2701
|
Wojcikiewicz RJH, Xu Q, Webster JM, Alzayady K, Gao C. Ubiquitination and proteasomal degradation of endogenous and exogenous inositol 1,4,5-trisphosphate receptors in alpha T3-1 anterior pituitary cells. J Biol Chem 2003; 278:940-7. [PMID: 12421829 DOI: 10.1074/jbc.m206607200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In alphaT3-1 mouse anterior pituitary gonadotropes, chronic activation of gonadotropin-releasing hormone (GnRH) receptors causes inositol 1,4,5-trisphosphate (InsP(3)) receptor down-regulation (Willars, G. B., Royall, J. E., Nahorski, S. R., El-Gehani, F., Everest, H. and McArdle, C. A. (2001) J. Biol. Chem. 276, 3123-3129). In the current study, we sought to define the mechanism behind this adaptive response. We show that GnRH induces a rapid and dramatic increase in InsP(3) receptor polyubiquitination and that proteasome inhibitors block InsP(3) receptor down-regulation and cause the accumulation of polyubiquitinated receptors. Thus, the ubiquitin/proteasome pathway is active in alphaT3-1 cells, and GnRH regulates the levels of InsP(3) receptors via this mechanism. Given these findings and further characterization of this system, we also examined the possibility that alphaT3-1 cells could be used to examine the ubiquitination of exogenous InsP(3) receptors introduced by cDNA transfection. This was found to be the case, since exogenous wild-type InsP(3) receptors, but not binding-defective mutant receptors, were polyubiquitinated in a GnRH-dependent manner, and agents that inhibited the polyubiquitination of endogenous receptors also inhibited the polyubiquitination of exogenous receptors. Further, we used this system to determine whether phosphorylation was involved in triggering InsP(3) receptor polyubiquitination. This was not the case, since mutation of serine residues 1588 and 1755 (the predominant phosphorylation sites in the type I receptor) did not inhibit polyubiquitination. In total, these data show that the ubiquitin/proteasome pathway is active in anterior pituitary cells, that this pathway targets both endogenous and exogenous InsP(3) receptors in GnRH-stimulated alphaT3-1 cells, and that, in contrast to the situation for many other substrates, phosphorylation does not trigger InsP(3) receptor polyubiquitination.
Collapse
Affiliation(s)
- Richard J H Wojcikiewicz
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse 13210-2339, USA.
| | | | | | | | | |
Collapse
|
2702
|
Moore SC, Jason L, Ausió J. The elusive structural role of ubiquitinated histones. Biochem Cell Biol 2003; 80:311-9. [PMID: 12123284 DOI: 10.1139/o02-081] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
It is increasingly apparent that histone posttranslational modifications are important in chromatin structure and dynamics. However, histone ubiquitination has received little attention. Histones H1, H3, H2A, and H2B can be ubiquitinated in vivo, but the most prevalent are uH2A and uH2B. The size of this modification suggests some sort of structural impact. Physiological observations suggest that ubiquitinated histones may have multiple functions and structural effects. Ubiquitinated histones have been correlated with transcriptionally active DNA, implying that it may prevent chromatin folding or help maintain an open conformation. Also, in some organisms during spermiogenesis, a process involving extensive chromatin remodeling, uH2A levels increase just prior to histone replacement by protamines. Determination of chromatin's structural changes resulting from histone ubiquitination is therefore important. Recent work using reconstituted nucleosomes and chromatin fibers containing uH2A indicate that in the absence of linker histones, ubiquitination has little structural impact. DNase I digests and analytical ultracentrifugation of reconstituted ubiquitinated nucleosomes show no structural differences. Solubility assays using reconstituted chromatin fibers in the presence of divalent ions demonstrate that uH2A fibers are slightly more prone to aggregation than controls, and analytical ultracentrifugation results with different MgCl2 and NaCl concentrations determined that chromatin folding is not affected by this modification. Additional work to assess possible synergistic affects with histone acetylation also precludes any structural implications. Protamine displacement experiments concluded that the presence of uH2A does not significantly affect the ability of the protamines to displace histones. In addition, uH2A does not interfere with histone H1 binding to the nucleosome. While work with uH2B remains insufficient to come to any definitive conclusions about its structural impact, current work with uH-2A indicates that, contrary to predictions, this histone modification does not affect either nucleosome or chromatin structure. Consequently, the search for a structural role for ubiquitinated histones continues and their effect on and importance in chromatin dynamics remains elusive.
Collapse
Affiliation(s)
- Susan C Moore
- Department of Biochemistry and Microbiology, University of Victoria, BC, Canada
| | | | | |
Collapse
|
2703
|
Serino G, Deng XW. The COP9 signalosome: regulating plant development through the control of proteolysis. ANNUAL REVIEW OF PLANT BIOLOGY 2003; 54:165-182. [PMID: 14502989 DOI: 10.1146/annurev.arplant.54.031902.134847] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The COP9 signalosome (CSN) is a multiprotein complex that was initially identified in plants as a repressor of photomorphogenesis. It is now known to play major roles in several other developmental pathways, from auxin response to flower development. Furthermore, the COP9 signalosome shares homologies with the lid sibcomplex of the proteasome and is evolutionarily conserved from fission yeast to humans. It is important for the proper development of virtually all higher eukaryotes. In recent years, significant progress has been made in unraveling the molecular, cellular, and physiological mode of action of the COP9 signalosome. This review discusses our current understanding of the COP9 signalosome function with particular emphasis on its recently defined role in modulating a wide variety of cellular processes by regulating specific protein degradation events.
Collapse
Affiliation(s)
- Giovanna Serino
- Dipartimento di Genetica e Biologia Molecolare, Universitá di Roma La Sapienza, 00185 Roma, Italy.
| | | |
Collapse
|
2704
|
Kallijärvi J, Lehesjoki AE, Lipsanen-Nyman M. Mulibrey Nanism - a Novel Peroxisomal Disorder. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 544:31-7. [PMID: 14713209 DOI: 10.1007/978-1-4419-9072-3_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Affiliation(s)
- Jukka Kallijärvi
- Folkhälsan Institute of Genetics and Department of Medical Genetics, Haartman Institute, Biomedicum Helsinki, 00014 University of Helsinki, Finland.
| | | | | |
Collapse
|
2705
|
Imai N, Matsuda N, Tanaka K, Nakano A, Matsumoto S, Kang W. Ubiquitin ligase activities of Bombyx mori nucleopolyhedrovirus RING finger proteins. J Virol 2003; 77:923-30. [PMID: 12502808 PMCID: PMC140854 DOI: 10.1128/jvi.77.2.923-930.2003] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genome of Bombyx mori nucleopolyhedrovirus (BmNPV) is predicted to contain six RING finger proteins: IAP1, ORF35, IAP2, CG30, IE2, and PE38. Several other members of the RING finger family have recently been shown to have the ubiquitin-ligase (E3) activity. We thus examined whether BmNPV RING finger proteins have the E3 activity. In vitro ubiquitination assay with the rabbit reticulocyte lysates and BmNPV RING finger proteins fused with maltose-binding protein (MBP) showed that four of them (IAP2, IE2, PE38, and CG30) were polyubiquitinated in the presence of zinc ion. Furthermore, MBP-IAP2, MBP-IE2, and MBP-PE38 were able to reconstitute ubiquitination activity in cooperation with the Ubc4/5 subfamily of ubiquitin-conjugating enzymes. Mutational analysis also showed that ubiquitination activity of MBP-IAP2, MBP-IE2, and MBP-PE38 were dependent on their RING finger motif. Therefore, these results suggest that IAP2, IE2, and PE38 may function as E3 enzymes during BmNPV infection.
Collapse
Affiliation(s)
- Noriko Imai
- Laboratory of Molecular Entomology and Baculovirology, Wako, Japan
| | | | | | | | | | | |
Collapse
|
2706
|
Abstract
In comparison with previous studies, a new crystal structure of a HECT ubiquitin ligase catalytic domain has revealed the structural basis of the conformational flexibility of the enzyme and provides insights into the mechanism underlying the ubiquitin transfer reaction in the polyubiquitination pathway.
Collapse
|
2707
|
Abstract
The first crystal structures have been obtained for a UBP domain both alone and in complex with ubiquitin aldehyde, thus providing a framework for structural conservation throughout the UBP protease family. Comparison of the structures provides substantial insight into ubiquitin-mediated activation of UBP protease activity, a process that potentially regulates substrate-dependent ubiquitin deconjugation.
