251
|
Fu L, Cui CP, Zhang X, Zhang L. The functions and regulation of Smurfs in cancers. Semin Cancer Biol 2019; 67:102-116. [PMID: 31899247 DOI: 10.1016/j.semcancer.2019.12.023] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/10/2019] [Accepted: 12/26/2019] [Indexed: 02/06/2023]
Abstract
Smad ubiquitination regulatory factor 1 (Smurf1) and Smurf2 are HECT-type E3 ubiquitin ligases, and both Smurfs were initially identified to regulate Smad protein stability in the TGF-β/BMP signaling pathway. In recent years, Smurfs have exhibited E3 ligase-dependent and -independent activities in various kinds of cells. Smurfs act as either potent tumor promoters or tumor suppressors in different tumors by regulating biological processes, including metastasis, apoptosis, cell cycle, senescence and genomic stability. The regulation of Smurfs activity and expression has therefore emerged as a hot spot in tumor biology research. Further, the Smurf1- or Smurf2-deficient mice provide more in vivo clues for the functional study of Smurfs in tumorigenesis and development. In this review, we summarize these milestone findings and, in turn, reveal new avenues for the prevention and treatment of cancer by regulating Smurfs.
Collapse
Affiliation(s)
- Lin Fu
- Institute of Chronic Disease, Qingdao Municipal Hospital, Qingdao University, Qingdao 266000, China
| | - Chun-Ping Cui
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100850, China
| | - Xueli Zhang
- Department of General Surgery, Shanghai Fengxian Central Hospital Graduate Training Base, Fengxian Hospital, Southern Medical University, Shanghai, China.
| | - Lingqiang Zhang
- Institute of Chronic Disease, Qingdao Municipal Hospital, Qingdao University, Qingdao 266000, China; State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100850, China; Peixian People's Hospital, Jiangsu Province 221600, China.
| |
Collapse
|
252
|
Pajarillo E, Rizor A, Lee J, Aschner M, Lee E. The role of astrocytic glutamate transporters GLT-1 and GLAST in neurological disorders: Potential targets for neurotherapeutics. Neuropharmacology 2019; 161:107559. [PMID: 30851309 PMCID: PMC6731169 DOI: 10.1016/j.neuropharm.2019.03.002] [Citation(s) in RCA: 259] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 02/28/2019] [Accepted: 03/02/2019] [Indexed: 12/12/2022]
Abstract
Glutamate is the primary excitatory neurotransmitter in the central nervous system (CNS) which initiates rapid signal transmission in the synapse before its re-uptake into the surrounding glia, specifically astrocytes. The astrocytic glutamate transporters glutamate-aspartate transporter (GLAST) and glutamate transporter-1 (GLT-1) and their human homologs excitatory amino acid transporter 1 (EAAT1) and 2 (EAAT2), respectively, are the major transporters which take up synaptic glutamate to maintain optimal extracellular glutamic levels, thus preventing accumulation in the synaptic cleft and ensuing excitotoxicity. Growing evidence has shown that excitotoxicity is associated with various neurological disorders, including amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD), Parkinson's disease (PD), manganism, ischemia, schizophrenia, epilepsy, and autism. While the mechanisms of neurological disorders are not well understood, the dysregulation of GLAST/GLT-1 may play a significant role in excitotoxicity and associated neuropathogenesis. The expression and function of GLAST/GLT-1 may be dysregulated at the genetic, epigenetic, transcriptional or translational levels, leading to high levels of extracellular glutamate and excitotoxicity. Consequently, understanding the regulatory mechanisms of GLAST/GLT-1 has been an area of interest in developing therapeutics for the treatment of neurological disorders. Pharmacological agents including β-lactam antibiotics, estrogen/selective estrogen receptor modulators (SERMs), growth factors, histone deacetylase inhibitors (HDACi), and translational activators have shown significant efficacy in enhancing the expression and function of GLAST/GLT-1 and glutamate uptake both in vitro and in vivo. This comprehensive review will discuss the regulatory mechanisms of GLAST/GLT-1, their association with neurological disorders, and the pharmacological agents which mediate their expression and function. This article is part of the issue entitled 'Special Issue on Neurotransmitter Transporters'.
Collapse
Affiliation(s)
- Edward Pajarillo
- Department of Pharmaceutical Sciences, College of Pharmacy, Florida A&M University, Tallahassee, FL, 32301, USA
| | - Asha Rizor
- Department of Pharmaceutical Sciences, College of Pharmacy, Florida A&M University, Tallahassee, FL, 32301, USA
| | - Jayden Lee
- Department of Speech, Language & Hearing Sciences, Boston University, Boston, MA, 02215, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Eunsook Lee
- Department of Pharmaceutical Sciences, College of Pharmacy, Florida A&M University, Tallahassee, FL, 32301, USA.
| |
Collapse
|
253
|
Functions of N6-methyladenosine and its role in cancer. Mol Cancer 2019; 18:176. [PMID: 31801551 PMCID: PMC6892141 DOI: 10.1186/s12943-019-1109-9] [Citation(s) in RCA: 915] [Impact Index Per Article: 152.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 11/25/2019] [Indexed: 01/16/2023] Open
Abstract
N6-methyladenosine (m6A) is methylation that occurs in the N6-position of adenosine, which is the most prevalent internal modification on eukaryotic mRNA. Accumulating evidence suggests that m6A modulates gene expression, thereby regulating cellular processes ranging from cell self-renewal, differentiation, invasion and apoptosis. M6A is installed by m6A methyltransferases, removed by m6A demethylases and recognized by reader proteins, which regulate of RNA metabolism including translation, splicing, export, degradation and microRNA processing. Alteration of m6A levels participates in cancer pathogenesis and development via regulating expression of tumor-related genes like BRD4, MYC, SOCS2 and EGFR. In this review, we elaborate on recent advances in research of m6A enzymes. We also highlight the underlying mechanism of m6A in cancer pathogenesis and progression. Finally, we review corresponding potential targets in cancer therapy.
Collapse
|
254
|
Lee A, Zhu Y, Sabo Y, Goff SP. Embryonic Cells Redistribute SUMO1 upon Forced SUMO1 Overexpression. mBio 2019; 10:e01856-19. [PMID: 31796536 PMCID: PMC6890988 DOI: 10.1128/mbio.01856-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 10/23/2019] [Indexed: 12/28/2022] Open
Abstract
Conjugation of small ubiquitin-like modifiers (SUMOs) to substrate proteins is a posttranslational protein modification that affects a diverse range of physiological processes. Global inhibition of SUMO conjugation in mice results in embryonic lethality, reflecting the importance of the SUMO pathways for embryonic development. Here, we demonstrated that SUMO1 overexpression was not well tolerated in murine embryonic carcinoma and embryonic stem (ES) cells and that only a few clones were recovered after transduction with vectors delivering SUMO1 expression constructs. Differentiated NIH/3T3 cells overexpress SUMO1 without deleterious effects and maintain high levels of both conjugated and free forms of SUMO1. The few embryonic cells surviving after forced overexpression retained all their SUMO1 in the form of a few high-molecular-weight conjugates and maintained undetectable levels of free SUMO1. The absence of free SUMO in embryonic cells was seen specifically upon overexpression of SUMO1, but not SUMO2. Moreover, blocking SUMO1 conjugation to endogenous substrates by C-terminal mutations of SUMO1 or by overexpression of a SUMO1 substrate "sponge" or by overexpression of the deSUMOylating enzyme SUMO-specific peptidase 1 (SENP1) dramatically restored free SUMO1 overexpression. The data suggest that overexpression of SUMO1 protein leading to an excess accumulation of critical SUMO1-conjugated substrates is not tolerated in embryonic cells. Surviving embryonic cells exhibit SUMO1 conjugation to allowed substrates but a complete absence of free SUMO1.IMPORTANCE Embryonic stem (ES) cells exhibit unusual transcriptional, proteomic, and signal response profiles, reflecting their unusual needs for rapid differentiation and replication. The work reported here demonstrated that mouse embryonic cell lines did not tolerate the overexpression of SUMO1, the small ubiquitin-like modifier protein that is covalently attached to many substrates to alter their intracellular localization and functionality. Forced SUMO1 overexpression is toxic to ES cells, and surviving cell populations adapt by dramatically reducing the levels of free SUMO1. Such a response is not seen in differentiated cells or with SUMO2 or with nonconjugatable SUMO1 mutants or in the presence of a SUMO1 "sponge" substrate that accepts the modification. The findings suggest that excess SUMO1 modification of specific substrates is not tolerated by embryonic cells and highlight a distinctive need for these cells to control the levels of SUMO1 available for conjugation.
Collapse
Affiliation(s)
- Andreia Lee
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University Medical Center, Columbia University, New York, New York, USA
| | - Yiping Zhu
- Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University Medical Center, Columbia University, New York, New York, USA
- Department of Microbiology and Immunology, Howard Hughes Medical Institute, Columbia University Medical Center, Columbia University, New York, New York, USA
| | - Yosef Sabo
- Department of Medicine, Howard Hughes Medical Institute, Columbia University Medical Center, Columbia University, New York, New York, USA
| | - Stephen P Goff
- Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University Medical Center, Columbia University, New York, New York, USA
- Department of Microbiology and Immunology, Howard Hughes Medical Institute, Columbia University Medical Center, Columbia University, New York, New York, USA
| |
Collapse
|
255
|
Rodriguez A, Briley SM, Patton BK, Tripurani SK, Rajapakshe K, Coarfa C, Rajkovic A, Andrieux A, Dejean A, Pangas SA. Loss of the E2 SUMO-conjugating enzyme Ube2i in oocytes during ovarian folliculogenesis causes infertility in mice. Development 2019; 146:dev.176701. [PMID: 31704792 PMCID: PMC6918767 DOI: 10.1242/dev.176701] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 10/29/2019] [Indexed: 01/25/2023]
Abstract
The number and quality of oocytes within the ovarian reserve largely determines fertility and reproductive lifespan in mammals. An oocyte-specific transcription factor cascade controls oocyte development, and some of these transcription factors, such as newborn ovary homeobox gene (NOBOX), are candidate genes for primary ovarian insufficiency in women. Transcription factors are frequently modified by the post-translational modification SUMOylation, but it is not known whether SUMOylation is required for function of the oocyte-specific transcription factors or if SUMOylation is required in oocytes during their development within the ovarian follicle. To test this, the sole E2 SUMO-conjugating enzyme, Ube2i, was ablated in mouse oocytes beginning in primordial follicles. Loss of oocyte Ube2i resulted in female infertility with major defects in stability of the primordial follicle pool, ovarian folliculogenesis, ovulation and meiosis. Transcriptomic profiling of ovaries suggests that loss of oocyte Ube2i caused defects in both oocyte- and granulosa cell-expressed genes, including NOBOX and some of its known target genes. Together, these studies show that SUMOylation is required in the mammalian oocyte during folliculogenesis for both oocyte development and communication with ovarian somatic cells.
Collapse
Affiliation(s)
- Amanda Rodriguez
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA,Graduate Program in Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shawn M. Briley
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA,Graduate Program in Biochemistry & Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Bethany K. Patton
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA,Graduate Program in Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Swamy K. Tripurani
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kimal Rajapakshe
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Cristian Coarfa
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Aleksander Rajkovic
- Department of Pathology, University of California, San Francisco, CA 94134, USA
| | - Alexandra Andrieux
- Nuclear Organization and Oncogenesis Unit, INSERM U993, Pasteur Institute, 75015 Paris, France
| | - Anne Dejean
- Nuclear Organization and Oncogenesis Unit, INSERM U993, Pasteur Institute, 75015 Paris, France
| | - Stephanie A. Pangas
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA,Graduate Program in Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA,Graduate Program in Biochemistry & Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA,Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA,Author for correspondence ()
| |
Collapse
|
256
|
Shao L, Liu Y, Wang W, Li A, Wan P, Liu W, Shereen MA, Liu F, Zhang W, Tan Q, Wu K, Liu Y, Wu J. SUMO1 SUMOylates and SENP3 deSUMOylates NLRP3 to orchestrate the inflammasome activation. FASEB J 2019; 34:1497-1515. [PMID: 31914638 DOI: 10.1096/fj.201901653r] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/21/2019] [Accepted: 11/14/2019] [Indexed: 12/16/2022]
Abstract
The NLRP3 inflammasome regulates innate immune and inflammatory responses by promoting caspase1-dependent induction of pro-inflammatory cytokines. However, aberrant inflammasome activation causes diverse diseases, and thus inflammasome activity must be tightly controlled. Here, we reveal a molecular mechanism underlying the regulation of NLRP3 inflammasome. NLRP3 interacts with SUMO-conjugating enzyme (UBC9), which subsequently promotes small ubiquitin-like modifier 1 (SUMO1) to catalyze NLRP3 SUMOylation at residue Lys204. SUMO1-catalyzed SUMOylation of NLRP3 facilitates ASC oligomerization, inflammasome activation, and interleukin-1β secretion. Moreover, this study also reveals that SUMO-specific protease 3 (SENP3) is required for the deSUMOylation of NLRP3. Interestingly, SENP3 deSUMOylates NLRP3 to attenuate ASC recruitment and speck formation, the NLRP3 inflammasome activation, as well as IL-1β cleavage and secretion. In conclusion, we reveal that SUMO1-catalyzed SUMOylation and SENP3-mediated deSUMOylation of NLRP3 orchestrate the inflammasome activation.
