251
|
Betancor MB, Almaida-Pagán PF, Sprague M, Hernández A, Tocher DR. Roles of selenoprotein antioxidant protection in zebrafish, Danio rerio, subjected to dietary oxidative stress. FISH PHYSIOLOGY AND BIOCHEMISTRY 2015; 41:705-720. [PMID: 25750091 DOI: 10.1007/s10695-015-0040-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 02/27/2015] [Indexed: 06/04/2023]
Abstract
In vertebrates, selenium (Se) is an essential micronutrient for vertebrates that is involved in antioxidant protection and thyroid hormone regulation among other roles and functions through its incorporation into proteins, the selenoproteins. Long-chain polyunsaturated fatty acids, such as docosahexaenoic acid (DHA), are essential nutrients for fish although high dietary levels may lead to increased oxidative stress due to the high degree of unsaturation. The present study investigated the effects of Se supplementation on zebrafish, Danio rerio, oxidative status together with selenoprotein expression profiles when subjected to a high-DHA diet. Fish were fed for 8 weeks with one of the four experimental diets, containing high or low DHA in combination with or without organic Se (7 mg/kg). Fish performance, Se content, fatty acid composition and TBARS of zebrafish were determined, as well as gene expression of selected selenoproteins in liver and muscle. The Se levels in whole fish reflected dietary content. High dietary DHA increased oxidative stress as indicated by reduced growth and high TBARS content, although Se supplementation reduced oxidation. The expression patterns of selenoproteins varied between liver and muscle with only deiodinase type II displaying a transcriptional response when high dietary Se was supplied. High dietary DHA decreased selenoprotein W expression in muscle and sps2 expression in liver regardless of the dietary Se content. These data suggest that oxidative stress protection associated with a high dietary intake of Se may not be solely mediated by transcriptional changes in teleost selenoprotein expression.
Collapse
Affiliation(s)
- M B Betancor
- School of Natural Sciences, Institute of Aquaculture, University of Stirling, Stirling, FK9 4LA, UK,
| | | | | | | | | |
Collapse
|
252
|
Decreased plasma thiol antioxidant barrier and selenoproteins as potential biomarkers for ongoing methylmercury intoxication and an individual protective capacity. Arch Toxicol 2015; 90:917-26. [DOI: 10.1007/s00204-015-1528-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 05/05/2015] [Indexed: 10/23/2022]
|
253
|
Abstract
Selenium is regulated in the body to maintain vital selenoproteins and to avoid toxicity. When selenium is limiting, cells utilize it to synthesize the selenoproteins most important to them, creating a selenoprotein hierarchy in the cell. The liver is the central organ for selenium regulation and produces excretory selenium forms to regulate whole-body selenium. It responds to selenium deficiency by curtailing excretion and secreting selenoprotein P (Sepp1) into the plasma at the expense of its intracellular selenoproteins. Plasma Sepp1 is distributed to tissues in relation to their expression of the Sepp1 receptor apolipoprotein E receptor-2, creating a tissue selenium hierarchy. N-terminal Sepp1 forms are taken up in the renal proximal tubule by another receptor, megalin. Thus, the regulated whole-body pool of selenium is shifted to needy cells and then to vital selenoproteins in them to supply selenium where it is needed, creating a whole-body selenoprotein hierarchy.
Collapse
Affiliation(s)
- Raymond F Burk
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0252; ,
| | | |
Collapse
|
254
|
Comparative Meta-Analysis of Transcriptomics Data during Cellular Senescence and In Vivo Tissue Ageing. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:732914. [PMID: 25977747 PMCID: PMC4419258 DOI: 10.1155/2015/732914] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Revised: 03/22/2015] [Accepted: 03/23/2015] [Indexed: 02/06/2023]
Abstract
Several studies have employed DNA microarrays to identify gene expression signatures that mark human ageing; yet the features underlying this complicated phenomenon remain elusive. We thus conducted a bioinformatics meta-analysis on transcriptomics data from human cell- and biopsy-based microarrays experiments studying cellular senescence or in vivo tissue ageing, respectively. We report that coregulated genes in the postmitotic muscle and nervous tissues are classified into pathways involved in cancer, focal adhesion, actin cytoskeleton, MAPK signalling, and metabolism regulation. Genes that are differentially regulated during cellular senescence refer to pathways involved in neurodegeneration, focal adhesion, actin cytoskeleton, proteasome, cell cycle, DNA replication, and oxidative phosphorylation. Finally, we revealed genes and pathways (referring to cancer, Huntington's disease, MAPK signalling, focal adhesion, actin cytoskeleton, oxidative phosphorylation, and metabolic signalling) that are coregulated during cellular senescence and in vivo tissue ageing. The molecular commonalities between cellular senescence and tissue ageing are also highlighted by the fact that pathways that were overrepresented exclusively in the biopsy- or cell-based datasets are modules either of the same reference pathway (e.g., metabolism) or of closely interrelated pathways (e.g., thyroid cancer and melanoma). Our reported meta-analysis has revealed novel age-related genes, setting thus the basis for more detailed future functional studies.
Collapse
|
255
|
Muzembo BA, Deguchi Y, Ngatu NR, Eitoku M, Hirota R, Suganuma N. Selenium and exposure to fibrogenic mineral dust: a mini-review. ENVIRONMENT INTERNATIONAL 2015; 77:16-24. [PMID: 25615721 DOI: 10.1016/j.envint.2015.01.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 12/28/2014] [Accepted: 01/04/2015] [Indexed: 06/04/2023]
Abstract
Individuals exposed to fibrogenic mineral dust may exhibit an impaired antioxidant system and produce high levels of reactive oxygen and nitrogen species through immune cells, contributing to the perturbation of immune cell function, inflammation, fibrosis and lung cancer. The lung diseases which are caused by inhalation of fibrogenic mineral dust, known as pneumoconioses, develop progressively and irreversibly over decades. At the moment there is no known cure. The trace element selenium has potent antioxidant and anti-inflammatory properties mediated mainly through selenoproteins. Research has demonstrated that selenium has the ability to protect against cardiovascular diseases; to kill cancer cells in vitro and reduce cancer incidence; and to immunomodulate various cellular signaling pathways. For these reasons, selenium has been proposed as a promising therapeutic agent in oxidative stress associated pathology that in theory would be beneficial for the prevention or treatment of pneumoconioses such as silicosis, asbestosis, and coal worker's pneumoconiosis. However, studies regarding selenium and occupational lung diseases are rare. The purpose of this study is to conduct a mini-review regarding the relationship between selenium and exposure to fibrogenic mineral dust with emphasis on epidemiological studies. We carried out a systematic literature search of English published studies on selenium and exposure to fibrogenic mineral dust. We found four epidemiological studies. Reviewed studies show that selenium is lower in individuals exposed to fibrogenic mineral dust. However, three out of the four reviewed studies could not confirm cause-and-effect relationships between low selenium status and exposure to fibrogenic mineral dust. This mini-review underscores the need for large follow-up and mechanistic studies for selenium to further elucidate its therapeutic effects.
Collapse
Affiliation(s)
- Basilua Andre Muzembo
- Division of Social Medicine, Department of Environmental Medicine, Kochi Medical School, Kochi University, Kochi, Japan; Research Fellow of the Japan Society for the Promotion of Science (JSPS), Tokyo, Japan.
| | - Yoji Deguchi
- School of Nursing, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Nlandu Roger Ngatu
- Division of Social Medicine, Department of Environmental Medicine, Kochi Medical School, Kochi University, Kochi, Japan; Disaster Graduate School of Health and Nursing Sciences, Disaster Nursing Global Leader program (DNGL), University of Kochi, Kochi, Japan
| | - Masamitsu Eitoku
- Division of Social Medicine, Department of Environmental Medicine, Kochi Medical School, Kochi University, Kochi, Japan
| | - Ryoji Hirota
- Division of Social Medicine, Department of Environmental Medicine, Kochi Medical School, Kochi University, Kochi, Japan
| | - Narufumi Suganuma
- Division of Social Medicine, Department of Environmental Medicine, Kochi Medical School, Kochi University, Kochi, Japan
| |
Collapse
|
256
|
Abstract
The essential trace element, selenium (Se), has multiple biological activities, which depend on the level of Se intake. Relatively low Se intakes determine the expression of selenoenzymes in which it serves as an essential constituent. Higher intakes have been shown to have anti-tumorigenic potential; and very high Se intakes can produce adverse effects. This hierarchy of biological activities calls for biomarkers informative at different levels of Se exposure. Some Se-biomarkers, such as the selenoproteins and particularly GPX3 and SEPP1, provide information about function directly and are of value in identifying nutritional Se deficiency and tracking responses of deficient individuals to Se-treatment. They are useful under conditions of Se intake within the range of regulated selenoprotein expression, e.g., for humans <55 μg/day and for animals <20 μg/kg diet. Other Se-biomarkers provide information indirectly through inferences based on Se levels of foods, tissues, urine or feces. They can indicate the likelihood of deficiency or adverse effects, but they do not provide direct evidence of either condition. Their value is in providing information about Se status over a wide range of Se intake, particularly from food forms. There is need for additional Se biomarkers particularly for assessing Se status in non-deficient individuals for whom the prospects of cancer risk reduction and adverse effects risk are the primary health considerations. This would include determining whether supranutritional intakes of Se may be required for maximal selenoprotein expression in immune surveillance cells. It would also include developing methods to determine low molecular weight Se-metabolites, i.e., selenoamino acids and methylated Se-metabolites, which to date have not been detectable in biological specimens. Recent analytical advances using tandem liquid chromatography-mass spectrometry suggest prospects for detecting these metabolites.
Collapse
Affiliation(s)
- Gerald F Combs
- Grand Forks Human Nutrition Research Center, USDA-ARS, 2420 2nd Ave N Grand Forks, ND 58202, USA.
| |
Collapse
|
257
|
Dietary methionine can sustain cytosolic redox homeostasis in the mouse liver. Nat Commun 2015; 6:6479. [PMID: 25790857 PMCID: PMC4369796 DOI: 10.1038/ncomms7479] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 02/02/2015] [Indexed: 01/28/2023] Open
Abstract
Across phyla, reduced nicotinamide adenine dinucleotide phosphate (NADPH) transfers intracellular reducing power to thioredoxin reductase-1 (TrxR1) and glutathione reductase (GR), thereby supporting fundamental housekeeping and antioxidant pathways. Here we show that a third, NADPH-independent, pathway can bypass the need for TrxR1 and GR in mammalian liver. Most mice genetically engineered to lack both TrxR1 and GR in all hepatocytes (“TR/GR-null livers”) remain long-term viable. TR/GR-null livers cannot reduce oxidized glutathione disulfide but still require continuous glutathione synthesis. Inhibition of cystathionine gamma-lyase causes rapid necrosis of TR/GR-null livers, indicating that methionine-fueled trans-sulfuration supplies the necessary cysteine precursor for glutathione synthesis via an NADPH-independent pathway. We further show that dietary methionine provides the cytosolic disulfide reducing power and all sulfur amino acids in TR/GR-null livers. Although NADPH is generally considered an essential reducing currency, these results indicate that hepatocytes can adequately sustain cytosolic redox homeostasis pathways using either NADPH or methionine.
