251
|
Agholme F, Isaksson H, Kuhstoss S, Aspenberg P. The effects of Dickkopf-1 antibody on metaphyseal bone and implant fixation under different loading conditions. Bone 2011; 48:988-96. [PMID: 21329773 DOI: 10.1016/j.bone.2011.02.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Revised: 02/07/2011] [Accepted: 02/07/2011] [Indexed: 12/17/2022]
Abstract
The secreted protein Dickkopf-1 (Dkk1) is an antagonist of canonical Wnt signaling, expressed during fracture healing. It is unclear how it is involved in the mechanical control of bone maintenance. We investigated the response to administration of a Dkk1 neutralizing antibody (Dkk1-ab) in metaphyseal bone under different loading conditions, with or without trauma. In this three part experiment, 120 rats had a screw or bone chamber inserted either unilaterally or bilaterally in the proximal tibia. Mechanical (pull-out) testing, μCT and histology were used for evaluation. The animals were injected with either 10mg/kg Dkk1-ab or saline every 14days for 14, 28, or 42days. Antibody treatment increased bone formation around the screws and improved their fixation. After 28days, the pull-out force was increased by over 100%. In cancellous bone, the bone volume fraction was increased by 50%. In some animals, one hind limb was paralyzed with Botulinum toxin A (Botox) to create a mechanically unloaded environment. This did not increase the response to antibody treatment with regard to screw fixation, but in cancellous bone, the bone volume fraction increased by 233%. Thus, the response in unloaded, untraumatized bone was proportionally larger, suggesting that Dkk1 may be up-regulated in unloaded bone. There was also an increase in thickness of the metaphyseal cortex. In bone chambers, the antibody treatment increased the bone volume fraction. The results suggest that antibodies blocking Dkk1 might be used to stimulate bone formation especially during implant fixation, fracture repair, or bone disuse. It also seems that Dkk1 is up-regulated both after metaphyseal trauma and after unloading, and that Dkk1 is involved in mechano-transduction.
Collapse
Affiliation(s)
- Fredrik Agholme
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.
| | | | | | | |
Collapse
|
252
|
Lane NE, Yao W. New insights into the biology of glucocorticoid-induced osteoporosis. ACTA ACUST UNITED AC 2011. [DOI: 10.1138/20110511] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
253
|
Xu YX, Xu B, Wu CL, Wu Y, Tong PJ, Xiao LW. Dynamic expression of DKK1 protein in the process whereby Epimedium-derived flavonoids up-regulate osteogenic and down-regulate adipogenic differentiation of bone marrow stromal cells in ovariectomized rats. Orthop Surg 2011; 3:119-126. [PMID: 22009597 PMCID: PMC6583533 DOI: 10.1111/j.1757-7861.2011.00129.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Accepted: 01/07/2011] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE To observe the dynamic expression of DKK1 protein in the process whereby Epimedium-derived flavonoids (EFs) regulate the balance between osteogenic and adipogenic differentiation of bone marrow stromal cells in ovariectomized rats, and to provide experimental evidence for the mechanism of EFs in the treatment of postmenopausal osteoporosis. METHODS Bone marrow stromal cells from ovariectomized rats were separated and cultivated in osteoinductive or liquid medium for 15 days in vitro. EFs (10 µg/mL) were applied to both cultures. Alkaline phosphatase (ALP) staining, ALP activity determination, Oil Red O staining and fluorescence quantitative polymerase chain reaction were used to determine the influence of EFs on osteogenic and adipogenic differentiation of bone marrow stromal cells in ovariectomized rats. Moreover, in order to explore the exact mechanism of EFs on osteogenic and adipogenic differentiation of bone marrow stromal cells in ovariectomized rats, enzyme linked immunosorbent assay was used to determine the dynamic expression of DKK1 protein in this process. RESULTS EFs increased activity of ALP and mRNA expression of Runx2 (early osteoblast differentiation factor) and decreased mRNA expression of PPARγ-2 (key factor of fat generation). Importantly, EFs down-regulated expression of DKK1 protein in an osteogenic induction medium and inhibited up-regulation of DKK1 protein in an adipogenic induction medium. CONCLUSION EFs regulate the balance between osteogenic and adipogenic differentiation of bone marrow stromal cells in ovariectomized rats by down-regulating expression of DKK1 protein. This may be an important molecular mechanism of EFs in the context of treatment of postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Ying-xing Xu
- The First Clinical Medical College, Zhejiang Traditional Chinese Medical University, China
| | | | | | | | | | | |
Collapse
|
254
|
Anderson KC, Carrasco RD. Pathogenesis of myeloma. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2011; 6:249-74. [PMID: 21261519 DOI: 10.1146/annurev-pathol-011110-130249] [Citation(s) in RCA: 204] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Multiple myeloma (MM) is a neoplasm of post-germinal center, terminally differentiated B cells. It is characterized by a multifocal proliferation of clonal, long-lived plasma cells within the bone marrow (BM) and associated skeletal destruction, serum monoclonal gammopathy, immune suppression, and end-organ sequelae. MM is preceded by an age-progressive premalignant condition termed monoclonal gammopathy of undetermined significance. Unlike the genomes of most hematological malignancies, and similar to those of solid-tissue neoplasms, MM genomes are typified by numerous structural and numerical chromosomal aberrations as well as mutations in a number of oncogenes and tumor-suppressor genes, some of which have been linked to disease pathogenesis and clinical behavior. Recent studies have also defined the importance of interactions between the MM cells and their BM microenvironment, dysregulation in signaling pathways and in a specialized subpopulation of cells within the tumor (termed myeloma cancer stem cells) for tumor cell growth and survival, and the development of resistance to therapy.
Collapse
Affiliation(s)
- Kenneth C Anderson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
255
|
Li J, Huang X, Xu X, Mayo J, Bringas P, Jiang R, Wang S, Chai Y. SMAD4-mediated WNT signaling controls the fate of cranial neural crest cells during tooth morphogenesis. Development 2011; 138:1977-89. [PMID: 21490069 DOI: 10.1242/dev.061341] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
TGFβ/BMP signaling regulates the fate of multipotential cranial neural crest (CNC) cells during tooth and jawbone formation as these cells differentiate into odontoblasts and osteoblasts, respectively. The functional significance of SMAD4, the common mediator of TGFβ/BMP signaling, in regulating the fate of CNC cells remains unclear. In this study, we investigated the mechanism of SMAD4 in regulating the fate of CNC-derived dental mesenchymal cells through tissue-specific inactivation of Smad4. Ablation of Smad4 results in defects in odontoblast differentiation and dentin formation. Moreover, ectopic bone-like structures replaced normal dentin in the teeth of Osr2-IresCre;Smad4(fl/fl) mice. Despite the lack of dentin, enamel formation appeared unaffected in Osr2-IresCre;Smad4(fl/fl) mice, challenging the paradigm that the initiation of enamel development depends on normal dentin formation. At the molecular level, loss of Smad4 results in downregulation of the WNT pathway inhibitors Dkk1 and Sfrp1 and in the upregulation of canonical WNT signaling, including increased β-catenin activity. More importantly, inhibition of the upregulated canonical WNT pathway in Osr2-IresCre;Smad4(fl/fl) dental mesenchyme in vitro partially rescued the CNC cell fate change. Taken together, our study demonstrates that SMAD4 plays a crucial role in regulating the interplay between TGFβ/BMP and WNT signaling to ensure the proper CNC cell fate decision during organogenesis.
Collapse
Affiliation(s)
- Jingyuan Li
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, USA
| | | | | | | | | | | | | | | |
Collapse
|
256
|
Daoussis D, Andonopoulos AP. The emerging role of Dickkopf-1 in bone biology: is it the main switch controlling bone and joint remodeling? Semin Arthritis Rheum 2011; 41:170-7. [PMID: 21435697 DOI: 10.1016/j.semarthrit.2011.01.006] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2010] [Revised: 01/19/2011] [Accepted: 01/27/2011] [Indexed: 12/17/2022]
Abstract
BACKGROUND Dickkopf-1 (DKK-1), an inhibitor of the Wnt pathway, has recently emerged as an important player in several critical aspects of bone biology. METHODS We performed an extensive internet search (MEDLINE) using the key words Dickkopf-1 and the abbreviation DKK-1. RESULTS DKK-1 is a regulator of bone mass with increased expression linked to osteopenia and decreased expression to high bone mass. Moreover, it appears to actively participate in joint remodeling in animal models of arthritis, with increased levels related to bone resorption and decreased levels to new bone formation. Recent studies indicate its possible involvement in the remodeling process of human systemic rheumatic diseases such as rheumatoid arthritis and ankylosing spondylitis. DKK-1 may also play a role in osteoarthritis, metabolic bone disease (osteoporosis and Paget's disease), as well as multiple myeloma-associated bone disease and prostate cancer bone metastases. CONCLUSIONS DKK-1 is a regulator of bone mass and joint remodeling. It may be a promising therapeutic target in osteoporosis; monoclonal antibody-based inhibition of Dkk-1 is already under development for osteoporosis treatment. Its role as a regulator of joint remodeling in animal models requires further exploration in humans.
Collapse
Affiliation(s)
- Dimitrios Daoussis
- Division of Rheumatology, Department of Internal Medicine, Patras University Hospital, University of Patras Medical School, Patras, Greece.
| | | |
Collapse
|
257
|
Ivanovska N, Dimitrova P. Bone resorption and remodeling in murine collagenase-induced osteoarthritis after administration of glucosamine. Arthritis Res Ther 2011; 13:R44. [PMID: 21410959 PMCID: PMC3132029 DOI: 10.1186/ar3283] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Revised: 02/08/2011] [Accepted: 03/16/2011] [Indexed: 12/17/2022] Open
Abstract
Introduction Glucosamine is an amino-monosaccharide and precursor of glycosaminoglycans, major components of joint cartilage. Glucosamine has been clinically introduced for the treatment of osteoarthritis but the data about its protective role in disease are insufficient. The goal of this study was to investigate the effect of long term administration of glucosamine on bone resorption and remodeling. Methods The effect of glucosamine on bone resorption and remodeling was studied in a model of collagenase-induced osteoarthritis (CIOA). The levels of macrophage-inflammatory protein (MIP)-1α, protein regulated upon activation, normal T-cell expressed, and secreted (RANTES), soluble receptor activator of nuclear factor kappa-B ligand (RANKL), tumor necrosis factor (TNF)-α, and interleukin (IL)-6, 4 and 10 in synovial fluid were measured by enzyme-linked immunosorbent assay (ELISA). Cell populations in synovial extracts and the expression of RANKL, of receptors for TNF-α (TNF-αR) and interferon γ (IFN-γR) on clusters of differentiation (CD) three positive T cells were analyzed by flow cytometry. Transforming growth factor (TGF)-β3, bone morphogenetic protein (BMP)-2, phosphorylated protein mothers against decapentaplegic homolog 2 (pSMAD-2), RANKL and Dickkopf-1 protein (DKK-1) positive staining in CIOA joints were determined by immunohistochemistry. Results The administration of glucosamine hydrochloride in CIOA mice inhibited loss of glycosaminoglycans (GAGs) and proteoglycans (PGs) in cartilage, bone erosion and osteophyte formation. It decreased the levels of soluble RANKL and IL-6 and induced IL-10 increase in the CIOA joint fluids. Glucosamine limited the number of CD11b positive Ly6G neutrophils and RANKL positive CD3 T cells in the joint extracts. It suppressed bone resorption via down-regulation of RANKL expression and affected bone remodeling in CIOA by decreasing BMP-2, TGF-β3 and pSMAD-2 expression and up-regulating DKK-1 joint levels. Conclusions Our data suggest that glucosamine hydrochloride inhibits bone resorption through down-regulation of RANKL expression in the joints, via reduction of the number of RANKL positive CD3 T cells and the level of sRANKL in the joints extracts. These effects of glucosamine appear to be critical for the progression of CIOA and result in limited bone remodeling of the joints.
