251
|
Monk D, Sanchez-Delgado M, Fisher R. NLRPs, the subcortical maternal complex and genomic imprinting. Reproduction 2017; 154:R161-R170. [PMID: 28916717 DOI: 10.1530/rep-17-0465] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 09/06/2017] [Accepted: 09/15/2017] [Indexed: 01/01/2023]
Abstract
Before activation of the embryonic genome, the oocyte provides many of the RNAs and proteins required for the epigenetic reprogramming and the transition to a totipotent state. Targeted disruption of a subset of oocyte-derived transcripts in mice results in early embryonic lethality and cleavage-stage embryonic arrest as highlighted by the members of the subcortical maternal complex (SCMC). Maternal-effect recessive mutations of NLRP7, KHDC3L and NLRP5 in humans are associated with variable reproductive outcomes, biparental hydatidiform moles (BiHM) and widespread multi-locus imprinting disturbances. The precise mechanism of action of these genes is unknown, but the maternal-effect phenomenon suggests a function during early pre-implantation development, while biochemical and genetic studies implement them as SCMC members or interacting partners. In this review article, we discuss the role of the NLRP family members and the SCMC proteins in the establishment of genomic imprints and post-zygotic methylation maintenance, the recent advances made in the understanding of the biology involved in BiHM formation and the wider roles of the SCMC in mammalian reproduction.
Collapse
Affiliation(s)
- David Monk
- Imprinting and Cancer GroupCancer Epigenetic and Biology Program, Institut d'Investigació Biomedica de Bellvitge, Hospital Duran i Reynals, Barcelona, Spain
| | - Marta Sanchez-Delgado
- Imprinting and Cancer GroupCancer Epigenetic and Biology Program, Institut d'Investigació Biomedica de Bellvitge, Hospital Duran i Reynals, Barcelona, Spain
| | - Rosemary Fisher
- Imperial Centre for Translational and Experimental MedicineImperial College London, London, UK.,Trophoblastic Tumour Screening and Treatment CentreDepartment of Oncology, Imperial College London, London, UK
| |
Collapse
|
252
|
Liu H, Wei Q, Huang C, Zhang Y, Guo Z. Potential Roles of Intrinsic Disorder in Maternal-Effect Proteins Involved in the Maintenance of DNA Methylation. Int J Mol Sci 2017; 18:E1898. [PMID: 28869544 PMCID: PMC5618547 DOI: 10.3390/ijms18091898] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 08/21/2017] [Accepted: 08/22/2017] [Indexed: 01/14/2023] Open
Abstract
DNA methylation is an important epigenetic modification that needs to be carefully controlled as a prerequisite for normal early embryogenesis. Compelling evidence now suggests that four maternal-effect proteins, primordial germ cell 7 (PGC7), zinc finger protein 57 (ZFP57), tripartite motif-containing 28 (TRIM28) and DNA methyltransferase (cytosine-5) 1 (DNMT1) are involved in the maintenance of DNA methylation. However, it is still not fully understood how these maternal-effect proteins maintain the DNA methylation imprint. We noticed that a feature common to these proteins is the presence of significant levels of intrinsic disorder so in this study we started from an intrinsic disorder perspective to try to understand these maternal-effect proteins. To do this, we firstly analysed the intrinsic disorder predispositions of PGC7, ZFP57, TRIM28 and DNMT1 by using a set of currently available computational tools and secondly conducted an intensive literature search to collect information on their interacting partners and structural characterization. Finally, we discuss the potential effect of intrinsic disorder on the function of these proteins in maintaining DNA methylation.
Collapse
Affiliation(s)
- Hongliang Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China.
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling 712100, China.
| | - Qing Wei
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China.
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling 712100, China.
- College of Eco-Environmental Engineering, Qinghai University, Xining 810016, China.
| | - Chenyang Huang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China.
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling 712100, China.
| | - Yong Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China.
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling 712100, China.
| | - Zekun Guo
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China.
