251
|
Braconi D, Millucci L, Ghezzi L, Santucci A. Redox proteomics gives insights into the role of oxidative stress in alkaptonuria. Expert Rev Proteomics 2014; 10:521-35. [PMID: 24206226 DOI: 10.1586/14789450.2013.858020] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Alkaptonuria (AKU) is an ultra-rare metabolic disorder of the catabolic pathway of tyrosine and phenylalanine that has been poorly characterized at molecular level. As a genetic disease, AKU is present at birth, but its most severe manifestations are delayed due to the deposition of a dark-brown pigment (ochronosis) in connective tissues. The reasons for such a delayed manifestation have not been clarified yet, though several lines of evidence suggest that the metabolite accumulated in AKU sufferers (homogentisic acid) is prone to auto-oxidation and induction of oxidative stress. The clarification of the pathophysiological molecular mechanisms of AKU would allow a better understanding of the disease, help find a cure for AKU and provide a model for more common rheumatic diseases. With this aim, we have shown how proteomics and redox proteomics might successfully overcome the difficulties of studying a rare disease such as AKU and the limitations of the hitherto adopted approaches.
Collapse
Affiliation(s)
- Daniela Braconi
- Dipartimento di Biotecnologie, Chimica e Farmacia, via Fiorentina 1, Università degli Studi di Siena, 53100 Siena, Italy
| | | | | | | |
Collapse
|
252
|
Yáñez A, Cho SH, Soriano JB, Rosenwasser LJ, Rodrigo GJ, Rabe KF, Peters S, Niimi A, Ledford DK, Katial R, Fabbri LM, Celedón JC, Canonica GW, Busse P, Boulet LP, Baena-Cagnani CE, Hamid Q, Bachert C, Pawankar R, Holgate ST. Asthma in the elderly: what we know and what we have yet to know. World Allergy Organ J 2014; 7:8. [PMID: 25152804 PMCID: PMC4137434 DOI: 10.1186/1939-4551-7-8] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 04/02/2014] [Indexed: 02/07/2023] Open
Abstract
In the past, asthma was considered mainly as a childhood disease. However, asthma is an important cause of morbidity and mortality in the elderly nowadays. In addition, the burden of asthma is more significant in the elderly than in their younger counterparts, particularly with regard to mortality, hospitalization, medical costs or health-related quality of life. Nevertheless, asthma in the elderly is still been underdiagnosed and undertreated. Therefore, it is an imperative task to recognize our current challenges and to set future directions. This project aims to review the current literature and identify unmet needs in the fields of research and practice for asthma in the elderly. This will enable us to find new research directions, propose new therapeutic strategies, and ultimately improve outcomes for elderly people with asthma. There are data to suggest that asthma in older adults is phenotypically different from young patients, with potential impact on the diagnosis, assessment and management in this population. The diagnosis of AIE in older populations relies on the same clinical findings and diagnostic tests used in younger populations, but the interpretation of the clinical data is more difficult. The challenge today is to encourage new research in AIE but to use the existing knowledge we have to make the diagnosis of AIE, educate the patient, develop a therapeutic approach to control the disease, and ultimately provide a better quality of life to our elderly patients.
Collapse
Affiliation(s)
- Anahí Yáñez
- Investigaciones en Alergia y Enfermedades Respiratorias- InAER, Buenos Aires, Argentina
| | - Sang-Hoen Cho
- Department of Internal Medicine, Hanyang University Hospital, Seoul, South Korea
| | - Joan B Soriano
- Programa de Epidemiologia e Investigacion Clinica, Fundación Caubet-CIMERA, Illes Balears, Spain
| | - Lanny J Rosenwasser
- Children's Mercy Hospital, University of Missouri - Kansas City School of Medicine, Kansas City, Missoui, United States of America
| | - Gustavo J Rodrigo
- Departamento de Emergencia, Hospital Central de las Fuerzas Armadas, Montevideo, Uruguay
| | - Klaus F Rabe
- Krankenhaus Lungen Clinic, Grosshansdorf, Germany
| | - Stephen Peters
- Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Akio Niimi
- Department of Medical Oncology and Immunology, Nagoya City University Graduate School of Medical Sciences, Kyoto, Japan
| | - Dennis K Ledford
- Division of Allergy and Immunology, Department of Medicine, Morsani University of South Florida College of Medicine, James A Haley Veterans Hospital, Tampa, Florida, United States of America
| | - Rohit Katial
- Division of Allergy and Immunology, National Jewish Health, Denver, Colorado, United States of America
| | - Leonardo M Fabbri
- Department of Oncology, Haematology, and Respiratory Diseases, University of Modena and Reggio Emilia, Modena, Italy
| | - Juan C Celedón
- Division of Pulmonary Medicine, Allergy and Immunology, Children's Hospital of UPMC, Pittsburgh, Pennsylvania, United States of America
| | | | - Paula Busse
- Division of Clinical Immunology, Department of Medicine, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Louis-Phillippe Boulet
- Institut universitaire de cardiologie et de pneumologie de Québec, (Quebec Heart and Lung Institute, Laval University), Quebéc, Canada
| | - Carlos E Baena-Cagnani
- Centre for Research in Respiratory Medicine, Catholic University of Córdoba, Córdoba, Argentina
| | - Qutayba Hamid
- Meakins-Christie Laboratories, McGill University, Quebéc, Canada
| | - Claus Bachert
- Upper Airways Research Laboratory (URL), Clinics ENT-Department, University Hospital Ghent, Ghent, Belgium
| | - Ruby Pawankar
- Department of Pediatrics, Nippon Medical School, Tokyo, Japan
| | - Stephen T Holgate
- Faculty of Medicine Clinical and Experimental Sciences, University of Southampton, Hampshire, United Kingdom
| |
Collapse
|
253
|
Chege PM, McColl G. Caenorhabditis elegans: a model to investigate oxidative stress and metal dyshomeostasis in Parkinson's disease. Front Aging Neurosci 2014; 6:89. [PMID: 24904406 PMCID: PMC4032941 DOI: 10.3389/fnagi.2014.00089] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 04/27/2014] [Indexed: 12/04/2022] Open
Abstract
Parkinson's disease (PD) is characterized by progressive motor impairment attributed to progressive loss of dopaminergic (DAergic) neurons in the substantia nigra pars compacta. Additional clinical manifestations include non-motor symptoms such as insomnia, depression, psychosis, and cognitive impairment. PD patients with mild cognitive impairment have an increased risk of developing dementia. The affected brain regions also show perturbed metal ion levels, primarily iron. These observations have led to speculation that metal ion dyshomeostasis plays a key role in the neuronal death of this disease. However, the mechanisms underlying this metal-associated neurodegeneration have yet to be completely elucidated. Mammalian models have traditionally been used to investigate PD pathogenesis. However, alternate animal models are also being adopted, bringing to bear their respective experimental advantage. The nematode, Caenorhabditis elegans, is one such system that has well-developed genetics, is amenable to transgenesis and has relatively low associated experimental costs. C. elegans has a well characterized neuronal network that includes a simple DAergic system. In this review we will discuss mechanisms thought to underlie PD and the use of C. elegans to investigate these processes.
Collapse
Affiliation(s)
| | - Gawain McColl
- The Florey Institute of Neuroscience and Mental Health, University of MelbourneParkville, VIC, Australia
| |
Collapse
|
254
|
Cadet J, Wagner JR. Oxidatively generated base damage to cellular DNA by hydroxyl radical and one-electron oxidants: similarities and differences. Arch Biochem Biophys 2014; 557:47-54. [PMID: 24820329 DOI: 10.1016/j.abb.2014.05.001] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 04/23/2014] [Accepted: 05/01/2014] [Indexed: 01/05/2023]
Abstract
Hydroxyl radical (OH) and one-electron oxidants that may be endogenously formed through oxidative metabolism, phagocytosis, inflammation and pathological conditions constitute the main sources of oxidatively generated damage to cellular DNA. It is worth mentioning that exposure of cells to exogenous physical agents (UV light, high intensity UV laser, ionizing radiation) and chemicals may also induce oxidatively generated damage to DNA. Emphasis is placed in this short review article on the mechanistic aspects of OH and one-electron oxidant-mediated formation of single and more complex damage (tandem lesions, intra- and interstrand cross-links, DNA-protein cross-links) in cellular DNA arising from one radical hit. This concerns DNA modifications that have been accurately measured using suitable analytical methods such as high performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry. Evidence is provided that OH and one-electron oxidants after generating neutral radicals and base radical cations respectively may partly induce common degradation pathways. In addition, selective oxidative reactions giving rise to specific degradation products of OH and one-electron oxidation reactions that can be used as representative biomarkers of these oxidants have been identified.
Collapse
Affiliation(s)
- Jean Cadet
- Institut Nanosciences et Cryogénie, CEA/Grenoble, F-38054 Grenoble Cedex 9, France; Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine des Sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada.
| | - J Richard Wagner
- Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine des Sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| |
Collapse
|
255
|
Dai DF, Chiao YA, Marcinek DJ, Szeto HH, Rabinovitch PS. Mitochondrial oxidative stress in aging and healthspan. LONGEVITY & HEALTHSPAN 2014; 3:6. [PMID: 24860647 DOI: 10.1201/b21905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 03/10/2014] [Indexed: 05/26/2023]
Abstract
The free radical theory of aging proposes that reactive oxygen species (ROS)-induced accumulation of damage to cellular macromolecules is a primary driving force of aging and a major determinant of lifespan. Although this theory is one of the most popular explanations for the cause of aging, several experimental rodent models of antioxidant manipulation have failed to affect lifespan. Moreover, antioxidant supplementation clinical trials have been largely disappointing. The mitochondrial theory of aging specifies more particularly that mitochondria are both the primary sources of ROS and the primary targets of ROS damage. In addition to effects on lifespan and aging, mitochondrial ROS have been shown to play a central role in healthspan of many vital organ systems. In this article we review the evidence supporting the role of mitochondrial oxidative stress, mitochondrial damage and dysfunction in aging and healthspan, including cardiac aging, age-dependent cardiovascular diseases, skeletal muscle aging, neurodegenerative diseases, insulin resistance and diabetes as well as age-related cancers. The crosstalk of mitochondrial ROS, redox, and other cellular signaling is briefly presented. Potential therapeutic strategies to improve mitochondrial function in aging and healthspan are reviewed, with a focus on mitochondrial protective drugs, such as the mitochondrial antioxidants MitoQ, SkQ1, and the mitochondrial protective peptide SS-31.
Collapse
Affiliation(s)
- Dao-Fu Dai
- Department of Pathology, University of Washington, 1959 Pacific Ave NE, HSB-K081, Seattle, WA 98195, USA
| | - Ying Ann Chiao
- Department of Pathology, University of Washington, 1959 Pacific Ave NE, HSB-K081, Seattle, WA 98195, USA
| | - David J Marcinek
- Department of Radiology, University of Washington, Seattle, WA, USA
| | - Hazel H Szeto
- Department of Pharmacology, Weill Cornell Medical College, New York, NY, USA
| | - Peter S Rabinovitch
- Department of Pathology, University of Washington, 1959 Pacific Ave NE, HSB-K081, Seattle, WA 98195, USA
| |
Collapse
|
256
|
Ristow M, Schmeisser K. Mitohormesis: Promoting Health and Lifespan by Increased Levels of Reactive Oxygen Species (ROS). Dose Response 2014; 12:288-341. [PMID: 24910588 PMCID: PMC4036400 DOI: 10.2203/dose-response.13-035.ristow] [Citation(s) in RCA: 337] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Increasing evidence indicates that reactive oxygen species (ROS), consisting of superoxide, hydrogen peroxide, and multiple others, do not only cause oxidative stress, but rather may function as signaling molecules that promote health by preventing or delaying a number of chronic diseases, and ultimately extend lifespan. While high levels of ROS are generally accepted to cause cellular damage and to promote aging, low levels of these may rather improve systemic defense mechanisms by inducing an adaptive response. This concept has been named mitochondrial hormesis or mitohormesis. We here evaluate and summarize more than 500 publications from current literature regarding such ROS-mediated low-dose signaling events, including calorie restriction, hypoxia, temperature stress, and physical activity, as well as signaling events downstream of insulin/IGF-1 receptors, AMP-dependent kinase (AMPK), target-of-rapamycin (TOR), and lastly sirtuins to culminate in control of proteostasis, unfolded protein response (UPR), stem cell maintenance and stress resistance. Additionally, consequences of interfering with such ROS signals by pharmacological or natural compounds are being discussed, concluding that particularly antioxidants are useless or even harmful.
