251
|
Mlechkovich G, Frenkel N. Human herpesvirus 6A (HHV-6A) and HHV-6B alter E2F1/Rb pathways and E2F1 localization and cause cell cycle arrest in infected T cells. J Virol 2007; 81:13499-508. [PMID: 17913805 PMCID: PMC2168879 DOI: 10.1128/jvi.01496-07] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
E2F transcription factors play pivotal roles in controlling the expression of genes involved in cell viability as well as genes involved in cell death. E2F1 is an important constituent of this protein family, which thus far contains eight members. The interaction of E2F1 with its major regulator, retinoblastoma protein (Rb), has been studied extensively in the past two decades, concentrating on the role of E2F1 in transcriptional regulation and the role of Rb in cell replication and cancer formation. Additionally, the effect of viral infections on E2F1/Rb interactions has been analyzed for different viruses, concentrating on cell division, which is essential for viral replication. In the present study, we monitored E2F1-Rb interactions during human herpesvirus 6A (HHV-6A) and HHV-6B infections of SupT1 T cells. The results have shown the following dramatic alterations in E2F1-Rb pathways compared to the pathways of parallel mock-infected control cultures. (i) The E2F1 levels were elevated during viral infections. (ii) The cellular localization of E2F1 was dramatically altered, and it was found to accumulate both in the cytoplasmic and nuclear fractions, as opposed to the strict nuclear localization seen in the mock-infected cells. (iii) Although E2F1 expression was elevated, two exemplary target genes, cyclin E and MCM5, were not upregulated. (iv) The Rb protein was dephosphorylated early postinfection, a trait that also occurred with UV-inactivated virus. (v) Infection was associated with significant reduction of E2F1/Rb complexing. (vi) HHV-6 infections were accompanied by cell cycle arrest. The altered E2F1-Rb interactions and functions might contribute to the observed cell cycle arrest.
Collapse
Affiliation(s)
- Guy Mlechkovich
- The S. Daniel Abraham Institute for Molecular Virology and the Department of Cell Research and Immunology, Tel Aviv University, Tel Aviv, Israel
| | | |
Collapse
|
252
|
Vimalachandran D, Ghaneh P, Costello E, Neoptolemos JP. Genetics and prevention of pancreatic cancer. Cancer Control 2007; 11:6-14. [PMID: 14749618 DOI: 10.1177/107327480401100102] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Pancreatic cancer is an aggressive disease with a poor prognosis. Hereditary factors have been reported in up to 10% of cases of pancreatic cancer. The clinical characteristics and genetic abnormalities have been identified for a proportion of this high-risk group, and the development of preventive strategies for these individuals is now a primary goal of cancer clinicians. METHODS A review of the current literature regarding the genetics, screening, and prevention of pancreatic cancer and its precursor lesions was undertaken. RESULTS Risk factors for pancreatic cancer include smoking, chronic pancreatitis, and a genetic predisposition. The role of diabetes or a diet high in fat or meat remains unclear. The genetic mutations that accompany pancreatic cancer appear to occur in a temporal sequence, beginning in the earliest of precursor lesions. These mutations are detectable in pancreatic juice and, in conjunction with imaging, form the basis of screening programs for high-risk individuals. Not all precursor lesions will undergo malignant transformation, and testing is currently limited in its ability to determine which lesions will undergo transformation. CONCLUSIONS Avoiding tobacco smoking and minimizing risk factors associated with chronic pancreatitis are recommended to reduce the risk of pancreatic cancer. Individuals with a high-risk genetic background require counseling, genetic testing if appropriate (BRCA2 mutation or p16INK4A inactivity) and secondary screening for pancreatic cancer in specialist centers. Risk stratification will improve as more genetic abnormalities causing pancreatic cancer are defined.
Collapse
Affiliation(s)
- Dale Vimalachandran
- Department of Surgery, University of Liverpool, Royal Liverpool University Hospital, United Kingdom
| | | | | | | |
Collapse
|
253
|
Mitra AP, Birkhahn M, Cote RJ. p53 and retinoblastoma pathways in bladder cancer. World J Urol 2007; 25:563-71. [PMID: 17710407 DOI: 10.1007/s00345-007-0197-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2007] [Accepted: 06/18/2007] [Indexed: 12/31/2022] Open
Abstract
A majority of the aggressive, invasive bladder carcinomas have alterations in the p53 and retinoblastoma genes and pathways. Examination of the alterations in the molecules in these pathways that regulate the cell cycle and their effects on the prognosis of bladder cancer are areas of active research. While defects in the p53-Mdm2-p14 axis have been implicated in urothelial cancer, perturbations in the cyclin-dependent kinases and their inhibitors have also been extensively studied in this context. Genetic alterations of the retinoblastoma gene and aberrant post-translational modifications of its protein have also been incriminated in invasive bladder cancer. This article reviews the individual prognostic roles of alterations in these molecules in the context of bladder cancer. Additionally, we review findings from recent studies that are attempting to analyze these markers in combination in an effort to construct molecular panels that can serve as more robust outcome predictors. More importantly, alterations in these molecules are now becoming enticing targets for novel therapeutics. We also review some of these agents that can restore the tumor cells' altered homeostatic mechanisms, thereby having potential in transitional cell carcinoma therapy. Future management of bladder cancer will employ validated marker panels for outcome prediction, and novel genetic and pharmacologic agents that will be able to target molecular alterations in individual tumors based on their respective profiles.
Collapse
Affiliation(s)
- Anirban P Mitra
- Department of Pathology, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA
| | | | | |
Collapse
|
254
|
Abstract
Despite the critical importance of proper cell cycle regulation in establishing the correct morphology of organs and tissues during development, relatively little is known about how cell proliferation is regulated in a tissue-specific manner. The control of cell proliferation within the developing heart is of considerable interest, given the high prevalence of congenital cardiac abnormalities among humans, and recent interest in the isolation of cardiac progenitor populations. We therefore review studies exploring the contribution of cell proliferation to overall cardiac morphology and the molecular mechanisms regulating this process. In addition, we also review recent studies that have identified progenitor cell populations within the adult myocardium, as well as those exploring the capability of differentiated myocardial cells to proliferate post-natally. Thus, the exploration of cardiomyocyte cell cycle regulation, both during development as well as in the adult heart, promises to yield many exciting and important discoveries over the coming years.
Collapse
Affiliation(s)
- Sarah C. Goetz
- Carolina Cardiovascular Biology Center; University of North Carolina at Chapel Hill; Chapel Hill, North Carolina USA
- Department of Biology; University of North Carolina at Chapel Hill; Chapel Hill, North Carolina USA
| | - Frank L. Conlon
- Carolina Cardiovascular Biology Center; University of North Carolina at Chapel Hill; Chapel Hill, North Carolina USA
- Department of Biology; University of North Carolina at Chapel Hill; Chapel Hill, North Carolina USA
- Department of Genetics Fordham Hall; University of North Carolina at Chapel Hill; Chapel Hill, North Carolina USA
- Correspondence to: Frank L. Conlon; Department of Genetics; University of North Carolina at Chapel Hill; 221 Fordham Hall, CB 3280; Chapel Hill, North Carolina 27599 USA; Tel.: 919.843.5500;
| |
Collapse
|
255
|
Rashidian J, Iyirhiaro GO, Park DS. Cell cycle machinery and stroke. Biochim Biophys Acta Mol Basis Dis 2007; 1772:484-93. [PMID: 17241774 DOI: 10.1016/j.bbadis.2006.11.009] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2006] [Revised: 11/22/2006] [Accepted: 11/29/2006] [Indexed: 11/30/2022]
Abstract
Stroke results from a transient or permanent reduction in blood flow to the brain. The mechanisms involving neuronal death following ischemic insult are complex and not fully understood. One signal which may control ischemic neuronal death is the inappropriate activation of cell cycle regulators including cyclins, cyclin dependent kinases (CDKs) and endogenous cyclin dependent kinase inhibitors (CDKIs). In dividing cells, activation of cell cycle machinery induces cell proliferation. In the context of terminally differentiated-neurons, however, aberrant activation of these elements triggers neuronal death. Indeed, there are several lines of correlative and functional evidence supporting this "cell cycle/neuronal death hypothesis". The objective of this review is to summarize the findings implicating cell cycle machinery in ischemic neuronal death from in vitro and in vivo studies. Importantly, determining and blocking the signaling pathway(s) by which these molecules act to mediate ischemic neuronal death, in conjunction with other targets may provide a viable therapeutic strategy for stroke damage.
Collapse
Affiliation(s)
- J Rashidian
- Ottawa Health Research Institute, Neuroscience Group, Centre for Stroke Recovery, University of Ottawa, 451 Smyth Road, Ottawa, ON, Canada K1H 8M5
| | | | | |
Collapse
|
256
|
Joshi B, Rastogi S, Morris M, Carastro L, Decook C, Seto E, Chellappan S. Differential regulation of human YY1 and caspase 7 promoters by prohibitin through E2F1 and p53 binding sites. Biochem J 2007; 401:155-66. [PMID: 16918502 PMCID: PMC1698671 DOI: 10.1042/bj20060364] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Prohibitin is a 30 kDa growth suppressive protein that has pleiotropic functions in the cell. Although prohibitin has been demonstrated to have potent transcriptional regulatory functions, it has also been proposed to facilitate protein folding in the mitochondria and promote cell migration in association with Raf-1. Our previous studies have shown that prohibitin physically interacts with the marked-box domain of E2F family members and represses their transcriptional activity; in contrast, prohibitin could bind to and enhance the transcriptional activity of p53. Here, we show that promoters of human YY1 (Yin and Yang 1) as well as caspase 7 genes are modulated by prohibitin. YY1 promoter activity was reduced upon overexpression of prohibitin, while it was enhanced when prohibitin was depleted by small interfering RNA techniques. The repressive effects of prohibitin on the YY1 promoter were mediated through E2F binding sites, as seen by mutational analysis and chromatin immunoprecipitation assays. Further, depletion of E2F1 prevented prohibitin from repressing the YY1 promoter. In contrast with YY1, prohibitin overexpression led to enhanced levels of caspase 7, whereas depletion of prohibitin reduced it. Interestingly, the caspase 7 promoter was found to have p53-binding sites and prohibitin activated this promoter through p53. These studies show that prohibitin can have diverse effects on the expression of different genes and the activity of various cellular promoters is affected by prohibitin. Further, it appears very likely that prohibitin carries out many of its cellular functions by affecting the transcription of different genes.