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
253
|
Bretz CL, Langohr IM, Kim J. Epigenetic response of imprinted domains during carcinogenesis. Clin Epigenetics 2017; 9:90. [PMID: 28855972 PMCID: PMC5572065 DOI: 10.1186/s13148-017-0393-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 08/16/2017] [Indexed: 11/25/2022] Open
Abstract
Background Imprinted domains have been identified as targets for aberrant DNA methylation during carcinogenesis, but it remains unclear when these epigenetic alterations occur and how they contribute to tumor progression. Epigenetic instability at key cis-regulatory elements within imprinted domains can concomitantly activate proto-oncogenes and turn off tumor suppressor genes. Thus, to further characterize the epigenetic response of imprinted domains during carcinogenesis, we compared the stability of DNA methylation at a variety of cis-regulatory elements within imprinted domains in two fundamentally different mouse tumors, benign and malignant, induced by the KrasG12D mutation. Results We report that imprinted domains remain stable in benign processes but are highly susceptible to epigenetic alterations in infiltrative lesions. The preservation of DNA methylation within imprinted domains in benign tumors throughout their duration suggests that imprinted genes are not involved with the initiation of carcinogenesis or the growth of tumors. However, the frequent detection of DNA methylation changes at imprinting control regions in infiltrative lesions suggest that imprinted genes are associated with tumor cells gaining the ability to defy tissue boundaries. Conclusion Overall, this study demonstrates that imprinted domains are targeted for DNA hypermethylation when benign tumor cells transition to malignant. Thus, monitoring DNA methylation within imprinted domains may be useful in evaluating the progression of neoplasms. Electronic supplementary material The online version of this article (doi:10.1186/s13148-017-0393-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Corey L Bretz
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803 USA
| | - Ingeborg M Langohr
- Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA 70803 USA
| | - Joomyeong Kim
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803 USA
| |
Collapse
|
254
|
Hong S, Wang D, Horton JR, Zhang X, Speck SH, Blumenthal RM, Cheng X. Methyl-dependent and spatial-specific DNA recognition by the orthologous transcription factors human AP-1 and Epstein-Barr virus Zta. Nucleic Acids Res 2017; 45:2503-2515. [PMID: 28158710 PMCID: PMC5389525 DOI: 10.1093/nar/gkx057] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 01/21/2017] [Indexed: 12/22/2022] Open
Abstract
Activator protein 1 (AP-1) is a transcription factor that recognizes two versions of a 7-base pair response element, either 5΄-TGAGTCA-3΄ or 5΄-MGAGTCA-3΄ (where M = 5-methylcytosine). These two elements share the feature that 5-methylcytosine and thymine both have a methyl group in the same position, 5-carbon of the pyrimidine, so each of them has two methyl groups at nucleotide positions 1 and 5 from the 5΄ end, resulting in four methyl groups symmetrically positioned in duplex DNA. Epstein-Barr Virus Zta is a key transcriptional regulator of the viral lytic cycle that is homologous to AP-1. Zta recognizes several methylated Zta-response elements, including meZRE1 (5΄-TGAGMCA-3΄) and meZRE2 (5΄-TGAGMGA-3΄), where a methylated cytosine occupies one of the inner thymine residues corresponding to the AP-1 element, resulting in the four spatially equivalent methyl groups. Here, we study how AP-1 and Zta recognize these methyl groups within their cognate response elements. These methyl groups are in van der Waals contact with a conserved di-alanine in AP-1 dimer (Ala265 and Ala266 in Jun), or with the corresponding Zta residues Ala185 and Ser186 (via its side chain carbon Cβ atom). Furthermore, the two ZRE elements differ at base pair 6 (C:G versus G:C), forming a pseudo-symmetric sequence (meZRE1) or an asymmetric sequence (meZRE2). In vitro DNA binding assays suggest that Zta has high affinity for all four sequences examined, whereas AP-1 has considerably reduced affinity for the asymmetric sequence (meZRE2). We ascribe this difference to Zta Ser186 (a unique residue for Zta) whose side chain hydroxyl oxygen atom interacts with the two half sites differently, whereas the corresponding Ala266 of AP-1 Jun protein lacks such flexibility. Our analyses demonstrate a novel mechanism of 5mC/T recognition in a methylation-dependent, spatial and sequence-specific approach by basic leucine-zipper transcriptional factors.
Collapse
Affiliation(s)
- Samuel Hong
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322, USA.,Molecular and Systems Pharmacology graduate program, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322, USA
| | - Dongxue Wang
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322, USA
| | - John R Horton
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322, USA.,Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xing Zhang
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322, USA.,Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Samuel H Speck
- Department of Microbiology & Immunology, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322, USA.,Emory Vaccine Center, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322, USA
| | - Robert M Blumenthal
- Department of Medical Microbiology and Immunology and Program in Bioinformatics, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Xiaodong Cheng
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322, USA.,Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
255
|
Bina M, Wyss P, Song XC. Datasets on the genomic positions of the MLL1 morphemes, the ZFP57 binding site, and ZFBS-Morph overlaps in the build mm9 of the mouse genome. Data Brief 2017; 13:202-207. [PMID: 28616452 PMCID: PMC5458072 DOI: 10.1016/j.dib.2017.05.050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 05/19/2017] [Accepted: 05/23/2017] [Indexed: 12/29/2022] Open
Abstract
While MLL1 activates gene expression in most tissues, ZFP57 represses transcription. MLL1 selectively interacts with a group of nonmethylated DNA sequences known as the MLL1 morphemes. ZFP57 associates with a methylated hexamer (ZFBS), dispersed in the genomic DNA segments known as Imprinted Control Regions (ICRs) and germline Differentially Methylated Regions (gDMRs), to maintain allele-specific gene repression. We have identified a set of composite DNA elements (ZFBS-Morph overlaps) that provides the sequence context of ZFBS in the canonical ICRs/gDMRs. This report provides tables listing the nucleotide sequences of the MLL1 morphemes and ZFBS-Morph overlaps. The report also offers links to the data repository at Purdue University, for downloading the positions of the MLL1 morphemes, the ZFP57 binding site, and the ZFBS-Morph overlaps in the mouse genome.