Collapse
Affiliation(s)
- Nina Ivanovska
- Department of Immunology, Institute of Microbiology, 26 Georgi Bonchev str, Sofia, 1113, Bulgaria
| | | |
Collapse
|
258
|
Albers J, Schulze J, Beil FT, Gebauer M, Baranowsky A, Keller J, Marshall RP, Wintges K, Friedrich FW, Priemel M, Schilling AF, Rueger JM, Cornils K, Fehse B, Streichert T, Sauter G, Jakob F, Insogna KL, Pober B, Knobeloch KP, Francke U, Amling M, Schinke T. Control of bone formation by the serpentine receptor Frizzled-9. ACTA ACUST UNITED AC 2011; 192:1057-72. [PMID: 21402791 PMCID: PMC3063134 DOI: 10.1083/jcb.201008012] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Although Wnt signaling in osteoblasts is of critical importance for the regulation of bone remodeling, it is not yet known which specific Wnt receptors of the Frizzled family are functionally relevant in this process. In this paper, we show that Fzd9 is induced upon osteoblast differentiation and that Fzd9(-/-) mice display low bone mass caused by impaired bone formation. Our analysis of Fzd9(-/-) primary osteoblasts demonstrated defects in matrix mineralization in spite of normal expression of established differentiation markers. In contrast, we observed a reduced expression of chemokines and interferon-regulated genes in Fzd9(-/-) osteoblasts. We also identified the ubiquitin-like modifier Isg15 as one potential downstream mediator of Fzd9 in these cells. Importantly, our molecular analysis further revealed that canonical Wnt signaling is not impaired in the absence of Fzd9, thus explaining the absence of a bone resorption phenotype. Collectively, our results reveal a previously unknown function of Fzd9 in osteoblasts, a finding that may have therapeutic implications for bone loss disorders.
Collapse
Affiliation(s)
- Joachim Albers
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
259
|
Abstract
It is well known that Bone morphogenetic proteins (BMPs) induce bone formation and that some BMPs, including BMP2 and BMP7, are clinically used in orthopedics. Signaling by BMPs plays an important role in a variety of cell-types in bone such as osteoblasts, chondrocytes, and osteoclasts. It is recently reported using an osteoblast-targeted deletion of BMP signaling that BMP signaling in osteoblasts physiologically induces bone resorption by enhancing osteoclastogenesis via the RANKL-OPG pathway and reduces bone mass. In this review, the physiological function of BMP signaling in bone will be focused, and the current outcomes from mouse genetic studies will be discuss.
Collapse
Affiliation(s)
- Nobuhiro Kamiya
- Center for Excellence in Hip Disorders, Texas Scottish Rite Hospital for Children, Dallas, TX, USA.
| | | |
Collapse
|
260
|
Butler JS, Murray DW, Hurson CJ, O'Brien J, Doran PP, O'Byrne JM. The role of Dkk1 in bone mass regulation: correlating serum Dkk1 expression with bone mineral density. J Orthop Res 2011; 29:414-8. [PMID: 20939046 DOI: 10.1002/jor.21260] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2010] [Accepted: 08/16/2010] [Indexed: 02/04/2023]
Abstract
The Wnt/β-catenin pathway is a major signaling cascade in bone biology, playing a key role in regulating bone development and remodeling, with aberrations in signaling resulting in disturbances in bone mass. The objectives of our study were to correlate serum Dkk1 expression with bone mineral density (BMD) and assess the potential role of Dkk1 as a serological marker of bone mass. Serum was collected from a cohort of patients (n = 36), 18 patients with a reduced BMD and 18 control patients. Serum Dkk1 expression as quantified by ELISA was correlated with lumbar and femoral t- and z-scores. Serum Dkk1 concentration in the osteoporosis group was significantly higher than control group (941 ± 116 vs. 558 ± 47 pg/ml, p < 0.01). Serum Dkk1 expression was highly correlated with bone mass variables with inverse associations found between serum Dkk1 expression and lumbar t-score (r = -0.34, p = 0.00433), lumbar z-score (r = -0.22, p = 0.1907), femur t-score (r = -0.42, p = 0.0101), and femur z-score (r = -0.43, p = 0.0089). Our data further emphasizes the pivotal role played by Wnt/β-catenin signaling in bone mass regulation. Dkk1, a powerful antagonist of canonical Wnt signaling, may have a role to play as a serological marker for disorders of bone mass, warranting further evaluation.
Collapse
Affiliation(s)
- Joseph S Butler
- Clinical Research Centre, UCD School of Medicine & Medical Science, Mater Misericordiae University Hospital, Dublin, Ireland.
| | | | | | | | | | | |
Collapse
|
261
|
Yao GQ, Wu JJ, Troiano N, Insogna K. Targeted overexpression of Dkk1 in osteoblasts reduces bone mass but does not impair the anabolic response to intermittent PTH treatment in mice. J Bone Miner Metab 2011; 29:141-8. [PMID: 20602130 PMCID: PMC3457021 DOI: 10.1007/s00774-010-0202-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Accepted: 05/30/2010] [Indexed: 12/17/2022]
Abstract
Parathyroid hormone (PTH) is a potent anabolic agent, but the cellular mechanisms by which it increases bone mass are not fully understood. Dickkopf 1 (Dkk1) is an endogenous inhibitor of Wnt signaling and suppresses bone formation in vivo. We sought to determine if Dkk1 and anabolic PTH treatment interact in regulating bone mass. PTH treatment of primary murine osteoblasts for 24 h reduced Dkk1 expression by 90% as quantified by real-time PCR, whereas PTH treatment in vivo reduced Dkk1 expression by 30% when given as a single daily subcutaneous dose. To directly determine whether Dkk1 modulates the anabolic response of PTH in vivo, we engineered transgenic (TG) mice expressing murine Dkk1 under the control of the 2.3-kb rat collagen alpha-1 promoter. TG mice had significantly reduced bone mass, which was accompanied by reduced histomorphometric parameters of bone formation (reduced OV/TV, ObS/OS, and NOb/TAR). Treatment of TG mice and wild-type (WT) littermates with 95 ng/g body weight of human (1-34) PTH daily for 34 days resulted in comparable increases in bone mass at all skeletal sites. Histomorphometric analyses indicated that PTH treatment increased the numbers of both osteoblasts and osteoclasts in WT mice but only increased the numbers of osteoblasts in TG mice. We conclude that overexpression of Dkk1 does not attenuate the anabolic response to PTH in vivo.
Collapse
Affiliation(s)
- Gang-Qing Yao
- Section of Comparative Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520-8016, USA.
| | | | | | | |
Collapse
|
262
|
Ribeiro D, Ellwanger K, Glagow D, Theofilopoulos S, Corsini NS, Martin-Villalba A, Niehrs C, Arenas E. Dkk1 regulates ventral midbrain dopaminergic differentiation and morphogenesis. PLoS One 2011; 6:e15786. [PMID: 21347250 PMCID: PMC3037958 DOI: 10.1371/journal.pone.0015786] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Accepted: 11/24/2010] [Indexed: 12/17/2022] Open
Abstract
Dickkopf1 (Dkk1) is a Wnt/β-catenin inhibitor that participates in many processes during embryonic development. One of its roles during embryogenesis is to induce head formation, since Dkk1-null mice lack head structures anterior to midbrain. The Wnt/β-catenin pathway is also known to regulate different aspects of ventral midbrain (VM) dopaminergic (DA) neuron development and, in vitro, Dkk1-mediated inhibition of the Wnt/β-catenin pathway improves the DA differentiation in mouse embryonic stem cells (mESC). However, the in vivo function of Dkk1 on the development of midbrain DA neurons remains to be elucidated. Here we examined Dkk1+/− embryos and found that Dkk1 is required for the differentiation of DA precursors/neuroblasts into DA neurons at E13.5. This deficit persisted until E17.5, when a defect in the number and distribution of VM DA neurons was detected. Furthermore, analysis of the few Dkk1−/− embryos that survived until E17.5 revealed a more severe loss of midbrain DA neurons and morphogenesis defects. Our results thus show that Dkk1 is required for midbrain DA differentiation and morphogenesis.
Collapse
Affiliation(s)
- Diogo Ribeiro
- Section of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Kristina Ellwanger
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, German Cancer Research Center, Heidelberg, Germany
| | - Désirée Glagow
- Division of Molecular Neurobiology, German Cancer Research Center, Heidelberg, Germany
| | - Spyridon Theofilopoulos
- Section of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Nina S. Corsini
- Division of Molecular Neurobiology, German Cancer Research Center, Heidelberg, Germany
| | - Ana Martin-Villalba
- Division of Molecular Neurobiology, German Cancer Research Center, Heidelberg, Germany
| | - Christof Niehrs
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, German Cancer Research Center, Heidelberg, Germany
| | - Ernest Arenas
- Section of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
263
|
Kawai M, Mödder UI, Khosla S, Rosen CJ. Emerging therapeutic opportunities for skeletal restoration. Nat Rev Drug Discov 2011; 10:141-56. [PMID: 21283108 PMCID: PMC3135105 DOI: 10.1038/nrd3299] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Osteoporosis, a syndrome characterized by thin bones and fractures, has become more prevalent in both women and men. Established therapies for treating this disorder consist primarily of drugs that prevent bone loss, such as the bisphosphonates and selective oestrogen receptor modulators. Although these drugs have been shown to reduce fractures in randomized trials, there is an urgent need for treatments that could lower fracture risk further without additional adverse effects. The introduction of parathyroid hormone (teriparatide), which significantly increases bone mineral density, albeit for a relatively short duration, raised expectations that drugs that stimulate bone formation might cure osteoporosis. After outlining current approaches for treating osteoporosis, this Review focuses on emerging therapeutic opportunities for osteoporosis that are based on recent insights into skeletal physiology. Such novel strategies offer promise not only for reducing age-related bone loss and the associated risk of fractures but also for restoring bone mineral density to healthy levels.