Collapse
Affiliation(s)
- B. Joshi
- Department of Interdisciplinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, University of South Florida, 12902 Magnolia Dr., Tampa, FL 33612, U.S.A
| | - S. Rastogi
- Department of Interdisciplinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, University of South Florida, 12902 Magnolia Dr., Tampa, FL 33612, U.S.A
| | - M. Morris
- Department of Interdisciplinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, University of South Florida, 12902 Magnolia Dr., Tampa, FL 33612, U.S.A
| | - L. M. Carastro
- Department of Interdisciplinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, University of South Florida, 12902 Magnolia Dr., Tampa, FL 33612, U.S.A
| | - C. Decook
- Department of Interdisciplinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, University of South Florida, 12902 Magnolia Dr., Tampa, FL 33612, U.S.A
| | - E. Seto
- Department of Interdisciplinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, University of South Florida, 12902 Magnolia Dr., Tampa, FL 33612, U.S.A
| | - S. P. Chellappan
- Department of Interdisciplinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, University of South Florida, 12902 Magnolia Dr., Tampa, FL 33612, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
257
|
Mitra AP, Datar RH, Cote RJ. Molecular Pathways in Invasive Bladder Cancer: New Insights Into Mechanisms, Progression, and Target Identification. J Clin Oncol 2006; 24:5552-64. [PMID: 17158541 DOI: 10.1200/jco.2006.08.2073] [Citation(s) in RCA: 208] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Papillary and invasive cancers of the urinary bladder appear to evolve and progress through distinct molecular pathways. Invasion in bladder cancer forebodes a graver prognosis, and these tumors are generally characterized by alterations in the p53 and retinoblastoma (RB) pathways that normally regulate the cell cycle by interacting with the Ras–mitogen activated protein kinase signal transduction pathway. Tumor angiogenesis further contributes to the neoplastic growth by providing a constant supply of oxygen and nutrients. Distinct epigenetic and genetic events characterize the interplay between the molecules involved in these pathways, thus affording their use as indicators of prognosis. Efforts are now underway to construct molecular panels comprising multiple markers that can serve as more robust predictors of outcome. While clinical trials for targeted chemotherapy for bladder cancer have commenced, novel genetic and pharmacologic agents that can target pathway-specific molecules are currently under development. The next generation of clinical management for urothelial carcinoma will witness the use of multimarker panels for prognostic prediction and combination therapy directed at novel molecular targets for treatment.
Collapse
Affiliation(s)
- Anirban P Mitra
- Department of Pathology, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA
| | | | | |
Collapse
|
258
|
Yoneda T, Kumagai T, Nagatomo I, Furukawa M, Yamane H, Hoshino S, Mori M, Takeda Y, Horai T, Nishida S, Watanabe D, Kijima T, Yoshida M, Osaki T, Tachibana I, Greene MI, Kawase I. The extracellular domain of p185(c-neu) induces density-dependent inhibition of cell growth in malignant mesothelioma cells and reduces growth of mesothelioma in vivo. DNA Cell Biol 2006; 25:530-40. [PMID: 16989576 DOI: 10.1089/dna.2006.25.530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
EGFR is involved in the density-dependent inhibition of cell growth, while coexpression of EGFR with erbB2 can render normal cells transformed. In this study, we have examined the effect of a species of p185 that contains the transmembrane domain and the extracellular domain of p185(c-neu), on growth properties of a human malignant mesothelioma cell line that coexpresses EGFR and erbB2. The ectodomain form of p185(c-neu) enhanced density-dependent inhibition of cell growth and we found that p21 induction appeared to be responsible for this inhibitory effect. Previously, the extracellular domain species was shown to suppress the transforming abilities of EGFR and p185(c-neu/erbB2) in a dominant-negative manner. The ability of this subdomain to affect tumor growth is significant, as it reduced in vivo tumor growth. Unexpectedly, we found that the domain did not abrogate all of EGFR functions. We noted that EGFR-induced density-dependent inhibition of cell growth was retained. Tyrosine kinase inhibitors of EGFR did not cause density-dependent inhibition of cell growth of malignant mesothelioma cells. Therefore, simultaneously inhibiting the malignant phenotype and inducing density-dependent inhibition of cell growth in malignant mesothelioma cells by the extracellular domain of p185(c-neu) may represent an important therapeutic advance.
Collapse
MESH Headings
- Animals
- Cell Line, Tumor
- Cell Proliferation
- ErbB Receptors/genetics
- G1 Phase
- Gene Expression
- Genes, erbB-2
- Humans
- Mesothelioma/genetics
- Mesothelioma/pathology
- Mesothelioma/physiopathology
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Models, Biological
- Neoplasm Transplantation
- Protein Structure, Tertiary
- Receptor, ErbB-2/chemistry
- Receptor, ErbB-2/genetics
- Receptor, ErbB-2/physiology
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Transfection
- Transplantation, Heterologous
Collapse
Affiliation(s)
- Tsutomu Yoneda
- Department of Respiratory Medicine, Allergy and Rheumatic Diseases, Osaka University Graduate School of Medicine, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
259
|
Abstract
Regulation of cell proliferation is a critical aspect of the development of multicellular organisms. The ocular lens is an excellent model system in which to unravel the mechanisms controlling cell proliferation during development. In recent years, several cell cycle regulators have been shown to be essential for maintaining normal patterns of lens cell proliferation. Additionally, many growth factor signaling pathways and cell adhesion factors have been shown to have the capacity to regulate lens cell proliferation. Given this complexity, understanding the cross talk between these many signaling pathways and how they are coordinated are important directions for the future.
Collapse
Affiliation(s)
- Anne E Griep
- Department of Anatomy, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA.
| |
Collapse
|
260
|
Nam EJ, Kim JW, Kim SW, Kim YT, Kim JH, Yoon BS, Cho NH, Kim S. The expressions of the Rb pathway in cervical intraepithelial neoplasia; predictive and prognostic significance. Gynecol Oncol 2006; 104:207-11. [PMID: 17046054 DOI: 10.1016/j.ygyno.2006.07.043] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Revised: 07/06/2006] [Accepted: 07/31/2006] [Indexed: 11/16/2022]
Abstract
OBJECTIVES The aim of the study was to assess the expression of the Rb pathway (p16(INK4a)-cdk4-pRb) in cervical intraepithelial neoplasia as a prognostic marker by investigating the association between expression of Rb pathway and the recurrence. METHODS The study group comprised of 265 paraffin-embedded tissues of the uterine cervix collected from patients between 2001 and 2003. Patients underwent ablative or excisional treatment and were followed for 2 years. RB pathway expression was examined using immunohistochemistry applied to a tissue microarray. HPV detection and genotyping were performed with HPV DNA Chip. Statistical analysis was done by ANOVA test, Student's t test, and Pearson's correlation test. RESULTS With increasing CIN grade, p16(INK4a) and cdk4 expression rates increased, while the pRb expression rate decreased. The expression rate of p16(INK4a) was higher (33%) in CIN I with high-risk HPV infection than in CIN I without high-risk HPV infection (19%). The mean expression rates of p16(INK4a) were 29%, 39%, and 64%, respectively, in CIN I, II, and III without recurrence, but 25%, 28%, and 44% in those with recurrence. The mean expression rates of pRb were 47%, 40%, and 18% in CIN I, II, and III without recurrence, respectively, but 48%, 45%, and 34% in those with recurrence. CONCLUSION A relatively low expression rate of p16(INK4a) has prognostic significance for predicting recurrence. The clinical utility of p16(INK4a) status for stratifying patients according to their need for aggressive treatment requires further investigation.
Collapse
Affiliation(s)
- Eun Ji Nam
- Women's Cancer Clinic, Department of Obstetrics and Gynecology, Korea
| | | | | | | | | | | | | | | |
Collapse
|
261
|
Mitra AP, Lin H, Datar RH, Cote RJ. Molecular biology of bladder cancer: prognostic and clinical implications. Clin Genitourin Cancer 2006; 5:67-77. [PMID: 16859582 DOI: 10.3816/cgc.2006.n.020] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The role of various molecular determinants involved in the genesis, progression, and outcome of bladder cancer has been the focus of investigations for the past 2 decades. Increasingly, the analysis of the interplay between these molecular factors is taking center stage. We review herein the studies examining the effects of deregulation of the various molecules implicated in the cell cycle, apoptosis, and angiogenesis pathways and analyze the central role of p53 in regulating these pathways. Technological advancements enable detection and quantification of gene transcripts and protein products, helping us move toward achieving the goal of establishing diagnostic, prognostic, and therapeutic marker panels. Recent studies have therefore focused on multiple-marker analyses to generate informative panels that can have greater clinical value for bladder cancer management. The use of molecular marker panels can provide a more objective alternative to clinical parameters for diagnosis and treatment decisions. Clinical trials aimed at treating urothelial carcinoma based on a patient's molecular profile can be predicted to empower clinicians to personalize patient management through increased therapeutic efficacy.
Collapse
Affiliation(s)
- Anirban P Mitra
- Department of Pathology, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA
| | | | | | | |
Collapse
|
262
|
Abstract
The retinoblastoma gene Rb was the first tumor suppressor gene cloned, and it is well known as a negative regulator of the cell cycle through its ability to bind the transcription factor E2F and repress transcription of genes required for S phase. Although over 100 other proteins have been reported to interact with Rb, in most cases these interactions are much less well characterized. Therefore, this review will primarily focus on Rb and E2F interactions. In addition to cell cycle regulation, studies of Rb and E2F proteins in animal models have revealed important roles for these proteins in apoptosis and differentiation. Recent screens of Rb/E2F target genes have identified new targets in all these areas. In addition, the mechanisms determining how different subsets of target genes are regulated under different conditions have only begun to be addressed and offer exciting possibilities for future research.