Collapse
Affiliation(s)
- Minou Bina
- Purdue University, Department of Chemistry, West Lafayette, IN 47907, USA
| | - Phillip Wyss
- Purdue University, Department of Chemistry, West Lafayette, IN 47907, USA
| | - Xiaohui C. Song
- Information Technology at Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
256
|
Mohammed H, Hernando-Herraez I, Savino A, Scialdone A, Macaulay I, Mulas C, Chandra T, Voet T, Dean W, Nichols J, Marioni JC, Reik W. Single-Cell Landscape of Transcriptional Heterogeneity and Cell Fate Decisions during Mouse Early Gastrulation. Cell Rep 2017; 20:1215-1228. [PMID: 28768204 PMCID: PMC5554778 DOI: 10.1016/j.celrep.2017.07.009] [Citation(s) in RCA: 229] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 06/07/2017] [Accepted: 07/06/2017] [Indexed: 01/08/2023] Open
Abstract
The mouse inner cell mass (ICM) segregates into the epiblast and primitive endoderm (PrE) lineages coincident with implantation of the embryo. The epiblast subsequently undergoes considerable expansion of cell numbers prior to gastrulation. To investigate underlying regulatory principles, we performed systematic single-cell RNA sequencing (seq) of conceptuses from E3.5 to E6.5. The epiblast shows reactivation and subsequent inactivation of the X chromosome, with Zfp57 expression associated with reactivation and inactivation together with other candidate regulators. At E6.5, the transition from epiblast to primitive streak is linked with decreased expression of polycomb subunits, suggesting a key regulatory role. Notably, our analyses suggest elevated transcriptional noise at E3.5 and within the non-committed epiblast at E6.5, coinciding with exit from pluripotency. By contrast, E6.5 primitive streak cells became highly synchronized and exhibit a shortened G1 cell-cycle phase, consistent with accelerated proliferation. Our study systematically charts transcriptional noise and uncovers molecular processes associated with early lineage decisions.
Collapse
Affiliation(s)
- Hisham Mohammed
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK
| | | | - Aurora Savino
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK
| | - Antonio Scialdone
- EMBL-European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge CB10 1SD, UK; Wellcome Trust Sanger Institute, Single-Cell Genomics Centre, Cambridge CB10 1SA, UK
| | - Iain Macaulay
- Wellcome Trust Sanger Institute, Single-Cell Genomics Centre, Cambridge CB10 1SA, UK
| | - Carla Mulas
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 3EG, UK
| | - Tamir Chandra
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK
| | - Thierry Voet
- Wellcome Trust Sanger Institute, Single-Cell Genomics Centre, Cambridge CB10 1SA, UK; Department of Human Genetics, Human Genome Laboratory, KU Leuven, 3000 Leuven, Belgium
| | - Wendy Dean
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK
| | - Jennifer Nichols
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 3EG, UK.
| | - John C Marioni
- EMBL-European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge CB10 1SD, UK; Wellcome Trust Sanger Institute, Single-Cell Genomics Centre, Cambridge CB10 1SA, UK; Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 ORE, UK.
| | - Wolf Reik
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK; Wellcome Trust Sanger Institute, Single-Cell Genomics Centre, Cambridge CB10 1SA, UK; Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK.
| |
Collapse
|
257
|
Guo G, von Meyenn F, Rostovskaya M, Clarke J, Dietmann S, Baker D, Sahakyan A, Myers S, Bertone P, Reik W, Plath K, Smith A. Epigenetic resetting of human pluripotency. Development 2017; 144:2748-2763. [PMID: 28765214 PMCID: PMC5560041 DOI: 10.1242/dev.146811] [Citation(s) in RCA: 196] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Accepted: 06/09/2017] [Indexed: 12/12/2022]
Abstract
Much attention has focussed on the conversion of human pluripotent stem cells (PSCs) to a more naïve developmental status. Here we provide a method for resetting via transient histone deacetylase inhibition. The protocol is effective across multiple PSC lines and can proceed without karyotype change. Reset cells can be expanded without feeders with a doubling time of around 24 h. WNT inhibition stabilises the resetting process. The transcriptome of reset cells diverges markedly from that of primed PSCs and shares features with human inner cell mass (ICM). Reset cells activate expression of primate-specific transposable elements. DNA methylation is globally reduced to a level equivalent to that in the ICM and is non-random, with gain of methylation at specific loci. Methylation imprints are mostly lost, however. Reset cells can be re-primed to undergo tri-lineage differentiation and germline specification. In female reset cells, appearance of biallelic X-linked gene transcription indicates reactivation of the silenced X chromosome. On reconversion to primed status, XIST-induced silencing restores monoallelic gene expression. The facile and robust conversion routine with accompanying data resources will enable widespread utilisation, interrogation, and refinement of candidate naïve cells.
