreduplication cycles that occur in several cell types is controlled by this pathway. The KAK gene defines a monophylogenetic subgroup of HECT proteins that also contain Armadillo-like repeats.
Collapse
Affiliation(s)
- A El Refy
- UMR5575, Laboratoire de Génétique Moléculaire des Plantes, Université J.Fourier, 38041 Grenoble 9, France
| | | | | | | | | | | | | | | | | |
Collapse
|
2597
|
Greer SF, Zika E, Conti B, Zhu XS, Ting JPY. Enhancement of CIITA transcriptional function by ubiquitin. Nat Immunol 2003; 4:1074-82. [PMID: 14528304 DOI: 10.1038/ni985] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2003] [Accepted: 09/03/2003] [Indexed: 11/08/2022]
Abstract
Although increasing evidence indicates that there is a direct link between ubiquitination and mono-ubiquitination and transcription in yeast, this link has not been demonstrated in higher eukaryotes. Here we show that the major histocompatibility complex (MHC) class II transactivator (CIITA), which is required for expression of genes encoding MHC class II molecules, is ubiquitinated. This ubiquitination enhanced the association of CIITA with both MHC class II transcription factors and the MHC class II promoter, resulting in an increase in transactivation function and in the expression of MHC class II mRNA. The degree of CIITA ubiquitination was controlled by histone acetylases (HATs) and deacetylases (HDACs), indicating that the crucial cellular processes mediated by these enzymes are linked to regulate transcription. Thus, ubiquitin positively regulates a mammalian coactivator by enhancing its assembly at the promoter.
Collapse
Affiliation(s)
- Susanna F Greer
- Lineberger Comprehensive Cancer Center, and Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | |
Collapse
|
2598
|
Furukawa M, He YJ, Borchers C, Xiong Y. Targeting of protein ubiquitination by BTB-Cullin 3-Roc1 ubiquitin ligases. Nat Cell Biol 2003; 5:1001-7. [PMID: 14528312 DOI: 10.1038/ncb1056] [Citation(s) in RCA: 354] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2003] [Accepted: 09/08/2003] [Indexed: 11/10/2022]
Abstract
The concentrations and functions of many cellular proteins are regulated by the ubiquitin pathway. Cullin family proteins bind with the RING-finger protein Roc1 to recruit the ubiquitin-conjugating enzyme (E2) to the ubiquitin ligase complex (E3). Cul1 and Cul7, but not other cullins, bind to an adaptor protein, Skp1. Cul1 associates with one of many F-box proteins through Skp1 to assemble various SCF-Roc1 E3 ligases that each selectively ubiquitinate one or more specific substrates. Here, we show that Cul3, but not other cullins, binds directly to multiple BTB domains through a conserved amino-terminal domain. In vitro, Cul3 promoted ubiquitination of Caenorhabditis elegans MEI-1, a katanin-like protein whose degradation requires the function of both Cul3 and BTB protein MEL-26. We suggest that in vivo there exists a potentially large number of BCR3 (BTB-Cul3-Roc1) E3 ubiquitin ligases.
Collapse
Affiliation(s)
- Manabu Furukawa
- Lineberger Comprehensive Cancer Center, Department of Biochemistry and Biophysics, and Program in Molecular Biology and Biotechnology, University of North Carolina at Chapel Hill, NC 27599-7295, USA
| | | | | | | |
Collapse
|
2599
|
Sheehy AM, Gaddis NC, Malim MH. The antiretroviral enzyme APOBEC3G is degraded by the proteasome in response to HIV-1 Vif. Nat Med 2003; 9:1404-7. [PMID: 14528300 DOI: 10.1038/nm945] [Citation(s) in RCA: 769] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2003] [Accepted: 09/15/2003] [Indexed: 12/18/2022]
Abstract
The human protein apolipoprotein B mRNA-editing enzyme-catalytic polypeptide-like-3G (APOBEC3G), also known as CEM-15, mediates a newly described form of innate resistance to retroviral infection by catalyzing the deamination of deoxycytidine to deoxyuridine in viral cDNA replication intermediates. Because DNA deamination takes place after virus entry into target cells, APOBEC3G function is dependent on its association with the viral nucleoprotein complexes that synthesize cDNA and must therefore be incorporated into virions as they assemble in infected cells. Here we show that the HIV-1 virion infectivity factor (Vif) protein protects the virus from APOBEC3G-mediated inactivation by preventing its incorporation into progeny virions, thus allowing the ensuing infection to proceed without DNA deamination. In addition to helping exclude APOBEC3G from nascent virions, Vif also removes APOBEC3G from virus-producing cells by inducing its ubiquitination and subsequent degradation by the proteasome. Our findings indicate that pharmacologic strategies aimed at stabilizing APOBEC3G in HIV-1 infected cells should be explored as potential HIV/AIDS therapeutics.
Collapse
Affiliation(s)
- Ann M Sheehy
- Department of Infectious Diseases, Guy's, King's and St. Thomas' School of Medicine, King's College London, London, SE1 9RT, UK
| | | | | |
Collapse
|
2600
|
Abstract
Controlled proteolysis of regulatory or aberrant proteins by the ubiquitin/proteasome system is indispensable for cell viability. Conformational diseases such as Alzheimer's, Parkinson's and Huntington's disease are characterised by the accumulation of misfolded or aggregation-prone proteins. Since these proteins are typical substrates of the ubiquitin/proteasome system, it is not surprising that various models propose impairment of this system as a contributing factor to the pathology of conformational disorders. The complex nature of the ubiquitin/proteasome system and its universal role in cell physiology however turns evaluation of these attractive hypotheses into a major challenge. Several reporter substrates for the ubiquitin/proteasome system have recently been developed to facilitate functional studies of the system in living cells. In this review, we will discuss these new tools as well as the proteins associated with conformational disease that have been studied with these reporters.
Collapse
Affiliation(s)
- Kristina Lindsten
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | |
Collapse
|