Collapse
Affiliation(s)
- Michael Ristow
- Energy Metabolism Laboratory, ETH Zürich (Swiss Federal Institute of Technology Zurich), Schwerzenbach/Zürich, CH 8603, Switzerland
- Dept. of Human Nutrition, Institute of Nutrition, University of Jena, Jena D-07743, Germany
| | - Kathrin Schmeisser
- Dept. of Human Nutrition, Institute of Nutrition, University of Jena, Jena D-07743, Germany
| |
Collapse
|
257
|
Mitochondrial oxidative stress in aging and healthspan. LONGEVITY & HEALTHSPAN 2014; 3:6. [PMID: 24860647 PMCID: PMC4013820 DOI: 10.1186/2046-2395-3-6] [Citation(s) in RCA: 316] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 03/10/2014] [Indexed: 02/07/2023]
Abstract
The free radical theory of aging proposes that reactive oxygen species (ROS)-induced accumulation of damage to cellular macromolecules is a primary driving force of aging and a major determinant of lifespan. Although this theory is one of the most popular explanations for the cause of aging, several experimental rodent models of antioxidant manipulation have failed to affect lifespan. Moreover, antioxidant supplementation clinical trials have been largely disappointing. The mitochondrial theory of aging specifies more particularly that mitochondria are both the primary sources of ROS and the primary targets of ROS damage. In addition to effects on lifespan and aging, mitochondrial ROS have been shown to play a central role in healthspan of many vital organ systems. In this article we review the evidence supporting the role of mitochondrial oxidative stress, mitochondrial damage and dysfunction in aging and healthspan, including cardiac aging, age-dependent cardiovascular diseases, skeletal muscle aging, neurodegenerative diseases, insulin resistance and diabetes as well as age-related cancers. The crosstalk of mitochondrial ROS, redox, and other cellular signaling is briefly presented. Potential therapeutic strategies to improve mitochondrial function in aging and healthspan are reviewed, with a focus on mitochondrial protective drugs, such as the mitochondrial antioxidants MitoQ, SkQ1, and the mitochondrial protective peptide SS-31.
Collapse
|
258
|
Ji L, Gao W, Wei J, Wu J, Yang J, Meng B, Guo C. No correlation is found for vegetables between antioxidant capacity and potential benefits in improving antioxidant function in aged rats. J Clin Biochem Nutr 2014; 54:198-203. [PMID: 24895483 PMCID: PMC4039079 DOI: 10.3164/jcbn.13-95] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 01/15/2014] [Indexed: 12/17/2022] Open
Abstract
Vegetables vary greatly in antioxidant capacity in vitro. This study was to investigate the actions of three vegetables different remarkably in antioxidant capacity in vitro on antioxidant function in aged rats. Sixty female aged Wistar rats were randomly assigned to the control, lotus root, rape and cucumber (high, moderate and low in antioxidant capacity, respectively) treated groups. After 6 weeks of feeding, there were no significant differences in plasma FRAP value and contents of vitamin C, vitamin E, uric acid and total phenolics among different groups, whereas the content of reduced glutathione was significantly higher in the rape and cucumber groups. Plasma superoxide dismutase activity also was significantly increased in the rape and cucumber groups. Plasma contents of malondialdehyde, carbonyls and hemolysis were decreased significantly in 3 vegetable-treated groups. Meanwhile, urinary 8-hydroxy-2'-deoxyguanosine excretion was lower significantly in the rape group and the ratio of comet tail length to total length of blood mononuclear cells was decreased significantly in 3 vegetables treated groups. These results suggest that 3 vegetables tested are effective in improving antioxidant function to some extent in aged rats and no correlation is found between antioxidant capacity in vitro and improvements of antioxidant function. The benefits observed in this study may come from additive or synergistic combinations of antioxidants contained in vegetables.
Collapse
Affiliation(s)
- Linlin Ji
- Department of Nutrition, Institute of Health and Environmental Medicine, Tianjin 300050, China
| | - Weina Gao
- Department of Nutrition, Institute of Health and Environmental Medicine, Tianjin 300050, China
| | - Jingyu Wei
- Department of Nutrition, Institute of Health and Environmental Medicine, Tianjin 300050, China
| | - Jianquan Wu
- Department of Nutrition, Institute of Health and Environmental Medicine, Tianjin 300050, China
| | - Jijun Yang
- Department of Nutrition, Institute of Health and Environmental Medicine, Tianjin 300050, China
| | - Bin Meng
- Department of Nutrition, Institute of Health and Environmental Medicine, Tianjin 300050, China
| | - Changjiang Guo
- Department of Nutrition, Institute of Health and Environmental Medicine, Tianjin 300050, China
| |
Collapse
|
259
|
Munnamalai V, Weaver CJ, Weisheit CE, Venkatraman P, Agim ZS, Quinn MT, Suter DM. Bidirectional interactions between NOX2-type NADPH oxidase and the F-actin cytoskeleton in neuronal growth cones. J Neurochem 2014; 130:526-40. [PMID: 24702317 DOI: 10.1111/jnc.12734] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Revised: 04/02/2014] [Accepted: 04/02/2014] [Indexed: 12/19/2022]
Abstract
NADPH oxidases are important for neuronal function but detailed subcellular localization studies have not been performed. Here, we provide the first evidence for the presence of functional NADPH oxidase 2 (NOX2)-type complex in neuronal growth cones and its bidirectional relationship with the actin cytoskeleton. NADPH oxidase inhibition resulted in reduced F-actin content, retrograde F-actin flow, and neurite outgrowth. Stimulation of NADPH oxidase via protein kinase C activation increased levels of hydrogen peroxide in the growth cone periphery. The main enzymatic NADPH oxidase subunit NOX2/gp91(phox) localized to the growth cone plasma membrane and showed little overlap with the regulatory subunit p40(phox) . p40(phox) itself exhibited colocalization with filopodial actin bundles. Differential subcellular fractionation revealed preferential association of NOX2/gp91(phox) and p40(phox) with the membrane and the cytoskeletal fraction, respectively. When neurite growth was evoked with beads coated with the cell adhesion molecule apCAM, we observed a significant increase in colocalization of p40(phox) with NOX2/gp91(phox) at apCAM adhesion sites. Together, these findings suggest a bidirectional functional relationship between NADPH oxidase activity and the actin cytoskeleton in neuronal growth cones, which contributes to the control of neurite outgrowth. We have previously shown that reactive oxygen species (ROS) are critical for actin organization and dynamics in neuronal growth cones as well as neurite outgrowth. Here, we report that the cytosolic subunit p40(phox) of the NOX2-type NADPH oxidase complex is partially associated with F-actin in neuronal growth cones, while ROS produced by this complex regulates F-actin dynamics and neurite growth. These findings provide evidence for a bidirectional relationship between NADPH oxidase activity and the actin cytoskeleton in neuronal growth cones.
Collapse
Affiliation(s)
- Vidhya Munnamalai
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | | | | | | | | | | | | |
Collapse
|
260
|
Meza-Miranda ER, Camargo A, Rangel-Zuñiga OA, Delgado-Lista J, Garcia-Rios A, Perez-Martinez P, Tasset-Cuevas I, Tunez I, Tinahones FJ, Perez-Jimenez F, Lopez-Miranda J. Postprandial oxidative stress is modulated by dietary fat in adipose tissue from elderly people. AGE (DORDRECHT, NETHERLANDS) 2014; 36:507-517. [PMID: 23963800 PMCID: PMC4039280 DOI: 10.1007/s11357-013-9579-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 08/05/2013] [Indexed: 06/02/2023]
Abstract
We have investigated whether dietary fat modifies the postprandial oxidative stress in adipose tissue of elderly people. Twenty participants received three diets for 4 weeks each: SFA-rich diet, Mediterranean (Med) diet enriched in MUFA with virgin olive oil, and a low-fat, high-carbohydrate diet enriched in n-3 PUFA (α-linolenic acid from plant origin) (CHO-PUFA diet). After 12 h of fasting, volunteers received a breakfast reflecting the fatty acid composition of the diet ingested in the preceding dietary period. Med diet induced higher postprandial SOD2 and TrxR mRNA levels, and CHO-PUFA diet induced higher GPx1 and TrxR mRNA levels compared with SFA-rich diet. Med and CHO-PUFA breakfasts induced a postprandial increase in plasma reduced glutathione (GSH), and a greater postprandial GSH/oxidized glutathione ratio compared to the SFA-rich diet. Our study suggests that the consumption of Med and CHO-PUFA diets may reduce postprandial oxidative stress compared to an SFA-rich diet, which may be due to higher antioxidant enzymes gene expression in adipose tissue.
Collapse
Affiliation(s)
- Eliana Romina Meza-Miranda
- />Lipids and Atherosclerosis Research Unit, IMIBIC/Reina Sofía University Hospital/University of Córdoba, Avda. Menéndez Pidal, s/n, 14004 Córdoba, Spain
- />CIBER Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio Camargo
- />Lipids and Atherosclerosis Research Unit, IMIBIC/Reina Sofía University Hospital/University of Córdoba, Avda. Menéndez Pidal, s/n, 14004 Córdoba, Spain
- />CIBER Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Oriol Alberto Rangel-Zuñiga
- />Lipids and Atherosclerosis Research Unit, IMIBIC/Reina Sofía University Hospital/University of Córdoba, Avda. Menéndez Pidal, s/n, 14004 Córdoba, Spain
- />CIBER Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Javier Delgado-Lista
- />Lipids and Atherosclerosis Research Unit, IMIBIC/Reina Sofía University Hospital/University of Córdoba, Avda. Menéndez Pidal, s/n, 14004 Córdoba, Spain
- />CIBER Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio Garcia-Rios
- />Lipids and Atherosclerosis Research Unit, IMIBIC/Reina Sofía University Hospital/University of Córdoba, Avda. Menéndez Pidal, s/n, 14004 Córdoba, Spain
- />CIBER Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Pablo Perez-Martinez
- />Lipids and Atherosclerosis Research Unit, IMIBIC/Reina Sofía University Hospital/University of Córdoba, Avda. Menéndez Pidal, s/n, 14004 Córdoba, Spain
- />CIBER Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Inma Tasset-Cuevas
- />Department of Biochemistry and Molecular Biology, Faculty of Medicine, IMIBIC/Hospital Universitario Reina Sofıa/Universidad de Cordoba, 14004 Cordoba, Spain
| | - Isaac Tunez
- />Department of Biochemistry and Molecular Biology, Faculty of Medicine, IMIBIC/Hospital Universitario Reina Sofıa/Universidad de Cordoba, 14004 Cordoba, Spain
| | - Francisco J. Tinahones
- />CIBER Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- />Hospital Virgen de la Victoria, Málaga, Spain
| | - Francisco Perez-Jimenez
- />Lipids and Atherosclerosis Research Unit, IMIBIC/Reina Sofía University Hospital/University of Córdoba, Avda. Menéndez Pidal, s/n, 14004 Córdoba, Spain
- />CIBER Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - José Lopez-Miranda
- />Lipids and Atherosclerosis Research Unit, IMIBIC/Reina Sofía University Hospital/University of Córdoba, Avda. Menéndez Pidal, s/n, 14004 Córdoba, Spain
- />CIBER Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
261
|
Paredes J, Jones DP, Wilson ME, Herndon JG. Age-related alterations of plasma glutathione and oxidation of redox potentials in chimpanzee (Pan troglodytes) and rhesus monkey (Macaca mulatta). AGE (DORDRECHT, NETHERLANDS) 2014; 36:719-32. [PMID: 24532367 PMCID: PMC4039255 DOI: 10.1007/s11357-014-9615-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 01/07/2014] [Indexed: 06/03/2023]
Abstract
Chimpanzee (Pan troglodytes) and rhesus macaque (Macaca mulatta) and humans (Homo sapiens) share physiological and genetic characteristics, but have remarkably different life spans, with chimpanzees living 50-60 % and the rhesus living 35-40 % of maximum human survival. Since oxidative processes are associated with aging and longevity, we might expect to see species differences in age-related oxidative processes. Blood and extracellular fluid contain two major thiol redox nodes, glutathione (GSH)/glutathione-disulfide (GSSG) and cysteine (Cys)/cystine (CySS), which are subject to reversible oxidation-reduction reactions and are maintained in a dynamic non-equilibrium state. Disruption of these thiol redox nodes leads to oxidation of their redox potentials (EhGSSG and EhCySS) which affects cellular physiology and is associated with aging and the development of chronic diseases in humans. The purpose of this study was to measure age-related changes in these redox thiols and their corresponding redox potentials (Eh) in chimpanzees and rhesus monkeys. Our results show similar age-related decreases in the concentration of plasma GSH and Total GSH as well as oxidation of the EhGSSG in male and female chimpanzees. Female chimpanzees and female rhesus monkeys also were similar in several outcome measures. For example, similar age-related decreases in the concentration of plasma GSH and Total GSH, as well as age-related oxidation of the EhGSSG were observed. The data collected from chimpanzees and rhesus monkeys corroborates previous reports on oxidative changes in humans and confirms their value as a comparative reference for primate aging.
