251
|
Lactic acid in tumor microenvironments causes dysfunction of NKT cells by interfering with mTOR signaling. SCIENCE CHINA-LIFE SCIENCES 2016; 59:1290-1296. [DOI: 10.1007/s11427-016-0348-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 11/22/2016] [Indexed: 12/14/2022]
|
252
|
Liang C, Qin Y, Zhang B, Ji S, Shi S, Xu W, Liu J, Xiang J, Liang D, Hu Q, Ni Q, Xu J, Yu X. Metabolic plasticity in heterogeneous pancreatic ductal adenocarcinoma. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1866:177-188. [PMID: 27600832 DOI: 10.1016/j.bbcan.2016.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 09/01/2016] [Accepted: 09/02/2016] [Indexed: 01/17/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDA) is one of the most lethal malignant neoplasms. The recognized hallmarks of PDA are regarded to be downstream events of metabolic reprogramming. Because PDA is a heterogeneous disease that is influenced by genetic polymorphisms and changes in the microenvironment, metabolic plasticity is a novel feature of PDA. As intrinsic factors for metabolic plasticity, K-ras activation and mutations in other tumor suppressor genes induce abnormal mitochondrial metabolism and enhance glycolysis, with alterations in glutamine and lipid metabolism. As extrinsic factors, the acidic and oxygen/nutrient-deprived microenvironment also induces cancer cells to reprogram their metabolic pathway and hijack stromal cells (mainly cancer-associated fibroblasts and immunocytes) to communicate, thereby adapting to metabolic stress. Therefore, a better understanding of the metabolic features of PDA will contribute to the development of novel diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Chen Liang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Yi Qin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Bo Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Shunrong Ji
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Si Shi
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Wenyan Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Jiang Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Jinfeng Xiang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Dingkong Liang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Qiangsheng Hu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Quanxing Ni
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Jin Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China.
| |
Collapse
|
253
|
Larsen SE, Bilenkin A, Tarasenko TN, Arjunaraja S, Stinson JR, McGuire PJ, Snow AL. Sensitivity to Restimulation-Induced Cell Death Is Linked to Glycolytic Metabolism in Human T Cells. THE JOURNAL OF IMMUNOLOGY 2016; 198:147-155. [PMID: 27852741 DOI: 10.4049/jimmunol.1601218] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 10/21/2016] [Indexed: 12/27/2022]
Abstract
Restimulation-induced cell death (RICD) regulates immune responses by restraining effector T cell expansion and limiting nonspecific damage to the host. RICD is triggered by re-engagement of the TCR on a cycling effector T cell, resulting in apoptosis. It remains unclear how RICD sensitivity is calibrated in T cells derived from different individuals or subsets. In this study we show that aerobic glycolysis strongly correlates with RICD sensitivity in human CD8+ effector T cells. Reducing glycolytic activity or glucose availability rendered effector T cells significantly less sensitive to RICD. We found that active glycolysis specifically facilitates the induction of proapoptotic Fas ligand upon TCR restimulation, accounting for enhanced RICD sensitivity in highly glycolytic T cells. Collectively, these data indicate that RICD susceptibility is linked to metabolic reprogramming, and that switching back to metabolic quiescence may help shield T cells from RICD as they transition into the memory pool.
Collapse
Affiliation(s)
- Sasha E Larsen
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814; and
| | - Abegail Bilenkin
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814; and
| | - Tatiana N Tarasenko
- Metabolism, Infection and Immunity Unit, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892
| | - Swadhinya Arjunaraja
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814; and
| | - Jeffrey R Stinson
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814; and
| | - Peter J McGuire
- Metabolism, Infection and Immunity Unit, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892
| | - Andrew L Snow
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814; and
| |
Collapse
|
254
|
Badia R, Pujantell M, Riveira-Muñoz E, Puig T, Torres-Torronteras J, Martí R, Clotet B, Ampudia RM, Vives-Pi M, Esté JA, Ballana E. The G1/S Specific Cyclin D2 Is a Regulator of HIV-1 Restriction in Non-proliferating Cells. PLoS Pathog 2016; 12:e1005829. [PMID: 27541004 PMCID: PMC4991798 DOI: 10.1371/journal.ppat.1005829] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 07/27/2016] [Indexed: 01/09/2023] Open
Abstract
Macrophages are a heterogeneous cell population strongly influenced by differentiation stimuli that become susceptible to HIV-1 infection after inactivation of the restriction factor SAMHD1 by cyclin-dependent kinases (CDK). Here, we have used primary human monocyte-derived macrophages differentiated through different stimuli to evaluate macrophage heterogeneity on cell activation and proliferation and susceptibility to HIV-1 infection. Stimulation of monocytes with GM-CSF induces a non-proliferating macrophage population highly restrictive to HIV-1 infection, characterized by the upregulation of the G1/S-specific cyclin D2, known to control early steps of cell cycle progression. Knockdown of cyclin D2, enhances HIV-1 replication in GM-CSF macrophages through inactivation of SAMHD1 restriction factor by phosphorylation. Co-immunoprecipitation experiments show that cyclin D2 forms a complex with CDK4 and p21, a factor known to restrict HIV-1 replication by affecting the function of the downstream cascade that leads to SAMHD1 deactivation. Thus, we demonstrate that cyclin D2 acts as regulator of cell cycle proteins affecting SAMHD1-mediated HIV-1 restriction in non-proliferating macrophages.
Collapse
Affiliation(s)
- Roger Badia
- AIDS Research Institute-IrsiCaixa, Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
- Health Research Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Maria Pujantell
- AIDS Research Institute-IrsiCaixa, Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
- Health Research Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Eva Riveira-Muñoz
- AIDS Research Institute-IrsiCaixa, Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
- Health Research Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Teresa Puig
- AIDS Research Institute-IrsiCaixa, Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
- Health Research Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Javier Torres-Torronteras
- Research Group on Neuromuscular and Mitochondrial Disorders, Vall d’Hebron Institut de Recerca, Universitat Autònoma de Barcelona, and Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
| | - Ramón Martí
- Research Group on Neuromuscular and Mitochondrial Disorders, Vall d’Hebron Institut de Recerca, Universitat Autònoma de Barcelona, and Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
| | - Bonaventura Clotet
- AIDS Research Institute-IrsiCaixa, Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
- Health Research Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Rosa M. Ampudia
- Health Research Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
- Biomedical Network Research Centre on Diabetes and Associated Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III, Barcelona, Spain
| | - Marta Vives-Pi
- Health Research Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
- Biomedical Network Research Centre on Diabetes and Associated Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III, Barcelona, Spain
| | - José A. Esté
- AIDS Research Institute-IrsiCaixa, Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
- Health Research Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
- * E-mail: (JAE); (EB)
| | - Ester Ballana
- AIDS Research Institute-IrsiCaixa, Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
- Health Research Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
- * E-mail: (JAE); (EB)
| |
Collapse
|
255
|
Herbel C, Patsoukis N, Bardhan K, Seth P, Weaver JD, Boussiotis VA. Clinical significance of T cell metabolic reprogramming in cancer. Clin Transl Med 2016; 5:29. [PMID: 27510264 PMCID: PMC4980327 DOI: 10.1186/s40169-016-0110-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 07/15/2016] [Indexed: 02/06/2023] Open
Abstract
Conversion of normal cells to cancer is accompanied with changes in their metabolism. During this conversion, cell metabolism undergoes a shift from oxidative phosphorylation to aerobic glycolysis, also known as Warburg effect, which is a hallmark for cancer cell metabolism. In cancer cells, glycolysis functions in parallel with the TCA cycle and other metabolic pathways to enhance biosynthetic processes and thus support proliferation and growth. Similar metabolic features are observed in T cells during activation but, in contrast to cancer, metabolic transitions in T cells are part of a physiological process. Currently, there is intense interest in understanding the cause and effect relationship between metabolic reprogramming and T cell differentiation. After the recent success of cancer immunotherapy, the crosstalk between immune system and cancer has come to the forefront of clinical and basic research. One of the key goals is to delineate how metabolic alterations of cancer influence metabolism-regulated function and differentiation of tumor resident T cells and how such effects might be altered by immunotherapy. Here, we review the unique metabolic features of cancer, the implications of cancer metabolism on T cell metabolic reprogramming during antigen encounters, and the translational prospective of harnessing metabolism in cancer and T cells for cancer therapy.
Collapse
Affiliation(s)
- Christoph Herbel
- Division of Hematology-Oncology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Nikolaos Patsoukis
- Division of Hematology-Oncology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Kankana Bardhan
- Division of Hematology-Oncology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Pankaj Seth
- Division of Hematology-Oncology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.,Beth Israel Deaconess Cancer Center, Harvard Medical School, 330 Brookline Avenue, Dana 513, Boston, MA, 02215, USA.,Division of Interdisciplinary Medicine and Biotechnology, Beth Israel Deaconess Medical Center, Boston, USA
| | - Jessica D Weaver
- Division of Hematology-Oncology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Vassiliki A Boussiotis
- Division of Hematology-Oncology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA. .,Beth Israel Deaconess Cancer Center, Harvard Medical School, 330 Brookline Avenue, Dana 513, Boston, MA, 02215, USA.
| |
Collapse
|
256
|
Ottensmeier CH, Perry KL, Harden EL, Stasakova J, Jenei V, Fleming J, Wood O, Woo J, Woelk CH, Thomas GJ, Thirdborough SM. Upregulated Glucose Metabolism Correlates Inversely with CD8+ T-cell Infiltration and Survival in Squamous Cell Carcinoma. Cancer Res 2016; 76:4136-48. [PMID: 27206847 DOI: 10.1158/0008-5472.can-15-3121] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 04/24/2016] [Indexed: 11/16/2022]
Abstract
Antibodies that block T-cell-regulatory checkpoints have recently emerged as a transformative approach to cancer treatment. However, the clinical efficacy of checkpoint blockade depends upon inherent tumor immunogenicity, with variation in infiltrating T cells contributing to differences in objective response rates. Here, we sought to understand the molecular correlates of tumor-infiltrating T lymphocytes (TIL) in squamous cell carcinoma (SCC), using a systems biologic approach to integrate publicly available omics datasets with histopathologic features. We provide evidence that links TIL abundance and therapeutic outcome to the regulation of tumor glycolysis by EGFR and HIF, both of which are attractive molecular targets for use in combination with immunotherapeutics. Cancer Res; 76(14); 4136-48. ©2016 AACR.
Collapse
Affiliation(s)
- Christian H Ottensmeier
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Kate L Perry
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Elena L Harden
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Jana Stasakova
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Veronika Jenei
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Jason Fleming
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Oliver Wood
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Jeongmin Woo
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton Medicine, Southampton, United Kingdom
| | - Christopher H Woelk
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton Medicine, Southampton, United Kingdom
| | - Gareth J Thomas
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Stephen M Thirdborough
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom.
| |
Collapse
|
257
|
Champagne DP, Hatle KM, Fortner KA, D'Alessandro A, Thornton TM, Yang R, Torralba D, Tomás-Cortázar J, Jun YW, Ahn KH, Hansen KC, Haynes L, Anguita J, Rincon M. Fine-Tuning of CD8(+) T Cell Mitochondrial Metabolism by the Respiratory Chain Repressor MCJ Dictates Protection to Influenza Virus. Immunity 2016; 44:1299-311. [PMID: 27234056 DOI: 10.1016/j.immuni.2016.02.018] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 02/18/2016] [Accepted: 02/18/2016] [Indexed: 12/27/2022]
Abstract
Mitochondrial respiration is regulated in CD8(+) T cells during the transition from naive to effector and memory cells, but mechanisms controlling this process have not been defined. Here we show that MCJ (methylation-controlled J protein) acted as an endogenous break for mitochondrial respiration in CD8(+) T cells by interfering with the formation of electron transport chain respiratory supercomplexes. Metabolic profiling revealed enhanced mitochondrial metabolism in MCJ-deficient CD8(+) T cells. Increased oxidative phosphorylation and subcellular ATP accumulation caused by MCJ deficiency selectively increased the secretion, but not expression, of interferon-γ. MCJ also adapted effector CD8(+) T cell metabolism during the contraction phase. Consequently, memory CD8(+) T cells lacking MCJ provided superior protection against influenza virus infection. Thus, MCJ offers a mechanism for fine-tuning CD8(+) T cell mitochondrial metabolism as an alternative to modulating mitochondrial mass, an energetically expensive process. MCJ could be a therapeutic target to enhance CD8(+) T cell responses.