Collapse
Affiliation(s)
- Ge Guo
- Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, UK
| | | | - Maria Rostovskaya
- Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, UK
| | - James Clarke
- Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, UK
| | - Sabine Dietmann
- Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, UK
| | - Duncan Baker
- Centre for Stem Cell Biology, Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, UK
| | - Anna Sahakyan
- Department of Biological Chemistry, University of California, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| | - Samuel Myers
- Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, UK
| | - Paul Bertone
- Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, UK
| | - Wolf Reik
- Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, UK
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK
- Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK
| | - Kathrin Plath
- Department of Biological Chemistry, University of California, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| | - Austin Smith
- Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, UK
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| |
Collapse
|
258
|
Schröder C, Leitão E, Wallner S, Schmitz G, Klein-Hitpass L, Sinha A, Jöckel KH, Heilmann-Heimbach S, Hoffmann P, Nöthen MM, Steffens M, Ebert P, Rahmann S, Horsthemke B. Regions of common inter-individual DNA methylation differences in human monocytes: genetic basis and potential function. Epigenetics Chromatin 2017; 10:37. [PMID: 28747224 PMCID: PMC5530492 DOI: 10.1186/s13072-017-0144-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 07/20/2017] [Indexed: 01/23/2023] Open
Abstract
Background There is increasing evidence for inter-individual methylation differences at CpG dinucleotides in the human genome, but the regional extent and function of these differences have not yet been studied in detail. For identifying regions of common methylation differences, we used whole genome bisulfite sequencing data of monocytes from five donors and a novel bioinformatic strategy. Results We identified 157 differentially methylated regions (DMRs) with four or more CpGs, almost none of which has been described before. The DMRs fall into different chromatin states, where methylation is inversely correlated with active, but not repressive histone marks. However, methylation is not correlated with the expression of associated genes. High-resolution single nucleotide polymorphism (SNP) genotyping of the five donors revealed evidence for a role of cis-acting genetic variation in establishing methylation patterns. To validate this finding in a larger cohort, we performed genome-wide association studies (GWAS) using SNP genotypes and 450k array methylation data from blood samples of 1128 individuals. Only 30/157 (19%) DMRs include at least one 450k CpG, which shows that these arrays miss a large proportion of DNA methylation variation. In most cases, the GWAS peak overlapped the CpG position, and these regions are enriched for CREB group, NF-1, Sp100 and CTCF binding motifs. In two cases, there was tentative evidence for a trans-effect by KRAB zinc finger proteins. Conclusions Allele-specific DNA methylation occurs in discrete chromosomal regions and is driven by genetic variation in cis and trans, but in general has little effect on gene expression. Electronic supplementary material The online version of this article (doi:10.1186/s13072-017-0144-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Christopher Schröder
- Genome Informatics, Institute of Human Genetics, University of Duisburg-Essen, University Hospital Essen, Essen, Germany
| | - Elsa Leitão
- Institute of Human Genetics, University of Duisburg-Essen, University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Stefan Wallner
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Gerd Schmitz
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| | | | - Anupam Sinha
- Institute of Clinical Molecular Biology, Kiel University, University Hospital, Kiel, Germany
| | - Karl-Heinz Jöckel
- Institute of Medical Informatics, Biometry and Epidemiology, University Hospital Essen, Essen, Germany
| | - Stefanie Heilmann-Heimbach
- Institute of Human Genetics, School of Medicine, University Hospital of Bonn, University of Bonn, Bonn, Germany.,Department of Genomics, Life and Brain Center, University of Bonn, Bonn, Germany
| | - Per Hoffmann
- Institute of Human Genetics, School of Medicine, University Hospital of Bonn, University of Bonn, Bonn, Germany.,Department of Genomics, Life and Brain Center, University of Bonn, Bonn, Germany.,Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland.,Human Genomics Research Group, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Markus M Nöthen
- Institute of Human Genetics, School of Medicine, University Hospital of Bonn, University of Bonn, Bonn, Germany.,Department of Genomics, Life and Brain Center, University of Bonn, Bonn, Germany
| | - Michael Steffens
- Research Division, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany
| | - Peter Ebert
- Max Planck Institute for Informatics, Saarland Informatics Campus, Saarbrücken, Germany.,Saarbrücken Graduate School of Computer Science, Saarland Informatics Campus, Saarbrücken, Germany
| | - Sven Rahmann
- Genome Informatics, Institute of Human Genetics, University of Duisburg-Essen, University Hospital Essen, Essen, Germany
| | - Bernhard Horsthemke
- Institute of Human Genetics, University of Duisburg-Essen, University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany.
| |
Collapse
|
259
|
Abstract
Many of the hundreds of KRAB zinc finger proteins encoded by human and mouse are involved in taming the transcriptional regulatory potential of transposable elements. Reporting recently in Science, Yang et al. (2017) reveal that one murine family member, ZFP568, controls Igf2 expression for proper embryonic and placental development.
