251
|
Cellular, subcellular, and subsynaptic distribution of AMPA-type glutamate receptor subunits in the neostriatum of the rat. J Neurosci 1997. [PMID: 8987803 DOI: 10.1523/jneurosci.17-02-00819.1997] [Citation(s) in RCA: 208] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Glutamate released in the basal ganglia is involved in the expression of clinical symptoms of neurodegenerative diseases like Parkinson's or Huntington's. Neostriatal neurons are the targets of glutamatergic inputs derived from the cortex and the thalamus acting via AMPA-type as well as other glutamate receptors. To determine the location of subunits of the AMPA subclass of glutamate receptors (GluR) in the rat neostriatum, we applied multiple immunocytochemical techniques using anti-peptide antibodies against the GluR1, GluR2/3, and GluR4 subunits at both the light and electron microscopic levels. All medium spiny efferent neurons, some of which were identified as striatonigral neurons, displayed immunoreactivity for GluR1 and GluR2/3 subunits. Double immunofluorescence revealed that at least 70-90% of parvalbumin-immunopositive GABAergic interneurons were immunoreactive for each of GluR1, GluR2/3, or GluR4 subunits and that at least 40% of choline acetyltransferase-immunopositive cholinergic interneurons were immunopositive for GluR1 or GluR4 subunits. The majority of nitric oxide synthase-immunopositive neurons had no detectable immunoreactivity for any of the AMPA receptor subunits. Electron microscopic analysis confirmed the presence of immunoreactivity for GluR1 and GluR2/3 in the perikarya of spiny neurons and interneurons and GluR4 in perikarya of interneurons only. GluR1 and GluR2/3 subunits were detected in dendrites and spines. A significant population of extrasynaptic receptors was revealed by pre-embedding immunogold labeling along the plasma membranes of perikarya, dendrites, and spines. Receptors were concentrated in the postsynaptic membrane specialization of asymmetrical synapses, as revealed by the postembedding immunogold method. Quantitative analysis demonstrated that immunoreactivity for the GluR1 and GluR2/3 subunits is higher at the periphery than at the middle of the postsynaptic membrane specialization. Our results demonstrate that AMPA receptor subunits are distributed widely and heterogeneously among striatal neurons and are concentrated on the postsynaptic membrane of asymmetrical synaptic specializations, although extrasynaptic receptors are also present.
Collapse
|
252
|
Differential localization of delta glutamate receptors in the rat cerebellum: coexpression with AMPA receptors in parallel fiber-spine synapses and absence from climbing fiber-spine synapses. J Neurosci 1997. [PMID: 8987804 DOI: 10.1523/jneurosci.17-02-00834.1997] [Citation(s) in RCA: 189] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The delta 2 glutamate receptors are prominently expressed in Purkinje cells and are thought to play a key role in the induction of cerebellar long-term depression. The synaptic and subsynaptic localization of delta receptors in rat cerebellar cortex was investigated with sensitive and high-resolution immunogold procedures. After postembedding incubation with an antibody raised to a C-terminal peptide of delta 2, high gold particle densities occurred in all parallel fiber synapses with Purkinje cell dendritic spines, whereas other synapses were consistently devoid of labeling. Among the types of immunonegative synapse were climbing fiber synapses with spines and parallel fiber synapses with dendritic stems of interneurons. At the parallel fiber-spine synapse, gold particles signaling delta receptors were restricted to the postsynaptic specialization. By the use of double labeling with two different gold particle sizes, it was shown that delta and AMPA GluR2/3 receptors were colocalized along the entire extent of the postsynaptic specialization without forming separate domains. The distribution of gold particles representing delta receptors was consistent with a cytoplasmic localization of the C terminus and an absence of a significant presynaptic pool of receptor molecules. The present data suggest that the delta 2 receptors are targeted selectively to a subset of Purkinje cell spines and that they are coexpressed with ionotropic receptors in the postsynaptic specialization. This arrangement could allow for a direct interaction between the two classes of receptor.
Collapse
|
253
|
Abstract
We performed an electron microscopic study in layers II-III of S-1 in rats, using postembedding immunogold histochemistry to compare the synaptic distribution of N-methyl D-aspartate (NMDA) receptors (assessed with an antibody for the NMDAR1 subunit) with that of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptors (assessed with an antibody for the GluR2/3 subunit). Labeling for each receptor was concentrated at active zones of asymmetric synapses. Analysis of the tangential position of gold particles along the postsynaptic active zone revealed that NMDA receptors were at highest concentration in the middle of the synaptic apposition, whereas AMPA receptors were concentrated in an annulus away from its center. These data support the view that the two types of receptors are anchored by distinct subsynaptic assemblies, and raise the possibility of independent synaptic microdomains.
Collapse
Affiliation(s)
- V N Kharazia
- Department of Cell Biology and Anatomy, University of North Carolina, Chapel Hill 27599, USA
| | | |
Collapse
|
254
|
Pollock R, Kerr R, Maxwell DJ. An immunocytochemical investigation of the relationship between substance P and the neurokinin-1 receptor in the lateral horn of the rat thoracic spinal cord. Brain Res 1997; 777:22-30. [PMID: 9449409 DOI: 10.1016/s0006-8993(97)00965-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The relationship between substance P-containing axons and sympathetic preganglionic neurons possessing the neurokinin-1 receptor was investigated in the lateral horn of the rat thoracic spinal cord. Sympathetic preganglionic neurons were labelled retrogradely with Fluorogold. Sections containing labelled cells were reacted with antibodies against choline acetyltransferase, substance P and the neurokinin-1 receptor and examined with three-colour confocal laser scanning microscopy. In all, 95 sympathetic preganglionic neurons were examined and 79% of these were immunoreactive for the neurokinin-1 receptor. Substance P-immunoreactive axons not only made contacts with preganglionic neurons which were immunoreactive for the receptor but also made contacts with cells which did not express the receptor. Dendrites, labelled with immunoreactivity for choline actyltransferase, also received contacts from substance P-immunoreactive varicosities but this was not related to the presence or the absence of receptor. An electron microscopic analysis was performed to investigate the relationship between substance P-containing boutons and dendrites possessing the neurokinin-1 receptor. Immunoreactivity for substance P was detected with peroxidase immunocytochemistry and immunoreactivity for the receptor was detected with the silver-intensified gold method. Substance P-containing boutons made synapses with dendrites which were positively and negatively labelled for the receptor. Receptor immunoreactivity was not usually present at synapses formed by substance P boutons with neurokinin-1-immunoreactive dendrites. It is concluded that substance P may modulate much of the activity of sympathetic preganglionic neurons through an indirect non-synaptic mechanism.
Collapse
Affiliation(s)
- R Pollock
- Laboratory of Human Anatomy, Institute of Biomedical and Life Sciences, University of Glasgow, UK
| | | | | |
Collapse
|
255
|
Kopanitsa MV. Extrasynaptic receptors of neurotransmitters: Distribution, mechanisms of activation, and physiological role. NEUROPHYSIOLOGY+ 1997. [DOI: 10.1007/bf02463356] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
256
|
Takács J, Gombos G, Görcs T, Becker T, de Barry J, Hámori J. Distribution of metabotropic glutamate receptor type 1a in Purkinje cell dendritic spines is independent of the presence of presynaptic parallel fibers. J Neurosci Res 1997; 50:433-42. [PMID: 9364328 DOI: 10.1002/(sici)1097-4547(19971101)50:3<433::aid-jnr9>3.0.co;2-j] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The metabotropic glutamate receptor type 1a (mGluR1a) is expressed at a high level in the molecular layer of the cerebellar cortex, where it is localized mostly in dendritic spines of Purkinje cells, innervated by parallel fibers. Treatment with methylazoxymethanol (MAM) of mouse pups at postnatal days (PND) 0 + 1 or 5 + 6 results in the partial loss of granule cells, the extent of which depends on the age of the animal at the time of injection. As a consequence of hypogranularity, the number of parallel fibers is decreased to such an amount that many of the postsynaptic Purkinje cell dendritic spines are devoid of axonal input, and only a limited number of spines participate in the formation of parallel fiber synapses, or, infrequently, in heterologous or heterotopic synapses with other presynaptic partners. At PND 30, 50% of the spines in the cerebella of mice treated with MAM at PND 0 + 1 was not contacted by any presynaptic element, compared to 5% in controls or 15% in the cerebella of mice treated with MAM at PND 5 + 6. The localization of mGluR1a was visualized by immunocytochemistry on ultrathin sections: approximately 80% of all Purkinje cell dendritic spines were immunopositive in controls and in both groups of MAM-treated mice, indicating that mGluR1a was present in Purkinje dendritic spines even when the corresponding synaptic input was absent. This observation indicates that the expression and subcellular distribution of mGluR1a are inherent, genetically determined properties of Purkinje cells.
Collapse
Affiliation(s)
- J Takács
- First Department of Anatomy, Semmelweis Medical University, Budapest, Hungary.
| | | | | | | | | | | |
Collapse
|
257
|
Abstract
Glutamate receptors can be divided in several groups with distinct functional properties. An additional level of complexity has emerged from recent high resolution immunogold analyses which have provided evidence for a differential targeting of glutamate receptors to specific subsynaptic membrane domains. Notably, different types of glutamate receptor may differ in their distance to the release site and in their spatial relation to glutamate transporters. These data imply that the subsynaptic expression of a given glutamate receptor may bias its response to a released quantum of transmitter and suggest that receptor targeting may be implicated in the modulation of glutamatergic neurotransmission.
Collapse
Affiliation(s)
- O P Ottersen
- Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, Blindern, Norway
| | | |
Collapse
|
258
|
Wang Y, Qin ZH, Nakai M, Chase TN. Glutamate metabotropic receptor agonist 1S,3R-ACPD induces internucleosomal DNA fragmentation and cell death in rat striatum. Brain Res 1997; 772:45-56. [PMID: 9406954 DOI: 10.1016/s0006-8993(97)00837-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Glutamate metabotropic receptor mediated mechanisms have been implicated in both neuroprotection and neurotoxicity. To characterize these mechanisms further in vivo, the effects of an intrastriatally injected metabotropic receptor agonist, trans-(1S,3R)-1-amino-1,3-cyclopentanedicarboxylic acid (1S,3R-ACPD), were studied alone and together with N-methyl-D-aspartate (NMDA) or kainic acid (KA) receptor agonists on DNA fragmentation and nerve cell death. 1S,3R-ACPD induced internucleosomal DNA fragmentation of striatal cells in a dose-dependent manner. TUNEL and propidium iodide staining showed DNA fragmentation and profound nuclear condensation around the injection site. Fragmented nuclei were occasionally seen under light microscopy. Internucleosomal DNA fragmentation induced by 1S,3R-ACPD was attenuated by the protein synthesis inhibitor cycloheximide as well as by the non-selective and selective metabotropic receptor antagonists L-(+)-2-amino-3-phosphonopionic acid (L-AP3), (RS)-aminoindan-1,5-dicarboxylic acid and (RS)-alpha-methylserine-o-phosphate monophenyl ester, respectively. The 1S,3R-ACPD (100-900 nmol) induced death of striatal neurons was suggested by the reduction in NMDA and D1 dopamine receptors by up to 13% (P < 0.05) and 20% (P < 0.05) as well as by the decline in GAD67 mRNA (25%, P < 0.01) and proenkephalin mRNA levels (35%, P < 0.01). Interestingly, 1S,3R-ACPD attenuated internucleosomal DNA fragmentation induced by NMDA, but potentiated that induced by KA. These results suggest that metabotropic receptor stimulation leads to the death of striatal neurons by a mechanism having the biochemical stigmata of apoptosis. Moreover, metabotropic receptor stimulation evidently exerts opposite effects on pre- or postsynaptic mechanisms contributing to the NMDA and KA-induced apoptotic-like death of these neurons.