Collapse
|
258
|
White L, Romagné F, Müller E, Erlebach E, Weihmann A, Parra G, Andrés AM, Castellano S. Genetic Adaptation to Levels of Dietary Selenium in Recent Human History. Mol Biol Evol 2015; 32:1507-18. [DOI: 10.1093/molbev/msv043] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
259
|
García-Sevillano M, Rodríguez-Moro G, García-Barrera T, Navarro F, Gómez-Ariza J. Biological interactions between mercury and selenium in distribution and detoxification processes in mice under controlled exposure. Effects on selenoprotein. Chem Biol Interact 2015; 229:82-90. [DOI: 10.1016/j.cbi.2015.02.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 01/24/2015] [Accepted: 02/01/2015] [Indexed: 02/06/2023]
|
260
|
Bruserud Ø, Reikvam H, Fredly H, Skavland J, Hagen KM, van Hoang TT, Brenner AK, Kadi A, Astori A, Gjertsen BT, Pendino F. Expression of the potential therapeutic target CXXC5 in primary acute myeloid leukemia cells - high expression is associated with adverse prognosis as well as altered intracellular signaling and transcriptional regulation. Oncotarget 2015; 6:2794-811. [PMID: 25605239 PMCID: PMC4413618 DOI: 10.18632/oncotarget.3056] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Accepted: 12/21/2014] [Indexed: 12/24/2022] Open
Abstract
The CXXC5 gene encodes a transcriptional activator with a zinc-finger domain, and high expression in human acute myeloid leukemia (AML) cells is associated with adverse prognosis. We now characterized the biological context of CXXC5 expression in primary human AML cells. The global gene expression profile of AML cells derived from 48 consecutive patients was analyzed; cells with high and low CXXC5 expression then showed major differences with regard to extracellular communication and intracellular signaling. We observed significant differences in the phosphorylation status of several intracellular signaling mediators (CREB, PDK1, SRC, STAT1, p38, STAT3, rpS6) that are important for PI3K-Akt-mTOR signaling and/or transcriptional regulation. High CXXC5 expression was also associated with high mRNA expression of several stem cell-associated transcriptional regulators, the strongest associations being with WT1, GATA2, RUNX1, LYL1, DNMT3, SPI1, and MYB. Finally, CXXC5 knockdown in human AML cell lines caused significantly increased expression of the potential tumor suppressor gene TSC22 and genes encoding the growth factor receptor KIT, the cytokine Angiopoietin 1 and the selenium-containing glycoprotein Selenoprotein P. Thus, high CXXC5 expression seems to affect several steps in human leukemogenesis, including intracellular events as well as extracellular communication.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Cell Line, Tumor
- DNA-Binding Proteins
- Female
- Gene Expression Profiling
- Gene Expression Regulation, Leukemic
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Male
- Middle Aged
- Phosphorylation
- Primary Cell Culture
- Prognosis
- RNA Interference
- RNA, Messenger/metabolism
- Signal Transduction
- Transcription Factors
- Transcription, Genetic
- Transfection
- Tumor Cells, Cultured
- Up-Regulation
Collapse
Affiliation(s)
- Øystein Bruserud
- Section for Hematology, Department of Clinical Science, University of Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Håkon Reikvam
- Section for Hematology, Department of Clinical Science, University of Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Hanne Fredly
- Section for Hematology, Department of Clinical Science, University of Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Jørn Skavland
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Karen-Marie Hagen
- Section for Hematology, Department of Clinical Science, University of Bergen, Norway
| | - Tuyen Thy van Hoang
- Section for Hematology, Department of Clinical Science, University of Bergen, Norway
| | - Annette K. Brenner
- Section for Hematology, Department of Clinical Science, University of Bergen, Norway
| | - Amir Kadi
- Inserm, U1016, Institut Cochin, F-75014, Paris, France
- CNRS, UMR8104, F-75014, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Audrey Astori
- Inserm, U1016, Institut Cochin, F-75014, Paris, France
- CNRS, UMR8104, F-75014, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Bjørn Tore Gjertsen
- Section for Hematology, Department of Clinical Science, University of Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Frederic Pendino
- Department of Molecular Biology, University of Bergen, Bergen, Norway
- Inserm, U1016, Institut Cochin, F-75014, Paris, France
- CNRS, UMR8104, F-75014, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
261
|
Abstract
Oxidative stress plays a key role in numerous disease processes including chronic kidney disease (CKD). In general, oxygen metabolism leads to the formation of reactive oxygen species (ROS) dangerous to cells. Although enzymes and low-molecular-weight antioxidants protect against ROS, chronic imbalances of formation and elimination can eventually overwhelm endogenous defenses leading to deleterious consequences. In CKD, glutathione peroxidases (GSH-Px) play an important role in ROS metabolism. Plasma GSH-Px is synthesized in the kidney and requires selenium (Se) as a cofactor. Interestingly, Se and plasma GSH-Px are both significantly reduced in CKD, especially for those patients on hemodialysis. Supplementation of Se in these patients results in modest increases of GSH-Px, presumably from residual renal tissue. Kidney transplantation rapidly restores plasma GSH-Px. In this chapter, the relevance of these findings to CKD is explored with emphasis on renal disease processes and impact on attendant disorders including cancer and cardiovascular disease.
Collapse
|
262
|
Gać P, Pawlas N, Poręba R, Poręba M, Markiewicz-Górka I, Januszewska L, Olszowy Z, Pawlas K. Interaction between blood selenium concentration and a levels of oxidative stress and antioxidative capacity in healthy children. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2015; 39:137-144. [PMID: 25499791 DOI: 10.1016/j.etap.2014.11.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 11/16/2014] [Accepted: 11/21/2014] [Indexed: 06/04/2023]
Abstract
The study aimed at defining the relationship between blood selenium concentration (Se-B) and levels of oxidative stress and antioxidative capacity in healthy children. The studies were conducted on 337 children (mean age: 8.53±1.92 years). The groups of individuals with Se-B <1st quartile (group I, Se-B<70μg/L), with Se-B fitting the range of 1st quartile and median (group II, Se-B: 70-76.9μg/L), with Se-B between the median and 3rd quartile (group III, Se-B: 77-83.9μg/L) and those with Se-B above the 3rd quartile (group IV, Se-B≥84μg/L) were distinguished. Level of oxidative stress was defined using determination of urine malonyldialdehyde concentration (MDA) and urine 8-hydroxy-2-deoxyguanosine concentration (8-OHdg). Urine total antioxidant status (TAS) was determined. In group IV TAS was significantly higher than in groups I-III. A positive correlation was detected between Se-B and TAS. In healthy children an appropriately high Se-B seems to ensure higher total antioxidative status.
Collapse
Affiliation(s)
- Paweł Gać
- Department of Hygiene, Wroclaw Medical University, Mikulicza-Radeckiego 7, PL 50-368 Wrocław, Poland
| | - Natalia Pawlas
- Institute of Occupational Medicine and Environmental Health in Sosnowiec, Kościelna 13, PL 41-200 Sosnowiec, Poland
| | - Rafał Poręba
- Department of Internal Medicine, Occupational Diseases and Hypertension, Wroclaw Medical University, Borowska 213, PL 50-556 Wrocław, Poland.
| | - Małgorzata Poręba
- Department of Pathophysiology, Wroclaw Medical University, Marcinkowskiego 1, PL 50-368 Wrocław, Poland
| | - Iwona Markiewicz-Górka
- Department of Hygiene, Wroclaw Medical University, Mikulicza-Radeckiego 7, PL 50-368 Wrocław, Poland
| | - Lidia Januszewska
- Department of Hygiene, Wroclaw Medical University, Mikulicza-Radeckiego 7, PL 50-368 Wrocław, Poland
| | - Zofia Olszowy
- Institute of Occupational Medicine and Environmental Health in Sosnowiec, Kościelna 13, PL 41-200 Sosnowiec, Poland
| | - Krystyna Pawlas
- Department of Hygiene, Wroclaw Medical University, Mikulicza-Radeckiego 7, PL 50-368 Wrocław, Poland; Institute of Occupational Medicine and Environmental Health in Sosnowiec, Kościelna 13, PL 41-200 Sosnowiec, Poland
| |
Collapse
|
263
|
Pitts MW, Byrns CN, Ogawa-Wong AN, Kremer P, Berry MJ. Selenoproteins in nervous system development and function. Biol Trace Elem Res 2014; 161:231-45. [PMID: 24974905 PMCID: PMC4222985 DOI: 10.1007/s12011-014-0060-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Accepted: 06/23/2014] [Indexed: 01/03/2023]
Abstract
Selenoproteins are a distinct class of proteins that are characterized by the co-translational incorporation of selenium (Se) in the form of the 21st amino acid selenocysteine. Selenoproteins provide a key defense against oxidative stress, as many of these proteins participate in oxidation-reduction reactions neutralizing reactive oxygen species, where selenocysteine residues act as catalytic sites. Many selenoproteins are highly expressed in the brain, and mouse knockout studies have determined that several are required for normal brain development. In parallel with these laboratory studies, recent reports of rare human cases with mutations in genes involved in selenoprotein biosynthesis have described individuals with an assortment of neurological problems that mirror those detailed in knockout mice. These deficits include impairments in cognition and motor function, seizures, hearing loss, and altered thyroid metabolism. Additionally, due to the fact that oxidative stress is a key feature of neurodegenerative disease, there is considerable interest in the therapeutic potential of selenium supplementation for human neurological disorders. Studies performed in cell culture and rodent models have demonstrated that selenium administration attenuates oxidative stress, prevents neurodegeneration, and counters cell signaling mechanisms known to be dysregulated in certain disease states. However, there is currently no definitive evidence in support of selenium supplementation to prevent and/or treat common neurological conditions in the general population. It appears likely that, in humans, supplementation with selenium may only benefit certain subpopulations, such as those that are either selenium-deficient or possess genetic variants that affect selenium metabolism.
Collapse
Affiliation(s)
- Matthew W Pitts
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo St, Honolulu, HI, 96813, USA,
| | | | | | | | | |
Collapse
|
264
|
Strauss E, Oszkinis G, Staniszewski R. SEPP1 gene variants and abdominal aortic aneurysm: gene association in relation to metabolic risk factors and peripheral arterial disease coexistence. Sci Rep 2014; 4:7061. [PMID: 25395084 PMCID: PMC4231327 DOI: 10.1038/srep07061] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 10/29/2014] [Indexed: 11/09/2022] Open
Abstract
An inadequate selenium level is supposed to be a risk factor for cardiovascular diseases. However little is known about variation of the genes encoding selenium-containing proteins that would confirm the causality in these diseases. The aim of this study was to analyze the relationships between two functional variants of selenoprotein P gene (SEPP1 rs3877899G>A, rs7579G>A) and the occurrence of abdominal aortic aneurysm (AAA) and aortoiliac occlusive disease (AIOD), as well as their metabolic risk factors. In AAA, the rs3877899A allele was associated with higher systolic blood (P < .003) and pulse pressure (P < .003) values (recessive model), and with coexistence of peripheral arterial disease (PAD; carriers: P = .033). The other SEPP1 variants were associated with BMI values and influenced the risk of aortic diseases, depending on body weight. The strongest associations in the case-control analysis was found between the presence of the rs3877899G-rs7579G haplotype and development of AAA in overweight and obese subjects (OR = 1.80, 95%CI = 1.16-2.79, P = .008). The higher BMI values were correlated with lower age of AAA patients and larger size of aneurysm. Our results suggests the potential role of the selenoprotein P in pathogenesis of AAA. Future studies should consider the role of the rs3877899G-rs7579G haplotype as a risk factor for aggressive-growing AAAs.