Collapse
Affiliation(s)
- Luyao Shao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yan Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Wenbiao Wang
- Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Aixin Li
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Pin Wan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Weiyong Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Muhammad Adnan Shereen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Fang Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Wen Zhang
- Guangdong LongFan Biological Science and Technology Company, Foshan, China
| | - Quiping Tan
- Guangdong LongFan Biological Science and Technology Company, Foshan, China
| | - Kailang Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yingle Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China.,Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Jianguo Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China.,Institute of Medical Microbiology, Jinan University, Guangzhou, China
| |
Collapse
|
257
|
Abstract
The genes that encode rRNA in Saccharomyces cerevisiae are organized as multiple repeats. The repetitive nature and heavy transcription of this region make it prone to DNA breaks. DNA breaks could lead to recombination, which could result in either loss or gain of repeats with detrimental consequences to the cell. Multiple mechanisms operate to maintain the stability of rDNA. Earlier studies reported that the absence of Ulp2, a deSUMOylase, resulted in declining levels of Tof2 and thereby disrupted rDNA silencing. In contrast, our findings suggest that accumulation of Tof2 can also result in increased rDNA recombination, through a mechanism that involves Fob1, an RFB-bound protein. While our study has examined only Tof2, rDNA recombination could be regulated by other proteins through a mechanism similar to this. Ribosomal DNA (rDNA) recombination in budding yeast is regulated by multiple converging processes, including posttranslational modifications such as SUMOylation. In this study, we report that the absence of a SUMO E3 ligase, Siz2, results in increased unequal rDNA exchange. We show that Siz2 is enriched at the replication fork barrier (RFB) in the rDNA and also controls the homeostasis of Tof2 protein. siz2Δ resulted in increased accumulation of total Tof2 in the cell and a consequent increase in the enrichment of Tof2 at the rDNA. Overproducing Tof2 ectopically or conditional overexpression of Tof2 also resulted in higher levels of rDNA recombination, suggesting a direct role for Tof2. Additionally, our chromatin immunoprecipitation (ChIP) data indicate that the accumulation of Tof2 in a siz2Δ mutant resulted in an enhanced association of Fob1, an RFB binding protein at the rDNA at the RFB. This increased Fob1 association at the RFB may have resulted in the elevated rDNA recombination. Our study thus demonstrates that the Tof2 levels modulate recombination at the rDNA. IMPORTANCE The genes that encode rRNA in Saccharomyces cerevisiae are organized as multiple repeats. The repetitive nature and heavy transcription of this region make it prone to DNA breaks. DNA breaks could lead to recombination, which could result in either loss or gain of repeats with detrimental consequences to the cell. Multiple mechanisms operate to maintain the stability of rDNA. Earlier studies reported that the absence of Ulp2, a deSUMOylase, resulted in declining levels of Tof2 and thereby disrupted rDNA silencing. In contrast, our findings suggest that accumulation of Tof2 can also result in increased rDNA recombination, through a mechanism that involves Fob1, an RFB-bound protein. While our study has examined only Tof2, rDNA recombination could be regulated by other proteins through a mechanism similar to this.
Collapse
|
258
|
Chen Z, Liu X, Li F, Li C, Marquez-Lago T, Leier A, Akutsu T, Webb GI, Xu D, Smith AI, Li L, Chou KC, Song J. Large-scale comparative assessment of computational predictors for lysine post-translational modification sites. Brief Bioinform 2019; 20:2267-2290. [PMID: 30285084 PMCID: PMC6954452 DOI: 10.1093/bib/bby089] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/17/2018] [Accepted: 08/18/2018] [Indexed: 12/22/2022] Open
Abstract
Lysine post-translational modifications (PTMs) play a crucial role in regulating diverse functions and biological processes of proteins. However, because of the large volumes of sequencing data generated from genome-sequencing projects, systematic identification of different types of lysine PTM substrates and PTM sites in the entire proteome remains a major challenge. In recent years, a number of computational methods for lysine PTM identification have been developed. These methods show high diversity in their core algorithms, features extracted and feature selection techniques and evaluation strategies. There is therefore an urgent need to revisit these methods and summarize their methodologies, to improve and further develop computational techniques to identify and characterize lysine PTMs from the large amounts of sequence data. With this goal in mind, we first provide a comprehensive survey on a large collection of 49 state-of-the-art approaches for lysine PTM prediction. We cover a variety of important aspects that are crucial for the development of successful predictors, including operating algorithms, sequence and structural features, feature selection, model performance evaluation and software utility. We further provide our thoughts on potential strategies to improve the model performance. Second, in order to examine the feasibility of using deep learning for lysine PTM prediction, we propose a novel computational framework, termed MUscADEL (Multiple Scalable Accurate Deep Learner for lysine PTMs), using deep, bidirectional, long short-term memory recurrent neural networks for accurate and systematic mapping of eight major types of lysine PTMs in the human and mouse proteomes. Extensive benchmarking tests show that MUscADEL outperforms current methods for lysine PTM characterization, demonstrating the potential and power of deep learning techniques in protein PTM prediction. The web server of MUscADEL, together with all the data sets assembled in this study, is freely available at http://muscadel.erc.monash.edu/. We anticipate this comprehensive review and the application of deep learning will provide practical guide and useful insights into PTM prediction and inspire future bioinformatics studies in the related fields.
Collapse
Affiliation(s)
- Zhen Chen
- School of Basic Medical Science, Qingdao University, Dengzhou Road, Qingdao, Shandong, China
| | - Xuhan Liu
- Medicinal Chemistry, Leiden Academic Centre for Drug Research,Einsteinweg, Leiden, The Netherlands
| | - Fuyi Li
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Faculty of Medicine, Monash University, Melbourne, VIC, Australia
- ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, VIC, Australia
| | - Chen Li
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Faculty of Medicine, Monash University, Melbourne, VIC, Australia
- Institute of Molecular Systems Biology, ETH Zürich,Auguste-Piccard-Hof, Zürich, Switzerland
| | - Tatiana Marquez-Lago
- Department of Genetics, School of Medicine, University of Alabama at Birmingham, AL, USA
- Department of Cell, Developmental and Integrative Biology, School of Medicine, University of Alabama at Birmingham, AL, USA
| | - André Leier
- Department of Genetics, School of Medicine, University of Alabama at Birmingham, AL, USA
- Department of Cell, Developmental and Integrative Biology, School of Medicine, University of Alabama at Birmingham, AL, USA
| | - Tatsuya Akutsu
- Bioinformatics Center, Institute for Chemical Research,Kyoto University, Uji, Kyoto, Japan
| | - Geoffrey I Webb
- Monash Centre for Data Science, Faculty of Information Technology, Monash University, Melbourne, VIC, Australia
| | - Dakang Xu
- Faculty of Medical Laboratory Science, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Department of Molecular and Translational Science, Faculty of Medicine, Hudson Institute of Medical Research, Monash University, Melbourne, VIC, Australia
| | - Alexander Ian Smith
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Faculty of Medicine, Monash University, Melbourne, VIC, Australia
- ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, VIC, Australia
| | - Lei Li
- School of Basic Medical Science, Qingdao University, Dengzhou Road, Qingdao, Shandong, China
| | - Kuo-Chen Chou
- Gordon Life Science Institute, Boston, MA, USA
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Jiangning Song
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Faculty of Medicine, Monash University, Melbourne, VIC, Australia
- ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, VIC, Australia
- Monash Centre for Data Science, Faculty of Information Technology, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
259
|
Recruitment of the Ulp2 protease to the inner kinetochore prevents its hyper-sumoylation to ensure accurate chromosome segregation. PLoS Genet 2019; 15:e1008477. [PMID: 31747400 PMCID: PMC6892545 DOI: 10.1371/journal.pgen.1008477] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 12/04/2019] [Accepted: 10/14/2019] [Indexed: 01/15/2023] Open
Abstract
The kinetochore is the central molecular machine that drives chromosome segregation in all eukaryotes. Genetic studies have suggested that protein sumoylation plays a role in regulating the inner kinetochore; however, the mechanism remains elusive. Here, we show that Saccharomyces cerevisiae Ulp2, an evolutionarily conserved SUMO specific protease, contains a previously uncharacterized kinetochore-targeting motif that recruits Ulp2 to the kinetochore via the Ctf3CENP-I-Mcm16CENP-H-Mcm22CENP-K complex (CMM). Once recruited, Ulp2 selectively targets multiple subunits of the kinetochore, specifically the Constitutive Centromere-Associated Network (CCAN), via its SUMO-interacting motif (SIM). Mutations that impair the kinetochore recruitment of Ulp2 or its binding to SUMO result in an elevated rate of chromosome loss, while mutations that affect both result in a synergistic increase of chromosome loss rate, hyper-sensitivity to DNA replication stress, along with a dramatic accumulation of hyper-sumoylated CCAN. Notably, sumoylation of CCAN occurs at the kinetochore and is perturbed by DNA replication stress. These results indicate that Ulp2 utilizes its dual substrate recognition to prevent hyper-sumoylation of CCAN, ensuring accurate chromosome segregation during cell division.
Collapse
|
260
|
Casciaro F, Beretti F, Zavatti M, McCubrey JA, Ratti S, Marmiroli S, Follo MY, Maraldi T. Nuclear Nox4 interaction with prelamin A is associated with nuclear redox control of stem cell aging. Aging (Albany NY) 2019; 10:2911-2934. [PMID: 30362963 PMCID: PMC6224265 DOI: 10.18632/aging.101599] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 10/13/2018] [Indexed: 02/07/2023]
Abstract
Mesenchymal stem cells have emerged as an important tool that can be used for tissue regeneration thanks to their easy preparation, differentiation potential and immunomodulatory activity. However, an extensive culture of stem cells in vitro prior to clinical use can lead to oxidative stress that can modulate different stem cells properties, such as self-renewal, proliferation, differentiation and senescence. The aim of this study was to investigate the aging process occurring during in vitro expansion of stem cells, obtained from amniotic fluids (AFSC) at similar gestational age. The analysis of 21 AFSC samples allowed to classify them in groups with different levels of stemness properties. In summary, the expression of pluripotency genes and the proliferation rate were inversely correlated with the content of reactive oxygen species (ROS), DNA damage signs and the onset premature aging markers, including accumulation of prelamin A, the lamin A immature form. Interestingly, a specific source of ROS, the NADPH oxidase isoform 4 (Nox4), can localize into PML nuclear bodies (PML-NB), where it associates to prelamin A. Besides, Nox4 post translational modification, involved in PML-NB localization, is linked to its degradation pathway, as it is also for prelamin A, thus possibly modulating the premature aging phenotype occurrence.
Collapse
Affiliation(s)
- Francesca Casciaro
- Department of Surgical, Medical, Dental and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, 41124, Italy.,Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, 40126, Italy
| | - Francesca Beretti
- Department of Surgical, Medical, Dental and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, 41124, Italy
| | - Manuela Zavatti
- Department of Surgical, Medical, Dental and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, 41124, Italy
| | - James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| | - Stefano Ratti
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, 40126, Italy
| | - Sandra Marmiroli
- Cellular Signaling Unit, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, 41125, Italy
| | - Matilde Y Follo
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, 40126, Italy
| | - Tullia Maraldi
- Department of Surgical, Medical, Dental and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, 41124, Italy
| |
Collapse
|
261
|
Fan J, Ye Y, Chu G, Zhang Z, Fu Y, Li YM, Shi J. Semisynthesis of Ubiquitin and SUMO-Rhodamine 110-Glycine through Aminolysis of Boc-Protected Thioester Counterparts. J Org Chem 2019; 84:14861-14867. [PMID: 31642325 DOI: 10.1021/acs.joc.9b01529] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ubiquitin (Ub)-based fluorescent reagents are crucial to explore the activity of deubiquitinases (DUBs). Ub-Rho110-G is one of the preferred tools, whereas the current synthetic route is time-consuming. Here, we report a new semisynthetic strategy to produce Ub-Rho110-G through direct aminolysis of Boc-protected Ub-Mesna using bisglycyl-rhodamine 110. We also applied this strategy to synthesize active SUMO2-Rho110-G for the first time. Biochemical analysis demonstrated that semisynthetic Ub or SUMO-Rho110-G can be effectively used for the detection of the activity of DUBs or SUMO-specific enzymes.
Collapse
Affiliation(s)
- Jian Fan
- Department of Chemistry , University of Science and Technology of China , Hefei 230026 , China
| | - Yinshan Ye
- School of Food and Biological Engineering , Hefei University of Technology , Hefei , Anhui 230009 , China
| | - Guochao Chu
- Department of Chemistry , University of Science and Technology of China , Hefei 230026 , China
| | - Zhongping Zhang
- Institute of Intelligent Machines , Chinese Academy of Sciences , Hefei , Anhui 230031 , China
| | - Yao Fu
- Department of Chemistry , University of Science and Technology of China , Hefei 230026 , China
| | - Yi-Ming Li
- School of Food and Biological Engineering , Hefei University of Technology , Hefei , Anhui 230009 , China
| | - Jing Shi
- Department of Chemistry , University of Science and Technology of China , Hefei 230026 , China
| |
Collapse
|
262
|
Kumar R, Sabapathy K. RNF4—A Paradigm for SUMOylation‐Mediated Ubiquitination. Proteomics 2019; 19:e1900185. [DOI: 10.1002/pmic.201900185] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/13/2019] [Indexed: 01/08/2023]
Affiliation(s)
- Ramesh Kumar
- Cancer & Stem Cell Biology Program Duke–NUS Medical School 8 College Road Singapore 169857 Singapore
| | - Kanaga Sabapathy
- Cancer & Stem Cell Biology Program Duke–NUS Medical School 8 College Road Singapore 169857 Singapore
- Laboratory of Molecular Carcinogenesis Division of Cellular & Molecular Research Humphrey Oei Institute of Cancer Research National Cancer Centre Singapore 11 Hospital Drive Singapore 169610 Singapore
- Department of Biochemistry National University of Singapore 8 Medical Drive Singapore 117597 Singapore
- Institute of Molecular and Cellular Biology 61 Biopolis Drive Singapore 138673 Singapore
| |
Collapse
|
263
|
Lorente M, García-Casas A, Salvador N, Martínez-López A, Gabicagogeascoa E, Velasco G, López-Palomar L, Castillo-Lluva S. Inhibiting SUMO1-mediated SUMOylation induces autophagy-mediated cancer cell death and reduces tumour cell invasion via RAC1. J Cell Sci 2019; 132:jcs.234120. [PMID: 31578236 PMCID: PMC6826015 DOI: 10.1242/jcs.234120] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 09/18/2019] [Indexed: 12/27/2022] Open
Abstract
Post-translational modifications directly control protein activity and, thus, they represent an important means to regulate the responses of cells to different stimuli. Protein SUMOylation has recently been recognised as one such modification, and it has been associated with various diseases, including different types of cancer. However, the precise way that changes in SUMOylation influence the tumorigenic properties of cells remains to be fully clarified. Here, we show that blocking the SUMO pathway by depleting SUMO1 and UBC9, or by exposure to ginkgolic acid C15:1 or 2-D08 (two different SUMOylation inhibitors), induces cell death, also inhibiting the invasiveness of tumour cells. Indeed, diminishing the formation of SUMO1 complexes induces autophagy-mediated cancer cell death through increasing the expression of Tribbles pseudokinase 3 (TRIB3). Moreover, we found that blocking the SUMO pathway inhibits tumour cell invasion by decreasing RAC1 SUMOylation. These findings shed new light on the mechanisms by which SUMO1 modifications regulate the survival, and the migratory and invasive capacity of tumour cells, potentially establishing the bases to develop novel anti-cancer treatments based on the inhibition of SUMOylation.