Collapse
Affiliation(s)
- Y Wang
- Experimental Therapeutics Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892-1406, USA
| | | | | | | |
Collapse
|
259
|
Luján R, Roberts JD, Shigemoto R, Ohishi H, Somogyi P. Differential plasma membrane distribution of metabotropic glutamate receptors mGluR1 alpha, mGluR2 and mGluR5, relative to neurotransmitter release sites. J Chem Neuroanat 1997; 13:219-41. [PMID: 9412905 DOI: 10.1016/s0891-0618(97)00051-3] [Citation(s) in RCA: 340] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Two group I metabotropic glutamate receptor subtypes, mGluR1 and mGluR5, have been reported to occur in highest concentration in an annulus surrounding the edge of the postsynaptic membrane specialisation. In order to determine whether such a distribution is uniform amongst postsynaptic mGluRs, their distribution was compared quantitatively by a pre-embedding silver-intensified immunogold technique at electron microscopic level in hippocampal pyramidal cells (mGluR5), cerebellar Purkinje cells (mGluR1 alpha) and Golgi cells (mGluR2). The results show that mGluR1 alpha, mGluR5 and mGluR2 each have a distinct distribution in relation to the glutamatergic synaptic junctions. On dendritic spines, mGluR1 alpha and mGluR5 showed the highest receptor density in a perisynaptic annulus (defined as within 60 nm of the edge of the synapse) followed by a decreasing extrasynaptic (60-900 nm) receptor level, but the gradient of decrease and the proportion of the perisynaptic pool (mGluR1 alpha, approximately 50%; vs mGluR5, approximately 25%) were different for the two receptors. The distributions of mGluR1 alpha and mGluR5 also differed significantly from simulated random distributions. In contrast, mGluR2 was not closely associated with glutamatergic synapses in the dendritic plasma membrane of cerebellar Golgi cells and its distribution relative to synapses is not different from simulated random distribution in the membrane. The somatic membrane, the axon and the synaptic boutons of the GABAergic Golgi cells also contained immunoreactive mGluR2 that is not associated with synaptic specialisations. In the hippocampal CA1 area the distribution of immunoparticles for mGluR5 on individual spines was established using serial sections. The results indicate that dendritic spines of pyramidal cells are heterogeneous with respect to the ratio of perisynaptic to extrasynaptic mGluR5 pools and about half of the immunopositive spines lack the perisynaptic pool. The quantitative comparison of receptor distributions demonstrates that mGluR1 alpha and mGluR5, but not mGluR2, are highly compartmentalised in different plasma membrane domains. The unique distribution of each mGluR subtype may reflect requirements for different transduction and effector mechanisms between cell types and different domains of the same cell, and suggests that the precise placement of receptors is a crucial factor contributing to neuronal communication.
Collapse
Affiliation(s)
- R Luján
- Department of Pharmacology, Oxford University, UK
| | | | | | | | | |
Collapse
|
260
|
Négyessy L, Vidnyánszky Z, Kuhn R, Knöpfel T, Görcs TJ, Hámori J. Light and electron microscopic demonstration of mGluR5 metabotropic glutamate receptor immunoreactive neuronal elements in the rat cerebellar cortex. J Comp Neurol 1997; 385:641-50. [PMID: 9302110 DOI: 10.1002/(sici)1096-9861(19970908)385:4<641::aid-cne9>3.0.co;2-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The cellular and subcellular localization of the mGluR5 metabotropic glutamate receptor subtype was studied in the rat cerebellar cortex, by using the preembedding immunoperoxidase and immunogold techniques. Light microscopic observations revealed an abundant, intense labeling of neurons in the granular layer as well as in the molecular layer. Lugaro and Golgi cells exhibited an intense mGluR5 immunoreactivity, while only a fraction of the neurons in the molecular layer were found to be mGluR5 immunopositive. In addition to a dense plexus of immunoreactive dendrites in the molecular layer of the cerebellar cortex, the mGluR5 immunopositive Golgi cell dendrites resembling axons at the light microscopic level were also labeled in the granular layer. At the ultrastructural level, mGluR5 immunoreactivity was present in neuronal elements postsynaptic to axon terminals of different morphology. By using a pre-embedding immunogold method, it was found that mGluR5 immunoreactivity is accumulated at the plasma membranes extrasynaptically as well as at the periphery of the postsynaptic specializations, mainly of the parallel fiber synaptic contacts. These findings provide morphological evidence that mGluR5 is expressed by a population of neurons in the cerebellar cortex and can synaptically be activated via the parallel fiber system.
Collapse
Affiliation(s)
- L Négyessy
- Department of Anatomy, Semmelweis University Medical School, Budapest, Hungary
| | | | | | | | | | | |
Collapse
|
261
|
Nusser Z, Cull-Candy S, Farrant M. Differences in synaptic GABA(A) receptor number underlie variation in GABA mini amplitude. Neuron 1997; 19:697-709. [PMID: 9331359 DOI: 10.1016/s0896-6273(00)80382-7] [Citation(s) in RCA: 356] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In many neurons, responses to individual quanta of transmitter exhibit large variations in amplitude. The origin of this variability, although central to our understanding of synaptic transmission and plasticity, remains controversial. To examine the relationship between quantal amplitude and postsynaptic receptor number, we adopted a novel approach, combining patch-clamp recording of synaptic currents with quantitative immunogold localization of synaptic receptors. Here, we report that in cerebellar stellate cells, where variability in GABA miniature synaptic currents is particularly marked, the distribution of quantal amplitudes parallels that of synaptic GABA(A) receptor number. We also show that postsynaptic GABA(A) receptor density is uniform, allowing synaptic area to be used as a measure of relative receptor content. Flurazepam, which increases GABA(A) receptor affinity, prolongs the decay of all miniature currents but selectively increases the amplitude of large events. From this differential effect, we show that a quantum of GABA saturates postsynaptic receptors when <80 receptors are present but results in incomplete occupancy at larger synapses.
Collapse
Affiliation(s)
- Z Nusser
- Department of Pharmacology, University College London, United Kingdom
| | | | | |
Collapse
|
262
|
Dubé GR, Marshall KC. Modulation of excitatory synaptic transmission in locus coeruleus by multiple presynaptic metabotropic glutamate receptors. Neuroscience 1997; 80:511-21. [PMID: 9284353 DOI: 10.1016/s0306-4522(97)00004-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Metabotropic glutamate receptors have been implicated in modulation of synaptic transmission in many different systems. This study reports the effects of selective activation of metabotropic glutamate receptors on synaptic transmission in intracellularly recorded locus coeruleus neurons in brain slice preparations. Perfusion of either L-2-amino-4-phosphonobutyric acid (L-AP4; 0.1-500 microM) or (+/-)-1-aminocyclopentane-trans-1,3,dicarboxylic acid (t-ACPD; 0.1-500 microM) caused a depression of excitatory postsynaptic potentials in a dose-dependent fashion to about 70% inhibition. Both agonists exerted their effects at relatively low concentrations with estimated EC50s of 2.6 microM and 11.5 microM for L-AP4 and t-ACPD, respectively. This inhibition was not observed with the potent group I metabotropic glutamate receptor agonist (RS)-3,5-dihydroxyphenylglycine (DHPG; 100 microM). Conversely, (R)-4-carboxy-3-hydroxyphenyl-glycine (4C-3H-PG), a group I antagonist/group II agonist, and 2R,4R-4-aminopyrrolidine-2,4-dicarboxylate (APDC), a novel and specific group II agonist, also caused an inhibition of excitatory postsynaptic potentials. Both t-ACPD and L-AP4 produced an increase in paired-pulse facilitation, and failed to change the locus coeruleus response to focally applied glutamate, indicating a presynaptic locus of action. The L-AP4 inhibition was antagonized by (S)-amino-2-methyl-4-phosphonobutanoic acid (MAP4: group III antagonist) but not by (RS)-alpha-methyl-4-carboxyphenylglycine [(RS)-MCPG; mixed antagonist], suggesting that this agonist acts through a type 4 metabotropic glutamate receptor. Conversely, t-ACPD was antagonized by MCPG and by ethyl glutamate (group II antagonist), but not by aminoindan dicarboxylic acid (AIDA; group I antagonist) or MAP4, suggesting that this agonist acts on a type 2 or 3 metabotropic glutamate receptor. Taken together, these results suggest that two pharmacologically distinct presynaptic metabotropic glutamate receptors function in an additive fashion to inhibit excitatory synaptic transmission in locus coeruleus neurons. These receptors may be involved in a feedback mechanism and as such may function as autoreceptors for excitatory amino acids.
Collapse
Affiliation(s)
- G R Dubé
- Department of Physiology, Faculty of Medicine, University of Ottawa, Ontario, Canada
| | | |
Collapse
|
263
|
Petralia RS, Wang YX, Mayat E, Wenthold RJ. Glutamate receptor subunit 2-selective antibody shows a differential distribution of calcium-impermeable AMPA receptors among populations of neurons. J Comp Neurol 1997; 385:456-76. [PMID: 9300771 DOI: 10.1002/(sici)1096-9861(19970901)385:3<456::aid-cne9>3.0.co;2-2] [Citation(s) in RCA: 157] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptors are the major excitatory neurotransmitter receptors of the central nervous system. AMPA receptor complexes that contain the AMPA-type glutamate receptor subunit 2 (GluR2) are responsible for the low calcium permeability typical of most AMPA receptors, and the absence of GluR2 may be a key factor in neurotoxicity. A polyclonal antibody was produced to a 16 amino acid peptide near the C-terminus of GluR2 and was affinity-purified in a three-step procedure. The antibody did not recognize other AMPA subunits in transfected cells with the use of either Western blots or immunocytochemistry. This highly specific GluR2 antibody was used to provide a specific morphological study of GluR2 protein distribution in neurons and synapses of the rat. GluR2 is prevalent in most principal neurons throughout the telencephalon. Neurons with few or no GluR2 subunits include two major types: 1) some populations of interneurons of the telencephalon and of some other areas and 2) many populations of principal neurons in the brainstem and spinal cord. Immunofluorescence showed that GluR2 immunolabeling was widespread, including in dendrites and puncta, in the hippocampus and neocortex. Where they were present, GluR2 subunits colocalized with other AMPA receptor subunits in individual neurons. Electron microscopy of the hippocampus showed GluR2-bearing, calcium-impermeable AMPA receptors postsynaptic to dendrite synapses of forebrain principal neurons. In addition, electron microscopy of the neocortex showed significant staining in postsynaptic profiles. Electron microscopy of the cerebellum revealed the presence of GluR2 subunits in the postsynaptic profiles of many parallel fiber/Purkinje cell spine synapses, whereas electron microscopy of the spinal cord showed substantial staining in the postsynaptic profiles of dorsal horn synapses, but not in ventral horn synapses. Both ultrastructural and immunofluorescence data showed that calcium-impermeable AMPA receptors are widespread in dendrite arborizations.