Collapse
Affiliation(s)
- Jamespaul Paredes
- Division of Developmental and Cognitive Neuroscience, Yerkes National Primate Research Center of Emory University, 954 Gatewood Drive, Atlanta, GA, 30329, USA,
| | | | | | | |
Collapse
|
262
|
Klichko V, Sohal BH, Radyuk SN, Orr WC, Sohal RS. Decrease in cytochrome c oxidase reserve capacity diminishes robustness of Drosophila melanogaster and shortens lifespan. Biochem J 2014; 459:127-35. [PMID: 24444354 DOI: 10.1042/bj20131370] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The phenotypic effects of under- and over-expression of CcO (cytochrome c oxidase) regulatory subunits IV and Vb were examined in Drosophila melanogaster in order to test further the hypothesis that suppression of the activities of mitochondrial ETC (electron-transport chain) oxidoreductases retards the aging process and extends lifespan. Underexpression of both CcO subunits, induced by RNAi, resulted in decreases in the respective mRNA and protein levels, CcO holoenzyme activity, rate of mitochondrial respiration, walking speed and the lifespan of fruitflies. Overexpression of CcO IV or Vb in young fruitflies increased the amount of mRNA, but had no effect on the protein level or CcO catalytic activity. On the other hand, in older fruitflies, overexpression of CcO Vb, but not CcO IV, elevated the mRNA and protein amounts as well as the CcO holoenzyme activity, thereby preventing the typical age-related decline in CcO activity. Nevertheless, lifespans of the fruitflies overexpressing CcO IV or Vb were neither extended nor shortened. Our results demonstrate that: (i) the suppression of CcO function exerts deleterious rather than benign effects on fitness and survival, and (ii) the structure/function of CcO, an ETC oxidoreductase, can be 're-engineered' in vivo.
Collapse
Affiliation(s)
- Vladimir Klichko
- *Department of Biological Sciences, Southern Methodist University, Dallas, TX 75275, U.S.A
| | - Barbara H Sohal
- †Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, U.S.A
| | - Svetlana N Radyuk
- *Department of Biological Sciences, Southern Methodist University, Dallas, TX 75275, U.S.A
| | - William C Orr
- *Department of Biological Sciences, Southern Methodist University, Dallas, TX 75275, U.S.A
| | - Rajindar S Sohal
- †Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, U.S.A
| |
Collapse
|
263
|
Physiological underpinnings associated with differences in pace of life and metabolic rate in north temperate and neotropical birds. J Comp Physiol B 2014; 184:545-61. [PMID: 24671698 DOI: 10.1007/s00360-014-0825-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 02/28/2014] [Accepted: 03/05/2014] [Indexed: 12/11/2022]
Abstract
Animal life-history traits fall within limited ecological space with animals that have high reproductive rates having short lives, a continuum referred to as a "slow-fast" life-history axis. Animals of the same body mass at the slow end of the life-history continuum are characterized by low annual reproductive output and low mortality rate, such as is found in many tropical birds, whereas at the fast end, rates of reproduction and mortality are high, as in temperate birds. These differences in life-history traits are thought to result from trade-offs between investment in reproduction or self-maintenance as mediated by the biotic and abiotic environment. Thus, tropical and temperate birds provide a unique system to examine physiological consequences of life-history trade-offs at opposing ends of the "pace of life" spectrum. We have explored the implications of these trade-offs at several levels of physiological organization including whole-animal, organ systems, and cells. Tropical birds tend to have higher survival, slower growth, lower rates of whole-animal basal metabolic rate and peak metabolic rate, and smaller metabolically active organs compared with temperate birds. At the cellular level, primary dermal fibroblasts from tropical birds tend to have lower cellular metabolic rates and appear to be more resistant to oxidative cell stress than those of temperate birds. However, at the subcellular level, lipid peroxidation rates, a measure of the ability of lipid molecules within the cell membranes to thwart the propagation of oxidative damage, appear not to be different between tropical and temperate species. Nevertheless, lipids in mitochondrial membranes of tropical birds tend to have increased concentrations of plasmalogens (phospholipids with antioxidant properties), and decreased concentrations of cardiolipin (a complex phospholipid in the electron transport chain) compared with temperate birds.
Collapse
|
264
|
Bonini MG, Consolaro MEL, Hart PC, Mao M, de Abreu ALP, Master AM. Redox control of enzymatic functions: The electronics of life's circuitry. IUBMB Life 2014; 66:167-181. [PMID: 24668617 DOI: 10.1002/iub.1258] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 03/06/2014] [Indexed: 12/22/2022]
Abstract
The field of redox biology has changed tremendously over the past 20 years. Formerly regarded as bi-products of the aerobic metabolism exclusively involved in tissue damage, reactive oxygen species (ROS) are now recognized as active participants of cell signaling events in health and in disease. In this sense, ROS and the more recently defined reactive nitrogen species (RNS) are, just like hormones and second messengers, acting as fundamental orchestrators of cell signaling pathways. The chemical modification of enzymes by ROS and RNS (that result in functional enzymatic alterations) accounts for a considerable fraction of the transient and persistent perturbations imposed by variations in oxidant levels. Upregulation of ROS and RNS in response to stress is a common cellular response that foments adaptation to a variety of physiologic alterations (hypoxia, hyperoxia, starvation, and cytokine production). Frequently, these are beneficial and increase the organisms' resistance against subsequent acute stress (preconditioning). Differently, the sustained ROS/RNS-dependent rerouting of signaling produces irreversible alterations in cellular functioning, often leading to pathogenic events. Thus, the duration and reversibility of protein oxidations define whether complex organisms remain "electronically" healthy. Among the 20 essential amino acids, four are particularly susceptible to oxidation: cysteine, methionine, tyrosine, and tryptophan. Here, we will critically review the mechanisms, implications, and repair systems involved in the redox modifications of these residues in proteins while analyzing well-characterized prototypic examples. Occasionally, we will discuss potential consequences of amino acid oxidation and speculate on the biologic necessity for such events in the context of adaptative redox signaling. © 2014 IUBMB Life, 66(3):167-181, 2014.
Collapse
Affiliation(s)
- Marcelo G Bonini
- Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA.,Department of Pharmacology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA.,Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA.,Programa de Biociencias Aplicadas a Farmacia (PBF), Universidade Estadual de Maringa, Maringa, Parana, Brazil
| | - Marcia E L Consolaro
- Programa de Biociencias Aplicadas a Farmacia (PBF), Universidade Estadual de Maringa, Maringa, Parana, Brazil
| | - Peter C Hart
- Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA.,Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Mao Mao
- Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA.,Department of Pharmacology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA.,Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Andre Luelsdorf Pimenta de Abreu
- Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA.,Department of Pharmacology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA.,Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA.,Programa de Biociencias Aplicadas a Farmacia (PBF), Universidade Estadual de Maringa, Maringa, Parana, Brazil
| | - Alyssa M Master
- Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA.,Department of Pharmacology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA.,Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
265
|
Kim HR, Lee A, Choi EJ, Hong MP, Kie JH, Lim W, Lee HK, Moon BI, Seoh JY. Reactive oxygen species prevent imiquimod-induced psoriatic dermatitis through enhancing regulatory T cell function. PLoS One 2014; 9:e91146. [PMID: 24608112 PMCID: PMC3946742 DOI: 10.1371/journal.pone.0091146] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 02/07/2014] [Indexed: 11/29/2022] Open
Abstract
Psoriasis is a chronic inflammatory skin disease resulting from immune dysregulation. Regulatory T cells (Tregs) are important in the prevention of psoriasis. Traditionally, reactive oxygen species (ROS) are known to be implicated in the progression of inflammatory diseases, including psoriasis, but many recent studies suggested the protective role of ROS in immune-mediated diseases. In particular, severe cases of psoriasis vulgaris have been reported to be successfully treated by hyperbaric oxygen therapy (HBOT), which raises tissue level of ROS. Also it was reported that Treg function was closely associated with ROS level. However, it has been only investigated in lowered levels of ROS so far. Thus, in this study, to clarify the relationship between ROS level and Treg function, as well as their role in the pathogenesis of psoriasis, we investigated imiquimod-induced psoriatic dermatitis (PD) in association with Treg function both in elevated and lowered levels of ROS by using knockout mice, such as glutathione peroxidase-1−/− and neutrophil cytosolic factor-1−/− mice, as well as by using HBOT or chemicals, such as 2,3-dimethoxy-1,4-naphthoquinone and N-acetylcysteine. The results consistently showed Tregs were hyperfunctional in elevated levels of ROS, whereas hypofunctional in lowered levels of ROS. In addition, imiquimod-induced PD was attenuated in elevated levels of ROS, whereas aggravated in lowered levels of ROS. For the molecular mechanism that may link ROS level and Treg function, we investigated the expression of an immunoregulatory enzyme, indoleamine 2,3-dioxygenase (IDO) which is induced by ROS, in PD lesions. Taken together, it was implied that appropriately elevated levels of ROS might prevent psoriasis through enhancing IDO expression and Treg function.