Collapse
Affiliation(s)
- Ewa Strauss
- 1] Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479 Poznan, Poland [2] Department of General and Vascular Surgery, Poznan University of Medical Sciences, Dluga 1/2, 61-848 Poznan, Poland
| | - Grzegorz Oszkinis
- Department of General and Vascular Surgery, Poznan University of Medical Sciences, Dluga 1/2, 61-848 Poznan, Poland
| | - Ryszard Staniszewski
- Department of General and Vascular Surgery, Poznan University of Medical Sciences, Dluga 1/2, 61-848 Poznan, Poland
| |
Collapse
|
265
|
|
266
|
Letsiou S, Nomikos T, Panagiotakos DB, Pergantis SA, Fragopoulou E, Pitsavos C, Stefanadis C, Antonopoulou S. Gender-specific distribution of selenium to serum selenoproteins: associations with total selenium levels, age, smoking, body mass index, and physical activity. Biofactors 2014; 40:524-35. [PMID: 25185791 DOI: 10.1002/biof.1176] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The epidemiology of selenium (Se) is mainly based on the determination of total serum selenium levels (TSe) which by many aspects is an inadequate marker of Se status. In this study we applied a recently developed LC-ICP-MS method, for the determination of the selenium content of the three main serum selenium-containing proteins, in a subcohort of the ATTICA study. This enables us to investigate whether the selenium distribution to selenoproteins may correlate with demographic (age, gender) and lifestyle variables (smoking, physical activity) that are crucial for the development of chronic diseases. A sub-sample from the ATTICA Study, consisted of 236 males (40 ± 11 years) and 163 females (38 ± 12 years), was selected. The selenium content of glutathione peroxidase (GPx-3), selenoprotein P (SelP) and selenoalbumin (SeAlb) was determined in serum by LC-ICP/MS method. We found that 26% of TSe is found in GPx-3, 61% in SelP and 13% in SeAlb. We have assessed the different ratios of selenoproteins' selenium content (Se-GPX-3/Se-SelP, Se-GPX-3/Se-SeAlb, Se-SelP/Se-SeAlb), showing that people with similar TSe may have different distribution of this selenium to selenoproteins. Total selenium levels and gender are the variables that mostly affect selenium distribution to selenoproteins while age, smoking, physical activity and BMI do not significantly influence selenium distribution. In conclusion, the simultaneous determination of the selenium content of serum selenium-containing selenoproteins is necessary for a thorough estimation of selenium status. The ratio of the Se content between selenoproteins may be proven a novel, valid marker of selenium status.
Collapse
Affiliation(s)
- S Letsiou
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, Athens, Greece; Department of Chemistry, University of Crete, Heraklio, Crete, Greece
| | | | | | | | | | | | | | | |
Collapse
|
267
|
Alexanian I, Parissis J, Farmakis D, Pantziou C, Ikonomidis I, Paraskevaidis I, Ioannidou S, Sideris A, Kremastinos D, Lekakis J, Filippatos G. Selenium contributes to myocardial injury and cardiac remodeling in heart failure. Int J Cardiol 2014; 176:272-3. [DOI: 10.1016/j.ijcard.2014.06.095] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 06/29/2014] [Indexed: 11/26/2022]
|
268
|
Zhang Z, Zhang J, Xiao J. Selenoproteins and selenium status in bone physiology and pathology. Biochim Biophys Acta Gen Subj 2014; 1840:3246-3256. [PMID: 25116856 DOI: 10.1016/j.bbagen.2014.08.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 07/23/2014] [Accepted: 08/04/2014] [Indexed: 02/07/2023]
Abstract
BACKGROUND Emerging evidence supports the view that selenoproteins are essential for maintaining bone health. SCOPE OF REVIEW The current state of knowledge concerning selenoproteins and Se status in bone physiology and pathology is summarized. MAJOR CONCLUSIONS Antioxidant selenoproteins including glutathione peroxidase (GPx) and thioredoxin reductase (TrxR), as a whole, play a pivotal role in maintaining bone homeostasis and protecting against bone loss. GPx1, a major antioxidant enzyme in osteoclasts, is up-regulated by estrogen, an endogenous inhibitor of osteoclastogenesis. TrxR1 is an immediate early gene in response to 1α,25-dihydroxyvitamin D3, an osteoblastic differentiation agent. The combination of 1α,25-dihydroxyvitamin D3 and Se generates a synergistic elevation of TrxR activity in Se-deficient osteoblasts. Of particular concern, pleiotropic TrxR1 is implicated in promoting NFκB activation. Coincidentally, TrxR inhibitors such as curcumin and gold compounds exhibit potent osteoclastogenesis inhibitory activity. Studies in patients with the mutations of selenocysteine insertion sequence-binding protein 2, a key trans-acting factor for the co-translational insertion of selenocysteine into selenoproteins have clearly established a causal link of selenoproteins in bone development. Se transport to bone relies on selenoprotein P. Plasma selenoprotein P concentrations have been found to be positively correlated with bone mineral density in elderly women. GENERAL SIGNIFICANCE A full understanding of the role and function of selenoproteins and Se status on bone physiology and pathology may lead to effectively prevent against or modify bone diseases by using Se.
Collapse
Affiliation(s)
- Zhichao Zhang
- Department of Orthopaedic Oncology, Changzheng Hospital, The Second Military Medical University, Shanghai 200003, PR China
| | - Jinsong Zhang
- School of Tea Food Science, Anhui Agricultural University, Hefei 230036, Anhui, PR China.
| | - Jianru Xiao
- Department of Orthopaedic Oncology, Changzheng Hospital, The Second Military Medical University, Shanghai 200003, PR China.
| |
Collapse
|
269
|
Use of elemental and molecular-mass spectrometry to assess the toxicological effects of inorganic mercury in the mouse Mus musculus. Anal Bioanal Chem 2014; 406:5853-65. [DOI: 10.1007/s00216-014-8010-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 06/24/2014] [Accepted: 06/27/2014] [Indexed: 10/25/2022]
|
270
|
Hall JA, Bobe G, Nixon BK, Vorachek WR, Hugejiletu, Nichols T, Mosher WD, Pirelli GJ. Effect of transport on blood selenium and glutathione status in feeder lambs. J Anim Sci 2014; 92:4115-22. [PMID: 25035242 DOI: 10.2527/jas.2014-7753] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Stress from transport may be linked to increased generation of reactive oxygen species, the removal of which requires reduced glutathione and selenium. The aim of this experiment was to examine the effect of transport on glutathione and Se status of feeder lambs. Recently weaned lambs (n = 40) were blocked by gender and BW on d 0 of the experiment and randomly assigned to 2 treatment groups: group 1, no transport and full access to feed and water (control), and group 2, 8-h road transport followed by another 16 h of feed deprivation (transport). After 24 h, both treatment groups were treated the same. All lambs were weighed, and blood samples were collected at 0, 8, 24, and 72 h and analyzed for whole-blood (WB) and serum Se concentrations, serum NEFA concentrations, and erythrocyte concentrations of glutathione. Transport of feeder lambs for 8 h followed by another 16 h of feed deprivation transiently (significant at 24 h but no longer different at 72 h) decreased BW and erythrocyte glutathione concentrations and increased serum NEFA and blood Se concentrations compared with control lambs. Our results suggest that 8 h of transport followed by another 16 h of feed deprivation results in fatty acid and Se mobilization from tissue stores with a coincident decrease in erythrocyte glutathione concentrations.
Collapse
Affiliation(s)
- J A Hall
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis 97331
| | - G Bobe
- Department of Animal and Rangeland Sciences, College of Agricultural Sciences, Oregon State University, Corvallis 97331 Linus Pauling Institute, Oregon State University, Corvallis 97331
| | - B K Nixon
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis 97331
| | - W R Vorachek
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis 97331
| | - Hugejiletu
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis 97331
| | - T Nichols
- Department of Animal and Rangeland Sciences, College of Agricultural Sciences, Oregon State University, Corvallis 97331
| | - W D Mosher
- Department of Animal and Rangeland Sciences, College of Agricultural Sciences, Oregon State University, Corvallis 97331
| | - G J Pirelli
- Department of Animal and Rangeland Sciences, College of Agricultural Sciences, Oregon State University, Corvallis 97331
| |
Collapse
|
271
|
Seale LA, Gilman CL, Moorman BP, Berry MJ, Grau EG, Seale AP. Effects of acclimation salinity on the expression of selenoproteins in the tilapia, Oreochromis mossambicus. J Trace Elem Med Biol 2014; 28:284-92. [PMID: 24854764 PMCID: PMC4082732 DOI: 10.1016/j.jtemb.2014.04.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 04/02/2014] [Accepted: 04/15/2014] [Indexed: 01/06/2023]
Abstract
Selenoproteins are ubiquitously expressed, act on a variety of physiological redox-related processes, and are mostly regulated by selenium levels in animals. To date, the expression of most selenoproteins has not been verified in euryhaline fish models. The Mozambique tilapia, Oreochromis mossambicus, a euryhaline cichlid fish, has a high tolerance for changes in salinity and survives in fresh water (FW) and seawater (SW) environments which differ greatly in selenium availability. In the present study, we searched EST databases for cichlid selenoprotein mRNAs and screened for their differential expression in FW and SW-acclimated tilapia. The expression of mRNAs encoding iodothyronine deiodinases 1, 2 and 3 (Dio1, Dio2, Dio3), Fep15, glutathione peroxidase 2, selenoproteins J, K, L, M, P, S, and W, was measured in the brain, eye, gill, kidney, liver, pituitary, muscle, and intraperitoneal white adipose tissue. Gene expression of selenophosphate synthetase 1, Secp43, and selenocysteine lyase, factors involved in selenoprotein synthesis or in selenium metabolism, were also measured. The highest variation in selenoprotein and synthesis factor mRNA expression between FW- and SW-acclimated fish was found in gill and kidney. While the branchial expression of Dio3 was increased upon transferring tilapia from SW to FW, the inverse effect was observed when fish were transferred from FW to SW. Protein content of Dio3 was higher in fish acclimated to FW than in those acclimated to SW. Together, these results outline tissue distribution of selenoproteins in FW and SW-acclimated tilapia, and indicate that at least Dio3 expression is regulated by environmental salinity.
Collapse
Affiliation(s)
- Lucia A Seale
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA.
| | - Christy L Gilman
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| | - Benjamin P Moorman
- Hawaii Institute of Marine Biology, University of Hawaii, Kaneohe, HI 96744, USA
| | - Marla J Berry
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| | - E Gordon Grau
- Hawaii Institute of Marine Biology, University of Hawaii, Kaneohe, HI 96744, USA
| | - Andre P Seale
- Hawaii Institute of Marine Biology, University of Hawaii, Kaneohe, HI 96744, USA
| |
Collapse
|
272
|
Forceville X, Touati S, Le Toumelin P, Ducros V, Laporte F, Chancerelle Y, Agay D. Elements of margin of safety, toxicity and action of sodium selenite in a lipopolysaccharide rat model. J Trace Elem Med Biol 2014; 28:303-10. [PMID: 24813451 DOI: 10.1016/j.jtemb.2014.03.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 02/20/2014] [Accepted: 03/31/2014] [Indexed: 12/25/2022]
Abstract
PROJECT Both septic shock and sodium selenite (Na2SeO3) lead to multiple organ failure through oxidation. Na2SeO3 has direct oxidant effects above the nutritional level and indirect anti-oxidant properties. In a lipopolysaccharide (LPS) rat model we assessed margin of safety, toxicity and beneficial effect of pentahydrate Na2SeO3 (5H2O·Na2SeO3) at oxidant doses. PROCEDURE In a three-step study on 204 rats we: (i) observed toxic effects of Na2SeO3 injected intraperitoneously (IP) and determined its Minimum Dose Without Toxic effect (MDWT) 0.25-0.35 mg/kg selenium (Se) content; (ii) injected IP LPS at 70% lethal dose (LD) followed, or not, one hour later by IP Na2SeO3 at MDWT and (iii) by doses>MDWT. At 48 h, in survivors, we measured plasma creatinine, lactate, aspartate and alanine aminotransferase (AST, ALT), nitric oxide (NO) and Se concentrations. RESULTS (i) Na2SeO3 alone did not increase NO and lactate. Encephalopathy appeared at 1mg Se/kg. Creatinine increased at 1-1.75 mg Se/kg, AST, ALT at 3-4.5 mg Se/kg, and the minimum LD was 3 mg Se/kg. (ii) Mortality after LPS was 37/50 (74%, [62-86%]) vs. 20/30 (67%, [50-84%]) when followed by Na2SeO3 at MDWT (p=0.483) with a decreased in NO (-31%, p=0.038) a trend for lactate decrease (-19%, p=0.068) and an increased Se in plasma of survivals. (iii) All rats died at doses ≥0.6 mg/kg (p<0.001). CONCLUSION Mechanisms of LPS and Na2SeO3 toxicity differ (i.e. NO, lactate). In septic shock 5H2O·Na2SeO3 toxicity increased, margin of safety decrease, but IP administration of dose considered as oxidant of 5H2O·Na2SeO3 showed beneficial effects.