Collapse
Affiliation(s)
- R S Petralia
- Laboratory of Neurochemistry, NIDCD, NIH, Bethesda, Maryland 20892-4162, USA.
| | | | | | | |
Collapse
|
264
|
Ryugo DK, Pongstaporn T, Huchton DM, Niparko JK. Ultrastructural analysis of primary endings in deaf white cats: morphologic alterations in endbulbs of Held. J Comp Neurol 1997; 385:230-44. [PMID: 9268125 DOI: 10.1002/(sici)1096-9861(19970825)385:2<230::aid-cne4>3.0.co;2-2] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Changes in structure and function of the auditory system can be produced by experimentally manipulating the sensory environment, and especially dramatic effects result from deprivation procedures. An alternative deprivation strategy utilizes naturally occurring lesions. The congenitally deaf white cat represents an animal model of sensory deprivation because it mimics a form of human deafness called the Scheibe deformity and permits studies of how central neurons react to early-onset cochlear degeneration. We studied the synaptic characteristics of the endbulb of Held, a prominent auditory nerve terminal in the cochlear nucleus. Endbulbs arise from the ascending branch of the auditory nerve fiber and contact the cell body of spherical bushy cells. After 6 months, endbulbs of deaf white cats exhibit alterations in structure that are clearly distinguishable from those of normal hearing cats, including a diminution in terminal branching, a reduction in synaptic vesicle density, structural abnormalities in mitochondria, thickening of the pre- and postsynaptic densities, and enlargement of synapse size. The hypertrophied membrane densities are suggestive of a compensatory response to diminished transmitter release. These data reveal that early-onset, long-term deafness produces unambiguous alterations in synaptic structure and may be relevant to rehabilitation strategies that promote aural/oral communication.
Collapse
Affiliation(s)
- D K Ryugo
- Department of Otolaryngology-Head and Neck Surgery, Center for Hearing Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
| | | | | | | |
Collapse
|
265
|
Petralia RS, Wang YX, Singh S, Wu C, Shi L, Wei J, Wenthold RJ. A monoclonal antibody shows discrete cellular and subcellular localizations of mGluR1 alpha metabotropic glutamate receptors. J Chem Neuroanat 1997; 13:77-93. [PMID: 9285353 DOI: 10.1016/s0891-0618(97)00023-9] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The metabotropic glutamate receptor, mGluR1 alpha, is postsynaptic in excitatory synapses in many populations of neurons and mediates long-term responses. The present study defines the distribution of this receptor using a new, highly specific monoclonal antibody to mGluR1 alpha. Overall distribution of immunostaining was similar to that described previously with polyclonal antibodies, including prominent staining in the olfactory bulb, interneurons of the CA1 hippocampus stratum oriens/alveus, globus pallidus, thalamus, Purkinje cells and in cells of the outer dorsal cochlear nucleus and with little or low staining in principal cells of the cerebral cortex and hippocampus. Interestingly, the well-known association of mGluR1 alpha receptors with neocortical interneurons was even more prevalent than previously noted with polyclonal antibodies. Ultrastructural studies in the hippocampus and cerebellum showed dense immunoperoxidase staining in postsynaptic membranes and densities and in perisynaptic and extrasynaptic membranes, as well as substantial cytoplasmic staining associated with organelles, especially the endoplasmic reticulum.
Collapse
Affiliation(s)
- R S Petralia
- Laboratory of Neurochemistry, NIDCD/NIH, Bethesda, MD 20892-4162, USA.
| | | | | | | | | | | | | |
Collapse
|
266
|
Netzeband JG, Parsons KL, Sweeney DD, Gruol DL. Metabotropic glutamate receptor agonists alter neuronal excitability and Ca2+ levels via the phospholipase C transduction pathway in cultured Purkinje neurons. J Neurophysiol 1997; 78:63-75. [PMID: 9242261 DOI: 10.1152/jn.1997.78.1.63] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Selective agonists for metabotropic glutamate receptor (mGluR) subtypes were tested on mature, cultured rat cerebellar Purkinje neurons (> or = 21 days in vitro) to identify functionally relevant mGluRs expressed by these neurons and to investigate the transduction pathways associated with mGluR-mediated changes in membrane excitability. Current-clamp recordings (nystatin/perforated-patch method) were used to measure the membrane response of Purkinje neurons to brief microperfusion pulses (1.5 s) of the group I (mGluR1/mGluR5) agonists (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid (300 microM), quisqualate (5 microM), and (R,S)-3,5-dihydroxyphenylglycine (50-500 microM). All group I mGluR agonists elicited biphasic membrane responses and burst activity in the Purkinje neurons. In addition, the group I mGluR agonists produced alterations in the active membrane properties of the Purkinje neurons and depressed the OFF response after hyperpolarizing current injection. In parallel microscopic Ca2+ imaging experiments, application of the group I mGluR agonists to fura-2-loaded cells elicited increases in intracellular Ca2+ in both the somatic and dendritic regions. The group II (mGluR2/mGluR3) agonist (2S,3S,4S)-alpha-(carboxycyclopropyl)-glycine (10 microM) and the group III (mGluR4/mGluR6/mGluR7/mGluR8) agonists L(+)-2-amino-4-phosphonobutyric acid (1 mM) and O-phospho-L-serine (200 microM) had no effect on the membrane potential or intracellular Ca2+ levels of the Purkinje neurons. The cultured Purkinje neurons, but not granule neurons or interneurons, showed immunostaining for mGluR1alpha in both the somatic and dendritic regions. All effects of the group I mGluR agonists were blocked by (+)-alpha-methyl-4-carboxyphenylglycine (1 mM), an mGluR antagonist. Furthermore, the phospholipase C inhibitor 1-[6-((17beta-3-methoxyestra-1,3,5(10)-trien-17-yl)amino)hexyl]-1H -pyrrole-2,5-dione (2 microM) blocked the group I mGluR agonist-mediated electrophysiological response and greatly attenuated the Ca2+ signal elicited by group I mGluR agonists, particularly in the dendrites. The inactive analogue 1-[6-((17beta-3-methoxyestra-1,3,5(10)-trien-17-yl)amino)hexyl]-2, 5-pyrrolidine-dione (2 microM) was relatively ineffective against the electrophysiological response and Ca2+ signal. These results indicate that functional group I mGluRs (but not group II or III mGluRs) can be activated on mature Purkinje neurons in culture and result in changes in neuronal excitability and intracellular Ca2+ mediated through phospholipase C. These data obtained from a defined neuronal type, the Purkinje neuron, confirm biochemical and molecular studies on the transduction mechanisms of group I mGluRs and show that this transduction pathway is linked to neuronal excitability and intracellular Ca2+ release in the Purkinje neurons.
Collapse
Affiliation(s)
- J G Netzeband
- Department of Neuropharmacology and Alcohol Research Center, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
267
|
Abstract
The objective of the present study was to determine if a neuron that expresses multiple glutamate receptors targets the same receptors to all glutamatergic postsynaptic populations, or if the receptors are differentially targeted to specific postsynaptic populations. As a model for this study, we chose the fusiform cell of the dorsal cochlear nucleus. This neuron expresses multiple glutamate receptors and receives two distinct glutamatergic inputs: parallel fibers synapse on apical dendrites, and auditory nerve fibers synapse on basal dendrites. Pre- and postembedding immunocytochemistry were combined with retrograde tracing to identify the receptors expressed on postsynaptic membranes of parallel fiber and auditory nerve synapses. Most receptors were found at both populations of synapses, but the AMPA receptor subunit, GluR4, and the metabotropic receptor, mGluR1 alpha, were found only at the auditory nerve synapse. These results demonstrate that glutamate receptors are targeted to specific postsynaptic populations of glutamatergic synapses.
Collapse
Affiliation(s)
- M E Rubio
- Laboratory of Neurochemistry, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
268
|
Immunocytochemical characterization of AMPA-selective glutamate receptor subunits: laminar and compartmental distribution in macaque striate cortex. J Neurosci 1997. [PMID: 9096168 DOI: 10.1523/jneurosci.17-09-03352.1997] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Subunit proteins that comprise functional AMPA receptors were localized by immunocytochemical methods in the adult macaque primary visual cortex (V1). GluR1, GluR2/3/4c, and GluR4 immunoreactivity consisted of rich plexuses of punctate profiles scattered throughout the neuropil, in radial arrays, and outlining the membrane of somata and proximal dendrites. Cytoplasmic immunoreactivity was limited. GluR2/3/4c immunostaining was more prominent along the somata surface and exhibited greater levels of cytoplasmic immunoreactivity than GluR1 and GluR4 immunostaining. The density of AMPA subunit immunoreactive elements also varied across layers and compartments of macaque V1. Immunoreactivity for GluR1, GluR2/3/4c, and GluR4 was densest in three bands that corresponded to layers IVA, IVC, and VI. Immunostaining for each subunit was also unevenly distributed within many of the layers. In layers II-III, patches of intense immunostaining coincided with cytochrome oxidase (CO)-rich blobs. In layer IVA, intense subunit staining formed a conspicuous honeycomb pattern. In layer IVC, subunit staining formed a radial lattice. GluR2/3/4c subunit immunostaining was also preferentially distributed within the CO-rich blobs of layers V-VI. These findings demonstrate that AMPA subunit immunoreactivity is densely concentrated in layers and compartments receiving direct geniculocortical innervation. This distribution, which differs from that of excitatory synapses, suggests that the density of AMPA receptors is unevenly distributed at synaptic and possibly extrasynaptic sites within macaque visual circuits.
Collapse
|
269
|
Häusser M, Roth A. Dendritic and somatic glutamate receptor channels in rat cerebellar Purkinje cells. J Physiol 1997; 501 ( Pt 1):77-95. [PMID: 9174996 PMCID: PMC1159506 DOI: 10.1111/j.1469-7793.1997.077bo.x] [Citation(s) in RCA: 128] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
1. The properties of glutamate receptor (GluR) channels in outside-out patches from the dendrites and somata of rat cerebellar Purkinje cells in brain slice were studied using fast agonist application techniques. Dendritic patches were isolated 40-130 micronm from the soma. 2. Outside-out patches from both dendrites and somata of Purkinje cells responded to application of glutamate with a current which desensitized rapidly and nearly completely. Currents evoked by glutamate application were blocked by 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), were mimicked by L-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA), and were modulated by cyclothiazide. Kainate produced small, non-desensitizing currents. No currents were observed in response to aspartate application. Responses characteristic of NMDA receptor activation were not observed. These findings indicate that glutamate-activated currents were mediated by the AMPA subtype of GluR. 3. Deactivation of the GluR channels following 1 ms pulses of glutamate occurred with a time constant of 1.23 +/- 0.07 ms in dendritic and 1.12 +/- 0.04 ms in somatic patches. Desensitization occurred with a time constant of 5.37 +/- 0.26 ms in dendritic and 5.29 +/- 0.29 ms in somatic patches. The time constant of recovery from desensitization caused by a 1 ms application of 1 mM glutamate was 36 ms in dendritic patches and 33 ms in somatic patches. 4. Half-maximal activation of the GluR channels was achieved at a glutamate concentration of 432 microM. Deactivation kinetics were not dependent on the glutamate concentration, while desensitization became slower at lower glutamate concentrations. 5. Pre-equilibration of patches with low concentrations of glutamate reduced the peak current activated by 1 mM glutamate. The IC50 for this effect was 8.7 microM. Equilibrium desensitization did not affect the kinetics of the current activated by 1 mM glutamate. 6. The current-voltage relationship of the peak current was linear in normal Na(+)-rich external solution, with a reversal potential near 0 mV. In Ca(2+) -rich external solution, the reversal potentials were -51.4 +/- 2.9 and -51.5 +/- 2.8 mV for dendritic and somatic patches, respectively, indicating that these glutamate channels have a low permeability to Ca2+ (PCa/PCa = 0.053). 7. The mean single-channel conductance of the GluR channels measured using non-stationary fluctuation analysis was approximately 8 pS in dendritic and somatic patches, and the maximum open probability was at least 0.7 with 5 mM glutamate. 8. GluR channel kinetics in patches excised from the soma of neonatal (postnatal day 4; P4) Purkinje cells, before the development of the dendritic arborization of the Purkinje cell, were similar to those in patches excised from more mature (P12-18) Purkinje cells. 9. Dendritic and somatic GluR channels in Purkinje cells appear to be functionally identical, are AMPA-subtype receptors containing the GluR-B subunit, and have rapid kinetics and low permeability to Ca2+. A kinetic model was constructed which faithfully reproduces the gating characteristics of the GluR channels.