Collapse
Affiliation(s)
- Devin P Champagne
- Program in Immunobiology, Department of Medicine, University of Vermont, Burlington, Vermont, 05405 USA
| | - Ketki M Hatle
- Program in Immunobiology, Department of Medicine, University of Vermont, Burlington, Vermont, 05405 USA
| | - Karen A Fortner
- Program in Immunobiology, Department of Medicine, University of Vermont, Burlington, Vermont, 05405 USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, CO 80045, USA
| | - Tina M Thornton
- Program in Immunobiology, Department of Medicine, University of Vermont, Burlington, Vermont, 05405 USA
| | - Rui Yang
- Program in Immunobiology, Department of Medicine, University of Vermont, Burlington, Vermont, 05405 USA
| | - Daniel Torralba
- Program in Immunobiology, Department of Medicine, University of Vermont, Burlington, Vermont, 05405 USA
| | - Julen Tomás-Cortázar
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Derio 48160 Bizkaia, Spain
| | - Yong Woong Jun
- Department of Chemistry, Center for Electro-Photo Behaviors in Advanced Molecular Systems, Pohang University of Science and Technology (POSTECH), Nam-Gu, Pohang, 790-784 Gyeongbuk, Republic of Korea
| | - Kyo Han Ahn
- Department of Chemistry, Center for Electro-Photo Behaviors in Advanced Molecular Systems, Pohang University of Science and Technology (POSTECH), Nam-Gu, Pohang, 790-784 Gyeongbuk, Republic of Korea
| | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, CO 80045, USA
| | - Laura Haynes
- Center on Aging and Department of Immunology, University of Connecticut Health Center, Farmington, CT 06030 USA
| | - Juan Anguita
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Derio 48160 Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Bizkaia, Spain
| | - Mercedes Rincon
- Program in Immunobiology, Department of Medicine, University of Vermont, Burlington, Vermont, 05405 USA.
| |
Collapse
|
258
|
Cell surface Glut1 levels distinguish human CD4 and CD8 T lymphocyte subsets with distinct effector functions. Sci Rep 2016; 6:24129. [PMID: 27067254 PMCID: PMC4828702 DOI: 10.1038/srep24129] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 03/15/2016] [Indexed: 02/07/2023] Open
Abstract
CD4 and CD8 T lymphocyte activation requires the generation of sufficient energy to support new biosynthetic demands. Following T cell receptor (TCR) engagement, these requirements are met by an increased glycolysis, due, at least in part, to induction of the Glut1 glucose transporter. As Glut1 is upregulated on tumor cells in response to hypoxia, we assessed whether surface Glut1 levels regulate the antigen responsiveness of human T lymphocytes in both hypoxic and atmospheric oxygen conditions. Notably, Glut1 upregulation in response to TCR stimulation was significantly higher in T lymphocytes activated under hypoxic as compared to atmospheric oxygen conditions. Furthermore, TCR-stimulated human T lymphocytes sorted on the basis of Glut1-Lo and Glut1-Hi profiles maintained distinct characteristics, irrespective of the oxygen tension. While T cells activated in hypoxia divided less than those activated in atmospheric oxygen, Glut1-Hi lymphocytes exhibited increased effector phenotype acquisition, augmented proliferation, and an inverted CD4/CD8 ratio in both oxygen conditions. Moreover, Glut1-Hi T lymphocytes exhibited a significantly enhanced ability to produce IFN-γ and this secretion potential was completely dependent on continued glycolysis. Thus, Glut1 surface levels identify human T lymphocytes with distinct effector functions in both hypoxic and atmospheric oxygen tensions.
Collapse
|
259
|
Kouidhi S, Noman MZ, Kieda C, Elgaaied AB, Chouaib S. Intrinsic and Tumor Microenvironment-Induced Metabolism Adaptations of T Cells and Impact on Their Differentiation and Function. Front Immunol 2016; 7:114. [PMID: 27066006 PMCID: PMC4810024 DOI: 10.3389/fimmu.2016.00114] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 03/14/2016] [Indexed: 01/09/2023] Open
Abstract
It is well recognized that the immune system and metabolism are highly integrated. In this context, multilevel interactions between metabolic system and T lymphocyte signaling and fate exist. This review will discuss different potential cell metabolism pathways involved in shaping T lymphocyte function and differentiation. We will also provide a general framework for understanding how tumor microenvironmental metabolism, associated with hypoxic stress, interferes with T-cell priming and expansion. How T-cell metabolism drives T-cell-mediated immunity and how the manipulation of metabolic programing for therapeutic purposes will be also discussed.
Collapse
Affiliation(s)
- Soumaya Kouidhi
- Laboratory BVBGR, LR11ES31, ISBST, Higher Institute of Biotechnology of Sidi Thabet, University of Manouba, Tunis, Tunisia; Laboratory of Genetics, Immunology and Human Pathology, Faculty of Sciences of Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Muhammad Zaeem Noman
- Laboratory «Integrative Tumor Immunology and Genetic Oncology» Equipe Labellisée LIGUE 2015, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1186, Villejuif, France; Institut National de la Santé et de la Recherche Médicale (INSERM), Gustave Roussy, Univ. Paris-Sud, Université Paris-Saclay, Villejuif, France
| | - Claudine Kieda
- Centre de Biophysique Moléculaire, CNRS UPR 4301 , Orléans , France
| | - Amel Benammar Elgaaied
- Laboratory of Genetics, Immunology and Human Pathology, Faculty of Sciences of Tunis, University Tunis El Manar , Tunis , Tunisia
| | - Salem Chouaib
- Laboratory «Integrative Tumor Immunology and Genetic Oncology» Equipe Labellisée LIGUE 2015, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1186, Villejuif, France; Institut National de la Santé et de la Recherche Médicale (INSERM), Gustave Roussy, Univ. Paris-Sud, Université Paris-Saclay, Villejuif, France
| |
Collapse
|
260
|
Salerno F, Guislain A, Cansever D, Wolkers MC. TLR-Mediated Innate Production of IFN-γ by CD8+ T Cells Is Independent of Glycolysis. THE JOURNAL OF IMMUNOLOGY 2016; 196:3695-705. [PMID: 27016606 DOI: 10.4049/jimmunol.1501997] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 02/24/2016] [Indexed: 01/23/2023]
Abstract
CD8(+) T cells can respond to unrelated infections in an Ag-independent manner. This rapid innate-like immune response allows Ag-experienced T cells to alert other immune cell types to pathogenic intruders. In this study, we show that murine CD8(+) T cells can sense TLR2 and TLR7 ligands, resulting in rapid production of IFN-γ but not of TNF-α and IL-2. Importantly, Ag-experienced T cells activated by TLR ligands produce sufficient IFN-γ to augment the activation of macrophages. In contrast to Ag-specific reactivation, TLR-dependent production of IFN-γ by CD8(+) T cells relies exclusively on newly synthesized transcripts without inducing mRNA stability. Furthermore, transcription of IFN-γ upon TLR triggering depends on the activation of PI3K and serine-threonine kinase Akt, and protein synthesis relies on the activation of the mechanistic target of rapamycin. We next investigated which energy source drives the TLR-induced production of IFN-γ. Although Ag-specific cytokine production requires a glycolytic switch for optimal cytokine release, glucose availability does not alter the rate of IFN-γ production upon TLR-mediated activation. Rather, mitochondrial respiration provides sufficient energy for TLR-induced IFN-γ production. To our knowledge, this is the first report describing that TLR-mediated bystander activation elicits a helper phenotype of CD8(+) T cells. It induces a short boost of IFN-γ production that leads to a significant but limited activation of Ag-experienced CD8(+) T cells. This activation suffices to prime macrophages but keeps T cell responses limited to unrelated infections.
Collapse
Affiliation(s)
- Fiamma Salerno
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, 1066 CX Amsterdam, the Netherlands
| | - Aurelie Guislain
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, 1066 CX Amsterdam, the Netherlands
| | - Dilay Cansever
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, 1066 CX Amsterdam, the Netherlands
| | - Monika C Wolkers
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, 1066 CX Amsterdam, the Netherlands
| |
Collapse
|
261
|
4-1BB signaling activates glucose and fatty acid metabolism to enhance CD8 + T cell proliferation. Cell Mol Immunol 2016; 14:748-757. [PMID: 26972770 DOI: 10.1038/cmi.2016.02] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 01/07/2016] [Accepted: 01/08/2016] [Indexed: 12/18/2022] Open
Abstract
4-1BB (CD137) is a strong enhancer of the proliferation of CD8+ T cells. Since these cells require increased production of energy and biomass to support their proliferation, we hypothesized that 4-1BB signaling activated glucose and fatty acid metabolism. We found that treatment with agonistic anti-4-1BB mAb promoted the proliferation of CD8+ T cells in vitro, increasing their size and granularity. Studies with a glycolysis inhibitor and a fatty acid oxidation inhibitor revealed that CD8+ T cell proliferation required both glucose and fatty acid metabolism. Anti-4-1BB treatment increased glucose transporter 1 expression and activated the liver kinase B1 (LKB1)-AMP-activated protein kinase (AMPK)-acetyl-CoA carboxylase (ACC) signaling pathway, which may be responsible for activating the metabolism of glucose and fatty acids. We also examined whether blocking glucose or fatty acid metabolism affected cell cycle progression and the anti-apoptotic effect of 4-1BB signaling. The increase of anti-apoptotic factors and cyclins in response to anti-4-1BB treatment was completely prevented by treating CD8+ T cells with the fatty acid oxidation inhibitor, etomoxir, but not with the glycolysis inhibitor, 2-deoxy-D-glucose. We conclude that anti-4-1BB treatment activates glucose and fatty acid metabolism thus supporting the increased demand for energy and biomass, and that fatty acid metabolism plays a crucial role in enhancing the cell cycle progression of anti-CD3-activated CD8+ T cells in vitro and the anti-apoptotic effects of 4-1BB signaling on these cells.