Collapse
Affiliation(s)
- W Du
- Ben May Institute for Cancer Research and Center for Molecular Oncology, University of Chicago, Chicago, IL 60637, USA.
| | | |
Collapse
|
263
|
Hayashi R, Goto Y, Ikeda R, Yokoyama KK, Yoshida K. CDCA4 is an E2F transcription factor family-induced nuclear factor that regulates E2F-dependent transcriptional activation and cell proliferation. J Biol Chem 2006; 281:35633-48. [PMID: 16984923 DOI: 10.1074/jbc.m603800200] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The TRIP-Br1/p34(SEI-1) family proteins participate in cell cycle progression by coactivating E2F1- or p53-dependent transcriptional activation. Here, we report the identification of human CDCA4 (also know as SEI-3/Hepp) as a novel target gene of transcription factor E2F and as a repressor of E2F-dependent transcriptional activation. Analysis of CDCA4 promoter constructs showed that an E2F-responsive sequence in the vicinity of the transcription initiation site is necessary for the E2F1-4-induced activation of CDCA4 gene transcription. Chromatin immunoprecipitation analysis demonstrated that E2F1 and E2F4 bound to an E2F-responsive sequence of the human CDCA4 gene. Like TRIP-Br1/p34(SEI-1) and TRIP-Br2 (SEI-2), the transactivation domain of CDCA4 was mapped within C-terminal acidic region 175-241. The transactivation function of the CDCA4 protein was inhibited by E2F1-4 and DP2, but not by E2F5-8. Inhibition of CDCA4 transactivation activity by E2F1 partially interfered with retinoblastoma protein overexpression. Conversely, CDCA4 suppressed E2F1-3-induced reporter activity. CDCA4 (but not acidic region-deleted CDCA4) suppressed E2F1-regulated gene promoter activity. These findings suggest that the CDCA4 protein functions as a suppressor at the E2F-responsive promoter. Small interfering RNA-mediated knockdown of CDCA4 expression in cancer cells resulted in up-regulation of cell growth rates and DNA synthesis. The CDCA4 protein was detected in several human cells and was induced as cells entered the G1/S phase of the cell cycle. Taken together, our results suggest that CDCA4 participates in the regulation of cell proliferation, mainly through the E2F/retinoblastoma protein pathway.
Collapse
Affiliation(s)
- Reiko Hayashi
- Laboratory of Molecular and Cellular Biology, Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashimita, Kawasaki, Kanagawa 214-8571, Japan
| | | | | | | | | |
Collapse
|
264
|
White MK, Khalili K. Interaction of retinoblastoma protein family members with large T-antigen of primate polyomaviruses. Oncogene 2006; 25:5286-93. [PMID: 16936749 DOI: 10.1038/sj.onc.1209618] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The retinoblastoma gene product pRb and other members of the Rb family of pocket proteins have a central role in the regulation of cell cycle progression. Soon after its discovery, pRb was found to interact with the transforming oncoproteins of DNA tumor viruses and this led to rapid advances in our understanding of the mechanisms of viral transformation and cell cycle progression. DNA viruses of the polyomavirus family have small, circular, double-stranded DNA genomes contained within non-enveloped icosahedral capsids and are highly tumorigenic in experimental animals. At least three types of polyomavirus infect humans: JC virus (JCV), BK virus (BKV) and Simian Vacuolating virus-40. The early region of these viruses encodes the transforming proteins large T-antigen and small t-antigen, which are involved in viral replication and also promote transformation of cells in culture and oncogenesis in vivo. Binding of T-antigen to pRb promotes the activation of the E2F family of transcription factors, which induce the expression of cellular genes required for S phase. In the context of lytic infection, this cell cycle progression is necessary for viral replication because polyomaviruses rely on S phase-specific host factors for their DNA synthesis. In the context of cellular transformation and tumorigenesis, T-antigen/pRB interaction is an indispensable event.
Collapse
Affiliation(s)
- M K White
- Center for Neurovirology, Department of Neuroscience, Temple University School of Medicine, Philadelphia, PA 19122, USA
| | | |
Collapse
|
265
|
Fedele M, Pierantoni GM, Visone R, Fusco A. E2F1 activation is responsible for pituitary adenomas induced by HMGA2 gene overexpression. Cell Div 2006; 1:17. [PMID: 16914062 PMCID: PMC1563461 DOI: 10.1186/1747-1028-1-17] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2006] [Accepted: 08/17/2006] [Indexed: 01/14/2023] Open
Abstract
The High Mobility Group protein HMGA2 is a nuclear architectural factor that plays a critical role in a wide range of biological processes including regulation of gene expression, embryogenesis and neoplastic transformation. Several studies are trying to identify the mechanisms by which HMGA2 protein is involved in each of these activities, and only recently some new significant insights are emerging from the study of transgenic and knock-out mice. Overexpression of HMGA2 gene leads to the onset of prolactin and GH-hormone induced pituitary adenomas in mice, suggesting a critical role of this protein in pituitary tumorigenesis. This was also confirmed in the human pathology by the finding that HMGA2 amplification and/or overexpression is present in human prolactinomas. This review focuses on recent data that explain the mechanism by which HMGA2 induces the development of pituitary adenomas in mice. This mechanism entails the activation of the E2F1 protein by the HMGA2-mediated displacement of HDAC1 from pRB protein.
Collapse
Affiliation(s)
- Monica Fedele
- Istituto di Endocrinologia e Oncologia Sperimentale del CNR e Dipartimento di Biologia e Patologia Cellulare e Molecolare, Università di Napoli "Federico II", via S. Pansini, 5 80131 Napoli, Italy
| | - Giovanna Maria Pierantoni
- Istituto di Endocrinologia e Oncologia Sperimentale del CNR e Dipartimento di Biologia e Patologia Cellulare e Molecolare, Università di Napoli "Federico II", via S. Pansini, 5 80131 Napoli, Italy
| | - Rosa Visone
- Istituto di Endocrinologia e Oncologia Sperimentale del CNR e Dipartimento di Biologia e Patologia Cellulare e Molecolare, Università di Napoli "Federico II", via S. Pansini, 5 80131 Napoli, Italy
| | - Alfredo Fusco
- Istituto di Endocrinologia e Oncologia Sperimentale del CNR e Dipartimento di Biologia e Patologia Cellulare e Molecolare, Università di Napoli "Federico II", via S. Pansini, 5 80131 Napoli, Italy
- NOGEC (Naples Oncogenomic Center) – CEINGE Biotecnologie Avanzate & SEMM – European School of Molecular Medicine – Naples Site, via Comunale Margherita 482, Naples, Italy
| |
Collapse
|
266
|
Knudsen ES, Knudsen KE. Retinoblastoma tumor suppressor: where cancer meets the cell cycle. Exp Biol Med (Maywood) 2006; 231:1271-81. [PMID: 16816134 DOI: 10.1177/153537020623100713] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The retinoblastoma tumor suppressor gene, Rb, was the first tumor suppressor identified and plays a fundamental role in regulation of progression through the cell cycle. This review details facets of RB protein function in cell cycle control and focuses on specific questions that remain intensive areas of investigation.
Collapse
Affiliation(s)
- Erik S Knudsen
- Department of Cell Biology and University of Cincinnati Cancer Center, University of Cincinnati, Cincinnati, Ohio 45267-0521, USA.
| | | |
Collapse
|
267
|
Grinstein E, Shan Y, Karawajew L, Snijders PJF, Meijer CJLM, Royer HD, Wernet P. Cell cycle-controlled interaction of nucleolin with the retinoblastoma protein and cancerous cell transformation. J Biol Chem 2006; 281:22223-22235. [PMID: 16698799 DOI: 10.1074/jbc.m513335200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Retinoblastoma protein (Rb) is a multifunctional tumor suppressor, frequently inactivated in certain types of human cancer. Nucleolin is an abundant multifunctional phosphoprotein of proliferating and cancerous cells, recently identified as cell cycle-regulated transcription activator, controlling expression of human papillomavirus type 18 (HPV18) oncogenes in cervical cancer. Here we find that nucleolin is associated with Rb in intact cells in the G1 phase of the cell cycle, and the complex formation is mediated by the growth-inhibitory domain of Rb. Association with Rb inhibits the DNA binding function of nucleolin and in consequence the interaction of nucleolin with the HPV18 enhancer, resulting in Rb-mediated repression of the HPV18 oncogenes. The intracellular distribution of nucleolin in epithelial cells is Rb-dependent, and an altered nucleolin localization in human cancerous tissues results from a loss of Rb. Our findings suggest that deregulated nucleolin activity due to a loss of Rb contributes to tumor development in malignant diseases, thus providing further insights into the molecular network for the Rb-mediated tumor suppression.
Collapse
Affiliation(s)
- Edgar Grinstein
- Institute of Transplantation Diagnostics and Cellular Therapeutics, Heinrich Heine University Medical Center, 40225 Düsseldorf, Germany.
| | - Ying Shan
- Max-Delbrück Center for Molecular Medicine, 13125 Berlin, Germany; Institute of Molecular Pharmacology, 13125 Berlin, Germany
| | - Leonid Karawajew
- Robert-Rossle-Clinic at the HELIOS Klinikum Berlin-Buch, Charite Medical School, 13125 Berlin, Germany
| | - Peter J F Snijders
- Department of Pathology, Vrije Universiteit Medical Center, 1007 MB Amsterdam, The Netherlands
| | - Chris J L M Meijer
- Department of Pathology, Vrije Universiteit Medical Center, 1007 MB Amsterdam, The Netherlands
| | - Hans-Dieter Royer
- Max-Delbrück Center for Molecular Medicine, 13125 Berlin, Germany; Center for Advanced European Studies, 53175 Bonn, Germany
| | - Peter Wernet
- Institute of Transplantation Diagnostics and Cellular Therapeutics, Heinrich Heine University Medical Center, 40225 Düsseldorf, Germany
| |
Collapse
|
268
|
Iñigo SDLI, Casares MTG, Jorge CEL, Leiza SMG, Santana GS, Bravo de Laguna SJ, San Miguel JDG, Caballero A, Alvarez MDMP, Castellano AL, Henríquez HL, Labarta TM. Relevance of renin expression by real-time PCR in acute myeloid leukemia. Leuk Lymphoma 2006; 47:409-16. [PMID: 16396763 DOI: 10.1080/10428190500305927] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The search for useful molecular markers in the diagnosis of AML and in the follow-up of minimal residual disease (MRD) has been the focus of many recent studies. Previous research showed that, while normal bone marrow cells lack expression of renin, myeloid blasts have been reported to do so. The aim was to study the expression of the renin gene by the use of real-time quantitative PCR (RQ-PCR) at diagnosis in acute myeloid leukemia patients (AML) and to assess its possible relevance in the prognosis and outcome of such patients. This study analysed 76 samples from patients with AML, with follow-up of positive patients. Thirty-one patients (41%) were positive for renin gene expression at diagnosis. All renin-positive patients at diagnosis showed no expression during complete remission (CR), but expression recurred in those experiencing relapse and persisted when the disease was refractory to treatment. Although the results suggest that the sub-group of renin-positive AML patients might have a worse outcome and a higher relapse rate (at 5 years, the projected rate of disease-free survival was 18.5 +/- 9.8% for renin-positive and 23.5 +/- 8.8% for renin-negative patients), no significant differences were found. It is believed that further studies should aim to validate whether such a difference exists, using a much larger and homogeneus group of patients.