Collapse
Affiliation(s)
- Masanobu Kawai
- Center for clinical and translational research, Maine Medical Center Research Institute, Scarborough, Maine, USA
- Department of Bone and Mineral research, Osaka medical center and research institute for maternal and child health, Izumi, Osaka, Japan
| | | | | | - Clifford J Rosen
- Center for clinical and translational research, Maine Medical Center Research Institute, Scarborough, Maine, USA
| |
Collapse
|
264
|
Klein B, Seckinger A, Moehler T, Hose D. Molecular pathogenesis of multiple myeloma: chromosomal aberrations, changes in gene expression, cytokine networks, and the bone marrow microenvironment. Recent Results Cancer Res 2011; 183:39-86. [PMID: 21509680 DOI: 10.1007/978-3-540-85772-3_3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
This chapter focuses on two aspects of myeloma pathogenesis: (1) chromosomal aberrations and resulting changes in gene and protein expression with a special focus on growth and survival factors of malignant (and normal) plasma cells and (2) the remodeling of the bone marrow microenvironment induced by accumulating myeloma cells. We begin this chapter with a discussion of normal plasma cell generation, their survival, and a novel class of inhibitory factors. This is crucial for the understanding of multiple myeloma, as several abilities attributed to malignant plasma cells are already present in their normal counterpart, especially the production of survival factors and interaction with the bone marrow microenvironment (niche). The chapter closes with a new model of pathogenesis of myeloma.
Collapse
|
265
|
Gore AP, Kwon SH, Stenbit AE. A roadmap to the brittle bones of cystic fibrosis. J Osteoporos 2010; 2011:926045. [PMID: 21209785 PMCID: PMC3010683 DOI: 10.4061/2011/926045] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 11/05/2010] [Indexed: 12/17/2022] Open
Abstract
Cystic fibrosis (CF) is an autosomal recessive disorder which despite advances in medical care continues to be a life-limiting and often fatal disease. With increase in life expectancy of the CF population, bone disease has emerged as a common complication. Unlike the osteoporosis seen in postmenopausal population, bone disease in CF begins at a young age and is associated with significant morbidity due to fractures, kyphosis, increased pain, and decreased lung function. The maintenance of bone health is essential for the CF population during their lives to prevent pain and fractures but also as they approach lung transplantation since severe bone disease can lead to exclusion from lung transplantation. Early recognition, prevention, and treatment are key to maintaining optimal bone health in CF patients and often require a multidisciplinary approach. This article will review the pathophysiology, current clinical practice guidelines, and potential future therapies for treating CF-related bone disease.
Collapse
Affiliation(s)
- Ashwini P. Gore
- Division of Endocrinology, Diabetes & Medical Genetics, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425-6300, USA
| | - Soon Ho Kwon
- Division of Endocrinology, Diabetes & Medical Genetics, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425-6300, USA
| | - Antine E. Stenbit
- Division of Pulmonary, Critical Care, Allergy & Sleep Medicine, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425-6300, USA,*Antine E. Stenbit:
| |
Collapse
|
266
|
Hall CL, Zhang H, Baile S, Ljungman M, Kuhstoss S, Keller ET. p21CIP-1/WAF-1 induction is required to inhibit prostate cancer growth elicited by deficient expression of the Wnt inhibitor Dickkopf-1. Cancer Res 2010; 70:9916-26. [PMID: 21098705 PMCID: PMC3059079 DOI: 10.1158/0008-5472.can-10-0440] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Osteoblastic bone metastases are the most common metastases produced by human prostate cancers (PCa). Deregulated activity of Wnt growth factors resulting from overexpression of the Wnt inhibitor Dickkopf-1 (DKK-1) is known to contribute to formation of the osteoblastic component of PCa skeletal bone metastases. In this study, we report that DKK-1 knockdown in osteolytic human PCa cells unexpectedly delays the development of both soft tissue and osseous lesions. PCa cells deficient in DKK-1 expression did not increase canonical Wnt signaling in target osteoblast cell lines; however, DKK-1 knockdown PCa cells exhibited increased expression of the CDK inhibitor p21(CIP1/WAF1) and a 32% increase in G(1) arrest compared with control cells. Ablating p21(CIP1/WAF1) in PCa cells deficient in DKK-1 was sufficient to rescue tumor growth. Collectively, our findings demonstrate that DKK-1 overexpression supports tumor growth in part by restricting expression of p21(CIP1/WAF1) through a mechanism independent of canonical Wnt signaling.
Collapse
Affiliation(s)
| | | | | | - Mats Ljungman
- Departments of Urology and Radiation Oncology, The University of Michigan, Ann Arbor, MI 48109
| | | | - Evan T. Keller
- Correspondence to: RM 5304 CCGCB, 1500 East Medical Center Drive, Ann Arbor, MI 48109-0940, U.S.A. Phone: (734)-615-0280. Fax: (734)-936-9220.
| |
Collapse
|
267
|
Hipp JA, Hipp JD, Atala A, Soker S. Ethanol alters the osteogenic differentiation of amniotic fluid-derived stem cells. Alcohol Clin Exp Res 2010; 34:1714-22. [PMID: 20608908 PMCID: PMC2950880 DOI: 10.1111/j.1530-0277.2010.01258.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Fetal alcohol spectrum disorder (FASD) is a set of developmental defects caused by prenatal alcohol exposure. Clinical manifestations of FASD are highly variable and include mental retardation and developmental defects of the heart, kidney, muscle, skeleton, and craniofacial structures. Specific effects of ethanol on fetal cells include induction of apoptosis as well as inhibition of proliferation, differentiation, and migration. This complex set of responses suggests that a bioinformatics approach could clarify some of the pathways involved in these responses. METHODS In this study, the responses of fetal stem cells derived from the amniotic fluid (AFSCs) to treatment with ethanol have been examined. Large-scale transcriptome analysis of ethanol-treated AFSCs indicates that genes involved in skeletal development and ossification are up-regulated in these cells. Therefore, the effect of ethanol on osteogenic differentiation of AFSCs was studied. RESULTS Exposure to ethanol during the first 48 hours of an osteogenic differentiation protocol increased in vitro calcium deposition by AFSCs and increased alkaline phosphatase activity. In contrast, ethanol treatment later in the differentiation protocol (day 8) had no significant effect on the activity of alkaline phosphatase. CONCLUSIONS These results suggest that transient exposure of AFSCs to ethanol during early differentiation enhances osteogenic differentiation of the cells.
Collapse
Affiliation(s)
- Jennifer A Hipp
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| | - Jason D Hipp
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| | - Shay Soker
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| |
Collapse
|
268
|
Butler JS, Queally JM, Devitt BM, Murray DW, Doran PP, O'Byrne JM. Silencing Dkk1 expression rescues dexamethasone-induced suppression of primary human osteoblast differentiation. BMC Musculoskelet Disord 2010; 11:210. [PMID: 20843343 PMCID: PMC2946271 DOI: 10.1186/1471-2474-11-210] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Accepted: 09/15/2010] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The Wnt/β-catenin pathway is a major signaling cascade in bone biology, playing a key role in bone development and remodeling. The objectives of this study were firstly, to determine the effects of dexamethasone exposure on Wnt/β-catenin signaling at an intracellular and transcriptional level, and secondly, to assess the phenotypic effects of silencing the Wnt antagonist, Dickkopf-1 (Dkk1) in the setting of dexamethasone exposure. METHODS Primary human osteoblasts were exposed in vitro to 10-8 M dexamethasone over a 72 h time course. The phenotypic marker of osteoblast differentiation was analyzed was alkaline phosphatase activity. Intracellular β-catenin trafficking was assessed using immunoflourescence staining and TCF/LEF mediated transcription was analyzed using a Wnt luciferase reporter assay. Dkk1 expression was silenced using small interfering RNA (siRNA). RESULTS Primary human osteoblasts exposed to dexamethasone displayed a significant reductions in alkaline phosphatase activity over a 72 h time course. Immunoflourescence analaysis of β-catenin localization demonstrated a significant reduction in intracytosolic and intranuclear β-catenin in response to dexamethasone exposure. These changes were associated with a reduction of TCF/LEF mediated transcription. Silencing Dkk1 expression in primary human osteoblasts exposed to dexamethasone resulted in an increase in alkaline phosphatase activity when compared to scrambled control. CONCLUSIONS Wnt/β-catenin signaling plays a key role in regulating glucocorticoid-induced osteoporosis in vitro. Silencing Dkk1 expression rescues dexamethasone-induced suppression of primary human osteoblast differentiation. Targeting of the Wnt/β-catenin signaling pathway offers an exciting opportunity to develop novel anabolic bone agents to treat osteoporosis and disorders of bone mass.
Collapse
Affiliation(s)
- Joseph S Butler
- Clinical Research Centre, UCD School of Medicine & Medical Science, Mater Misericordiae University Hospital, Dublin, Ireland.
| | | | | | | | | | | |
Collapse
|
269
|
Yavropoulou MP, Papapoulos SE. Targeting the Wnt signaling pathway for the development of novel therapies for osteoporosis. Expert Rev Endocrinol Metab 2010; 5:711-722. [PMID: 30764023 DOI: 10.1586/eem.10.48] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A number of anti-osteoporotic drugs, predominantly inhibitors of bone resorption, are currently used in the management of patients with osteoporosis to reduce the risk of fractures. While the management of the disease has improved significantly, there are still unmet needs, mainly due to a lack of agents able to replace bone that has already been lost. Human and animal genetics have identified the pivotal role of the Wnt signaling pathway in the regulation of bone formation by the osteoblasts and have made it a very attractive target for the development of novel treatments for osteoporosis. In this article, we review evidence that supports the targeting of components of the Wnt signaling pathway for the design of bone-forming treatments for osteoporosis.