Collapse
|
262
|
Shorter SK, Schnell FJ, McMaster SR, Pinelli DF, Andargachew R, Evavold BD. Viral Escape Mutant Epitope Maintains TCR Affinity for Antigen yet Curtails CD8 T Cell Responses. PLoS One 2016; 11:e0149582. [PMID: 26915099 PMCID: PMC4767940 DOI: 10.1371/journal.pone.0149582] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 02/01/2016] [Indexed: 12/03/2022] Open
Abstract
T cells have the remarkable ability to recognize antigen with great specificity and in turn mount an appropriate and robust immune response. Critical to this process is the initial T cell antigen recognition and subsequent signal transduction events. This antigen recognition can be modulated at the site of TCR interaction with peptide:major histocompatibility (pMHC) or peptide interaction with the MHC molecule. Both events could have a range of effects on T cell fate. Though responses to antigens that bind sub-optimally to TCR, known as altered peptide ligands (APL), have been studied extensively, the impact of disrupting antigen binding to MHC has been highlighted to a lesser extent and is usually considered to result in complete loss of epitope recognition. Here we present a model of viral evasion from CD8 T cell immuno-surveillance by a lymphocytic choriomeningitis virus (LCMV) escape mutant with an epitope for which TCR affinity for pMHC remains high but where the antigenic peptide binds sub optimally to MHC. Despite high TCR affinity for variant epitope, levels of interferon regulatory factor-4 (IRF4) are not sustained in response to the variant indicating differences in perceived TCR signal strength. The CD8+ T cell response to the variant epitope is characterized by early proliferation and up-regulation of activation markers. Interestingly, this response is not maintained and is characterized by a lack in IL-2 and IFNγ production, increased apoptosis and an abrogated glycolytic response. We show that disrupting the stability of peptide in MHC can effectively disrupt TCR signal strength despite unchanged affinity for TCR and can significantly impact the CD8+ T cell response to a viral escape mutant.
Collapse
Affiliation(s)
- Shayla K. Shorter
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia, United States of America
| | - Frederick J. Schnell
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia, United States of America
| | - Sean R. McMaster
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia, United States of America
| | - David F. Pinelli
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia, United States of America
| | - Rakieb Andargachew
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia, United States of America
| | - Brian D. Evavold
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
263
|
Zhang Y, Ertl HCJ. Starved and Asphyxiated: How Can CD8(+) T Cells within a Tumor Microenvironment Prevent Tumor Progression. Front Immunol 2016; 7:32. [PMID: 26904023 PMCID: PMC4748049 DOI: 10.3389/fimmu.2016.00032] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 01/22/2016] [Indexed: 01/08/2023] Open
Abstract
Although cancer immunotherapy has achieved significant breakthroughs in recent years, its overall efficacy remains limited in the majority of patients. One major barrier is exhaustion of tumor antigen-specific CD8(+) tumor-infiltrating lymphocytes (TILs), which conventionally has been attributed to persistent stimulation with antigen within the tumor microenvironment (TME). A series of recent studies have highlighted that the TME poses significant metabolic challenges to TILs, which may contribute to their functional exhaustion. Hypoxia increases the expression of coinhibitors on activated CD8(+) T cells, which in general reduces the T cells' effector functions. It also impairs the cells' ability to gain energy through oxidative phosphorylation. Glucose limitation increases the expression of programed cell death protein-1 and reduces functions of activated CD8(+) T cells. A combination of hypoxia and hypoglycemia, as is common in solid tumors, places CD8(+) TILs at dual metabolic jeopardy by affecting both major pathways of energy production. Recently, a number of studies addressed the effects of metabolic stress on modulating CD8(+) T cell metabolism, differentiation, and functions. Here, we discuss recent findings on how different types of metabolic stress within the TME shape the tumor-killing capacity of CD8(+) T cells. We propose that manipulating the metabolism of TILs to more efficiently utilize nutrients, especially during intermittent periods of hypoxia could maximize their performance, prolong their survival and improve the efficacy of active cancer immunotherapy.
Collapse
Affiliation(s)
- Ying Zhang
- Gene Therapy and Vaccines Program, University of Pennsylvania School of Medicine, Philadelphia, PA, USA; The Wistar Institute Vaccine Center, Philadelphia, PA, USA
| | | |
Collapse
|
264
|
Birkenmeier K, Dröse S, Wittig I, Winkelmann R, Käfer V, Döring C, Hartmann S, Wenz T, Reichert AS, Brandt U, Hansmann ML. Hodgkin and Reed-Sternberg cells of classical Hodgkin lymphoma are highly dependent on oxidative phosphorylation. Int J Cancer 2016; 138:2231-46. [DOI: 10.1002/ijc.29934] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 10/30/2015] [Indexed: 12/12/2022]
Affiliation(s)
- Katrin Birkenmeier
- Dr. Senckenberg Institute of Pathology, Goethe-University Hospital; Theodor-Stern-Kai 7 Frankfurt Am Main 60596 Germany
| | - Stefan Dröse
- Clinic of Anesthesiology, Intensive-Care Medicine and Pain Therapy; Goethe-University Hospital; Theodor-Stern Kai 7 Frankfurt Am Main 60596 Germany
- Centre of Biological Chemistry, and Centre for Membrane Proteomics, Molecular Bioenergetics Group; Medical School, Goethe-University; Theodor-Stern-Kai 7 Frankfurt Am Main 60596 Germany
| | - Ilka Wittig
- Centre of Biological Chemistry, and Centre for Membrane Proteomics, Molecular Bioenergetics Group; Medical School, Goethe-University; Theodor-Stern-Kai 7 Frankfurt Am Main 60596 Germany
| | - Ria Winkelmann
- Dr. Senckenberg Institute of Pathology, Goethe-University Hospital; Theodor-Stern-Kai 7 Frankfurt Am Main 60596 Germany
| | - Viktoria Käfer
- Dr. Senckenberg Institute of Pathology, Goethe-University Hospital; Theodor-Stern-Kai 7 Frankfurt Am Main 60596 Germany
| | - Claudia Döring
- Dr. Senckenberg Institute of Pathology, Goethe-University Hospital; Theodor-Stern-Kai 7 Frankfurt Am Main 60596 Germany
| | - Sylvia Hartmann
- Dr. Senckenberg Institute of Pathology, Goethe-University Hospital; Theodor-Stern-Kai 7 Frankfurt Am Main 60596 Germany
| | - Tina Wenz
- Institute for Genetics, University of Cologne; Zülpicher Str. 47A Cologne 50674 Germany
| | - Andreas S. Reichert
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich-Heine-University; Düsseldorf Germany
| | - Ulrich Brandt
- Department of Pediatrics, Radboud University Medical Center; Nijmegen Center for Mitochondrial Disorders (NCMD); The Netherlands
- Cluster of Excellence Frankfurt “Macromolecular Complexes”, Goethe-University; Frankfurt Am Main Germany
| | - Martin-Leo Hansmann
- Dr. Senckenberg Institute of Pathology, Goethe-University Hospital; Theodor-Stern-Kai 7 Frankfurt Am Main 60596 Germany
| |
Collapse
|
265
|
Modulation of mTOR Signalling Triggers the Formation of Stem Cell-like Memory T Cells. EBioMedicine 2016; 4:50-61. [PMID: 26981571 PMCID: PMC4776068 DOI: 10.1016/j.ebiom.2016.01.019] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 12/23/2015] [Accepted: 01/14/2016] [Indexed: 01/08/2023] Open
Abstract
Robust, long-lasting immune responses are elicited by memory T cells that possess properties of stem cells, enabling them to persist long-term and to permanently replenish the effector pools. Thus, stem cell-like memory T (TSCM) cells are of key therapeutic value and efforts are underway to characterize TSCM cells and to identify means for their targeted induction. Here, we show that inhibition of mechanistic/mammalian Target of Rapamycin (mTOR) complex 1 (mTORC1) by rapamycin or the Wnt-β-catenin signalling activator TWS119 in activated human naive T cells leads to the induction of TSCM cells. We show that these compounds switch T cell metabolism to fatty acid oxidation as favoured metabolic programme for TSCM cell generation. Of note, pharmacologically induced TSCM cells possess superior functional features as a long-term repopulation capacity after adoptive transfer. Furthermore, we provide insights into the transcriptome of TSCM cells. Our data identify a mechanism of pharmacological mTORC1 inhibitors, allowing us to confer stemness to human naive T cells which may be significantly relevant for the design of innovative T cell-based cancer immunotherapies.
Collapse
|
266
|
Gracias DT, Boesteanu AC, Fraietta JA, Hope JL, Carey AJ, Mueller YM, Kawalekar OU, Fike AJ, June CH, Katsikis PD. Phosphatidylinositol 3-Kinase p110δ Isoform Regulates CD8+ T Cell Responses during Acute Viral and Intracellular Bacterial Infections. THE JOURNAL OF IMMUNOLOGY 2016; 196:1186-98. [PMID: 26740110 DOI: 10.4049/jimmunol.1501890] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 12/03/2015] [Indexed: 11/19/2022]
Abstract
The p110δ isoform of PI3K is known to play an important role in immunity, yet its contribution to CTL responses has not been fully elucidated. Using murine p110δ-deficient CD8(+) T cells, we demonstrated a critical role for the p110δ subunit in the generation of optimal primary and memory CD8(+) T cell responses. This was demonstrated in both acute viral and intracellular bacterial infections in mice. We show that p110δ signaling is required for CD8(+) T cell activation, proliferation and effector cytokine production. We provide evidence that the effects of p110δ signaling are mediated via Akt activation and through the regulation of TCR-activated oxidative phosphorylation and aerobic glycolysis. In light of recent clinical trials that employ drugs targeting p110δ in certain cancers and other diseases, our study suggests caution in using these drugs in patients, as they could potentially increase susceptibility to infectious diseases. These studies therefore reveal a novel and direct role for p110δ signaling in in vivo CD8(+) T cell immunity to microbial pathogens.
Collapse
Affiliation(s)
- Donald T Gracias
- Department of Microbiology and Immunology, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19129
| | - Alina C Boesteanu
- Department of Microbiology and Immunology, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19129
| | - Joseph A Fraietta
- Department of Microbiology and Immunology, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19129; Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA 19104
| | - Jennifer L Hope
- Department of Microbiology and Immunology, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19129; Department of Immunology, Erasmus University Medical Center, 3015 GE Rotterdam, the Netherlands; and
| | - Alison J Carey
- Department of Microbiology and Immunology, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19129; Department of Pediatrics, Drexel University College of Medicine, Philadelphia, PA 19129
| | - Yvonne M Mueller
- Department of Microbiology and Immunology, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19129; Department of Immunology, Erasmus University Medical Center, 3015 GE Rotterdam, the Netherlands; and
| | - Omkar U Kawalekar
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA 19104
| | - Adam J Fike
- Department of Microbiology and Immunology, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19129
| | - Carl H June
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA 19104
| | - Peter D Katsikis
- Department of Microbiology and Immunology, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19129; Department of Immunology, Erasmus University Medical Center, 3015 GE Rotterdam, the Netherlands; and
| |
Collapse
|
267
|
Patsoukis N, Bardhan K, Weaver J, Herbel C, Seth P, Li L, Boussiotis VA. The role of metabolic reprogramming in T cell fate and function. CURRENT TRENDS IN IMMUNOLOGY 2016; 17:1-12. [PMID: 28356677 PMCID: PMC5367635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
T lymphocytes undergo extensive changes in their metabolic properties during their transition through various differentiation states, from naïve to effector to memory or regulatory roles. The cause and effect relationship between metabolism and differentiation is a field of intense investigation. Many recent studies demonstrate the dependency of T cell functional outcomes on metabolic pathways and the possibility of metabolic intervention to modify these functions. In this review, we describe the basic metabolic features of T cells and new findings on how these correlate with various differentiation fates and functions. We also highlight the latest information regarding the main factors that affect T cell metabolic reprogramming.