Collapse
Affiliation(s)
- Hyung-Ran Kim
- Department of Microbiology, Ewha Womans University Graduate School of Medicine, Seoul, Korea
| | - Anbok Lee
- Department of Surgery, Ewha Womans University Graduate School of Medicine, Seoul, Korea
| | - Eun-Jeong Choi
- Department of Microbiology, Ewha Womans University Graduate School of Medicine, Seoul, Korea
| | - Min-Pyo Hong
- College of Arts and Sciences, Boston College, Chestnut Hill, Massachusetts, United States of America
| | - Jeong-Hae Kie
- Pathology, National Health Insurance Cooperation Ilsan Hospital, Koyang, Korea
| | - Woosung Lim
- Department of Surgery, Ewha Womans University Graduate School of Medicine, Seoul, Korea
| | - Hyeon Kook Lee
- Department of Surgery, Ewha Womans University Graduate School of Medicine, Seoul, Korea
| | - Byung-In Moon
- Department of Surgery, Ewha Womans University Graduate School of Medicine, Seoul, Korea
| | - Ju-Young Seoh
- Department of Microbiology, Ewha Womans University Graduate School of Medicine, Seoul, Korea
- * E-mail:
| |
Collapse
|
266
|
In vitro free radical scavenging and in vivo antioxidant potential of mulberry (Morus indica L.) leaves. J Herb Med 2014. [DOI: 10.1016/j.hermed.2013.10.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
267
|
Renaud HJ, Cui JY, Lu H, Klaassen CD. Effect of diet on expression of genes involved in lipid metabolism, oxidative stress, and inflammation in mouse liver-insights into mechanisms of hepatic steatosis. PLoS One 2014; 9:e88584. [PMID: 24551121 PMCID: PMC3925138 DOI: 10.1371/journal.pone.0088584] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 01/08/2014] [Indexed: 12/11/2022] Open
Abstract
Nutritional intake is a fundamental determinant of health. Many studies have correlated excess caloric intake, as well as a high ratio of n-6:n-3 fatty acids, with detrimental health outcomes, such as the metabolic syndrome. In contrast, low-calorie diets have beneficial health effects. Despite these associations, our understanding of the causal relationship between diet and health remains largely elusive. The present study examined the molecular changes elicited by nine diets with varying fat, sugar, cholesterol, omega-3 fatty acids, omega-6 fatty acids, and calories in C57BL/6 male mice. Microarray analyses were conducted on liver samples from three mice per diet and detected 20,449 genes of which 3,734 were responsive to changes in dietary components. Principal component analysis showed that diet restriction correlated the least with the other diets and also affected more genes than any other diet. Interestingly, Gene Set Enrichment Analysis (GSEA) identified gene sets involved in glutathione metabolism, immune response, fatty acid metabolism, cholesterol metabolism, ABC transporters, and oxidative phosphorylation as being highly responsive to changes in diet composition. On the gene level, this study reveals novel findings such as the induction of the drug efflux pump Abcb1a (p-glycoprotein) by diet restriction and an atherogenic diet, as well as the suppression of the rate limiting step of bile acid synthesis, Cyp7a1, by a high fructose diet. This study provides considerable insight into the molecular changes incurred by a variety of diets and furthers our understanding of the causal relationships between diet and health.
Collapse
Affiliation(s)
- Helen J Renaud
- Department of Internal Medicine, Kansas University Medical Center, Kansas City, Kansas, United States of America
| | - Julia Y Cui
- Department of Internal Medicine, Kansas University Medical Center, Kansas City, Kansas, United States of America
| | - Hong Lu
- Department of Pharmacology, State University of New York, Syracuse, New York, United States of America
| | - Curtis D Klaassen
- Department of Internal Medicine, Kansas University Medical Center, Kansas City, Kansas, United States of America
| |
Collapse
|
268
|
Abstract
It is increasingly recognized that hormetic environmental priming of stress responses can improve resilience to later life stress exposure. However, such phenotypic adjustments may be costly, particularly if the subsequent environment does not match that to which the adjustment was made. Here, we show that hormetic priming to mild heat stress in early life increases survival only when heat stress is again experienced in adulthood; it reduces survival if the stressor is not encountered again. That such costs can occur explains both why the stress response system is not maintained in an upregulated state and why the hormetic adjustment of responses has evolved.
Collapse
Affiliation(s)
- David Costantini
- Institute for Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, , Glasgow G12 8QQ, UK
| | | | | |
Collapse
|
269
|
Dassati S, Waldner A, Schweigreiter R. Apolipoprotein D takes center stage in the stress response of the aging and degenerative brain. Neurobiol Aging 2014; 35:1632-42. [PMID: 24612673 PMCID: PMC3988949 DOI: 10.1016/j.neurobiolaging.2014.01.148] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 01/17/2014] [Accepted: 01/30/2014] [Indexed: 02/08/2023]
Abstract
Apolipoprotein D (ApoD) is an ancient member of the lipocalin family with a high degree of sequence conservation from insects to mammals. It is not structurally related to other major apolipoproteins and has been known as a small, soluble carrier protein of lipophilic molecules that is mostly expressed in neurons and glial cells within the central and peripheral nervous system. Recent data indicate that ApoD not only supplies cells with lipophilic molecules, but also controls the fate of these ligands by modulating their stability and oxidation status. Of particular interest is the binding of ApoD to arachidonic acid and its derivatives, which play a central role in healthy brain function. ApoD has been shown to act as a catalyst in the reduction of peroxidized eicosanoids and to attenuate lipid peroxidation in the brain. Manipulating its expression level in fruit flies and mice has demonstrated that ApoD has a favorable effect on both stress resistance and life span. The APOD gene is the gene that is upregulated the most in the aging human brain. Furthermore, ApoD levels in the nervous system are elevated in a large number of neurologic disorders including Alzheimer's disease, schizophrenia, and stroke. There is increasing evidence for a prominent neuroprotective role of ApoD because of its antioxidant and anti-inflammatory activity. ApoD emerges as an evolutionarily conserved anti-stress protein that is induced by oxidative stress and inflammation and may prove to be an effective therapeutic agent against a variety of neuropathologies, and even against aging.
Collapse
Affiliation(s)
- Sarah Dassati
- Department of Neurological Rehabilitation, Private Hospital "Villa Melitta", Bolzano, Italy
| | - Andreas Waldner
- Department of Neurological Rehabilitation, Private Hospital "Villa Melitta", Bolzano, Italy
| | - Rüdiger Schweigreiter
- Division of Neurobiochemistry, Biocenter, Innsbruck Medical University, Innsbruck, Austria.
| |
Collapse
|
270
|
Gu M, Shen L, Bai L, Gao J, Marshall C, Wu T, Ding J, Miao D, Xiao M. Heterozygous knockout of the Bmi-1 gene causes an early onset of phenotypes associated with brain aging. AGE (DORDRECHT, NETHERLANDS) 2014; 36:129-139. [PMID: 23771506 PMCID: PMC3889899 DOI: 10.1007/s11357-013-9552-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 06/03/2013] [Indexed: 06/02/2023]
Abstract
Previous studies reported that the polycomb group gene Bmi-1 is downregulated in the aging brain. The aim of this study was to investigate whether decreased Bmi-1 expression accelerates brain aging by analyzing the brain phenotype of adult Bmi-1 heterozygous knockout (Bmi-1(+/-)) mice. An 8-month-old Bmi-1(+/-) brains demonstrated mild oxidative stress, revealed by significant increases in hydroxy radical and nitrotyrosine, and nonsignificant increases in reactive oxygen species and malonaldehyde compared with the wild-type littermates. Bmi-1(+/-) hippocampus had high apoptotic percentage and lipofuscin deposition in pyramidal neurons associated with upregulation of cyclin-dependent kinase inhibitors p19, p27, and p53 and downregulation of anti-apoptotic protein Bcl-2. Mild activation of astrocytes was also observed in Bmi-1(+/-) hippocampus. Furthermore, Bmi-1(+/-) mice showed mild spatial memory impairment in the Morris Water Maze test. These results demonstrate that heterozygous Bmi-1 gene knockout causes an early onset of age-related brain changes, suggesting that Bmi-1 has a role in regulating brain aging.
Collapse
Affiliation(s)
- Minxia Gu
- />Department of Human Anatomy, Nanjing Medical University, Nanjing, Jiangsu 210029 China
| | - Lihua Shen
- />Department of Human Anatomy, Nanjing Medical University, Nanjing, Jiangsu 210029 China
| | - Lei Bai
- />Department of Human Anatomy, Nanjing Medical University, Nanjing, Jiangsu 210029 China
| | - Junying Gao
- />Department of Human Anatomy, Nanjing Medical University, Nanjing, Jiangsu 210029 China
| | - Charles Marshall
- />Department of Rehabilitation Sciences, University of Kentucky Center for Excellence in Rural Health, Hazard, KY 41701 USA
| | - Ting Wu
- />Department of Neurology, the First Affiliated Hospital of Nanjing Medical University Nanjing, Jiangsu, 210029 China
| | - Jiong Ding
- />Department of Human Anatomy, Nanjing Medical University, Nanjing, Jiangsu 210029 China
| | - Dengshun Miao
- />Department of Human Anatomy, Nanjing Medical University, Nanjing, Jiangsu 210029 China
| | - Ming Xiao
- />Department of Human Anatomy, Nanjing Medical University, Nanjing, Jiangsu 210029 China
| |
Collapse
|
271
|
Saponins from Aralia taibaiensis attenuate D-galactose-induced aging in rats by activating FOXO3a and Nrf2 pathways. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:320513. [PMID: 24669284 PMCID: PMC3942195 DOI: 10.1155/2014/320513] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 11/12/2013] [Accepted: 12/01/2013] [Indexed: 11/17/2022]
Abstract
Reactive oxygen species (ROS) are closely related to the aging process. In our previous studies, we found that the saponins from Aralia taibaiensis have potent antioxidant activity, suggesting the potential protective activity on the aging. However, the protective effect of the saponins and the possible underlying molecular mechanism remain unknown. In the present study, we employed a D-galactose-induced aging rat model to investigate the protective effect of the saponins. We found that D-galactose treatment induced obvious aging-related changes such as the decreased thymus and spleen coefficients, the increased advanced glycation end products (AGEs) level, senescence-associated β-galactosidase (SAβ-gal) activity, and malondialdehyde (MDA) level. Further results showed that Forkhead box O3a (FOXO3a), nuclear factor-erythroid 2-related factor 2 (Nrf2), and their targeted antioxidants such as superoxide dismutase 2 (SOD2), catalase (CAT), glutathione reductase (GR), glutathione (GSH), glutamate-cysteine ligase (GCL), and heme oxygenase 1 (HO-1) were all inhibited in the aging rats induced by D-galactose treatment. Saponins supplementation showed effective protection on these changes. These results demonstrate that saponins from Aralia taibaiensis attenuate the D-galactose-induced rat aging. By activating FOXO3a and Nrf2 pathways, saponins increase their downstream multiple antioxidants expression and function, at least in part contributing to the protection on the D-galactose-induced aging in rats.
Collapse
|
272
|
Drazic A, Winter J. The physiological role of reversible methionine oxidation. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:1367-82. [PMID: 24418392 DOI: 10.1016/j.bbapap.2014.01.001] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 12/17/2013] [Accepted: 01/02/2014] [Indexed: 01/04/2023]
Abstract
Sulfur-containing amino acids such as cysteine and methionine are particularly vulnerable to oxidation. Oxidation of cysteine and methionine in their free amino acid form renders them unavailable for metabolic processes while their oxidation in the protein-bound state is a common post-translational modification in all organisms and usually alters the function of the protein. In the majority of cases, oxidation causes inactivation of proteins. Yet, an increasing number of examples have been described where reversible cysteine oxidation is part of a sophisticated mechanism to control protein function based on the redox state of the protein. While for methionine the dogma is still that its oxidation inhibits protein function, reversible methionine oxidation is now being recognized as a powerful means of triggering protein activity. This mode of regulation involves oxidation of methionine to methionine sulfoxide leading to activated protein function, and inactivation is accomplished by reduction of methionine sulfoxide back to methionine catalyzed by methionine sulfoxide reductases. Given the similarity to thiol-based redox-regulation of protein function, methionine oxidation is now established as a novel mode of redox-regulation of protein function. This article is part of a Special Issue entitled: Thiol-Based Redox Processes.
Collapse
Affiliation(s)
- Adrian Drazic
- Center for Integrated Protein Science Munich (CiPS(M)) at the Department Chemie, Technische Universität München, 85747 Garching, Germany
| | - Jeannette Winter
- Center for Integrated Protein Science Munich (CiPS(M)) at the Department Chemie, Technische Universität München, 85747 Garching, Germany.
| |
Collapse
|
273
|
Walsh ME, Shi Y, Van Remmen H. The effects of dietary restriction on oxidative stress in rodents. Free Radic Biol Med 2014; 66:88-99. [PMID: 23743291 PMCID: PMC4017324 DOI: 10.1016/j.freeradbiomed.2013.05.037] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 05/22/2013] [Accepted: 05/24/2013] [Indexed: 02/07/2023]
Abstract
Oxidative stress is observed during aging and in numerous age-related diseases. Dietary restriction (DR) is a regimen that protects against disease and extends life span in multiple species. However, it is unknown how DR mediates its protective effects. One prominent and consistent effect of DR in a number of systems is the ability to reduce oxidative stress and damage. The purpose of this review is to comprehensively examine the hypothesis that dietary restriction reduces oxidative stress in rodents by decreasing reactive oxygen species (ROS) production and increasing antioxidant enzyme activity, leading to an overall reduction of oxidative damage to macromolecules. The literature reveals that the effects of DR on oxidative stress are complex and likely influenced by a variety of factors, including sex, species, tissue examined, types of ROS and antioxidant enzymes examined, and duration of DR. Here we present a comprehensive review of the existing literature on the effect of DR on mitochondrial ROS generation, antioxidant enzymes, and oxidative damage. In a majority of studies, dietary restriction had little effect on mitochondrial ROS production or antioxidant activity. On the other hand, DR decreased oxidative damage in the majority of cases. Although the effects of DR on endogenous antioxidants are mixed, we find that glutathione levels are the most likely antioxidant to be increased by dietary restriction, which supports the emerging redox-stress hypothesis of aging.