Collapse
Affiliation(s)
- Maria P Yavropoulou
- a Department of Endocrinology and Metabolic Diseases, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Socrates E Papapoulos
- a Department of Endocrinology and Metabolic Diseases, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
- b
| |
Collapse
|
270
|
Abstract
Wnt signaling is involved not only in embryonic development but also in maintenance of
homeostasis in postnatal tissues. Multiple lines of evidence have increased understanding
of the roles of Wnt signaling in bone since mutations in the LRP5 gene
were identified in human bone diseases. Canonical Wnt signaling promotes mesenchymal
progenitor cells to differentiate into osteoblasts. The canonical Wnt/β-catenin pathway
possibly through Lrp6, a co-receptor for Wnts as well as Lrp5, in osteoblasts regulates
bone resorption by increasing the OPG/RANKL ratio. However, endogenous inhibitors of Wnt
signaling including sclerostin block bone formation. Regulation of sclerostin appears to
be one of the mechanisms of PTH anabolic actions on bone. Since sclerostin is almost
exclusively expressed in osteocytes, inhibition of sclerostin is the most promising
design. Surprisingly, Lrp5 controls bone formation by inhibiting serotonin synthesis in
the duodenum, but not by directly promoting bone formation. Pharmacological intervention
may be considered in many components of the canonical Wnt signaling pathway, although
adverse effects and tumorigenicity to other tissues are important. More studies will be
needed to fully understand how the Wnt signaling pathway actually influences bone
metabolism and to assure the safety of new interventions.
Collapse
Affiliation(s)
- Takuo Kubota
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan ; Department of Bone and Mineral Research, Osaka Medical Center and Research Institute for Maternal and Child Health, Osaka, Japan
| | | | | |
Collapse
|
271
|
Glaw JT, Skalak TC, Peirce SM. Inhibition of canonical Wnt signaling increases microvascular hemorrhaging and venular remodeling in adult rats. Microcirculation 2010; 17:348-57. [PMID: 20618692 PMCID: PMC2904644 DOI: 10.1111/j.1549-8719.2010.00036.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE The canonical Wnt signaling pathway, heavily studied in development and cancer, has recently been implicated in microvascular growth with the use of developmental and in vitro models. To date, however, no study exists showing the effects of perturbing the canonical Wnt pathway in a complete microvascular network undergoing physiological remodeling in vivo. Our objective was to investigate the effects of canonical Wnt inhibition on the microvascular remodeling of adult rats. METHODS Canonical Wnt inhibitor DKK-1, Wnt inhibitor sFRP-1, BSA or saline was superfused onto the exteriorized mesenteric windows of 300 g adult female Sprague-Dawley rats for 20 minutes. Three days following surgery, mesenteric windows were imaged intravitally and harvested for immunofluorescence staining with smooth muscle alpha-actin and BRDU. RESULTS We observed prominent differences in the response of the mesenteric microvasculature amongst the various treatment groups. Significant increases in hemorrhage area, vascular density, and draining vessel diameter were observed in windows treated with Wnt inhibitors as compared to control-treated windows. Additionally, confocal imaging analysis showed significant increases in proliferating cells as well as evidence of proliferating smooth muscle cells along venules. CONCLUSIONS Together, our results suggest that canonical Wnt inhibition plays an important role in microvascular remodeling, specifically venular remodeling.
Collapse
Affiliation(s)
- Jason T Glaw
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22908, USA
| | | | | |
Collapse
|
272
|
Zhang C. Transcriptional regulation of bone formation by the osteoblast-specific transcription factor Osx. J Orthop Surg Res 2010; 5:37. [PMID: 20550694 PMCID: PMC2898801 DOI: 10.1186/1749-799x-5-37] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2010] [Accepted: 06/15/2010] [Indexed: 12/17/2022] Open
Abstract
Bone formation is a complex developmental process involving the differentiation of mesenchymal stem cells to osteoblasts. Osteoblast differentiation occurs through a multi-step molecular pathway regulated by different transcription factors and signaling proteins. Osx (also known as Sp7) is the only osteoblast-specific transcriptional factor identified so far which is required for osteoblast differentiation and bone formation. Osx knock-out mice lack bone completely and cartilage is normal. This opens a new window to the whole research field of bone formation. Osx inhibits Wnt pathway signaling, a possible mechanism for Osx to inhibit osteoblast proliferation. These reports demonstrate that Osx is the master gene that controls osteoblast lineage commitment and the subsequent osteoblast proliferation and differentiation. This review is to highlight recent progress in understanding the molecular mechanisms of transcriptional regulation of bone formation by Osx.
Collapse
Affiliation(s)
- Chi Zhang
- Bone Research Laboratory, Texas Scottish Rite Hospital for Children, Department of Orthopedic Surgery, University of Texas Southwestern Medical Center at Dallas, Texas, USA.
| |
Collapse
|
273
|
Weng LH, Wang CJ, Ko JY, Sun YC, Wang FS. Control of Dkk-1 ameliorates chondrocyte apoptosis, cartilage destruction, and subchondral bone deterioration in osteoarthritic knees. ACTA ACUST UNITED AC 2010; 62:1393-402. [PMID: 20131282 DOI: 10.1002/art.27357] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Perturbation of Wnt signaling components reportedly regulates chondrocyte fate and joint disorders. The Wnt inhibitor Dkk-1 mediates remodeling of various tissue types. We undertook this study to examine whether control of Dkk-1 expression prevents joint deterioration in osteoarthritic (OA) knees. METHODS Anterior cruciate ligament transection-and collagenase-induced OA in rat knees was treated with end-capped phosphorothioate Dkk-1 antisense oligonucleotide (Dkk-1-AS). Articular cartilage destruction, cartilage degradation markers, bone mineral density (BMD), and subchondral trabecular bone volume of injured knee joints were measured using Mankin scoring, enzyme-linked immunosorbent assay, dual x-ray absorptiometry, and histomorphometry. Dkk-1-responsive molecule expression and apoptotic cells in knee tissue were detected by quantitative reverse transcriptase-polymerase chain reaction, immunoblotting, and TUNEL staining. RESULTS Up-regulated Dkk-1 expression was associated with increased Mankin score and with increased serum levels of cartilage oligomeric matrix protein and C-telopeptide of type II collagen (CTX-II) during OA development. Dkk-1-AS treatment alleviated OA-associated increases in Dkk-1 expression, Mankin score, cartilage fibrillation, and serum cartilage degradation markers. Dkk-1-AS also alleviated epiphyseal BMD loss and subchondral bone exposure associated with altered serum levels of osteocalcin and CTX-I. The treatment abrogated chondrocyte/osteoblast apoptosis and subchondral trabecular bone remodeling in OA. Dkk-1 knockdown increased levels of nuclear beta-catenin and phosphorylated Ser(473)-Akt but attenuated expression of inflammatory factors (Toll-like receptor 4 [TLR-4], TLR-9, interleukin-1beta, and tumor necrosis factor alpha), the apoptosis regulator Bax, matrix metalloproteinase 3, and RANKL in OA knee joints. CONCLUSION Interference with the cartilage- and bone-deleterious actions of Dkk-1 provides therapeutic potential for alleviating cartilage destruction and subchondral bone damage in OA knee joints.
Collapse
Affiliation(s)
- Lin-Hsiu Weng
- Chang Gung Memorial Hospital-Kaohsiung Medical Center and Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | | | | | | | | |
Collapse
|
274
|
Gaudio A, Pennisi P, Bratengeier C, Torrisi V, Lindner B, Mangiafico RA, Pulvirenti I, Hawa G, Tringali G, Fiore CE. Increased sclerostin serum levels associated with bone formation and resorption markers in patients with immobilization-induced bone loss. J Clin Endocrinol Metab 2010; 95:2248-53. [PMID: 20305005 DOI: 10.1210/jc.2010-0067] [Citation(s) in RCA: 221] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
CONTEXT Sclerostin, a Wnt signaling antagonist on the osteoblasts produced by osteocytes, is regulated by mechanical strain and is implicated in the pathogenesis of disuse bone loss. There are no data on sclerostin in humans. OBJECTIVE The aim of the study was to evaluate sclerostin in patients immobilized after stroke, compared with control subjects, and to analyze its relationship with markers of bone formation and resorption. DESIGN This was a cross-sectional study. SETTING AND PATIENTS We studied 40 postmenopausal women immobilized after a single episode of stroke 6 months or longer after onset, and 40 postmenopausal women from the general community. Bone status was assessed by quantitative ultrasound measurements at the calcaneus. Bone alkaline phosphatase (b-AP), carboxy-terminal telopeptide of type I collagen (CrossLaps), and sclerostin were evaluated by ELISA. We also used ELISA to measure serum levels of Dickkopf-1, another soluble inhibitor of Wnt/beta-catenin signaling, highly expressed by osteocytes. RESULTS Immobilized patients had higher sclerostin serum levels (median 0.975 ng/ml; 25th to 75th percentiles 0.662-1.490) than controls (median 0.300 ng/ml; 25th to 75th percentiles 0.165-0.400: P < 0.0001) and an increased bone turnover with a more significant rise in bone resorption (CrossLaps) than formation (b-AP) markers. Sclerostin correlated negatively with b-AP (r = -0.911; P < 0.0001) and positively with CrossLaps (r = 0.391; P = 0.012). Dickkopf-1 did not significantly differ between the groups. Patients also had quantitative ultrasound measurements index lower than controls (P < 0.001). CONCLUSIONS This study shows for the first time that long-term immobilized patients present hypersclerostinemia associated with reduced bone formation, and suggests that sclerostin could be a link between mechanical unloading and disuse osteoporosis in humans.
Collapse
Affiliation(s)
- Agostino Gaudio
- Department of Internal Medicine, University of Catania, 95124 Catania, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
275
|
Yadav VK, Arantes HP, Barros ER, Lazaretti-Castro M, Ducy P. Genetic analysis of Lrp5 function in osteoblast progenitors. Calcif Tissue Int 2010; 86:382-8. [PMID: 20333369 DOI: 10.1007/s00223-010-9350-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Accepted: 02/25/2010] [Indexed: 12/17/2022]
Abstract
The low-density lipoprotein receptor-related protein (Lrp)-5 regulates osteoblast proliferation and bone formation through its expression in duodenum by modifying the gut serotonin-bone endocrine axis. However, its direct role, if any, in osteoblast progenitor cells has not been studied thus far. Here, we show that mice with a Dermo1-Cre-mediated disruption of Lrp5 in osteoblast progenitor cells have normal embryonic skeletogenesis and normal skeletal growth and development postnatally. Histomorphometric analysis of 3-month-old adult mice revealed normal osteoblast numbers, bone formation rate, and bone mass in Lrp5(Dermo)(-/-) mice. In addition, analysis of two osteoporosis pseudoglioma (OPPG) patients revealed a three- to fivefold increase in their serum serotonin levels compared to age-matched controls. These results rule out a direct function of Lrp5 in osteoblast progenitor cells and add further support to the notion that dysregulation of serotonin synthesis is involved in bone mass abnormalities observed in OPPG patients.