Collapse
|
2708
|
Archibald JM, Longet D, Pawlowski J, Keeling PJ. A novel polyubiquitin structure in Cercozoa and Foraminifera: evidence for a new eukaryotic supergroup. Mol Biol Evol 2003; 20:62-6. [PMID: 12519907 DOI: 10.1093/molbev/msg006] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Ubiquitin is a 76 amino acid protein with a remarkable degree of evolutionary conservation. Ubiquitin plays an essential role in a large number of eukaryotic cellular processes by targeting proteins for proteasome-mediated degradation. Most ubiquitin genes are found as head-to-tail polymers whose products are posttranslationally processed to ubiquitin monomers. We have characterized polyubuiquitin genes from the photosynthetic amoeboflagellate Chlorarachnion sp. CCMP 621 (also known as Bigelowiella natans) and found that they deviate from the canonical polyubiquitin structure in having an amino acid insertion at the junction between each monomer, suggesting that polyubiquitin processing in this organism is unique among eukaryotes. The gene structure indicates that processing likely cleaves monomers at the amino terminus of the insertion. We examined the phylogenetic distribution of the insertion by sequencing polyubiquitin genes from several other eukaryotic groups and found it to be confined to Cercozoa (including Chlorarachnion, Lotharella, Cercomonas, and Euglypha) and Foraminifera (including Reticulomyxa and Haynesina). This character strongly suggests that Cercozoa and Foraminifera are close relatives and form a new "supergroup" of eukaryotes.
Collapse
Affiliation(s)
- John M Archibald
- Canadian Institute for Advanced Research, Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | |
Collapse
|
2709
|
Abstract
In response to DNA damage, the activity of the p53 tumor suppressor is modulated by protein stabilization and post-translational modifications including acetylation. Interestingly, both acetylation and ubiquitination can modify the same lysine residues at the C terminus of p53, implicating a role of acetylation in the regulation of p53 stability. However, the direct effect of acetylation on Mdm2-mediated ubiquitination of p53 is still lacking because of technical difficulties. Here, we have developed a method to obtain pure acetylated p53 proteins from cells, and by using an in vitro purified system, we provide the direct evidence that acetylation of the C-terminal domain is sufficient to abrogate its ubiquitination by Mdm2. Importantly, even in the absence of DNA damage, acetylation of the p53 protein is capable of reducing the ubiquitination levels and extending its half-life in vivo. Moreover, we also show that acetylation of p53 can affect its ubiquitination through other mechanisms in addition to the site competition. This study has significant implications regarding a general mechanism by which protein acetylation modulates ubiquitination-dependent proteasome proteolysis.
Collapse
Affiliation(s)
- Muyang Li
- Institute for Cancer Genetics, and Department of Pathology, College of Physicians & Surgeons, Columbia University, New York, New York 10032, USA
| | | | | | | |
Collapse
|
2710
|
Hu M, Li P, Li M, Li W, Yao T, Wu JW, Gu W, Cohen RE, Shi Y. Crystal structure of a UBP-family deubiquitinating enzyme in isolation and in complex with ubiquitin aldehyde. Cell 2002; 111:1041-54. [PMID: 12507430 DOI: 10.1016/s0092-8674(02)01199-6] [Citation(s) in RCA: 517] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The ubiquitin-specific processing protease (UBP) family of deubiquitinating enzymes plays an essential role in numerous cellular processes. HAUSP, a representative UBP, specifically deubiquitinates and hence stabilizes the tumor suppressor protein p53. Here, we report the crystal structures of the 40 kDa catalytic core domain of HAUSP in isolation and in complex with ubiquitin aldehyde. These studies reveal that the UBP deubiquitinating enzymes exhibit a conserved three-domain architecture, comprising Fingers, Palm, and Thumb. The leaving ubiquitin moiety is specifically coordinated by the Fingers, with its C terminus placed in the active site between the Palm and the Thumb. Binding by ubiquitin aldehyde induces a drastic conformational change in the active site that realigns the catalytic triad residues for catalysis.
Collapse
Affiliation(s)
- Min Hu
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, NJ 08544, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
2711
|
Dias DC, Dolios G, Wang R, Pan ZQ. CUL7: A DOC domain-containing cullin selectively binds Skp1.Fbx29 to form an SCF-like complex. Proc Natl Acad Sci U S A 2002; 99:16601-6. [PMID: 12481031 PMCID: PMC139190 DOI: 10.1073/pnas.252646399] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2002] [Accepted: 10/24/2002] [Indexed: 11/18/2022] Open
Abstract
Selective protein degradation targeted by members of the F-box protein family plays pivotal roles in cell biology. It is widely accepted that an F-box protein directs substrate ubiquitination within a Skp1.CUL1.F-box protein.ROC1 (SCF-ROC1) E3 ubiquitin ligase complex. This assembly utilizes the CUL1 molecular scaffold, allowing the F-box protein to position its bound substrate for ubiquitination by a ROC1-recruited E2-conjugating enzyme. Here, we describe an alternative mechanism for assembling an F-box protein-based E3 complex through a previously uncharacterized cullin, CUL7, identified by mass spectrometry as a ROC1-interacting protein. CUL7 is a large polypeptide containing a cullin domain, which is responsible for ROC1 binding, and a DOC domain, which is also present in the anaphase-promoting complex. Remarkably, CUL7 assembles an SCF-ROC1-like E3 ubiquitin ligase complex consisting of Skp1, CUL7, the Fbx29 F-box protein, and ROC1. In contrast to CUL1 that binds Skp1 by itself, CUL7 interacts with the Skp1.Fbx29 complex, but not with Skp1 alone. Strikingly, CUL7 selectively interacts with Skp1.Fbx29 but not with Skp1.betaTRCP2 or Skp1.Skp2. Thus, CUL7 may define a previously uncharacterized, Fbx29-mediated, and ubiquitin-dependent proteolysis pathway.
Collapse
Affiliation(s)
- Dora C Dias
- Derald H. Ruttenberg Cancer Center and Department of Human Genetics, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029-6574, USA
| | | | | | | |
Collapse
|
2712
|
Ulane CM, Horvath CM. Paramyxoviruses SV5 and HPIV2 assemble STAT protein ubiquitin ligase complexes from cellular components. Virology 2002; 304:160-6. [PMID: 12504558 DOI: 10.1006/viro.2002.1773] [Citation(s) in RCA: 192] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Signal transducer and activator of transcription (STAT) proteins are normally long-lived, but infection with certain Paramyxoviruses results in efficient loss of IFN-responsive STAT1 or STAT2. Expression of a virus-encoded protein called "V" is sufficient to mediate the destruction of STAT proteins. STAT degradation is blocked by proteasome inhibitors, strongly implicating the ubiquitin (Ub)-proteasome targeting system. We demonstrate that cellular expression of V proteins from simian virus 5 (SV5) and type II human parainfluenza virus (HPIV2) induces polyubiquitylation of STAT1 and STAT2 targets. In vitro, the V proteins catalyze Ub transfer in an ATP-dependent process that requires both Ub-activating (E1) and Ub-conjugating (E2) activities. Furthermore, SV5 and HPIV2 V-interacting protein partners were isolated by affinity purification from human cells and reveal a complex of associated cellular proteins. This complex includes both STAT1 and STAT2, and the damaged DNA binding protein, DDB1. In addition, a protein related to a family of cellular Ub ligase complex subunits, cullin 4A (Cul4A), associated with the V proteins. The roles of both DDB1 and Cul4A in STAT1 degradation by SV5 infection were analyzed using small interfering RNAs. These findings demonstrate the assembly of a V-dependent degradation complex that includes STAT1, STAT2, DDB1, and Cul4A. In agreement with prior nomenclature on SCF-type cellular E3 enzymes, we refer to this complex as VDC.
Collapse
Affiliation(s)
- Christina M Ulane
- Immunobiology Center, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | |
Collapse
|
2713
|
Badciong JC, Haas AL. MdmX is a RING finger ubiquitin ligase capable of synergistically enhancing Mdm2 ubiquitination. J Biol Chem 2002; 277:49668-75. [PMID: 12393902 DOI: 10.1074/jbc.m208593200] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
It has been well documented that Mdm2 and its homologue MdmX not only are critical negative regulators of the tumor suppressor p53 but that both Mdm2 and MdmX interact to affect the function of the other. The mechanisms through which these effects are manifested, however, remain unclear. Although Mdm2 has been established as a RING finger ubiquitin ligase, MdmX has not been shown to possess this activity despite the extensive sequence homology between their respective RING finger domains. Here we demonstrate that MdmX acts as a ubiquitin ligase in vitro, being capable of autoubiquitination, as well as mediating the ubiquitination of p53. The addition of Mdm2 to in vitro ubiquitination assays containing MdmX results in a synergistic increase of ubiquitin conjugation. Analysis of the resulting ubiquitin conjugates reveals that this observed synergy reflects an increase in Mdm2 ubiquitination. This study also suggests that ubiquitination of Mdm2 and MdmX may not serve as a signal for degradation, as we show that each are capable of synthesizing non-lysine 48 polyubiquitin chains and, in fact, utilize multiple lysine linkages. Taken together, these findings suggest a more active role for MdmX in the Mdm2-MdmX-p53 regulatory network than has been proposed previously.