Collapse
Affiliation(s)
- M Häusser
- Abteilung Zellphysiologie, Max-Planck-Institut für medizinische Forschung, Heidelberg, Germany.
| | | |
Collapse
|
270
|
Llewellyn-Smith IJ, Martin CL, Minson JB, Pilowsky PM, Arnolda LF, Basbaum AI, Chalmers JP. Neurokinin-1 receptor-immunoreactive sympathetic preganglionic neurons: target specificity and ultrastructure. Neuroscience 1997; 77:1137-49. [PMID: 9130793 DOI: 10.1016/s0306-4522(96)00534-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Substance P is involved in cardiovascular control at the spinal cord level, where it acts through neurokinin-1 receptors. In this study we used immunocytochemistry and retrograde tracing to investigate the presence of the neurokinin-1 receptor and its ultrastructural localization in rat sympathetic preganglionic neurons that project to the superior cervical ganglion or the adrenal medulla. Immunofluorescence for the neurokinin-1 receptor outlined the somatic and dendritic surfaces of neurons in autonomic subnuclei of spinal cord segments T1-T12, whereas immunofluorescence for the tracer, cholera toxin B subunit, filled retrogradely labelled cells. There was a significant difference in the proportion of neurokinin-1 receptor-immunoreactive sympathetic preganglionic neurons supplying the superior cervical ganglion and the adrenal medulla. Thirty-eight percent of the neurons that projected to the superior cervical ganglion were immunoreactive for the neurokinin-1 receptor compared to 70% of neurons innervating the adrenal medulla. Of neurons projecting to the superior cervical ganglion, significantly different proportions showed neurokinin-1 receptor immunoreactivity in spinal cord segment T1 (15%) versus segments T2 T6 (45%). At the ultrastructural level, neurokinin-1 receptor staining occurred predominantly on the inner leaflets of the plasma membranes of retrogradely labelled sympathetic preganglionic neurons. Deposits of intracellular label were often observed in dendrites and in the rough endoplasmic reticulum and Golgi apparatus of cell bodies. Neurokinin-1 receptor immunoreactivity was present at many, but not all, synapses as well as at non-synaptic sites, and occurred at synapses with substance P-positive as well as substance P-negative nerve fibres. Only 37% of the substance P synapses occurred on neurokinin-1-immunoreactive neurons in the intermediolateral cell column. These results show that presence of the neurokinin-1 receptor in sympathetic preganglionic neurons is related to their target. The ultrastructural localization of the receptor suggests that sympathetic preganglionic neurons may be affected (i) by substance P released at neurokinin-1 receptor-immunoreactive synapses, (ii) by other tachykinins (e.g., neurokinin A), which co-localize in substance P fibres in the intermediolateral cell column, acting through other neurokinin receptors, and (iii) by substance P that diffuses to neurokinin-1 receptors from distant sites.
Collapse
Affiliation(s)
- I J Llewellyn-Smith
- Department of Medicine and Centre for Neuroscience, Flinders University, Bedford Park, South Australia
| | | | | | | | | | | | | |
Collapse
|
271
|
Brakeman PR, Lanahan AA, O'Brien R, Roche K, Barnes CA, Huganir RL, Worley PF. Homer: a protein that selectively binds metabotropic glutamate receptors. Nature 1997; 386:284-8. [PMID: 9069287 DOI: 10.1038/386284a0] [Citation(s) in RCA: 863] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Spatial localization and clustering of membrane proteins is critical to neuronal development and synaptic plasticity. Recent studies have identified a family of proteins, the PDZ proteins, that contain modular PDZ domains and interact with synaptic ionotropic glutamate receptors and ion channels. PDZ proteins are thought to have a role in defining the cellular distribution of the proteins that interact with them. Here we report a novel dendritic protein, Homer, that contains a single, PDZ-like domain and binds specifically to the carboxy terminus of phosphoinositide-linked metabotropic glutamate receptors. Homer is highly divergent from known PDZ proteins and seems to represent a novel family. The Homer gene is also distinct from members of the PDZ family in that its expression is regulated as an immediate early gene and is dynamically responsive to physiological synaptic activity, particularly during cortical development. This dynamic transcriptional control suggests that Homer mediates a novel cellular mechanism that regulates metabotropic glutamate signalling.
Collapse
Affiliation(s)
- P R Brakeman
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | |
Collapse
|
272
|
|
273
|
AMPA and NMDA glutamate receptor subunits in midbrain dopaminergic neurons in the squirrel monkey: an immunohistochemical and in situ hybridization study. J Neurosci 1997. [PMID: 9006980 DOI: 10.1523/jneurosci.17-04-01377.1997] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The objective of the present study was to analyze the cellular and subcellular localization of ionotropic glutamate receptor subunits in midbrain dopaminergic neurons in the squirrel monkey. This was achieved by means of immunohistochemistry at light and electron microscopic levels and in situ hybridization histochemistry. Colocalization studies show that nearly all dopaminergic neurons in both the ventral and dorsal tiers of the substantia nigra compacta (SNc-v, SNc-d) and the ventral tegmental area (VTA) are immunoreactive for AMPA (GluR1, GluR2/3, and GluR4) and NMDAR1 receptor subunits, but not for NMDAR2A/B subunits. The immunoreactivity of the receptor subunits is associated mainly with perikarya and dendritic shafts. Apart from the intensity of immunolabeling for the GluR4 subunit, which is quite similar for the different groups of midbrain dopaminergic neurons, the overall intensity of immunostaining for the other subunits is higher in the SNc-v and SNc-d than in the VTA. In line with these observations, in situ hybridization shows that the average level of labeling for the GluR2 and NMDAR1 subunit mRNAs is significantly higher in the SNc-v than in the VTA, and for the NMDAR1 subunit, higher in the SNc-v than in the SNc-d. In contrast, no significant difference was found for the level of GluR1 mRNA labeling among the three groups of midbrain dopaminergic neurons. At the subcellular level in the SNc-v, AMPA (GluR1 and GluR2/3) and NMDAR1 receptor subunit immunoreactivity is preferentially associated with the postsynaptic densities of asymmetric synapses, but occasionally some immunoreactivity is found along nonsynaptic portions of plasma membranes of dendrites. A small number of preterminal axons, axon terminals, and glial cell processes are also immunoreactive. Our observations indicate that the different groups of midbrain dopaminergic neurons in primates exhibit a certain degree of heterogeneity with regard to the level of expression of some ionotropic glutamate receptor subunits. The widespread neuronal and glial localization of glutamate receptor subunits suggests that excitatory amino acids may act at different levels to control the basal activity and, possibly, to participate in the degeneration of midbrain dopaminergic neurons in Parkinson's disease.
Collapse
|
274
|
Nakazawa K, Mikawa S, Ito M. Persistent phosphorylation parallels long-term desensitization of cerebellar purkinje cell AMPA-type glutamate receptors. Learn Mem 1997; 3:578-91. [PMID: 10456118 DOI: 10.1101/lm.3.6.578] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
This study is aimed at testing the hypothesis that sustained phosphorylation underlies long-term desensitization of AMPA receptors, which is thought to be the mechanism of long-term synaptic depression in cerebellar Purkinje cells (PCs). We induced long-term desensitization of AMPA receptors in rat cerebellar slices by (1) a 4-min bath application of quisqualate (0.1 mM) or (2) a 15-min bath application of a protein kinase C (PKC) activator, phorbol-12,13-diacetate (0.5 microM) or -dibutyrate (0.6 microM), followed by a 4-min AMPA (0.1 mM) application. In slices so treated, labeling with an antibody (12P3) against a peptide corresponding to part of AMPA receptor subunit GluR2 including serine 696 and phosphorylated at this serine site revealed phosphorylation of the AMPA receptors in PC dendrites that was sustained for at least 1 hr. At an early phase, within 20 min after the chemical stimulation, the phosphorylation was resistant to an Ca2+ chelator (BAPTA-AM), a metabotropic glutamate receptor antagonist (MCPG), and a PKC inhibitor (calphostin C), whereas at a late phase, 30 min or more after the chemical stimulation, it was blocked by these reagents similarly to long-term desensitization of AMPA receptors. Taken together with data obtained previously using different protocols of chemical stimulation, the present results strongly support the above-mentioned hypothesis.
Collapse
Affiliation(s)
- K Nakazawa
- Laboratory for Memory and Learning, Institute of Physical and Chemical Research (RIKEN), Saitama, Japan
| | | | | |
Collapse
|
275
|
Huntley GW, Vickers JC, Morrison JH. Quantitative localization of NMDAR1 receptor subunit immunoreactivity in inferotemporal and prefrontal association cortices of monkey and human. Brain Res 1997; 749:245-62. [PMID: 9138725 DOI: 10.1016/s0006-8993(96)00847-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The cellular and synaptic localization of immunoreactivity for the N-methyl-D-aspartate (NMDA) receptor subunit, NMDAR1, was investigated in inferotemporal and prefrontal association neocortices of monkeys and humans. In all monkey association areas examined, the laminar distribution patterns of NMDAR1 immunoreactivity were similar, and characterized by predominant pyramidal-like neuronal labeling in layers II, III, V and VI and a dense neuropil labeling consisting of intensely stained puncta and fine-caliber processes present throughout layers I-III, and V-VI. Layer IV, in contrast, contained only very lightly immunostained neurons which mostly lacked extensive dendritic staining. The laminar distribution of NMDAR1 immunolabeling in human association cortex was similar to that observed in monkeys. Electron microscopy of monkey areas 46 and TE1 confirmed that intensely immunoreactive asymmetrical postsynaptic densities were present throughout all cell-dense layers of prefrontal and inferotemporal association cortex. Quantitative analyses of the laminar proportions of immunoreactive synapses demonstrated that in both areas examined, the percentages of immunolabeled synapses were mostly similar across superficial layers, layer IV and infragranular layers. Finally, quantitative double-labeling immunofluorescence for non-NMDA receptor subunits or calcium-binding proteins demonstrated that virtually all GluR2/3 or GluR5/6/7-immunoreactive neurons were also labeled for NMDAR1, while regionally-specific subsets of parvalbumin-, calbindin- and calretinin-immunoreactive neurons were co-labeled. These data indicate that in primate association cortex, NMDA receptors are heterogeneously distributed to subsets of functionally distinct types of neurons and subsets of excitatory synapses, suggesting a critical and highly specific role in mediating the activity of excitatory connectivity which converges on cortical association areas.