Collapse
Affiliation(s)
- Silvia de la Iglesia Iñigo
- Department of Hematology, Hospital Universitario de Gran Canaria Doctor Negrín, Las Palmas de Gran Canaria, Spain.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
269
|
Zhao Y, Zhou L, Liu B, Deng Y, Wang Y, Wang Y, Huang W, Yuan W, Wang Z, Zhu C, Liu M, Wu X, Li Y. ZNF325, a novel human zinc finger protein with a RBaK-like RB-binding domain, inhibits AP-1- and SRE-mediated transcriptional activity. Biochem Biophys Res Commun 2006; 346:1191-9. [PMID: 16806083 DOI: 10.1016/j.bbrc.2006.06.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2006] [Accepted: 06/05/2006] [Indexed: 11/22/2022]
Abstract
Mitogen-activated protein kinase (MAPK) signal transduction pathways are among the most widespread mechanisms of eukaryotic cell regulation. The zinc-finger-containing transcription factors have been previously revealed to be involved in the regulation of the MAPK signaling pathways. Here, we have identified a novel human zinc-finger transcriptional repressor, ZNF325, that contains a RBaK-like RB-binding domain and 15 tandem repeated C2H2 type zinc fingers. Northern blot analysis indicates that a 2.7 kb transcript specific for ZNF325 is widely expressed in all tissues examined at adult stage and in most of the embryonic tissues. Overexpression of ZNF325 in COS-7 cells inhibits the transcriptional activities of AP-1 and SRE. The deletion and RNAi analysis indicate that the C2H2 zinc finger motifs represent the basal transcriptional repressive activity. These results indicate that the ZNF325 protein may act as a novel transcription repressor in MAPK signaling pathway to mediate cellular functions.
Collapse
Affiliation(s)
- Yulian Zhao
- The Center for Heart Development, Lab of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, 410081 Hunan, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
270
|
Takemura M, Yoshida S, Akiyama T, Kitagawa M, Yamada Y. Role of the second-largest subunit of DNA polymerase alpha in the interaction between the catalytic subunit and hyperphosphorylated retinoblastoma protein in late S phase. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2006; 1764:1447-53. [PMID: 16935576 DOI: 10.1016/j.bbapap.2006.06.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2005] [Revised: 06/02/2006] [Accepted: 06/09/2006] [Indexed: 01/05/2023]
Abstract
DNA polymerase alpha (pol-alpha) is a heterotetrameric enzyme (p180-p68-p58-p48 in mouse) that is essential for the initiation of chain elongation during DNA replication. The catalytic (p180) and p68 subunits of pol-alpha are phosphorylated by Cdk-cyclin complexes, with p68 being hyperphosphorylated by cyclin-dependent kinases in G(2) phase of the cell cycle. The activity of Cdk2-cyclin A increases during late S phase and peaks in G(2) phase. We have now examined the role of p68 in the interaction between the catalytic subunit of pol-alpha and hyperphosphorylated retinoblastoma protein (ppRb) and in the stimulation of the polymerase activity of pol-alpha by ppRb. With the use of recombinant proteins, we found that nonphosphorylated p68 inhibited the stimulation of pol-alpha activity by ppRb, suggesting that p68 might impede the association of ppRb with p180. Phosphorylation of p68 by Cdk2-cyclin A greatly reduced its inhibitory effect. Immunofluorescence analysis also revealed that ppRb localized at sites of DNA replication specifically in late S phase. These results suggest that Cdk-cyclin A can phosphorylate pol-alpha which may result in a conformational change in pol-alpha facilitating its interaction with and activation by ppRb.
Collapse
Affiliation(s)
- Masaharu Takemura
- Department of Biology, Faculty of Science, Tokyo University of Science, RIKADAI, Kagurazaka 1-3, Tokyo 162-8601, Japan.
| | | | | | | | | |
Collapse
|
271
|
Harbour JW. Eye cancer: unique insights into oncogenesis: the Cogan Lecture. Invest Ophthalmol Vis Sci 2006; 47:1736-45. [PMID: 16638975 PMCID: PMC1769553 DOI: 10.1167/iovs.05-1291] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- J William Harbour
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| |
Collapse
|
272
|
Psyrri A, Fountzilas G. Advances in the treatment of locally advanced non-nasopharyngeal squamous cell carcinoma of the head and neck region. Med Oncol 2006; 23:1-15. [PMID: 16645225 DOI: 10.1385/mo:23:1:1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2005] [Revised: 11/30/1999] [Accepted: 05/12/2005] [Indexed: 01/08/2023]
Abstract
Over the past decade important advances have been made in the treatment of locally advanced squamous cell carcinoma of the head and neck (SCCHN). Traditionally, chemotherapy has been incorporated in the treatment of SCCHN either before local treatment as induction, concomitantly with radiation, or following local treatment as adjuvant therapy. A number of randomized trials and meta-analyses have demonstrated that induction chemotherapy (usually based on the combination of cisplatin and 5-d continuous infusion of fluorouracil) followed by local treatment or concomitant chemoradiotherapy (CCRT) each prolongs survival and results in organ preservation in a significant number of patients. Survival rates appear to be higher when CCRT with cisplatin is used. Furthermore, accelerated fractionation radiation regimens have shown improved local control rates in randomized trials. Recently, new therapeutic strategies such as induction chemotherapy followed by CCRT or the incorporation of newer agents such as taxanes are under intense investigation and preliminary results are promising. Advances in molecular biology have led to the elucidation of molecular mechanisms that initiate and maintain the malignant phenotype in SCCHN. The identification of molecular targets has revolutionized our approach to cancer therapy and resulted in the introduction of novel targeted therapies. Cyclin-dependent kinases, the tumor suppressor p53 gene, and epidermal growth factor receptor are some of the molecular targets of such therapies in patients with SCCHN.
Collapse
Affiliation(s)
- Amanda Psyrri
- Department of Medical Oncology, Papageorgiou Hospital, Aristotle University of Thessaloniki School of Medicine, Thessaloniki, Greece
| | | |
Collapse
|
273
|
Wade M, Wahl GM. c-Myc, genome instability, and tumorigenesis: the devil is in the details. Curr Top Microbiol Immunol 2006; 302:169-203. [PMID: 16620029 DOI: 10.1007/3-540-32952-8_7] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The c-myc oncogene acts as a pluripotent modulator of transcription during normal cell growth and proliferation. Deregulated c-myc activity in cancer can lead to excessive activation of its downstream pathways, and may also stimulate changes in gene expression and cellular signaling that are not observed under non-pathological conditions. Under certain conditions, aberrant c-myc activity is associated with the appearance of DNA damage-associated markers and karyotypic abnormalities. In this chapter, we discuss mechanisms by which c-myc may be directly or indirectly associated with the induction of genomic instability. The degree to which c-myc-induced genomic instability influences the initiation or progression of cancer is likely to depend on other factors, which are discussed herein.
Collapse
Affiliation(s)
- M Wade
- Gene Expression Lab, The Salk Institute, 10010 N. Torrey Pines Rd., La Jolla, CA 92037, USA
| | | |
Collapse
|
274
|
Kong LJ, Meloni AR, Nevins JR. The Rb-related p130 protein controls telomere lengthening through an interaction with a Rad50-interacting protein, RINT-1. Mol Cell 2006; 22:63-71. [PMID: 16600870 DOI: 10.1016/j.molcel.2006.02.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2005] [Revised: 11/26/2005] [Accepted: 02/15/2006] [Indexed: 11/23/2022]
Abstract
The oncogenic process often leads to a loss of normal telomere length control, usually as a result of activation of telomerase. Nevertheless, there are also telomerase-independent events that involve a Rad50-dependent recombination mechanism to maintain telomere length. Previous work has implicated the Rb family of proteins in the control of telomere length, and we now demonstrate that the p130 member of the Rb family is critical for telomere length control. p130 interacts specifically with the RINT-1 protein, previously identified as a Rad50-interacting protein. We further show that RINT-1 is essential for telomere length control. We propose that p130, forming a complex with Rad50 through RINT-1, blocks telomerase-independent telomere lengthening in normal cells. Given previous work implicating E2F in the control of telomerase gene expression, these results thus point to complementary roles for the Rb/E2F pathway in the control of telomere length.
Collapse
Affiliation(s)
- Ling-Jie Kong
- Duke Institute for Genome Sciences and Policy, Duke University Medical Center, Durham, North Carolina 27708, USA
| | | | | |
Collapse
|
275
|
McCabe MT, Low JA, Imperiale MJ, Day ML. Human polyomavirus BKV transcriptionally activates DNA methyltransferase 1 through the pRb/E2F pathway. Oncogene 2006; 25:2727-35. [PMID: 16547506 DOI: 10.1038/sj.onc.1209266] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Many DNA tumor virus oncogenes are capable of activating and highjacking the host cell's DNA replication machinery for its own reproduction purposes through targeting and inactivation of the retinoblastoma pocket protein family. Pocket proteins function to regulate cell cycle progression and DNA synthesis through inhibitory interactions with the E2F transcription factors. The interaction of viral oncogenes with the pocket proteins is crucial for their transforming activity. We recently demonstrated that the DNA methyltransferase 1 (DNMT1) gene is an E2F target gene that is transcriptionally activated in cells lacking the retinoblastoma gene (Rb-/-). Overexpression of DNMT1 is implicated in tumor suppressor gene hypermethylation which is associated with tumorigenesis. Given that viral oncogenes potently stimulate E2F activity, we hypothesized that viral infection might activate DNMT1 and thereby promote transformation. Herein, we demonstrate that DNMT1 is strongly activated by the human polyomavirus BKV large T antigen (TAg) and adenovirus E1a. Viral oncogene mutants incapable of binding the pocket proteins are ineffective at activating DNMT1 compared to their wild-type counterparts. Additionally, mutation of the E2F sites within the DNMT1 promoters dramatically abrogates transcriptional activation. These data suggest that viral induction of DNMT1 through modulation of the pRB/E2F pathway may be involved in viral transformation.