Collapse
Affiliation(s)
- James C Badciong
- Department of Biochemistry, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | | |
Collapse
|
2714
|
Mallery DL, Vandenberg CJ, Hiom K. Activation of the E3 ligase function of the BRCA1/BARD1 complex by polyubiquitin chains. EMBO J 2002; 21:6755-62. [PMID: 12485996 PMCID: PMC139111 DOI: 10.1093/emboj/cdf691] [Citation(s) in RCA: 220] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Loss of the tumour suppressor BRCA1 results in profound chromosomal instability. The fundamental defect underlying this catastrophic phenotype is not yet known. In vivo, BRCA1 forms a heterodimeric complex with BARD1. Both proteins contain an N-terminal zinc RING-finger domain which confers E3 ubiquitin ligase activity. We have isolated full-length human BRCA1/BARD1 complex and have shown that it has a dual E3 ubiquitin ligase activity. First, it mediates the monoubiquitylation of nucleosome core histones in vitro, including the variant histone H2AX that co-localizes with BRCA1 at sites of DNA damage. Secondly, BRCA1/BARD1 catalyses the formation of multiple polyubiquitin chains on itself. Remarkably, this auto-polyubiquitylation potentiates the E3 ubiquitin ligase activity of the BRCA1/BARD1 complex >20-fold. Even though BRCA1 has been reported to associate with a C-terminal ubiquitin hydrolase, BAP1, this enzyme does not appear to function in the deubiquitylation of the BRCA1/BARD1 complex.
Collapse
Affiliation(s)
| | | | - Kevin Hiom
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK
Corresponding author e-mail:
| |
Collapse
|
2715
|
Sakahira H, Breuer P, Hayer-Hartl MK, Hartl FU. Molecular chaperones as modulators of polyglutamine protein aggregation and toxicity. Proc Natl Acad Sci U S A 2002; 99 Suppl 4:16412-8. [PMID: 12189209 PMCID: PMC139902 DOI: 10.1073/pnas.182426899] [Citation(s) in RCA: 161] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The formation of insoluble protein aggregates in neurons is a hallmark of neurodegenerative diseases caused by proteins with expanded polyglutamine (polyQ) repeats. However, the mechanistic relationship between polyQ aggregation and its toxic effects on neurons remains unclear. Two main hypotheses have been put forward for how polyQ expansions may cause cellular dysfunction. In one model neurotoxicity results from the ability of polyQ-expanded proteins to recruit other important cellular proteins with polyQ stretches into the aggregates. In the other model, aggregating polyQ proteins partially inhibit the ubiquitin-proteasome system for protein degradation. These two mechanisms are not exclusive but may act in combination. In general, protein misfolding and aggregation are prevented by the machinery of molecular chaperones. Some chaperones such as the members of the Hsp70 family also modulate polyQ aggregation and suppress its toxicity. These recent findings suggest that an imbalance between the neuronal chaperone capacity and the production of potentially dangerous polyQ proteins may trigger the onset of polyQ disease.
Collapse
Affiliation(s)
- Hideki Sakahira
- Max-Planck-Institut für Biochemie, Department of Cellular Biochemistry, Am Klopferspitz 18a, D-82152 Martinsried, Germany
| | | | | | | |
Collapse
|
2716
|
Abstract
Because polyubiquitin chain structure modulates Ub-mediated signaling, knowledge of the physiological conformations of chain signals should provide insights into specific recognition. Here, we characterized the solution conformations of K48-linked Ub(2) and Ub(4) using a combination of NMR techniques, including chemical shift mapping of the interdomain interface, domain orientation measurements on the basis of 15N relaxation and residual dipolar couplings, and the solvent accessibility studies. Our data indicate a switch in the conformation of Ub(2), from open to closed, with increasing pH. The closed conformation features a well-defined interface that is related to, but distinguishable from, that observed in the Ub(2) crystal structure. This interface is dynamic in solution, such that important hydrophobic residues (L8, I44, V70) that are sequestered at the interface in the closed conformation may be accessible for direct interactions with recognition factors. Our results suggest that the distal two units of Ub(4), which is the minimum signal for efficient proteasomal degradation, may adopt the closed Ub(2) conformation.
Collapse
Affiliation(s)
- Ranjani Varadan
- Department of Chemistry and Biochemistry, Center of Biomolecular Structure and Organization, University of Maryland, 115 Agriculture/Life Science Surge Building, College Park, MD 20742-3360, USA
| | | | | | | |
Collapse
|
2717
|
Bencsath KP, Podgorski MS, Pagala VR, Slaughter CA, Schulman BA. Identification of a multifunctional binding site on Ubc9p required for Smt3p conjugation. J Biol Chem 2002; 277:47938-45. [PMID: 12354763 DOI: 10.1074/jbc.m207442200] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ubiquitin-like proteins (ub-lps) are conjugated by a conserved enzymatic pathway, involving ATP-dependent activation at the C terminus by an activating enzyme (E1) and formation of a thiolester intermediate with a conjugating enzyme (E2) prior to ligation to the target. Ubc9, the E2 for SUMO, synthesizes polymeric chains in the presence of its E1 and MgATP. To better understand conjugation of ub-lps, we have performed mutational analysis of Saccharomyces cerevisiae Ubc9p, which conjugates the SUMO family member Smt3p. We have identified Ubc9p surfaces involved in thiolester bond and Smt3p-Smt3p chain formation. The residues involved in thiolester bond formation map to a surface we show is the E1 binding site, and E2s for other ub-lps are likely to bind to their E1s at a homologous site. We also find that this same surface binds Smt3p. A mutation that impairs binding to E1 but not Smt3p impairs thiolester bond formation, suggesting that it is the E1 interaction at this site that is crucial. Interestingly, other E2s and their relatives also use this same surface for binding to ubiquitin, E3s, and other proteins, revealing this to be a multipurpose binding site and suggesting that the entire E1-E2-E3 pathway has coevolved for a given ub-lp.
Collapse
Affiliation(s)
- Kalman P Bencsath
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | | | | | | | |
Collapse
|
2718
|
Abstract
Heterozygous carriers of loss-of-function germline mutations in the BRCA1 or BRCA2 breast cancer susceptibility genes have a predisposition to breast and ovarian cancer. Multiple functions have been ascribed to the products of these genes, linking them to pathways that inhibit progression to neoplasia. Various investigators have assigned roles for these tumor suppressor gene products in the cell functions of genome repair, transcription, and growth control. There is emerging evidence that BRCA1 may participate in ubiquitin E3 ligase activity. BRCA1 and BRCA2 have each been implicated in chromatin remodeling dynamics via protein partnering. Ubiquitin ligase and chromatin remodeling activities need not be mutually exclusive and both may function in DNA repair, transcriptional regulation, or cell cycle control. Here we highlight certain recent findings and currently unanswered questions regarding BRCA1 and BRCA2 in breast cancer.
Collapse
Affiliation(s)
- Dianne C Daniel
- Mount Sinai School of Medicine, Department of Pathology, New York, New York 10029, USA.
| |
Collapse
|
2719
|
Xie Y, Varshavsky A. UFD4 lacking the proteasome-binding region catalyses ubiquitination but is impaired in proteolysis. Nat Cell Biol 2002; 4:1003-7. [PMID: 12447385 DOI: 10.1038/ncb889] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2002] [Revised: 10/05/2002] [Accepted: 10/22/2002] [Indexed: 11/09/2022]
Abstract
The ubiquitin system recognizes degradation signals of protein substrates through E3-E2 ubiquitin ligases, which produce a substrate-linked multi-ubiquitin chain. Ubiquitinated substrates are degraded by the 26S proteasome, which consists of the 20S protease and two 19S particles. We previously showed that UBR1 and UFD4, two E3 ligases of the yeast Saccharomyces cerevisiae, interact with specific proteasomal subunits. Here we advance this analysis for UFD4 and show that it interacts with RPT4 and RPT6, two subunits of the 19S particle. The 201-residue amino-terminal region of UFD4 is essential for its binding to RPT4 and RPT6. UFD4(DeltaN), which lacks this N-terminal region, adds ubiquitin to test substrates with apparently wild-type activity, but is impaired in conferring short half-lives on these substrates. We propose that interaction of a targeted substrate with the 26S proteasome involves contacts of specific proteasomal subunits with the substrate-bound ubiquitin ligase, with the substrate-linked multi-ubiquitin chain and with the substrate itself. This multiple-site binding may function to slow down dissociation of the substrate from the proteasome and to facilitate the unfolding of substrate through ATP-dependent movements of the chaperone subunits of the 19S particle.
Collapse
Affiliation(s)
- Youming Xie
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA
| | | |
Collapse
|
2720
|
Pray TR, Parlati F, Huang J, Wong BR, Payan DG, Bennett MK, Issakani SD, Molineaux S, Demo SD. Cell cycle regulatory E3 ubiquitin ligases as anticancer targets. Drug Resist Updat 2002; 5:249-58. [PMID: 12531181 DOI: 10.1016/s1368-7646(02)00121-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Disregulation of the cell cycle and proliferation play key roles in cellular transformation and tumorigenesis. Such processes are intimately tied to the concentration, localization and activity of enzymes, adapters, receptors, and structural proteins in cells. Ubiquitination of these cellular regulatory proteins, governed by specific enzymes in the ubiquitin (Ub) conjugation cascade, has profound effects on their various functions, most commonly through proteasome targeting and degradation. This review will focus on a variety of E3 Ub ligases as potential oncology drug targets, with particular emphasis on the role of these molecules in the regulation of stability, localization, and activity of key proteins such as tumor suppressors and oncoproteins. E3 ubiquitin ligases that have established roles in cell cycle and apoptosis, such as the anaphase-promoting complex (APC), the Skp-1-Cul1-F-box class, and the murine double minute 2 (MDM2) protein, in addition to more recently discovered E3 ubiquitin ligases which may be similarly important in tumorigenesis, (e.g. Smurf family, CHFR, and Efp), will be discussed. We will present evidence to support E3 ligases as good biological targets in the development of anticancer therapeutics and address challenges in drug discovery for these targets.