Collapse
Affiliation(s)
- Nikolaos Patsoukis
- Division of Hematology-Oncology, Harvard Medical School, Boston, MA 02215
- Department of Medicine Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
- Beth Israel Deaconess Cancer Center, Harvard Medical School, Boston, MA 02215
| | - Kankana Bardhan
- Division of Hematology-Oncology, Harvard Medical School, Boston, MA 02215
- Department of Medicine Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
- Beth Israel Deaconess Cancer Center, Harvard Medical School, Boston, MA 02215
| | - Jessica Weaver
- Division of Hematology-Oncology, Harvard Medical School, Boston, MA 02215
- Department of Medicine Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
- Beth Israel Deaconess Cancer Center, Harvard Medical School, Boston, MA 02215
| | - Christoph Herbel
- Division of Hematology-Oncology, Harvard Medical School, Boston, MA 02215
- Department of Medicine Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
- Beth Israel Deaconess Cancer Center, Harvard Medical School, Boston, MA 02215
| | - Pankaj Seth
- Department of Medicine Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
- Beth Israel Deaconess Cancer Center, Harvard Medical School, Boston, MA 02215
- Division of Interdisciplinary Medicine and Biotechnology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Lequn Li
- Division of Hematology-Oncology, Harvard Medical School, Boston, MA 02215
- Department of Medicine Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
- Beth Israel Deaconess Cancer Center, Harvard Medical School, Boston, MA 02215
| | - Vassiliki A. Boussiotis
- Division of Hematology-Oncology, Harvard Medical School, Boston, MA 02215
- Department of Medicine Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
- Beth Israel Deaconess Cancer Center, Harvard Medical School, Boston, MA 02215
| |
Collapse
|
268
|
Al-Hommrani M, Chakraborty P, Chatterjee S, Mehrotra S. Dynamic Metabolism in Immune Response. JOURNAL OF IMMUNOLOGY RESEARCH AND THERAPY 2016; 1:37-48. [PMID: 27774525 PMCID: PMC5070543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Cell, the basic unit of life depends for its survival on nutrients and thereby energy to perform its physiological function. Cells of lymphoid and myeloid origin are key in evoking an immune response against "self" or "non-self" antigens. The thymus derived lymphoid cells called T cells are a heterogenous group with distinct phenotypic and molecular signatures that have been shown to respond against an infection (bacterial, viral, protozoan) or cancer. Recent studies have unearthed the key differences in energy metabolism between the various T cell subsets, natural killer cells, dendritic cells, macrophages and myeloid derived suppressor cells. While a number of groups are dwelling into the nuances of the metabolism and its role in immune response at various strata, this review focuses on dynamic state of metabolism that is operational within various cellular compartments that interact to mount an effective immune response to alleviate disease state.
Collapse
Affiliation(s)
| | | | | | - Shikhar Mehrotra
- Departments of Surgery, Microbiology & Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
269
|
|
270
|
Lee CF, Lo YC, Cheng CH, Furtmüller GJ, Oh B, Andrade-Oliveira V, Thomas AG, Bowman CE, Slusher BS, Wolfgang MJ, Brandacher G, Powell JD. Preventing Allograft Rejection by Targeting Immune Metabolism. Cell Rep 2015; 13:760-770. [PMID: 26489460 DOI: 10.1016/j.celrep.2015.09.036] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 08/04/2015] [Accepted: 09/11/2015] [Indexed: 12/13/2022] Open
Abstract
Upon antigen recognition and co-stimulation, T lymphocytes upregulate the metabolic machinery necessary to proliferate and sustain effector function. This metabolic reprogramming in T cells regulates T cell activation and differentiation but is not just a consequence of antigen recognition. Although such metabolic reprogramming promotes the differentiation and function of T effector cells, the differentiation of regulatory T cells employs different metabolic reprogramming. Therefore, we hypothesized that inhibition of glycolysis and glutamine metabolism might prevent graft rejection by inhibiting effector generation and function and promoting regulatory T cell generation. We devised an anti-rejection regimen involving the glycolytic inhibitor 2-deoxyglucose (2-DG), the anti-type II diabetes drug metformin, and the inhibitor of glutamine metabolism 6-diazo-5-oxo-L-norleucine (DON). Using this triple-drug regimen, we were able to prevent or delay graft rejection in fully mismatched skin and heart allograft transplantation models.
Collapse
Affiliation(s)
- Chen-Fang Lee
- Sidney-Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Chang-Gung Transplantation Institute, Department of Liver and Transplantation Surgery, Chang-Gung Memorial Hospital, Chang-Gung University College of Medicine, Taoyuan 333, Taiwan
| | - Ying-Chun Lo
- Sidney-Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Chih-Hsien Cheng
- Sidney-Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Chang-Gung Transplantation Institute, Department of Liver and Transplantation Surgery, Chang-Gung Memorial Hospital, Chang-Gung University College of Medicine, Taoyuan 333, Taiwan
| | - Georg J Furtmüller
- Vascularized Composite Allotransplantation Laboratory, Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Byoungchol Oh
- Vascularized Composite Allotransplantation Laboratory, Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Vinicius Andrade-Oliveira
- Sidney-Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Ajit G Thomas
- Department of Neurology and Brain Science Institute, NeuroTranslational Drug Discovery Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Caitlyn E Bowman
- Department of Biological Chemistry, Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Barbara S Slusher
- Department of Neurology and Brain Science Institute, NeuroTranslational Drug Discovery Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Michael J Wolfgang
- Department of Biological Chemistry, Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Gerald Brandacher
- Vascularized Composite Allotransplantation Laboratory, Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Jonathan D Powell
- Sidney-Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
| |
Collapse
|
271
|
Abstract
Failure of T cells to protect against cancer is thought to result from lack of antigen recognition, chronic activation, and/or suppression by other cells. Using a mouse sarcoma model, we show that glucose consumption by tumors metabolically restricts T cells, leading to their dampened mTOR activity, glycolytic capacity, and IFN-γ production, thereby allowing tumor progression. We show that enhancing glycolysis in an antigenic "regressor" tumor is sufficient to override the protective ability of T cells to control tumor growth. We also show that checkpoint blockade antibodies against CTLA-4, PD-1, and PD-L1, which are used clinically, restore glucose in tumor microenvironment, permitting T cell glycolysis and IFN-γ production. Furthermore, we found that blocking PD-L1 directly on tumors dampens glycolysis by inhibiting mTOR activity and decreasing expression of glycolysis enzymes, reflecting a role for PD-L1 in tumor glucose utilization. Our results establish that tumor-imposed metabolic restrictions can mediate T cell hyporesponsiveness during cancer.
Collapse
|
272
|
Chang CH, Qiu J, O'Sullivan D, Buck MD, Noguchi T, Curtis JD, Chen Q, Gindin M, Gubin MM, van der Windt GJW, Tonc E, Schreiber RD, Pearce EJ, Pearce EL. Metabolic Competition in the Tumor Microenvironment Is a Driver of Cancer Progression. Cell 2015; 162:1229-41. [PMID: 26321679 DOI: 10.1016/j.cell.2015.08.016] [Citation(s) in RCA: 2228] [Impact Index Per Article: 222.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 05/27/2015] [Accepted: 07/16/2015] [Indexed: 02/06/2023]
Abstract
Failure of T cells to protect against cancer is thought to result from lack of antigen recognition, chronic activation, and/or suppression by other cells. Using a mouse sarcoma model, we show that glucose consumption by tumors metabolically restricts T cells, leading to their dampened mTOR activity, glycolytic capacity, and IFN-γ production, thereby allowing tumor progression. We show that enhancing glycolysis in an antigenic "regressor" tumor is sufficient to override the protective ability of T cells to control tumor growth. We also show that checkpoint blockade antibodies against CTLA-4, PD-1, and PD-L1, which are used clinically, restore glucose in tumor microenvironment, permitting T cell glycolysis and IFN-γ production. Furthermore, we found that blocking PD-L1 directly on tumors dampens glycolysis by inhibiting mTOR activity and decreasing expression of glycolysis enzymes, reflecting a role for PD-L1 in tumor glucose utilization. Our results establish that tumor-imposed metabolic restrictions can mediate T cell hyporesponsiveness during cancer.
Collapse
Affiliation(s)
- Chih-Hao Chang
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Jing Qiu
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - David O'Sullivan
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Michael D Buck
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Takuro Noguchi
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Jonathan D Curtis
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Qiongyu Chen
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Mariel Gindin
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Matthew M Gubin
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Gerritje J W van der Windt
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Elena Tonc
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Robert D Schreiber
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Edward J Pearce
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Erika L Pearce
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
273
|
Phosphoenolpyruvate Is a Metabolic Checkpoint of Anti-tumor T Cell Responses. Cell 2015; 162:1217-28. [PMID: 26321681 DOI: 10.1016/j.cell.2015.08.012] [Citation(s) in RCA: 1076] [Impact Index Per Article: 107.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 06/03/2015] [Accepted: 07/21/2015] [Indexed: 02/06/2023]
Abstract
Activated T cells engage aerobic glycolysis and anabolic metabolism for growth, proliferation, and effector functions. We propose that a glucose-poor tumor microenvironment limits aerobic glycolysis in tumor-infiltrating T cells, which suppresses tumoricidal effector functions. We discovered a new role for the glycolytic metabolite phosphoenolpyruvate (PEP) in sustaining T cell receptor-mediated Ca(2+)-NFAT signaling and effector functions by repressing sarco/ER Ca(2+)-ATPase (SERCA) activity. Tumor-specific CD4 and CD8 T cells could be metabolically reprogrammed by increasing PEP production through overexpression of phosphoenolpyruvate carboxykinase 1 (PCK1), which bolstered effector functions. Moreover, PCK1-overexpressing T cells restricted tumor growth and prolonged the survival of melanoma-bearing mice. This study uncovers new metabolic checkpoints for T cell activity and demonstrates that metabolic reprogramming of tumor-reactive T cells can enhance anti-tumor T cell responses, illuminating new forms of immunotherapy.
Collapse
|
274
|
Slack M, Wang T, Wang R. T cell metabolic reprogramming and plasticity. Mol Immunol 2015; 68:507-12. [PMID: 26277274 DOI: 10.1016/j.molimm.2015.07.036] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 07/26/2015] [Indexed: 12/21/2022]
Abstract
Upon antigen stimulation, small and quiescent naïve T cells undergo an approximately 24h growth phase followed by rapid proliferation. Depending on the nature of the antigen and cytokine milieu, these proliferating T cells differentiate into distinctive functional subgroups that are essential for appropriate immune defense and regulation. T cells undergo a characteristic metabolic rewiring that fulfills the dramatically increased bioenergetic and biosynthetic demands during the transition between resting, activation and differentiation. Beyond this, T cells are distributed throughout the body and are able to function in a wide range of physio-pathological environments, including some with a dramatic metabolic derangement. As such, T cells must quickly respond to and adapt to fluctuations in environmental nutrient levels. We consider such responsiveness and adaptation in terms of metabolic plasticity, that is, an evolutionarilly selected process which allows T cells to illicit robust immune functions in response to either a continuous or disrupted nutrient supply. In this review, we illustrate the relevant metabolic pathways in T cells and discuss the ability of T cells to change their metabolic substrates in response to changes in the environment.