Collapse
Affiliation(s)
- Mar Lorente
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Biológicas, Universidad Complutense, Madrid 28040, Spain.,Instituto de Investigaciones Sanitarias San Carlos (IdISSC), Madrid 28040, Spain
| | - Ana García-Casas
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Biológicas, Universidad Complutense, Madrid 28040, Spain.,Instituto de Investigaciones Sanitarias San Carlos (IdISSC), Madrid 28040, Spain
| | - Nélida Salvador
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Biológicas, Universidad Complutense, Madrid 28040, Spain.,Instituto de Investigaciones Sanitarias San Carlos (IdISSC), Madrid 28040, Spain
| | - Angélica Martínez-López
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Biológicas, Universidad Complutense, Madrid 28040, Spain.,Instituto de Investigaciones Sanitarias San Carlos (IdISSC), Madrid 28040, Spain
| | - Estibaliz Gabicagogeascoa
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Biológicas, Universidad Complutense, Madrid 28040, Spain.,Instituto de Investigaciones Sanitarias San Carlos (IdISSC), Madrid 28040, Spain
| | - Guillermo Velasco
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Biológicas, Universidad Complutense, Madrid 28040, Spain.,Instituto de Investigaciones Sanitarias San Carlos (IdISSC), Madrid 28040, Spain.,Instituto Universitario de Investigación Neuroquímica, Universidad Complutense, Madrid 28040, Spain
| | - Lucía López-Palomar
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Biológicas, Universidad Complutense, Madrid 28040, Spain.,Instituto de Investigaciones Sanitarias San Carlos (IdISSC), Madrid 28040, Spain
| | - Sonia Castillo-Lluva
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Biológicas, Universidad Complutense, Madrid 28040, Spain .,Instituto de Investigaciones Sanitarias San Carlos (IdISSC), Madrid 28040, Spain
| |
Collapse
|
264
|
Nandi T, Yadav A, Ainavarapu SRK. Experimental comparison of energy landscape features of ubiquitin family proteins. Proteins 2019; 88:449-461. [DOI: 10.1002/prot.25822] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/05/2019] [Accepted: 09/18/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Tathagata Nandi
- Department of Chemical SciencesTata Institute of Fundamental Research Mumbai India
| | - Anju Yadav
- Department of Chemical SciencesTata Institute of Fundamental Research Mumbai India
| | | |
Collapse
|
265
|
Wu Q, Aroankins TS, Cheng L, Fenton RA. SUMOylation Landscape of Renal Cortical Collecting Duct Cells. J Proteome Res 2019; 18:3640-3648. [PMID: 31502464 DOI: 10.1021/acs.jproteome.9b00306] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Protein post-translational modification by the small ubiquitin-like modifier (SUMO) is a mechanism that allows a diverse response of cells to stress. Five SUMO family members, SUMO1-5, are expressed in mammals. We hypothesized that because kidney epithelial cells are often subject to stresses arising from various physiological conditions, multiple proteins in the kidney will be SUMOylated. Here, we profiled SUMO1- and SUMO2-modified proteins in a polarized epithelial cell model of the renal cortical collecting duct (mpkCCD14 cells). Modified forms of SUMO1 or SUMO2, with a histidine tag and a Thr to Lys mutation preceding the carboxyl-terminal di-gly motif, were expressed in mpkCCD14 cells, allowing SUMO-conjugated proteins to be purified and identified. Protein mass spectrometry identified 1428 SUMO1 and 1957 SUMO2 sites, corresponding to 741 SUMO1 and 971 SUMO2 proteins. Gene ontology indicated that the function of the majority of SUMOylated proteins in mpkCCD14 cells was related to gene transcription. After treatment of the mpkCCD14 cells for 24 h with aldosterone, the levels of SUMOylation at a specific site on the proton and oligopeptide/antibiotic cotransporter protein Pept2 were greatly increased. In conclusion, the SUMOylation landscape of mpkCCD14 cells suggests that protein modification by SUMOylation is a mechanism within renal epithelial cells to modulate gene transcription under various physiological conditions.
Collapse
Affiliation(s)
- Qi Wu
- InterPrET Center, Department of Biomedicine , Aarhus University , Aarhus DK-8000 , Denmark
| | - Takwa S Aroankins
- InterPrET Center, Department of Biomedicine , Aarhus University , Aarhus DK-8000 , Denmark
| | - Lei Cheng
- InterPrET Center, Department of Biomedicine , Aarhus University , Aarhus DK-8000 , Denmark
| | - Robert A Fenton
- InterPrET Center, Department of Biomedicine , Aarhus University , Aarhus DK-8000 , Denmark
| |
Collapse
|
266
|
Aichem A, Sailer C, Ryu S, Catone N, Stankovic-Valentin N, Schmidtke G, Melchior F, Stengel F, Groettrup M. The ubiquitin-like modifier FAT10 interferes with SUMO activation. Nat Commun 2019; 10:4452. [PMID: 31575873 PMCID: PMC6773726 DOI: 10.1038/s41467-019-12430-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 09/10/2019] [Indexed: 12/25/2022] Open
Abstract
The covalent attachment of the cytokine-inducible ubiquitin-like modifier HLA-F adjacent transcript 10 (FAT10) to hundreds of substrate proteins leads to their rapid degradation by the 26 S proteasome independently of ubiquitylation. Here, we identify another function of FAT10, showing that it interferes with the activation of SUMO1/2/3 in vitro and down-regulates SUMO conjugation and the SUMO-dependent formation of promyelocytic leukemia protein (PML) bodies in cells. Mechanistically, we show that FAT10 directly binds to and impedes the activity of the heterodimeric SUMO E1 activating enzyme AOS1/UBA2 by competing very efficiently with SUMO for activation and thioester formation. Nevertheless, activation of FAT10 by AOS1/UBA2 does not lead to covalent conjugation of FAT10 with substrate proteins which relies on its cognate E1 enzyme UBA6. Hence, we report that one ubiquitin-like modifier (FAT10) inhibits the conjugation and function of another ubiquitin-like modifier (SUMO) by impairing its activation. FAT10 is an ubiquitin-like modifier that targets proteins to proteasomal degradation. Here, the authors show that FAT10 also regulates SUMO activation in vitro and in cells, providing evidence for functional crosstalk between two ubiquitin-like modifiers.
Collapse
Affiliation(s)
- Annette Aichem
- Biotechnology Institute Thurgau at the University of Konstanz, CH-8280, Kreuzlingen, Switzerland. .,Department of Biology, Division of Immunology, University of Konstanz, D-78457, Konstanz, Germany.
| | - Carolin Sailer
- Department of Biology, University of Konstanz, D-78457, Konstanz, Germany
| | - Stella Ryu
- Biotechnology Institute Thurgau at the University of Konstanz, CH-8280, Kreuzlingen, Switzerland.,Department of Biology, Division of Immunology, University of Konstanz, D-78457, Konstanz, Germany
| | - Nicola Catone
- Biotechnology Institute Thurgau at the University of Konstanz, CH-8280, Kreuzlingen, Switzerland
| | - Nicolas Stankovic-Valentin
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, D-69120, Heidelberg, Germany
| | - Gunter Schmidtke
- Department of Biology, Division of Immunology, University of Konstanz, D-78457, Konstanz, Germany
| | - Frauke Melchior
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, D-69120, Heidelberg, Germany
| | - Florian Stengel
- Department of Biology, University of Konstanz, D-78457, Konstanz, Germany
| | - Marcus Groettrup
- Biotechnology Institute Thurgau at the University of Konstanz, CH-8280, Kreuzlingen, Switzerland.,Department of Biology, Division of Immunology, University of Konstanz, D-78457, Konstanz, Germany
| |
Collapse
|
267
|
Du Y, Hou G, Zhang H, Dou J, He J, Guo Y, Li L, Chen R, Wang Y, Deng R, Huang J, Jiang B, Xu M, Cheng J, Chen GQ, Zhao X, Yu J. SUMOylation of the m6A-RNA methyltransferase METTL3 modulates its function. Nucleic Acids Res 2019; 46:5195-5208. [PMID: 29506078 PMCID: PMC6007514 DOI: 10.1093/nar/gky156] [Citation(s) in RCA: 234] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 02/20/2018] [Indexed: 12/12/2022] Open
Abstract
The methyltransferase like 3 (METTL3) is a key component of the large N6-adenosine-methyltransferase complex in mammalian responsible for N6-methyladenosine (m6A) modification in diverse RNAs including mRNA, tRNA, rRNA, small nuclear RNA, microRNA precursor and long non-coding RNA. However, the characteristics of METTL3 in activation and post-translational modification (PTM) is seldom understood. Here we find that METTL3 is modified by SUMO1 mainly at lysine residues K177, K211, K212 and K215, which can be reduced by an SUMO1-specific protease SENP1. SUMOylation of METTL3 does not alter its stability, localization and interaction with METTL14 and WTAP, but significantly represses its m6A methytransferase activity resulting in the decrease of m6A levels in mRNAs. Consistently with this, the abundance of m6A in mRNAs is increased with re-expression of the mutant METTL3-4KR compared to that of wild-type METTL3 in human non-small cell lung carcinoma (NSCLC) cell line H1299-shMETTL3, in which endogenous METTL3 was knockdown. The alternation of m6A in mRNAs and subsequently change of gene expression profiles, which are mediated by SUMOylation of METTL3, may directly influence the soft-agar colony formation and xenografted tumor growth of H1299 cells. Our results uncover an important mechanism for SUMOylation of METTL3 regulating its m6A RNA methyltransferase activity.
Collapse
Affiliation(s)
- Yuzhang Du
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Guofang Hou
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.,Department of Oncology, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 280 Mohe Road, Shanghai 201999, China
| | - Hailong Zhang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jinzhuo Dou
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jianfeng He
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yanming Guo
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Lian Li
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ran Chen
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yanli Wang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Rong Deng
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jian Huang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Bin Jiang
- Department of Oncology, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 280 Mohe Road, Shanghai 201999, China
| | - Ming Xu
- Department of Oncology, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 280 Mohe Road, Shanghai 201999, China
| | - Jinke Cheng
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Guo-Qiang Chen
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xian Zhao
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jianxiu Yu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.,Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.,State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
268
|
Colomer-Lluch M, Castro-Gonzalez S, Serra-Moreno R. Ubiquitination and SUMOylation in HIV Infection: Friends and Foes. Curr Issues Mol Biol 2019; 35:159-194. [PMID: 31422939 DOI: 10.21775/cimb.035.159] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
As intracellular parasites, viruses hijack the cellular machinery to facilitate their replication and spread. This includes favouring the expression of their viral genes over host genes, appropriation of cellular molecules, and manipulation of signalling pathways, including the post-translational machinery. HIV, the causative agent of AIDS, is notorious for using post-translational modifications to generate infectious particles. Here, we discuss the mechanisms by which HIV usurps the ubiquitin and SUMO pathways to modify both viral and host factors to achieve a productive infection, and also how the host innate sensing system uses these post-translational modifications to hinder HIV replication.
Collapse
Affiliation(s)
- Marta Colomer-Lluch
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Badalona, Spain
| | - Sergio Castro-Gonzalez
- Department of Biological Sciences, College of Arts and Sciences, Texas Tech University, Lubbock, TX, USA
| | - Ruth Serra-Moreno
- Department of Biological Sciences, College of Arts and Sciences, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
269
|
A role for S-nitrosylation of the SUMO-conjugating enzyme SCE1 in plant immunity. Proc Natl Acad Sci U S A 2019; 116:17090-17095. [PMID: 31371496 DOI: 10.1073/pnas.1900052116] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
SUMOylation, the covalent attachment of the small ubiquitin-like modifier (SUMO) to target proteins, is emerging as a key modulator of eukaryotic immune function. In plants, a SUMO1/2-dependent process has been proposed to control the deployment of host defense responses. The molecular mechanism underpinning this activity remains to be determined, however. Here we show that increasing nitric oxide levels following pathogen recognition promote S-nitrosylation of the Arabidopsis SUMO E2 enzyme, SCE1, at Cys139. The SUMO-conjugating activities of both SCE1 and its human homolog, UBC9, were inhibited following this modification. Accordingly, mutation of Cys139 resulted in increased levels of SUMO1/2 conjugates, disabled immune responses, and enhanced pathogen susceptibility. Our findings imply that S-nitrosylation of SCE1 at Cys139 enables NO bioactivity to drive immune activation by relieving SUMO1/2-mediated suppression. The control of global SUMOylation is thought to occur predominantly at the level of each substrate via complex local machineries. Our findings uncover a parallel and complementary mechanism by suggesting that total SUMO conjugation may also be regulated directly by SNO formation at SCE1 Cys139. This Cys is evolutionary conserved and specifically S-nitrosylated in UBC9, implying that this immune-related regulatory process might be conserved across phylogenetic kingdoms.