Collapse
Affiliation(s)
- Todd R Pray
- Rigel Pharmaceuticals, Inc., 240 East Grand Avenue, South San Francisco, California 94080, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
2721
|
Ledesma MD, Galvan C, Hellias B, Dotti C, Jensen PH. Astrocytic but not neuronal increased expression and redistribution of parkin during unfolded protein stress. J Neurochem 2002; 83:1431-40. [PMID: 12472897 DOI: 10.1046/j.1471-4159.2002.01253.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Parkin is a ubiquitin ligase that facilitates proteasomal protein degradation and is involved in a common autosomal recessive form of Parkinson's disease. Its expression is part of the unfolded protein response in cell lines where its overexpression protects against unfolded protein stress. How parkin expression is regulated in brain primary cells under stress situations is however, less well established. Here, the cellular and subcellular localization of parkin under basal conditions and during unfolded protein stress was investigated in primary cultures of rat astrocytes and hippocampal neurons. Immunofluorescense microscopy and biochemical analysis demonstrated that parkin is mainly associated with the endoplasmic reticulum (ER) in hippocampal neurons while it is associated with Golgi membranes, the nuclei and light vesicles in astrocytes. The constitutive parkin expression was high in neurons as compared with astrocytes. However, unfolded protein stress elicited a selective increase in astrocytic parkin expression and a change in distribution, whereas neuronal parkin remained largely unmodified. The cell specific differences argue in favour of different cellular binding sites and substrates for the protein and a pathogenic role for astrocytes in Parkinson's disease caused by parkin dysfunction.
Collapse
Affiliation(s)
- Maria Dolores Ledesma
- Università degli Studi di Torino, Cavalieri Ottolenghi Scientific Institute, Torino, Italy
| | | | | | | | | |
Collapse
|
2722
|
Abstract
Neurodegenerative disorders such as Parkinson's disease (PD) and 'dementia with Lewy bodies' (DLB) are characterized pathologically by selective neuronal death and the appearance of intracytoplasmic protein aggregates (Lewy bodies). The process by which these inclusions are formed and their role in the neurodegenerative process remain elusive. In this study, we demonstrate a close relationship between Lewy bodies and aggresomes, which are cytoplasmic inclusions formed at the centrosome as a cytoprotective response to sequester and degrade excess levels of potentially toxic abnormal proteins within cells. We show that the centrosome/aggresome-related proteins gamma-tubulin and pericentrin display an aggresome-like distribution in Lewy bodies in PD and DLB. Lewy bodies also sequester the ubiquitin-activating enzyme (E1), the proteasome activators PA700 and PA28, and HSP70, all of which are recruited to aggresomes for enhanced proteolysis. Using novel antibodies that are specific and highly sensitive to ubiquitin-protein conjugates, we revealed the presence of numerous discrete ubiquitinated protein aggregates in neuronal soma and processes in PD and DLB. These aggregates appear to be being transported from peripheral sites to the centrosome where they are sequestered to form Lewy bodies in neurons. Finally, we have shown that inhibition of proteasomal function or generation of misfolded proteins cause the formation of aggresome/Lewy body-like inclusions and cytotoxicity in dopaminergic neurons in culture. These observations suggest that Lewy body formation may be an aggresome-related event in response to increasing levels of abnormal proteins in neurons. This phenomenon is consistent with growing evidence that altered protein handling underlies the etiopathogenesis of PD and related disorders.
Collapse
Affiliation(s)
- Kevin St P McNaught
- Department of Neurology, Mount Sinai School of Medicine, Annenberg 14-73, One Gustave L Levy Place, New York, NY 10029, USA.
| | | | | | | | | |
Collapse
|
2723
|
Chen H, MacDonald A, Coffino P. Structural elements of antizymes 1 and 2 are required for proteasomal degradation of ornithine decarboxylase. J Biol Chem 2002; 277:45957-61. [PMID: 12359729 DOI: 10.1074/jbc.m206799200] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The antizymes constitute a conserved gene family with at least three mammalian orthologs. As described previously, in a degradation system utilizing rabbit reticulocyte lysate, antizyme 1 (AZ1) accelerates proteasomal ornithine decarboxylase (ODC) degradation, but antizyme 2 (AZ2) does not. To examine the relationship between antizyme structure and function, we further characterized the properties of AZ1 and AZ2 and protein chimeras composed of elements of the two. AZ1 binds to ODC with about a 3-fold higher potency than AZ2, but this cannot account for their distinct degradative activities. The dissimilar degradative capacity of AZ1 and AZ2 is also observed using purified proteasomes. A series of reciprocal AZ1/AZ2 chimeras was used to determine the sequence elements needed to direct ODC degradation. An element contained within amino acids 130-145 of AZ1 is essential for this function. Constructs in which amino acids 130-145 were exchanged between the antizymes confirmed the critical nature of this region. Within this region, amino acids 131 and 145 proved responsible for the functional difference between the two forms of AZ.
Collapse
Affiliation(s)
- Hui Chen
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California 94143-0414, USA
| | | | | |
Collapse
|
2724
|
Kentsis A, Gordon RE, Borden KLB. Control of biochemical reactions through supramolecular RING domain self-assembly. Proc Natl Acad Sci U S A 2002; 99:15404-9. [PMID: 12438698 PMCID: PMC137729 DOI: 10.1073/pnas.202608799] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
RING domains act in a variety of unrelated biochemical reactions, with many of these domains forming key parts of supramolecular assemblies in cells. Here, we observe that purified RINGs from a variety of functionally unrelated proteins, including promyelocytic leukemia protein, KAP-1TIF1beta, Z, Mel18, breast cancer susceptibility gene product 1 (BRCA1), and BRCA1-associated RING domain (BARD1), self-assemble into supramolecular structures in vitro that resemble those they form in cells. RING bodies form polyvalent binding surfaces and scaffold multiple partner proteins. Separation of RING bodies from monomers reveals that self-assembly controls and amplifies their specific activities in two unrelated biochemistries: reduction of 5' mRNA cap affinity of eIF4E by promyelocytic leukemia protein and Z, and E3 ubiquitin conjugation activity of BARD1:BRCA1. Functional significance of self-assembly is underscored by partial restoration of assembly and E3 activity of cancer predisposing BRCA1 mutant by forced oligomerization. RING self-assembly creates bodies that act structurally as polyvalent scaffolds, thermodynamically by amplifying activities of partner proteins, and catalytically by spatiotemporal coupling of enzymatic reactions. These studies reveal a general paradigm of how supramolecular structures may function in cells.
Collapse
Affiliation(s)
- Alex Kentsis
- Structural Biology Program, Department of Physiology and Biophysics, Mount Sinai School of Medicine, New York University, New York 10029, USA
| | | | | |
Collapse
|
2725
|
Abstract
The human isopeptidase T (isoT) is a zinc-binding deubiquitinating enzyme involved in the disassembly of free K48-linked polyubiquitin chains into ubiquitin monomers. The catalytic site of this enzyme is thought to be composed of Cys335, Asp435, His786 and His795. These four residues were site-directed mutagenized. None of the mutants were able to cleave a peptide-linked ubiquitin dimer. Similarly, C335S, D435N and H795N mutants had virtually no activity against a K48-linked isopeptide ubiquitin dimer, which is an isoT-specific substrate that mimics the K48-linked polyubiquitin chains. On the other hand, the H786N mutant retained a partial activity toward the K48-linked substrate, suggesting that the His786 residue might not be part of the catalytic site. None of the mutations significantly affected the capacity of isoT to bind ubiquitin and zinc. Thus, the catalytic site of UBPs could resemble that of other cysteine proteases, which contain one Cys, one Asp and one His.