Collapse
Affiliation(s)
- G W Huntley
- Fishberg Research Center for Neurobiology, Mount Sinai School of Medicine, New York, NY 10029-6574, USA
| | | | | |
Collapse
|
276
|
Ultrastructural localization suggests that retinal and cortical inputs access different metabotropic glutamate receptors in the lateral geniculate nucleus. J Neurosci 1997. [PMID: 8987843 DOI: 10.1523/jneurosci.16-24-08181.1996] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Glutamate has an important neuromodulatory role in synaptic transmission through metabotropic glutamate receptors (mGluRs) linked to a variety of G-protein-coupled second messenger pathways. Activation of these receptors on relay cells in the lateral geniculate nucleus (LGN) with the agonist trans-(1S,3R)-1-amino-1, 3-cyclopentanedicarboxylic acid produces a membrane depolarization that inactivates the low-threshold Ca2+ spike, causing a transition from burst to tonic response mode. The excitatory effects of metabotropic receptor activation in the LGN appear to be produced through the receptors linked to phosphoinositide hydrolysis and apparently only through activation of the corticogeniculate pathway. Two mGluRs, mGluR1alpha (a splice variant of mGluR1) and mGluR5, are linked to the phosphoinositide system. We examined the localization of these receptors with affinity-purified, anti-peptide, polyclonal antibodies raised to the C-terminal region of each receptor protein. Under examination with the light microscope, we found that both types of receptors are present in the geniculate neuropil and in that of the overlying thalamic reticular nucleus, including the perigeniculate nucleus. We also examined the ultrastructural localization of immunolabel with the electron microscope, using a postembedding immunogold marker to identify terminals, dendrites, and somata that contain GABA. Label for the antibody directed against mGluR1alpha was primarily localized in the dendrites of relay cells, postsynaptic to various terminal types. Of these, terminal profiles normally associated with corticogeniculate inputs predominated, whereas retinal terminal profiles were scarce. Label for the antibody directed against mGluR5 label was prominent in inhibitory F2-terminal profiles associated with the retinal input to relay cells. In the perigeniculate nucleus, both mGluRs were localized to dendrites. The distribution of the two phosphoinositide-linked mGluRs in the LGN suggests very different functional roles for the two receptor types. We conclude from these data that mGluR1 appears to have a dominant role in corticogeniculate control of response mode through the feedback glutamatergic pathway from layer VI, whereas mGluR5 is positioned to affect retinogeniculate activation of relay cells through feed forward glomerular interactions.
Collapse
|
277
|
Drake CT, Bausch SB, Milner TA, Chavkin C. GIRK1 immunoreactivity is present predominantly in dendrites, dendritic spines, and somata in the CA1 region of the hippocampus. Proc Natl Acad Sci U S A 1997; 94:1007-12. [PMID: 9023373 PMCID: PMC19630 DOI: 10.1073/pnas.94.3.1007] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/1996] [Accepted: 11/22/1996] [Indexed: 02/03/2023] Open
Abstract
Electron microscopic analysis of the CA1 region of the rat hippocampus revealed that specific immunoreactivity (IR) for a G protein-gated, inwardly rectifying potassium channel (GIRK1) was present exclusively in neurons and predominantly located in spiny dendrites of pyramidal cells. Within stratum lacunosum-moleculare and the superficial stratum radiatum, GIRK1-IR was often present immediately adjacent to asymmetric (excitatory-type) postsynaptic densities in dendritic spines. The subcellular localization of GIRK1-IR in the Golgi apparatus of pyramidal cell somata and in the plasma membrane of dendrites and dendritic spines confirms the hypothesis that GIRK1 is synthesized by pyramidal cells and transported to the more distal dendritic processes. G protein-coupled receptor activation of a dendritic potassium conductance would attenuate the propagation of excitatory synaptic inputs and thereby produce postsynaptic inhibition. Thus, these results show that the GIRK family of channels joins the list of voltage-sensitive channels now known to be expressed in dendritic spines.
Collapse
Affiliation(s)
- C T Drake
- Department of Neurology and Neuroscience, Cornell University Medical College, New York, NY 10021, USA
| | | | | | | |
Collapse
|
278
|
Three-dimensional organization of smooth endoplasmic reticulum in hippocampal CA1 dendrites and dendritic spines of the immature and mature rat. J Neurosci 1997. [PMID: 8987748 DOI: 10.1523/jneurosci.17-01-00190.1997] [Citation(s) in RCA: 421] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Recent studies have shown high levels of calcium in activated dendritic spines, where the smooth endoplasmic reticulum (SER) is likely to be important for regulating calcium. Here, the dimensions and organization of the SER in hippocampal spines and dendrites were measured through serial electron microscopy and three-dimensional analysis. SER of some form was found in 58% of the immature spines and in 48% of the adult spines. Less than 50% of the small spines at either age contained SER, suggesting that other mechanisms, such as cytoplasmic buffers, regulate ion fluxes within their small volumes. In contrast, >80% of the large mushroom spines of the adult had a spine apparatus, an organelle containing stacks of SER and dense-staining plates. Reconstructed SER occupied 0.001-0.022 microm3, which was only 2-3.5% of the total spine volume; however, the convoluted SER membranes had surface areas of 0.12-2.19 microm2, which were 12 to 40% of the spine surface area. Coated vesicles and multivesicular bodies occurred in some spines, suggesting local endocytotic activity. Smooth vesicles and tubules of SER were found in continuity with the spine plasma membrane and margins of the postsynaptic density (PSD), respectively, suggesting a role for the SER in the addition and recycling of spine membranes and synapses. The amount of SER in the parent dendrites was proportional to the number of spines and synapses originating along their lengths. These measurements support the hypothesis that the SER regulates the ionic and structural milieu of some, but not all, hippocampal dendritic spines.
Collapse
|
279
|
Takayama C, Nakagawa S, Watanabe M, Kurihara H, Mishina M, Inoue Y. Altered intracellular localization of the glutamate receptor channel delta 2 subunit in weaver and reeler Purkinje cells. Brain Res 1997; 745:231-42. [PMID: 9037414 DOI: 10.1016/s0006-8993(96)01093-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The glutamate receptor (GluR) channel delta 2 subunit is expressed abundantly and specifically in cerebellar Purkinje cells. Our previous study demonstrated that the GluR is expressed as early as embryonic day 15 prior to Purkinje cell synaptogenesis, and its protein product accumulates in dendritic spines during normal Purkinje cell maturation. In this study, we examined expression and distribution of the GluR delta 2 in the weaver and reeler mutant cerebelli, which show abnormal cytoarchitecture and neural circuitry. In situ hybridization analysis showed that GluR delta 2 mRNA was expressed in entire Purkinje cells in both mutant mice. Immunohistochemical analysis revealed that intracellular localization of GluR delta 2 was altered in some region of mutant cerebelli. In the cortical surface where Purkinje cells from synapses with parallel fibers, GluR delta 2-immunoreactivity was restricted to dendritic spines of Purkinje cells as observed in normal mice. In contrast, in the subcortical region where granule cells and parallel fibers are absent, the immunoreactivity was found widely in Purkinje dendrites. Thus, the GluR delta 2 protein did not accumulate to the dendritic spines of Purkinje cells lacking synaptic contact with parallel fibers. These results suggest that the expression of both GluR delta 2 mRNA and protein is independent of abnormalities in the mutant cerebelli, but relocalization of the GluR delta 2 protein might depend on the formation of synapses between Purkinje cells and parallel fibers.
Collapse
Affiliation(s)
- C Takayama
- Department of Anatomy, Hokkaido University, School of Medicine, Sapporo, Japan.
| | | | | | | | | | | |
Collapse
|
280
|
Kano M, Hashimoto K, Kurihara H, Watanabe M, Inoue Y, Aiba A, Tonegawa S. Persistent multiple climbing fiber innervation of cerebellar Purkinje cells in mice lacking mGluR1. Neuron 1997; 18:71-9. [PMID: 9010206 DOI: 10.1016/s0896-6273(01)80047-7] [Citation(s) in RCA: 248] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Most of the cerebellar Purkinje cells (PCs) of an adult animal are innervated individually by a single climbing fiber (CF) that forms strong excitatory synapses with the PCs. This one-to-one relationship between a PC and a CF is a consequence of a developmentally regulated regression of the innervation of PCs by CFs. We found that, in mice deficient in the type 1 metabotropic glutamate receptor (mGluR1), the regression of supernumerary CFs ceases by the end of the second postnatal week, which is about one week earlier than in normal mice. Consequently, about one third of PCs in the mGluR1 mutant mice are innervated by multiple CFs in adulthood. We conclude that the regression of CFs normally occurs in two developmental phases and that mGluR1 plays a crucial role in the second phase.
Collapse
Affiliation(s)
- M Kano
- Department of Physiology, Jichi Medical School, Minamikawachi-machi, Japan
| | | | | | | | | | | | | |
Collapse
|
281
|
Ottersen OP, Chaudhry FA, Danbolt NC, Laake JH, Nagelhus EA, Storm-Mathisen J, Torp R. Molecular organization of cerebellar glutamate synapses. PROGRESS IN BRAIN RESEARCH 1997; 114:97-107. [PMID: 9193140 DOI: 10.1016/s0079-6123(08)63360-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The organization of key molecules at glutamatergic synapses in the rat cerebellar cortex as analyzed by high resolution immunocytochemical techniques using gold particles as markers. The distinct compartmentation of glutamate and glutamine was consistent with biochemical data indicating an active role of glia in the removal of released glutamate and in the supply of glutamine for de novo synthesis of transmitter glutamate. The presence in glial cells of two different glutamate transporters, GLT1 and GLAST, provided further support of this concept. Both transporters were selectively expressed in glial membranes and occurred at higher densities in glial processes surrounding parallel fiber synapses with spines than in glial processes associated with parallel fiber synapses with dendritic shafts. At the former type of synapse, gold particles signalling GLT1 and GLAST could be found within a few nanometers of the postsynaptic density. The rat cerebellum also contains a homologue (rEAAC1) of the glutamate transporter EAAC1, originally cloned from rabbit, mRNA encoding this transporter was restricted to neurons. The exact localization of the rEAAC1 transporter molecules at cerebellar synapses remains to be determined but immunocytochemical and physiological data from other laboratories suggest that they may be preferentially expressed in postsynaptic membranes. Gold particles representing immunoreactivity for the AMPA receptor subunits GluR2/3 were found along the entire mediolateral extent of the postsynaptic specialization of parallel fiber synapses and were rarely encountered at non-synaptic membranes. The present data show that molecules engaged in signalling at cerebellar glutamatergic synapses are precisely organized, consistent with the requirements for rapid signal transmission and efficient removal and recycling of transmitter.