Collapse
Affiliation(s)
- Maria Slack
- Department of Pediatrics, The Ohio State University School of Medicine, Columbus, OH, USA; Division of Allergy and Immunology Nationwide Children's Hospital, Columbus, OH, USA; Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, The Ohio State University, Columbus, OH, USA
| | - Tingting Wang
- Center for Childhood Cancer and Blood Disease, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Ruoning Wang
- Center for Childhood Cancer and Blood Disease, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA; Hematology/Oncology & BMT, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University School of Medicine, Columbus, OH, USA.
| |
Collapse
|
275
|
Buck MD, O'Sullivan D, Pearce EL. T cell metabolism drives immunity. ACTA ACUST UNITED AC 2015; 212:1345-60. [PMID: 26261266 PMCID: PMC4548052 DOI: 10.1084/jem.20151159] [Citation(s) in RCA: 885] [Impact Index Per Article: 88.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 07/16/2015] [Indexed: 12/13/2022]
Abstract
Buck et al. discuss the role of lymphocyte metabolism on immune cell development and function. Lymphocytes must adapt to a wide array of environmental stressors as part of their normal development, during which they undergo a dramatic metabolic remodeling process. Research in this area has yielded surprising findings on the roles of diverse metabolic pathways and metabolites, which have been found to regulate lymphocyte signaling and influence differentiation, function and fate. In this review, we integrate the latest findings in the field to provide an up-to-date resource on lymphocyte metabolism.
Collapse
Affiliation(s)
- Michael D Buck
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - David O'Sullivan
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Erika L Pearce
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
276
|
Glucose, glycolysis and lymphocyte responses. Mol Immunol 2015; 68:513-9. [PMID: 26260211 DOI: 10.1016/j.molimm.2015.07.034] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 07/15/2015] [Accepted: 07/26/2015] [Indexed: 12/18/2022]
Abstract
Activated lymphocytes engage in robust growth and rapid proliferation. To achieve this, they tend to adopt a form of glucose metabolism termed aerobic glycolysis. This type of metabolism allows for the use of large amounts of glucose to generate energy, but also to support biosynthetic processes. This review article will discuss how aerobic glycolysis supports the biosynthetic demands of activated T cells, B cells and Natural Killer cells, and the emerging concept that glycolysis is integrally linked to the differentiation and function of these lymphocyte populations.
Collapse
|
277
|
Vuillefroy de Silly R, Ducimetière L, Yacoub Maroun C, Dietrich PY, Derouazi M, Walker PR. Phenotypic switch of CD8(+) T cells reactivated under hypoxia toward IL-10 secreting, poorly proliferative effector cells. Eur J Immunol 2015; 45:2263-75. [PMID: 25929785 PMCID: PMC7163737 DOI: 10.1002/eji.201445284] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 04/13/2015] [Accepted: 04/29/2015] [Indexed: 11/10/2022]
Abstract
CD8(+) T cells controlling pathogens or tumors must function at sites where oxygen tension is frequently low, and never as high as under atmospheric culture conditions. However, T-cell function in vivo is generally analyzed indirectly, or is extrapolated from in vitro studies under nonphysiologic oxygen tensions. In this study, we delineate the role of physiologic and pathologic oxygen tension in vitro during reactivation and differentiation of tumor-specific CD8(+) T cells. Using CD8(+) T cells from pmel-1 mice, we observed that the generation of CTLs under 5% O2, which corresponds to physioxia in lymph nodes, gave rise to a higher effector signature than those generated under atmospheric oxygen fractions (21% O2). Hypoxia (1% O2) did not modify cytotoxicity, but decreasing O2 tensions during CTL and CD8(+) tumor-infiltrating lymphocyte reactivation dose-dependently decreased proliferation, induced secretion of the immunosuppressive cytokine IL-10, and upregulated the expression of CD137 (4-1BB) and CD25. Overall, our data indicate that oxygen tension is a key regulator of CD8(+) T-cell function and fate and suggest that IL-10 release may be an unanticipated component of CD8(+) T cell-mediated immune responses in most in vivo microenvironments.
Collapse
Affiliation(s)
| | - Laura Ducimetière
- Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | | | | | - Madiha Derouazi
- Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Paul R Walker
- Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| |
Collapse
|
278
|
Inhibition of the lymphocyte metabolic switch by the oxidative burst of human neutrophils. Clin Sci (Lond) 2015; 129:489-504. [PMID: 25951298 DOI: 10.1042/cs20140852] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 05/07/2015] [Indexed: 01/09/2023]
Abstract
Activation of the phagocytic NADPH oxidase-2 (NOX-2) in neutrophils is a critical process in the innate immune system and is associated with elevated local concentrations of superoxide, hydrogen peroxide (H2O2) and hypochlorous acid. Under pathological conditions, NOX-2 activity has been implicated in the development of autoimmunity, indicating a role in modulating lymphocyte effector function. Notably, T-cell clonal expansion and subsequent cytokine production requires a metabolic switch from mitochondrial respiration to aerobic glycolysis. Previous studies demonstrate that H2O2 generated from activated neutrophils suppresses lymphocyte activation but the mechanism is unknown. We hypothesized that activated neutrophils would prevent the metabolic switch and suppress the effector functions of T-cells through a H2O2-dependent mechanism. To test this, we developed a model co-culture system using freshly isolated neutrophils and lymphocytes from healthy human donors. Extracellular flux analysis was used to assess mitochondrial and glycolytic activity and FACS analysis to assess immune function. The neutrophil oxidative burst significantly inhibited the induction of lymphocyte aerobic glycolysis, caused inhibition of oxidative phosphorylation and suppressed lymphocyte activation through a H2O2-dependent mechanism. Hydrogen peroxide and a redox cycling agent, DMNQ, were used to confirm the impact of H2O2 on lymphocyte bioenergetics. In summary, we have shown that the lymphocyte metabolic switch from mitochondrial respiration to glycolysis is prevented by the oxidative burst of neutrophils. This direct inhibition of the metabolic switch is then a likely mechanism underlying the neutrophil-dependent suppression of T-cell effector function.
Collapse
|
279
|
Pollizzi KN, Patel CH, Sun IH, Oh MH, Waickman AT, Wen J, Delgoffe GM, Powell JD. mTORC1 and mTORC2 selectively regulate CD8⁺ T cell differentiation. J Clin Invest 2015; 125:2090-108. [PMID: 25893604 DOI: 10.1172/jci77746] [Citation(s) in RCA: 306] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 03/12/2015] [Indexed: 12/16/2022] Open
Abstract
Activation of mTOR-dependent pathways regulates the specification and differentiation of CD4+ T effector cell subsets. Herein, we show that mTOR complex 1 (mTORC1) and mTORC2 have distinct roles in the generation of CD8+ T cell effector and memory populations. Evaluation of mice with a T cell-specific deletion of the gene encoding the negative regulator of mTORC1, tuberous sclerosis complex 2 (TSC2), resulted in the generation of highly glycolytic and potent effector CD8+ T cells; however, due to constitutive mTORC1 activation, these cells retained a terminally differentiated effector phenotype and were incapable of transitioning into a memory state. In contrast, CD8+ T cells deficient in mTORC1 activity due to loss of RAS homolog enriched in brain (RHEB) failed to differentiate into effector cells but retained memory characteristics, such as surface marker expression, a lower metabolic rate, and increased longevity. However, these RHEB-deficient memory-like T cells failed to generate recall responses as the result of metabolic defects. While mTORC1 influenced CD8+ T cell effector responses, mTORC2 activity regulated CD8+ T cell memory. mTORC2 inhibition resulted in metabolic reprogramming, which enhanced the generation of CD8+ memory cells. Overall, these results define specific roles for mTORC1 and mTORC2 that link metabolism and CD8+ T cell effector and memory generation and suggest that these functions have the potential to be targeted for enhancing vaccine efficacy and antitumor immunity.
Collapse
|
280
|
T cell metabolic fitness in antitumor immunity. Trends Immunol 2015; 36:257-64. [PMID: 25773310 DOI: 10.1016/j.it.2015.02.007] [Citation(s) in RCA: 232] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Revised: 02/17/2015] [Accepted: 02/18/2015] [Indexed: 01/08/2023]
Abstract
T cell metabolism has a central role in supporting and shaping immune responses and may have a key role in antitumor immunity. T cell metabolism is normally held under tight regulation in an immune response of glycolysis to promote effector T cell expansion and function. However, tumors may deplete nutrients, generate toxic products, or stimulate conserved negative feedback mechanisms, such as through Programmed Cell Death 1 (PD-1), to impair effector T cell nutrient uptake and metabolic fitness. In addition, regulatory T cells are favored in low glucose conditions and may inhibit antitumor immune responses. Here, we review how the tumor microenvironment modifies metabolic and functional pathways in T cells and how these changes may uncover new targets and challenges for cancer immunotherapy and treatment.
Collapse
|
281
|
Lu W, Zhang Y, McDonald DO, Jing H, Carroll B, Robertson N, Zhang Q, Griffin H, Sanderson S, Lakey JH, Morgan NV, Reynard LN, Zheng L, Murdock HM, Turvey SE, Hackett SJ, Prestidge T, Hall JM, Cant AJ, Matthews HF, Koref MFS, Simon AK, Korolchuk VI, Lenardo MJ, Hambleton S, Su HC. Dual proteolytic pathways govern glycolysis and immune competence. Cell 2015; 159:1578-90. [PMID: 25525876 DOI: 10.1016/j.cell.2014.12.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 11/17/2014] [Accepted: 11/30/2014] [Indexed: 11/26/2022]
Abstract
Proteasomes and lysosomes constitute the major cellular systems that catabolize proteins to recycle free amino acids for energy and new protein synthesis. Tripeptidyl peptidase II (TPPII) is a large cytosolic proteolytic complex that functions in tandem with the proteasome-ubiquitin protein degradation pathway. We found that autosomal recessive TPP2 mutations cause recurrent infections, autoimmunity, and neurodevelopmental delay in humans. We show that a major function of TPPII in mammalian cells is to maintain amino acid levels and that TPPII-deficient cells compensate by increasing lysosome number and proteolytic activity. However, the overabundant lysosomes derange cellular metabolism by consuming the key glycolytic enzyme hexokinase-2 through chaperone-mediated autophagy. This reduces glycolysis and impairs the production of effector cytokines, including IFN-γ and IL-1β. Thus, TPPII controls the balance between intracellular amino acid availability, lysosome number, and glycolysis, which is vital for adaptive and innate immunity and neurodevelopmental health.