Collapse
Affiliation(s)
- Thierry Lacombe
- Department of Medical Biochemistry, University of Geneva, CMU, 1 rue Michel Servet, CH-1211 4, Genève, Switzerland.
| | | |
Collapse
|
2726
|
Carroll CW, Morgan DO. The Doc1 subunit is a processivity factor for the anaphase-promoting complex. Nat Cell Biol 2002; 4:880-7. [PMID: 12402045 DOI: 10.1038/ncb871] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2002] [Revised: 08/27/2002] [Accepted: 09/24/2002] [Indexed: 02/02/2023]
Abstract
Ubiquitin-mediated proteolysis of securin and mitotic cyclins is essential for exit from mitosis. The final step in ubiquitination of these and other proteins is catalysed by the anaphase-promoting complex (APC), a multi-subunit ubiquitin-protein ligase (E3). Little is known about the molecular reaction resulting in APC-dependent substrate ubiquitination or the role of individual APC subunits in the reaction. Using a well-defined in vitro system, we show that highly purified APC from Saccharomyces cerevisiae ubiquitinates a model cyclin substrate in a processive manner. Analysis of mutant APC lacking the Doc1/Apc10 subunit (APC(doc1 Delta)) indicates that Doc1 is required for processivity. The specific molecular defect in APC(doc1 Delta) is identified by a large increase in apparent K(M) for the cyclin substrate relative to the wild-type enzyme. This suggests that Doc1 stimulates processivity by limiting substrate dissociation. Addition of recombinant Doc1 to APC(doc1 Delta) fully restores enzyme function. Doc1-related domains are found in mechanistically distinct ubiquitin-ligase enzymes and may generally stimulate ubiquitination by contributing to substrate-enzyme affinity.
Collapse
Affiliation(s)
- Christopher W Carroll
- Department of Physiology, University of California, San Francisco, CA 94143-0444, USA
| | | |
Collapse
|
2727
|
Andrejeva J, Poole E, Young DF, Goodbourn S, Randall RE. The p127 subunit (DDB1) of the UV-DNA damage repair binding protein is essential for the targeted degradation of STAT1 by the V protein of the paramyxovirus simian virus 5. J Virol 2002; 76:11379-86. [PMID: 12388698 PMCID: PMC136798 DOI: 10.1128/jvi.76.22.11379-11386.2002] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The V protein of simian virus 5 (SV5) blocks interferon signaling by targeting STAT1 for proteasome-mediated degradation. Here we present three main pieces of evidence which demonstrate that the p127 subunit (DDB1) of the UV damage-specific DNA binding protein (DDB) plays a central role in this degradation process. First, the V protein of an SV5 mutant which fails to target STAT1 for degradation does not bind DDB1. Second, mutations in the N and C termini of V which abolish the binding of V to DDB1 also prevent V from blocking interferon (IFN) signaling. Third, treatment of HeLa/SV5-V cells, which constitutively express the V protein of SV5 and thus lack STAT1, with short interfering RNAs specific for DDB1 resulted in a reduction in DDB1 levels with a concomitant increase in STAT1 levels and a restoration of IFN signaling. Furthermore, STAT1 is degraded in GM02415 (2RO) cells, which have a mutation in DDB2 (the p48 subunit of DDB) which abolishes its ability to interact with DDB1, thereby demonstrating that the role of DDB1 in STAT1 degradation is independent of its association with DDB2. Evidence is also presented which demonstrates that STAT2 is required for the degradation of STAT1 by SV5. These results suggest that DDB1, STAT1, STAT2, and V may form part of a large multiprotein complex which leads to the targeted degradation of STAT1 by the proteasome.
Collapse
Affiliation(s)
- J Andrejeva
- School of Biology, University of St. Andrews, Fife KY16 9TS, United Kingdom
| | | | | | | | | |
Collapse
|
2728
|
Carrard G, Bulteau AL, Petropoulos I, Friguet B. Impairment of proteasome structure and function in aging. Int J Biochem Cell Biol 2002; 34:1461-74. [PMID: 12200039 DOI: 10.1016/s1357-2725(02)00085-7] [Citation(s) in RCA: 204] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Damage to macromolecules, and in particular protein, implicated in the cellular degeneration that occurs during the aging process, is corroborated by the accumulation of oxidative end-products over time. Oxidized protein build up is commonly seen as a hallmark of cellular aging. Protein turnover is essential to preserve cell function and the main proteolytic system in charge of cytosolic protein degradation is the proteasome. The proteasome is a multi-catalytic proteolytic complex, which recognizes and selectively degrades oxidatively damaged and ubiquitinated proteins. One of the hypothesis put forward to explain the accumulation of altered proteins is the decrease of proteasome activity with age. Indeed, accumulation of altered protein can be explained by increased protein alteration, decreased protein degradation or the combination of both. A short description of proteasome structure and of its role in cellular functions is first given. Then, accumulation of damaged protein is presented with emphasis on the pathways implicated in the formation of altered proteins. Finally, evidence for an age-related impairment of proteasome structure and function that has been reported by different groups is provided in the light of proteasomal dysfunction induced upon oxidative stress. It is now clear that proteasome activity is declining with age and that the loss in proteasome activity during aging is dependent of at least three different mechanisms: decreased proteasome expression; alterations and/or replacement of proteasome subunits and formation of inhibitory cross-linked proteins. However, it is also clear that events leading to the age- and disease-related loss of proteasome function have not yet been fully characterized.
Collapse
Affiliation(s)
- Géraldine Carrard
- Laboratoire de Biologie et Biochimie Cellulaire du Vieillissement, Université Paris 7, Denis Diderot, 2 place Jussieu, 75251 Cedex 05, Paris, France
| | | | | | | |
Collapse
|
2729
|
Du F, Navarro-Garcia F, Xia Z, Tasaki T, Varshavsky A. Pairs of dipeptides synergistically activate the binding of substrate by ubiquitin ligase through dissociation of its autoinhibitory domain. Proc Natl Acad Sci U S A 2002; 99:14110-5. [PMID: 12391316 PMCID: PMC137845 DOI: 10.1073/pnas.172527399] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Protein degradation by the ubiquitin (Ub) system controls the concentrations of many regulatory proteins. The degradation signals (degrons) of these proteins are recognized by the system's Ub ligases (complexes of E2 and E3 enzymes). Two substrate-binding sites of UBR1, the E3 of the N-end rule pathway in the yeast Saccharomyces cerevisiae, recognize basic (type 1) and bulky hydrophobic (type 2) N-terminal residues of proteins or short peptides. A third substrate-binding site of UBR1 targets CUP9, a transcriptional repressor of the peptide transporter PTR2, through an internal (non-N-terminal) degron of CUP9. Previous work demonstrated that dipeptides with destabilizing N-terminal residues allosterically activate UBR1, leading to accelerated in vivo degradation of CUP9 and the induction of PTR2 expression. Through this positive feedback, S. cerevisiae can sense the presence of extracellular peptides and react by accelerating their uptake. Here, we show that dipeptides with destabilizing N-terminal residues cause dissociation of the C-terminal autoinhibitory domain of UBR1 from its N-terminal region that contains all three substrate-binding sites. This dissociation, which allows the interaction between UBR1 and CUP9, is strongly increased only if both type 1- and type 2-binding sites of UBR1 are occupied by dipeptides. An aspect of autoinhibition characteristic of yeast UBR1 also was observed with mammalian (mouse) UBR1. The discovery of autoinhibition in Ub ligases of the UBR family indicates that this regulatory mechanism may also control the activity of other Ub ligases.
Collapse
Affiliation(s)
- Fangyong Du
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | | | | |
Collapse
|
2730
|
Liu Y, Fallon L, Lashuel HA, Liu Z, Lansbury PT. The UCH-L1 gene encodes two opposing enzymatic activities that affect alpha-synuclein degradation and Parkinson's disease susceptibility. Cell 2002; 111:209-18. [PMID: 12408865 DOI: 10.1016/s0092-8674(02)01012-7] [Citation(s) in RCA: 612] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The assumption that each enzyme expresses a single enzymatic activity in vivo is challenged by the linkage of the neuronal enzyme ubiquitin C-terminal hydrolase-L1 (UCH-L1) to Parkinson's disease (PD). UCH-L1, especially those variants linked to higher susceptibility to PD, causes the accumulation of alpha-synuclein in cultured cells, an effect that cannot be explained by its recognized hydrolase activity. UCH-L1 is shown here to exhibit a second, dimerization-dependent, ubiquityl ligase activity. A polymorphic variant of UCH-L1 that is associated with decreased PD risk (S18Y) has reduced ligase activity but comparable hydrolase activity as the wild-type enzyme. Thus, the ligase activity as well as the hydrolase activity of UCH-L1 may play a role in proteasomal protein degradation, a critical process for neuronal health.
Collapse
Affiliation(s)
- Yichin Liu
- Center for Neurologic Diseases, Brigham and Women's Hospital, Department of Neurology, Harvard Medical School, Cambridge, MA 02139, USA
| | | | | | | | | |
Collapse
|
2731
|
Toniato E, Chen XP, Losman J, Flati V, Donahue L, Rothman P. TRIM8/GERP RING finger protein interacts with SOCS-1. J Biol Chem 2002; 277:37315-22. [PMID: 12163497 DOI: 10.1074/jbc.m205900200] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Members of the suppressor of cytokine signaling (SOCS) family of signaling molecules regulate the activation of cytokine signaling. Experimental evidence indicates that SOCS expression is induced by cytokines and pro-inflammatory stimuli and is controlled at both the transcriptional and post-transcriptional levels. SOCS proteins are unstable and seem to be rapidly degraded by proteasomal pathways. However, the mechanisms by which SOCS protein levels are regulated remain unclear. Here, we show that TRIM8/GERP, a RING finger protein, interacts with SOCS-1 in vitro and in vivo. TRIM8/GERP, previously identified as a new member of the family of proteins containing a tripartite motif (TRIM), is a 551-amino acid RING finger protein conserved across species. TRIM8/GERP expression can be induced by interferon-gamma in epithelial and lymphoid cells. Coexpression of TRIM8/GERP with SOCS-1 decreases SOCS-1 protein stability and levels. Functionally, expression of TRIM8/GERP decreases the repression of interferon-gamma signaling mediated by SOCS-1. These data suggest that TRIM8/GERP may be a regulator of SOCS-1 function.