Collapse
Affiliation(s)
- Michael E Walsh
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, 15355 Lambda Drive, San Antonio, TX 78245, USA
| | - Yun Shi
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, 15355 Lambda Drive, San Antonio, TX 78245, USA; Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, 15355 Lambda Drive, San Antonio, TX 78245
| | - Holly Van Remmen
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, 15355 Lambda Drive, San Antonio, TX 78245, USA; Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, 15355 Lambda Drive, San Antonio, TX 78245; South Texas Veterans Health Care System, San Antonio, TX, 78229, USA.
| |
Collapse
|
274
|
Angelé-Martínez C, Goodman C, Brumaghim J. Metal-mediated DNA damage and cell death: mechanisms, detection methods, and cellular consequences. Metallomics 2014; 6:1358-81. [DOI: 10.1039/c4mt00057a] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Metal ions cause various types of DNA damage by multiple mechanisms, and this damage is a primary cause of cell death and disease.
Collapse
Affiliation(s)
| | - Craig Goodman
- Department of Chemistry
- Clemson University
- Clemson, USA
| | | |
Collapse
|
275
|
Beaulieu M, Costantini D. Biomarkers of oxidative status: missing tools in conservation physiology. CONSERVATION PHYSIOLOGY 2014; 2:cou014. [PMID: 27293635 PMCID: PMC4806730 DOI: 10.1093/conphys/cou014] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 03/19/2014] [Accepted: 03/27/2014] [Indexed: 05/21/2023]
Abstract
Recent ecological studies have shown that oxidative status could have a significant impact on fitness components in wild animals. Not only can oxidative status reflect the environmental conditions that animals experience, but it can also predict their chances of reproduction and survival in the future in their natural habitat. Such important characteristics make markers of oxidative status informative tools to evaluate a priori individual perspectives of reproduction and survival as well as to assess a posteriori the effect of human activities on the fitness of species of conservation concern and wildlife in general. Markers of oxidative status may therefore help conservation practitioners to identify conservation threats to animal populations and to maximize the success of wildlife management. Despite these potential benefits for animal conservation programmes, up to now markers of oxidative status have only been reported anecdotally in conservation studies. The aim of this review is therefore to raise awareness by conservation practitioners of the use of markers of oxidative status. Towards this end, we first describe how environmental disruptions due to human activities can translate into variation in oxidative status. Second, we show how individual and population variation in oxidative status may contribute to the success or the failure of reintroduction or translocation programmes. Finally, we emphasize the technical features specific to the measurement of markers of oxidative status in conservation programmes, which may help investigators with the interpretation of their results. Such prior knowledge about markers of oxidative status may encourage conservation physiologists to use them in order to enhance the success of conservation programmes and wildlife management.
Collapse
Affiliation(s)
- Michaël Beaulieu
- Zoological Institute and Museum, University of Greifswald, Johann-Sebastian Bach Straße 11/12, 17489 Greifswald, Germany
- Corresponding authors: Tel: +49 3834 86 4268. ,
| | - David Costantini
- Department of Biology, University of Antwerp, Campus Drie Eiken, DC 135, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium
- Institute for Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK
- Corresponding authors: Tel: +49 3834 86 4268. ,
| |
Collapse
|
276
|
Costantini D, Casasole G, Eens M. Does reproduction protect against oxidative stress? J Exp Biol 2014; 217:4237-43. [DOI: 10.1242/jeb.114116] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Abstract
A central principle of life-history theory is that parents trade investment into reproduction against that in body maintenance. One physiological cost thought to be important as a modulator of such trade-off is oxidative stress. Experimental support for this hypothesis has, however, proved to be contradictory. In this study, we manipulated the nestling rearing effort of captive canaries (Serinus canaria) soon after the hatching of their nestlings using a brood-size manipulation to test whether an increase in nestling rearing effort translates into an increase in oxidative damage, an increase in ceruloplasmin (which is upregulated in response to oxidative damage) and a decrease in thiol antioxidants. We also compared the blood oxidative stress level of reproducing birds to that of non-reproducing birds, a crucial aspect that most studies have invariably failed to include in tests of the oxidative cost of reproduction. As compared to non-breeding canaries and pre-manipulation values, plasma oxidative damage (reactive oxygen metabolites and protein carbonyls) decreased in breeding canaries irrespective of sex and brood size. In contrast, oxidative damage did not change in non-breeding birds over the experiment. Ceruloplasmin activity in plasma and both non-protein and protein thiols in red blood cells did not change throughout the experiment in both treatment groups. Our results suggest that reproduction may result in decreased rather than increased blood oxidative stress. Our results may explain some of the inconsistencies that have been so far reported in experimental tests of the oxidative cost of reproduction hypothesis.
Collapse
Affiliation(s)
- David Costantini
- University of Antwerp, Belgium; University of Glasgow, United Kingdom
| | | | | |
Collapse
|
277
|
Zheng S, Liao S, Zou Y, Qu Z, Shen W, Shi Y. Mulberry leaf polyphenols delay aging and regulate fat metabolism via the germline signaling pathway in Caenorhabditis elegans. AGE (DORDRECHT, NETHERLANDS) 2014; 36:9719. [PMID: 25323576 PMCID: PMC4199944 DOI: 10.1007/s11357-014-9719-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Accepted: 10/06/2014] [Indexed: 05/03/2023]
Abstract
Mulberry leaves are an important ingredient in some traditional Chinese medicinal formulas and has been developed for use in functional food products. The antioxidant activity of mulberry leaf extract has been reported to have beneficial effects on diseases in vitro; however, it is not clear which components in mulberry leaf extracts have these functions. Furthermore, the mechanisms of action of these ingredients have not been extensively investigated. In this study, we extracted total mulberry leaf polyphenols (MLP) and identified its 13 phenolic monomers. Our results, using Caenorhabditis elegans as a model, indicated that MLPs delayed aging, improved oxidative stress resistance, and reduced fatty acid storage in vivo. Subsequent genetic screens and gene expression analyses demonstrated that the functions of MLP mainly depended on the germline signaling pathway, thus influencing the activities of downstream transcription factors (DAF-12, DAF-16, PHA-4, and NHR-80) as well as the expression levels of their target genes (fat-6, lipl-4, sod-3, unc-51, and fard-1). Our study determined that diverse modes of action on longevity were promoted by MLP exposure. These observations provide the first insight into MLP's multifaceted functions on aging, fat accumulation, and reproduction in vivo and indicate a specific model for the mechanism of action of MLP. This is a significant finding that lends support to the hypotheses that mulberry leaf extracts can have an impact on human health.
Collapse
Affiliation(s)
- Shanqing Zheng
- Sericulture and Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, No. 133 Yiheng ST Dongguanzhuang RD, Guangzhou, 510610 China
| | - Sentai Liao
- Sericulture and Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, No. 133 Yiheng ST Dongguanzhuang RD, Guangzhou, 510610 China
| | - Yuxiao Zou
- Sericulture and Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, No. 133 Yiheng ST Dongguanzhuang RD, Guangzhou, 510610 China
| | - Zhi Qu
- Sericulture and Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, No. 133 Yiheng ST Dongguanzhuang RD, Guangzhou, 510610 China
| | - Weizhi Shen
- Sericulture and Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, No. 133 Yiheng ST Dongguanzhuang RD, Guangzhou, 510610 China
| | - Ying Shi
- Sericulture and Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, No. 133 Yiheng ST Dongguanzhuang RD, Guangzhou, 510610 China
| |
Collapse
|
278
|
Favrin G, Bean DM, Bilsland E, Boyer H, Fischer BE, Russell S, Crowther DC, Baylis HA, Oliver SG, Giannakou ME. Identification of novel modifiers of Aβ toxicity by transcriptomic analysis in the fruitfly. Sci Rep 2013; 3:3512. [PMID: 24336499 PMCID: PMC3863820 DOI: 10.1038/srep03512] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 12/02/2013] [Indexed: 11/09/2022] Open
Abstract
The strongest risk factor for developing Alzheimer's Disease (AD) is age. Here, we study the relationship between ageing and AD using a systems biology approach that employs a Drosophila (fruitfly) model of AD in which the flies overexpress the human Aβ42 peptide. We identified 712 genes that are differentially expressed between control and Aβ-expressing flies. We further divided these genes according to how they change over the animal's lifetime and discovered that the AD-related gene expression signature is age-independent. We have identified a number of differentially expressed pathways that are likely to play an important role in the disease, including oxidative stress and innate immunity. In particular, we uncovered two new modifiers of the Aβ phenotype, namely Sod3 and PGRP-SC1b.
Collapse
Affiliation(s)
- G. Favrin
- Cambridge Systems Biology Centre, University of Cambridge, Cambridge, CB2 1GA, UK
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK
- These authors contributed equally to this work
| | - D. M. Bean
- Cambridge Systems Biology Centre, University of Cambridge, Cambridge, CB2 1GA, UK
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK
- These authors contributed equally to this work
| | - E. Bilsland
- Cambridge Systems Biology Centre, University of Cambridge, Cambridge, CB2 1GA, UK
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK
| | - H. Boyer
- Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, UK
| | - B. E. Fischer
- Cambridge Systems Biology Centre, University of Cambridge, Cambridge, CB2 1GA, UK
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, UK
| | - S. Russell
- Cambridge Systems Biology Centre, University of Cambridge, Cambridge, CB2 1GA, UK
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, UK
| | - D. C. Crowther
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, UK
| | - H. A. Baylis
- Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, UK
| | - S. G. Oliver
- Cambridge Systems Biology Centre, University of Cambridge, Cambridge, CB2 1GA, UK
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK
| | - M. E. Giannakou
- Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, UK
| |
Collapse
|
279
|
Soares H, Marinho HS, Real C, Antunes F. Cellular polarity in aging: role of redox regulation and nutrition. GENES AND NUTRITION 2013; 9:371. [PMID: 24306961 DOI: 10.1007/s12263-013-0371-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 11/19/2013] [Indexed: 02/06/2023]
Abstract
Cellular polarity concerns the spatial asymmetric organization of cellular components and structures. Such organization is important not only for biological behavior at the individual cell level, but also for the 3D organization of tissues and organs in living organisms. Processes like cell migration and motility, asymmetric inheritance, and spatial organization of daughter cells in tissues are all dependent of cell polarity. Many of these processes are compromised during aging and cellular senescence. For example, permeability epithelium barriers are leakier during aging; elderly people have impaired vascular function and increased frequency of cancer, and asymmetrical inheritance is compromised in senescent cells, including stem cells. Here, we review the cellular regulation of polarity, as well as the signaling mechanisms and respective redox regulation of the pathways involved in defining cellular polarity. Emphasis will be put on the role of cytoskeleton and the AMP-activated protein kinase pathway. We also discuss how nutrients can affect polarity-dependent processes, both by direct exposure of the gastrointestinal epithelium to nutrients and by indirect effects elicited by the metabolism of nutrients, such as activation of antioxidant response and phase-II detoxification enzymes through the transcription factor nuclear factor (erythroid-derived 2)-like 2 (Nrf2). In summary, cellular polarity emerges as a key process whose redox deregulation is hypothesized to have a central role in aging and cellular senescence.