Collapse
Affiliation(s)
- Xavier Forceville
- Centre Hospitalier de Meaux, Réanimation Polyvalente, 77104 Meaux, France.
| | - Samia Touati
- Centre Hospitalier de Meaux, Réanimation Polyvalente, 77104 Meaux, France
| | | | - Véronique Ducros
- CHU de Grenoble, Département de Biochimie Toxicologie & Pharmacologie, UF de Biochimie Hormonologie & Nutrition, BP 217, 38043 Grenoble cedex 9, France
| | - François Laporte
- CHU de Grenoble, Département de Biochimie Toxicologie & Pharmacologie, UF de Biochimie Hormonologie & Nutrition, BP 217, 38043 Grenoble cedex 9, France
| | - Yves Chancerelle
- Institut de Recherche Biomédicale des Armées, Département des Effets Biologiques des Rayonnements, 24 avenue des Maquis du Grésivaudan - BP 87, 38702 La Tronche, France
| | - Diane Agay
- Institut de Recherche Biomédicale des Armées, Département des Effets Biologiques des Rayonnements, 24 avenue des Maquis du Grésivaudan - BP 87, 38702 La Tronche, France
| |
Collapse
|
273
|
Du X, Qiu S, Wang Z, Wang R, Wang C, Tian J, Liu Q. Direct interaction between selenoprotein P and tubulin. Int J Mol Sci 2014; 15:10199-214. [PMID: 24914767 PMCID: PMC4100148 DOI: 10.3390/ijms150610199] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 05/12/2014] [Accepted: 05/23/2014] [Indexed: 02/03/2023] Open
Abstract
Selenium (Se), an essential trace element for human health, mainly exerts its biological function via selenoproteins. Among the 25 selenoproteins identified in human, selenoprotein P (SelP) is the only one that contains multiple selenocysteines (Sec) in the sequence, and has been suggested to function as a Se transporter. Upon feeding a selenium-deficient diet, mice lacking SelP develop severe neurological dysfunction and exhibit widespread brainstem neurodegeneration, indicating an important role of SelP in normal brain function. To further elucidate the function of SelP in the brain, SelP was screened by the yeast two-hybrid system from a human fetal brain cDNA library for interactive proteins. Our results demonstrated that SelP interacts with tubulin, alpha 1a (TUBA1A). The interaction between SelP and tubulin was verified by fluorescence resonance energy transfer (FRET) and co-immunoprecipitation (co-IP) assays. We further found that SelP interacts with the C-terminus of tubulin by its His-rich domain, as demonstrated by FRET and Isothermal Titration Calorimetry (ITC) assays. The implications of the interaction between SelP and tubulin in the brain and in Alzheimer's disease are discussed.
Collapse
Affiliation(s)
- Xiubo Du
- Department of Marine Biology, Shenzhen Key Laboratory of Marine Biotechnology and Ecology, Shenzhen University, Shenzhen 518060, China.
| | - Shi Qiu
- College of Life Sciences, Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Zhi Wang
- Department of Marine Biology, Shenzhen Key Laboratory of Marine Biotechnology and Ecology, Shenzhen University, Shenzhen 518060, China.
| | - Ruoran Wang
- College of Life Sciences, Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Chao Wang
- College of Life Sciences, Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Jing Tian
- Department of Marine Biology, Shenzhen Key Laboratory of Marine Biotechnology and Ecology, Shenzhen University, Shenzhen 518060, China.
| | - Qiong Liu
- Department of Marine Biology, Shenzhen Key Laboratory of Marine Biotechnology and Ecology, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
274
|
Eroglu M, Sahin S, Durukan B, Ozakpinar OB, Erdinc N, Turkgeldi L, Sofuoglu K, Karateke A. Blood serum and seminal plasma selenium, total antioxidant capacity and coenzyme q10 levels in relation to semen parameters in men with idiopathic infertility. Biol Trace Elem Res 2014; 159:46-51. [PMID: 24752972 DOI: 10.1007/s12011-014-9978-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 04/10/2014] [Indexed: 02/05/2023]
Abstract
In this case-control study, we aimed to evaluate the serum and seminal plasma levels of Selenium (Se), total antioxidant capacity (TAC), and Coenzyme Q10 (CoQ-10) and determine their relationship with sperm concentration, motility, and morphology in men with idiopathic infertility. A total of 59 subjects were enrolled in the study. Forty four patients were diagnosed with idiopathic male infertility and had abnormal sperm parameters, and 15 subjects had normal sperm parameters with proven fertility. Serum Se, semen Se, and semen TAC levels were significantly different in the fertile and infertile groups (p<0.01, p<0.001, and p<0.001, respectively). However, serum TAC, serum, and seminal plasma CoQ-10 levels did not differ between fertile and infertile groups. When the levels of the measured parameters were compared in serum and seminal plasma, serum levels of Se were found to be correlated positively with the semen levels in all subjects included into the study (N=59) (r=0.46, p<0.01). A relationship was found between neither serum and semen levels of TAC nor between serum and semen levels of CoQ-10. Correlations among measured serum and semen parameters with sperm parameters demonstrated that both the serum and semen levels of Se were correlated positively with spermatozoa concentration, motility, and morphology. Additionally, seminal plasma levels of TAC correlated positively with all these sperm parameters. On the other hand, seminal plasma levels of CoQ-10 correlated only with sperm morphology but not with concentration or motility. No relationship was observed between serum levels of TAC or serum levels of CoQ-10 and sperm parameters. In conclusion, serum and seminal plasma Se deficiency may be a prominent determinant of abnormal sperm parameters and idiopathic male infertility. Measurement of serum Se levels may help determine nutritional status and antioxidant capacity in infertile patients, which may help distinguish those patients who will benefit from supplementation therapy.
Collapse
Affiliation(s)
- Mustafa Eroglu
- Deparment of Obstetrics and Gynecology, Zeynep Kamil Maternity and Children's Hospital, Istanbul, Turkey
| | | | | | | | | | | | | | | |
Collapse
|
275
|
Zhu Y, Wang C, Wang X, Li B, Li F. Effect of dietary fiber/starch balance on the cecal proteome of growing rabbits. J Proteomics 2014; 103:23-34. [DOI: 10.1016/j.jprot.2014.03.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 03/15/2014] [Accepted: 03/18/2014] [Indexed: 12/23/2022]
|
276
|
Burk RF, Hill KE, Motley AK, Winfrey VP, Kurokawa S, Mitchell SL, Zhang W. Selenoprotein P and apolipoprotein E receptor-2 interact at the blood-brain barrier and also within the brain to maintain an essential selenium pool that protects against neurodegeneration. FASEB J 2014; 28:3579-88. [PMID: 24760755 DOI: 10.1096/fj.14-252874] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Selenoprotein P (Sepp1) and its receptor, apolipoprotein E receptor 2 (apoER2), account for brain retaining selenium better than other tissues. The primary sources of Sepp1 in plasma and brain are hepatocytes and astrocytes, respectively. ApoER2 is expressed in varying amounts by tissues; within the brain it is expressed primarily by neurons. Knockout of Sepp1 or apoER2 lowers brain selenium from ∼120 to ∼50 ng/g and leads to severe neurodegeneration and death in mild selenium deficiency. Interactions of Sepp1 and apoER2 that protect against this injury have not been characterized. We studied Sepp1, apoER2, and brain selenium in knockout mice. Immunocytochemistry showed that apoER2 mediates Sepp1 uptake at the blood-brain barrier. When Sepp1(-/-) or apoER2(-/-) mice developed severe neurodegeneration caused by mild selenium deficiency, brain selenium was ∼35 ng/g. In extreme selenium deficiency, however, brain selenium of ∼12 ng/g was tolerated when both Sepp1 and apoER2 were intact in the brain. These findings indicate that tandem Sepp1-apoER2 interactions supply selenium for maintenance of brain neurons. One interaction is at the blood-brain barrier, and the other is within the brain. We postulate that Sepp1 inside the blood-brain barrier is taken up by neurons via apoER2, concentrating brain selenium in them.
Collapse
Affiliation(s)
- Raymond F Burk
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Kristina E Hill
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Amy K Motley
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Virginia P Winfrey
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Suguru Kurokawa
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Stuart L Mitchell
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Wanqi Zhang
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| |
Collapse
|
277
|
Effect of selenium on markers of risk of pre-eclampsia in UK pregnant women: a randomised, controlled pilot trial. Br J Nutr 2014; 112:99-111. [PMID: 24708917 PMCID: PMC4054662 DOI: 10.1017/s0007114514000531] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Pre-eclampsia is a serious hypertensive condition of pregnancy associated with high maternal and fetal morbidity and mortality. Se intake or status has been linked to the occurrence of pre-eclampsia by our own work and that of others. We hypothesised that a small increase in the Se intake of UK pregnant women of inadequate Se status would protect against the risk of pre-eclampsia, as assessed by biomarkers of pre-eclampsia. In a double-blind, placebo-controlled, pilot trial, we randomised 230 primiparous pregnant women to Se (60 μg/d, as Se-enriched yeast) or placebo treatment from 12 to 14 weeks of gestation until delivery. Whole-blood Se concentration was measured at baseline and 35 weeks, and plasma selenoprotein P (SEPP1) concentration at 35 weeks. The primary outcome measure of the present study was serum soluble vascular endothelial growth factor receptor-1 (sFlt-1), an anti-angiogenic factor linked with the risk of pre-eclampsia. Other serum/plasma components related to the risk of pre-eclampsia were also measured. Between 12 and 35 weeks, whole-blood Se concentration increased significantly in the Se-treated group but decreased significantly in the placebo group. At 35 weeks, significantly higher concentrations of whole-blood Se and plasma SEPP1 were observed in the Se-treated group than in the placebo group. In line with our hypothesis, the concentration of sFlt-1 was significantly lower at 35 weeks in the Se-treated group than in the placebo group in participants in the lowest quartile of Se status at baseline (P= 0·039). None of the secondary outcome measures was significantly affected by treatment. The present finding that Se supplementation has the potential to reduce the risk of pre-eclampsia in pregnant women of low Se status needs to be validated in an adequately powered trial.