Collapse
MESH Headings
- Adenocarcinoma/genetics
- Adenocarcinoma/metabolism
- Adenocarcinoma/virology
- Adenovirus E1A Proteins/metabolism
- Animals
- Antigens, Polyomavirus Transforming/genetics
- Antigens, Polyomavirus Transforming/metabolism
- BK Virus/physiology
- Cell Transformation, Viral
- Cells, Cultured
- DNA (Cytosine-5-)-Methyltransferase 1
- DNA (Cytosine-5-)-Methyltransferases/genetics
- DNA (Cytosine-5-)-Methyltransferases/metabolism
- E2F Transcription Factors/genetics
- E2F Transcription Factors/metabolism
- Embryo, Mammalian/cytology
- Embryo, Mammalian/metabolism
- Enzyme Activation
- Fibroblasts/cytology
- Fibroblasts/metabolism
- Humans
- Luciferases
- Male
- Mice
- Mice, Knockout
- Mutation
- NIH 3T3 Cells/metabolism
- NIH 3T3 Cells/virology
- Polyomavirus Infections/immunology
- Polyomavirus Infections/virology
- Promoter Regions, Genetic/genetics
- Prostatic Neoplasms/genetics
- Prostatic Neoplasms/metabolism
- Prostatic Neoplasms/virology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Retinoblastoma Protein/genetics
- Retinoblastoma Protein/physiology
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction
- Transcription, Genetic
- Transcriptional Activation
Collapse
Affiliation(s)
- M T McCabe
- Program in Cellular and Molecular Biology, Department of Urology, University of Michigan, Ann Arbor, MI 48109-0944, USA
| | | | | | | |
Collapse
|
276
|
Kumamoto H, Ooya K. Immunohistochemical detection of retinoblastoma protein and E2 promoter-binding factor-1 in ameloblastomas. J Oral Pathol Med 2006; 35:183-9. [PMID: 16454815 DOI: 10.1111/j.1600-0714.2006.00381.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND To clarify the roles of cell cycle regulation in oncogenesis and cytodifferentiation of odontogenic tumors, expression of retinoblastoma protein (RB) and E2 promoter-binding factor-1 (E2F-1) was analyzed in ameloblastomas as well as in tooth germs. METHODS Tissue specimens of 10 tooth germs, 40 benign ameloblastomas, and five malignant ameloblastomas were examined immunohistochemically with the use of antibodies against RB, E2F-1, and phosphorylated RB. Ki-67 antigen immunostaining was made as a marker of cell proliferation. RESULTS Immunohistochemical reactivity for RB, E2F-1, phosphorylated RB, and Ki-67 was detected in the nuclei of odontogenic epithelial cells near the basement membrane in tooth germs and benign and malignant ameloblastomas. The number of cells positive for phosphorylated RB was nearly equal to or slightly less than the number of cells positive for RB or E2F-1. The number of Ki-67-positive cells was slightly more than the numbers of cell positive for RB, E2F-1, or phosphorylated RB. The levels of immunoreactivity for RB, E2F-1, phosphorylated RB, and Ki-67 were slightly higher in benign and malignant ameloblastomas than in tooth germs. Plexiform ameloblastomas showed significantly higher expression of RB than follicular ameloblastomas. Ki-67 immunoreactivity was significantly higher in ameloblastic carcinomas than in metastasizing ameloblastomas. CONCLUSION Similar immunoreactivity for RB, E2F-1, phosphorylated RB, and Ki-67 in tooth germs and ameloblastomas indicated cellular expression of phosphorylated RB and active-free E2F-1 in both normal and neoplastic odontogenic tissues. Expression of RB, E2F-1, and phosphorylated RB was considered to be involved in cell proliferation and differentiation of odontogenic epithelium via control of the cell cycle.
Collapse
Affiliation(s)
- Hiroyuki Kumamoto
- Division of Oral Pathology, Department of Oral Medicine and Surgery, Tohoku University Graduate School of Dentistry, Sendai, Japan.
| | | |
Collapse
|
277
|
Rubin SM, Gall AL, Zheng N, Pavletich NP. Structure of the Rb C-terminal domain bound to E2F1-DP1: a mechanism for phosphorylation-induced E2F release. Cell 2006; 123:1093-106. [PMID: 16360038 DOI: 10.1016/j.cell.2005.09.044] [Citation(s) in RCA: 198] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2005] [Revised: 09/14/2005] [Accepted: 09/21/2005] [Indexed: 01/06/2023]
Abstract
The retinoblastoma (Rb) protein negatively regulates the G1-S transition by binding to the E2F transcription factors, until cyclin-dependent kinases phosphorylate Rb, causing E2F release. The Rb pocket domain is necessary for E2F binding, but the Rb C-terminal domain (RbC) is also required for growth suppression. Here we demonstrate a high-affinity interaction between RbC and E2F-DP heterodimers shared by all Rb and E2F family members. The crystal structure of an RbC-E2F1-DP1 complex reveals an intertwined heterodimer in which the marked box domains of both E2F1 and DP1 contact RbC. We also demonstrate that phosphorylation of RbC at serines 788 and 795 destabilizes one set of RbC-E2F-DP interactions directly, while phosphorylation at threonines 821 and 826 induces an intramolecular interaction between RbC and the Rb pocket that destabilizes the remaining interactions indirectly. Our findings explain the requirement of RbC for high-affinity E2F binding and growth suppression and establish a mechanism for the regulation of Rb-E2F association by phosphorylation.
Collapse
Affiliation(s)
- Seth M Rubin
- Structural Biology Program and Howard Hughes Medical Institute, Memorial Sloan-Kettering Cancer Center, NY 10021, USA
| | | | | | | |
Collapse
|
278
|
Vietri M, Bianchi M, Ludlow JW, Mittnacht S, Villa-Moruzzi E. Direct interaction between the catalytic subunit of Protein Phosphatase 1 and pRb. Cancer Cell Int 2006; 6:3. [PMID: 16466572 PMCID: PMC1382259 DOI: 10.1186/1475-2867-6-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2005] [Accepted: 02/08/2006] [Indexed: 01/21/2023] Open
Abstract
Background The product of the retinoblastoma-susceptibility gene (pRb) is a substrate for Protein Phosphatase 1 (PP1). At mitotic exit, all three PP1 isoforms, α, γ1 and δ, bind to pRb and dephosphorylate its Ser/Thr sites in a sequential and site-specific way. The pRb-C terminal has been reported to be necessary and sufficient for PP1α binding. The present study investigated whether the three PP1 isoforms from mitotic or asynchronous HeLa cells associate differentially with wild-type and pRb mutants, as well as the holoenzyme composition of the pRb-directed PP1. Results The requirement for the entire pRb molecule to achieve optimal PP1-binding was indicated by the fact that full-length pRb displayed the highest affinity for all three PP1 isoforms. Ser/Thr-to-Ala substitution for up to 14 pRb sites did not affect the ability of pRb to bind the PP1 isoforms derived from mitotic or asynchronous HeLa cells, thus suggesting that the phosphate-accepting residues on pRb do not regulate the interaction with PP1. To probe for the presence of PP1 targeting subunits in the pRb-directed PP1 complex, PP1 from mitotic or asynchronous HeLa cells was isolated by affinity chromatography on GST-Rb (either full-length or its deletion mutants Rb-big pocket or Rb-C-terminal). The PP1 was always obtained as free catalytic subunit, displaying all three isoforms, thus suggesting direct interaction between pRb and PP1. The direct association was confirmed by the ability of pRb to pull-down purified PP1 catalytic subunits and by in vitro reconstitution of a complex between PP1 catalytic subunit and the pRb-C-terminal. Conclusion The work indicated that the full length of the pRb molecule is required for optimal interaction with the PP1 isoforms and that the association between pRb and PP1 isoforms is direct.
Collapse
Affiliation(s)
- Michele Vietri
- Department of Experimental Pathology, University of Pisa, 56100 Pisa, Italy
| | - Mariarita Bianchi
- Department of Experimental Pathology, University of Pisa, 56100 Pisa, Italy
| | - John W Ludlow
- Tengion, Inc., 3929 Westpoint Blvd, Winston-Salem, NC 27103, USA
| | - Sibylle Mittnacht
- Centre for Cell and Molecular Biology, Chester Beatty Laboratories, SW3 6JB London, UK
| | - Emma Villa-Moruzzi
- Department of Experimental Pathology, University of Pisa, 56100 Pisa, Italy
| |
Collapse
|
279
|
Rastogi S, Joshi B, Fusaro G, Chellappan S. Camptothecin induces nuclear export of prohibitin preferentially in transformed cells through a CRM-1-dependent mechanism. J Biol Chem 2006; 281:2951-9. [PMID: 16319068 DOI: 10.1074/jbc.m508669200] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Prohibitin is a growth-suppressive protein that has multiple functions in the nucleus and the mitochondria. Our earlier studies had shown that prohibitin represses the activity of E2F transcription factors while enhancing p53-mediated transcription. At the same time, prohibitin has been implicated in mediating the proper folding of mitochondrial proteins. We had found that treatment of cells with camptothecin, a topoisomerase 1 inhibitor, led to the export of prohibitin and p53 from the nucleus to the mitochondria. Here we show that the camptothecin-induced export of prohibitin occurs preferentially in transformed cell lines, but not in untransformed or primary cells. Cells that did not display the translocation of prohibitin were refractive to the apoptotic effects of camptothecin. The translocation was mediated by a putative nuclear export signal at the C-terminal region of prohibitin; fusion of the nuclear export signal (NES) of prohibitin to green fluorescence protein led to its export from the nucleus. Leptomycin B could inhibit the nuclear export of prohibitin showing that it was a CRM-1-dependent event driven by Ran GTPase. Confirming this, prohibitin was found to physically interact with CRM-1, and this interaction was significantly higher in transformed cells. Delivery of a peptide corresponding to the NES of prohibitin prevented the export of prohibitin to cytoplasm and protected cells from apoptosis. These results suggest that the regulated translocation of prohibitin from the nucleus to the mitochondria facilitates its pleiotropic functions and might contribute to its anti-proliferative and tumor suppressive properties.
Collapse
Affiliation(s)
- Shipra Rastogi
- Drug Discovery Program, Department of Interdisciplinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, University of South Florida, Tampa, Florida 33612, USA
| | | | | | | |
Collapse
|
280
|
Murphree AL, Samuel MA, Harbour JW, Mansfield NC. Retinoblastoma. Retina 2006. [DOI: 10.1016/b978-0-323-02598-0.50028-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
281
|
Libertini SJ, Tepper CG, Guadalupe M, Lu Y, Asmuth DM, Mudryj M. E2F1 expression in LNCaP prostate cancer cells deregulates androgen dependent growth, suppresses differentiation, and enhances apoptosis. Prostate 2006; 66:70-81. [PMID: 16114066 DOI: 10.1002/pros.20314] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
INTRODUCTION AND OBJECTIVES To investigate the role of E2F/RB in androgen independent proliferation, differentiation, and sensitivity to apoptotic stimuli of LNCaP prostate cancer cells. METHODS The effects of E2F1 overexpression on androgen independent proliferation, differentiation, and apoptotic responses was assessed by flow cytometry, Western blot analysis and staining of nuclei. RESULTS Overexpression of E2F1 in LNCaP cells confers resistance to an androgen withdrawal-mediated growth arrest, prevents differentiation, and modifies apoptotic responses. Androgen independent proliferation is associated with a dose dependent elevation of cyclin E. Cells expressing high levels of E2F1 continue to express androgen receptor and have a diminished expression of neuronal specific enolase when cultured in androgen-depleted media. Additionally, E2F1-expressing cells are more sensitive to etoposide-induced apoptosis. Western blot analysis revealed that LNCaP-E2F1 cells have elevated expression of p73, Apaf-1, caspase-3, caspase-7, but expression of caspase-8 and -9, p14(ARF), and Mcl-1, is unaltered. CONCLUSION This is the first study that describes E2F1-dependent modifications of androgen dependence, differentiation, and sensitivity to apoptotic stimuli in LNCaP cells. Our analysis also identifies a subset of E2F1 targets that are instrumental in altering proliferative, differentiation, and apoptotic properties. Deregulation of the E2F/RB pathway and subsequent modification of key regulatory proteins may promote the development of hormone-refractory prostate tumors.