Collapse
Affiliation(s)
- Wei Lu
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; NIAID Clinical Genomics Program, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yu Zhang
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; NIAID Clinical Genomics Program, National Institutes of Health, Bethesda, MD 20892, USA
| | - David O McDonald
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Huie Jing
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; NIAID Clinical Genomics Program, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bernadette Carroll
- Institute of Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Nic Robertson
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; Great North Children's Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE1 4LP, UK
| | - Qian Zhang
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; NIAID Clinical Genomics Program, National Institutes of Health, Bethesda, MD 20892, USA
| | - Helen Griffin
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
| | - Sharon Sanderson
- NIHR BRC Translational Immunology Lab, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Jeremy H Lakey
- Institute of Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Neil V Morgan
- Centre for Cardiovascular Sciences, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Louise N Reynard
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Lixin Zheng
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; NIAID Clinical Genomics Program, National Institutes of Health, Bethesda, MD 20892, USA
| | - Heardley M Murdock
- NIAID Clinical Genomics Program, National Institutes of Health, Bethesda, MD 20892, USA; Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Stuart E Turvey
- Department of Pediatrics, Child & Family Research Institute and BC Children's Hospital, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Scott J Hackett
- Paediatric Immunology Department, Birmingham Heartlands Hospital, Birmingham B9 5SS, UK
| | - Tim Prestidge
- Blood and Cancer Center, Starship Children's Hospital, Auckland 1142, New Zealand
| | - Julie M Hall
- Great North Children's Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE1 4LP, UK
| | - Andrew J Cant
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; Great North Children's Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE1 4LP, UK
| | - Helen F Matthews
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; NIAID Clinical Genomics Program, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Anna Katharina Simon
- NIHR BRC Translational Immunology Lab, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK; MRC Unit Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Viktor I Korolchuk
- Institute of Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Michael J Lenardo
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; NIAID Clinical Genomics Program, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sophie Hambleton
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; Great North Children's Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE1 4LP, UK.
| | - Helen C Su
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; NIAID Clinical Genomics Program, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
282
|
De Riccardis L, Rizzello A, Ferramosca A, Urso E, De Robertis F, Danieli A, Giudetti AM, Trianni G, Zara V, Maffia M. Bioenergetics profile of CD4(+) T cells in relapsing remitting multiple sclerosis subjects. J Biotechnol 2015; 202:31-9. [PMID: 25701681 DOI: 10.1016/j.jbiotec.2015.02.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 02/06/2015] [Accepted: 02/11/2015] [Indexed: 12/17/2022]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory autoimmune demyelinating disease of the central nervous system. There are four clinical forms of MS, the most common of which is characterized by a relapsing remitting course (RRMS). The etiology of MS is unknown, but many studies suggested that genetic, environmental and infectious agents may contribute to the development of this disease. In experimental autoimmune encephalomyelitis (EAE), the animal model for MS, it has been shown that CD4(+) T cells play a key role in MS pathogenesis. In fact, these cells are able to cross the blood-brain barrier and cause axonal damage with neuronal death. T cell activation critically depends on mitochondrial ATP synthesis and reactive oxygen species (ROS) production. Interestingly, lots of studies linked the oxidative damage arising from mitochondrial changes to neurodegenerative disorders, such as MS. Based on these evidences, this work focused on the metabolic reprogramming of CD4(+) T cells in MS subjects, being this cell population directly implicated in pathogenesis of disease, paying attention to mitochondrial function and response to oxidative stress. Such aspects, once clarified, may open new opportunities for a therapeutic metabolic modulation of MS disorder.
Collapse
Affiliation(s)
- Lidia De Riccardis
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via Monteroni, Lecce, Italy
| | - Antonia Rizzello
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via Monteroni, Lecce, Italy
| | - Alessandra Ferramosca
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via Monteroni, Lecce, Italy
| | - Emanuela Urso
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via Monteroni, Lecce, Italy
| | | | - Antonio Danieli
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via Monteroni, Lecce, Italy
| | - Anna Maria Giudetti
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via Monteroni, Lecce, Italy
| | - Giorgio Trianni
- Department of Neurology, "Vito Fazzi" Hospital, ASL-Lecce, Italy
| | - Vincenzo Zara
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via Monteroni, Lecce, Italy
| | - Michele Maffia
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via Monteroni, Lecce, Italy.
| |
Collapse
|
283
|
O'Sullivan D, Pearce EL. Targeting T cell metabolism for therapy. Trends Immunol 2015; 36:71-80. [PMID: 25601541 DOI: 10.1016/j.it.2014.12.004] [Citation(s) in RCA: 202] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Revised: 12/14/2014] [Accepted: 12/15/2014] [Indexed: 12/13/2022]
Abstract
In the past several years a wealth of evidence has emerged illustrating how metabolism supports many aspects of T cell biology, as well as how metabolic changes drive T cell differentiation and fate. We outline developing principles in the regulation of T cell metabolism, and discuss how these processes are affected in settings of inflammation and cancer. In this context we discuss how metabolic pathways might be manipulated for the treatment of human disease, including how metabolism may be targeted to prevent T cell dysfunction in inhospitable microenvironments, to generate more effective adoptive cellular immunotherapies in cancer, and to direct T cell differentiation and function towards non-pathogenic phenotypes in settings of autoimmunity.
Collapse
Affiliation(s)
- David O'Sullivan
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Erika L Pearce
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
284
|
The energy sensor AMPK regulates T cell metabolic adaptation and effector responses in vivo. Immunity 2015; 42:41-54. [PMID: 25607458 DOI: 10.1016/j.immuni.2014.12.030] [Citation(s) in RCA: 493] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 12/03/2014] [Indexed: 12/17/2022]
Abstract
Naive T cells undergo metabolic reprogramming to support the increased energetic and biosynthetic demands of effector T cell function. However, how nutrient availability influences T cell metabolism and function remains poorly understood. Here we report plasticity in effector T cell metabolism in response to changing nutrient availability. Activated T cells were found to possess a glucose-sensitive metabolic checkpoint controlled by the energy sensor AMP-activated protein kinase (AMPK) that regulated mRNA translation and glutamine-dependent mitochondrial metabolism to maintain T cell bioenergetics and viability. T cells lacking AMPKα1 displayed reduced mitochondrial bioenergetics and cellular ATP in response to glucose limitation in vitro or pathogenic challenge in vivo. Finally, we demonstrated that AMPKα1 is essential for T helper 1 (Th1) and Th17 cell development and primary T cell responses to viral and bacterial infections in vivo. Our data highlight AMPK-dependent regulation of metabolic homeostasis as a key regulator of T cell-mediated adaptive immunity.
Collapse
|
285
|
Reinert-Hartwall L, Honkanen J, Salo HM, Nieminen JK, Luopajärvi K, Härkönen T, Veijola R, Simell O, Ilonen J, Peet A, Tillmann V, Knip M, Vaarala O. Th1/Th17 plasticity is a marker of advanced β cell autoimmunity and impaired glucose tolerance in humans. THE JOURNAL OF IMMUNOLOGY 2014; 194:68-75. [PMID: 25480564 DOI: 10.4049/jimmunol.1401653] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Upregulation of IL-17 immunity and detrimental effects of IL-17 on human islets have been implicated in human type 1 diabetes. In animal models, the plasticity of Th1/Th17 cells contributes to the development of autoimmune diabetes. In this study, we demonstrate that the upregulation of the IL-17 pathway and Th1/Th17 plasticity in peripheral blood are markers of advanced β cell autoimmunity and impaired β cell function in human type 1 diabetes. Activated Th17 immunity was observed in the late stage of preclinical diabetes in children with β cell autoimmunity and impaired glucose tolerance, but not in children with early β cell autoimmunity. We found an increased ratio of IFN-γ/IL-17 expression in Th17 cells in children with advanced β cell autoimmunity, which correlated with HbA1c and plasma glucose concentrations in an oral glucose tolerance test, and thus impaired β cell function. Low expression of Helios was seen in Th17 cells, suggesting that Th1/Th17 cells are not converted thymus-derived regulatory T cells. Our results suggest that the development of Th1/Th17 plasticity may serve as a biomarker of disease progression from β cell autoantibody positivity to type 1 diabetes. These data in human type 1 diabetes emphasize the role of Th1/Th17 plasticity as a potential contributor to tissue destruction in autoimmune conditions.
Collapse
Affiliation(s)
- Linnea Reinert-Hartwall
- Department of Vaccination and Immune Protection, National Institute for Health and Welfare, 00271 Helsinki, Finland
| | - Jarno Honkanen
- Department of Vaccination and Immune Protection, National Institute for Health and Welfare, 00271 Helsinki, Finland
| | - Harri M Salo
- Department of Vaccination and Immune Protection, National Institute for Health and Welfare, 00271 Helsinki, Finland
| | - Janne K Nieminen
- Department of Vaccination and Immune Protection, National Institute for Health and Welfare, 00271 Helsinki, Finland
| | - Kristiina Luopajärvi
- Department of Vaccination and Immune Protection, National Institute for Health and Welfare, 00271 Helsinki, Finland; Children's Hospital, University of Helsinki and Helsinki University Central Hospital, 00281 Helsinki, Finland
| | - Taina Härkönen
- Children's Hospital, University of Helsinki and Helsinki University Central Hospital, 00281 Helsinki, Finland
| | - Riitta Veijola
- Department of Pediatrics, Medical Research Center, Oulu University Hospital and University of Oulu, 90014 Oulu, Finland
| | - Olli Simell
- Department of Pediatrics, University of Turku, 20520 Turku, Finland
| | - Jorma Ilonen
- Immunogenetics Laboratory, University of Turku, 20520 Turku, Finland; Department of Clinical Microbiology, University of Eastern Finland, 70211 Kuopio, Finland
| | - Aleksandr Peet
- Department of Pediatrics, University of Tartu and Children's Clinic of Tartu University Hospital, Tartu 51014, Estonia
| | - Vallo Tillmann
- Department of Pediatrics, University of Tartu and Children's Clinic of Tartu University Hospital, Tartu 51014, Estonia
| | - Mikael Knip
- Children's Hospital, University of Helsinki and Helsinki University Central Hospital, 00281 Helsinki, Finland; Folkhälsan Research Center, 00290 Helsinki, Finland; Diabetes and Obesity Research Program, University of Helsinki, 00290 Helsinki, Finland; Department of Pediatrics, Tampere University Hospital, 33521 Tampere, Finland; and
| | - Outi Vaarala
- Children's Hospital, University of Helsinki and Helsinki University Central Hospital, 00281 Helsinki, Finland; Respiratory, Inflammatory and Autoimmune Diseases, Innovative Medicine, AstraZeneca, 43183 Mölndal, Sweden
| | | | | |
Collapse
|
286
|
Chang JT, Wherry EJ, Goldrath AW. Molecular regulation of effector and memory T cell differentiation. Nat Immunol 2014; 15:1104-15. [PMID: 25396352 PMCID: PMC4386685 DOI: 10.1038/ni.3031] [Citation(s) in RCA: 450] [Impact Index Per Article: 40.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 10/14/2014] [Indexed: 02/07/2023]
Abstract
Immunological memory is a cardinal feature of adaptive immunity and an important goal of vaccination strategies. Here we highlight advances in the understanding of the diverse T lymphocyte subsets that provide acute and long-term protection from infection. These include new insights into the transcription factors, and the upstream 'pioneering' factors that regulate their accessibility to key sites of gene regulation, as well as metabolic regulators that contribute to the differentiation of effector and memory subsets; ontogeny and defining characteristics of tissue-resident memory lymphocytes; and origins of the remarkable heterogeneity exhibited by activated T cells. Collectively, these findings underscore progress in delineating the underlying pathways that control diversification in T cell responses but also reveal gaps in the knowledge, as well as the challenges that arise in the application of this knowledge to rationally elicit desired T cell responses through vaccination and immunotherapy.
Collapse
Affiliation(s)
- John T Chang
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - E John Wherry
- 1] Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA. [2] Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Ananda W Goldrath
- Division of Biological Sciences, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
287
|
Pollizzi KN, Powell JD. Integrating canonical and metabolic signalling programmes in the regulation of T cell responses. Nat Rev Immunol 2014; 14:435-46. [PMID: 24962260 DOI: 10.1038/nri3701] [Citation(s) in RCA: 308] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Over the past decade, our understanding of T cell activation, differentiation and function has markedly expanded, providing a greater appreciation of the signals and pathways that regulate these processes. It has become clear that evolutionarily conserved pathways that regulate stress responses, metabolism, autophagy and survival have crucial and specific roles in regulating T cell responses. Recent studies suggest that the metabolic pathways involving MYC, hypoxia-inducible factor 1α (HIF1α), AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) are activated upon antigen recognition and that they are required for directing the consequences of T cell receptor engagement. The purpose of this Review is to provide an integrated view of the role of these metabolic pathways and of canonical T cell signalling pathways in regulating the outcome of T cell responses.