Collapse
Affiliation(s)
- Vijay K Yadav
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | | | | | | | | |
Collapse
|
276
|
Schulze J, Seitz S, Saito H, Schneebauer M, Marshall RP, Baranowsky A, Busse B, Schilling AF, Friedrich FW, Albers J, Spiro AS, Zustin J, Streichert T, Ellwanger K, Niehrs C, Amling M, Baron R, Schinke T. Negative regulation of bone formation by the transmembrane Wnt antagonist Kremen-2. PLoS One 2010; 5:e10309. [PMID: 20436912 PMCID: PMC2860505 DOI: 10.1371/journal.pone.0010309] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Accepted: 03/24/2010] [Indexed: 12/17/2022] Open
Abstract
Wnt signalling is a key pathway controlling bone formation in mice and humans. One of the regulators of this pathway is Dkk1, which antagonizes Wnt signalling through the formation of a ternary complex with the transmembrane receptors Krm1/2 and Lrp5/6, thereby blocking the induction of Wnt signalling by the latter ones. Here we show that Kremen-2 (Krm2) is predominantly expressed in bone, and that its osteoblast-specific over-expression in transgenic mice (Col1a1-Krm2) results in severe osteoporosis. Histomorphometric analysis revealed that osteoblast maturation and bone formation are disturbed in Col1a1-Krm2 mice, whereas bone resorption is increased. In line with these findings, primary osteoblasts derived from Col1a1-Krm2 mice display a cell-autonomous differentiation defect, impaired canonical Wnt signalling and decreased production of the osteoclast inhibitory factor Opg. To determine whether the observed effects of Krm2 on bone remodeling are physiologically relevant, we analyzed the skeletal phenotype of 24 weeks old Krm2-deficient mice and observed high bone mass caused by a more than three-fold increase in bone formation. Taken together, these data identify Krm2 as a regulator of bone remodeling and raise the possibility that antagonizing KRM2 might prove beneficial in patients with bone loss disorders.
Collapse
Affiliation(s)
- Jochen Schulze
- Institute of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Sebastian Seitz
- Institute of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Hiroaki Saito
- Harvard School of Dental Medicine and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Michael Schneebauer
- Institute of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Robert P. Marshall
- Institute of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Anke Baranowsky
- Institute of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Bjoern Busse
- Institute of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Arndt F. Schilling
- Institute of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Felix W. Friedrich
- Institute of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Joachim Albers
- Institute of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Alexander S. Spiro
- Institute of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Jozef Zustin
- Institute of Pathology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Thomas Streichert
- Department of Clinical Chemistry, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Kristina Ellwanger
- Division of Molecular Embryology, Research Program Cell and Tumor Biology of the German Cancer Research Center and the Center for Molecular Biology of the University of Heidelberg (DKFZ-ZMBH) Alliance, German Cancer Research Center, Heidelberg, Germany
| | - Christof Niehrs
- Division of Molecular Embryology, Research Program Cell and Tumor Biology of the German Cancer Research Center and the Center for Molecular Biology of the University of Heidelberg (DKFZ-ZMBH) Alliance, German Cancer Research Center, Heidelberg, Germany
| | - Michael Amling
- Institute of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Roland Baron
- Harvard School of Dental Medicine and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Thorsten Schinke
- Institute of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg, Germany
- * E-mail:
| |
Collapse
|
277
|
Kwan Tat S, Lajeunesse D, Pelletier JP, Martel-Pelletier J. Targeting subchondral bone for treating osteoarthritis: what is the evidence? Best Pract Res Clin Rheumatol 2010; 24:51-70. [PMID: 20129200 DOI: 10.1016/j.berh.2009.08.004] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Over the past few decades, significant progress has been made with respect to new concepts about the pathogenesis of osteoarthritis (OA). This article summarises some of the knowledge we have today on the involvement of the subchondral bone in OA. It provides substantial evidence that changes in the metabolism of the subchondral bone are an integral part of the OA disease process and that these alterations are not merely secondary manifestations, but are part of a more active component of the disease. Thus, a strong rationale exists for therapeutic approaches that target subchondral bone resorption and/or formation, and data evaluating the drugs targeting bone remodelling raise the hope that new treatment options for OA may become available.
Collapse
Affiliation(s)
- Steeve Kwan Tat
- Osteoarthritis Research Unit, University of Montreal Hospital Research Centre (CRCHUM), Notre-Dame Hospital, 1560 Sherbrooke Street East, Montreal, Quebec H2L 4M1, Canada
| | | | | | | |
Collapse
|
278
|
Piters E, Balemans W, Nielsen TL, Andersen M, Boudin E, Brixen K, Van Hul W. Common genetic variation in the DKK1 gene is associated with hip axis length but not with bone mineral density and bone turnover markers in young adult men: results from the Odense Androgen Study. Calcif Tissue Int 2010; 86:271-81. [PMID: 20101398 DOI: 10.1007/s00223-010-9334-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Accepted: 01/02/2010] [Indexed: 12/17/2022]
Abstract
LRP5 was recently confirmed as an important susceptibility gene for osteoporosis. Our objective was to evaluate the effect of DKK1 polymorphisms on bone mineral density (BMD), hip geometry, and bone turnover. DKK1 is a secreted protein that binds to LRP5/6 receptors and inhibits canonical Wnt signaling. Using HapMap, we selected three SNPs covering the genetic variation in a 13.53-kb region comprising DKK1. The Odense Androgen Study is a population-based study comprising 783 Caucasian men aged 20-29 years. BMD and hip structural parameters were available for study. Bone turnover markers were used as a secondary end point. All analyses were repeated after adjusting for covariables and in subgroups according to physical activity. We found no significant association between DKK1 and BMD or markers of bone turnover; however, a significant association (P = 0.012) was found for rs1569198 with hip axis length (HAL), independent of BMD and height. Moreover, the association seemed to be driven by the non-sedentary subgroup (P = 0.004). Haplotype analysis further confirmed the association of rs1569198 with HAL. Furthermore, we obtained indications for interaction between DKK1 and LRP5 genotypes for different hip geometry parameters. As almost all variance within the DKK1 gene was covered, we conclude that common variation in this gene does not markedly influence BMD or bone turnover markers in young men. In this population, however, a common SNP in DKK1 does have a significant effect on HAL, implying a possible effect on hip fracture risk in the general population. This finding could be of interest but needs replication in independent populations.
Collapse
Affiliation(s)
- Elke Piters
- Department of Medical Genetics, University of Antwerp and University Hospital, Antwerp, Belgium.
| | | | | | | | | | | | | |
Collapse
|
279
|
Daoussis D, Liossis SNC, Solomou EE, Tsanaktsi A, Bounia K, Karampetsou M, Yiannopoulos G, Andonopoulos AP. Evidence that Dkk-1 is dysfunctional in ankylosing spondylitis. ACTA ACUST UNITED AC 2010; 62:150-8. [PMID: 20039407 DOI: 10.1002/art.27231] [Citation(s) in RCA: 176] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Dkk-1 is an inhibitory molecule that regulates the Wnt pathway, which controls osteoblastogenesis. This study was undertaken to explore the potential role of Dkk-1 in ankylosing spondylitis (AS), a prototypical bone-forming disease. METHODS Serum Dkk-1 levels were measured in 45 patients with AS, 45 patients with rheumatoid arthritis (RA), 15 patients with psoriatic arthritis (PsA), and 50 healthy subjects by sandwich enzyme-linked immunosorbent assay (ELISA). A functional ELISA was used to assess the binding of Dkk-1 to its receptor (low-density lipoprotein receptor-related protein 6). Furthermore, we studied the effect of sera from patients with AS and healthy subjects on the activity of the Wnt pathway in the Jurkat T cell model, with and without a neutralizing anti-Dkk-1 monoclonal antibody, by Western immunoblotting. RESULTS Serum Dkk-1 levels were significantly increased in patients with AS (mean +/- SEM 2,730 +/- 135.1 pg/ml) as compared with normal subjects (P = 0.040), patients with RA (P = 0.020), and patients with PsA (P = 0.049). Patients with AS receiving anti-tumor necrosis factor alpha (anti-TNFalpha) treatment had significantly higher serum Dkk-1 levels than patients with AS not receiving such treatment (P = 0.007). Patients with AS studied serially prior to and following anti-TNFalpha administration exhibited a significant increase in serum Dkk-1 levels (P = 0.020), in contrast to patients with RA, who exhibited a dramatic decrease (P < 0.001). Jurkat cells treated with serum from AS patients exhibited increased Wnt signaling compared with cells treated with control serum. In that system, Dkk-1 blockade significantly enhanced Wnt signaling in control serum-treated, but not AS serum-treated, Jurkat T cells. CONCLUSION Our findings indicate that in patients with AS, circulating bone formation-promoting factors functionally prevail. This can be at least partially attributed to decreased Dkk-1-mediated inhibition.
Collapse
MESH Headings
- Adult
- Antibodies, Blocking/pharmacology
- Antibodies, Monoclonal/pharmacology
- Arthritis, Psoriatic/blood
- Arthritis, Psoriatic/physiopathology
- Arthritis, Rheumatoid/blood
- Arthritis, Rheumatoid/physiopathology
- Etanercept
- Female
- Health Status
- Humans
- Immunoglobulin G/therapeutic use
- Intercellular Signaling Peptides and Proteins/blood
- Intercellular Signaling Peptides and Proteins/physiology
- Jurkat Cells
- Male
- Middle Aged
- Receptors, Tumor Necrosis Factor/therapeutic use
- Severity of Illness Index
- Signal Transduction/drug effects
- Spondylitis, Ankylosing/blood
- Spondylitis, Ankylosing/drug therapy
- Spondylitis, Ankylosing/physiopathology
- Tumor Necrosis Factor-alpha/immunology
- Wnt Proteins/metabolism
Collapse
Affiliation(s)
- Dimitrios Daoussis
- Department of Internal Medicine, Division of Rheumatology, Patras University Hospital, University of Patras, Patras, Greece.