Collapse
Affiliation(s)
- Elena Toniato
- Department of Medicine and Microbiology, Columbia University, College of Physicians and Surgeons, New York, New York 10032, USA
| | | | | | | | | | | |
Collapse
|
2732
|
Dantuma NP, Masucci MG. Stabilization signals: a novel regulatory mechanism in the ubiquitin/proteasome system. FEBS Lett 2002; 529:22-6. [PMID: 12354607 DOI: 10.1016/s0014-5793(02)03252-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The turnover of cellular proteins is a highly organized process that involves spatially and temporally regulated degradation by the ubiquitin/proteasome system. It is generally acknowledged that the specificity of the process is determined by constitutive or conditional protein domains, the degradation signals, that target the substrate for proteasomal degradation. In this review, we discuss a new type of regulatory domain: the stabilization signal. A model is proposed according to which protein half-lives are determined by the interplay of counteracting degradation and stabilization signals.
Collapse
Affiliation(s)
- Nico P Dantuma
- Microbiology and Tumor Biology Center, Karolinska Institutet, Box 280, S-171 77, Stockholm, Sweden.
| | | |
Collapse
|
2733
|
Borodovsky A, Ovaa H, Kolli N, Gan-Erdene T, Wilkinson KD, Ploegh HL, Kessler BM. Chemistry-based functional proteomics reveals novel members of the deubiquitinating enzyme family. CHEMISTRY & BIOLOGY 2002; 9:1149-59. [PMID: 12401499 DOI: 10.1016/s1074-5521(02)00248-x] [Citation(s) in RCA: 471] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The ubiquitin (Ub)-proteasome system includes a large family of deubiquitinating enzymes (DUBs). Many members are assigned to this enzyme class by sequence similarity but without evidence for biological activity. A panel of novel DUB-specific probes was generated by a chemical ligation method. These probes allowed identification of DUBs and associated components by tandem mass spectrometry, as well as rapid demonstration of enzymatic activity for gene products whose functions were inferred from primary structure. We identified 23 active DUBs in EL4 cells, including the tumor suppressor CYLD1. At least two DUBs tightly interact with the proteasome 19S regulatory complex. An OTU domain-containing protein, with no sequence homology to any known DUBs, was isolated. We show that this polypeptide reacts with the C terminus of Ub, thus demonstrating DUB-like enzymatic activity for this novel superfamily of proteases.
Collapse
Affiliation(s)
- Anna Borodovsky
- Department of Pathology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
2734
|
Lin HK, Altuwaijri S, Lin WJ, Kan PY, Collins LL, Chang C. Proteasome activity is required for androgen receptor transcriptional activity via regulation of androgen receptor nuclear translocation and interaction with coregulators in prostate cancer cells. J Biol Chem 2002; 277:36570-6. [PMID: 12119296 DOI: 10.1074/jbc.m204751200] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Upon binding to androgen, the androgen receptor (AR) can translocate into the nucleus and bind to androgen response element(s) to modulate its target genes. Here we have shown that MG132, a 26 S proteasome inhibitor, suppressed AR transactivation in an androgen-dependent manner in prostate cancer LNCaP and PC-3 cells. In contrast, MG132 showed no suppressive effect on glucocorticoid receptor transactivation. Additionally, transfection of PSMA7, a proteasome subunit, enhanced AR transactivation in a dose-dependent manner. The suppression of AR transactivation by MG132 may then result in the suppression of prostate-specific antigen, a well known marker used to monitor the progress of prostate cancer. Further mechanistic studies indicated that MG132 may suppress AR transactivation via inhibition of AR nuclear translocation and/or inhibition of interactions between AR and its coregulators, such as ARA70 or TIF2. Together, our data suggest that the proteasome system plays important roles in the regulation of AR activity in prostate cancer cells and may provide a unique target site for the development of therapeutic drugs to block androgen/AR-mediated prostate tumor growth.
Collapse
Affiliation(s)
- Hui-Kuan Lin
- George Whipple Laboratory for Cancer Research, Department of Pathology, University of Rochester Medical Center, Rochester, New York 14642, USA
| | | | | | | | | | | |
Collapse
|
2735
|
Maytal-Kivity V, Reis N, Hofmann K, Glickman MH. MPN+, a putative catalytic motif found in a subset of MPN domain proteins from eukaryotes and prokaryotes, is critical for Rpn11 function. BMC BIOCHEMISTRY 2002; 3:28. [PMID: 12370088 PMCID: PMC129983 DOI: 10.1186/1471-2091-3-28] [Citation(s) in RCA: 181] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2002] [Accepted: 09/20/2002] [Indexed: 11/22/2022]
Abstract
BACKGROUND Three macromolecular assemblages, the lid complex of the proteasome, the COP9-Signalosome (CSN) and the eIF3 complex, all consist of multiple proteins harboring MPN and PCI domains. Up to now, no specific function for any of these proteins has been defined, nor has the importance of these motifs been elucidated. In particular Rpn11, a lid subunit, serves as the paradigm for MPN-containing proteins as it is highly conserved and important for proteasome function. RESULTS We have identified a sequence motif, termed the MPN+ motif, which is highly conserved in a subset of MPN domain proteins such as Rpn11 and Csn5/Jab1, but is not present outside of this subfamily. The MPN+ motif consists of five polar residues that resemble the active site residues of hydrolytic enzyme classes, particularly that of metalloproteases. By using site-directed mutagenesis, we show that the MPN+ residues are important for the function of Rpn11, while a highly conserved Cys residue outside of the MPN+ motif is not essential. Single amino acid substitutions in MPN+ residues all show similar phenotypes, including slow growth, sensitivity to temperature and amino acid analogs, and general proteasome-dependent proteolysis defects. CONCLUSIONS The MPN+ motif is abundant in certain MPN-domain proteins, including newly identified proteins of eukaryotes, bacteria and archaea thought to act outside of the traditional large PCI/MPN complexes. The putative catalytic nature of the MPN+ motif makes it a good candidate for a pivotal enzymatic function, possibly a proteasome-associated deubiquitinating activity and a CSN-associated Nedd8/Rub1-removing activity.
Collapse
Affiliation(s)
- Vered Maytal-Kivity
- Dept. of Biology and Institute for Catalysis Science and Technology (ICST) Technion – Israel Institute of Technology, Israel
| | - Noa Reis
- Dept. of Biology and Institute for Catalysis Science and Technology (ICST) Technion – Israel Institute of Technology, Israel
| | - Kay Hofmann
- Bioinformatics Group, MEMOREC Stoffel GmbH, Germany
| | - Michael H Glickman
- Dept. of Biology and Institute for Catalysis Science and Technology (ICST) Technion – Israel Institute of Technology, Israel
| |
Collapse
|
2736
|
Chin LS, Vavalle JP, Li L. Staring, a novel E3 ubiquitin-protein ligase that targets syntaxin 1 for degradation. J Biol Chem 2002; 277:35071-9. [PMID: 12121982 DOI: 10.1074/jbc.m203300200] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Syntaxin 1 is an essential component of the neurotransmitter release machinery, and regulation of syntaxin 1 expression levels is thought to contribute to the mechanism underlying learning and memory. However, the molecular events that control the degradation of syntaxin 1 remain undefined. Here we report the identification and characterization of a novel RING finger protein, Staring, that interacts with syntaxin 1. Staring is expressed throughout the brain, where it exists in both cytosolic and membrane-associated pools. Staring binds and recruits the brain-enriched E2 ubiquitin-conjugating enzyme UbcH8 to syntaxin 1 and facilitates the ubiquitination and proteasome-dependent degradation of syntaxin 1. These findings suggest that Staring is a novel E3 ubiquitin-protein ligase that targets syntaxin 1 for degradation by the ubiquitin-proteasome pathway.
Collapse
Affiliation(s)
- Lih-Shen Chin
- Department of Pharmacology, Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, Georgia 30322-3090, USA
| | | | | |
Collapse
|
2737
|
Cox CJ, Dutta K, Petri ET, Hwang WC, Lin Y, Pascal SM, Basavappa R. The regions of securin and cyclin B proteins recognized by the ubiquitination machinery are natively unfolded. FEBS Lett 2002; 527:303-8. [PMID: 12220679 DOI: 10.1016/s0014-5793(02)03246-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The proteins securin and cyclin B are destroyed in mitosis by the ubiquitin/proteasome system. This destruction is important to mitotic progression. The N-terminal regions of these proteins contain the sequence features recognized by the ubiquitination system. We have demonstrated using circular dichroism and 1-D and 2-D nuclear magnetic resonance that these rather substantial regions are natively unfolded. Based on these findings, we propose a model that helps to explain previously enigmatic observations.