Collapse
|
270
|
Chen J, Luo Y, Wang S, Zhu H, Li D. Roles and mechanisms of SUMOylation on key proteins in myocardial ischemia/reperfusion injury. J Mol Cell Cardiol 2019; 134:154-164. [PMID: 31344368 DOI: 10.1016/j.yjmcc.2019.07.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/19/2019] [Accepted: 07/21/2019] [Indexed: 12/19/2022]
Abstract
Myocardial ischemia/reperfusion (MI/R) injury has a great influence on the prognosis of patients with acute coronary occlusion. The underlying mechanisms of MI/R injury are complex. While the incidence of MI/R injury is increasing every year, the existing therapies are not satisfactory. Recently, small ubiquitin-related modifier (SUMO), which is a post-translational modification and involved in many cell processes, was found to play remarkable roles in MI/R injury. Several proteins that can be SUMOylated were found to interfere with different mechanisms of MI/R injury. Sarcoplasmic reticulum Ca2+ ATPase pump SUMOylation alleviated calcium overload. Among the histone deacetylase (HDAC) members, SUMOylation of HDAC4 reduced reactive oxygen species generation, whereas Sirt1 played protective roles in the SUMOylated form. Dynamic-related protein 1 modified by different SUMO proteins exerted opposite effects on the function of mitochondria. SUMOylation of hypoxia-inducible factors was fundamental in oxygen homeostasis, while eukaryotic elongation factor 2 SUMOylation induced cardiomyocyte apoptosis. The impact of other SUMOylation substrates in MI/R injury remains unclear. Here we reviewed how these SUMOylated proteins alleviated or exacerbated myocardial impairments by effecting the MI/R injury mechanisms. This may suggest methods for relieving MI/R injury in clinical practice and provide a reference for further study of SUMOylation in MI/R injury.
Collapse
Affiliation(s)
- Jingwen Chen
- Institute of Cardiovascular Disease Research, Xuzhou Medical University, Xuzhou, Jiangsu, PR China
| | - Yuanyuan Luo
- Xuzhou Medical University Affiliated Hospital, Xuzhou, Jiangsu, PR China
| | - Shuai Wang
- Institute of Cardiovascular Disease Research, Xuzhou Medical University, Xuzhou, Jiangsu, PR China
| | - Hong Zhu
- Xuzhou Medical University Affiliated Hospital, Xuzhou, Jiangsu, PR China
| | - Dongye Li
- Institute of Cardiovascular Disease Research, Xuzhou Medical University, Xuzhou, Jiangsu, PR China; Xuzhou Medical University Affiliated Hospital, Xuzhou, Jiangsu, PR China.
| |
Collapse
|
271
|
Zusso M, Barbierato M, Facci L, Skaper SD, Giusti P. Neuroepigenetics and Alzheimer's Disease: An Update. J Alzheimers Dis 2019; 64:671-688. [PMID: 29991138 DOI: 10.3233/jad-180259] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Epigenetics is the study of changes in gene expression which may be triggered by both genetic and environmental factors, and independent from changes to the underlying DNA sequence-a change in phenotype without a change in genotype-which in turn affects how cells read genes. Epigenetic changes represent a regular and natural occurrence but can be influenced also by factors such as age, environment, and disease state. Epigenetic modifications can manifest themselves not only as the manner in which cells terminally differentiate, but can have also deleterious effects, resulting in diseases such as cancer. At least three systems including DNA methylation, histone modification, and non-coding RNA (ncRNA)-associated gene silencing are thought to initiate and sustain epigenetic change. For example, in Alzheimer's disease (AD), both genetic and non-genetic factors contribute to disease etiopathology. While over 250 gene mutations have been related to familial AD, less than 5% of AD cases are explained by known disease genes. More than likely, non-genetic factors, probably triggered by environmental factors, are causative factors of late-onset AD. AD is associated with dysregulation of DNA methylation, histone modifications, and ncRNAs. Among the classes of ncRNA, microRNAs (miRNAs) have a well-established regulatory relevance. MicroRNAs are highly expressed in CNS neurons, where they play a major role in neuron differentiation, synaptogenesis, and plasticity. MicroRNAs impact higher cognitive functions, as their functional impairment is involved in the etiology of neurological diseases, including AD. Alterations in the miRNA network contribute to AD disease processes, e.g., in the regulation of amyloid peptides, tau, lipid metabolism, and neuroinflammation. MicroRNAs, both as biomarkers for AD and therapeutic targets, are in the early stages of exploration. In addition, emerging data suggest that altered transcription of long ncRNAs, endogenous, ncRNAs longer than 200 nucleotides, may be involved in an elevated risk for AD.
Collapse
Affiliation(s)
- Morena Zusso
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Largo Meneghetti, Padua, Italy
| | - Massimo Barbierato
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Largo Meneghetti, Padua, Italy
| | - Laura Facci
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Largo Meneghetti, Padua, Italy
| | - Stephen D Skaper
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Largo Meneghetti, Padua, Italy
| | - Pietro Giusti
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Largo Meneghetti, Padua, Italy
| |
Collapse
|
272
|
Lassak J, Koller F, Krafczyk R, Volkwein W. Exceptionally versatile – arginine in bacterial post-translational protein modifications. Biol Chem 2019; 400:1397-1427. [DOI: 10.1515/hsz-2019-0182] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 06/01/2019] [Indexed: 12/24/2022]
Abstract
Abstract
Post-translational modifications (PTM) are the evolutionary solution to challenge and extend the boundaries of genetically predetermined proteomic diversity. As PTMs are highly dynamic, they also hold an enormous regulatory potential. It is therefore not surprising that out of the 20 proteinogenic amino acids, 15 can be post-translationally modified. Even the relatively inert guanidino group of arginine is subject to a multitude of mostly enzyme mediated chemical changes. The resulting alterations can have a major influence on protein function. In this review, we will discuss how bacteria control their cellular processes and develop pathogenicity based on post-translational protein-arginine modifications.
Collapse
Affiliation(s)
- Jürgen Lassak
- Center for Integrated Protein Science Munich (CiPSM), Department of Biology I, Microbiology , Ludwig-Maximilians-Universität München , Grosshaderner Strasse 2-4 , D-82152 Planegg , Germany
| | - Franziska Koller
- Center for Integrated Protein Science Munich (CiPSM), Department of Biology I, Microbiology , Ludwig-Maximilians-Universität München , Grosshaderner Strasse 2-4 , D-82152 Planegg , Germany
| | - Ralph Krafczyk
- Center for Integrated Protein Science Munich (CiPSM), Department of Biology I, Microbiology , Ludwig-Maximilians-Universität München , Grosshaderner Strasse 2-4 , D-82152 Planegg , Germany
| | - Wolfram Volkwein
- Center for Integrated Protein Science Munich (CiPSM), Department of Biology I, Microbiology , Ludwig-Maximilians-Universität München , Grosshaderner Strasse 2-4 , D-82152 Planegg , Germany
| |
Collapse
|
273
|
Du M, Wang X, Mao X, Yang L, Huang K, Zhang F, Wang Y, Luo X, Wang C, Peng J, Liang M, Huang D, Huang K. Absence of Interferon Regulatory Factor 1 Protects Against Atherosclerosis in Apolipoprotein E-Deficient Mice. Theranostics 2019; 9:4688-4703. [PMID: 31367250 PMCID: PMC6643443 DOI: 10.7150/thno.36862] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 06/23/2019] [Indexed: 12/31/2022] Open
Abstract
Deciphering the molecular and cellular processes involved in foam cell formation is critical to understanding the pathogenesis of atherosclerosis. Interferon regulatory factor 1 (IRF1) was first identified as a transcriptional regulator of type-I interferons (IFNs) and IFN inducible genes. Our study aims to explore the role of IRF1 in atherosclerotic foam cell formation and understand the functional diversity of IRF1 in various cell types contributing to atherosclerosis. Methods: We induced experimental atherosclerosis in ApoE-/-IRF1-/- mice and evaluated the effect of IRF1 on disease progression and foam cell formation. Results: IRF1 expression was increased in human and mouse atherosclerotic lesions. IRF1 deficiency inhibited modified lipoprotein uptake and promoted cholesterol efflux, along with altered expression of genes implicated in lipid metabolism. Gene expression analysis identified scavenger receptor (SR)-AI as a regulated target of IRF1, and SR-AI silencing completely abrogated the increased uptake of modified lipoprotein induced by IRF1. Our data also explain a mechanism underlying endotoxemia-complicated atherogenesis as follows: two likely pro-inflammatory agents, oxidized low-density lipoprotein (ox-LDL) and bacterial lipopolysaccharide (LPS), exert cooperative effects on foam cell formation, which is partly attributable to a shift of IRF1-Ubc9 complex to IRF1- myeloid differentiation primary response protein 88 (Myd88) complex and subsequent IRF1 nuclear translocation. Additionally, it seems that improved function of vascular smooth muscle cells (VSMCs) also accounts for the diminished and more stable atherosclerotic plaques observed in ApoE-/-IRF1-/- mice. Conclusions: Our findings demonstrate an unanticipated role of IRF1 in the regulation of gene expression implicated in foam cell formation and identify IRF1 activation as a new risk factor in the development, progression and instability of atherosclerotic lesions.
Collapse
|
274
|
Mediani L, Guillén-Boixet J, Vinet J, Franzmann TM, Bigi I, Mateju D, Carrà AD, Morelli FF, Tiago T, Poser I, Alberti S, Carra S. Defective ribosomal products challenge nuclear function by impairing nuclear condensate dynamics and immobilizing ubiquitin. EMBO J 2019; 38:e101341. [PMID: 31271238 PMCID: PMC6669919 DOI: 10.15252/embj.2018101341] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 06/05/2019] [Accepted: 06/07/2019] [Indexed: 12/25/2022] Open
Abstract
Nuclear protein aggregation has been linked to genome instability and disease. The main source of aggregation‐prone proteins in cells is defective ribosomal products (DRiPs), which are generated by translating ribosomes in the cytoplasm. Here, we report that DRiPs rapidly diffuse into the nucleus and accumulate in nucleoli and PML bodies, two membraneless organelles formed by liquid–liquid phase separation. We show that nucleoli and PML bodies act as dynamic overflow compartments that recruit protein quality control factors and store DRiPs for later clearance. Whereas nucleoli serve as constitutive overflow compartments, PML bodies are stress‐inducible overflow compartments for DRiPs. If DRiPs are not properly cleared by chaperones and proteasomes due to proteostasis impairment, nucleoli undergo amyloidogenesis and PML bodies solidify. Solid PML bodies immobilize 20S proteasomes and limit the recycling of free ubiquitin. Ubiquitin depletion, in turn, compromises the formation of DNA repair compartments at fragile chromosomal sites, ultimately threatening cell survival.
Collapse
Affiliation(s)
- Laura Mediani
- Centre for Neuroscience and Nanotechnology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | | - Jonathan Vinet
- Centre for Neuroscience and Nanotechnology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy.,Genomic and post-Genomic Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Titus M Franzmann
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Ilaria Bigi
- Centre for Neuroscience and Nanotechnology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Daniel Mateju
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Arianna D Carrà
- Centre for Neuroscience and Nanotechnology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Federica F Morelli
- Centre for Neuroscience and Nanotechnology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Tatiana Tiago
- Centre for Neuroscience and Nanotechnology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Ina Poser
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Simon Alberti
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Technische Universität Dresden, Center for Molecular and Cellular Bioengineering (CMCB), Biotechnology Center (BIOTEC), Dresden, Germany
| | - Serena Carra
- Centre for Neuroscience and Nanotechnology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
275
|
Wang L, Ji S. Inhibition of Ubc9-Induced CRMP2 SUMOylation Disrupts Glioblastoma Cell Proliferation. J Mol Neurosci 2019; 69:391-398. [PMID: 31267313 DOI: 10.1007/s12031-019-01368-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 06/25/2019] [Indexed: 12/30/2022]
Abstract
Glioblastoma (GBM) is the most aggressive astrocytoma. Despite maximum treatment, the GBM usually recurs and the patient survival is poor. Thus, understanding the molecular mechanism of GBM progression will be meaningful to ameliorate this situation. In this study, collapsin response mediator protein 2 (CRMP2) and Ubc9 protein levels were evaluated in three GBM cell lines. Sumoylated CRMP2 were enriched and immunoprecipitated using SUMO1 and IgG antibodies. CRMP2-K374A mutant was generated by site-direct mutagenesis. All indicated constructs were transfected into GL15 cells, and the corresponding proliferation-promoting effect was assessed through cell proliferation ratio. The t-CSM peptide was used to disturb Ubc9-CRMP2 interaction. CRMP2 is expressed in all tested GBM cell lines. The Ubc9 protein levels are positively correlated with CRMP2 level, and both can promote GBM cell proliferation. Blocking CRMP2 SUMOylation through SUMOylation-incompetent mutant or small peptide suppresses CRMP2-induced GBM cell proliferation. This study demonstrates that the CRMP2 SUMOylation exists widely in GBM cells and drives glioblastoma proliferation. CRMP2 SUMOylation inhibition can significantly suppress GBM proliferation in vitro.