Collapse
Affiliation(s)
- O P Ottersen
- Department of Anatomy, University of Oslo, Blindern, Norway
| | | | | | | | | | | | | |
Collapse
|
282
|
Doherty J, Dingledine R. Regulation of excitatory input to inhibitory interneurons of the dentate gyrus during hypoxia. J Neurophysiol 1997; 77:393-404. [PMID: 9120580 DOI: 10.1152/jn.1997.77.1.393] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The role of metabotropic glutamate receptors (mGluRs) and adenosine receptors in hypoxia-induced suppression of excitatory synaptic input to interneurons residing at the granule cell-hilus border in the dentate gyrus was investigated with the use of whole cell electrophysiological recording techniques in thin (250 microns) slices of immature rat hippocampus. Minimal stimulation evoked glutamatergic excitatory postsynaptic currents (EPSCs) in dentate interneurons in 68 +/- 4% (mean +/- SE) of trials during stimulation in the dentate granule cell layer (GCL) and 48 +/- 3% of trials during stimulation in CA3. Hypoxic episodes, produced by switching the perfusing solution from 95% O2-5% CO2 to a solution containing 95% N2-5% CO2 for 3-5 min, rapidly and reversibly decreased the synaptic reliability, or probability of evoking an EPSC, from either input without reducing EPSC amplitude, consistent with a presynaptic suppression of transmitter release. The mGluR antagonist (+)-alpha-methyl-4-carboxyphenylglycine [(+) MCPG; 500 microM] did not alter synaptic reliability or mean EPSC amplitude in either pathway. However, (+) MCPG significantly attenuated hypoxic suppression of input from both pathways, suggesting that mGluRs activated by release of glutamate partially mediate hypoxic suppression of EPSCs to dentate interneurons. The mGluR agonist (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid (ACPD; 100 microM) rapidly decreased the reliability of excitatory transmission from both the GCL (19 +/- 5% of control) and CA3 (39 +/- 15% of control). ACPD also increased the frequency of spontaneous EPSCs and evoked a slow inward current in dentate interneurons. Exogenous adenosine (10-300 microM) decreased synaptic reliability for both pathways and reduced the frequency of spontaneous EPSCs, but did not cause a decrease in the mean amplitude of evoked EPSCs, consistent with a presynaptic suppression of excitatory input to dentate interneurons. Conversely, the selective adenosine A1 receptor antagonists 8-cyclopentyl-1,3-dipropylxanthine (200 nM to 1 microM) and N6-cyclopentyl-9-methyladenine (1 microM) enhanced excitatory input to dentate interneurons by increasing synaptic reliability for both the GCL and CA3 inputs. Adenosine A1 receptor antagonists did not, however, reduce hypoxic suppression of excitatory input to dentate interneurons. These results indicate that hypoxia induces a presynaptic inhibition of excitatory input to dentate interneurons mediated in part by activation of mGluRs, but not adenosine A1 receptors, whereas both mGluRs and adenosine A1 receptors can depress excitatory input to dentate interneurons during normoxic stimulation. Regulation of excitatory input to dentate interneurons provides a mechanism to shape excitatory input to the hippocampus under both normal and pathological conditions.
Collapse
Affiliation(s)
- J Doherty
- Department of Pharmacology, Emory University Medical School, Atlanta, Georgia 30322, USA
| | | |
Collapse
|
283
|
Nusser Z, Somogyi P. Compartmentalised distribution of GABAA and glutamate receptors in relation to transmitter release sites on the surface of cerebellar neurones. PROGRESS IN BRAIN RESEARCH 1997; 114:109-27. [PMID: 9193141 DOI: 10.1016/s0079-6123(08)63361-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Z Nusser
- Medical Research Council, Anatomical Neuropharmacology Unit, University of Oxford, UK.
| | | |
Collapse
|
284
|
Adam G, Matus A. Role of actin in the organisation of brain postsynaptic densities. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1996; 43:246-50. [PMID: 9037539 DOI: 10.1016/s0169-328x(96)00177-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Brain synaptic junctions are marked by a prominent dense-staining structure, the postsynaptic density (PSD), embedded in the postsynaptic membrane. Isolated PSDs contain a complex mixture of proteins among which the most abundant are the alpha subunit of calcium/calmodulin-dependent kinase II (CaMK II alpha) the membrane cytoskeletal proteins actin and spectrin and receptors for both excitatory and inhibitory neurotransmitters. We have investigated the relationship of these proteins to the junctional structure by extracting isolated PSDs with lithium diiodosalicylate (LIS). This selectively solubilized actin and spectrin while other prominent PSD proteins, such as CaMK II alpha, the AMPA- and NMDA-type glutamate receptors and GABA receptors, were not extracted at all. Electron microscopy revealed that LIS treatment caused some fragmentation of PSDs but that their basic lattice-like structure remained intact. These observations suggest that PSD structure is organised at two levels; a core component containing CaMK II alpha and neurotransmitter receptors which we have previously described as the postsynaptic junctional lattice and a peripheral actin-associated component that draws the lattice components together into the complete PSD structure.
Collapse
Affiliation(s)
- G Adam
- Friedrich Miescher Institute, Basel, Switzerland
| | | |
Collapse
|
285
|
Compartmental localization of a metabotropic glutamate receptor (mGluR7): two different active sites at a retinal synapse. J Neurosci 1996. [PMID: 8764662 DOI: 10.1523/jneurosci.16-15-04749.1996] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The distribution of the metabotropic glutamate receptor 7 (mGluR7) was studied in the rat retina using a specific antiserum. Punctate immunofluorescence that corresponded to synaptic localization was present exclusively in the inner plexiform layer. Double-labeling experiments suggested that mGluR7 is expressed at the synaptic terminals of certain cone bipolar cells. Electron microscopy showed that mGluR7 was present both presynaptically, as an autoreceptor in cone bipolar cell ribbon synapses, and postsynaptically in amacrine cells. There are usually two postsynaptic processes at a bipolar cell ribbon synapse; however, the presynaptic aggregation of mGluR7 was restricted to one half of the active zone and therefore was opposed to only one of the postsynaptic processes. This selective localization of mGluR7 could differentially regulate the glutamate release from the ribbon synapse, thus leading to a differential activation of the postsynaptic neurons.
Collapse
|
286
|
Blümcke I, Behle K, Malitschek B, Kuhn R, Knöpfel T, Wolf HK, Wiestler OD. Immunohistochemical distribution of metabotropic glutamate receptor subtypes mGluR1b, mGluR2/3, mGluR4a and mGluR5 in human hippocampus. Brain Res 1996; 736:217-26. [PMID: 8930327 DOI: 10.1016/0006-8993(96)00697-x] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The metabotropic glutamate receptors (mGluRs) can be classified into three families based on amino acid sequence homology, signal transduction mechanisms and pharmacological properties. Generally, class I mGluRs mediate an excitation of neurons while activation of class II and III mGluRs results in a depression of synaptic transmission. In this study we have analyzed the expression pattern of mGluRs in human hippocampus using a panel of polyclonal antibodies specific for mGluR1b, mGluR2/3, mGluR4a, and mGluR5. Immunoreactivity for mGluR1b and mGluR5, i.e., the subtypes representing class I mGluRs, was found in all hippocampal neurons. The mGluR1b antiserum stained perikarya and proximal dendrites, whereas immunoreactivity for mGluR5 was also detectable in the distal dendritic compartments. Immunoreactivity for mGluR2/3, members of class II mGluRs, was present in all principle neurons in the dentate gyrus as well as in the CA4, CA3 and CA2 regions. Pyramidal cells of the CA1 region exhibited only weak labeling for mGluR2/3. Glial cells were also mGluR2/3-immunoreactive. The reaction obtained with an antiserum directed against mGluR4a, a member of class III mGluRs, was confined to the mossy fiber projection field in CA3 stratum lucidum. These data demonstrate differential expression of mGluR variants in the human hippocampus and may provide an important basis for future studies of mGluRs under various neuropathological conditions such as temporal lobe epilepsy, ischemia and neurodegenerative disorders.
Collapse
Affiliation(s)
- I Blümcke
- Department of Neuropathology, University of Bonn Medical Center, Germany
| | | | | | | | | | | | | |
Collapse
|
287
|
Boxall SJ, Thompson SW, Dray A, Dickenson AH, Urban L. Metabotropic glutamate receptor activation contributes to nociceptive reflex activity in the rat spinal cord in vitro. Neuroscience 1996; 74:13-20. [PMID: 8843073 DOI: 10.1016/0306-4522(96)00101-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The contribution of metabotropic glutamate receptor activation to the spinal segmental reflex response evoked at high-intensity electrical stimulation suggesting a role in nociception, has been examined in an in vitro preparation of neonatal rat spinal cord. Segmental reflex responses were recorded as a ventral root depolarization evoked following drug perfusion to the spinal cord or by electrical activation of high-threshold nociceptive afferent fibres. Superfusion of the selective metabotropic glutamate receptor agonist, (1S, 3R)-1-aminocyclopentane-1,3-dicarboxylic acid [(1S,3R)-ACPD], to the spinal cord produced a dose-dependent, reversible ventral root depolarization (EC50 = 58 +/- 7 microM; n = 4), which was antagonized by the selective metabotropic glutamate receptor antagonist, (+)-alpha-methyl-4-carboxyphenylglycine (MCPG; IC50 = 243 +/- 61 microM; n = 4). MCPG, over the same concentration range (10 microM-5.0 mM) did not affect N-methyl-D-aspartate-induced ventral root depolarizations. In contrast, the specific N-methyl-D-aspartate receptor antagonist D(-)-2-amino-5-phosphonopentanoic acid (D-AP5) reduced N-methyl-D-aspartate-evoked ventral root depolarization but did not affect the depolarization evoked by (1S,3R)-ACPD, thus indicating the specificity of the antagonists for these aggregate responses. MCPG significantly reduced the prolonged phase of the single shock C-fibre-evoked ventral root depolarization (IC50 = 2.9 +/- 0.2 mM; n = 3-5). Low frequency high intensity stimulation of the dorsal root evoked a wind-up response, the amplitude of which was attenuated by both D-AP5 and MCPG in a dose-dependent manner. The ventral root depolarization evoked by capsaicin application (1.0 microM, 30 s) was blocked by both MCPG (IC50 = 809 +/- 35 microM; n = 4) and D-AP5 (IC50 = 143 +/- 43 microM; n = 4). These data suggest that both D-AP5 and MCPG reduced C-fibre-induced ventral root responses. In addition to N-methyl-D-aspartate receptor, metabotropic glutamate receptor activation appears to be involved in the generation of the segmental spinal reflex evoked by high-intensity stimulation in the neonatal rat spinal cord in vitro.
Collapse
Affiliation(s)
- S J Boxall
- Sandoz Institute for Medical Research, London, U.K
| | | | | | | | | |
Collapse
|
288
|
Organization of AMPA receptor subunits at a glutamate synapse: a quantitative immunogold analysis of hair cell synapses in the rat organ of Corti. J Neurosci 1996. [PMID: 8699256 DOI: 10.1523/jneurosci.16-14-04457.1996] [Citation(s) in RCA: 301] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Sensitive and high-resolution immunocytochemical procedures were used to investigate the spatial organization of AMPA receptor subunits (GluR1-4) at the synapse between the inner hair cells and the afferent dendrites in the rat organ of Corti. This is a synapse with special functional properties and with a presynaptic dense body that defines the center of the synapse and facilitates its morphometric analysis. A quantitative postembedding immunocytochemical analysis was performed on specimens that had been embedded in a metachrylate resin at low temperature after freeze substitution. Single- and double-labeling procedures indicated that GluR2/3 and GluR4 subunits were colocalized throughout the postsynaptic density, with a maximum distance of 300 nm from the presynaptic body and with higher concentrations peripherally than centrally. No receptor immunolabeling was found at extrasynaptic membranes, but some GluR4 subunits appeared to be expressed presynaptically. The synapses between outer hair cells and afferent dendrites were devoid of labeling. The present data indicate that AMPA receptor subunits are inserted into the postsynaptic membrane in a very precise manner and that their density increases on moving away from the center of the synapse.
Collapse
|
289
|
Caillé I, Dumartin B, Bloch B. Ultrastructural localization of D1 dopamine receptor immunoreactivity in rat striatonigral neurons and its relation with dopaminergic innervation. Brain Res 1996; 730:17-31. [PMID: 8883884 DOI: 10.1016/0006-8993(96)00424-6] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We have investigated by immunohistochemistry the cellular and subcellular distribution of the D1 dopamine receptor (D1R) in the rat striatonigral complex and its relation with the dopaminergic innervation. In the striatum, single pre-embedding immunoperoxidase and immunogold labeling demonstrate that D1R is mainly located on dendritic shafts and spines of spiny dendrites. D1R is also found in association with the plasma membrane of half of the perikarya of medium spiny neurons. Double labeling experiments allowing the simultaneous detection of D1R and of tyrosine hydroxylase (TH) demonstrate that D1R distribution does not match dopamine innervation: a majority of the receptors is located at sites distant from dopamine profiles and there is no significant D1R enrichment at sites of membrane appositions between dopamine and D1R profiles. In the substantia nigra, D1R is located at pre-synaptic sites on small diameter axons which are not in contact with TH-positive elements, and on terminal boutons forming symmetrical synapses on TH-positive or negative dendrites. These data demonstrate abundance and wide distribution of D1R at various extrasynaptic sites in the striatum and the substantia nigra, bringing strong evidence of anatomical basis for dopamine non-synaptic volume transmission in the rat striatonigral complex.