Collapse
Affiliation(s)
- Stephen J Libertini
- Veterans Affairs Northern California Health Care System, Mather, and Department of Medical Microbiology and Immunology, University of California, Davis, USA
| | | | | | | | | | | |
Collapse
|
282
|
Munakata T, Nakamura M, Liang Y, Li K, Lemon SM. Down-regulation of the retinoblastoma tumor suppressor by the hepatitis C virus NS5B RNA-dependent RNA polymerase. Proc Natl Acad Sci U S A 2005; 102:18159-64. [PMID: 16332962 PMCID: PMC1307512 DOI: 10.1073/pnas.0505605102] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The retinoblastoma tumor-suppressor protein (Rb) plays a critical role in controlling cellular proliferation and apoptosis by regulating E2F transcription factors. Rb is a key target of oncoproteins expressed by DNA tumor viruses, but RNA viruses are not known to regulate Rb function. Here, we show that Rb abundance is negatively regulated in cells containing replicating genomic RNA from hepatitis C virus, a human virus strongly associated with hepatocellular carcinoma. The viral RNA-dependent RNA polymerase NS5B forms a complex with Rb, targeting it for degradation and resulting in reduction of Rb abundance, activation of E2F-responsive promoters, and cell proliferation. NS5B contains a conserved Leu-x-Cys/Asn-x-Asp motif that is homologous to Rb-binding domains in the oncoproteins of DNA viruses. This domain overlaps the polymerase active site, and mutations within it abrogate Rb binding and reverse the effects of NS5B on E2F promoter activation and cell proliferation. These findings suggest a unique link between an oncogenic RNA virus implicated in the development of liver cancer and a critically important tumor-suppressor protein.
Collapse
Affiliation(s)
- Tsubasa Munakata
- Department of Microbiology and Immunology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, 77555-1019, USA
| | | | | | | | | |
Collapse
|
283
|
Muñoz U, de Las Cuevas N, Bartolomé F, Hermida OG, Bermejo F, Martín-Requero A. The cyclopentenone 15-deoxy-delta(12,14)-prostaglandin J2 inhibits G1/S transition and retinoblastoma protein phosphorylation in immortalized lymphocytes from Alzheimer's disease patients. Exp Neurol 2005; 195:508-17. [PMID: 16061222 DOI: 10.1016/j.expneurol.2005.06.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2005] [Revised: 06/16/2005] [Accepted: 06/17/2005] [Indexed: 11/22/2022]
Abstract
Epidemiologic studies indicated that non-steroidal anti-inflammatory drugs (NSAIDs) might prevent or delay the clinical features of Alzheimer disease (AD). The pharmacological activity of NSAIDs is generally attributed to inhibition of cyclooxygenase and peroxisome proliferator-activated receptor gamma (PPARgamma) activation. Based on the antineoplastic and apoptotic effects of PPARgamma activation in a number of cell types, we hypothesized that NSAIDs could protect neurons by controlling the regulation of cell cycle. Recent work suggests that uncoordinated expression of cell cycle molecules and perturbation of cell cycle checkpoints may be one of the mechanisms by which post-mitotic neurons die. Since cell cycle dysfunction is not restricted to neurons in AD, we found it interesting to study the role of PPARgamma activation on cell proliferation in immortalized lymphocytes from AD patients. We report here that 15-deoxy-delta(12,14)-prostaglandin J2 (15d-PGJ2), but not NSAIDs or thiazolidinediones inhibited the serum-mediated enhancement of cell proliferation in AD by blocking the events critical for G1/S transition. The cyclopentenone induced a partial inhibition of retinoblastoma protein phosphorylation and increased levels of the CDK inhibitor p27kip1.
Collapse
Affiliation(s)
- Ursula Muñoz
- Department of Pathophysiology and Human Molecular Genetics, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040-Madrid, Spain
| | | | | | | | | | | |
Collapse
|
284
|
Dhawan J, Rando TA. Stem cells in postnatal myogenesis: molecular mechanisms of satellite cell quiescence, activation and replenishment. Trends Cell Biol 2005; 15:666-73. [PMID: 16243526 DOI: 10.1016/j.tcb.2005.10.007] [Citation(s) in RCA: 327] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2005] [Revised: 08/12/2005] [Accepted: 10/07/2005] [Indexed: 12/13/2022]
Abstract
Satellite cells are the primary stem cells in adult skeletal muscle, and are responsible for postnatal muscle growth, hypertrophy and regeneration. In mature muscle, most satellite cells are in a quiescent state, but they activate and begin proliferating in response to extrinsic signals. Following activation, a subset of satellite cell progeny returns to the quiescent state during the process of self-renewal. Here, we review recent studies of satellite cell biology and focus on the key transitions from the quiescent state to the state of proliferative activation and myogenic lineage progression and back to the quiescent state. The molecular mechanisms of these transitions are considered in the context of the biology of the satellite cell niche, changes with age, and interactions with established pathways of myogenic commitment and differentiation.
Collapse
Affiliation(s)
- Jyotsna Dhawan
- Center for Cellular and Molecular Biology, Uppal Road, Hyderabad-500007, India
| | | |
Collapse
|
285
|
Chi XZ, Yang JO, Lee KY, Ito K, Sakakura C, Li QL, Kim HR, Cha EJ, Lee YH, Kaneda A, Ushijima T, Kim WJ, Ito Y, Bae SC. RUNX3 suppresses gastric epithelial cell growth by inducing p21(WAF1/Cip1) expression in cooperation with transforming growth factor {beta}-activated SMAD. Mol Cell Biol 2005; 25:8097-107. [PMID: 16135801 PMCID: PMC1234316 DOI: 10.1128/mcb.25.18.8097-8107.2005] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
RUNX3 has been suggested to be a tumor suppressor of gastric cancer. The gastric mucosa of the Runx3-null mouse develops hyperplasia due to enhanced proliferation and suppressed apoptosis accompanied by a decreased sensitivity to transforming growth factor beta1 (TGF-beta1). It is known that TGF-beta1 induces cell growth arrest by activating CDKN1A (p21(WAF1)(/Cip1)), which encodes a cyclin-dependent kinase inhibitor, and this signaling cascade is considered to be a tumor suppressor pathway. However, the lineage-specific transcription factor that cooperates with SMADs to induce p21 expression is not known. Here we show that RUNX3 is required for the TGF-beta-dependent induction of p21 expression in stomach epithelial cells. Overexpression of RUNX3 potentiates TGF-beta-dependent endogenous p21 induction. In cooperation with SMADs, RUNX3 synergistically activates the p21 promoter. In contrast, RUNX3-R122C, a mutation identified in a gastric cancer patient, abolished the ability to activate the p21 promoter or cooperate with SMADs. Furthermore, areas in mouse and human gastric epithelium where RUNX3 is expressed coincided with those where p21 is expressed. Our results suggest that at least part of the tumor suppressor activity of RUNX3 is associated with its ability to induce p21 expression.
Collapse
Affiliation(s)
- Xin-Zi Chi
- Department of Biochemistry, School of Medicine, and Institute for Tumor Research, Chungbuk National University, Cheongju 361-763, South Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
286
|
Matsuzawa SI, Cuddy M, Fukushima T, Reed JC. Method for targeting protein destruction by using a ubiquitin-independent, proteasome-mediated degradation pathway. Proc Natl Acad Sci U S A 2005; 102:14982-7. [PMID: 16219697 PMCID: PMC1257734 DOI: 10.1073/pnas.0507512102] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
With the euchromatic portion of several mammalian genomes now sequenced, emphasis has turned to ascertaining the functions of gene products. A method for targeting destruction of selected proteins in mammalian cells is described, based on the ubiquitin-independent mechanism by which ornithine decarboxylase (ODC) is degraded by the 26S proteasome in collaboration with antizyme (AZ). We show that expressing whole proteins, protein domains, or peptide ligands fused to the N terminus of ODC promotes proteasome-dependent degradation of these chimeric fusion proteins and their interacting cellular target proteins. Moreover, the degradation of the interacting (targeted) protein depends on coexpression of AZ in about half of cases, providing an inducible switch for triggering the degradation process. By using 12 pairs of interacting proteins for testing, direct comparisons with several alternative strategies for achieving targeted protein destruction based on the concept of induced ubiquitination revealed advantages of the ODC/AZ system, which does not require posttranslational attachment of ubiquitin to target proteins. As proof of concept, the ODC/AZ system was used to ablate expression of specific endogenous proteins (e.g., TRAF6; Rb), and was shown to create the expected lesions in cellular pathways that require these proteins. Altogether, these findings reveal a strategy for achieving targeted destruction of cellular proteins, thus providing an additional tool for revealing the cellular phenotypes of gene products.
Collapse
|
287
|
Abstract
The E2F family of transcription factors is a central modulator of important cellular events, including cell cycle progression, apoptosis and DNA damage response. The role of E2F family members in various human malignancies is yet unclear and may provide vital clues to the diagnosis, prognosis and therapy of cancer patients. In this review we provide a brief but concise overview of E2F function and its putative role in the most common human tumour types.