Collapse
Affiliation(s)
- Didier Trono
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| |
Collapse
|
260
|
Yang P, Wang Y, Hoang D, Tinkham M, Patel A, Sun MA, Wolf G, Baker M, Chien HC, Lai KYN, Cheng X, Shen CKJ, Macfarlan TS. A placental growth factor is silenced in mouse embryos by the zinc finger protein ZFP568. Science 2017; 356:757-759. [PMID: 28522536 PMCID: PMC6309218 DOI: 10.1126/science.aah6895] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 04/20/2017] [Indexed: 12/27/2022]
Abstract
Insulin-like growth factor 2 (IGF2) is the major fetal growth hormone in mammals. We identify zinc finger protein 568 (ZFP568), a member of the rapidly evolving Kruppel-associated box-zinc finger protein (KRAB-ZFP) family linked primarily to silencing of endogenous retroelements, as a direct repressor of a placental-specific Igf2 transcript (designated Igf2-P0) in mice. Loss of Zfp568, which causes gastrulation failure, or mutation of the ZFP568-binding site at the Igf2-P0 promoter causes inappropriate Igf2-P0 activation. Deletion of Igf2 can completely rescue Zfp568 gastrulation phenotypes through late gestation. Our data highlight the exquisite selectivity with which members of the KRAB-ZFP family repress their targets and identify an additional layer of transcriptional control of a key growth factor regulating fetal and placental development.
Collapse
Affiliation(s)
- Peng Yang
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yixuan Wang
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Don Hoang
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Matthew Tinkham
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anamika Patel
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Ming-An Sun
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gernot Wolf
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mairead Baker
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Huan-Chieh Chien
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan, Republic of China
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Kuan-Yu Nick Lai
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan, Republic of China
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Xiaodong Cheng
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Che-Kun James Shen
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan, Republic of China.
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Todd S Macfarlan
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
261
|
Hashimoto H, Wang D, Horton JR, Zhang X, Corces VG, Cheng X. Structural Basis for the Versatile and Methylation-Dependent Binding of CTCF to DNA. Mol Cell 2017; 66:711-720.e3. [PMID: 28529057 DOI: 10.1016/j.molcel.2017.05.004] [Citation(s) in RCA: 182] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 04/12/2017] [Accepted: 05/03/2017] [Indexed: 12/25/2022]
Abstract
The multidomain CCCTC-binding factor (CTCF), containing a tandem array of 11 zinc fingers (ZFs), modulates the three-dimensional organization of chromatin. We crystallized the human CTCF DNA-binding domain in complex with a known CTCF-binding site. While ZF2 does not make sequence-specific contacts, each finger of ZF3-7 contacts three bases of the 15-bp consensus sequence. Each conserved nucleotide makes base-specific hydrogen bonds with a particular residue. Most of the variable base pairs within the core sequence also engage in interactions with the protein. These interactions compensate for deviations from the consensus sequence, allowing CTCF to adapt to sequence variations. CTCF is sensitive to cytosine methylation at position 2, but insensitive at position 12 of the 15-bp core sequence. These differences can be rationalized structurally. Although included in crystallizations, ZF10 and ZF11 are not visible, while ZF8 and ZF9 span the backbone of the DNA duplex, conferring no sequence specificity but adding to overall binding stability.
Collapse
Affiliation(s)
- Hideharu Hashimoto
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road NE, Atlanta, GA 30322, USA
| | - Dongxue Wang
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road NE, Atlanta, GA 30322, USA
| | - John R Horton
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road NE, Atlanta, GA 30322, USA; Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xing Zhang
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road NE, Atlanta, GA 30322, USA; Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Victor G Corces
- Department of Biology, Emory University, 1510 Clifton Road NE, Atlanta, GA 30322, USA
| | - Xiaodong Cheng
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road NE, Atlanta, GA 30322, USA; Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
262
|
Singh VB, Sribenja S, Wilson KE, Attwood KM, Hillman JC, Pathak S, Higgins MJ. Blocked transcription through KvDMR1 results in absence of methylation and gene silencing resembling Beckwith-Wiedemann syndrome. Development 2017; 144:1820-1830. [PMID: 28428215 PMCID: PMC5450836 DOI: 10.1242/dev.145136] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 03/23/2017] [Indexed: 12/30/2022]
Abstract
The maternally methylated KvDMR1 ICR regulates imprinted expression of a cluster of maternally expressed genes on human chromosome 11p15.5. Disruption of imprinting leads to Beckwith-Wiedemann syndrome (BWS), an overgrowth and cancer predisposition condition. In the majority of individuals with BWS, maternal-specific methylation at KvDMR1 is absent and genes under its control are repressed. We analyzed a mouse model carrying a poly(A) truncation cassette inserted to prevent RNA transcripts from elongation through KvDMR1. Maternal inheritance of this mutation resulted in absence of DNA methylation at KvDMR1, which led to biallelic expression of Kcnq1ot1 and suppression of maternally expressed genes. This study provides further evidence that transcription is required for establishment of methylation at maternal gametic DMRs. More importantly, this mouse model recapitulates the molecular phenotypic characteristics of the most common form of BWS, including loss of methylation at KvDMR1 and biallelic repression of Cdkn1c, suggesting that deficiency of maternal transcription through KvDMR1 may be an underlying cause of some BWS cases.