| | | | | | | | | | | | | | | |
Collapse
|
280
|
Ko JY, Wang FS, Wang CJ, Wong T, Chou WY, Tseng SL. Increased Dickkopf-1 expression accelerates bone cell apoptosis in femoral head osteonecrosis. Bone 2010; 46:584-91. [PMID: 19895917 DOI: 10.1016/j.bone.2009.10.030] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2009] [Revised: 10/26/2009] [Accepted: 10/26/2009] [Indexed: 12/11/2022]
Abstract
Intensive bone cell apoptosis contributes to osteonecrosis of femoral head (ONFH). Dickkopf-1 (DKK1) reportedly mediates various types of skeletal disorders. This study investigated whether DKK1 was linked to the occurrence of ONFH. Thirty-nine patients with various stages of ONFH were recruited. Bone specimens were harvested from 34 ONFH patients underwent hip arthroplasty, and from 10 femoral neck fracture patients. Bad, Bcl2 TNFalpha, DKK1, Wnt3a, LRP5, and Axin1 expressions were analyzed by quantitative RT-PCR and ELISA. Apoptotic cells were assayed using terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate-biotin nick end-labelling (TUNEL). Primary bone-marrow mesenchymal cells were treated with DKK1 RNA interference and recombinant DKK1 protein. ONFH patients with the histories of being administrated corticosteroids and excessive alcohol consumption had significantly higher Bad and DKK1 mRNA expressions in bone tissue and DKK1 abundances in serum than femoral neck fracture patients. Bone cells adjacent to osteonecrotic bone displayed strong DKK1 immunoreactivity and TUNEL staining. Increased DKK1 expression in bone tissue and serum correlated with Bad expression and TUNEL staining. Serum DKK1 abundance correlated with the severity of ONFH. The DKK1 RNA interference and recombinant DKK1 protein regulated Bad expression and apoptosis of primary bone-marrow mesenchymal cells. Knock down of DKK1 reduced dexamethasone-induced apoptosis of mesenchymal cells. Taken together, promoted DKK1 expression was associated with bone cell apoptosis in the occurrence of ONFH patients with the histories of corticosteroid and alcohol intake and progression of ONFH. DKK1 expression in injured tissue provides new insight into ONFH pathogenesis.
Collapse
Affiliation(s)
- Jih-Yang Ko
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Niao-Sung, Kaohsiung 833, Taiwan
| | | | | | | | | | | |
Collapse
|
281
|
Guo J, Liu M, Yang D, Bouxsein ML, Saito H, Galvin RJS, Kuhstoss SA, Thomas CC, Schipani E, Baron R, Bringhurst FR, Kronenberg HM. Suppression of Wnt signaling by Dkk1 attenuates PTH-mediated stromal cell response and new bone formation. Cell Metab 2010; 11:161-71. [PMID: 20142103 PMCID: PMC2819982 DOI: 10.1016/j.cmet.2009.12.007] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2009] [Revised: 09/08/2009] [Accepted: 12/04/2009] [Indexed: 12/17/2022]
Abstract
Parathyroid hormone (PTH) suppresses Dickkopf 1 (Dkk1) expression in osteoblasts. To determine whether this suppression is essential for PTH-mediated Wnt signaling and bone formation, we examined mice that overexpress Dkk1 in osteoblasts (Dkk1 mice). Dkk1 mice were osteopenic due to abnormal osteoblast and osteoclast activity. When fed a low-calcium diet, and in two other models of hyperparathyroidism, these mice failed to develop the peritrabecular stromal cell response ("osteitis fibrosis") and new bone formation seen in wild-type mice. Despite these effects of Dkk1 overexpression, PTH still activated Wnt signaling in Dkk1 mice and in osteoblastic cells cultured from these mice. In cultured MC3T3E1 preosteoblastic cells, PTH dramatically suppressed Dkk1 expression, induced PKA-mediated phosphorylation of beta-catenin, and significantly enhanced Lef1 expression. Our findings indicate that the full actions of PTH require intact Wnt signaling but that PTH can activate the Wnt pathway despite overexpression of Dkk1.
Collapse
Affiliation(s)
- Jun Guo
- Endocrine Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Minlin Liu
- Endocrine Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Dehong Yang
- Endocrine Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Mary L Bouxsein
- Orthopedic Biomechanics Laboratory, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Hiroaki Saito
- Department of Oral Medicine, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - R J Sells Galvin
- Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - Stuart A. Kuhstoss
- Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - Clare C Thomas
- Endocrine Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | - Roland Baron
- Department of Oral Medicine, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | | | | |
Collapse
|
282
|
Wnt inhibitors Dkk1 and Sost are downstream targets of BMP signaling through the type IA receptor (BMPRIA) in osteoblasts. J Bone Miner Res 2010; 25:200-10. [PMID: 19874086 PMCID: PMC3153381 DOI: 10.1359/jbmr.090806] [Citation(s) in RCA: 169] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The bone morphogenetic protein (BMP) and Wnt signaling pathways both contribute essential roles in regulating bone mass. However, the molecular interactions between these pathways in osteoblasts are poorly understood. We recently reported that osteoblast-targeted conditional knockout (cKO) of BMP receptor type IA (BMPRIA) resulted in increased bone mass during embryonic development, where diminished expression of Sost as a downstream effector of BMPRIA resulted in increased Wnt/beta-catenin signaling. Here, we report that Bmpr1a cKO mice exhibit increased bone mass during weanling stages, again with evidence of enhanced Wnt/beta-catenin signaling as assessed by Wnt reporter TOPGAL mice and TOPFLASH luciferase. Consistent with negative regulation of the Wnt pathway by BMPRIA signaling, treatment of osteoblasts with dorsomorphin, an inhibitor of Smad-dependent BMP signaling, enhanced Wnt signaling. In addition to Sost, Wnt inhibitor Dkk1 also was downregulated in cKO bone. Expression levels of Dkk1and Sost were upregulated by BMP2 treatment and downregulated by Noggin. Moreover, expression of a constitutively active Bmpr1a transgene in mice resulted in the upregulation of both Dkk1 and Sost and partially rescued the Bmpr1a cKO bone phenotype. These effectors are differentially regulated by mitogen-activated protein kinase (MAPK) p38 because pretreatment of osteoblasts with SB202190 blocked BMP2-induced Dkk1 expression but not Sost. These results demonstrate that BMPRIA in osteoblasts negatively regulates endogenous bone mass and Wnt/beta-catenin signaling and that this regulation may be mediated by the activities of Sost and Dkk1. This study highlights several interactions between BMP and Wnt signaling cascades in osteoblasts that may be amenable to therapeutic intervention for the modification of bone mass density.
Collapse
|
283
|
McCarthy TL, Centrella M. Novel links among Wnt and TGF-beta signaling and Runx2. Mol Endocrinol 2010; 24:587-97. [PMID: 20093419 DOI: 10.1210/me.2009-0379] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Osteoblasts exhibit complex Wnt-induced effects that increase T cell factor (TCF)/lymphoid enhancing factor-dependent transcription in parallel with beta-catenin stabilization and nuclear factor binding to TCF response element DNA. Here we show that Wnt-dependent gene expression increases during the early phase of osteoblast differentiation in vitro, is enhanced by prostaglandin E(2) activation of transcription factor Runx2 (runt homology domain transcription factor 2), and is specifically suppressed in Runx2 antisense-depleted osteoblasts. Moreover, Wnt pathway induction increases expression of the Runx2-sensitive gene, TGF-beta type I receptor, without increasing nuclear Runx2 levels or Runx2 binding to DNA. Rather, despite an increase in beta-catenin levels, Wnt pathway induction enhances Runx2 transcriptional potential in a beta-catenin-independent way. Runx2 functionally associates with TCF-4 that lacks a beta-catenin-binding domain and is more fully activated in response to both prostaglandin E(2) and Wnt pathway induction. Wnt pathway induction increases TGF-beta type I receptor expression, yet regulates, both positively and negatively, TGF-beta signaling. Furthermore, TGF-beta signaling enhances TCF-4 and lymphoid enhancing factor-1 mRNA expression and increases TCF-4 transcriptional activity. Therefore, we propose that cross talk between the Wnt and TGF-beta pathways, which converge on Runx2, both promotes and attenuates individual aspects of osteoblast maturation.
Collapse
Affiliation(s)
- Thomas L McCarthy
- Department of Surgery, Yale University School of Medicine, 333 Cedar Street, MS 208041, New Haven, Connecticut 06520, USA.
| | | |
Collapse
|
284
|
Olivares-Navarrete R, Hyzy S, Wieland M, Boyan BD, Schwartz Z. The roles of Wnt signaling modulators Dickkopf-1 (Dkk1) and Dickkopf-2 (Dkk2) and cell maturation state in osteogenesis on microstructured titanium surfaces. Biomaterials 2009; 31:2015-24. [PMID: 20004015 DOI: 10.1016/j.biomaterials.2009.11.071] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2009] [Accepted: 11/20/2009] [Indexed: 12/16/2022]
Abstract
Osteoblast differentiation on tissue culture polystyrene (TCPS) requires Wnt/beta-catenin signaling, regulating modulators of the Wnt pathway like Dickkopf-1 (Dkk1) and Dkk2. Osteoblast differentiation is increased on microstructured titanium (Ti) surfaces compared to TCPS; therefore, we hypothesized that surface topography and hydrophilicity affect Dkk1 and Dkk2 expression and that their roles in osteoblast differentiation on Ti differs depending on cell maturation state. Human osteoblast-like MG63 cells, normal human osteoblasts (HOBs), and human mesenchymal stem cells (MSCs), as well as MG63 cells stably silenced for Dkk1 or Dkk2 were grown for 6 days on TCPS and Ti surfaces (PT [Ra<0.2 microm], SLA [Ra=4 microm], modSLA [hydrophilic-SLA]). Dkk1 and Dkk2 mRNA and protein increased on SLA and modSLA for all cell types, but exogenous rhDkk1 and rhDkk2 affected MSCs differently than MG63 cells and HOBs. Silencing Dkk1 reduced MG63 cell number on TCPS and PT, but increased differentiation on these substrates. Silencing Dkk2 reduced stimulatory effects of SLA and modSLA on osteoblast differentiation; Dkk2 but not Dkk1 restored these effects. Antibodies to Dkk1 or Dkk2 specifically blocked substrate-dependent changes caused by the proteins, demonstrating their autocrine action. This indicates major roles for Dkk1 and the canonical Wnt pathway in early-stage differentiation, and for Dkk2 and Wnt/Ca2+-dependent signaling in late-stage differentiation on microstructured and hydrophilic surfaces, during osseointegration.