Collapse
|
278
|
Kurokawa S, Eriksson S, Rose KL, Wu S, Motley AK, Hill S, Winfrey VP, McDonald WH, Capecchi MR, Atkins JF, Arnér ESJ, Hill KE, Burk RF. Sepp1(UF) forms are N-terminal selenoprotein P truncations that have peroxidase activity when coupled with thioredoxin reductase-1. Free Radic Biol Med 2014; 69:67-76. [PMID: 24434121 PMCID: PMC3960317 DOI: 10.1016/j.freeradbiomed.2014.01.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 01/06/2014] [Accepted: 01/07/2014] [Indexed: 01/18/2023]
Abstract
Mouse selenoprotein P (Sepp1) consists of an N-terminal domain (residues 1-239) that contains one selenocysteine (U) as residue 40 in a proposed redox-active motif (-UYLC-) and a C-terminal domain (residues 240-361) that contains nine selenocysteines. Sepp1 transports selenium from the liver to other tissues by receptor-mediated endocytosis. It also reduces oxidative stress in vivo by an unknown mechanism. A previously uncharacterized plasma form of Sepp1 is filtered in the glomerulus and taken up by renal proximal convoluted tubule (PCT) cells via megalin-mediated endocytosis. We purified Sepp1 forms from the urine of megalin(-/-) mice using a monoclonal antibody to the N-terminal domain. Mass spectrometry revealed that the purified urinary Sepp1 consisted of N-terminal fragments terminating at 11 sites between residues 183 and 208. They were therefore designated Sepp1(UF). Because the N-terminal domain of Sepp1 has a thioredoxin fold, Sepp1(UF) were compared with full-length Sepp1, Sepp1(Δ240-361), and Sepp1(U40S) as a substrate of thioredoxin reductase-1 (TrxR1). All forms of Sepp1 except Sepp1(U40S), which contains serine in place of the selenocysteine, were TrxR1 substrates, catalyzing NADPH oxidation when coupled with H2O2 or tert-butylhydroperoxide as the terminal electron acceptor. These results are compatible with proteolytic cleavage freeing Sepp1(UF) from full-length Sepp1, the form that has the role of selenium transport, allowing Sepp1(UF) to function by itself as a peroxidase. Ultimately, plasma Sepp1(UF) and small selenium-containing proteins are filtered by the glomerulus and taken up by PCT cells via megalin-mediated endocytosis, preventing loss of selenium in the urine and providing selenium for the synthesis of glutathione peroxidase-3.
Collapse
Affiliation(s)
- Suguru Kurokawa
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Sofi Eriksson
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Kristie L Rose
- Vanderbilt Proteomics Laboratory in the Mass Spectrometry Research Center, Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Sen Wu
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Amy K Motley
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Salisha Hill
- Vanderbilt Proteomics Laboratory in the Mass Spectrometry Research Center, Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Virginia P Winfrey
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - W Hayes McDonald
- Vanderbilt Proteomics Laboratory in the Mass Spectrometry Research Center, Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Mario R Capecchi
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - John F Atkins
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA; Department of Biochemistry, University College Cork, Cork, Ireland
| | - Elias S J Arnér
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Kristina E Hill
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Raymond F Burk
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| |
Collapse
|
279
|
Selenium status affects selenoprotein expression, reproduction, and F₁ generation locomotor activity in zebrafish (Danio rerio). Br J Nutr 2014; 111:1918-31. [PMID: 24666596 DOI: 10.1017/s000711451300439x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Se is an essential trace element, and is incorporated into selenoproteins which play important roles in human health. Mammalian selenoprotein-coding genes are often present as paralogues in teleost fish, and it is unclear whether the expression patterns or functions of these fish paralogues reflect their mammalian orthologues. Using the model species zebrafish (Danio rerio; ZF), we aimed to assess how dietary Se affects key parameters in Se metabolism and utilisation including glutathione peroxidase (GPX) activity, the mRNA expression of key Se-dependent proteins (gpx1a, gpx1b, sepp1a and sepp1b), oxidative status, reproductive success and F1 generation locomotor activity. From 27 d until 254 d post-fertilisation, ZF were fed diets with graded levels of Se ranging from deficient ( < 0·10 mg/kg) to toxic (30 mg/kg). The mRNA expression of gpx1a and gpx1b and GPX activity responded in a similar manner to changes in Se status. GPX activity and mRNA levels were lowest when dietary Se levels (0·3 mg/kg) resulted in the maximum growth of ZF, and a proposed bimodal mechanism in response to Se status below and above this dietary Se level was identified. The expression of the sepp1 paralogues differed, with only sepp1a responding to Se status. High dietary Se supplementation (30 mg/kg) decreased reproductive success, while the offspring of ZF fed above 0·3 mg Se/kg diet had lower locomotor activity than the other groups. Overall, the novel finding of low selenoprotein expression and activity coinciding with maximum body growth suggests that even small Se-induced variations in redox status may influence cellular growth rates.
Collapse
|
280
|
Pillai R, Uyehara-Lock JH, Bellinger FP. Selenium and selenoprotein function in brain disorders. IUBMB Life 2014; 66:229-39. [PMID: 24668686 DOI: 10.1002/iub.1262] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 03/10/2014] [Indexed: 01/14/2023]
Abstract
Selenoproteins are important for normal brain function, and decreased function of selenoproteins can lead to impaired cognitive function and neurological disorders. This review examines the possible roles of selenoproteins in Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and epilepsy. Selenium deficiency is associated with cognitive decline, and selenoproteins may be helpful in preventing neurodegeneration in AD. PD is associated with impaired function of glutathione peroxidase selenoenzymes. In HD, selenium deters lipid peroxidation by increasing specific glutathione peroxidases. Selenium deficiency increases risk of seizures in epilepsy, whereas supplementation may help to alleviate seizures. Further studies on the mechanisms of selenoprotein function will increase our understanding of how selenium and selenoproteins can be used in treatment and prevention of brain disorders.
Collapse
Affiliation(s)
- Roshan Pillai
- Department of Cell and Molecular Biology, University of Hawaii, John A. Burns School of Medicine, Honolulu, HI, USA
| | | | | |
Collapse
|
281
|
Hurst R, Collings R, Harvey LJ, King M, Hooper L, Bouwman J, Gurinovic M, Fairweather-Tait SJ. EURRECA-Estimating selenium requirements for deriving dietary reference values. Crit Rev Food Sci Nutr 2014; 53:1077-96. [PMID: 23952089 DOI: 10.1080/10408398.2012.742861] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Current reference values for selenium, an essential micronutrient, are based on the intake of selenium that is required to achieve maximal glutathione peroxidase activity in plasma or erythrocytes. In order to assess the evidence of relevance to setting dietary reference values for selenium, the EURRECA Network of Excellence focused on systematic searches, review, and evaluation of (i) selenium status biomarkers and evidence for relationships between intake and status biomarkers, (ii) selenium and health (including the effect of intake and/or status biomarkers on cancer risk, immune function, HIV, cognition, and fertility), (iii) bioavailability of selenium from the diet, and (iv) impact of genotype/single nucleotide polymorphisms on status or health outcomes associated with selenium. The main research outputs for selenium and future research priorities are discussed further in this review.
Collapse
Affiliation(s)
- Rachel Hurst
- Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
| | | | | | | | | | | | | | | |
Collapse
|
282
|
Hatfield DL, Tsuji PA, Carlson BA, Gladyshev VN. Selenium and selenocysteine: roles in cancer, health, and development. Trends Biochem Sci 2014; 39:112-20. [PMID: 24485058 PMCID: PMC3943681 DOI: 10.1016/j.tibs.2013.12.007] [Citation(s) in RCA: 465] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 12/24/2013] [Accepted: 12/27/2013] [Indexed: 01/08/2023]
Abstract
The many biological and biomedical effects of selenium are relatively unknown outside the selenium field. This fascinating element, initially described as a toxin, was subsequently shown to be essential for health and development. By the mid-1990s selenium emerged as one of the most promising cancer chemopreventive agents, but subsequent human clinical trials yielded contradictory results. However, basic research on selenium continued to move at a rapid pace, elucidating its many roles in health, development, and in cancer prevention and promotion. Dietary selenium acts principally through selenoproteins, most of which are oxidoreductases involved in diverse cellular functions.
Collapse
Affiliation(s)
- Dolph L Hatfield
- Molecular Biology of Selenium Section, Mouse Cancer Genetics Program, Center for Cancer Research, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Petra A Tsuji
- Department of Biological Sciences, Towson University, Towson, MD 21252, USA
| | - Bradley A Carlson
- Molecular Biology of Selenium Section, Mouse Cancer Genetics Program, Center for Cancer Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
283
|
Geybels MS, van den Brandt PA, Schouten LJ, van Schooten FJ, van Breda SG, Rayman MP, Green FR, Verhage BAJ. Selenoprotein gene variants, toenail selenium levels, and risk for advanced prostate cancer. J Natl Cancer Inst 2014; 106:dju003. [PMID: 24563517 DOI: 10.1093/jnci/dju003] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Lower selenium levels have been associated with increased risk of prostate cancer (PCa), and genetic variation in the selenoprotein genes selenoprotein P (SEPP1) and glutathione peroxidase 1 (GPX1) is thought to modify this relationship. We investigated whether the association between toenail selenium levels and advanced PCa risk in the prospective Netherlands Cohort Study is modified by common genetic variation in SEPP1 and GPX1. Toenail clippings were used to determine selenium levels and to isolate DNA for genotyping. This case-cohort study, which included 817 case subjects with advanced PCa and 1048 subcohort members, was analyzed with Cox regression models. All statistical tests were two-sided. Three genetic variants were associated with advanced (stage III/IV or IV) PCa risk: SEPP1 rs7579 (lower risk; P trend = .01), GPX1 rs17650792 (higher risk; P trend = .03), and GPX1 rs1800668 (lower risk; P trend = .005). Toenail selenium levels were inversely associated with advanced PCa risk, independently of common genetic variation in SEPP1 and GPX1.
Collapse
Affiliation(s)
- Milan S Geybels
- Affiliations of authors: Department of Epidemiology (MSG, PvdB, LS, BV) and Department of Toxicogenomics (SvB), GROW School for Oncology and Developmental Biology, and Department of Toxicology (FvS), NUTRIM School for Nutrition, Toxicology, and Metabolism, Maastricht University, Maastricht, the Netherlands; Department of Nutritional Sciences (MR) and Department of Biochemistry and Physiology (FG), Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | | | | | | | | | | | | | | |
Collapse
|
284
|
Byrns CN, Pitts MW, Gilman CA, Hashimoto AC, Berry MJ. Mice lacking selenoprotein P and selenocysteine lyase exhibit severe neurological dysfunction, neurodegeneration, and audiogenic seizures. J Biol Chem 2014; 289:9662-74. [PMID: 24519931 DOI: 10.1074/jbc.m113.540682] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Selenoproteins are a unique family of proteins, characterized by the co-translational incorporation of selenium as selenocysteine, which play key roles in antioxidant defense. Among selenoproteins, selenoprotein P (Sepp1) is particularly distinctive due to the fact that it contains multiple selenocysteine residues and has been postulated to act in selenium transport. Within the brain, Sepp1 delivers selenium to neurons by binding to the ApoER2 receptor. Upon feeding a selenium-deficient diet, mice lacking ApoER2 or Sepp1 develop severe neurological dysfunction and exhibit widespread brainstem neurodegeneration, indicating an important role for ApoER2-mediated Sepp1 uptake in normal brain function. Selenocysteine lyase (Scly) is an enzyme that plays an important role in selenium homeostasis, in that it catalyzes the decomposition of selenocysteine and allows selenium to be recycled for additional selenoprotein synthesis. We previously reported that constitutive deletion of Scly results in neurological deficits only when mice are challenged with a low selenium diet. To gain insight into the relationship between Sepp1 and Scly in selenium metabolism, we created novel transgenic mice constitutively lacking both genes (Scly(-/-)Sepp1(-/-)) and characterized the neurobehavioral phenotype. We report that deletion of Scly in conjunction with Sepp1 further aggravates the phenotype of Sepp1(-/-) mice, as these mice needed supraphysiological selenium supplementation to survive, and surviving mice exhibited impaired motor coordination, audiogenic seizures, and brainstem neurodegeneration. These findings provide the first in vivo evidence that Scly and Sepp1 work cooperatively to maintain selenoprotein function in the mammalian brain.