Collapse
Affiliation(s)
- Cathleen J Cox
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, 601 Elmwood Ave., Rochester, NY 14618, USA
| | | | | | | | | | | | | |
Collapse
|
2738
|
Abstract
Protein degradation is one of the tactics employed by the cell for irreversibly inactivating proteins. In eukaryotes, ATP-dependent protein degradation in the cytoplasm and nucleus is carried out by the 26S proteasome. Most proteins are targeted to the 26S proteasome by covalent attachment of a multi-ubiquitin chain. A key component of the enzyme cascade that results in attachment of the multi-ubiquitin chain to the target or labile protein is the ubiquitin ligase that controls the specificity of the ubiquitination reaction. Defects in ubiquitin-dependent proteolysis have been shown to result in a variety of human diseases, including cancer, neurodegenerative diseases, and metabolic disorders. This review focuses on the role of ubiquitin-dependent degradation in human disease and potential clinical applications that are being developed to exploit the cells natural proteolytic machinery to treat diseases.
Collapse
Affiliation(s)
- Kathleen M Sakamoto
- Department of Pediatrics, Gwynne Hazen Cherry Memorial Laboratories, Mattel Children's Hospital, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, 10833 Le Conte Avenue, Los Angeles, CA 90095-1752, USA
| |
Collapse
|
2739
|
Abstract
The ubiquitin superfamily is a rich repository of small, conserved, functionally unique, and important proteins. Its member proteins fold simply and similarly, with kinetic and thermodynamic ease (Sorenson, J. M.; Head-Gordon, T. Toward minimalist models of larger proteins: A ubiquitin-like protein. Proteins 2002, 46, 368-379). They have been implicated in numerous cancers, neurodegenerations, inflammations, and various disorders affecting signal transduction or protein half-life. These proteins serve the cell generally as portable recognition tags with distinct intracellular roles; indeed, tagging with small protein modifiers has become a new hallmark of post-translational modifications and other signal transduction phenomenon (Finley, D. J. Signal transduction. An alternative to destruction. Nature 2001, 412, 283, 285-286). Because many ubiquitin-like proteins bear similarities in sequence, structure, and function, we gathered protein sequences containing the ubiquitin domain from public databases and created a highly granular and defined protein catabolism database to catalog, summarize, reference, and relate them to their targets and specific ligases (to be described elsewhere). In this paper, we reveal a compilation of proteins possessing the ubiquitin domain. This comprises the first and most important part of our database content. We searched available organismal proteomes for sequence-related members of the ubiquitin superfamily and here present over 200 proteins possessing this domain. These proteins were organized phylogenetically and functionally, thereby defining several new families. To our knowledge, this is the most complete assemblage of ubiquitin domains to date.
Collapse
|
2740
|
Adegoke OAJ, Bédard N, Roest HP, Wing SS. Ubiquitin-conjugating enzyme E214k/HR6B is dispensable for increased protein catabolism in muscle of fasted mice. Am J Physiol Endocrinol Metab 2002; 283:E482-9. [PMID: 12169441 DOI: 10.1152/ajpendo.00097.2002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Activated skeletal muscle proteolysis in catabolic states has been linked to an upregulation of the ATP-ubiquitin-dependent proteolytic system. Previous studies suggested that the N-end rule pathway is primarily responsible for the bulk of skeletal muscle proteolysis. The activity of this pathway is dependent on the 14-kDa ubiquitin-conjugating enzyme E2(14k) (HR6B) and the ubiquitin protein ligase Ubr1. To address the requirement of E2(14k) in muscle proteolysis, we examined muscle protein metabolism in wild-type (WT) mice and mice lacking the E2(14k) gene (KO) in fed and fasted (48 h) states. Baseline body weight, muscle mass, and protein content were similar, and these parameters decreased similarly upon fasting in the two genotypes. There were also no effects of genotype on the rate of proteolysis in soleus muscle. The fasting-induced increase in the amount of ubiquitinated proteins was the same in WT and KO mice. The absence of any significant effect of loss of E2(14k) function was not due to a compensatory induction of the closely related isoform HR6A. Total intracellular concentration of E2(14k) and HR6A in the WT mice was 290 +/- 40 nM, but the level in the KO mice (reflecting the level of HR6A) was 110 +/- 9 nM. This value is about threefold the apparent Michaelis-Menten constant (K(m)) of E2(14k) (approximately 40 nM) for stimulating conjugation in muscle extracts. Because the HR6A isoform has a K(m) of 16 nM for stimulating conjugation, the HR6A levels in the muscles of KO mice appear sufficient for supporting conjugation mediated by this pathway during fasting.
Collapse
Affiliation(s)
- Olasunkanmi A J Adegoke
- Polypeptide Laboratory, Department of Medicine, McGill University, Montreal, Quebec H3A 2B2, Canada
| | | | | | | |
Collapse
|
2741
|
Abstract
Seven-transmembrane receptors, which constitute the largest, most ubiquitous and most versatile family of membrane receptors, are also the most common target of therapeutic drugs. Recent findings indicate that the classical models of G-protein coupling and activation of second-messenger-generating enzymes do not fully explain their remarkably diverse biological actions.
Collapse
Affiliation(s)
- Kristen L Pierce
- The Howard Hughes Medical Institute and the Department of Medicine, Box 3821, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
2742
|
Li J, Pauley AM, Myers RL, Shuang R, Brashler JR, Yan R, Buhl AE, Ruble C, Gurney ME. SEL-10 interacts with presenilin 1, facilitates its ubiquitination, and alters A-beta peptide production. J Neurochem 2002; 82:1540-8. [PMID: 12354302 DOI: 10.1046/j.1471-4159.2002.01105.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mutations in the human presenilin genes (PS1 or PS2) have been linked to autosomal dominant, early onset Alzheimer's disease (AD). Presenilins, probably as an essential part of gamma-secretase, modulate gamma-cleavage of the amyloid protein precursor (APP) to the amyloid beta-peptide (Abeta). Mutations in sel-12, a Caenorhabditis elegans presenilin homologue, cause a defect in egg laying that can be suppressed by loss of function mutations in a second gene, SEL-10. SEL-10 protein is a homologue of yeast Cdc4, a member of the SCF (Skp1-Cdc53/CUL1-F-box protein) E2-E3 ubiquitin ligase family. In this study, we show that human SEL-10 interacts with PS1 and enhances PS1 ubiquitination, thus altering cellular levels of unprocessed PS1 and its N- and C-terminal fragments. Co-transfection of sel-10 and APP cDNAs in HEK293 cells leads to an alteration in the metabolism of APP and to an increase in the production of amyloid beta-peptide, the principal component of amyloid plaque in Alzheimer's disease.
Collapse
Affiliation(s)
- Jinhe Li
- Department of Neurobiology, Computer Aided Drug Design, Pharmacia Corporation, Kalamazoo, Michigan 49001, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
2743
|
Abstract
The molecular events and targets regulated by the RAD6 pathway, which mediates postreplication DNA repair, have remained elusive. Now, ubiquitin and SUMO modification of proliferating cell nuclear antigen (PCNA) is shown to be induced by DNA damage and linked to components of the RAD6 pathway.
Collapse
Affiliation(s)
- Michael J Matunis
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
2744
|
Kamura T, Brower CS, Conaway RC, Conaway JW. A molecular basis for stabilization of the von Hippel-Lindau (VHL) tumor suppressor protein by components of the VHL ubiquitin ligase. J Biol Chem 2002; 277:30388-93. [PMID: 12048197 DOI: 10.1074/jbc.m203344200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The multiprotein von Hippel-Lindau (VHL) tumor suppressor (CBC(VHL), Cul2-Elongin BC-VHL) and SCF (Skp1-Cul1/Cdc53-F-box protein) complexes are members of structurally related families of E3 ubiquitin ligases that use a heterodimeric module composed of a member of the Cullin protein family and the RING finger protein Rbx1 (ROC1/Hrt1) to activate ubiquitylation of target proteins by the E2 ubiquitin-conjugating enzymes Ubc5 and Cdc34. VHL and F-box proteins function as the substrate recruitment subunits of CBC(VHL) and SCF complexes, respectively. In cells, many F-box proteins are short lived and are proposed to be ubiquitylated by an autocatalytic mechanism and destroyed by the proteasome following assembly into SCF complexes. In contrast, the VHL protein is stabilized by interaction with the Elongin B and C subunits of CBC(VHL) in cells. In this report, we have presented direct biochemical evidence that unlike the F-box protein Cdc4, which is ubiquitylated in vitro by Cdc34 in the context of the SCF, the VHL protein is protected from Ubc5-catalyzed ubiquitylation following assembly into the CBC(VHL) complex. CBC(VHL) is continuously required for negative regulation of hypoxia-inducible transcription factors in normoxic cells and of SCF complexes, many of which function only transiently during the cell cycle or in response to cellular signals. Our findings provide a molecular basis for the different modes of cellular regulation of VHL and F-box proteins and are consistent with the known roles of CBC(VHL).