Collapse
Affiliation(s)
- I Caillé
- UMR CNRS 5541, Laboratoire d'Histologie-Embryologie (UFR II), Université de Bordeaux II, France
| | | | | |
Collapse
|
290
|
Sadile AG, Pellicano MP, Sagvolden T, Sergeant JA. NMDA and non-NMDA sensitive [L-3H]glutamate receptor binding in the brain of the Naples high- and low-excitability rats: an autoradiographic study. Behav Brain Res 1996; 78:163-74. [PMID: 8864048 DOI: 10.1016/0166-4328(95)00244-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The Naples high-excitability (NHE) and low-excitability (NLE) rat lines, selectively bred for high and low activity in a Làt maze, respectively, are used as an animal model in the study of hippocampal functions. The aim of this study was to investigate the anatomical distribution of N-methyl-D-aspartate (NMDA) and non-NMDA sensitive [3H]glutamate receptor binding by quantitative autoradiography in the brain of the NHE and NLE rats with a randomly bred line (NRB) as controls. Twenty-micron-thick cryostat sagittal sections were incubated at 4 degrees C with 150 nM [L-3H]glutamate alone or in the presence of 100 microM NMDA or 2.5 microM quisqualate (QA). Non-specific binding was determined in the presence of 1 mM of non-labeled glutamate. The sections were exposed to tritium-sensitive films for 3 weeks at 4 degrees C. Quantitative analysis revealed: (1) higher levels of total binding in NHE than in NRB and NLE rats in all areas but the cerebellum; (2) fewer binding sites for both NMDA and QA receptors and larger binding sites for QA receptors in the hippocampus of NLE and NHE rats, respectively; (3) a positive correlation between total binding sites and activity level in a Làt maze in all areas, except the cerebellar molecular layer with NLE < NHE, which was due to differential contribution from NMDA and non-NMDA types. Thus, the brain of the NHE rats shows an imbalance between NMDA and non-NMDA sensitive [L-3H]glutamate receptors.
Collapse
Affiliation(s)
- A G Sadile
- Department of Human Physiology F. Bottazzi, Second University of Naples (SUN), Italy.
| | | | | | | |
Collapse
|
291
|
Abstract
The proper targeting and clustering of neurotransmitter receptors at appropriate postsynaptic sites are principal requirements for the formation of functional synapses. Recently, new studies have begun to elucidate the mechanisms underlying the targeting and clustering of glutamate receptors at excitatory synapses in the brain. Members of the SAP90/PSD-95 family of proteins have emerged as potential regulators of glutamate-receptor membrane distribution. Further, targeting motifs within glutamate receptor subunits have been identified. These findings provide important clues in the effort to understand the molecular features of synaptic organization.
Collapse
Affiliation(s)
- M D Ehlers
- Department of Neuroscience, Howard Hughes Medical Institute, The Johns Hopkins University, 725 N Wolfe Street, 900 Preclinical Teaching Building, Baltimore, MD 21205-2185, USA
| | | | | | | |
Collapse
|
292
|
Metabotropic glutamate receptor activation in cerebellar Purkinje cells as substrate for adaptive timing of the classically conditioned eye-blink response. J Neurosci 1996. [PMID: 8642419 DOI: 10.1523/jneurosci.16-11-03760.1996] [Citation(s) in RCA: 130] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
To understand how the cerebellum adaptively times the classically conditioned nictitating membrane response (NMR), a model of the metabotropic glutamate receptor (mGluR) second messenger system in cerebellar Purkinje cells is constructed. In the model, slow responses, generated postsynaptically by mGluR-mediated phosphoinositide hydrolysis and calcium release from intracellular stores, bridge the interstimulus interval (ISI) between the onset of parallel fiber activity associated with the conditioned stimulus (CS) and climbing fiber activity associated with unconditioned stimulus (US) onset. Temporal correlation of metabotropic responses and climbing fiber signals produces persistent phosphorylation of both AMPA receptors and Ca(2+)-dependent K+ channels. This is responsible for long-term depression (LTD) of AMPA receptors. The phosphorylation of Ca(2+)-dependent K+ channels leads to a reduction in baseline membrane potential and a reduction of Purkinje cell population firing during the CS-US interval. The Purkinje cell firing decrease disinhibits cerebellar nuclear cells, which then produce an excitatory response corresponding to the learned movement. Purkinje cell learning times the response, whereas nuclear cell learning can calibrate it. The model reproduces key features of the conditioned rabbit NMR: Purkinje cell population response is timed properly; delay conditioning occurs for ISIs of up to 4 sec, whereas trace conditioning occurs only at shorter ISIs; mixed training at two different ISIs produces a double-peaked response; and ISIs of 200-400 msec produce maximal responding. Biochemical similarities between timed cerebellar learning and photoreceptor transduction, and circuit similarities between the timed cerebellar circuit and a timed dentate-CA3 hippocampal circuit, are noted.
Collapse
|
293
|
Lujan R, Nusser Z, Roberts JD, Shigemoto R, Somogyi P. Perisynaptic location of metabotropic glutamate receptors mGluR1 and mGluR5 on dendrites and dendritic spines in the rat hippocampus. Eur J Neurosci 1996; 8:1488-500. [PMID: 8758956 DOI: 10.1111/j.1460-9568.1996.tb01611.x] [Citation(s) in RCA: 671] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Ionotropic and metabotropic (mGluR1a) glutamate receptors were reported to be segregated from each other within the postsynaptic membrane at individual synapses. In order to establish whether this pattern of distribution applies to the hippocampal principal cells and to other postsynaptic metabotropic glutamate receptors, the mGluR1a/b/c and mGluR4 subtypes were localized by immunocytochemistry. Principal cells in all hippocampal fields were reactive for mGluR5, the strata oriens and radiatum of the CA1 area being most strongly immunolabelled. Labelling for mGluR1b/c was strongest on some pyramids in the CA3 area, weaker on granule cells and absent on CA1 pyramids. Subpopulations of non-principal cells showed strong mGluR1 or mGluR5 immunoreactivity. Electron microscopic pre-embedding immunoperoxidase and both pre- and postembedding immunogold methods consistently revealed the extrasynaptic location of both mGluRs in the somatic and dendritic membrane of pyramidal and granule cells. The density of immunolabelling was highest on dendritic spines. At synapses, immunoparticles for both mGluR1 and mGluR5 were found always outside the postsynaptic membrane specializations. Receptors were particularly concentrated in a perisynaptic annulus around type 1 synaptic junctions, including the invaginations at 'perforated' synapses. Measurements of immunolabelling on dendritic spines showed decreasing levels of receptor as a function of distance from the edge of the synaptic specialization. We propose that glutamergic synapses with an irregular edge develop in order to increase the circumference of synaptic junctions leading to an increase in the metabotropic to ionotropic glutamate receptor ratio at glutamate release sites. The perisynaptic position of postsynaptic metabotropic glutamate receptors appears to be a general feature of glutamatergic synaptic organization and may apply to other G-protein-coupled receptors.
Collapse
Affiliation(s)
- R Lujan
- Medical Research Council, Anatomical Neuropharmacology Unit, Mansfield Road, Oxford OX1 3TH, UK
| | | | | | | | | |
Collapse
|
294
|
Eaton SA, Salt TE. Role of N-methyl-D-aspartate and metabotropic glutamate receptors in corticothalamic excitatory postsynaptic potentials in vivo. Neuroscience 1996; 73:1-5. [PMID: 8783225 DOI: 10.1016/0306-4522(96)00123-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The ventrobasal thalamus is the principal somatosensory thalamic relay nucleus, and it receives two major sources of excitatory input: firstly an input from ascending sensory afferents, and secondly a descending projection from the primary somatosensory cortex. There is considerable anatomical evidence to suggest that both of these projections utilise the excitatory amino acid L-glutamate as their neurotransmitter. Previous work from this laboratory has shown that the sensory input to the rat ventrobasal thalamus in vivo is mediated by ionotropic excitatory amino acid receptors of both the N-methyl-D-aspartate and non-N-methyl-D-aspartate type. These findings are consistent with data from other studies in various thalamic relay nuclei. In contrast, there are considerably less data available concerning the synaptic pharmacology of the corticothalamic projection although there have been both speculation and studies concerning the functional significance of this pathway. There is some evidence to suggest an involvement of N-methyl-D-aspartate receptors and metabotropic glutamate receptors. The aim of this study was to determine which excitatory amino acid receptors might mediate cortically-elicited excitatory postsynaptic potential in the ventrobasal thalamus in vivo. Intracellular recordings were made, and neurotransmitter antagonists were applied on to rat ventrobasal thalamus neurons by microiontophoresis. Cortically-elicited excitatory postsynaptic potentials were reduced by the N-methyl-D-aspartate antagonist 3-[(+/-)-2-carboxy-piperazin-4-yl]-propyl-1-phosphonate, or the Group I metabotropic antagonist (S)-4-carboxyphenylglycine. These data indicate that both N-methyl-D-aspartate receptors and Group I (possibly metabotropic glutamate receptors type I) metabotropic receptors are involved in the mediation of corticothalamic transmission. Such a transmitter mechanism would allow a modulatory system that could selectively enhance other excitatory inputs. Some of these data have been reported in abstract form.
Collapse
Affiliation(s)
- S A Eaton
- Department of Visual Science, University College London, UK
| | | |
Collapse
|
295
|
Nicoletti F, Bruno V, Copani A, Casabona G, Knöpfel T. Metabotropic glutamate receptors: a new target for the therapy of neurodegenerative disorders? Trends Neurosci 1996; 19:267-71. [PMID: 8799968 DOI: 10.1016/s0166-2236(96)20019-0] [Citation(s) in RCA: 307] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Metabotropic glutamate (mGlu) receptors are a large, heterogeneous family of G-protein coupled receptors, which modulate excitatory synaptic transmission through various transduction pathways. Evidence is now accumulating that individual mGlu-receptor subtypes mediate distinct, facilitatory (group I subtypes) or inhibitory (group II and group III subtypes), actions on neurodegenerative processes. Drugs interacting with mGlu receptors are expected to influence both the induction and progression of neuronal degeneration without hampering the efficiency of fast excitatory synaptic transmission. For these reasons, mGlu receptors can be considered as promising drug targets in the experimental therapy of acute or chronic neurodegenerative diseases.