Collapse
Affiliation(s)
- Leilei Wang
- Department of Neurosurgery, Cangzhou Central Hospital, Xinhua West Road, Cangzhou, 061000, Hebei, China
| | - Suzhen Ji
- Department of Emergency, Cangzhou Central Hospital, Xinhua West Road, Cangzhou, 061000, Hebei, China.
| |
Collapse
|
276
|
Chachami G, Stankovic-Valentin N, Karagiota A, Basagianni A, Plessmann U, Urlaub H, Melchior F, Simos G. Hypoxia-induced Changes in SUMO Conjugation Affect Transcriptional Regulation Under Low Oxygen. Mol Cell Proteomics 2019; 18:1197-1209. [PMID: 30926672 PMCID: PMC6553927 DOI: 10.1074/mcp.ra119.001401] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/14/2019] [Indexed: 12/20/2022] Open
Abstract
Hypoxia occurs in pathological conditions, such as cancer, as a result of the imbalance between oxygen supply and consumption by proliferating cells. HIFs are critical molecular mediators of the physiological response to hypoxia but also regulate multiple steps of carcinogenesis including tumor progression and metastasis. Recent data support that sumoylation, the covalent attachment of the Small Ubiquitin-related MOdifier (SUMO) to proteins, is involved in the activation of the hypoxic response and the ensuing signaling cascade. To gain insights into differences of the SUMO1 and SUMO2/3 proteome of HeLa cells under normoxia and cells grown for 48 h under hypoxic conditions, we employed endogenous SUMO-immunoprecipitation in combination with quantitative mass spectrometry (SILAC). The group of proteins whose abundance was increased both in the total proteome and in the SUMO IPs from hypoxic conditions was enriched in enzymes linked to the hypoxic response. In contrast, proteins whose SUMOylation status changed without concomitant change in abundance were predominantly transcriptions factors or transcription regulators. Particularly interesting was transcription factor TFAP2A (Activating enhancer binding Protein 2 alpha), whose sumoylation decreased on hypoxia. TFAP2A is known to interact with HIF-1 and we provide evidence that deSUMOylation of TFAP2A enhances the transcriptional activity of HIF-1 under hypoxic conditions. Overall, these results support the notion that SUMO-regulated signaling pathways contribute at many distinct levels to the cellular response to low oxygen.
Collapse
Affiliation(s)
- Georgia Chachami
- From the ‡Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, 41500 Larissa, Greece;
- ‡‡Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, 69120 Heidelberg, Germany
| | - Nicolas Stankovic-Valentin
- §Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, 69120 Heidelberg, Germany
| | - Angeliki Karagiota
- From the ‡Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, 41500 Larissa, Greece
| | - Angeliki Basagianni
- From the ‡Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, 41500 Larissa, Greece
| | - Uwe Plessmann
- ¶Bioanalytical Mass Spectrometry Group Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Henning Urlaub
- ¶Bioanalytical Mass Spectrometry Group Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
- ‖Bioanalytics, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Frauke Melchior
- §Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, 69120 Heidelberg, Germany
| | - George Simos
- From the ‡Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, 41500 Larissa, Greece
- **Gerald Bronfman Department of Oncology, Faculty of Medicine, McGill University, Montreal, Canada
| |
Collapse
|
277
|
Koo YD, Lee JS, Lee SA, Quaresma PGF, Bhat R, Haynes WG, Park YJ, Kim YB, Chung SS, Park KS. SUMO-specific protease 2 mediates leptin-induced fatty acid oxidation in skeletal muscle. Metabolism 2019; 95:27-35. [PMID: 30902749 PMCID: PMC7398119 DOI: 10.1016/j.metabol.2019.03.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/28/2019] [Accepted: 03/15/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND PURPOSE In addition to the central nervous system-mediated action, leptin also directly induces fatty acid oxidation in skeletal muscle. Rapid induction of FAO by leptin is mediated by the AMP-activated protein kinase (AMPK) pathway, but the mechanism of prolonged FAO by leptin was previously unknown. In an earlier study, we showed that free fatty acids increase transcription of small ubiquitin-like modifier (SUMO) specific protease 2 (SENP2) in skeletal muscle, and that SENP2 stimulates expression of FAO-associated enzymes by deSUMOylating peroxisome proliferator-activated receptors, PPARδ and PPARγ. In this study, we examine whether SENP2 is involved in prolonged stimulation of FAO by leptin. METHODS The Effect of leptin on expression of SENP2 and on SENP2-mediated FAO was investigated by using western blotting and real time qPCR of C2C12 myotubes, and of C2C12 myotubes in which expression of specific genes was knocked down using siRNAs. Additionally, muscle-specific SENP2 knockout mice were generated to test the involvement of SENP2 in leptin-induced FAO in vivo. RESULTS We show that leptin treatment of C2C12 myotubes causes signal transducer and activator of transcription 3 (STAT3) to bind to the Senp2 promoter, inducing SENP2 expression. We also show that leptin increases the binding of PPARδ and PPARγ to PPRE sites in the promoters of two FAO-associated genes: long-chain acyl-CoA synthetase 1 (Acsl1) or carnitine palmitoyl transferase 1b (Cpt1b). When SENP2 is knocked down in myotubes, leptin-induced expression of FAO-associated enzymes and prolonged increase of FAO are suppressed, but rapid increase of FAO is unaffected. In addition, leptin-induced expression of FAO-associated enzymes was not observed in muscle tissue of SENP2 knockout mice. CONCLUSIONS We demonstrate that the peripheral actions of leptin on FAO are mediated by two different pathways: AMPK causes a rapid increase in FAO, and SENP2 of the STAT3 pathway causes a slow, prolonged increase in FAO.
Collapse
Affiliation(s)
- Young Do Koo
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ji Seon Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seung-Ah Lee
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Paula G F Quaresma
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Ratan Bhat
- Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - William G Haynes
- Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Young Joo Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Young-Bum Kim
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, College of Medicine, Seoul National University, Seoul, Republic of Korea; Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Sung Soo Chung
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea.
| | - Kyong Soo Park
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, College of Medicine, Seoul National University, Seoul, Republic of Korea; Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
278
|
SUMOylation of Csk Negatively Modulates its Tumor Suppressor Function. Neoplasia 2019; 21:676-688. [PMID: 31125786 PMCID: PMC6531875 DOI: 10.1016/j.neo.2019.04.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/28/2019] [Accepted: 04/30/2019] [Indexed: 11/24/2022] Open
Abstract
Csk, a non-receptor tyrosine kinase, serves as an indispensable negative regulator of the Src family kinases (SFKs). However, little is known about regulation of Csk expression so far. SUMOylation, a reversible post-translational modification, has been shown to regulate many biological processes especially in tumor progression. Here we report that Csk is covalently modified by SUMO1 at lysine 53 (K53) both in vitro and in vivo. Treatment with hydrogen peroxide inhibited this modification to a certain extent, but PIAS3, identified as the main specific SUMO E3 ligase for Csk, could significantly enhance SUMO1-Csk level. In addition, phosphorylation at Ser364, the active site in Csk, had no effect on this modification. Ectopic expression of SUMO-defective mutant, Csk K53R, inhibited tumor cell growth more potentially than Csk wild-type. Consistent with the biological phenotype, the SUMO modification of Csk impaired its activity to interact with Cbp (Csk binding protein) leading to decreased c-Src phosphorylation at Y527. Our results suggest that SUMOylation of Csk mainly at lysine 53 negatively modulates its tumor suppressor function by reducing its binding with Cbp and consequently, inducing c-Src activation.
Collapse
|
279
|
Bertke MM, Dubiak KM, Cronin L, Zeng E, Huber PW. A deficiency in SUMOylation activity disrupts multiple pathways leading to neural tube and heart defects in Xenopus embryos. BMC Genomics 2019; 20:386. [PMID: 31101013 PMCID: PMC6525467 DOI: 10.1186/s12864-019-5773-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 05/03/2019] [Indexed: 02/08/2023] Open
Abstract
Background Adenovirus protein, Gam1, triggers the proteolytic destruction of the E1 SUMO-activating enzyme. Microinjection of an empirically determined amount of Gam1 mRNA into one-cell Xenopus embryos can reduce SUMOylation activity to undetectable, but nonlethal, levels, enabling an examination of the role of this post-translational modification during early vertebrate development. Results We find that SUMOylation-deficient embryos consistently exhibit defects in neural tube and heart development. We have measured differences in gene expression between control and embryos injected with Gam1 mRNA at three developmental stages: early gastrula (immediately following the initiation of zygotic transcription), late gastrula (completion of the formation of the three primary germ layers), and early neurula (appearance of the neural plate). Although changes in gene expression are widespread and can be linked to many biological processes, three pathways, non-canonical Wnt/PCP, snail/twist, and Ets-1, are especially sensitive to the loss of SUMOylation activity and can largely account for the predominant phenotypes of Gam1 embryos. SUMOylation appears to generate different pools of a given transcription factor having different specificities with this post-translational modification involved in the regulation of more complex, as opposed to housekeeping, processes. Conclusions We have identified changes in gene expression that underlie the neural tube and heart phenotypes resulting from depressed SUMOylation activity. Notably, these developmental defects correspond to the two most frequently occurring congenital birth defects in humans, strongly suggesting that perturbation of SUMOylation, either globally or of a specific protein, may frequently be the origin of these pathologies. Electronic supplementary material The online version of this article (10.1186/s12864-019-5773-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Michelle M Bertke
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, 46556, USA.,Present Address: College of Computer, Mathematical, and Natural Sciences, University of Maryland, College Park, MD, 20742, USA
| | - Kyle M Dubiak
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, 46556, USA
| | - Laura Cronin
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, Indiana, 46556, USA
| | - Erliang Zeng
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, Indiana, 46556, USA.,Present Address: Division of Biostatistics and Computational Biology, Iowa Institute for Oral Health Research, University of Iowa, Iowa City, IA, 52242, USA.,Present Address: Department of Preventive & Community Dentistry, College of Dentistry, University of Iowa, Iowa City, IA, 52242, USA.,Present Address: Department of Biostatistics, University of Iowa, Iowa City, IA, 52242, USA.,Present Address: Department of Biomedical Engineering, University of Iowa, Iowa City, IA, 52242, USA
| | - Paul W Huber
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, 46556, USA. .,Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana, USA. .,Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, Indiana, 46556, USA.
| |
Collapse
|
280
|
Nayak A, Lopez-Davila AJ, Kefalakes E, Holler T, Kraft T, Amrute-Nayak M. Regulation of SETD7 Methyltransferase by SENP3 Is Crucial for Sarcomere Organization and Cachexia. Cell Rep 2019; 27:2725-2736.e4. [DOI: 10.1016/j.celrep.2019.04.107] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 03/20/2019] [Accepted: 04/24/2019] [Indexed: 12/16/2022] Open
|
281
|
Post-Translational Modifications of the Mini-Chromosome Maintenance Proteins in DNA Replication. Genes (Basel) 2019; 10:genes10050331. [PMID: 31052337 PMCID: PMC6563057 DOI: 10.3390/genes10050331] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/26/2019] [Accepted: 04/26/2019] [Indexed: 12/15/2022] Open
Abstract
The eukaryotic mini-chromosome maintenance (MCM) complex, composed of MCM proteins 2-7, is the core component of the replisome that acts as the DNA replicative helicase to unwind duplex DNA and initiate DNA replication. MCM10 tightly binds the cell division control protein 45 homolog (CDC45)/MCM2-7/ DNA replication complex Go-Ichi-Ni-San (GINS) (CMG) complex that stimulates CMG helicase activity. The MCM8-MCM9 complex may have a non-essential role in activating the pre-replicative complex in the gap 1 (G1) phase by recruiting cell division cycle 6 (CDC6) to the origin recognition complex (ORC). Each MCM subunit has a distinct function achieved by differential post-translational modifications (PTMs) in both DNA replication process and response to replication stress. Such PTMs include phosphorylation, ubiquitination, small ubiquitin-like modifier (SUMO)ylation, O-N-acetyl-D-glucosamine (GlcNAc)ylation, and acetylation. These PTMs have an important role in controlling replication progress and genome stability. Because MCM proteins are associated with various human diseases, they are regarded as potential targets for therapeutic development. In this review, we summarize the different PTMs of the MCM proteins, their involvement in DNA replication and disease development, and the potential therapeutic implications.
Collapse
|
282
|
Carmichael RE, Wilkinson KA, Craig TJ. Insulin-dependent GLUT4 trafficking is not regulated by protein SUMOylation in L6 myocytes. Sci Rep 2019; 9:6477. [PMID: 31019221 PMCID: PMC6482176 DOI: 10.1038/s41598-019-42574-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 02/06/2019] [Indexed: 01/26/2023] Open
Abstract
Type-II Diabetes Mellitus (T2DM) is one of the fastest growing public health issues today, consuming 12% of worldwide health budgets and affecting an estimated 400 million people. One of the key pathological traits of this disease is insulin resistance at ‘glucose sink’ tissues (mostly skeletal muscle), and this remains one of the features of this disease most intractable to therapeutic intervention. Several lines of evidence have implicated the post-translational modification, SUMOylation, in insulin signalling and insulin resistance in skeletal muscle. In this study, we examined this possibility by manipulation of cellular SUMOylation levels using multiple different tools, and assaying the effect on insulin-stimulated GLUT4 surface expression in differentiated L6 rat myocytes. Although insulin stimulation of L6 myocytes produced a robust decrease in total cellular SUMO1-ylation levels, manipulating cellular SUMOylation had no effect on insulin-responsive GLUT4 surface trafficking using any of the tools we employed. Whilst we cannot totally exclude the possibility that SUMOylation plays a role in the insulin signalling pathway in human health and disease, our data strongly argue that GLUT4 trafficking in response to insulin is not regulated by protein SUMOylation, and that SUMOylation does not therefore represent a viable therapeutic target for the treatment of insulin resistance.