Collapse
Affiliation(s)
- Vir B Singh
- Departments of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Sirinapa Sribenja
- Departments of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Kayla E Wilson
- Cancer Genetics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Kristopher M Attwood
- Biostatistics and Bioinformatics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Joanna C Hillman
- Departments of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Shilpa Pathak
- Departments of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Michael J Higgins
- Departments of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| |
Collapse
|
263
|
Gahurova L, Tomizawa SI, Smallwood SA, Stewart-Morgan KR, Saadeh H, Kim J, Andrews SR, Chen T, Kelsey G. Transcription and chromatin determinants of de novo DNA methylation timing in oocytes. Epigenetics Chromatin 2017; 10:25. [PMID: 28507606 PMCID: PMC5429541 DOI: 10.1186/s13072-017-0133-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 05/02/2017] [Indexed: 12/30/2022] Open
Abstract
Background Gametogenesis in mammals entails profound re-patterning of the epigenome. In the female germline, DNA methylation is acquired late in oogenesis from an essentially unmethylated baseline and is established largely as a consequence of transcription events. Molecular and functional studies have shown that imprinted genes become methylated at different times during oocyte growth; however, little is known about the kinetics of methylation gain genome wide and the reasons for asynchrony in methylation at imprinted loci. Results Given the predominant role of transcription, we sought to investigate whether transcription timing is rate limiting for de novo methylation and determines the asynchrony of methylation events. Therefore, we generated genome-wide methylation and transcriptome maps of size-selected, growing oocytes to capture the onset and progression of methylation. We find that most sequence elements, including most classes of transposable elements, acquire methylation at similar rates overall. However, methylation of CpG islands (CGIs) is delayed compared with the genome average and there are reproducible differences amongst CGIs in onset of methylation. Although more highly transcribed genes acquire methylation earlier, the major transitions in the oocyte transcriptome occur well before the de novo methylation phase, indicating that transcription is generally not rate limiting in conferring permissiveness to DNA methylation. Instead, CGI methylation timing negatively correlates with enrichment for histone 3 lysine 4 (H3K4) methylation and dependence on the H3K4 demethylases KDM1A and KDM1B, implicating chromatin remodelling as a major determinant of methylation timing. We also identified differential enrichment of transcription factor binding motifs in CGIs acquiring methylation early or late in oocyte growth. By combining these parameters into multiple regression models, we were able to account for about a fifth of the variation in methylation timing of CGIs. Finally, we show that establishment of non-CpG methylation, which is prevalent in fully grown oocytes, and methylation over non-transcribed regions, are later events in oogenesis. Conclusions These results do not support a major role for transcriptional transitions in the time of onset of DNA methylation in the oocyte, but suggest a model in which sequences least dependent on chromatin remodelling are the earliest to become permissive for methylation. Electronic supplementary material The online version of this article (doi:10.1186/s13072-017-0133-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lenka Gahurova
- Epigenetics Programme, Babraham Institute, Cambridge, CB22 3AT UK.,Laboratory of Developmental Biology and Genetics, Department of Molecular Biology, University of South Bohemia, 37005 Ceske Budejovice, Czech Republic
| | - Shin-Ichi Tomizawa
- Department of Histology and Cell Biology, School of Medicine, Yokohama City University, Yokohama, 236-0004 Japan
| | - Sébastien A Smallwood
- Epigenetics Programme, Babraham Institute, Cambridge, CB22 3AT UK.,Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Kathleen R Stewart-Morgan
- Epigenetics Programme, Babraham Institute, Cambridge, CB22 3AT UK.,Biotech Research and Innovation Centre (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark
| | - Heba Saadeh
- Epigenetics Programme, Babraham Institute, Cambridge, CB22 3AT UK.,Computer Science Department, KASIT, University of Jordan, Amman, Jordan
| | - Jeesun Kim
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Smithville, TX 77030 USA
| | - Simon R Andrews
- Bioinformatics Group, Babraham Institute, Cambridge, CB22 3AT UK
| | - Taiping Chen
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Smithville, TX 77030 USA
| | - Gavin Kelsey
- Epigenetics Programme, Babraham Institute, Cambridge, CB22 3AT UK.,Centre for Trophoblast Research, University of Cambridge, Cambridge, CB2 3EG UK
| |
Collapse
|
264
|
Abstract
Recent technological advances have made it possible to decode DNA methylomes at single-base-pair resolution under various physiological conditions. Many aberrant or differentially methylated sites have been discovered, but the mechanisms by which changes in DNA methylation lead to observed phenotypes, such as cancer, remain elusive. The classical view of methylation-mediated protein-DNA interactions is that only proteins with a methyl-CpG binding domain (MBD) can interact with methylated DNA. However, evidence is emerging to suggest that transcription factors lacking a MBD can also interact with methylated DNA. The identification of these proteins and the elucidation of their characteristics and the biological consequences of methylation-dependent transcription factor-DNA interactions are important stepping stones towards a mechanistic understanding of methylation-mediated biological processes, which have crucial implications for human development and disease.