Collapse
Affiliation(s)
- P K Tsantoulis
- Department of Histology and Embryology, Molecular Carcinogenesis Group, School of Medicine, University of Athens, Antaiou 53 Str, Lamprini, Ano Patissia, GR-11146, Athens, Greece
| | | |
Collapse
|
288
|
Kitamura K, Aota SI, Sakamoto R, Emori T, Okazaki K. Smad7 induces G0/G1 cell cycle arrest in mesenchymal cells by inhibiting the expression of G1 cyclins. Dev Growth Differ 2005; 47:537-52. [PMID: 16287485 DOI: 10.1111/j.1440-169x.2005.00829.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The major Smad pathways serve in regulating the expression of genes downstream of TGFbeta signals. In this study, we examined the effects of sustained Smad7 expression in cultured cells. Interestingly, Smad7 caused various mesenchymal cells, including NIH3T3 fibroblast and ST2 bone-marrow stromal cells, to undergo a marked morphological alteration into a flattened cell shape, but kept them alive for as long as 60 days. Furthermore, Smad7 arrested the proliferation of the cells even before they reached confluence. These cells became quiescent in G0/G1 phase and accumulated a hypophosphorylated form of retinoblastoma. The cytostatic effect of Smad7 was closely associated with a preceding decrease in the levels of G1 cyclins, such as cyclin D1 and cyclin E. Accordingly, ectopic cyclin E was able to overcome the Smad7-induced arrest of proliferation. These results indicate that Smad7 functions upstream of G1 cyclins and suggest a novel role for Smad7 as an antiproliferative factor. In contrast to the growth of mesenchymal cells, that of epithelial cells was little susceptible to Smad7. The present findings raise the possibility that a link between Smad7 and the G1 to S phase transition may also contribute to the cell cycle control by certain Smad7-inducing stimuli in a cell-type-dependent fashion.
Collapse
Affiliation(s)
- Koki Kitamura
- Department of Molecular Biology, Biomolecular Engineering Research Institute, 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan
| | | | | | | | | |
Collapse
|
289
|
Jung J, Kim TG, Lyons GE, Kim HRC, Lee Y. Jumonji Regulates Cardiomyocyte Proliferation via Interaction with Retinoblastoma Protein. J Biol Chem 2005; 280:30916-23. [PMID: 15870077 DOI: 10.1074/jbc.m414482200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Jumonji (JMJ) can function as a transcriptional repressor and plays critical roles in embryonic development including heart development in mice. Although JMJ has been suggested to play a role in cell growth, the molecular mechanisms have not been resolved. The present data demonstrate that JMJ interacts with the retinoblastoma protein (Rb), one of the master regulatory genes of cell cycle. JMJ potentiates the repression function of Rb on E2F activities, leading to reduced cell cycle progression. The transcriptional repression domain of JMJ is critical for the interaction with Rb as well as repression of cell cycle. The physiological relevance of the association between Rb and JMJ was assessed in cardiomyocytes. Primary cardiomyocytes cultured from homozygous jmj knock-out mouse embryos (jmj mutants) show increased cell mitosis in a cardiomyocyte-specific manner. Reporter gene analyses demonstrate that promoter activities of cyclin D1, cyclin D2, and Cdc2 are up-regulated in jmj mutant cardiomyocytes. These data suggest that JMJ down-regulates the cell growth via interaction with Rb, which would provide important insights into the cardiac defects observed in jmj mutant mice.
Collapse
Affiliation(s)
- Jooyoung Jung
- Department of Anatomy, University of Wisconsin Medical School, Madison, Wisconsin 53706, USA
| | | | | | | | | |
Collapse
|
290
|
di Pietro A, Vries EGED, Gietema JA, Spierings DCJ, de Jong S. Testicular germ cell tumours: the paradigm of chemo-sensitive solid tumours. Int J Biochem Cell Biol 2005; 37:2437-56. [PMID: 16099193 DOI: 10.1016/j.biocel.2005.06.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2005] [Revised: 06/02/2005] [Accepted: 01/27/2005] [Indexed: 11/16/2022]
Abstract
Testicular germ cell tumours (TGCTs) are the most frequent solid malignant tumour in men 20-40 years of age and the most frequent cause of death from solid tumours in this age group. Up to 50% of the patients suffer from metastatic disease at diagnosis. The majority of metastatic testicular cancer patients, in contrast to most other metastatic solid tumours, can be cured with highly effective cisplatin-based chemotherapy. From a genetic point of view, almost all TGCTs in contrast to solid tumours are characterised by the presence of wild type p53. High p53 expression levels are associated with elevated Mdm2 levels and a loss of p21(Waf1/Cip1) expression suggesting a changed functionality of p53. Expression levels of other proteins involved in the regulation of cell cycle progression indicate a deregulated G1-S phase checkpoint in TGCTs. After cisplatin-induced DNA damage, the increasing levels of p53 lead to the trans-activation of a number of genes but not of p21(Waf1/Cip1), preferentially directing TGCT cells into apoptosis or programmed cell death, both via the mitochondrial and the death receptor apoptosis pathways. The sensitivity of TGCTs to chemotherapeutic drugs may lay in the susceptibility of germ cells to apoptosis. Taken together, this provides TGCT as a tumour type model to investigate and understand the molecular determinants of chemotherapy sensitivity of solid tumours. This review aims to summarise the current knowledge on the biological basis of cisplatin-induced apoptosis and response to chemotherapy in TGCTs.
Collapse
Affiliation(s)
- Alessandra di Pietro
- Department of Medical Oncology, Internal Medicine, University of Groningen and University Medical Center Groningen, 9713 GZ Hanzeplein 1, Groningen, The Netherlands
| | | | | | | | | |
Collapse
|
291
|
Fogal V, Hsieh JK, Royer C, Zhong S, Lu X. Cell cycle-dependent nuclear retention of p53 by E2F1 requires phosphorylation of p53 at Ser315. EMBO J 2005; 24:2768-82. [PMID: 16037820 PMCID: PMC1182237 DOI: 10.1038/sj.emboj.7600735] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2004] [Accepted: 06/08/2005] [Indexed: 11/08/2022] Open
Abstract
We show here that the cell cycle-dependent DNA-binding and transcriptional activity of p53 correlates with E2F expression in human primary fibroblasts. E2F1 binds and stimulates DNA-binding, transactivation and apoptotic functions of p53 but not p63 and p73. E2F1 binds residues 347-370 of p53 and enhances nuclear retention of Ser315 phosphorylated p53. This regulation of p53 by E2F1 is cell cycle dependent, as the cellular distribution of Ser315 phosphorylated p53 is associated with the periodic expression of E2F and cyclin A throughout the cell cycle. This is the first demonstration that the activities of p53 are regulated during the cell cycle by E2F/p53 interactions and that phosphorylation of p53 at Ser315 is required for this regulation.
Collapse
Affiliation(s)
- Valentina Fogal
- Ludwig Institute for Cancer Research, University College London Branch, London, UK
| | - Jung-Kuang Hsieh
- Ludwig Institute for Cancer Research, University College London Branch, London, UK
| | - Christophe Royer
- Ludwig Institute for Cancer Research, University College London Branch, London, UK
| | - Shan Zhong
- Ludwig Institute for Cancer Research, University College London Branch, London, UK
| | - Xin Lu
- Ludwig Institute for Cancer Research, University College London Branch, London, UK
| |
Collapse
|
292
|
Harr MW, Graves TG, Crawford EL, Warner KA, Reed CAM, Willey JC. Variation in transcriptional regulation of cyclin dependent kinase inhibitor p21waf1/cip1 among human bronchogenic carcinomas. Mol Cancer 2005; 4:23. [PMID: 16014176 PMCID: PMC1185562 DOI: 10.1186/1476-4598-4-23] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2005] [Accepted: 07/13/2005] [Indexed: 11/26/2022] Open
Abstract
Background Cell proliferation control depends in part on the carefully ordered regulation of transcription factors. The p53 homolog p73, contributes to this control by directly upregulating the cyclin dependent kinase inhibitor, p21waf1/cip1. E2F1, an inducer of cell proliferation, directly upregulates p73 and in some systems upregulates p21 directly. Because of its central role in controlling cell proliferation, upregulation of p21 has been explored as a modality for treating bronchogenic carcinoma (BC). Improved understanding of p21 transcriptional regulation will facilitate identification of BC tissues that are responsive to p21-directed therapies. Toward this goal, we investigated the role that E2F1 and p73 each play in the transcriptional regulation of p21. Results Among BC samples (N = 21) p21 transcript abundance (TA) levels varied over two orders of magnitude with values ranging from 400 to 120,000 (in units of molecules/106 molecules β-actin). The p21 values in many BC were high compared to those observed in normal bronchial epithelial cells (BEC) (N = 18). Among all BC samples, there was no correlation between E2F1 and p21 TA but there was positive correlation between E2F1 and p73α (p < 0.001) TA. Among BC cell lines with inactivated p53 and wild type p73 (N = 7) there was positive correlation between p73α and p21 TA (p < 0.05). Additionally, in a BC cell line in which both p53 and p73 were inactivated (H1155), E2F1 TA level was high (50,000), but p21 TA level was low (470). Transiently expressed exogenous p73α in the BC cell line Calu-1, was associated with a significant (p < 0.05) 90% increase in p21 TA and a 20% reduction in E2F1 TA. siRNA mediated reduction of p73 TA in the N417 BC cell line was associated with a significant reduction in p21 TA level (p < 0.01). Conclusion p21 TA levels vary considerably among BC patients which may be attributable to 1) genetic alterations in Rb and p53 and 2) variation in TA levels of upstream transcription factors E2F1 and p73. Here we provide evidence that p73 upregulates p21 TA in BC tissues and upregulated p21 TA may result from E2F1 upregulation of p73 but not from E2F1 directly.
Collapse
Affiliation(s)
- Michael W Harr
- Department of Medicine, Medical University of Ohio, 219 Health Education Building, 3055 Arlington Avenue, Toledo, OH, 43614-5806, USA
| | - Timothy G Graves
- Department of Medicine, Medical University of Ohio, 219 Health Education Building, 3055 Arlington Avenue, Toledo, OH, 43614-5806, USA
| | - Erin L Crawford
- Department of Medicine, Medical University of Ohio, 219 Health Education Building, 3055 Arlington Avenue, Toledo, OH, 43614-5806, USA
| | - Kristy A Warner
- Department of Cariology, Restorative Sciences and Endodontics, University of Michigan, 2310A Dental Research Building, 1011 North University Avenue, Ann Arbor, MI, 48109-1078, USA
| | - Cheryl AM Reed
- Department of Medicine, Medical University of Ohio, 219 Health Education Building, 3055 Arlington Avenue, Toledo, OH, 43614-5806, USA
| | - James C Willey
- Department of Medicine, Medical University of Ohio, 219 Health Education Building, 3055 Arlington Avenue, Toledo, OH, 43614-5806, USA
| |
Collapse
|
293
|
Oda K, Matsuoka Y, Funahashi A, Kitano H. A comprehensive pathway map of epidermal growth factor receptor signaling. Mol Syst Biol 2005; 1:2005.0010. [PMID: 16729045 PMCID: PMC1681468 DOI: 10.1038/msb4100014] [Citation(s) in RCA: 746] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2005] [Accepted: 04/28/2005] [Indexed: 11/09/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) signaling pathway is one of the most important pathways that regulate growth, survival, proliferation, and differentiation in mammalian cells. Reflecting this importance, it is one of the best-investigated signaling systems, both experimentally and computationally, and several computational models have been developed for dynamic analysis. A map of molecular interactions of the EGFR signaling system is a valuable resource for research in this area. In this paper, we present a comprehensive pathway map of EGFR signaling and other related pathways. The map reveals that the overall architecture of the pathway is a bow-tie (or hourglass) structure with several feedback loops. The map is created using CellDesigner software that enables us to graphically represent interactions using a well-defined and consistent graphical notation, and to store it in Systems Biology Markup Language (SBML).