Collapse
Affiliation(s)
- Rene Olivares-Navarrete
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 315 Ferst Drive NW, Atlanta, GA 30332-0363, USA
| | | | | | | | | |
Collapse
|
285
|
Murrills RJ, Matteo JJ, Bhat BM, Coleburn VE, Allen KM, Chen W, Damagnez V, Bhat RA, Bex FJ, Bodine PV. A cell-based Dkk1 binding assay reveals roles for extracellular domains of LRP5 in Dkk1 interaction and highlights differences between wild-type and the high bone mass mutant LRP5(G171V). J Cell Biochem 2009; 108:1066-75. [DOI: 10.1002/jcb.22335] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
286
|
|
287
|
Gogakos AI, Cheung MS, Bassett JD, Williams GR. Bone signaling pathways and treatment of osteoporosis. Expert Rev Endocrinol Metab 2009; 4:639-650. [PMID: 30780784 DOI: 10.1586/eem.09.38] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Osteoporotic fractures are a major healthcare burden costing over US$50 billion/per year. Bone turnover is a continuous process regulated by the coupled activities of osteocytes, osteoclasts and osteoblasts that maintain bone mass and strength. Osteoclastic bone resorption is regulated by the RANKL/osteoprotegerin/RANK pathway, while osteoblastic bone formation is controlled by canonical Wnt signaling. Antiresorptive bisphosphonates remain the mainstay of treatment but recombinant parathyroid hormone is increasingly being used as an anabolic agent. Nevertheless, these drugs are limited by patient compliance, efficacy and cost. Cathepsin K inhibitors and RANKL antibodies have been developed as new antiresorptive drugs, while short-acting calcilytics and antibodies to Dickkopf-1 and sclerostin are promising anabolics. The recent identification of adipocytes and duodenal enterochromaffin cells as novel regulators of bone mass represent exciting opportunities for future drug development.
Collapse
Affiliation(s)
- Apostolos I Gogakos
- a Molecular Endocrinology Group, Imperial College London, MRC Clinical Sciences Centre, Room 7N2, 7th Floor Commonwealth Building, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK.
| | - Moira S Cheung
- b Molecular Endocrinology Group, Imperial College London, MRC Clinical Sciences Centre, Room 7N2, 7th Floor Commonwealth Building, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK.
| | - Jh Duncan Bassett
- c Molecular Endocrinology Group, Imperial College London, MRC Clinical Sciences Centre, Room 7N2b, 7th Floor Commonwealth Building, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK.
| | - Graham R Williams
- d Molecular Endocrinology Group, Imperial College London, MRC Clinical Sciences Centre, Room 7N2a, 7th Floor Commonwealth Building, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
288
|
Milat F, Ng KW. Is Wnt signalling the final common pathway leading to bone formation? Mol Cell Endocrinol 2009; 310:52-62. [PMID: 19524639 DOI: 10.1016/j.mce.2009.06.002] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Revised: 06/03/2009] [Accepted: 06/04/2009] [Indexed: 12/17/2022]
Abstract
Since the discovery of the link between mutations in the LRP5 gene and human bone mass, considerable progress has been made in our understanding of Wnt signalling and bone formation. The connection between canonical Wnt signalling and bone formation is convincing, and there is evidence of interaction between the Wnt signalling pathway and key growth factors, transcriptional factors and systemic hormones. More recently, the role of the non-canonical pathway in bone metabolism has also started to be explored as well as potential bone-gut interactions. This review focuses on the role of the Wnt pathway in osteoblast differentiation as well as the interplay between Wnt signalling and other pathways involved in bone formation.
Collapse
Affiliation(s)
- Frances Milat
- St Vincent's Institute, Fitzroy, Victoria 3065, Australia.
| | | |
Collapse
|
289
|
|
290
|
Gavriatopoulou M, Dimopoulos MA, Christoulas D, Migkou M, Iakovaki M, Gkotzamanidou M, Terpos E. Dickkopf-1: a suitable target for the management of myeloma bone disease. Expert Opin Ther Targets 2009; 13:839-48. [PMID: 19530987 DOI: 10.1517/14728220903025770] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Bone disease remains a major problem in the management of patients with multiple myeloma (MM) and is characterized by the presence of lytic lesions due to increased osteoclastic activity and reduced osteoblast function. Wingless-type and integrase 1 (Wnt)/beta-catenin signaling is a central pathway for bone development and homeostasis. Dickkopf-1 (Dkk-1) is a soluble inhibitor of Wnt, which disrupts osteoblast differentiation and action. Dkk-1 is produced by myeloma cells and overexpressed in myeloma microenvironment of patients with extensive bone disease. In addition to its direct inhibitory effect of Dkk-1 on osteoblasts, Dkk-1 disrupts the Wnt3a-regulated osteoprotegerin and receptor activator of NF-kappaB ligand (RANKL) expression in osteoblasts and thus it indirectly enhances osteoclast function in MM. Dkk-1 serum and bone marrow plasma levels are increased in MM patients and correlated with advanced International Staging System stage and presence of osteolytic lesions. Preclinical studies in mouse myeloma models showed that targeting Dkk-1 with neutralizing anti-Dkk-1 antibodies resulted in increased numbers of osteoblasts, reduced numbers of multinucleated osteoclasts and increased bone volume. The bone anabolic effect of anti-Dkk-1 may also be associated with reduced myeloma burden. These data show that Dkk-1 has a pivotal role in bone health and disease and is a novel target for the management of myeloma patients with lytic bone disease.
Collapse
Affiliation(s)
- Maria Gavriatopoulou
- University of Athens School of Medicine, "Alexandra" University Hospital, Department of Clinical Therapeutics, 5 Marathonomahon street, Drossia 145-72, Athens, Greece.
| | | | | | | | | | | | | |
Collapse
|
291
|
Osteogenic differentiation of mesenchymal stem cells in multiple myeloma: Identification of potential therapeutic targets. Exp Hematol 2009; 37:879-86. [DOI: 10.1016/j.exphem.2009.04.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Revised: 04/10/2009] [Accepted: 04/20/2009] [Indexed: 11/22/2022]
|
292
|
Tang N, Song WX, Luo J, Luo X, Chen J, Sharff KA, Bi Y, He BC, Huang JY, Zhu GH, Su YX, Jiang W, Tang M, He Y, Wang Y, Chen L, Zuo GW, Shen J, Pan X, Reid RR, Luu HH, Haydon RC, He TC. BMP-9-induced osteogenic differentiation of mesenchymal progenitors requires functional canonical Wnt/beta-catenin signalling. J Cell Mol Med 2009; 13:2448-2464. [PMID: 19175684 PMCID: PMC4940786 DOI: 10.1111/j.1582-4934.2008.00569.x] [Citation(s) in RCA: 202] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Accepted: 10/21/2008] [Indexed: 12/17/2022] Open
Abstract
Bone morphogenetic protein 9 (BMP-9) is a member of the transforming growth factor (TGF)-beta/BMP superfamily, and we have demonstrated that it is one of the most potent BMPs to induce osteoblast differentiation of mesenchymal stem cells (MSCs). Here, we sought to investigate if canonical Wnt/beta-catenin signalling plays an important role in BMP-9-induced osteogenic differentiation of MSCs. Wnt3A and BMP-9 enhanced each other's ability to induce alkaline phosphatase (ALP) in MSCs and mouse embryonic fibroblasts (MEFs). Wnt antagonist FrzB was shown to inhibit BMP-9-induced ALP activity more effectively than Dkk1, whereas a secreted form of LPR-5 or low-density lipoprotein receptor-related protein (LRP)-6 exerted no inhibitory effect on BMP-9-induced ALP activity. beta-Catenin knockdown in MSCs and MEFs diminished BMP-9-induced ALP activity, and led to a decrease in BMP-9-induced osteocalcin reporter activity and BMP-9-induced expression of late osteogenic markers. Furthermore, beta-catenin knockdown or FrzB overexpression inhibited BMP-9-induced mineralization in vitro and ectopic bone formation in vivo, resulting in immature osteogenesis and the formation of chondrogenic matrix. Chromatin immunoprecipitation (ChIP) analysis indicated that BMP-9 induced recruitment of both Runx2 and beta-catenin to the osteocalcin promoter. Thus, we have demonstrated that canonical Wnt signalling, possibly through interactions between beta-catenin and Runx2, plays an important role in BMP-9-induced osteogenic differentiation of MSCs.
Collapse
Affiliation(s)
- Ni Tang
- The Second Affiliated Hospital and the Key Laboratory of Diagnostic Medicine designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Center, Chicago, IL, USA
| | - Wen-Xin Song
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Center, Chicago, IL, USA
| | - Jinyong Luo
- The Second Affiliated Hospital and the Key Laboratory of Diagnostic Medicine designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Center, Chicago, IL, USA
| | - Xiaoji Luo
- The Second Affiliated Hospital and the Key Laboratory of Diagnostic Medicine designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Center, Chicago, IL, USA
| | - Jin Chen
- The Second Affiliated Hospital and the Key Laboratory of Diagnostic Medicine designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Center, Chicago, IL, USA
| | - Katie A Sharff
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Center, Chicago, IL, USA
| | - Yang Bi
- The Second Affiliated Hospital and the Key Laboratory of Diagnostic Medicine designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Center, Chicago, IL, USA
| | - Bai-Cheng He
- The Second Affiliated Hospital and the Key Laboratory of Diagnostic Medicine designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Center, Chicago, IL, USA
| | - Jia-Yi Huang
- The Second Affiliated Hospital and the Key Laboratory of Diagnostic Medicine designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Center, Chicago, IL, USA
| | - Gao-Hui Zhu
- The Second Affiliated Hospital and the Key Laboratory of Diagnostic Medicine designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Center, Chicago, IL, USA
| | - Yu-Xi Su
- The Second Affiliated Hospital and the Key Laboratory of Diagnostic Medicine designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Center, Chicago, IL, USA
| | - Wei Jiang
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Center, Chicago, IL, USA
| | - Min Tang
- The Second Affiliated Hospital and the Key Laboratory of Diagnostic Medicine designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Yun He
- The Second Affiliated Hospital and the Key Laboratory of Diagnostic Medicine designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Center, Chicago, IL, USA
| | - Yi Wang
- The Second Affiliated Hospital and the Key Laboratory of Diagnostic Medicine designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Center, Chicago, IL, USA
| | - Liang Chen
- The Second Affiliated Hospital and the Key Laboratory of Diagnostic Medicine designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Center, Chicago, IL, USA
| | - Guo-Wei Zuo
- The Second Affiliated Hospital and the Key Laboratory of Diagnostic Medicine designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Center, Chicago, IL, USA
| | - Jikun Shen
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Center, Chicago, IL, USA
| | - Xiaochuan Pan
- Department of Radiology, The University of Chicago Medical Center, Chicago, IL, USA
| | - Russell R Reid
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Center, Chicago, IL, USA
| | - Hue H Luu
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Center, Chicago, IL, USA
| | - Rex C Haydon
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Center, Chicago, IL, USA
| | - Tong-Chuan He
- The Second Affiliated Hospital and the Key Laboratory of Diagnostic Medicine designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Center, Chicago, IL, USA
| |
Collapse
|
293
|
Marshall MJ, Evans SF, Sharp CA, Powell DE, McCarthy HS, Davie MW. Increased circulating Dickkopf-1 in Paget's disease of bone. Clin Biochem 2009; 42:965-9. [DOI: 10.1016/j.clinbiochem.2009.04.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Revised: 03/20/2009] [Accepted: 04/07/2009] [Indexed: 12/17/2022]
|
294
|
Abstract
Bone is one of the few tissues in the body with the capacity to regenerate and repair itself. Fractures usually are completely repaired in a relatively short time, but in a small percentage of cases, healing never occurs and nonunion is the result. Fracture repair and bone regeneration require the localized reactivation of signaling cascades that are crucial for skeletal development. The Wnt/beta-catenin signaling pathway is one such developmental pathway whose role in bone formation and regeneration recently has been appreciated. During the past decade, much has been learned about how Wnt pathways regulate bone mass. Small molecules and biologics aimed at this pathway are now being tested as potential new anabolic agents. This article reviews recent data demonstrating that Wnt pathways are active during fracture repair and that increasing the activities of Wnt pathway components accelerates bone regeneration.