Collapse
Affiliation(s)
- Takumi Kamura
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | | | | | | |
Collapse
|
2745
|
Abstract
Many aspects of eukaryotic development depend on regulated protein degradation by the ubiquitin-proteasome pathway. This highly conserved pathway promotes covalent attachment of ubiquitin to protein substrates through the sequential action of three enzymes called a ubiquitin-activating enzyme (E1), a ubiquitin-conjugating enzyme (E2), and a ubiquitin-protein ligase (E3). Most ubiquitinated proteins are then targeted for degradation by the 26S proteasome. Recent studies have also shown that the ubiquitin-related protein RUB/Nedd8 and the proteasome-related COP9 signalosome complex cooperate with the ubiquitin-proteasome pathway to promote protein degradation. Most of these components are conserved in all three eukaryotic kingdoms. However, the known targets of the pathway in plants, and the developmental processes they regulate, are specific to the plant kingdom.
Collapse
Affiliation(s)
- Hanjo Hellmann
- Molecular Cell and Developmental Biology, University of Texas, Austin, TX 78712, USA
| | | |
Collapse
|
2746
|
Jarosch E, Geiss-Friedlander R, Meusser B, Walter J, Sommer T. Protein dislocation from the endoplasmic reticulum--pulling out the suspect. Traffic 2002; 3:530-6. [PMID: 12121416 DOI: 10.1034/j.1600-0854.2002.30803.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Proteins that fail to fold properly as well as constitutive or regulated short-lived proteins of the endoplasmic reticulum are subjected to proteolysis by cytosolic 26S proteasomes. This process is known as endoplasmic reticulum-associated protein degradation. In order to become accessible to the proteasome of this system substrates must first be retrogradely transported from the endoplasmic reticulum into the cytosol, in a process termed dislocation. This export step seems to be accompanied by polyubiquitination of such molecules. Surprisingly, protein dislocation from the endoplasmic reticulum seems to require at least some components that mediate import into this compartment. However, protein import and export display differences in the mechanism that provides the driving force and ensures directionality. Of special interest is the cytoplasmic Cdc48p/Npl4p/Ufd1p complex, which is required for the degradation of various endoplasmic reticulum-associated protein degradation substrates and seems to function in a step after polyubiquitination but before proteasomal digestion. In this review, we will summarize our knowledge on protein export during endoplasmic reticulum-associated protein degradation and discuss the possible function of certain components involved in this process.
Collapse
Affiliation(s)
- Ernst Jarosch
- Max-Delbrück-Centrum für Molekulare Medizin, Robert-Rössle-Str. 10, 13092 Berlin, Germany
| | | | | | | | | |
Collapse
|
2747
|
Lin HK, Wang L, Hu YC, Altuwaijri S, Chang C. Phosphorylation-dependent ubiquitylation and degradation of androgen receptor by Akt require Mdm2 E3 ligase. EMBO J 2002; 21:4037-48. [PMID: 12145204 PMCID: PMC126152 DOI: 10.1093/emboj/cdf406] [Citation(s) in RCA: 364] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The androgen receptor (AR) controls several biological functions including prostate cell growth and apoptosis. However, the mechanism by which AR maintains its stability to function properly remains largely unknown. Here we show that Akt and Mdm2 form a complex with AR and promote phosphorylation-dependent AR ubiquitylation, resulting in AR degradation by the proteasome. The effect of Akt on AR ubiquitylation and degradation is markedly impaired in a Mdm2-null cell line compared with the wild-type cell line, suggesting that Mdm2 is involved in Akt-mediated AR ubiquitylation and degradation. Furthermore, we demonstrate that the E3 ligase activity of Mdm2 and phosphorylation of Mdm2 by Akt are essential for Mdm2 to affect AR ubiquitylation and degradation. These results suggest that phosphorylation-dependent AR ubiquitylation and degradation by Akt require the involvement of Mdm2 E3 ligase activity, a novel mechanism that provides insight into how AR is targeted for degradation.
Collapse
Affiliation(s)
| | | | | | | | - Chawnshang Chang
- George H.Whipple Laboratory for Cancer Research, Departments of Pathology and Urology and The Cancer Center, University of Rochester, Rochester, NY 14642, USA
Corresponding author e-mail:
| |
Collapse
|
2748
|
Park KC, Kim JH, Choi EJ, Min SW, Rhee S, Baek SH, Chung SS, Bang O, Park D, Chiba T, Tanaka K, Chung CH. Antagonistic regulation of myogenesis by two deubiquitinating enzymes, UBP45 and UBP69. Proc Natl Acad Sci U S A 2002; 99:9733-8. [PMID: 12107281 PMCID: PMC124996 DOI: 10.1073/pnas.152011799] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Protein modification by ubiquitin is a dynamic and reversible process that is involved in the regulation of a variety of cellular processes. Here, we show that myogenic differentiation of embryonic muscle cells is antagonistically regulated by two deubiquitinating enzymes, UBP45 and UBP69, that are generated by alternative splicing. Both enzymes cleaved off ubiquitin from polyubiquitinated protein conjugates in vivo as well as from linear ubiquitin-protein fusions in vitro. In cultured myoblasts, the level of UBP69 mRNA markedly but transiently increased before membrane fusion, whereas that of UBP45 mRNA increased as the cells fused to form myotubes. Both myoblast fusion and accumulation of myosin heavy chain were dramatically stimulated by the stable expression of UBP69 but strongly attenuated by that of the catalytically inactive form of the protease, suggesting that the mutant enzyme acts dominant negatively on the function of the wild-type protease. In contrast, stable expression of UBP45 completely blocked both of the myogenic processes but that of inactive enzyme did not, indicating that the catalytic activity of the enzyme is essential for its inhibitory effects. These results indicate that differential expression of UBP45 and UBP69 is involved in the regulation of muscle cell differentiation.
Collapse
Affiliation(s)
- Kyung Chan Park
- National Research Laboratory of Protein Biochemistry, School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 151-742, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2749
|
Oyake D, Nishikawa H, Koizuka I, Fukuda M, Ohta T. Targeted substrate degradation by an engineered double RING ubiquitin ligase. Biochem Biophys Res Commun 2002; 295:370-5. [PMID: 12150958 DOI: 10.1016/s0006-291x(02)00673-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Recognition of the substrates by ubiquitin ligases is crucial for substrate specificity in the ubiquitin-proteasome proteolytic pathway. In the present study, we designed a double RING finger ubiquitin ligase to direct the ubiquitin machinery to a specific substrate. The engineered ligase contains the RING finger domains of both BRCA1 and BARD1 linked to a substrate recognition site PCNA, which is known to interact with cyclin-dependent kinase inhibitor p57. The double RING finger ubiquitin ligase formed a homo-oligomer complex and exhibited significant ligase activity. Co-transfection of the ligase reduced the expression of transfected p57 to the background level in a proteasome-dependent manner and restored the colony formation ability of U2OS cells that is otherwise inhibited by overexpressed p57. The results indicate the ability of the engineered double RING ubiquitin ligase to target the intended substrate. By redesigning the substrate recognition site, expression of engineered double RING ubiquitin ligases may provide a useful tool for removing many different gene products at the protein level.
Collapse
Affiliation(s)
- Daisuke Oyake
- Department of Surgery, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawaski 216-8511, Japan
| | | | | | | | | |
Collapse
|
2750
|
Bergametti F, Sitterlin D, Transy C. Turnover of hepatitis B virus X protein is regulated by damaged DNA-binding complex. J Virol 2002; 76:6495-501. [PMID: 12050362 PMCID: PMC136256 DOI: 10.1128/jvi.76.13.6495-6501.2002] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Mammalian hepatitis B viruses encode an essential regulatory protein, termed X, which may also be implicated in liver cancer development associated with chronic infection. X protein, also referred to as HBx in human virus and WHx in woodchuck virus, has been reported to bind to a number of cellular proteins, including the DDB1 subunit of the damaged DNA-binding (DDB) complex. Our previous work provided genetic evidence for the importance of WHx-DDB1 interaction in both the activity of the X protein and establishment of viral infection in woodchucks. In the present study, a direct action of DDB1 on the X protein is documented. Physical interaction between the two proteins leads to an increase in X protein stability. This effect results from protection of the viral protein from proteasome-mediated degradation. Protection of WHx is overcome in the presence DDB2, the second subunit of the DDB heterodimer. In keeping with observations reported for HBx, DDB2 was found to directly bind to WHx. Nonetheless, the counteracting effect of DDB2 on X stabilization requires DDB2-DDB1 interaction. Taken together, these findings substantiate the physical and functional connection between the X protein and the DDB1-DDB2 heterodimer, leading to the regulation of the pool of the viral protein.
Collapse
Affiliation(s)
- Françoise Bergametti
- Unité de Recombinaison et Expression Génétique (INSERM U163), Institut Pasteur, 28 rue du Dr Roux, 75724 Paris Cedex 15, France
| | | | | |
Collapse
|