Collapse
Affiliation(s)
- Helena Soares
- Departamento de Química e Bioquímica, Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | | | | | | |
Collapse
|
280
|
Scialo F, Mallikarjun V, Stefanatos R, Sanz A. Regulation of lifespan by the mitochondrial electron transport chain: reactive oxygen species-dependent and reactive oxygen species-independent mechanisms. Antioxid Redox Signal 2013; 19:1953-69. [PMID: 22938137 DOI: 10.1089/ars.2012.4900] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
SIGNIFICANCE Aging is a consequence of the accumulation of cellular damage that impairs the capacity of an aging organism to adapt to stress. The Mitochondrial Free Radical Theory of Aging (MFRTA) has been one of the most influential ideas over the past 50 years. The MFRTA is supported by the accumulation of oxidative damage during aging along with comparative studies demonstrating that long-lived species or individuals produce fewer mitochondrial reactive oxygen species and have lower levels of oxidative damage. RECENT ADVANCES Recently, however, species that combine high oxidative damage with a longer lifespan (i.e., naked mole rats) have been described. Moreover, most of the interventions based on antioxidant supplementation do not increase longevity, as would be predicted by the MFRTA. Studies to date provide a clear understanding that mitochondrial function regulates the rate of aging, but the underlying mechanisms remain unclear. CRITICAL ISSUES Here, we review the reactive oxygen species (ROS)-dependent and ROS-independent mechanisms by which mitochondria can affect longevity. We discuss the role of different ROS (superoxide, hydrogen peroxide, and hydroxyl radical), both as oxidants as well as signaling molecules. We also describe how mitochondria can regulate longevity by ROS-independent mechanisms. We discuss alterations in mitochondrial DNA, accumulation of cellular waste as a consequence of glyco- and lipoxidative damage, and the regulation of DNA maintenance enzymes as mechanisms that can determine longevity without involving ROS. FUTURE DIRECTIONS We also show how the regulation of longevity is a complex process whereby ROS-dependent and ROS-independent mechanisms interact to determine the maximum lifespan of species and individuals.
Collapse
Affiliation(s)
- Filippo Scialo
- 1 Institute of Biomedical Technology and Tampere University Hospital , University of Tampere, Tampere, Finland
| | | | | | | |
Collapse
|
281
|
Senescence in cell oxidative status in two bird species with contrasting life expectancy. Oecologia 2013; 174:1097-105. [PMID: 24292795 DOI: 10.1007/s00442-013-2840-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 11/15/2013] [Indexed: 01/26/2023]
Abstract
Oxidative stress occurs when the production of reactive oxygen species (ROS) by an organism exceeds its capacity to mitigate the damaging effects of the ROS. Consequently, oxidative stress hypotheses of ageing argue that a decline in fecundity and an increase in the likelihood of death with advancing age reported at the organism level are driven by gradual disruption of the oxidative balance at the cellular level. Here, we measured erythrocyte resistance to oxidative stress in the same individuals over several years in two free-living bird species with contrasting life expectancy, the great tit (known maximum life expectancy is 15.4 years) and the Alpine swift (26 years). In both species, we found evidence for senescence in cell resistance to oxidative stress, with patterns of senescence becoming apparent as subjects get older. In the Alpine swift, there was also evidence for positive selection on cell resistance to oxidative stress, the more resistant subjects being longer lived. The present findings of inter-individual selection and intra-individual deterioration in cell oxidative status at old age in free-living animals support a role for oxidative stress in the ageing of wild animals.
Collapse
|
282
|
Barja G. Updating the mitochondrial free radical theory of aging: an integrated view, key aspects, and confounding concepts. Antioxid Redox Signal 2013; 19:1420-45. [PMID: 23642158 PMCID: PMC3791058 DOI: 10.1089/ars.2012.5148] [Citation(s) in RCA: 213] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 04/11/2013] [Accepted: 05/05/2013] [Indexed: 01/12/2023]
Abstract
An updated version of the mitochondrial free radical theory of aging (MFRTA) and longevity is reviewed. Key aspects of the theory are emphasized. Another main focus concerns common misconceptions that can mislead investigators from other specialties, even to wrongly discard the theory. Those different issues include (i) the main reactive oxygen species (ROS)-generating site in the respiratory chain in relation to aging and longevity: complex I; (ii) the close vicinity or even contact between that site and the mitochondrial DNA, in relation to the lack of local efficacy of antioxidants and to sub-cellular compartmentation; (iii) the relationship between mitochondrial ROS production and oxygen consumption; (iv) recent criticisms on the MFRTA; (v) the widespread assumption that ROS are simple "by-products" of the mitochondrial respiratory chain; (vi) the unnecessary postulation of "vicious cycle" hypotheses of mitochondrial ROS generation which are not central to the free radical theory of aging; and (vii) the role of DNA repair concerning endogenous versus exogenous damage. After considering the large body of data already available, two general characteristics responsible for the high maintenance degree of long-lived animals emerge: (i) a low generation rate of endogenous damage: and (ii) the possession of tissue macromolecules that are highly resistant to oxidative modification.
Collapse
Affiliation(s)
- Gustavo Barja
- Department of Animal Physiology II, Faculty of Biological Sciences, Complutense University , Madrid, Spain
| |
Collapse
|
283
|
Goichberg P, Kannappan R, Cimini M, Bai Y, Sanada F, Sorrentino A, Signore S, Kajstura J, Rota M, Anversa P, Leri A. Age-associated defects in EphA2 signaling impair the migration of human cardiac progenitor cells. Circulation 2013; 128:2211-23. [PMID: 24141256 DOI: 10.1161/circulationaha.113.004698] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Aging negatively impacts on the function of resident human cardiac progenitor cells (hCPCs). Effective regeneration of the injured heart requires mobilization of hCPCs to the sites of damage. In the young heart, signaling by the guidance receptor EphA2 in response to the ephrin A1 ligand promotes hCPC motility and improves cardiac recovery after infarction. METHODS AND RESULTS We report that old hCPCs are characterized by cell-autonomous inhibition of their migratory ability ex vivo and impaired translocation in vivo in the damaged heart. EphA2 expression was not decreased in old hCPCs; however, the elevated level of reactive oxygen species in aged cells induced post-translational modifications of the EphA2 protein. EphA2 oxidation interfered with ephrin A1-stimulated receptor auto-phosphorylation, activation of Src family kinases, and caveolin-1-mediated internalization of the receptor. Cellular aging altered the EphA2 endocytic route, affecting the maturation of EphA2-containing endosomes and causing premature signal termination. Overexpression of functionally intact EphA2 in old hCPCs corrected the defects in endocytosis and downstream signaling, enhancing cell motility. Based on the ability of phenotypically young hCPCs to respond efficiently to ephrin A1, we developed a novel methodology for the prospective isolation of live hCPCs with preserved migratory capacity and growth reserve. CONCLUSIONS Our data demonstrate that the ephrin A1/EphA2 pathway may serve as a target to facilitate trafficking of hCPCs in the senescent myocardium. Importantly, EphA2 receptor function can be implemented for the selection of hCPCs with high therapeutic potential, a clinically relevant strategy that does not require genetic manipulation of stem cells.
Collapse
Affiliation(s)
- Polina Goichberg
- Departments of Anesthesia and Medicine, and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (P.G., R.K., M.C., Y.B., F.S., A.S., S.S., J.K., M.R., PA., A.L.); and the Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China (Y.B.)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
284
|
Setoyama D, Fujimura Y, Miura D. Metabolomics reveals that carnitine palmitoyltransferase-1 is a novel target for oxidative inactivation in human cells. Genes Cells 2013; 18:1107-19. [PMID: 24118240 DOI: 10.1111/gtc.12098] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 09/02/2013] [Indexed: 01/08/2023]
Abstract
Oxidative dysfunction in the metabolism has long been implicated in diverse biological disorders. Although a substantial number of metabolic enzymes are targeted for inactivation by oxidative stress, identifying those targets remains difficult due to a lack of comprehensive observations of the metabolism acting through the stress response. We herein developed a metabolomics strategy using integrative liquid chromatography-mass spectrometry (LC-MS) and observing rapid metabolomic changes in response to hydrogen peroxide (H2 O2 )-induced oxidative stress in HeLa cells. Among the many metabolite changes detected, the most characteristic metabolites uniquely indicated carnitine palmitoyltransferase-1 (CPT1), the critical enzyme for mitochondrial β-oxidation of long-chain fatty acids, to be a target for oxidative inactivation. We showed that the enzymatic activity of CPT1 significantly declined by H2 O2 in several human cells. Interestingly, the inactivation was shown to be a direct effect of H2 O2 in vitro, but substantially occurred when cells were cultured with some reagents that generate reactive oxygen species (ROS). Thus, our results suggest the generality of CPT1 inhibition under various stress conditions associated with ROS generation, providing an insight into a mechanism for oxidative dysfunction in mitochondrial metabolism. Our metabolome data additionally suggest that certain methyltransferase(s) may be targets of oxidative stress as well.
Collapse
Affiliation(s)
- Daiki Setoyama
- Innovation Center for Medical Redox Navigation, Kyushu University, Maidashi 3-1-1, Fukuoka, 812-8582, Japan
| | | | | |
Collapse
|
285
|
Siegel MP, Kruse SE, Percival JM, Goh J, White CC, Hopkins HC, Kavanagh TJ, Szeto HH, Rabinovitch PS, Marcinek DJ. Mitochondrial-targeted peptide rapidly improves mitochondrial energetics and skeletal muscle performance in aged mice. Aging Cell 2013; 12:763-71. [PMID: 23692570 PMCID: PMC3772966 DOI: 10.1111/acel.12102] [Citation(s) in RCA: 140] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2013] [Indexed: 12/25/2022] Open
Abstract
Mitochondrial dysfunction plays a key pathogenic role in aging skeletal muscle resulting in significant healthcare costs in the developed world. However, there is no pharmacologic treatment to rapidly reverse mitochondrial deficits in the elderly. Here, we demonstrate that a single treatment with the mitochondrial-targeted peptide SS-31 restores in vivo mitochondrial energetics to young levels in aged mice after only one hour. Young (5 month old) and old (27 month old) mice were injected intraperitoneally with either saline or 3 mg kg(-1) of SS-31. Skeletal muscle mitochondrial energetics were measured in vivo one hour after injection using a unique combination of optical and (31) P magnetic resonance spectroscopy. Age-related declines in resting and maximal mitochondrial ATP production, coupling of oxidative phosphorylation (P/O), and cell energy state (PCr/ATP) were rapidly reversed after SS-31 treatment, while SS-31 had no observable effect on young muscle. These effects of SS-31 on mitochondrial energetics in aged muscle were also associated with a more reduced glutathione redox status and lower mitochondrial H2 O2 emission. Skeletal muscle of aged mice was more fatigue resistant in situ one hour after SS-31 treatment, and eight days of SS-31 treatment led to increased whole-animal endurance capacity. These data demonstrate that SS-31 represents a new strategy for reversing age-related deficits in skeletal muscle with potential for translation into human use.