Collapse
Affiliation(s)
- Ruth E Carmichael
- College of Life and Environmental Sciences, Geoffrey Pope Building, University of Exeter, Stocker Road, Exeter EX4 4QD, Exeter, United Kingdom
| | - Kevin A Wilkinson
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Tim J Craig
- Centre for Research in Biosciences, University of the West of England, Coldharbour Lane, Frenchay, BS16 1QY, UK.
| |
Collapse
|
283
|
Kaur A, Gourav, Kumar S, Jaiswal N, Vashisht A, Kumar D, Gahlay GK, Mithu VS. NMR characterization of conformational fluctuations and noncovalent interactions of SUMO protein from Drosophila melanogaster (dSmt3). Proteins 2019; 87:658-667. [PMID: 30958586 DOI: 10.1002/prot.25690] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 03/15/2019] [Accepted: 04/04/2019] [Indexed: 11/09/2022]
Abstract
Structural heterogeneity in the native-state ensemble of dSmt3, the only small ubiquitin-like modifier (SUMO) in Drosophila melanogaster, was investigated and compared with its human homologue SUMO1. Temperature dependence of amide proton's chemical shift was studied to identify amino acids possessing alternative structural conformations in the native state. Effect of small concentration of denaturant (1M urea) on this population was also monitored to assess the ruggedness of near-native energy landscape. Owing to presence of many such amino acids, especially in the β2 -loop-α region, the native state of dSmt3 seems more flexible in comparison to SUMO1. Information about backbone dynamics in ns-ps timescale was quantified from the measurement of 15 N-relaxation experiments. Furthermore, the noncovalent interaction of dSmt3 and SUMO1 with Daxx12 (Daxx729 DPEEIIVLSDSD740 ), a [V/I]-X-[V/I]-[V/I]-based SUMO interaction motif, was characterized using Bio-layer Interferometery and NMR spectroscopy. Daxx12 fits itself in the groove formed by β2 -loop-α structural region in both dSmt3 and SUMO1, but the binding is stronger with the former. Flexibility of β2 -loop-α region in dSmt3 is suspected to assist its interaction with Daxx12. Our results highlight the role of native-state flexibility in assisting noncovalent interactions of SUMO proteins especially in organisms where a single SUMO isoform has to tackle multiple substrates single handedly.
Collapse
Affiliation(s)
- Anupreet Kaur
- Department of Chemistry, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Gourav
- Department of Chemistry, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Sandeep Kumar
- Department of Chemistry, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Nancy Jaiswal
- Centre of Biomedical Research, Sanjay Gandhi Post-Graduate Institute of Medical Sciences Campus, Lucknow, Uttar Pradesh, India
| | - Ashutosh Vashisht
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Dinesh Kumar
- Centre of Biomedical Research, Sanjay Gandhi Post-Graduate Institute of Medical Sciences Campus, Lucknow, Uttar Pradesh, India
| | - Gagandeep K Gahlay
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Venus S Mithu
- Department of Chemistry, Guru Nanak Dev University, Amritsar, Punjab, India
| |
Collapse
|
284
|
Vanwalscappel B, Gadea G, Desprès P. A Viperin Mutant Bearing the K358R Substitution Lost its Anti-ZIKA Virus Activity. Int J Mol Sci 2019; 20:ijms20071574. [PMID: 30934824 PMCID: PMC6480927 DOI: 10.3390/ijms20071574] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/01/2019] [Accepted: 03/26/2019] [Indexed: 12/17/2022] Open
Abstract
Interferon-induced viperin (VP) was identified as playing an important role in the innate immune response against Zika virus (ZIKV). The 361 amino acid long human VP protein comprises of a highly conserved C-terminal region, which has been associated with VP antiviral properties against ZIKV. In the present study, we sought to determine whether the very last C-terminal amino-acid residues of VP might play a role in VP-mediated ZIKV inhibition. To address this issue, a recombinant human viperin (rVPwt) was overexpressed by transfection in human epithelial A549 cells. We confirmed that transient overexpression of rVPwt prior to ZIKV infection dramatically reduced viral replication in A549 cells. Deletion of the last 17 C-terminal amino acids of VP resulted in a higher expression level of mutant protein compared to wild-type VP. Mutational analysis revealed that residue substitution at positions 356 to 360 with five alanine led to the same phenotype. The charged residues Asp356, Lys358, and Asp360 were then identified to play a role in the weak level of VPwt protein in A549 cells. Mutant VP bearing the D360A substitution partially rescued ZIKV growth in A549 cells. Remarkably, a single Lys-to-Arg substitution at position 358 was sufficient to abrogate VP antiviral activity against ZIKV. In conclusion, our study showed that Asp356, Lys358, and Asp360 may have an influence on biochemical properties of VP. Our major finding was that Lys358 was a key amino-acid in VP antiviral properties against ZIKV.
Collapse
Affiliation(s)
- Bénédicte Vanwalscappel
- Université de La Réunion, INSERM U1187, CNRS UMR 9192, IRD UMR 249, Unité Mixte Processus Infectieux en Milieu Insulaire Tropical, Plateforme Technologique CYROI, 97491 Sainte-Clotilde, La Réunion, France.
| | - Gilles Gadea
- Université de La Réunion, INSERM U1187, CNRS UMR 9192, IRD UMR 249, Unité Mixte Processus Infectieux en Milieu Insulaire Tropical, Plateforme Technologique CYROI, 97491 Sainte-Clotilde, La Réunion, France.
| | - Philippe Desprès
- Université de La Réunion, INSERM U1187, CNRS UMR 9192, IRD UMR 249, Unité Mixte Processus Infectieux en Milieu Insulaire Tropical, Plateforme Technologique CYROI, 97491 Sainte-Clotilde, La Réunion, France.
| |
Collapse
|
285
|
Tedesco L, Elguero B, Pacin DG, Senin S, Pollak C, Garcia Marchiñena PA, Jurado AM, Isola M, Labanca MJ, Palazzo M, Yankilevich P, Fuertes M, Arzt E. von Hippel-Lindau mutants in renal cell carcinoma are regulated by increased expression of RSUME. Cell Death Dis 2019; 10:266. [PMID: 30890701 PMCID: PMC6424967 DOI: 10.1038/s41419-019-1507-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/01/2019] [Accepted: 03/04/2019] [Indexed: 12/17/2022]
Abstract
Renal cell carcinoma (RCC) is the major cause of death among patients with von Hippel-Lindau (VHL) disease. Resistance to therapies targeting tumor angiogenesis opens the question about the underlying mechanisms. Previously we have described that RWDD3 or RSUME (RWD domain-containing protein SUMO Enhancer) sumoylates and binds VHL protein and negatively regulates HIF degradation, leading to xenograft RCC tumor growth in mice. In this study, we performed a bioinformatics analysis in a ccRCC dataset showing an association of RSUME levels with VHL mutations and tumor progression, and we demonstrate the molecular mechanism by which RSUME regulates the pathologic angiogenic phenotype of VHL missense mutations. We report that VHL mutants fail to downregulate RSUME protein levels accounting for the increased RSUME expression found in RCC tumors. Furthermore, we prove that targeting RSUME in RCC cell line clones carrying missense VHL mutants results in decreased early tumor angiogenesis. The mechanism we describe is that RSUME sumoylates VHL mutants and beyond its sumoylation capacity, interacts with Type 2 VHL mutants, reduces HIF-2α-VHL mutants binding, and negatively regulates the assembly of the Type 2 VHL, Elongins and Cullins (ECV) complex. Altogether these results show RSUME involvement in VHL mutants deregulation that leads to the angiogenic phenotype of RCC tumors.
Collapse
Affiliation(s)
- Lucas Tedesco
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck Society, Godoy Cruz 2390, C1425FQD, Buenos Aires, Argentina
| | - Belén Elguero
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck Society, Godoy Cruz 2390, C1425FQD, Buenos Aires, Argentina
| | - David Gonilski Pacin
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck Society, Godoy Cruz 2390, C1425FQD, Buenos Aires, Argentina
| | - Sergio Senin
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck Society, Godoy Cruz 2390, C1425FQD, Buenos Aires, Argentina
| | - Cora Pollak
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck Society, Godoy Cruz 2390, C1425FQD, Buenos Aires, Argentina
| | | | - Alberto M Jurado
- Departamento de Urología, Hospital Italiano de Buenos Aires, VHL Clinical Care Center, Buenos Aires, Argentina
| | - Mariana Isola
- Departamento de Patología, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - María J Labanca
- Departamento de Patología, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Martin Palazzo
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck Society, Godoy Cruz 2390, C1425FQD, Buenos Aires, Argentina
| | - Patricio Yankilevich
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck Society, Godoy Cruz 2390, C1425FQD, Buenos Aires, Argentina
| | - Mariana Fuertes
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck Society, Godoy Cruz 2390, C1425FQD, Buenos Aires, Argentina
| | - Eduardo Arzt
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck Society, Godoy Cruz 2390, C1425FQD, Buenos Aires, Argentina. .,Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Guiraldes 2160, Ciudad Universitaria, Pabellon II, 2do Piso, C1428EGA, Buenos Aires, Argentina.
| |
Collapse
|
286
|
Srinivasan S, Shankar SR, Wang Y, Taneja R. SUMOylation of G9a regulates its function as an activator of myoblast proliferation. Cell Death Dis 2019; 10:250. [PMID: 30867409 PMCID: PMC6416281 DOI: 10.1038/s41419-019-1465-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/13/2019] [Accepted: 02/20/2019] [Indexed: 02/03/2023]
Abstract
The lysine methyltransferase G9a plays a role in many cellular processes. It is a potent repressor of gene expression, a function attributed to its ability to methylate histone and non-histone proteins. Paradoxically, in some instances, G9a can activate gene expression. However, regulators of G9a expression and activity are poorly understood. In this study, we report that endogenous G9a is SUMOylated in proliferating skeletal myoblasts. There are four potential SUMOylation consensus motifs in G9a. Mutation of all four acceptor lysine residues [K79, K152, K256, and K799] inhibits SUMOylation. Interestingly, SUMOylation does not impact G9a-mediated repression of MyoD transcriptional activity or myogenic differentiation. In contrast, SUMO-defective G9a is unable to enhance proliferation of myoblasts. Using complementation experiments, we show that the proliferation defect of primary myoblasts from conditional G9a-deficient mice is rescued by re-expression of wild-type, but not SUMOylation-defective, G9a. Mechanistically, SUMOylation acts as signal for PCAF (P300/CBP-associated factor) recruitment at E2F1-target genes. This results in increased histone H3 lysine 9 acetylation marks at E2F1-target gene promoters that are required for S-phase progression. Our studies provide evidence by which SUMO modification of G9a influences the chromatin environment to impact cell cycle progression.
Collapse
Affiliation(s)
- Shruti Srinivasan
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 117593, Singapore, Singapore
| | - Shilpa Rani Shankar
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 117593, Singapore, Singapore
| | - Yaju Wang
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 117593, Singapore, Singapore
| | - Reshma Taneja
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 117593, Singapore, Singapore.
| |
Collapse
|
287
|
Horio T, Szewczyk E, Oakley CE, Osmani AH, Osmani SA, Oakley BR. SUMOlock reveals a more complete Aspergillus nidulans SUMOylome. Fungal Genet Biol 2019; 127:50-59. [PMID: 30849444 DOI: 10.1016/j.fgb.2019.03.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/04/2019] [Accepted: 03/04/2019] [Indexed: 12/20/2022]
Abstract
SUMOylation, covalent attachment of the small ubiquitin-like modifier protein SUMO to proteins, regulates protein interactions and activity and plays a crucial role in the regulation of many key cellular processes. Understanding the roles of SUMO in these processes ultimately requires identification of the proteins that are SUMOylated in the organism under study. The filamentous fungus Aspergillus nidulans serves as an excellent model for many aspects of fungal biology, and it would be of great value to determine the proteins that are SUMOylated in this organism (i.e. its SUMOylome). We have developed a new and effective approach for identifying SUMOylated proteins in this organism in which we lock proteins in their SUMOylated state, affinity purify SUMOylated proteins using the high affinity S-tag, and identify them using sensitive Orbitrap mass spectroscopy. This approach allows us to distinguish proteins that are SUMOylated from proteins that are binding partners of SUMOylated proteins or are bound non-covalently to SUMO. This approach has allowed us to identify 149 proteins that are SUMOylated in A. nidulans. Of these, 67 are predicted to be involved in transcription and particularly in the regulation of transcription, 21 are predicted to be involved in RNA processing and 16 are predicted to function in DNA replication or repair.
Collapse
Affiliation(s)
- Tetsuya Horio
- Department of Natural Sciences, Nippon Sport Science University, 1221-1 Kamoshida-cho, Aoba-ku, Yokohama, Kanagawa 227-0033, Japan.
| | - Edyta Szewczyk
- Department of Molecular Genetics, The Ohio State University, 484 W. 12(th) Ave., Columbus, OH 43210, USA
| | - C Elizabeth Oakley
- Department of Molecular Biosciences, The University of Kansas, 1200 Sunnyside Ave., Lawrence, KS 66045, USA
| | - Aysha H Osmani
- Department of Molecular Genetics, The Ohio State University, 484 W. 12(th) Ave., Columbus, OH 43210, USA
| | - Stephen A Osmani
- Department of Molecular Genetics, The Ohio State University, 484 W. 12(th) Ave., Columbus, OH 43210, USA
| | - Berl R Oakley
- Department of Molecular Biosciences, The University of Kansas, 1200 Sunnyside Ave., Lawrence, KS 66045, USA
| |
Collapse
|
288
|
Wei J, Li C, Zhang X, Fan L, Wei S, Qin Q. Fish SUMO3 functions as a critical antiviral molecule against iridovirus and nodavirus. FISH & SHELLFISH IMMUNOLOGY 2019; 86:1088-1095. [PMID: 30593901 DOI: 10.1016/j.fsi.2018.12.059] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/07/2018] [Accepted: 12/23/2018] [Indexed: 06/09/2023]
Abstract
Protein SUMOylation (SUMO is small ubiquitin-related modifier) is a dynamic process that is strictly regulated under physiological and pathological conditions. We previously cloned and characterized two SUMO homologue genes (EcSUMO1 and EcSUMO2) from orange-spotted grouper (Epinephelus coioides). In the present study, the SUMO3 homologue from E. coioides (EcSUMO3) was cloned and its possible roles in fish immunity were analyzed. The open reading frame of EcSUMO3 contains 285 base pairs encoding a 94 amino acid protein with a predicted molecular mass of 10.73 kDa. The protein sequence of EcSUMO3 revealed similar domains with mammals, including the UBQ (ubiquitin-like proteins) domain, the hydrophobic surface, the Ulp1-Smt3 interaction sites, a VKTE motif and the C-terminal Gly residues. EcSUMO3 shares 46.83% and 89.58% identity with EcSUMO1 and EcSUMO2, respectively, and it shares 94%, 98%, and 98% identity with SUMO3 from Oreochromis niloticus, Danio rerio, and Homo sapiens, respectively. Quantitative real-time polymerase chain reaction analysis indicated that EcSUMO3 was constitutively expressed in all of the analyzed tissues in healthy grouper. EcSUMO3 expression levels were remarkably (p < 0.01) up-regulated in grouper spleen (GS) cells in response to stimulation with red-spotted grouper nervous necrosis virus (RGNNV) and Singapore grouper iridovirus (SGIV). EcSUMO3 was distributed in both the cytoplasm and nucleus in GS cells. EcSUMO3 enhanced SGIV and RGNNV replication during viral infection in vitro. These results are important for better understanding of the SUMO pathway in fish and provide insights into the regulatory mechanism of viral infection in E. coioides under farmed conditions.