Collapse
Affiliation(s)
- Frank J. Secreto
- Departments of Orthopedic Surgery and Biochemistry & Molecular Biology, Mayo Clinic, 200 First Street SW, Rochester, MN
| | - Luke H. Hoeppner
- Departments of Orthopedic Surgery and Biochemistry & Molecular Biology, Mayo Clinic, 200 First Street SW, Rochester, MN
- Graduate Program in Microbiology, Immunology and Cancer Biology, University of Minnesota, Minneapolis, MN
| | - Jennifer J. Westendorf
- Departments of Orthopedic Surgery and Biochemistry & Molecular Biology, Mayo Clinic, 200 First Street SW, Rochester, MN
| |
Collapse
|
295
|
Abstract
During the past 10 years we have experienced very significant developments in our understanding of bone biology, and this has improved our abilities to both diagnose and treat patients with osteoporosis. This review covers some of the significant discoveries in bone biology that have led to a better understanding of osteoporosis, including a few of the discoveries that have been translated into new therapies to treat patients with osteoporosis and the structural deterioration of patients with inflammatory arthritis.
Collapse
Affiliation(s)
- Nancy E Lane
- Aging Center, Medicine and Rheumatology, Department of Medicine, University of California at Davis Medical School, Sacramento, CA 95817, USA
| | - Wei Yao
- Aging Center, Medicine and Rheumatology, Department of Medicine, University of California at Davis Medical School, Sacramento, CA 95817, USA
| |
Collapse
|
296
|
Ruiz C, Abril N, Tarín JJ, García-Pérez MA, Cano A. The new frontier of bone formation: a breakthrough in postmenopausal osteoporosis? Climacteric 2009; 12:286-300. [PMID: 19415543 DOI: 10.1080/13697130902736939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVE Osteoporosis is a chronic disease that accelerates after menopause in many women. Most of the pharmacologic attempts to control the disease, such as hormone therapy, have emphasized the constraint of bone resorption. Since recent years have witnessed important advances in the field of bone formation, this review aims to update the present knowledge on the mechanisms affecting osteoblastogenesis and on the therapeutic results achieved by recently approved drugs. METHOD We sought peer-reviewed, full-length basic and clinical articles published between 1995 and May 2008 using a PubMed search strategy, with the terms osteoporosis and osteoblast, osteoporosis and strontium ranelate, and osteoporosis and parathyroid hormone (PTH). This search was further supplemented by a hand-search of reference lists of selected review papers. After crossing-cleaning the reference lists, some 800 articles were selected. Articles on regulators of osteoblast differentiation and function, together with well-designed clinical studies, were surveyed. RESULTS A complex network of systemic and local factors regulates osteoblastogenesis. Advances in fracture protection have been published in clinical studies with PTH. Some investigators claim an anabolic effect for strontium ranelate, which also confers protection against fracture. CONCLUSION The control of bone formation offers new clinical potential. Stimulation of bone formation by PTH has translated into fracture protection. The action of strontium ranelate has been claimed to be mediated by some level of bone formation, but this hypothesis still needs clarification.
Collapse
Affiliation(s)
- C Ruiz
- Department of Obstetrics and Gynecology, Hospital Clínico Universitario, Valencia, Spain
| | | | | | | | | |
Collapse
|
297
|
Abstract
BACKGROUND There is a need to develop new bone anabolic agents because current bone regeneration regimens have limitations. The Wingless-type MMTV integration site (Wnt) pathway has emerged as a regulator of bone formation and regeneration. OBJECTIVE To review the molecular basis for Wnt pathway modulation and discuss strategies that target it and improve bone mass. METHODS Data in peer-reviewed reports and meeting abstracts are discussed. RESULTS/CONCLUSIONS Neutralizing inhibitors of Wnt signaling have emerged as promising strategies. Small-molecule inhibitors of glycogen synthase kinase 3beta increase bone mass, lower adiposity and reduce fracture risk. Neutralizing antibodies to Dickkopf 1, secreted Frizzled-related protein 1 and sclerostin produce similar outcomes in animal models. These drugs are exciting breakthroughs but are not without risks. The challenges include tissue-specific targeting and consequently, long-term safety.
Collapse
Affiliation(s)
- Luke H. Hoeppner
- Graduate Program in Microbiology, Immunology and Cancer Biology, University of Minnesota, Minneapolis, MN
| | - Frank J. Secreto
- Departments of Orthopedic Surgery and Biochemistry & Molecular Biology, Mayo Clinic, Rochester, MN
| | - Jennifer J. Westendorf
- Departments of Orthopedic Surgery and Biochemistry & Molecular Biology, Mayo Clinic, Rochester, MN
| |
Collapse
|
298
|
Giroux S, Rousseau F. Genes and osteoporosis: time for a change in strategy. ACTA ACUST UNITED AC 2009. [DOI: 10.2217/ijr.09.11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
299
|
Miyagawa Y, Okita H, Itagaki M, Toyoda M, Katagiri YU, Fujimoto J, Hata JI, Umezawa A, Kiyokawa N. EWS/ETS regulates the expression of the Dickkopf family in Ewing family tumor cells. PLoS One 2009; 4:e4634. [PMID: 19247449 PMCID: PMC2644785 DOI: 10.1371/journal.pone.0004634] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Accepted: 01/07/2009] [Indexed: 12/11/2022] Open
Abstract
Background The Dickkopf (DKK) family comprises a set of proteins that function as regulators of Wnt/β–catenin signaling and has a crucial role in development. Recent studies have revealed the involvement of this family in tumorigenesis, however their role in tumorigenesis is still remained unclear. Methodology/Principal Findings We found increased expression of DKK2 but decreased expression of DKK1 in Ewing family tumor (EFT) cells. We showed that EFT-specific EWS/ETS fusion proteins enhance the DKK2 promoter activity, but not DKK1 promoter activity, via ets binding sites (EBSs) in the 5′ upstream region. EWS/ETS-mediated transactivation of the promoter was suppressed by the deletion and mutation of EBSs located upstream of the DKK2 gene. Interestingly, the inducible expression of EWS/ETS resulted in the strong induction of DKK2 expression and inhibition of DKK1 expression in human primary mesenchymal progenitor cells that are thought to be a candidate of cell origin of EFT. In addition, using an EFT cell line SK-ES1 cells, we also demonstrated that the expression of DKK1 and DKK2 is mutually exclusive, and the ectopic expression of DKK1, but not DKK2, resulted in the suppression of tumor growth in immuno-deficient mice. Conclusions/Significance Our results suggested that DKK2 could not functionally substitute for DKK1 tumor-suppressive effect in EFT. Given the mutually exclusive expression of DKK1 and DKK2, EWS/ETS regulates the transcription of the DKK family, and the EWS/ETS-mediated DKK2 up-regulation could affect the tumorigenicity of EFT in an indirect manner.
Collapse
Affiliation(s)
- Yoshitaka Miyagawa
- Department of Developmental Biology, National Research Institute for Child Health and Development, Setagaya-ku, Tokyo, Japan
| | - Hajime Okita
- Department of Developmental Biology, National Research Institute for Child Health and Development, Setagaya-ku, Tokyo, Japan
- * E-mail:
| | - Mitsuko Itagaki
- Department of Developmental Biology, National Research Institute for Child Health and Development, Setagaya-ku, Tokyo, Japan
| | - Masashi Toyoda
- Department of Reproductive Biology, National Research Institute for Child Health and Development, Setagaya-ku, Tokyo, Japan
| | - Yohko U. Katagiri
- Department of Developmental Biology, National Research Institute for Child Health and Development, Setagaya-ku, Tokyo, Japan
| | - Junichiro Fujimoto
- Vice President General, National Research Institute for Child Health and Development, Setagaya-ku, Tokyo, Japan
| | - Jun-ichi Hata
- Department of Developmental Biology, National Research Institute for Child Health and Development, Setagaya-ku, Tokyo, Japan
| | - Akihiro Umezawa
- Department of Reproductive Biology, National Research Institute for Child Health and Development, Setagaya-ku, Tokyo, Japan
| | - Nobutaka Kiyokawa
- Department of Developmental Biology, National Research Institute for Child Health and Development, Setagaya-ku, Tokyo, Japan
| |
Collapse
|
300
|
Kubota T, Michigami T, Ozono K. Wnt signaling in bone metabolism. J Bone Miner Metab 2009; 27:265-71. [PMID: 19333681 DOI: 10.1007/s00774-009-0064-8] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2008] [Accepted: 11/17/2008] [Indexed: 12/17/2022]
Abstract
A variety of in vivo models have increased understanding of the role of Wnt signaling in bone since mutations in the LRP5 gene were found in human bone disorders. Canonical Wnt signaling encourages mesenchymal progenitor cells to differentiate into osteoblasts. In osteoblasts, Wnt pathway also promotes proliferation and mineralization, while blocks apoptosis and osteoclastogenesis by increasing the OPG/RANKL ratio. Lrp6-mediated signaling in osteoblasts may regulate osteoclastogenesis. However, the role of canonical Wnt signaling in osteoclasts remains unknown, and our understanding of the role of non-canonical Wnt signaling in bone biology is also not sufficient. As to pharmacological intervention, many levels may be considered to target in Wnt signaling pathway, although tumorigenicity and toxicity to other tissues are important. Mesd might be one of target molecules to increase the quantity of LRP5/6 in the plasma membrane. Since sclerostin is almost exclusively expressed in osteocytes, abrogating sclerostin is the most promising design.
Collapse
Affiliation(s)
- Takuo Kubota
- Department of Pediatrics, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan.
| | | | | |
Collapse
|