Collapse
Affiliation(s)
- Kanae Oda
- The Systems Biology Institute, Tokyo, Japan
- Department of Fundamental Science and Technology, Keio University, Tokyo, Japan
| | - Yukiko Matsuoka
- The Systems Biology Institute, Tokyo, Japan
- ERATO-SORST Kitano Symbiotic Systems Project, Japan Science and Technology Agency, Tokyo, Japan
| | - Akira Funahashi
- The Systems Biology Institute, Tokyo, Japan
- ERATO-SORST Kitano Symbiotic Systems Project, Japan Science and Technology Agency, Tokyo, Japan
| | - Hiroaki Kitano
- The Systems Biology Institute, Tokyo, Japan
- Department of Fundamental Science and Technology, Keio University, Tokyo, Japan
- ERATO-SORST Kitano Symbiotic Systems Project, Japan Science and Technology Agency, Tokyo, Japan
- Sony Computer Science Laboratories, Inc., Tokyo, Japan
| |
Collapse
|
294
|
Russo G, Zamparelli A, Howard CM, Minimo C, Bellan C, Carillo G, Califano L, Leoncini L, Giordano A, Claudio PP. Expression of cell cycle-regulated proteins pRB2/p130, p107, E2F4, p27, and pCNA in salivary gland tumors: prognostic and diagnostic implications. Clin Cancer Res 2005; 11:3265-73. [PMID: 15867222 DOI: 10.1158/1078-0432.ccr-04-2508] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The retinoblastoma family consists of the tumor suppressor nuclear phosphoprotein pRb/p105 and related proteins p107 and pRb2/p130. Recent immunohistochemical studies of the retinoblastoma family of proteins in lung and endometrial cancer and choroidal melanomas show a tight inverse correlation between the histologic grading in the most aggressive tumor types and pRb2/p130 expression. This led us to investigate the role of pRb2/p130 in salivary tumors. We studied the expression of pRb2/p130, p107, E2F4, p27, and PcNA by immunohistochemistry in a panel of 44 salivary gland tumors. We found a direct correlation between the cytoplasmic expression of pRb2/p130 and tumor grading and the presence of metastasis that was highly statistically significant (P < 0.001). Additionally, increased cytoplasmic pRb2/p130 expression was significantly correlated with a decreased probability of survival (P < 0.001). Interestingly, p107 nuclear expression showed a strong direct correlation when compared with the same variables. pRb2/p130 showed the highest percentage of undetectable nuclear levels in the specimens examined and the tightest inverse correlation (P < 0.0001) with both the histologic grading and pCNA expression in malignant salivary tumors. Additionally, E2F4 showed an identical localization pattern as to that of pRb2/p130. These data suggests an important role for pRb2/p130 in the pathogenesis and progression of certain salivary gland cancers.
Collapse
Affiliation(s)
- Giuseppe Russo
- Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technology, Temple University, Philadelphia, PA 19122-6099, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
295
|
Joshi B, Ordonez-Ercan D, Dasgupta P, Chellappan S. Induction of human metallothionein 1G promoter by VEGF and heavy metals: differential involvement of E2F and metal transcription factors. Oncogene 2005; 24:2204-17. [PMID: 15735762 DOI: 10.1038/sj.onc.1208206] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The E2F transcription factors induce the expression of many genes in response to specific extracellular stimuli. Here, we show that human metallothionein 1G (hMT1G) promoter is upregulated by E2F1 upon VEGF stimulation of human aortic endothelial cells. Analysis of the hMT1G promoter showed the presence of many potential E2F-binding sites flanked by potential SP1 sites and metal response elements (MREs). hMT1G promoter could be induced by E2F1 in transient transfections; further, deletion analysis suggested that the region spanning the E2F-binding sites was necessary for VEGF-mediated induction. E2Fs 1-5 could bind to the hMT1G promoter in a chromatin immunoprecipitation assay. VEGF stimulation led to an increased binding of E2Fs 1-3 to the endogenous hMT1G promoter; at the same time, the binding of Rb, p107 and p130 to the promoter was abolished. VEGF stimulation also led to the increased acetylation E2F1 as well as the histones in the hMT1G promoter region. Stimulation with metals or VEGF led to dissociation of histone deacetylase 1 (HDAC1) from the promoter, leading to acetylation of histones. Induction of the hMT1G promoter upon exposure to heavy metals such as Zn and Cd is mediated by the MRE. Interestingly, mutation of MRE affected the metal response, but not the VEGF response of the hMT1G promoter. In contrast, deletion of the E2F-binding sites did not affect the metal response. Based on these findings, we conclude that induction of the hMT1G promoter by VEGF and heavy metals occurs through the utilization of different transcription factors.
Collapse
Affiliation(s)
- Bharat Joshi
- Department of Interdisciplinary Oncology, H Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, USA
| | | | | | | |
Collapse
|
296
|
Blomhoff HK. Vitamin A regulates proliferation and apoptosis of human T- and B-cells. Biochem Soc Trans 2005; 32:982-4. [PMID: 15506942 DOI: 10.1042/bst0320982] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Vitamin A is known to protect against infections, but it is not established how vitamin A metabolites stimulate the immune system. We have investigated the effects of physiological levels of retinoic acid on the function of normal human T- and B-cells. Surprisingly, we found that the proliferation of B-cells was inhibited by retinoids, and that this was due to rapid inhibition of the cell cycle machinery regulating G(1)-to-S transition. In contrast, the proliferation of T-cells was enhanced by physiological levels of retinoic acid, and the effect was due to induction of IL-2 (interleukin 2). The 'non-death-receptor'-mediated apoptosis of normal T-cells induced by prolonged (but single) stimulation of the cells was also prevented by retinoid acid, and also this effect was mediated via enhanced production of IL-2. The induction of IL-2 was at the transcriptional level, and all the effects of vitamin A on both B-and T-cells were mediated via the nuclear retinoic acid receptors (RARs), and not retinoid X receptors (RXRs).
Collapse
Affiliation(s)
- H K Blomhoff
- Department of Biochemistry, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1112, Blindern, N-0317 Oslo, Norway.
| |
Collapse
|
297
|
Abstract
The retinoblastoma tumor suppressor (RB) is functionally inactivated in the majority of cancers and is a critical mediator of DNA damage checkpoints. Despite the critical importance of RB function in tumor suppression, the coordinate impact of RB loss on the response to environmental and therapeutic sources of damage has remained largely unexplored. Here, we utilized a conditional knockout system to ablate RB in adult fibroblasts. This model system enabled us to investigate the temporal role of RB loss on cell cycle checkpoints and DNA damage repair following ultraviolet (UV) and ionizing radiation (IR) damage. We demonstrate that RB loss compromises rapid cell cycle arrest following UV and IR exposure in adult primary cells. Detailed kinetic analysis of the checkpoint response revealed that disruption of the checkpoint is concomitant with RB target gene deregulation, and is not simply a manifestation of chronic RB loss. RB loss had a differential effect upon repair of the major DNA lesions induced by IR and UV. Whereas RB did not affect resolution of DNA double-strand breaks, RB-deficient cells exhibited accelerated repair of pyrimidine pyrimidone photoproducts (6-4 PP). In parallel, this repair was coupled with enhanced expression of specific factors and the behavior of proliferating cell nuclear antigen (PCNA) recruitment to replication and repair foci. Thus, RB loss and target gene deregulation hastens the repair of specific lesions distinct from its ubiquitous role in checkpoint abrogation.
Collapse
Affiliation(s)
| | - Erik S. Knudsen
- To whom correspondence should be addressed. Tel: +1 513 558 8885; Fax: +1 513 558 4454;
| |
Collapse
|
298
|
Chen J, Gorman JR, Stewart V, Williams B, Jacks T, Alt FW. Generation of normal lymphocyte populations by Rb-deficient embryonic stem cells. Curr Biol 2005; 3:405-13. [PMID: 15335707 DOI: 10.1016/0960-9822(93)90347-q] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/1993] [Revised: 06/07/1993] [Accepted: 06/07/1993] [Indexed: 11/30/2022]
Abstract
BACKGROUND Mice homozygous for a loss-of-function mutation of the recombination-activating gene-2 (RAG 2), which is required for the rearrangement of antigen receptor genes, do not produce mature B and T lymphocytes. But chimeric mice that result from injection of normal embryonic stem (ES) cells into blastocysts from RAG2-deficient mice develop normal mature lymphocyte populations, all of which are derived from the injected ES cells; we have called this process RAG2-deficient blastocyst complementation. Using ES cells with homozygous mutations, RAG-2-deficient blastocyst complementation could provide a physiological assay with which to determine the potential role of almost any gene in the development and/or function of lymphocytes. To test the general utility of this system, we have used it to test the differentiation-potential of ES cells that harbor homozygous loss-of function mutations of their retinoblastoma susceptibility (Rb) gene loci. We chose Rb for this analysis because of its widespread function in the control of the cell cycle and cell differentiation, the adverse effect of homozygous germline mutations of Rb on hematopoiesis in fetal liver, and the embryonic lethality that results when the homozygous Rb mutation is introduced into the germline. RESULTS Homozygous Rb mutant ES cells can develop into phenotypically normal, mature B and T lymphocytes in the RAG-2-deficient background. Strikingly, Rb-deficient B and T cells do not have major defects in either activation or function. CONCLUSION We have demonstrated the efficacy of the RAG-2-deficient blastocyst complementation system for evaluating the role of critical genes in lymphocyte development. Our results indicate that Rb expression is not intrinsically required for B-cell or T-cell function, despite the normally high levels of Rb expressed in lymphoid cells.
Collapse
Affiliation(s)
- J Chen
- Howard Hughes Medical Institute, Children's Hospital, Department of Genetics, Harvard Medical School, and Center for Blood Research, 300 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
299
|
Affiliation(s)
- N B La Thangue
- Laboratories of Eukaryotic Molecular Genetics and Yeast Genetics, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | | |
Collapse
|
300
|
Affiliation(s)
- E Moran
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| |
Collapse
|