Collapse
Affiliation(s)
- China N Byrns
- From the Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii 96813
| | | | | | | | | |
Collapse
|
285
|
Abstract
Selenium (Se) is an essential micronutrient that is incorporated into selenoproteins. Although epidemiological studies suggest that low Se intake is associated with increased risk of various cancers, the results of supplementation trials have been confusing. These conflicting results may be due to different baseline Se status and/or genetic factors. In addition, mechanistic links between Se intake, selenoproteins and carcinogenesis are not clear. In this article, we discuss the functional significance of single-nucleotide polymorphisms (SNP) in selenoprotein genes and the evidence as to whether or not they influence risk of colorectal, prostate, lung or breast cancers. Both in vitro and in vivo studies have shown that a small number of SNPs in genes encoding glutathione peroxidases 1 and 4, selenoprotein P, selenoprotein S and 15-kDa selenoprotein have functional consequences. Data from case-control studies suggest that a variant at codon 198 in glutathione peroxidase 1 influences the effect of Se status on prostate cancer and risk, and it has also been associated with breast cancer and lung cancer risk, whereas variants in glutathione peroxidase 4, selenoprotein P and selenoprotein S may influence the risk of colorectal cancer. In addition, the results of gene microarray (transcriptomic) studies have identified novel selenoprotein biomarkers of Se status and novel downstream Se-targeted pathways. The work highlights the need to take baseline Se status and genetic factors into account in the design of future intervention trials.
Collapse
|
286
|
Briens M, Mercier Y, Rouffineau F, Mercerand F, Geraert PA. 2-Hydroxy-4-methylselenobutanoic acid induces additional tissue selenium enrichment in broiler chickens compared with other selenium sources. Poult Sci 2014; 93:85-93. [DOI: 10.3382/ps.2013-03182] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
287
|
|
288
|
Eckers JC, Kalen AL, Xiao W, Sarsour EH, Goswami PC. Selenoprotein P inhibits radiation-induced late reactive oxygen species accumulation and normal cell injury. Int J Radiat Oncol Biol Phys 2013; 87:619-25. [PMID: 24074935 DOI: 10.1016/j.ijrobp.2013.06.2063] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 06/18/2013] [Accepted: 06/29/2013] [Indexed: 10/26/2022]
Abstract
PURPOSE Radiation is a common mode of cancer therapy whose outcome is often limited because of normal tissue toxicity. We have shown previously that the accumulation of radiation-induced late reactive oxygen species (ROS) precedes cell death, suggesting that metabolic oxidative stress could regulate cellular radiation response. The purpose of this study was to investigate whether selenoprotein P (SEPP1), a major supplier of selenium to tissues and an antioxidant, regulates late ROS accumulation and toxicity in irradiated normal human fibroblasts (NHFs). METHODS AND MATERIALS Flow cytometry analysis of cell viability, cell cycle phase distribution, and dihydroethidium oxidation, along with clonogenic assays, were used to measure oxidative stress and toxicity. Human antioxidant mechanisms array and quantitative real-time polymerase chain reaction assays were used to measure gene expression during late ROS accumulation in irradiated NHFs. Sodium selenite addition and SEPP1 overexpression were used to determine the causality of SEPP1 regulating late ROS accumulation and toxicity in irradiated NHFs. RESULTS Irradiated NHFs showed late ROS accumulation (4.5-fold increase from control; P<.05) that occurs after activation of the cell cycle checkpoint pathways and precedes cell death. The mRNA levels of CuZn- and Mn-superoxide dismutase, catalase, peroxiredoxin 3, and thioredoxin reductase 1 increased approximately 2- to 3-fold, whereas mRNA levels of cold shock domain containing E1 and SEPP1 increased more than 6-fold (P<.05). The addition of sodium selenite before the radiation treatment suppressed toxicity (45%; P<.05). SEPP1 overexpression suppressed radiation-induced late ROS accumulation (35%; P<.05) and protected NHFs from radiation-induced toxicity (58%; P<.05). CONCLUSION SEPP1 mitigates radiation-induced late ROS accumulation and normal cell injury.
Collapse
Affiliation(s)
- Jaimee C Eckers
- Free Radical and Radiation Biology Division, Department of Radiation Oncology, University of Iowa, Iowa City, Iowa
| | | | | | | | | |
Collapse
|
289
|
Jotty K, Ojeda ML, Nogales F, Murillo ML, Carreras O. Selenium dietary supplementation as a mechanism to restore hepatic selenoprotein regulation in rat pups exposed to alcohol. Alcohol 2013; 47:545-52. [PMID: 24113570 DOI: 10.1016/j.alcohol.2013.07.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Revised: 07/15/2013] [Accepted: 07/22/2013] [Indexed: 01/18/2023]
Abstract
Ethanol exposure during gestation and lactation decreases selenium (Se) intake, disrupting body Se balance and inducing oxidative stress in rat offspring. Selenium-supplemented diet (0.5 ppm) was administered to ethanol-exposed (20% v/v) dams during gestation and lactation. When the dams' pups were 21 days old, the pups' levels of the main hepatic selenoproteins glutathione peroxidase (GPx1 and GPx4) and selenoprotein P (SelP) were measured. The pups were divided into control (C), alcohol (A), control-selenium (CS), and alcohol-selenium (AS) groups. The purpose was to evaluate the effect of the selenium-supplemented diet on the levels of Se deposits present in the livers of their pups. Alcohol decreases hepatic Se deposits, GPx activity, and GPx1 expression; alcohol increases GPx4 and SelP expression. Se was measured by furnace graphite atomic absorption spectrometry, the antioxidant activity of GPx and concentration of hepatic phospholipids (PL) were determined by spectrophotometry, and the selenoprotein expressions were detected by Western blotting. Selenite treatment prevented alcohol's effects of diminishing the Se deposits, GPx activity, and GPx1 expression, while maintaining the high levels of the expression of GPx4 and SelP. These results suggest that depletion of hepatic Se levels in rat pups, caused by ethanol exposure to their dams, affects the synthesis of the 3 main hepatic selenoproteins in different ways, which is related to a decrease in GPx activity and PL concentration, and an increase in serum Se levels. Selenium supplementation to the dams increased the expression of GPx1, GPx4, and SelP in their pups.
Collapse
|
290
|
Maggio M, De Vita F, Lauretani F, Buttò V, Bondi G, Cattabiani C, Nouvenne A, Meschi T, Dall’Aglio E, Ceda GP. IGF-1, the cross road of the nutritional, inflammatory and hormonal pathways to frailty. Nutrients 2013; 5:4184-205. [PMID: 24152751 PMCID: PMC3820068 DOI: 10.3390/nu5104184] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 10/01/2013] [Accepted: 10/01/2013] [Indexed: 12/11/2022] Open
Abstract
The decline in functional capacity is a heterogeneous phenomenon in the elderly. An accelerated ageing determines a frail status. It results in an increased vulnerability to stressors for decreased physiological reserves. The early identification of a frail status is essential for preventing loss of functional capacity, and its clinical consequences. Frailty and mobility limitation result from an interplay of different pathways including multiple anabolic deficiency, inflammation, oxidative stress, and a poor nutritional status. However, the age-related decline in insulin-like growth factor 1 (IGF-1) bioactivity deserves special attention as it could represent the ideal crossroad of endocrine, inflammatory, and nutritional pathways to frailty. Several minerals, namely magnesium, selenium, and zinc, appear to be important determinants of IGF-1 bioactivity. This review aims to provide an overview of the potential usefulness of nutrients modulating IGF-1 as potential therapeutic targets in the prevention of mobility limitation occurring in frail older subjects.
Collapse
Affiliation(s)
- Marcello Maggio
- Geriatric Rehabilitation Department, University Hospital of Parma, Via Gramsci, 14, Parma (PR) 43126, Italy; E-Mails: (F.V.); (F.L.); (A.N.); (G.P.C.)
- Department of Clinical and Experimental Medicine, Section of Geriatrics, Food Sciences Unit and Endocrinology of Aging Unit, University of Parma, Via Gramsci, 14, Parma (PR) 43126, Italy; E-Mails: (V.B.); (G.B.); (T.M.); (E.D.A.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +0039-0521-703-916; Fax: +0039-0521-987-562
| | - Francesca De Vita
- Geriatric Rehabilitation Department, University Hospital of Parma, Via Gramsci, 14, Parma (PR) 43126, Italy; E-Mails: (F.V.); (F.L.); (A.N.); (G.P.C.)
| | - Fulvio Lauretani
- Geriatric Rehabilitation Department, University Hospital of Parma, Via Gramsci, 14, Parma (PR) 43126, Italy; E-Mails: (F.V.); (F.L.); (A.N.); (G.P.C.)
| | - Valeria Buttò
- Department of Clinical and Experimental Medicine, Section of Geriatrics, Food Sciences Unit and Endocrinology of Aging Unit, University of Parma, Via Gramsci, 14, Parma (PR) 43126, Italy; E-Mails: (V.B.); (G.B.); (T.M.); (E.D.A.)
| | - Giuliana Bondi
- Department of Clinical and Experimental Medicine, Section of Geriatrics, Food Sciences Unit and Endocrinology of Aging Unit, University of Parma, Via Gramsci, 14, Parma (PR) 43126, Italy; E-Mails: (V.B.); (G.B.); (T.M.); (E.D.A.)
| | - Chiara Cattabiani
- Azienda USL Piacenza, Via Taverna, 49, Piacenza (PC) 23121, Italy; E-Mail:
| | - Antonio Nouvenne
- Geriatric Rehabilitation Department, University Hospital of Parma, Via Gramsci, 14, Parma (PR) 43126, Italy; E-Mails: (F.V.); (F.L.); (A.N.); (G.P.C.)
| | - Tiziana Meschi
- Department of Clinical and Experimental Medicine, Section of Geriatrics, Food Sciences Unit and Endocrinology of Aging Unit, University of Parma, Via Gramsci, 14, Parma (PR) 43126, Italy; E-Mails: (V.B.); (G.B.); (T.M.); (E.D.A.)
| | - Elisabetta Dall’Aglio
- Department of Clinical and Experimental Medicine, Section of Geriatrics, Food Sciences Unit and Endocrinology of Aging Unit, University of Parma, Via Gramsci, 14, Parma (PR) 43126, Italy; E-Mails: (V.B.); (G.B.); (T.M.); (E.D.A.)
| | - Gian Paolo Ceda
- Geriatric Rehabilitation Department, University Hospital of Parma, Via Gramsci, 14, Parma (PR) 43126, Italy; E-Mails: (F.V.); (F.L.); (A.N.); (G.P.C.)