Collapse
Affiliation(s)
- M. P. Siegel
- Department of Bioengineering, University of Washington, Seattle, WA 98195
| | - S. E. Kruse
- Department of Radiology, University of Washington, Seattle, WA 98195
| | - J. M. Percival
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195
| | - J. Goh
- Department of Comparative Medicine, University of Washington, Seattle, WA 98195
- Department of Nutritional Science, University of Washington, Seattle, WA 98195
| | - C. C. White
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195
| | - H. C. Hopkins
- Department of Comparative Medicine, University of Washington, Seattle, WA 98195
| | - T. J. Kavanagh
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195
| | - H. H. Szeto
- Department of Pharmacology, Weill Cornell Medical College, New York, NY 10021
| | - P. S. Rabinovitch
- Department of Pathology, University of Washington, Seattle, WA 98195
| | - D. J. Marcinek
- Department of Bioengineering, University of Washington, Seattle, WA 98195
- Department of Radiology, University of Washington, Seattle, WA 98195
| |
Collapse
|
286
|
Viña J, Borras C, Abdelaziz KM, Garcia-Valles R, Gomez-Cabrera MC. The free radical theory of aging revisited: the cell signaling disruption theory of aging. Antioxid Redox Signal 2013; 19:779-87. [PMID: 23841595 PMCID: PMC3749699 DOI: 10.1089/ars.2012.5111] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
SIGNIFICANCE The free radical theory of aging has provided a theoretical framework for an enormous amount of work leading to significant advances in our understanding of aging. Up to the turn of the century, the theory received abundant support from observations coming from fields as far apart as comparative physiology or molecular biology. RECENT ADVANCES Work from many laboratories supports the theory, for instance showing that overexpression of antioxidant enzymes results in increases in life-span. But other labs have shown that in some cases, there is an increased oxidative stress and increased longevity. The discovery that free radicals can not only cause molecular damage to cells, but also serve as signals; led to the proposal that they act as modulators of physiological processes. For instance, reactive oxygen species (ROS) stimulate physiological adaptations to physical exercise. CRITICAL ISSUES A critical blow to the free radical theory of aging came from epidemiological studies showing that antioxidant supplementation did not lower the incidence of many age-associated diseases but, in some cases, increased the risk of death. Moreover, recent molecular evidence has shown that increasing generation of ROS, in some cases, increases longevity. FUTURE DIRECTIONS Gerontologists interested in free radical biology are at a crossroads and clearly new insights are required to clarify the role of ROS in the process of aging. The hurdles are, no doubt, very high, but the intellectual and practical promise of these studies is of such magnitude that we feel that all efforts will be generously rewarding.
Collapse
Affiliation(s)
- Jose Viña
- Department of Physiology, University of Valencia and Fundacion Investigacion Hospital Clinico Universitario/INCLIVA, Valencia 46010, Spain.
| | | | | | | | | |
Collapse
|
287
|
Orr WC, Radyuk SN, Sohal RS. Involvement of redox state in the aging of Drosophila melanogaster. Antioxid Redox Signal 2013; 19:788-803. [PMID: 23458359 PMCID: PMC3749695 DOI: 10.1089/ars.2012.5002] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
SIGNIFICANCE The main objective of this review was to provide an exposition of investigations, conducted in Drosophila melanogaster, on the role of reactive oxygen species and redox state in the aging process. While early transgenic studies did not clearly support the validity of the oxidative stress hypothesis of aging, predicated on the accumulation of structural damage, they spawned a broader search for redox-related effects that might impact the aging process. RECENT ADVANCES Initial evidence implicating the thiol redox state as a possible causative factor in aging has been obtained in Drosophila. Overexpression of genes, such as GCL, G6PD, Prx2, and Prx5, which are involved in the maintenance of thiol redox homeostasis, has strong positive effects on longevity. Further, the depletion of peroxiredoxin activity in the mitochondria through the double knockdown of Prx5 and Prx3 not only results in a redox crisis but also elicits a rapid aging phenotype. CRITICAL ISSUES Herein, we summarize the present status of knowledge about the main components of the machinery controlling thiol redox homeostasis and describe how age-related redox fluctuations might impact aging more acutely through disruption of the redox-sensitive signaling mechanisms rather than via the simple accumulation of structural damage. FUTURE DIRECTIONS Based on these initial insights into the plausible impact of redox fluctuations on redox signaling, future studies should focus on the pathways that have been explicitly implicated in aging, such as insulin signaling, TOR, and JNK/FOXO, with particular attention to elements that are redox sensitive.
Collapse
Affiliation(s)
- William C Orr
- Department of Biological Sciences, Southern Methodist University, Dallas, Texas 75275, USA.
| | | | | |
Collapse
|
288
|
Currais A, Maher P. Functional consequences of age-dependent changes in glutathione status in the brain. Antioxid Redox Signal 2013; 19:813-22. [PMID: 23249101 DOI: 10.1089/ars.2012.4996] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
SIGNIFICANCE A decline in both cognitive and motor functions is one of the characteristics of aging. This results in changes in learning and memory, as well as deficits in balance and coordination that significantly impact the quality of life. Importantly, age is the greatest risk factor for a number of neurodegenerative diseases. Alterations in redox homeostasis, protein modification and processing, mitochondrial function, and the immune response have all been implicated in the decline of the aging brain. RECENT ADVANCES Brain glutathione (GSH) decreases with age in humans, and a loss of GSH can impact cognitive function. Decreases in GSH are also associated with microglial activation and endothelial dysfunction, both of which can contribute to impairments in brain function. Changes in redox homeostasis can also potentiate the accumulation of advanced glycation endproducts, resulting in defects in protein processing and function as well as a further increase in inflammation. CRITICAL ISSUES We argue here that many of the changes in brain function associated with age are linked through GSH metabolism. FUTURE DIRECTIONS Further research focused on better understanding how age affects GSH homeostasis with a particular emphasis on the key transcription factors involved in GSH metabolism is needed.
Collapse
Affiliation(s)
- Antonio Currais
- Cellular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | | |
Collapse
|
289
|
Venkataraman K, Khurana S, Tai TC. Oxidative stress in aging--matters of the heart and mind. Int J Mol Sci 2013; 14:17897-925. [PMID: 24002027 PMCID: PMC3794759 DOI: 10.3390/ijms140917897] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 08/10/2013] [Accepted: 08/15/2013] [Indexed: 01/15/2023] Open
Abstract
Oxidative damage is considered to be the primary cause of several aging associated disease pathologies. Cumulative oxidative damage tends to be pervasive among cellular macromolecules, impacting proteins, lipids, RNA and DNA of cells. At a systemic level, events subsequent to oxidative damage induce an inflammatory response to sites of oxidative damage, often contributing to additional oxidative stress. At a cellular level, oxidative damage to mitochondria results in acidification of the cytoplasm and release of cytochrome c, causing apoptosis. This review summarizes findings in the literature on oxidative stress and consequent damage on cells and tissues of the cardiovascular system and the central nervous system, with a focus on aging-related diseases that have well-documented evidence of oxidative damage in initiation and/or progression of the disease. The current understanding of the cellular mechanisms with a focus on macromolecular damage, impacted cellular pathways and gross morphological changes associated with oxidative damage is also reviewed. Additionally, the impact of calorific restriction with its profound impact on cardiovascular and neuronal aging is addressed.
Collapse
Affiliation(s)
- Krishnan Venkataraman
- Department of Gerontology, Huntington University, Sudbury, ON P3E 2C6, Canada; E-Mail:
| | - Sandhya Khurana
- Medical Sciences Division, Northern Ontario School of Medicine, Sudbury, ON P3E 2C6, Canada; E-Mail:
| | - T. C. Tai
- Medical Sciences Division, Northern Ontario School of Medicine, Sudbury, ON P3E 2C6, Canada; E-Mail:
- Department of Biology, Department of Chemistry and Biochemistry, Biomolecular Sciences Program, Laurentian University, 935 Ramsey Lake Road, Sudbury, ON P3E 2C6, Canada
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-705-662-7239; Fax: +1-705-675-4858
| |
Collapse
|
290
|
Kawałek A, Lefevre SD, Veenhuis M, van der Klei IJ. Peroxisomal catalase deficiency modulates yeast lifespan depending on growth conditions. Aging (Albany NY) 2013; 5:67-83. [PMID: 23425686 PMCID: PMC3616232 DOI: 10.18632/aging.100519] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We studied the role of peroxisomal catalase in chronological aging of the yeastHansenula polymorpha in relation to various growth substrates. Catalase-deficient (cat) cells showed a similar chronological life span (CLS) relative to the wild-type control upon growth on carbon and nitrogen sources that are not oxidized by peroxisomal enzymes. However, when media contained methylamine, which is oxidized by peroxisomal amine oxidase, the CLS of cat cells was significantly reduced. Conversely, the CLS of cat cells was enhanced relative to the wild-type control, when cells were grown on methanol, which is oxidized by peroxisomal alcohol oxidase. At these conditions strongly enhanced ROS levels were observed during the exponential growth phase of cat cells. This was paralleled by activation of the transcription factor Yap1, as well as an increase in the levels of the antioxidant enzymes cytochrome c peroxidase and superoxide dismutase. Upon deletion of the genes encoding Yap1 or cytochrome c peroxidase, the CLS extension of cat cells on methanol was abolished. These findings reveal for the first time an important role of enhanced cytochrome c peroxidase levels in yeast CLS extension.
Collapse
Affiliation(s)
- Adam Kawałek
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Groningen, The Netherlands
| | | | | | | |
Collapse
|
291
|
Duhé RJ. Redox regulation of Janus kinase: The elephant in the room. JAKSTAT 2013; 2:e26141. [PMID: 24416654 PMCID: PMC3876428 DOI: 10.4161/jkst.26141] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 08/12/2013] [Accepted: 08/13/2013] [Indexed: 12/21/2022] Open
Abstract
The redox regulation of Janus kinases (JAKs) is a complex subject. Due to other redox-sensitive kinases in the kinome, redox-sensitive phosphatases, and cellular antioxidant systems and reactive oxygen species (ROS) production systems, the net biological outcomes of oxidative stress on JAK-dependent signal transduction vary according to the specific biological system examined. This review begins with a discussion of the biochemical evidence for a cysteine-based redox switch in the catalytic domain of JAKs, proceeds to consider direct and indirect regulatory mechanisms involved in biological experiments, and ends with a discussion of the role(s) of redox regulation of JAKs in various diseases.
Collapse
Affiliation(s)
- Roy J Duhé
- Department of Pharmacology and Toxicology and Department of Radiation Oncology; University of Mississippi Medical Center; Jackson, MS USA
| |
Collapse
|
292
|
Ghosh D, LeVault KR, Brewer GJ. Dual-energy precursor and nuclear erythroid-related factor 2 activator treatment additively improve redox glutathione levels and neuron survival in aging and Alzheimer mouse neurons upstream of reactive oxygen species. Neurobiol Aging 2013; 35:179-90. [PMID: 23954169 DOI: 10.1016/j.neurobiolaging.2013.06.023] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 05/24/2013] [Accepted: 06/30/2013] [Indexed: 01/01/2023]
Abstract
To determine whether glutathione (GSH) loss or increased reactive oxygen species (ROS) are more important to neuron loss, aging, and Alzheimer's disease (AD), we stressed or boosted GSH levels in neurons isolated from aging 3xTg-AD neurons compared with those from age-matched nontransgenic (non-Tg) neurons. Here, using titrating with buthionine sulfoximine, an inhibitor of γ-glutamyl cysteine synthetase (GCL), we observed that GSH depletion increased neuronal death of 3xTg-AD cultured neurons at increasing rates across the age span, whereas non-Tg neurons were resistant to GSH depletion until old age. Remarkably, the rate of neuron loss with ROS did not increase in old age and was the same for both genotypes, which indicates that cognitive deficits in the AD model were not caused by ROS. Therefore, we targeted for neuroprotection activation of the redox sensitive transcription factor, nuclear erythroid-related factor 2 (Nrf2) by 18 alpha glycyrrhetinic acid to stimulate GSH synthesis through GCL. This balanced stimulation of a number of redox enzymes restored the lower levels of Nrf2 and GCL seen in 3xTg-AD neurons compared with those of non-Tg neurons and promoted translocation of Nrf2 to the nucleus. By combining the Nrf2 activator together with the NADH precursor, nicotinamide, we increased neuron survival against amyloid beta stress in an additive manner. These stress tests and neuroprotective treatments suggest that the redox environment is more important for neuron survival than ROS. The dual neuroprotective treatment with nicotinamide and an Nrf2 inducer indicates that these age-related and AD-related changes are reversible.