Collapse
Affiliation(s)
- Jingguang Wei
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China.
| | - Chen Li
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
| | - Xin Zhang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
| | - Lanfen Fan
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
| | - Shina Wei
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
| | - Qiwei Qin
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000, PR China.
| |
Collapse
|
289
|
Wang QL, Liang JQ, Gong BN, Xie JJ, Yi YT, Lan X, Li Y. T Cell Receptor (TCR)-Induced PLC-γ1 Sumoylation via PIASxβ and PIAS3 SUMO E3 Ligases Regulates the Microcluster Assembly and Physiological Function of PLC-γ1. Front Immunol 2019; 10:314. [PMID: 30873169 PMCID: PMC6403162 DOI: 10.3389/fimmu.2019.00314] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 02/06/2019] [Indexed: 11/16/2022] Open
Abstract
The SUMO modification system plays an important role in T cell activation, yet how sumoylation regulates TCR-proximal signaling remains largely unknown. We show here that Phospholipase C-γ1 (PLC-γ1) is conjugated by SUMO1 at K54 and K987 upon TCR stimulation and that K54 sumoylation is pivotal for PLC-γ1-mediated T cell activation. We further demonstrate that TCR-induced K54 sumoylation of PLC-γ1 significantly promotes the formation of PLC-γ1 microclusters and the association of PLC-γ1 with the adaptor proteins SLP76 and Gads, but only slightly affects the phosphorylation of PLC-γ1 on Y783, which determines the enzyme catalytic activity. Moreover, upon TCR stimulation, the SUMO E3 ligases PIASxβ and PIAS3 both interact with PLC-γ1 and cooperate to sumoylate PLC-γ1, facilitating the assembly of PLC-γ1 microclusters. Together, our findings reveal a critical role of PLC-γ1 K54 sumoylation in PLC-γ1 microcluster assembly that controls PLC-γ1-mediated T cell activation, suggesting that sumoylation may have an important role in the microcluster assembly of TCR-proximal signaling proteins.
Collapse
Affiliation(s)
- Qi-Long Wang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, China.,School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jia-Qi Liang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, China.,School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Bei-Ni Gong
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, China.,School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ji-Ji Xie
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, China.,School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yu-Ting Yi
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, China.,School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xin Lan
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, China.,School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yingqiu Li
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, China.,School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
290
|
Josa-Prado F, Luo J, Rubin P, Henley JM, Wilkinson KA. Developmental profiles of SUMOylation pathway proteins in rat cerebrum and cerebellum. PLoS One 2019; 14:e0212857. [PMID: 30794696 PMCID: PMC6386258 DOI: 10.1371/journal.pone.0212857] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 02/11/2019] [Indexed: 12/31/2022] Open
Abstract
Protein SUMOylation regulates multiple processes involved in the differentiation and maturation of cells and tissues during development. Despite this, relatively little is known about the spatial and temporal regulation of proteins that mediate SUMOylation and deSUMOylation in the CNS. Here we monitor the expression of key SUMO pathway proteins and levels of substrate protein SUMOylation in the forebrain and cerebellum of Wistar rats during development. Overall, the SUMOylation machinery is more highly-expressed at E18 and decreases thereafter, as previously described. All of the proteins investigated are less abundant in adult than in embryonic brain. Furthermore, we show for first time that the profiles differ between cerebellum and cerebrum, indicating differential regional regulation of some of the proteins analysed. These data provide further basic observation that may open a new perspective of research about the role of SUMOylation in the development of different brain regions.
Collapse
Affiliation(s)
- Fernando Josa-Prado
- Universidad Alfonso X el Sabio, Avda, de la Universidad, Madrid, España
- School of Biochemistry, Medical Sciences Building, University of Bristol, University Walk, Bristol, United Kingdom
- * E-mail: (FJP); (KAW)
| | - Jia Luo
- School of Biochemistry, Medical Sciences Building, University of Bristol, University Walk, Bristol, United Kingdom
| | - Philip Rubin
- School of Biochemistry, Medical Sciences Building, University of Bristol, University Walk, Bristol, United Kingdom
| | - Jeremy M. Henley
- School of Biochemistry, Medical Sciences Building, University of Bristol, University Walk, Bristol, United Kingdom
| | - Kevin A. Wilkinson
- School of Biochemistry, Medical Sciences Building, University of Bristol, University Walk, Bristol, United Kingdom
- * E-mail: (FJP); (KAW)
| |
Collapse
|
291
|
Li YJ, Du L, Wang J, Vega R, Lee TD, Miao Y, Aldana-Masangkay G, Samuels ER, Li B, Ouyang SX, Colayco SA, Bobkova EV, Divlianska DB, Sergienko E, Chung TDY, Fakih M, Chen Y. Allosteric Inhibition of Ubiquitin-like Modifications by a Class of Inhibitor of SUMO-Activating Enzyme. Cell Chem Biol 2019; 26:278-288.e6. [PMID: 30581133 PMCID: PMC6524651 DOI: 10.1016/j.chembiol.2018.10.026] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/20/2018] [Accepted: 10/26/2018] [Indexed: 12/24/2022]
Abstract
Ubiquitin-like (Ubl) post-translational modifications are potential targets for therapeutics. However, the only known mechanism for inhibiting a Ubl-activating enzyme is through targeting its ATP-binding site. Here we identify an allosteric inhibitory site in the small ubiquitin-like modifier (SUMO)-activating enzyme (E1). This site was unexpected because both it and analogous sites are deeply buried in all previously solved structures of E1s of ubiquitin-like modifiers (Ubl). The inhibitor not only suppresses SUMO E1 activity, but also enhances its degradation in vivo, presumably due to a conformational change induced by the compound. In addition, the lead compound increased the expression of miR-34b and reduced c-Myc levels in lymphoma and colorectal cancer cell lines and a colorectal cancer xenograft mouse model. Identification of this first-in-class inhibitor of SUMO E1 is a major advance in modulating Ubl modifications for therapeutic aims.
Collapse
Affiliation(s)
- Yi-Jia Li
- Department of Molecular Medicine, The Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA
| | - Li Du
- Department of Molecular Medicine, The Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA
| | - Jianghai Wang
- Department of Molecular Medicine, The Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA
| | - Ramir Vega
- Department of Molecular Medicine, The Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA
| | - Terry D Lee
- Department of Immunology, The Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA; Irell and Manella Graduate School of Biological Sciences of City of Hope, Duarte, CA, USA
| | - Yunan Miao
- Department of Immunology, The Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA; Irell and Manella Graduate School of Biological Sciences of City of Hope, Duarte, CA, USA
| | - Grace Aldana-Masangkay
- Department of Molecular Medicine, The Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA
| | - Eric R Samuels
- Department of Molecular Medicine, The Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA
| | - Baozong Li
- Department of Molecular Medicine, The Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA
| | - S Xiaohu Ouyang
- SUMO Biosciences, Inc., 2265 E Foothill Boulevard, Pasadena, CA 91107, USA
| | - Sharon A Colayco
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Ekaterina V Bobkova
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Daniela B Divlianska
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Eduard Sergienko
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Thomas D Y Chung
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Marwan Fakih
- Department of Medical Oncology, City of Hope National Medical Center, Duarte, CA, USA
| | - Yuan Chen
- Department of Molecular Medicine, The Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA; Irell and Manella Graduate School of Biological Sciences of City of Hope, Duarte, CA, USA.
| |
Collapse
|
292
|
Aliyu IA, Ling KH, Md Hashim N, Chee HY. Annexin A2 extracellular translocation and virus interaction: A potential target for antivirus-drug discovery. Rev Med Virol 2019; 29:e2038. [PMID: 30746844 DOI: 10.1002/rmv.2038] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 01/20/2019] [Accepted: 01/21/2019] [Indexed: 12/23/2022]
Abstract
Annexin A2 is a membrane scaffolding and binding protein, which mediated various cellular events. Its functions are generally affected by cellular localization. In the cytoplasm, they interacted with different phospholipid membranes in Ca2+ -dependent manner and play vital roles including actin binding, remodeling and dynamics, cytoskeletal rearrangement, and lipid-raft microdomain formation. However, upon cell exposure to certain stimuli, annexin A2 translocates to the external leaflets of the plasma membrane where annexin A2 was recently reported to serve as a virus receptor, play an important role in the formation of virus replication complex, or implicated in virus assembly and budding. Here, we review some of annexin A2 roles in virus infections and the potentiality of targeting annexin A2 in the design of novel and promising antivirus agent that may have a broader consequence in virus therapy.
Collapse
Affiliation(s)
- Isah Abubakar Aliyu
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Science, University Putra Malaysia, Seri Kembangan, Malaysia.,Department of Medical Laboratory Science, Faculty of Allied Health Science, College of Health Science, Bayero University, Kano, Nigeria
| | - King-Hwa Ling
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, University Putra Malaysia, Seri Kembangan, Malaysia
| | - Nurfariesha Md Hashim
- Department of Biomedical Sciences, University Putra Malaysia, Seri Kembangan, Malaysia
| | - Hui-Yee Chee
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Science, University Putra Malaysia, Seri Kembangan, Malaysia
| |
Collapse
|
293
|
Cartier E, Garcia-Olivares J, Janezic E, Viana J, Moore M, Lin ML, Caplan JL, Torres G, Kim YH. The SUMO-Conjugase Ubc9 Prevents the Degradation of the Dopamine Transporter, Enhancing Its Cell Surface Level and Dopamine Uptake. Front Cell Neurosci 2019; 13:35. [PMID: 30828290 PMCID: PMC6386010 DOI: 10.3389/fncel.2019.00035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 01/23/2019] [Indexed: 12/12/2022] Open
Abstract
The dopamine transporter (DAT) is a plasma membrane protein responsible for the uptake of released dopamine back to the presynaptic terminal and ending dopamine neurotransmission. The DAT is the molecular target for cocaine and amphetamine as well as a number of pathological conditions including autism spectrum disorders, attention-deficit hyperactivity disorder (ADHD), dopamine transporter deficiency syndrome (DTDS), and Parkinson’s disease. The DAT uptake capacity is dependent on its level in the plasma membrane. In vitro studies show that DAT functional expression is regulated by a balance of endocytosis, recycling, and lysosomal degradation. However, recent reports suggest that DAT regulation by endocytosis in neurons is less significant than previously reported. Therefore, additional mechanisms appear to determine DAT steady-state level and functional expression in the neuronal plasma membrane. Here, we hypothesize that the ubiquitin-like protein small ubiquitin-like modifier 1 (SUMO1) increases the DAT steady-state level in the plasma membrane. In confocal microscopy, fluorescent resonance energy transfer (FRET), and Western blot analyses, we demonstrate that DAT is associated with SUMO1 in the rat dopaminergic N27 and DAT overexpressing Human Embryonic Kidney cells (HEK)-293 cells. The overexpression of SUMO1 and the Ubc9 SUMO-conjugase induces DAT SUMOylation, reduces DAT ubiquitination and degradation, enhancing DAT steady-state level. In addition, the Ubc9 knock-down by interference RNA (RNAi) increases DAT degradation and reduces DAT steady-state level. Remarkably, the Ubc9-mediated SUMOylation increases the expression of DAT in the plasma membrane and dopamine uptake capacity. Our results strongly suggest that SUMOylation is a novel mechanism that plays a central role in regulating DAT proteostasis, dopamine uptake, and dopamine signaling in neurons. For that reason, the SUMO pathway including SUMO1, SUMO2, Ubc9, and DAT SUMOylation, can be critical therapeutic targets in regulating DAT stability and dopamine clearance in health and pathological states.
Collapse
Affiliation(s)
- Etienne Cartier
- Department of Biological Sciences, Delaware State University, Dover, DE, United States
| | | | - Eric Janezic
- Department of Biological Sciences, Delaware State University, Dover, DE, United States
| | - Juan Viana
- Department of Biological Sciences, Delaware State University, Dover, DE, United States
| | - Michael Moore
- Imaging Core, Delaware State University, Dover, DE, United States
| | - Min Landon Lin
- Department of Neuroscience and Department of Pharmacology, University of Florida, Gainesville, FL, United States
| | - Jeffrey L Caplan
- BioImaging Center, University of Delaware, Newark, DE, United States
| | - Gonzalo Torres
- Department of Neuroscience and Department of Pharmacology, University of Florida, Gainesville, FL, United States
| | - Yong-Hwan Kim
- Department of Biological Sciences, Delaware State University, Dover, DE, United States
| |
Collapse
|
294
|
Figaj D, Ambroziak P, Przepiora T, Skorko-Glonek J. The Role of Proteases in the Virulence of Plant Pathogenic Bacteria. Int J Mol Sci 2019; 20:ijms20030672. [PMID: 30720762 PMCID: PMC6386880 DOI: 10.3390/ijms20030672] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/30/2019] [Accepted: 02/02/2019] [Indexed: 12/17/2022] Open
Abstract
A pathogenic lifestyle is inextricably linked with the constant necessity of facing various challenges exerted by the external environment (both within and outside the host). To successfully colonize the host and establish infection, pathogens have evolved sophisticated systems to combat the host defense mechanisms and also to be able to withstand adverse environmental conditions. Proteases, as crucial components of these systems, are involved in a variety of processes associated with infection. In phytopathogenic bacteria, they play important regulatory roles and modulate the expression and functioning of various virulence factors. Secretory proteases directly help avoid recognition by the plant immune systems, and contribute to the deactivation of the defense response pathways. Finally, proteases are important components of protein quality control systems, and thus enable maintaining homeostasis in stressed bacterial cells. In this review, we discuss the known protease functions and protease-regulated signaling processes associated with virulence of plant pathogenic bacteria.