Collapse
Affiliation(s)
- Kristen N Pollizzi
- Sidney Kimmel Comprehensive Cancer Research Center, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| | - Jonathan D Powell
- Sidney Kimmel Comprehensive Cancer Research Center, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| |
Collapse
|
288
|
Ghesquière B, Wong BW, Kuchnio A, Carmeliet P. Metabolism of stromal and immune cells in health and disease. Nature 2014; 511:167-76. [DOI: 10.1038/nature13312] [Citation(s) in RCA: 318] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 04/08/2014] [Indexed: 12/11/2022]
|
289
|
Mockler MB, Conroy MJ, Lysaght J. Targeting T cell immunometabolism for cancer immunotherapy; understanding the impact of the tumor microenvironment. Front Oncol 2014; 4:107. [PMID: 24904823 PMCID: PMC4032940 DOI: 10.3389/fonc.2014.00107] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 04/28/2014] [Indexed: 12/20/2022] Open
Abstract
The immune system has a key role to play in controlling cancer initiation and progression. T cell activation, which is central to anti-tumor immune responses, coincides with changes in cellular metabolism. Naïve T cells predominantly require an ATP generating metabolic profile, whereas proliferating effector T cells require anabolic metabolic profiles that promote rapid growth and proliferation. Furthermore, specific T cell subsets require distinct energetic and biosynthetic pathways to match their functional requirements. The often hostile tumor microenvironment can affect T cell immune responses by altering the resulting cellular metabolism. Tailoring immune responses by manipulating cellular metabolic pathways may provide an exciting new option for cancer immunotherapy. T cell responses might also be skewed via metabolic manipulation to treat the complications of obesity-associated inflammation, which is a rapidly growing global health problem and a major risk factor for many malignancies. In this review, the diverse metabolic requirements of T cells in anti-tumor immunity are discussed, as well as the profound influence of the tumor microenvironment and the possible avenues for manipulation to enhance anti-tumor immunity.
Collapse
Affiliation(s)
- Mary B Mockler
- Department of Surgery, Trinity Centre for Health Sciences, St. James's Hospital, Trinity College Dublin , Dublin , Ireland
| | - Melissa J Conroy
- Department of Surgery, Trinity Centre for Health Sciences, St. James's Hospital, Trinity College Dublin , Dublin , Ireland
| | - Joanne Lysaght
- Department of Surgery, Trinity Centre for Health Sciences, St. James's Hospital, Trinity College Dublin , Dublin , Ireland
| |
Collapse
|
290
|
Caro-Maldonado A, Wang R, Nichols AG, Kuraoka M, Milasta S, Sun LD, Gavin AL, Abel ED, Kelsoe G, Green DR, Rathmell JC. Metabolic reprogramming is required for antibody production that is suppressed in anergic but exaggerated in chronically BAFF-exposed B cells. THE JOURNAL OF IMMUNOLOGY 2014; 192:3626-36. [PMID: 24616478 DOI: 10.4049/jimmunol.1302062] [Citation(s) in RCA: 418] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
B cell activation leads to proliferation and Ab production that can protect from pathogens or promote autoimmunity. Regulation of cell metabolism is essential to support the demands of lymphocyte growth and effector function and may regulate tolerance. In this study, we tested the regulation and role of glucose uptake and metabolism in the proliferation and Ab production of control, anergic, and autoimmune-prone B cells. Control B cells had a balanced increase in lactate production and oxygen consumption following activation, with proportionally increased glucose transporter Glut1 expression and mitochondrial mass upon either LPS or BCR stimulation. This contrasted with metabolic reprogramming of T cells, which had lower glycolytic flux when resting but disproportionately increased this pathway upon activation. Importantly, tolerance greatly affected B cell metabolic reprogramming. Anergic B cells remained metabolically quiescent, with only a modest increase in glycolysis and oxygen consumption with LPS stimulation. B cells chronically stimulated with elevated BAFF, however, rapidly increased glycolysis and Ab production upon stimulation. Induction of glycolysis was critical for Ab production, as glycolytic inhibition with the pyruvate dehydrogenase kinase inhibitor dichloroacetate sharply suppressed B cell proliferation and Ab secretion in vitro and in vivo. Furthermore, B cell-specific deletion of Glut1 led to reduced B cell numbers and impaired Ab production in vivo. Together, these data show that activated B cells require Glut1-dependent metabolic reprogramming to support proliferation and Ab production that is distinct from T cells and that this glycolytic reprogramming is regulated in tolerance.
Collapse
|
291
|
Maciolek JA, Pasternak JA, Wilson HL. Metabolism of activated T lymphocytes. Curr Opin Immunol 2014; 27:60-74. [PMID: 24556090 DOI: 10.1016/j.coi.2014.01.006] [Citation(s) in RCA: 168] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 12/20/2013] [Accepted: 01/14/2014] [Indexed: 01/04/2023]
Abstract
Activated T cells undergo metabolic reprogramming which promotes glycolytic flux and lactate production as well as elevated production of lipids, proteins, nucleic acids and other carbohydrates (i.e. induction of biomass) even in the presence of oxygen. Activated T cells show induced expression of, among other things, Glucose Transporter 1 and several glycolytic enzymes, including ADP-Dependent Glucokinase and the low affinity isoform Pyruvate Kinase-M2 (which promote glycolytic flux), as well Glutamine Transporters and Glycerol-3-phosphate Dehydrogenase 2 which make available glutamate and glycerol-3-phosphate as mitochondrial energy sources. Intracellular leucine concentrations critically regulate mammalian target of rapamycin (mTOR) signaling to promote Th1, Th2, and Th17 CD4(+) T effector cell differentiation. In contrast, T regulatory (Treg) cells are generated when AMP-Activating Protein Kinase signaling is activated and mTOR activation is suppressed. Unlike effector CD4(+) and CD8(+) T cells, Tregs and memory T cells oxidize fatty acids for fuel. Effector and memory T cells perform different functions and thus show distinct metabolic profiles which are exquisitely controlled by cellular signaling. Upon activation, T cells express the insulin and leptin receptors on their surface and become sensitive to insulin signaling and nutrient availability and show changes in differentiation. Thus, metabolism and nutrient availability influence T cell activation and function.
Collapse
Affiliation(s)
- Jason A Maciolek
- Vaccine and Infectious Disease Organization (VIDO)-Home of the International Vaccine Centre (InterVac), University of Saskatchewan, 120 Veterinary Road, Saskatoon, S7N 5E3, Canada
| | - J Alex Pasternak
- Vaccine and Infectious Disease Organization (VIDO)-Home of the International Vaccine Centre (InterVac), University of Saskatchewan, 120 Veterinary Road, Saskatoon, S7N 5E3, Canada
| | - Heather L Wilson
- Vaccine and Infectious Disease Organization (VIDO)-Home of the International Vaccine Centre (InterVac), University of Saskatchewan, 120 Veterinary Road, Saskatoon, S7N 5E3, Canada.
| |
Collapse
|
292
|
Palmer CS, Ostrowski M, Gouillou M, Tsai L, Yu D, Zhou J, Henstridge DC, Maisa A, Hearps AC, Lewin SR, Landay A, Jaworowski A, McCune JM, Crowe SM. Increased glucose metabolic activity is associated with CD4+ T-cell activation and depletion during chronic HIV infection. AIDS 2014; 28:297-309. [PMID: 24335483 PMCID: PMC4293200 DOI: 10.1097/qad.0000000000000128] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
OBJECTIVES Glucose metabolism plays a fundamental role in supporting the growth, proliferation and effector functions of T cells. We investigated the impact of HIV infection on key processes that regulate glucose uptake and metabolism in primary CD4 and CD8 T cells. DESIGN AND METHODS Thirty-eight HIV-infected treatment-naive, 35 HIV+/combination antiretroviral therapy, seven HIV+ long-term nonprogressors and 25 HIV control individuals were studied. Basal markers of glycolysis [e.g. glucose transporter-1 (Glut1) expression, glucose uptake, intracellular glucose-6-phosphate, and L-lactate] were measured in T cells. The cellular markers of immune activation, CD38 and HLA-DR, were measured by flow cytometry. RESULTS The surface expression of the Glut1 is up-regulated in CD4 T cells in HIV-infected patients compared with uninfected controls. The percentage of circulating CD4Glut1 T cells was significantly increased in HIV-infected patients and was not restored to normal levels following combination antiretroviral therapy. Basal markers of glycolysis were significantly higher in CD4Glut1 T cells compared to CD4Glut1 T cells. The proportion of CD4Glut1 T cells correlated positively with the expression of the cellular activation marker, HLA-DR, on total CD4 T cells, but inversely with the absolute CD4 T-cell count irrespective of HIV treatment status. CONCLUSION Our data suggest that Glut1 is a potentially novel and functional marker of CD4 T-cell activation during HIV infection. In addition, Glut1 expression on CD4 T cells may be exploited as a prognostic marker for CD4 T-cell loss during HIV disease progression.
Collapse
Affiliation(s)
- Clovis S Palmer
- aCentre for Biomedical Research, Burnet Institute, Melbourne, Australia bInstituto de Investigaciones Biomédicas en Retrovirus y SIDA. Facultad de Medicina, Buenos Aires, Argentina cCentre for Population Health, Burnet Institute, Melbourne dLaboratory of Molecular Immunomodulation, School of Biomedical Sciences, Monash University, Clayton eCellular and Molecular Metabolism Laboratory, Baker IDI Heart and Diabetes Institute fDepartment of Infectious Diseases, Monash University gInfectious Diseases Department, The Alfred hospital, Melbourne, Australia hDepartment of Immunology/Microbiology, Rush University Medical Center, Chicago, Illinois iDivision of Experimental Medicine, Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
293
|
Schlom J, Hodge JW, Palena C, Tsang KY, Jochems C, Greiner JW, Farsaci B, Madan RA, Heery CR, Gulley JL. Therapeutic cancer vaccines. Adv Cancer Res 2014; 121:67-124. [PMID: 24889529 PMCID: PMC6324585 DOI: 10.1016/b978-0-12-800249-0.00002-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Therapeutic cancer vaccines have the potential of being integrated in the therapy of numerous cancer types and stages. The wide spectrum of vaccine platforms and vaccine targets is reviewed along with the potential for development of vaccines to target cancer cell "stemness," the epithelial-to-mesenchymal transition (EMT) phenotype, and drug-resistant populations. Preclinical and recent clinical studies are now revealing how vaccines can optimally be used with other immune-based therapies such as checkpoint inhibitors, and so-called nonimmune-based therapeutics, radiation, hormonal therapy, and certain small molecule targeted therapies; it is now being revealed that many of these traditional therapies can lyse tumor cells in a manner as to further potentiate the host immune response, alter the phenotype of nonlysed tumor cells to render them more susceptible to T-cell lysis, and/or shift the balance of effector:regulatory cells in a manner to enhance vaccine efficacy. The importance of the tumor microenvironment, the appropriate patient population, and clinical trial endpoints is also discussed in the context of optimizing patient benefit from vaccine-mediated therapy.