Collapse
Affiliation(s)
- F Nicoletti
- Institute of Pharmacology, University of Catania, School of Pharmacy, Italy
| | | | | | | | | |
Collapse
|
296
|
Silver RA, Cull-Candy SG, Takahashi T. Non-NMDA glutamate receptor occupancy and open probability at a rat cerebellar synapse with single and multiple release sites. J Physiol 1996; 494 ( Pt 1):231-50. [PMID: 8814618 PMCID: PMC1160626 DOI: 10.1113/jphysiol.1996.sp021487] [Citation(s) in RCA: 230] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
1. Excitatory postsynaptic currents (EPSCs) were recorded under whole-cell voltage clamp from granule cells in slices of rat cerebellum. EPSCs from individual mossy fibre inputs were identified by their all-or-none appearance in response to a graded stimulus. Excitatory synaptic transmission was investigated at room temperature (approximately 24 degrees C) and at near-physiological temperature (approximately 34 degrees C) by analysing current fluctuations in the peak and decay of the non-N-methyl-D-aspartate (non-NMDA) component of EPSCs. 2. In a subset of synapses the mean EPSC amplitude remained unchanged as the probability of transmitter release was substantially lowered by raising the extracellular [Mg2+] and lowering [Ca2+]. These synapses were considered to have only one functional release site. Single-site synapses had small EPSCs (139 +/- 16 pS, n = 5, at 24 degrees C) with a large coefficient of variation (c.v. = 0.23 +/- 0.02, n = 5) and an amplitude distribution that was well fitted by a Gaussian distribution in four out of five cases. The EPSC latency had a unimodal distribution and its standard deviation had a temperature dependence with a temperature coefficient (Q10; range, 24-35 degrees C) of 2.4 +/- 0.4 (n = 4). 3. Peak-scaled non-stationary fluctuation analysis of single-site EPSCs indicated that the mean conductance of the underlying non-NMDA channels was 12 +/- 2 pS (n = 4) at 35 degrees C. Upper and lower limits for mean channel open probability (Po), calculated from fluctuations in the EPSC peak amplitude, were 0.51 and 0.38, respectively. These estimates, together with the open probability of the channel when bound by transmitter, suggest that only about 50% of the non-NMDA channels were occupied following the release of a quantum of transmitter. 4. At some multi-site synapses EPSCs had a low c.v. (0.4 +/- 0.01, n = 5) at 34 degrees C and non-stationary fluctuation analysis gave a parabolic variance-mean current relationship. This suggests that practically all of the non-NMDA receptors were occupied by glutamate at the peak of EPSC. The channel open probability (Po = 0.84 +/- 0.03, n = 5) at these 'saturated' multi-site synapses will therefore equal the open probability of the channel when bound by transmitter (Po,max). 5. Non-stationary fluctuation analysis of EPSCs from 'saturating' multi-site synapses indicated that 170 +/- 40 postsynaptic non-NMDA channels were exposed to transmitter at the peak of the EPSC. The mean conductance of the synaptic channels was 10 +/- 2 pS (n = 5) at 34 degrees C. 6. At synapses with multiple release sites the EPSC decay time became faster when release probability was lowered (by reducing the external [Ca2+]/[Mg2+] ratio), indicating that the transmitter concentration profile depended on release probability. No such speeding of the EPSC decay was observed at single-site synapses. 7. Our results suggest that release of a packet of transmitter from a single release site does not saturate postsynaptic non-NMDA receptors at cerebellar mossy fibre-granule cell synapses. However, at multi-site synapses transmitter released from neighbouring sites can overlap, changing the transmitter concentration profile in the synaptic cleft. We conclude that the level of postsynaptic receptor occupancy can depend on the probability of transmitter release at individual multi-site synapses.
Collapse
Affiliation(s)
- R A Silver
- Department of Pharmacology, University College London, UK.
| | | | | |
Collapse
|
297
|
Abstract
Postembedding immunogold electron microscopy was used to determine the relation of primary afferent terminals in superficial laminae of the spinal dorsal horn with AMPA receptor subunits. Immunogold particles coding for GluR1 and GluR2/3 were concentrated at synaptic sites, between 30 nm outside and 40 nm inside the postsynaptic membrane. Immunopositive synapses displayed round vesicles and asymmetric specializations, characteristic of terminals releasing excitatory neurotransmitters; symmetric synapses, characteristic of terminals releasing inhibitory amino acids, were immunonegative. In superficial laminae, large terminals of two main types at the center of a synaptic glomerulus originate from primary afferents: C1 terminals are mainly endings of unmyelinated afferent fibers; C2 terminals are mainly endings of thinly myelinated afferent fibers. Terminals of both types were presynaptic to AMPA subunits, but in different proportions: C1 terminals were related more to GluR1 than to GluR2/3, whereas the reverse was true for C2 terminals. These results suggest that functional properties of peripheral afferents to the spinal cord may be specified by the density and combination of receptor subunits in the postsynaptic membrane, and raise the possibility that calcium-permeable AMPA channels may play a special role in the mediation of sensory input by unmyelinated fibers.
Collapse
|
298
|
Ramcharan EJ, Matthews MR. Autoradiographic localization of functional muscarinic receptors in the rat superior cervical sympathetic ganglion reveals an extensive distribution over non-synaptic surfaces of neuronal somata, dendrites and nerve endings. Neuroscience 1996; 71:797-832. [PMID: 8867051 DOI: 10.1016/0306-4522(95)00478-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Fast synaptic transmission in sympathetic ganglia is mediated by acetylcholine, acting on nicotinic receptors, yet muscarinic receptors are also present and are involved in the production of slow postsynaptic potentials. In order further to elucidate the role of muscarinic receptors in ganglionic transmission their distribution in the rat superior cervical sympathetic ganglion was investigated autoradiographically by use of the tritiated irreversible muscarinic ligand propylbenzilylcholine mustard. It was observed that this agent blocked the carbachol-evoked hydrolysis of inositol phospholipids in the ganglion and that this response to carbachol is itself inhibitable by selective muscarinic antagonists with a potency sequence which indicates involvement primarily of M1 receptors. Light microscope autoradiography showed that labelling inhibitable by atropine and by the M1-selective muscarinic antagonist pirenzepine was essentially confined to the margins of neuronal somata and regions of dendritic arborization, which include synaptic contacts. Quantitative electron microscope autoradiography showed that binding of the radioligand, of which approximately 70% was inhibitable by atropine and 68% by pirenzepine, was associated predominantly with surface membranes of neuronal somata, dendrites, other neurites (including axons and uncharacterized dendrites) and nerve terminal profiles, in the approximate ratios 95:85:52:45. Of the inhibitable binding over neuronal membranes in the ganglion little more than 3% was found to be synaptically located, and this involved para- or peri-synaptic regions of nerve terminal contacts rather than the specialized synaptic zone. About 5% of the inhibitable binding over neuronal membranes involved non-synaptic surfaces of nerve terminals and preterminal axon segments; almost 70% was distributed over non-synaptic surfaces of neuronal somata and dendrites, and about 21% upon other neurites. Binding sites were found not to be more highly concentrated at or adjacent to synapses than over other regions of neuronal surface membranes. About 50%, possibly more, of the binding on non-synaptic surfaces of nerve endings, and about 7% of binding upon dendritic membranes, was of non-M1, possibly M2 type, inhibitable by atropine but not by pirenzepine. Non-synaptic neuro-neuronal appositions, which involve dendrites and somata and often lie adjacent to synapses, showed rather more than twice the binding expected for each membrane individually; and neuronal membrane exposed to basal lamina lining ganglionic tissue spaces showed high levels of binding. Little inhibitable binding was seen over membranes of satellite and Schwann cells, or over cytoplasmic territories or ganglionic interstitial tissue. A model was constructed of the distribution of label, which showed that the observed results for total binding could be approximately matched by assuming the following relative densities of ligand binding sites: interstitial tissue space and supporting cells 1, soma cytoplasm 3, cytoplasm of dendrites, neurites and nerve terminals 4.5, surfaces of mesodermal elements 15, surfaces of neurites and nerve endings including sites of synapse 45, surfaces of dendrites 90, surfaces of neuronal somata 120, non-synaptic neuro-neuronal appositions 180. It is concluded that functional muscarinic receptors in this sympathetic ganglion, predominantly of the M1 type linked with slow depolarizations, but including some non-M1 receptors, are widely distributed over non-synaptic surfaces of the neuronal somata and dendrites and are not concentrated at synapses. Presynaptic autoreceptors are also present, of which half or more are of non-M1, possibly M2, type which might be inhibitory. The presence of M4 receptors is not excluded...
Collapse
Affiliation(s)
- E J Ramcharan
- Department of Human Anatomy, University of Oxford, U.K
| | | |
Collapse
|
299
|
Petralia RS, Wang YX, Niedzielski AS, Wenthold RJ. The metabotropic glutamate receptors, mGluR2 and mGluR3, show unique postsynaptic, presynaptic and glial localizations. Neuroscience 1996; 71:949-76. [PMID: 8684625 DOI: 10.1016/0306-4522(95)00533-1] [Citation(s) in RCA: 462] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Glutamate neurotransmission involves numerous ionotropic and metabotropic glutamate receptor types in postsynaptic, presynaptic and glial locations. Distribution of the metabotropic glutamate receptors mGluR2 and mGluR3 was studied with an affinity-purified, characterized polyclonal antibody made from a C-terminus peptide. This antibody, mGluR2/3, recognized both mGluR2 and mGluR3, but did not cross-react with any other type of metabotropic glutamate receptor except for a very slight recognition of mGluR5. Light microscope distribution of the antibody binding sites in the nervous system matched the combined distributions of messenger RNA for mGluR2 and mGluR3. For example, dense staining seen in the accessory olfactory bulb and cerebellar Golgi cells matched high levels of mGluR2 messenger RNA in these structures, while moderately dense staining in the reticular nucleus of the thalamus and light to moderate staining in glia throughout the brain matched significant levels of mGluR3 messenger RNA in these structures. In the rostral olfactory structures, the densest stained neurons belonged to presumptive "necklace olfactory glomeruli." In the hippocampus, staining was densest in the neuropil of the stratum lucidum/pyramidale, stratum lacunosum/moleculare, hilus and middle third of the molecular layer of the dentate gyrus. Ultrastructural studies of the cerebral cortex, hippocampus and caudate-putamen revealed significant staining in postsynaptic and presynaptic structures and glial wrappings of presumptive excitatory synapses; frequently, this staining was concentrated in discrete patches at or near active zones. In the hippocampus, presynaptic staining appeared to be concentrated in terminals of two populations of presumptive glutamatergic axons: mossy fibers originating from granule cells and perforant path fibers originating from the entorhinal cortex. These data suggest that populations of mGluR2 and/or mGluR3 receptors are localized differentially in synapses, i.e. those in and near the postsynaptic and presynaptic membranes and in glial wrappings of synapses, in several regions of the brain. In addition, we provide immunocytochemical evidence of mGluR2 or mGluR3 receptors in presynaptic terminals of glutamatergic synapses. Thus, mGluR2 and mGluR3 are found in various combinations of presynaptic, postsynaptic and glial localizations that may reflect differential modulation of excitatory amino acid transmission.
Collapse
Affiliation(s)
- R S Petralia
- Laboratory of Neurochemistry, NIDCD, NIH, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
300
|
Abstract
The myelinated fibers of the auditory nerve can be divided into two separate populations on the basis of sensitivity to sound, average levels of spike activity, and central branching patterns. The synaptic endings of these populations were investigated for the presence of structural specializations that might correlate with levels of neural activity. We applied intracellular recording and staining methods in cats to analyze directly the relationship between spike activity and the structure of synapses using endbulbs of Held, the large synaptic endings in the anteroventral cochlear nucleus. Endbulbs from fibers having low or high levels of activity were examined and compared using light and electron microscopic methods. All endbulbs exhibited relatively large but incomplete coverage by one-to-several lamellae of glial processes. Endbulbs of high activity fibers were large and contained larger mitochondria than endbulbs of low activity fibers. Furthermore, the synapses of high activity endbulbs were on average smaller but more numerous, possessed greater numbers of associated synaptic vesicles, and exhibited greater curvature of their postsynaptic densities. These structural features are hypothesized to reflect specializations that optimize synaptic transmission.
Collapse
Affiliation(s)
- D K Ryugo
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
| | | | | |
Collapse
|