Collapse
Affiliation(s)
- Donata Figaj
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland.
| | - Patrycja Ambroziak
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland.
| | - Tomasz Przepiora
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland.
| | | |
Collapse
|
295
|
Ma X, Yang T, Luo Y, Wu L, Jiang Y, Song Z, Pan T, Liu B, Liu G, Liu J, Yu F, He Z, Zhang W, Yang J, Liang L, Guan Y, Zhang X, Li L, Cai W, Tang X, Gao S, Deng K, Zhang H. TRIM28 promotes HIV-1 latency by SUMOylating CDK9 and inhibiting P-TEFb. eLife 2019; 8:42426. [PMID: 30652970 PMCID: PMC6361614 DOI: 10.7554/elife.42426] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 01/16/2019] [Indexed: 12/19/2022] Open
Abstract
Comprehensively elucidating the molecular mechanisms of human immunodeficiency virus type 1 (HIV-1) latency is a priority to achieve a functional cure. As current 'shock' agents failed to efficiently reactivate the latent reservoir, it is important to discover new targets for developing more efficient latency-reversing agents (LRAs). Here, we found that TRIM28 potently suppresses HIV-1 expression by utilizing both SUMO E3 ligase activity and epigenetic adaptor function. Through global site-specific SUMO-MS study and serial SUMOylation assays, we identified that P-TEFb catalytic subunit CDK9 is significantly SUMOylated by TRIM28 with SUMO4. The Lys44, Lys56 and Lys68 residues on CDK9 are SUMOylated by TRIM28, which inhibits CDK9 kinase activity or prevents P-TEFb assembly by directly blocking the interaction between CDK9 and Cyclin T1, subsequently inhibits viral transcription and contributes to HIV-1 latency. The manipulation of TRIM28 and its consequent SUMOylation pathway could be the target for developing LRAs. The human immunodeficiency virus-1, or HIV-1, infects certain human cells, including white blood cells. One reason the infection is incurable is because the virus can integrate its genetic information into its host, and essentially ‘sleep’ within the host cell, a process called latency. This helps to hide HIV-1 from the immune system and stops it getting destroyed. Latency represents a critical challenge in treating and curing HIV-1. One proposed cure for HIV-1 involves ‘shocking’ the viruses out of latency so that they can be eliminated. Applying this so-called shock and kill approach means scientists need to understand more about how latency is maintained. Previous evidence shows that latency requires proteins known as histone deacetylases and histone methyltransferases. Certain gene-silencing proteins called transcription suppressors are also involved. Ma et al. have now examined latent HIV-1 in several kinds of human cells grown in the laboratory. The cells were modified to make certain proteins at much lower levels than normal. The experiments showed that the loss of a protein called TRIM28 ‘wakes up’ latent HIV-1. TRIM28 attaches chemical marks called SUMOylations to gene regulators in the cell. These SUMOylations restrict the activity of HIV-1’s genes, which is important to maintain latency. Specifically, TRIM28 adds SUMOylations to a protein named CDK9 at three key positions. Reducing the levels of TRIM28 made it easier to shock many HIV-1 in infected cells out of latency. With further investigation, targeting TRIM28 may one day be used to treat HIV-1 infection through a shock and kill method.
Collapse
Affiliation(s)
- Xiancai Ma
- Institute of Human Virology, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Tao Yang
- Institute of Human Virology, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yuewen Luo
- Institute of Human Virology, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Liyang Wu
- Institute of Human Virology, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yawen Jiang
- Institute of Human Virology, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Zheng Song
- Institute of Human Virology, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Ting Pan
- Institute of Human Virology, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Bingfeng Liu
- Institute of Human Virology, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Guangyan Liu
- College of Basic Medical Sciences, Shenyang Medical College, Shenyang, China
| | - Jun Liu
- Institute of Human Virology, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Fei Yu
- Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Zhangping He
- Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Wanying Zhang
- Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jinyu Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Liting Liang
- Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yuanjun Guan
- Core Laboratory Platform for Medical Science, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xu Zhang
- Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Linghua Li
- Department of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou, China
| | - Weiping Cai
- Department of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou, China
| | - Xiaoping Tang
- Department of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou, China
| | - Song Gao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Kai Deng
- Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Hui Zhang
- Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
296
|
Gao K, Li Y, Hu S, Liu Y. SUMO peptidase ULP-4 regulates mitochondrial UPR-mediated innate immunity and lifespan extension. eLife 2019; 8:41792. [PMID: 30642431 PMCID: PMC6355198 DOI: 10.7554/elife.41792] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 01/02/2019] [Indexed: 12/21/2022] Open
Abstract
Animals respond to mitochondrial stress with the induction of mitochondrial unfolded protein response (UPRmt). A cascade of events occur upon UPRmt activation, ultimately triggering a transcriptional response governed by two transcription factors: DVE-1 and ATFS-1. Here we identify SUMO-specific peptidase ULP-4 as a positive regulator of C. elegans UPRmt to control SUMOylation status of DVE-1 and ATFS-1. SUMOylation affects these two axes in the transcriptional program of UPRmt with distinct mechanisms: change of DVE-1 subcellular localization vs. change of ATFS-1 stability and activity. Our findings reveal a post-translational modification that promotes immune response and lifespan extension during mitochondrial stress. Most animal cells carry compartments called mitochondria. These tiny powerhouses produce the energy that fuels many life processes, but they also store important compounds and can even cause an infected or defective cell to kill itself. For a cell, keeping its mitochondria healthy is often a matter of life and death: failure to do so is linked with aging, cancer or diseases such as Alzheimer’s. The cell uses a surveillance program called the mitochondrial unfolded protein response to assess the health of its mitochondria. If something is amiss, the cell activates specific mechanisms to fix the problem, which involves turning on specific genes in its genome. A protein named ULP-4, which is found in the worm Caenorhabditis elegans but also in humans, participates in this process. This enzyme cuts off chemical ‘tags’ known as SUMO from proteins. Adding and removing these labels changes the place and role of a protein in the cell. However, it was still unclear how ULP-4 played a role in the mitochondrial unfolded protein response. Here, Gao et al. show that when mitochondria are in distress, ULP-4 removes SUMO from DVE-1 and ATFS-1, two proteins that control separate arms of the mitochondrial unfolded protein response. Without SUMO tags, DVE-1 can relocate to the area in the cell where it can turn on genes that protect and repair mitochondria; meanwhile SUMO-free ATFS-1 becomes more stable and can start acting on the genome. Finally, the experiments show that removing SUMO on DVE-1 and ATFS-1 is essential to keep the worms healthy and with a long lifespan under mitochondrial stress. The experiments by Gao et al. show that the mitochondrial unfolded protein response relies, at least in part, on SUMO tags. This knowledge opens new avenues of research, and could help fight diseases that emerge when mitochondria fail.
Collapse
Affiliation(s)
- Kaiyu Gao
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Yi Li
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.,Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Shumei Hu
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Ying Liu
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| |
Collapse
|
297
|
Abstract
Posttranslational modification with small ubiquitin-like modifier (SUMO) plays an important role in many biological processes. SUMO-targeted ubiquitin E3 ligases (STUbLs) are part of the really interesting new gene (RING)-type family of ubiquitin E3 ligases. STUbLs recognize their SUMO-modified substrates via SUMO-interaction motifs and ubiquitinate them via the RING domain. As a result, they form a link between the ubiquitin and SUMO signaling pathways. STUbL activity is required for the maintenance of genome stability, the repair of damaged DNA and to target SUMO-modified proteins for degradation by the proteasome. In vitro assays for STUbL activity have been developed and used to identify their cognate ubiquitin-conjugating enzymes (E2s), to determine their substrate requirements, and to characterize the types of ubiquitin chains linked to substrates. While we have focused on the STUbL RING finger protein 4 (RNF4) the methods we describe can be extended to other STUbLs. We also describe an assay for RNF4 ubiquitination activity based on fluorescence polarization, suitable for high-throughput compound screening in drug discovery.
Collapse
|
298
|
Morrell R, Sadanandom A. Dealing With Stress: A Review of Plant SUMO Proteases. FRONTIERS IN PLANT SCIENCE 2019; 10:1122. [PMID: 31620153 PMCID: PMC6759571 DOI: 10.3389/fpls.2019.01122] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 08/14/2019] [Indexed: 05/18/2023]
Abstract
The SUMO system is a rapid dynamic post-translational mechanism employed by eukaryotic cells to respond to stress. Plant cells experience hyperSUMOylation of substrates in response to stresses such as heat, ethanol, and drought. Many SUMOylated proteins are located in the nucleus, SUMOylation altering many nuclear processes. The SUMO proteases play two key functions in the SUMO cycle by generating free SUMO; they have an important role in regulating the SUMO cycle, and by cleaving SUMO off SUMOylated proteins, they provide specificity to which proteins become SUMOylated. This review summarizes the broad literature of plant SUMO proteases describing their catalytic activity, domains and structure, evolution, localization, and response to stress and highlighting potential new areas of research in the future.
Collapse
|
299
|
Zhou LJ, Zhang CL, Zhang RF, Wang GL, Li YY, Hao YJ. The SUMO E3 Ligase MdSIZ1 Targets MdbHLH104 to Regulate Plasma Membrane H +-ATPase Activity and Iron Homeostasis. PLANT PHYSIOLOGY 2019; 40:2068-2080. [PMID: 30333149 DOI: 10.1111/pce.12978] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 04/04/2017] [Accepted: 04/08/2017] [Indexed: 05/20/2023]
Abstract
SIZ1 (a SIZ/PIAS-type SUMO E3 ligase)-mediated small ubiquitin-like modifier (SUMO) modification of target proteins is important for various biological processes related to abiotic stress resistance in plants; however, little is known about its role in resistance toward iron (Fe) deficiency. Here, the SUMO E3 ligase MdSIZ1 was shown to be involved in the plasma membrane (PM) H+-ATPase-mediated response to Fe deficiency. Subsequently, a basic helix-loop-helix transcription factor, MdbHLH104 (a homolog of Arabidopsis bHLH104 in apple), which acts as a key component in regulating PM H+-ATPase-mediated rhizosphere acidification and Fe uptake in apples (Malus domestica), was identified as a direct target of MdSIZ1. MdSIZ1 directly sumoylated MdbHLH104 both in vitro and in vivo, especially under conditions of Fe deficiency, and this sumoylation was required for MdbHLH104 protein stability. Double substitution of K139R and K153R in MdbHLH104 blocked MdSIZ1-mediated sumoylation in vitro and in vivo, indicating that the K139 and K153 residues were the principal sites of SUMO conjugation. Moreover, the transcript level of the MdSIZ1 gene was substantially induced following Fe deficiency. MdSIZ1 overexpression exerted a positive influence on PM H+-ATPase-mediated rhizosphere acidification and Fe uptake. Our findings reveal an important role for sumoylation in the regulation of PM H+-ATPase-mediated rhizosphere acidification and Fe uptake during Fe deficiency in plants.
Collapse
Affiliation(s)
- Li-Jie Zhou
- State Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Chun-Ling Zhang
- State Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Rui-Fen Zhang
- State Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
- Qingdao Academy of Agricultural Science, Qing-Dao, Shandong 266100, China
| | - Gui-Luan Wang
- State Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Yuan-Yuan Li
- State Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Yu-Jin Hao
- State Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| |
Collapse
|
300
|
Bibi N, Rashid S, Nicholson J, Malloy M, O'Neill R, Blake D, Hupp T. An Integrative "Omics" Approach, for Identification of Bona Fides PLK1 Associated Biomarker in Esophageal Adenocarcinoma. Curr Cancer Drug Targets 2019; 19:742-755. [PMID: 30747067 DOI: 10.2174/1568009619666190211113722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 11/30/2018] [Accepted: 01/20/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND The rapid expansion of genome-wide profiling techniques offers the opportunity to utilize various types of information collected in the study of human health and disease. Overexpression of Polo like kinase 1 (PLK1) is associated with esophageal adenocarcinoma (OAC), however biological functions and molecular targets of PLK1 in OAC are still unknown. OBJECTIVES Here we performed integrative analysis of two "omics" data sources to reveal high-level interactions of PLK1 associated with OAC. METHODS Initially, quantitative gene expression (RPKM) was measured from transcriptomics data set of four OAC patients. In parallel, alteration in phosphorylation levels was evaluated in the proteomics data set (mass spectrometry) in OAC cell line (PLK1 inhibited). Next, two "omics" data sets were integrated and through comprehensive analysis possible true PLK1 targets that may serve as OAC biomarkers were assembled. RESULTS Through experimental validation, small ubiquitin-related modifier 1 (SUMO1) and heat shock protein beta-1 (HSPB1) were identified as novel phosphorylation targets of PLK1. Consequently in vivo, in situ and in silico experiments clearly demonstrated the interaction of PLK1 with putative novel targets (SUMO1 and HSPB1). CONCLUSION Identification of a PLK1 dependent biosignature in OAC with high confidence in two omics levels proven the robustness and efficacy of our integrative approach.
Collapse
Affiliation(s)
- Nousheen Bibi
- Department of Bioinformatics, Shaheed Benazir Bhutto Women University, Peshawer, Pakistan
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
| | - Sajid Rashid
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
| | | | - Mark Malloy
- Australian Proteome Analysis Facility, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Rob O'Neill
- Edinburgh Cancer Research Center, University of Edinburgh, United Kingdom
| | | | - Ted Hupp
- Edinburgh Cancer Research Center, University of Edinburgh, United Kingdom
| |
Collapse
|