Collapse
Affiliation(s)
- Jeffrey Schlom
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA.
| | - James W Hodge
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Claudia Palena
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Kwong-Yok Tsang
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Caroline Jochems
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - John W Greiner
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Benedetto Farsaci
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Ravi A Madan
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Christopher R Heery
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - James L Gulley
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
294
|
Delmastro-Greenwood MM, Votyakova T, Goetzman E, Marre ML, Previte DM, Tovmasyan A, Batinic-Haberle I, Trucco MM, Piganelli JD. Mn porphyrin regulation of aerobic glycolysis: implications on the activation of diabetogenic immune cells. Antioxid Redox Signal 2013; 19:1902-15. [PMID: 23682840 PMCID: PMC3931434 DOI: 10.1089/ars.2012.5167] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
AIMS The immune system is critical for protection against infections and cancer, but requires scrupulous regulation to limit self-reactivity and autoimmunity. Our group has utilized a manganese porphyrin catalytic antioxidant (MnTE-2-PyP(5+), MnP) as a potential immunoregulatory therapy for type 1 diabetes. MnP has previously been shown to modulate diabetogenic immune responses through decreases in proinflammatory cytokine production from antigen-presenting cells and T cells and to reduce diabetes onset in nonobese diabetic mice. However, it is unclear whether or not MnP treatment can act beyond the reported inflammatory mediators. Therefore, the hypothesis that MnP may be affecting the redox-dependent bioenergetics of diabetogenic splenocytes was investigated. RESULTS MnP treatment enhanced glucose oxidation, reduced fatty acid oxidation, but only slightly decreased overall oxidative phosphorylation. These alterations occurred because of increased tricarboxylic acid cycle aconitase enzyme efficiency and were not due to changes in mitochondrial abundance. MnP treatment also displayed decreased aerobic glycolysis, which promotes activated immune cell proliferation, as demonstrated by reduced lactate production and glucose transporter 1 (Glut1) levels and inactivation of key signaling molecules, such as mammalian target of rapamycin, c-myc, and glucose-6-phosphate dehydrogenase. INNOVATION This work highlights the importance of redox signaling by demonstrating that modulation of reactive oxygen species can supplant complex downstream regulation, thus affecting metabolic programming toward aerobic glycolysis. CONCLUSION MnP treatment promotes metabolic quiescence, impeding diabetogenic autoimmune responses by restricting the metabolic pathways for energy production and affecting anabolic processes necessary for cell proliferation.
Collapse
Affiliation(s)
- Meghan M Delmastro-Greenwood
- 1 Division of Immunogenetics, Department of Pediatrics, Rangos Research Center, Children's Hospital of Pittsburgh of UPMC , Pittsburgh, Pennsylvania
| | | | | | | | | | | | | | | | | |
Collapse
|
295
|
Saucillo DC, Gerriets VA, Sheng J, Rathmell JC, Maciver NJ. Leptin metabolically licenses T cells for activation to link nutrition and immunity. THE JOURNAL OF IMMUNOLOGY 2013; 192:136-44. [PMID: 24273001 DOI: 10.4049/jimmunol.1301158] [Citation(s) in RCA: 202] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Immune responses are highly energy-dependent processes. Activated T cells increase glucose uptake and aerobic glycolysis to survive and function. Malnutrition and starvation limit nutrients and are associated with immune deficiency and increased susceptibility to infection. Although it is clear that immunity is suppressed in times of nutrient stress, mechanisms that link systemic nutrition to T cell function are poorly understood. We show in this study that fasting leads to persistent defects in T cell activation and metabolism, as T cells from fasted animals had low glucose uptake and decreased ability to produce inflammatory cytokines, even when stimulated in nutrient-rich media. To explore the mechanism of this long-lasting T cell metabolic defect, we examined leptin, an adipokine reduced in fasting that regulates systemic metabolism and promotes effector T cell function. We show that leptin is essential for activated T cells to upregulate glucose uptake and metabolism. This effect was cell intrinsic and specific to activated effector T cells, as naive T cells and regulatory T cells did not require leptin for metabolic regulation. Importantly, either leptin addition to cultured T cells from fasted animals or leptin injections to fasting animals was sufficient to rescue both T cell metabolic and functional defects. Leptin-mediated metabolic regulation was critical, as transgenic expression of the glucose transporter Glut1 rescued cytokine production of T cells from fasted mice. Together, these data demonstrate that induction of T cell metabolism upon activation is dependent on systemic nutritional status, and leptin links adipocytes to metabolically license activated T cells in states of nutritional sufficiency.
Collapse
Affiliation(s)
- Donte C Saucillo
- Division of Pediatric Endocrinology and Diabetes, Duke University Medical Center, Durham, NC 27710
| | | | | | | | | |
Collapse
|
296
|
Sukumar M, Liu J, Ji Y, Subramanian M, Crompton JG, Yu Z, Roychoudhuri R, Palmer DC, Muranski P, Karoly ED, Mohney RP, Klebanoff CA, Lal A, Finkel T, Restifo NP, Gattinoni L. Inhibiting glycolytic metabolism enhances CD8+ T cell memory and antitumor function. J Clin Invest 2013; 123:4479-88. [PMID: 24091329 DOI: 10.1172/jci69589] [Citation(s) in RCA: 725] [Impact Index Per Article: 60.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 07/24/2013] [Indexed: 01/02/2023] Open
Abstract
Naive CD8+ T cells rely upon oxidation of fatty acids as a primary source of energy. After antigen encounter, T cells shift to a glycolytic metabolism to sustain effector function. It is unclear, however, whether changes in glucose metabolism ultimately influence the ability of activated T cells to become long-lived memory cells. We used a fluorescent glucose analog, 2-NBDG, to quantify glucose uptake in activated CD8+ T cells. We found that cells exhibiting limited glucose incorporation had a molecular profile characteristic of memory precursor cells and an increased capacity to enter the memory pool compared with cells taking up high amounts of glucose. Accordingly, enforcing glycolytic metabolism by overexpressing the glycolytic enzyme phosphoglycerate mutase-1 severely impaired the ability of CD8+ T cells to form long-term memory. Conversely, activation of CD8+ T cells in the presence of an inhibitor of glycolysis, 2-deoxyglucose, enhanced the generation of memory cells and antitumor functionality. Our data indicate that augmenting glycolytic flux drives CD8+ T cells toward a terminally differentiated state, while its inhibition preserves the formation of long-lived memory CD8+ T cells. These results have important implications for improving the efficacy of T cell-based therapies against chronic infectious diseases and cancer.
Collapse
|
297
|
Chang CH, Curtis JD, Maggi LB, Faubert B, Villarino AV, O'Sullivan D, Huang SCC, van der Windt GJW, Blagih J, Qiu J, Weber JD, Pearce EJ, Jones RG, Pearce EL. Posttranscriptional control of T cell effector function by aerobic glycolysis. Cell 2013; 153:1239-51. [PMID: 23746840 DOI: 10.1016/j.cell.2013.05.016] [Citation(s) in RCA: 1708] [Impact Index Per Article: 142.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 03/05/2013] [Accepted: 05/07/2013] [Indexed: 12/13/2022]
Abstract
A "switch" from oxidative phosphorylation (OXPHOS) to aerobic glycolysis is a hallmark of T cell activation and is thought to be required to meet the metabolic demands of proliferation. However, why proliferating cells adopt this less efficient metabolism, especially in an oxygen-replete environment, remains incompletely understood. We show here that aerobic glycolysis is specifically required for effector function in T cells but that this pathway is not necessary for proliferation or survival. When activated T cells are provided with costimulation and growth factors but are blocked from engaging glycolysis, their ability to produce IFN-γ is markedly compromised. This defect is translational and is regulated by the binding of the glycolysis enzyme GAPDH to AU-rich elements within the 3' UTR of IFN-γ mRNA. GAPDH, by engaging/disengaging glycolysis and through fluctuations in its expression, controls effector cytokine production. Thus, aerobic glycolysis is a metabolically regulated signaling mechanism needed to control cellular function.
Collapse
Affiliation(s)
- Chih-Hao Chang
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
298
|
Chang CH, Curtis JD, Maggi LB, Faubert B, Villarino AV, O'Sullivan D, Huang SCC, van der Windt GJW, Blagih J, Qiu J, Weber JD, Pearce EJ, Jones RG, Pearce EL. Posttranscriptional control of T cell effector function by aerobic glycolysis. Cell 2013. [PMID: 23746840 DOI: 10.1016/j.cell.2013.05.016.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A "switch" from oxidative phosphorylation (OXPHOS) to aerobic glycolysis is a hallmark of T cell activation and is thought to be required to meet the metabolic demands of proliferation. However, why proliferating cells adopt this less efficient metabolism, especially in an oxygen-replete environment, remains incompletely understood. We show here that aerobic glycolysis is specifically required for effector function in T cells but that this pathway is not necessary for proliferation or survival. When activated T cells are provided with costimulation and growth factors but are blocked from engaging glycolysis, their ability to produce IFN-γ is markedly compromised. This defect is translational and is regulated by the binding of the glycolysis enzyme GAPDH to AU-rich elements within the 3' UTR of IFN-γ mRNA. GAPDH, by engaging/disengaging glycolysis and through fluctuations in its expression, controls effector cytokine production. Thus, aerobic glycolysis is a metabolically regulated signaling mechanism needed to control cellular function.
Collapse
Affiliation(s)
- Chih-Hao Chang
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
299
|
mTORC1 regulates CD8+ T-cell glucose metabolism and function independently of PI3K and PKB. Biochem Soc Trans 2013; 41:681-6. [DOI: 10.1042/bst20120359] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Given that inflammatory T-cells have a highly glycolytic metabolism, whereas regulatory T-cells rely more on oxidative glucose metabolism, there is growing interest in understanding how T-cell metabolism relates to T-cell function. The mTORC1 (mammalian target of rapamycin complex 1) has a crucial role to determine the balance between effector and regulatory T-cell differentiation, but is also described as a key regulator of metabolism in non-immune cell systems. The present review explores the relationship between these diverse functions of mTORC1 with regard to T-cell function. In many cell systems, mTORC1 couples PI3K (phosphoinositide 3-kinase) and PKB (protein kinase B), also known as Akt, with the control of glucose uptake and glycolysis. However, this is not the case in activated CD8+ CTLs (cytotoxic T-lymphocytes) where PI3K/PKB signalling is dispensable for the elevated levels of glycolysis that is characteristic of activated T-cells. Nevertheless, mTORC1 is still essential for glycolytic metabolism in CD8+ T-cells, and this reflects the fact that mTORC1 does not lie downstream of PI3K/PKB signalling in CD8+ T-cells, as is the case in many other cell systems. mTORC1 regulates glucose metabolism in CTLs through regulating the expression of the transcription factor HIF1α (hypoxia-inducible factor 1α). Strikingly, HIF1α functions to couple mTORC1 with a diverse transcriptional programme that extends beyond the control of glucose metabolism to the regulation of multiple key T-cell functions. The present review discusses the idea that mTORC1/HIF1α signalling integrates the control of T-cell metabolism and T-cell function.
Collapse
|
300
|
Wahl DR, Byersdorfer CA, Ferrara JLM, Opipari AW, Glick GD. Distinct metabolic programs in activated T cells: opportunities for selective immunomodulation. Immunol Rev 2013; 249:104-15. [PMID: 22889218 DOI: 10.1111/j.1600-065x.2012.01148.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
For several decades, it has been known that T-cell activation in vitro leads to increased glycolytic metabolism that fuels proliferation and effector function. Recently, this simple model has been complicated by the observation that different T-cell subsets differentially regulate fundamental metabolic pathways under the control of distinct molecular regulators. Although the majority of these data have been generated in vitro, several recent studies have documented the metabolism of T cells activated in vivo. Here, we review the recent data surrounding the differential regulation of metabolism by distinct T-cell subsets in vitro and in vivo and discuss how differential metabolic regulation might facilitate T-cell function vis-à-vis proliferation, survival, and energy production. We further discuss the important therapeutic implications of differential metabolism across T-cell subsets and review recent successes in exploiting lymphocyte metabolism to treat immune-mediated diseases.
Collapse
Affiliation(s)
- Daniel R Wahl
- Chemical Biology Doctoral Program, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | | | | | | | | |
Collapse
|