Collapse
|
265
|
Bina M. Imprinted control regions include composite DNA elements consisting of the ZFP57 binding site overlapping MLL1 morphemes. Genomics 2017; 109:265-273. [PMID: 28476430 DOI: 10.1016/j.ygeno.2017.04.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 04/25/2017] [Accepted: 04/30/2017] [Indexed: 12/16/2022]
Abstract
Mammalian genomes include DNA segments that are imprinted (CpG-methylated) only on one of the two parental chromosomes, leading to parent-of-origin-specific gene expression. The process is regulated by Imprinting Control Regions (ICRs) and germline Differentially Methylated Regions (gDMRs). Previously, ZFP57 was shown to recognize a methylated hexanucleotide in ICRs to maintain allele-specific gene repression. In Bioinformatics analyses, I found that the hexamer occurred frequently in mouse chromosomal DNA, suggesting that beside the ZFP57 binding site (ZFBS), ICRs contained sequence features with unknown characteristics. To identify such features, I examined chromosomal abundance of motifs in which the length of the hexamer was extended by one or several nucleotides. Results led to the discovery of a group of functionally significant composite DNA elements (ZFBS-Morph overlaps) that may play dual roles in the regulation of allele-specific gene expression. Importantly, results of genome-wide evaluations revealed that nearly 90% of the gDMRs included closely-spaced ZFBS-Morph overlaps.
Collapse
Affiliation(s)
- Minou Bina
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
266
|
Rivollier F, Chaumette B, Bendjemaa N, Chayet M, Millet B, Jaafari N, Barhdadi A, Lemieux Perreault LP, Provost S, Dubé MP, Gaillard R, Krebs MO, Kebir O. Methylomic changes in individuals with psychosis, prenatally exposed to endocrine disrupting compounds: Lessons from diethylstilbestrol. PLoS One 2017; 12:e0174783. [PMID: 28406917 PMCID: PMC5390994 DOI: 10.1371/journal.pone.0174783] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 03/15/2017] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND In the Western world, between 1940 and 1970, more than 2 million people were exposed in utero to diethylstilbestrol (DES). In exposed individuals, and in their descendants, adverse outcomes have been linked to such exposure, including cancers, genital malformations, and less consistently, psychiatric disorders. We aimed to explore whether prenatal DES exposure would be associated with DNA methylation changes, and whether these epigenetic modifications would be associated with increased risk of psychosis. METHODS From 247 individuals born from mothers exposed to DES, we selected 69 siblings from 30 families. In each family, at least one sibling was exposed in utero to DES. We performed a methylome-wide association study using HumanMethylation450 DNA Analysis BeadChip® in peripheral blood. We analyzed methylation changes at individual CpGs or regions in exposed (n = 37) versus unexposed individuals (n = 32). We also compared exposed individuals with (n = 7) and without psychosis (n = 30). RESULTS There were more individuals with schizophrenia in the DES-exposed group. We found no significant differences between exposed and unexposed individuals with respect to differentially methylated CpGs or regions. The largest difference was in a region near the promoter of an ADAMTS proteoglycanase gene (ADAMTS9). Compared to exposed individuals without psychosis, exposed individuals with psychosis had differential methylation in the region encompassing the gene encoding the zinc finger protein 57 (ZFP57). CONCLUSIONS In utero exposure to DES was not associated with methylation changes at specific CpG or regions. In exposed individuals, however, psychosis was associated with specific methylomic modifications that could impact neurodevelopment and neuroplasticity.