Collapse
Affiliation(s)
- Debolina Ghosh
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | | | | |
Collapse
|
293
|
Rahman MM, Sykiotis GP, Nishimura M, Bodmer R, Bohmann D. Declining signal dependence of Nrf2-MafS-regulated gene expression correlates with aging phenotypes. Aging Cell 2013; 12:554-62. [PMID: 23521918 PMCID: PMC3714369 DOI: 10.1111/acel.12078] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2013] [Indexed: 11/26/2022] Open
Abstract
Aging is a degenerative process characterized by declining molecular, cell and organ functions, and accompanied by the progressive accumulation of oxidatively damaged macromolecules. This increased oxidative damage may be causally related to an age-associated dysfunction of defense mechanisms, which effectively protect young individuals from oxidative insults. Consistently, older organisms are more sensitive to acute oxidative stress exposures than young ones. In studies on the Drosophila Nrf2 transcription factor CncC, we have investigated possible causes for this loss of stress resistance and its connection to the aging process. Nrf2 is a master regulator of antioxidant and stress defense gene expression with established functions in the control of longevity. Here, we show that the expression of protective Nrf2/CncC target genes in unstressed conditions does not generally decrease in older flies. However, aging flies progressively lose the ability to activate Nrf2 targets in response to acute stress exposure. We propose that the resulting inability to dynamically adjust the expression of Nrf2 target genes to the organism's internal and external conditions contributes to age-related loss of homeostasis and fitness. In support of this hypothesis, we find the Drosophila small Maf protein, MafS, an Nrf2 dimerization partner, to be critical to maintain responsiveness of the Nrf2 system: overexpression of MafS in older flies preserves Nrf2/CncC signaling competence and antagonizes age-associated functional decline. The maintenance of acute stress resistance, motor function, and heart performance in aging flies overexpressing MafS supports a critical role for signal responsiveness of Nrf2 function in promoting youthful phenotypes.
Collapse
Affiliation(s)
- M. Mahidur Rahman
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Gerasimos P. Sykiotis
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Mayuko Nishimura
- Development and Aging Program, Sanford/Burnham Medical Research Institute, La Jolla, CA 92037, USA
| | - Rolf Bodmer
- Development and Aging Program, Sanford/Burnham Medical Research Institute, La Jolla, CA 92037, USA
| | - Dirk Bohmann
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
294
|
Marcinek DJ, Siegel MP. Targeting redox biology to reverse mitochondrial dysfunction. Aging (Albany NY) 2013; 5:588-9. [PMID: 23945201 PMCID: PMC3796210 DOI: 10.18632/aging.100590] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 08/09/2013] [Indexed: 12/26/2022]
Affiliation(s)
- David J Marcinek
- Departments of Radiology, Bioengineering, and Pathology. University of Washington Medical School, Seattle, WA 98195, USA
| | | |
Collapse
|
295
|
Tulpule K, Dringen R. Formaldehyde in brain: an overlooked player in neurodegeneration? J Neurochem 2013; 127:7-21. [PMID: 23800365 DOI: 10.1111/jnc.12356] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 06/12/2013] [Accepted: 06/21/2013] [Indexed: 02/06/2023]
Abstract
Formaldehyde is an environmental pollutant that is also generated in substantial amounts in the human body during normal metabolism. This aldehyde is a well-established neurotoxin that affects memory, learning, and behavior. In addition, in several pathological conditions, including Alzheimer's disease, an increase in the expression of formaldehyde-generating enzymes and elevated levels of formaldehyde in brain have been reported. This article gives an overview on the current knowledge on the generation and metabolism of formaldehyde in brain cells as well as on formaldehyde-induced alterations in metabolic processes. Brain cells have the potential to generate and to dispose formaldehyde. In culture, both astrocytes and neurons efficiently oxidize formaldehyde to formate which can be exported or further oxidized. Although moderate concentrations of formaldehyde are not acutely toxic for brain cells, exposure to formaldehyde severely affects their metabolism as demonstrated by the formaldehyde-induced acceleration of glycolytic flux and by the rapid multidrug resistance protein 1-mediated export of glutathione from both astrocytes and neurons. These formaldehyde-induced alterations in the metabolism of brain cells may contribute to the impaired cognitive performance observed after formaldehyde exposure and to the neurodegeneration in diseases that are associated with increased formaldehyde levels in brain.
Collapse
Affiliation(s)
- Ketki Tulpule
- Indian Institute of Science Education and Research, Pashan, Pune, India
| | | |
Collapse
|
296
|
Tsakiri EN, Sykiotis GP, Papassideri IS, Gorgoulis VG, Bohmann D, Trougakos IP. Differential regulation of proteasome functionality in reproductive vs. somatic tissues of Drosophila during aging or oxidative stress. FASEB J 2013; 27:2407-20. [PMID: 23457214 PMCID: PMC4050428 DOI: 10.1096/fj.12-221408] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 02/21/2013] [Indexed: 12/29/2022]
Abstract
Proteasome is central to proteostasis maintenance, as it degrades both normal and damaged proteins. Herein, we undertook a detailed analysis of proteasome regulation in the in vivo setting of Drosophila melanogaster. We report that a major hallmark of somatic tissues of aging flies is the gradual accumulation of ubiquitinated and carbonylated proteins; these effects correlated with a ~50% reduction of proteasome expression and catalytic activities. In contrast, gonads of aging flies were relatively free of proteome oxidative damage and maintained substantial proteasome expression levels and highly active proteasomes. Moreover, gonads of young flies were found to possess more abundant and more active proteasomes than somatic tissues. Exposure of flies to oxidants induced higher proteasome activities specifically in the gonads, which were, independently of age, more resistant than soma to oxidative challenge and, as analyses in reporter transgenic flies showed, retained functional antioxidant responses. Finally, inducible Nrf2 activation in transgenic flies promoted youthful proteasome expression levels in the aged soma, suggesting that age-dependent Nrf2 dysfunction is causative of decreasing somatic proteasome expression during aging. The higher investment in proteostasis maintenance in the gonads plausibly facilitates proteome stability across generations; it also provides evidence in support of the trade-off theories of aging.
Collapse
Affiliation(s)
- Eleni N. Tsakiri
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Panepistimiopolis, Athens, Greece
| | - Gerasimos P. Sykiotis
- Division of Endocrinology, Department of Internal Medicine, University of Patras Medical School, Patras, Greece
| | - Issidora S. Papassideri
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Panepistimiopolis, Athens, Greece
| | - Vassilis G. Gorgoulis
- Department of Histology and Embryology, School of Medicine, University of Athens, Athens, Greece; and
| | - Dirk Bohmann
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, New York, USA
| | - Ioannis P. Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Panepistimiopolis, Athens, Greece
| |
Collapse
|
297
|
Gyöngyösi N, Nagy D, Makara K, Ella K, Káldi K. Reactive oxygen species can modulate circadian phase and period in Neurospora crassa. Free Radic Biol Med 2013; 58:134-43. [PMID: 23277144 DOI: 10.1016/j.freeradbiomed.2012.12.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 11/14/2012] [Accepted: 12/17/2012] [Indexed: 11/24/2022]
Abstract
Reactive oxygen species (ROS) may serve as signals coupling metabolism to other cell functions. In addition to being by-products of normal metabolism, they are generated at elevated levels under environmental stress situations. We analyzed how reactive oxygen species affect the circadian clock in the model organism Neurospora crassa. In light/dark cycles, an increase in the levels of reactive oxygen species advanced the phase of both the conidiation rhythm and the expression of the clock gene frequency. Our results indicate a dominant role of the superoxide anion in the control of the phase. Elevation of superoxide production resulted in the activation of protein phosphatase 2A, a regulator of the positive element of the circadian clock. Our data indicate that even under nonstress conditions, reactive oxygen species affect circadian timekeeping. Reduction of their basal levels results in a delay of the phase in light/dark cycles and a longer period under constant conditions. We show that under entrained conditions the phase depends on the temperature and reactive oxygen species contribute to this effect. Our results suggest that the superoxide anion is an important factor controlling the circadian oscillator and is able to reset the clock most probably by activating protein phosphatase 2A, thereby modulating the activity of the White Collar complex.
Collapse
Affiliation(s)
- Norbert Gyöngyösi
- Department of Physiology, Semmelweis University, H-1092 Budapest, Hungary
| | | | | | | | | |
Collapse
|
298
|
Site-specific antioxidative therapy for prevention of atherosclerosis and cardiovascular disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:796891. [PMID: 23738041 PMCID: PMC3657429 DOI: 10.1155/2013/796891] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 04/09/2013] [Indexed: 02/07/2023]
Abstract
Oxidative stress has been implicated in pathophysiology of aging and age-associated disease. Antioxidative medicine has become a practice for prevention of atherosclerosis. However, limited success in preventing cardiovascular disease (CVD) in individuals with atherosclerosis using general antioxidants has prompted us to develop a novel antioxidative strategy to prevent atherosclerosis. Reducing visceral adipose tissue by calorie restriction (CR) and regular endurance exercise represents a causative therapy for ameliorating oxidative stress. Some of the recently emerging drugs used for the treatment of CVD may be assigned as site-specific antioxidants. CR and exercise mimetic agents are the choice for individuals who are difficult to continue CR and exercise. Better understanding of molecular and cellular biology of redox signaling will pave the way for more effective antioxidative medicine for prevention of CVD and prolongation of healthy life span.
Collapse
|
299
|
Effects of HIV and antiretroviral therapy on resting energy expenditure in adult HIV-infected women-a matched, prospective, cross-sectional study. J Acad Nutr Diet 2013; 113:1037-43. [PMID: 23601434 DOI: 10.1016/j.jand.2013.02.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 02/05/2013] [Indexed: 11/23/2022]
Abstract
BACKGROUND Several studies have reported increased resting energy expenditure (REE) in people with human immunodeficiency virus (HIV). However, limited data exist on REE in HIV-infected women and the effect of antiretroviral therapy (ART) on REE in this population. OBJECTIVE The purpose of this study was to compare REE in healthy controls to adult HIV-infected women classified in three groups: naïve to ART, on ART with virologic suppression, and on ART with an HIV-1 RNA level >5,000 copies/mL. DESIGN After a fast, body composition by bioelectrical impedance analysis and REE by indirect calorimetry were determined. Anthropometric measures were also taken. STATISTICAL ANALYSIS Distributionally appropriate two-sample tests were used for between-group analyses and analysis of covariance was used for confounding adjustment. RESULTS Eighty-seven women were enrolled and the HIV-infected and control women were matched for age and body mass index. Log-transformed REE was significantly higher in HIV-infected women naïve to ART compared to controls (7.26±0.22 vs 7.14±0.19; P=0.04, respectively) and the difference remained significant after adjustment for body cell mass (P=0.008). Log-transformed REE was not different in HIV-infected women on ART compared to HIV-infected women naïve to ART (7.25±0.25 vs 7.26±0.23; P=0.81, respectively). Adjusting for body cell mass did not change the results (P=0.56). Similarly, REE was not different between women naïve to ART and those on ART with undetectable HIV-1 RNA, regardless of adjustment for body cell mass. REE correlated to current and nadir CD4 count and trended toward a negative correlation with HIV-1 RNA levels. CONCLUSIONS We showed that REE is elevated in ART-naïve, HIV-infected women and continues to be elevated when on ART, regardless of virologic suppression, compared to age and body mass index-matched healthy women. This suggests an effect of HIV infection itself and not ART on REE in these HIV-infected women, and should be considered during nutrition assessment and counseling of HIV-infected adult women.
Collapse
|
300
|
Abstract
Ageing is a process characterized by a progressive decline in cellular function, organismal fitness and increased risk of age-related diseases and death. Several hundred theories have attempted to explain this phenomenon. One of the most popular is the 'oxidative stress theory', originally termed the 'free radical theory'. The endocrine system seems to have a role in the modulation of oxidative stress; however, much less is known about the role that oxidative stress might have in the ageing of the endocrine system and the induction of age-related endocrine diseases. This Review outlines the interactions between hormones and oxidative metabolism and the potential effects of oxidative stress on ageing of endocrine organs. Many different mechanisms that link oxidative stress and ageing are discussed, all of which converge on the induction or regulation of inflammation. All these mechanisms, including cell senescence, mitochondrial dysfunction and microRNA dysregulation, as well as inflammation itself, could be targets of future studies aimed at clarifying the effects of oxidative stress on ageing of endocrine glands.
Collapse
Affiliation(s)
- Giovanni Vitale
- Department of Clinical Sciences and Community Health, University of Milan, Istituto Auxologico Italiano IRCCS, Via Zucchi 18, Cusano Milanino (MI) 20095, Italy
| | | | | |
Collapse
|