- Department of Clinical and Experimental Medicine, Section of Geriatrics, Food Sciences Unit and Endocrinology of Aging Unit, University of Parma, Via Gramsci, 14, Parma (PR) 43126, Italy; E-Mails: (V.B.); (G.B.); (T.M.); (E.D.A.)
| |
Collapse
|
291
|
Xu Q, Feng CY, Hori TS, Plouffe DA, Buchanan JT, Rise ML. Family-specific differences in growth rate and hepatic gene expression in juvenile triploid growth hormone (GH) transgenic Atlantic salmon (Salmo salar). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2013; 8:317-33. [PMID: 24145116 DOI: 10.1016/j.cbd.2013.09.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 09/24/2013] [Accepted: 09/26/2013] [Indexed: 01/13/2023]
Abstract
Growth hormone transgenic (GHTg) Atlantic salmon (Salmo salar) have enhanced growth when compared to their non-transgenic counterparts, and this trait can be beneficial for aquaculture production. Biological confinement of GHTg Atlantic salmon may be achieved through the induction of triploidy (3N). The growth rates of triploid GH transgenic (3NGHTg) Atlantic salmon juveniles were found to significantly vary between families in the AquaBounty breeding program. In order to characterize gene expression associated with enhanced growth in juvenile 3NGHTg Atlantic salmon, a functional genomics approach (32K cDNA microarray hybridizations followed by QPCR) was used to identify and validate liver transcripts that were differentially expressed between two fast-growing 3NGHTg Atlantic salmon families (AS11, AS26) and a slow-growing 3NGHTg Atlantic salmon family (AS25); juvenile growth rate was evaluated over a 45-day period. Of 687 microarray-identified differentially expressed features, 143 (116 more highly expressed in fast-growing and 27 more highly expressed in slow-growing juveniles) were identified in the AS11 vs. AS25 microarray study, while 544 (442 more highly expressed in fast-growing and 102 more highly expressed in slow-growing juveniles) were identified in the AS26 vs. AS25 microarray study. Forty microarray features (39 putatively associated with fast growth and 1 putatively associated with slow growth) were present in both microarray experiment gene lists. The expression levels of 15 microarray-identified transcripts were studied using QPCR with individual RNA samples to validate microarray results and to study biological variability of transcript expression. The QPCR results agreed with the microarray results for 12 of 13 putative fast-growth associated transcripts, but QPCR did not validate the microarray results for 2 putative slow-growth associated transcripts. Many of the 39 microarray-identified genes putatively associated at the transcript expression level with fast-growing 3NGHTg salmon juveniles (including APOA1, APOA4, B2M, FADSD6, FTM, and GAPDH) are involved in metabolism, iron homeostasis and oxygen transport, and immune- or stress-related responses. The results of this study increase our knowledge of family-specific impacts on growth rate and hepatic gene expression in juvenile 3NGHTg Atlantic salmon. In addition, this study provides a suite of putative rapid growth rate-associated transcripts that may contribute to the development of molecular markers [e.g. intronic, exonic or regulatory region single nucleotide polymorphisms (SNPs)] for the selection of GHTg Atlantic salmon broodstock that can be utilized to produce sterile triploids of desired growth performance for future commercial applications.
Collapse
Affiliation(s)
- Qingheng Xu
- Ocean Sciences Centre, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| | | | | | | | | | | |
Collapse
|
292
|
Cole RN, Ruczinski I, Schulze K, Christian P, Herbrich S, Wu L, DeVine LR, O'Meally RN, Shrestha S, Boronina TN, Yager JD, Groopman J, West KP. The plasma proteome identifies expected and novel proteins correlated with micronutrient status in undernourished Nepalese children. J Nutr 2013; 143:1540-8. [PMID: 23966331 PMCID: PMC6879017 DOI: 10.3945/jn.113.175018] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Micronutrient deficiencies are common in undernourished societies yet remain inadequately assessed due to the complexity and costs of existing assays. A plasma proteomics-based approach holds promise in quantifying multiple nutrient:protein associations that reflect biological function and nutritional status. To validate this concept, in plasma samples of a cohort of 500 6- to 8-y-old Nepalese children, we estimated cross-sectional correlations between vitamins A (retinol), D (25-hydroxyvitamin D), and E (α-tocopherol), copper, and selenium, measured by conventional assays, and relative abundance of their major plasma-bound proteins, measured by quantitative proteomics using 8-plex iTRAQ mass tags. The prevalence of low-to-deficient status was 8.8% (<0.70 μmol/L) for retinol, 19.2% (<50 nmol/L) for 25-hydroxyvitamin D, 17.6% (<9.3 μmol/L) for α-tocopherol, 0% (<10 μmol/L) for copper, and 13.6% (<0.6 μmol/L) for selenium. We identified 4705 proteins, 982 in >50 children. Employing a linear mixed effects model, we observed the following correlations: retinol:retinol-binding protein 4 (r = 0.88), 25-hydroxyvitamin D:vitamin D-binding protein (r = 0.58), α-tocopherol:apolipoprotein C-III (r = 0.64), copper:ceruloplasmin (r = 0.65), and selenium:selenoprotein P isoform 1 (r = 0.79) (all P < 0.0001), passing a false discovery rate threshold of 1% (based on P value-derived q values). Individual proteins explained 34-77% (R(2)) of variation in their respective nutrient concentration. Adding second proteins to models raised R(2) to 48-79%, demonstrating a potential to explain additional variation in nutrient concentration by this strategy. Plasma proteomics can identify and quantify protein biomarkers of micronutrient status in undernourished children. The maternal micronutrient supplementation trial, from which data were derived as a follow-up activity, was registered at clinicaltrials.gov as NCT00115271.
Collapse
Affiliation(s)
- Robert N. Cole
- Mass Spectrometry and Proteomics Core Facility, Bloomberg School of Public Health and School of Medicine, Johns Hopkins University, Baltimore, MD,Center for Human Nutrition, Bloomberg School of Public Health and School of Medicine, Johns Hopkins University, Baltimore, MD,Department of Biological Chemistry, Bloomberg School of Public Health and School of Medicine, Johns Hopkins University, Baltimore, MD
| | - Ingo Ruczinski
- Department of Biostatistics, Bloomberg School of Public Health and School of Medicine, Johns Hopkins University, Baltimore, MD
| | - Kerry Schulze
- Center for Human Nutrition, Bloomberg School of Public Health and School of Medicine, Johns Hopkins University, Baltimore, MD,Department of International Health, Bloomberg School of Public Health and School of Medicine, Johns Hopkins University, Baltimore, MD
| | - Parul Christian
- Center for Human Nutrition, Bloomberg School of Public Health and School of Medicine, Johns Hopkins University, Baltimore, MD,Department of International Health, Bloomberg School of Public Health and School of Medicine, Johns Hopkins University, Baltimore, MD
| | - Shelley Herbrich
- Department of Biostatistics, Bloomberg School of Public Health and School of Medicine, Johns Hopkins University, Baltimore, MD
| | - Lee Wu
- Center for Human Nutrition, Bloomberg School of Public Health and School of Medicine, Johns Hopkins University, Baltimore, MD,Department of International Health, Bloomberg School of Public Health and School of Medicine, Johns Hopkins University, Baltimore, MD
| | - Lauren R. DeVine
- Mass Spectrometry and Proteomics Core Facility, Bloomberg School of Public Health and School of Medicine, Johns Hopkins University, Baltimore, MD,Department of Biological Chemistry, Bloomberg School of Public Health and School of Medicine, Johns Hopkins University, Baltimore, MD
| | - Robert N. O'Meally
- Mass Spectrometry and Proteomics Core Facility, Bloomberg School of Public Health and School of Medicine, Johns Hopkins University, Baltimore, MD,Department of Biological Chemistry, Bloomberg School of Public Health and School of Medicine, Johns Hopkins University, Baltimore, MD
| | - Sudeep Shrestha
- Center for Human Nutrition, Bloomberg School of Public Health and School of Medicine, Johns Hopkins University, Baltimore, MD,Department of International Health, Bloomberg School of Public Health and School of Medicine, Johns Hopkins University, Baltimore, MD
| | - Tatiana N. Boronina
- Mass Spectrometry and Proteomics Core Facility, Bloomberg School of Public Health and School of Medicine, Johns Hopkins University, Baltimore, MD,Department of Biological Chemistry, Bloomberg School of Public Health and School of Medicine, Johns Hopkins University, Baltimore, MD
| | - James D. Yager
- Center for Human Nutrition, Bloomberg School of Public Health and School of Medicine, Johns Hopkins University, Baltimore, MD,Department of Environmental Health Sciences, Bloomberg School of Public Health and School of Medicine, Johns Hopkins University, Baltimore, MD
| | - John Groopman
- Center for Human Nutrition, Bloomberg School of Public Health and School of Medicine, Johns Hopkins University, Baltimore, MD,Department of Environmental Health Sciences, Bloomberg School of Public Health and School of Medicine, Johns Hopkins University, Baltimore, MD
| | - Keith P. West
- Center for Human Nutrition, Bloomberg School of Public Health and School of Medicine, Johns Hopkins University, Baltimore, MD,Department of International Health, Bloomberg School of Public Health and School of Medicine, Johns Hopkins University, Baltimore, MD,To whom correspondence should be addressed. E-mail:
| |
Collapse
|
293
|
Maseko T, Howell K, Dunshea FR, Ng K. Selenium-enriched Agaricus bisporus increases expression and activity of glutathione peroxidase-1 and expression of glutathione peroxidase-2 in rat colon. Food Chem 2013; 146:327-33. [PMID: 24176350 DOI: 10.1016/j.foodchem.2013.09.074] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 08/01/2013] [Accepted: 09/12/2013] [Indexed: 11/17/2022]
Abstract
The effect of dietary supplementation with Se-enriched Agaricus bisporus on cytosolic gluthathione peroxidase-1 (GPx-1), gastrointestinal specific glutathione peroxidase-2 (GPx-2), thioredoxin reductase-1 (TrxR-1) and selenoprotein P (SeP) mRNA expression and GPx-1 enzyme activity in rat colon was examined. Rats were fed for 5weeks with control diet (0.15μg Se/g feed) or Se-enriched diet fortified with selenised mushroom (1μg Se/g feed). The mRNA expression levels were found to be significantly (P<0.01) up-regulated by 1.65-fold and 2.3-fold for GPx-1 and GPx-2, respectively, but were not significantly different for TrxR-1 and SeP between the 2 diet treatments. The up-regulation of GPx-1 mRNA expression was consistent with GPX-1 activity level, which was significantly (P<0.05) increased by 1.77-fold in rats fed with the Se-enriched diet compared to the control diet. The results showed that selenised A. bisporus can positively increase GPx-1 and GPx-2 gene expression and GPx-1 enzyme activity in rat colon.
Collapse
Affiliation(s)
- Tebo Maseko
- Department of Agriculture and Food Systems, Melbourne School of Land & Environment, The University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | | | |
Collapse
|
294
|
Méplan C, Dragsted LO, Ravn-Haren G, Tjønneland A, Vogel U, Hesketh J. Association between polymorphisms in glutathione peroxidase and selenoprotein P genes, glutathione peroxidase activity, HRT use and breast cancer risk. PLoS One 2013; 8:e73316. [PMID: 24039907 PMCID: PMC3769272 DOI: 10.1371/journal.pone.0073316] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 07/18/2013] [Indexed: 12/29/2022] Open
Abstract
Breast cancer (BC) is one of the most common cancers in women. Evidence suggests that genetic variation in antioxidant enzymes could influence BC risk, but to date the relationship between selenoproteins and BC risk remains unclear. In this report, a study population including 975 Danish cases and 975 controls matched for age and hormone replacement therapy (HRT) use was genotyped for five functional single nucleotide polymorphisms (SNPs) in SEPP1, GPX1, GPX4 and the antioxidant enzyme SOD2 genes. The influence of genetic polymorphisms on breast cancer risk was assessed using conditional logistic regression. Additionally pre-diagnosis erythrocyte GPx (eGPx) activity was measured in a sub-group of the population. A 60% reduction in risk of developing overall BC and ductal BC was observed in women who were homozygous Thr carriers for SEPP1 rs3877899. Additionally, Leu carriers for GPX1 Pro198Leu polymorphism (rs1050450) were at ∼2 fold increased risk of developing a non-ductal BC. Pre-diagnosis eGPx activity was found to depend on genotype for rs713041 (GPX4), rs3877899 (SEPP1), and rs1050450 (GPX1) and on HRT use. Moreover, depending on genotype and HRT use, eGPx activity was significantly lower in women who developed BC later in life compared with controls. Furthermore, GPx1 protein levels increased in human breast adenocarcinoma MCF7 cells exposed to β-estradiol and sodium selenite.In conclusion, our data provide evidence that SNPs in SEPP1 and GPX1 modulate risk of BC and that eGPx activity is modified by SNPs in SEPP1, GPX4 and GPX1 and by estrogens. Our data thus suggest a role of selenoproteins in BC development.
Collapse
Affiliation(s)
- Catherine Méplan
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle-upon-Tyne, United Kingdom
- Human Nutrition Research Centre, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Lars Ove Dragsted
- Department of Human Nutrition, University of Copenhagen, Frederiksberg, Denmark
| | - Gitte Ravn-Haren
- Department of Human Nutrition, University of Copenhagen, Frederiksberg, Denmark
- National Food Institute, Technical University of Denmark, Soborg, Denmark
| | | | - Ulla Vogel
- National Research Centre for the Working Environment, Copenhagen, Denmark
- * E-mail: (JH); (UV)
| | - John Hesketh
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle-upon-Tyne, United Kingdom
- Human Nutrition Research Centre, Newcastle University, Newcastle-upon-Tyne, United Kingdom
- * E-mail: (JH); (UV)
| |
Collapse
|
295
|
Steinbrenner H, Speckmann B, Sies H. Toward understanding success and failures in the use of selenium for cancer prevention. Antioxid Redox Signal 2013; 19:181-91. [PMID: 23421468 PMCID: PMC3689159 DOI: 10.1089/ars.2013.5246] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
SIGNIFICANCE Adequate and supranutritional selenium (Se) intake, maintaining full expression of selenoproteins, has been assumed to be beneficial for human health with respect to prevention of cancer. Strikingly, the effectiveness of dietary Se supplementation depends on many factors: baseline Se status, age, gender, and genetic background of an individual; type of cancer; and time point of intervention in addition to metabolic conversion and dose of applied Se compounds. RECENT ADVANCES Se intake levels for optimization of plasma selenoproteins in humans have been delineated. Regulation, function, and genetic variants of several selenoproteins have been characterized in the intestine, where Se-mediated prevention of colorectal cancer appears to be particularly promising. CRITICAL ISSUES Numerous cell culture and animal studies indicate anticarcinogenic capacity of various Se compounds but, at present, the outcome of human studies is inconsistent and, in large part, disappointing. Moreover, supranutritional Se intake may even trigger adverse health effects, possibly increasing the risk for Type 2 diabetes in Se-replete populations. FUTURE DIRECTIONS To improve protocols for the use of Se in cancer prevention, knowledge on cellular and systemic actions of Se compounds needs to be broadened and linked to individual-related determinants such as the occurrence of variants in selenoprotein genes and the Se status. Based on better mechanistic insight, populations and individuals that may benefit most from dietary Se supplementation need to be defined and studied in suitably planned intervention trials.
Collapse
Affiliation(s)
- Holger Steinbrenner
- Institute for Biochemistry and Molecular Biology I, Heinrich-Heine-University, Düsseldorf, Germany
| | | | | |
Collapse
|
296
|
Mao J, Teng W. The relationship between selenoprotein P and glucose metabolism in experimental studies. Nutrients 2013; 5:1937-48. [PMID: 23760059 PMCID: PMC3725484 DOI: 10.3390/nu5061937] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 04/30/2013] [Accepted: 05/06/2013] [Indexed: 11/17/2022] Open
Abstract
Selenium is an essential trace element in the diet of mammals which is important for many physiological functions. However, a number of epidemiological studies have suggested that high selenium status is a possible risk factor for the development of type 2 diabetes, although they cannot distinguish between cause and effect. Selenoprotein P (Sepp1) is central to selenium homeostasis and widely expressed in the organism. Here we review the interaction between Sepp1 and glucose metabolism with an emphasis on experimental evidence. In models with or without gene modification, glucose and insulin can regulate Sepp1 expression in the pancreas and liver, and vice versa. Especially in the liver, Sepp1 is regulated virtually like a gluconeogenic enzyme. Combining these data suggests that there could be a feedback regulation between hepatic Sepp1 and pancreatic insulin and that increasing circulating Sepp1 might be the result rather than the cause of abnormal glucose metabolism. Future studies specifically designed to overexpress Sepp1 are needed in order to provide a more robust link between Sepp1 and type 2 diabetes.
Collapse
Affiliation(s)
- Jinyuan Mao
- Liaoning Provincial Key Laboratory of Endocrine Diseases, Department of Endocrinology and Metabolism, Institute of Endocrinology, The First Affiliated Hospital of China Medical University, No.155, North Nanjing Street, Shenyang 110001, China.
| | | |
Collapse
|
297
|
Turanov AA, Lobanov AV, Hatfield DL, Gladyshev VN. UGA codon position-dependent incorporation of selenocysteine into mammalian selenoproteins. Nucleic Acids Res 2013; 41:6952-9. [PMID: 23716634 PMCID: PMC3737529 DOI: 10.1093/nar/gkt409] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
It is thought that the SelenoCysteine Insertion Sequence (SECIS) element and UGA codon are sufficient for selenocysteine (Sec) insertion. However, we found that UGA supported Sec insertion only at its natural position or in its close proximity in mammalian thioredoxin reductase 1 (TR1). In contrast, Sec could be inserted at any tested position in mammalian TR3. Replacement of the 3′-UTR of TR3 with the corresponding segment of a Euplotes crassus TR restricted Sec insertion into the C-terminal region, whereas the 3′-UTR of TR3 conferred unrestricted Sec insertion into E. crassus TR, in which Sec insertion is normally limited to the C-terminal region. Exchanges of 3′-UTRs between mammalian TR1 and E. crassus TR had no effect, as both proteins restricted Sec insertion. We further found that these effects could be explained by the use of selenoprotein-specific SECIS elements. Examination of Sec insertion into other selenoproteins was consistent with this model. The data indicate that mammals evolved the ability to limit Sec insertion into natural positions within selenoproteins, but do so in a selenoprotein-specific manner, and that this process is controlled by the SECIS element in the 3′-UTR.
Collapse
Affiliation(s)
- Anton A Turanov
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston MA 02115, USA
| | | | | | | |
Collapse
|
298
|
Burk RF, Olson GE, Hill KE, Winfrey VP, Motley AK, Kurokawa S. Maternal-fetal transfer of selenium in the mouse. FASEB J 2013; 27:3249-56. [PMID: 23651543 DOI: 10.1096/fj.13-231852] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Selenoprotein P (Sepp1) is taken up by receptor-mediated endocytosis for its selenium. The other extracellular selenoprotein, glutathione peroxidase-3 (Gpx3), has not been shown to transport selenium. Mice with genetic alterations of Sepp1, the Sepp1 receptors apolipoprotein E receptor-2 (apoER2) and megalin, and Gpx3 were used to investigate maternal-fetal selenium transfer. Immunocytochemistry (ICC) showed receptor-independent uptake of Sepp1 and Gpx3 in the same vesicles of d-13 visceral yolk sac cells, suggesting uptake by pinocytosis. ICC also showed apoER2-mediated uptake of maternal Sepp1 in the d-18 placenta. Thus, two selenoprotein-dependent maternal-fetal selenium transfer mechanisms were identified. Selenium was quantified in d-18 fetuses with the mechanisms disrupted. Maternal Sepp1 deletion, which lowers maternal whole-body selenium, decreased fetal selenium under selenium-adequate conditions but deletion of fetal apoER2 did not. Fetal apoER2 deletion did decrease fetal selenium, by 51%, under selenium-deficient conditions, verifying function of the placental Sepp1-apoER2 mechanism. Maternal Gpx3 deletion decreased fetal selenium, by 13%, but only under selenium-deficient conditions. These findings indicate that the selenoprotein uptake mechanisms ensure selenium transfer to the fetus under selenium-deficient conditions. The failure of their disruptions (apoER2 deletion, Gpx3 deletion) to affect fetal selenium under selenium-adequate conditions indicates the existence of an additional maternal-fetal selenium transfer mechanism.
Collapse
Affiliation(s)
- Raymond F Burk
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
| | | | | | | | | | | |
Collapse
|
299
|
Geybels MS, Hutter CM, Kwon EM, Ostrander EA, Fu R, Feng Z, Stanford JL, Peters U. Variation in selenoenzyme genes and prostate cancer risk and survival. Prostate 2013; 73:734-42. [PMID: 23143801 PMCID: PMC3859305 DOI: 10.1002/pros.22617] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 10/15/2012] [Indexed: 12/28/2022]
Abstract
BACKGROUND While several studies showed that selenium may prevent prostate cancer (PCa), few studies have evaluated variation in selenoenzyme genes in relation to PCa risk and survival. METHODS We studied common variants in seven selenoenzymes genes in relation to risk of PCa and PCa-specific mortality (PCSM). In a population-based case-control study of men of European ancestry (1,309 cases, 1,266 controls), we evaluated 35 common, tagging single nucleotide polymorphisms (SNPs) in GPX1 (n = 2), GPX2 (n = 4), GPX3 (n = 6), GPX4 (n = 6), SEP15 (n = 4), SEPP1 (n = 6), and TXNRD1 (n = 7) in relation to PCa risk, and among cases, associations between these variants and risk of PCSM. We used logistic regression and Cox proportional hazards regression to estimate the relative risk of PCa and PCSM, respectively. RESULTS Of the SNPs examined, only GPX1 rs3448 was associated with overall PCa risk with an odds ratio of 0.62 for TT versus CC (95% confidence interval, 0.44-0.88). SNPs in GPX2, GPX3, GPX4, SEP15, and SEPP1 had different risk estimates for PCa in subgroups based on stage and grade. We observed associations between SNPs in GPX4, and TXNRD1 and risk of PCSM. None of these associations, however, remained significant after adjustment for multiple comparisons. CONCLUSIONS We found evidence that genetic variation in a subset of selenoenzyme genes may alter risk of PCa and PCSM. These results need validation in additional subsets.
Collapse
Affiliation(s)
- Milan S Geybels
- Department of Epidemiology, GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
300
|
Rahmanto AS, Davies MJ. Selenium-containing amino acids as direct and indirect antioxidants. IUBMB Life 2013; 64:863-71. [PMID: 23086812 DOI: 10.1002/iub.1084] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Selenium is a trace element essential for normal physiological processes. Organic selenium-containing amino acids, such as selenocysteine (Sec) / selenocystine and selenomethionine (SeMet, the major dietary form), can provide antioxidant benefits by acting both as direct antioxidants as well as a source of selenium for synthesis of selenium-dependent antioxidant and repair proteins (e.g., glutathione peroxidases, thioredoxin reductases, methionine sulfoxide reductases). The direct antioxidant actions of these amino acids arise from the nucleophilic properties of the ionized selenol (RSe(-), which predominates over the neutral form at physiological pH values) and the ease of oxidation of Sec and SeMet. This results in higher rate constants for reaction with multiple oxidants, than for the corresponding thiols/thioethers. Furthermore, the resulting oxidation products are more readily and rapidly reversed by both enzyme and nonenzymatic reactions. The antioxidant effects of these seleno species can therefore be catalytic. Seleno amino acids may also chelate redox-active metal ions. The presence of Sec in the catalytic site of selenium-dependent antioxidant enzymes enhances the kinetic properties and broadens the catalytic activity of antioxidant enzymes against biological oxidants when compared with sulfur-containing species. However, while normal physiological selenium levels afford protection, when compared with deficiency, excessive selenium may induce damage and adverse effects, with this being manifest, for example, as an increased incidence of type 2 diabetes. Further studies examining the availability of redox-active selenium species and their mechanisms and kinetics of action are therefore of critical importance in the potential development of seleno species as a therapeutic strategy.
Collapse
|