Collapse
Affiliation(s)
- Fabrice Rivollier
- Université Paris Descartes, Université Paris Sorbonne Paris Cité, Centre de Psychiatrie et Neurosciences, UMR S 894, Paris, France
- INSERM, Laboratoire de Physiopathologie des Maladies Psychiatriques, Centre de Psychiatrie et Neurosciences, UMR S 894, Paris, France
- CNRS, GDR3557-Institut de Psychiatrie, Paris, France
- Faculté de Médecine Paris Descartes, Centre Hospitalier Sainte-Anne, Service Hospitalo-Universitaire, Paris, France
| | - Boris Chaumette
- Université Paris Descartes, Université Paris Sorbonne Paris Cité, Centre de Psychiatrie et Neurosciences, UMR S 894, Paris, France
- INSERM, Laboratoire de Physiopathologie des Maladies Psychiatriques, Centre de Psychiatrie et Neurosciences, UMR S 894, Paris, France
- CNRS, GDR3557-Institut de Psychiatrie, Paris, France
- Faculté de Médecine Paris Descartes, Centre Hospitalier Sainte-Anne, Service Hospitalo-Universitaire, Paris, France
| | - Narjes Bendjemaa
- Université Paris Descartes, Université Paris Sorbonne Paris Cité, Centre de Psychiatrie et Neurosciences, UMR S 894, Paris, France
- INSERM, Laboratoire de Physiopathologie des Maladies Psychiatriques, Centre de Psychiatrie et Neurosciences, UMR S 894, Paris, France
- CNRS, GDR3557-Institut de Psychiatrie, Paris, France
- Faculté de Médecine Paris Descartes, Centre Hospitalier Sainte-Anne, Service Hospitalo-Universitaire, Paris, France
| | - Mélanie Chayet
- Faculté de Médecine Paris Descartes, Centre Hospitalier Sainte-Anne, Service Hospitalo-Universitaire, Paris, France
| | - Bruno Millet
- Department of Adults Psychiatry, ICM-A-IHU, UPMC UMR S 975, Inserm U 1127, CNRS UMR 7225, GH Pitié-Salpêtrière, Paris, France
| | - Nematollah Jaafari
- Unité de Recherche Clinique en Psychiatrie Pierre Deniker, Centre Hospitalier Henri Laborit, INSERM CIC-P 1402, INSERM U 1084 Laboratoire Expérimental et Clinique en Neurosciences, Univ Poitiers, CHU Poitiers, Groupement De Recherche CNRS 3557, Poitiers, France
| | - Amina Barhdadi
- Université de Montréal, Beaulieu-Saucier Pharmacogenomics Center, Montréal Heart Institute, Montréal, QC, Canada
| | | | - Sylvie Provost
- Université de Montréal, Beaulieu-Saucier Pharmacogenomics Center, Montréal Heart Institute, Montréal, QC, Canada
| | - Marie-Pierre Dubé
- Université de Montréal, Beaulieu-Saucier Pharmacogenomics Center, Montréal Heart Institute, Montréal, QC, Canada
| | - Raphaël Gaillard
- Université Paris Descartes, Université Paris Sorbonne Paris Cité, Centre de Psychiatrie et Neurosciences, UMR S 894, Paris, France
- INSERM, Laboratoire de Physiopathologie des Maladies Psychiatriques, Centre de Psychiatrie et Neurosciences, UMR S 894, Paris, France
- CNRS, GDR3557-Institut de Psychiatrie, Paris, France
- Faculté de Médecine Paris Descartes, Centre Hospitalier Sainte-Anne, Service Hospitalo-Universitaire, Paris, France
| | - Marie-Odile Krebs
- Université Paris Descartes, Université Paris Sorbonne Paris Cité, Centre de Psychiatrie et Neurosciences, UMR S 894, Paris, France
- INSERM, Laboratoire de Physiopathologie des Maladies Psychiatriques, Centre de Psychiatrie et Neurosciences, UMR S 894, Paris, France
- CNRS, GDR3557-Institut de Psychiatrie, Paris, France
- Faculté de Médecine Paris Descartes, Centre Hospitalier Sainte-Anne, Service Hospitalo-Universitaire, Paris, France
| | - Oussama Kebir
- Université Paris Descartes, Université Paris Sorbonne Paris Cité, Centre de Psychiatrie et Neurosciences, UMR S 894, Paris, France
- INSERM, Laboratoire de Physiopathologie des Maladies Psychiatriques, Centre de Psychiatrie et Neurosciences, UMR S 894, Paris, France
- CNRS, GDR3557-Institut de Psychiatrie, Paris, France
- Faculté de Médecine Paris Descartes, Centre Hospitalier Sainte-Anne, Service Hospitalo-Universitaire, Paris, France
| |
Collapse
|
267
|
Angermueller C, Lee HJ, Reik W, Stegle O. DeepCpG: accurate prediction of single-cell DNA methylation states using deep learning. Genome Biol 2017; 18:67. [PMID: 28395661 PMCID: PMC5387360 DOI: 10.1186/s13059-017-1189-z] [Citation(s) in RCA: 250] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 03/07/2017] [Indexed: 12/31/2022] Open
Abstract
Recent technological advances have enabled DNA methylation to be assayed at single-cell resolution. However, current protocols are limited by incomplete CpG coverage and hence methods to predict missing methylation states are critical to enable genome-wide analyses. We report DeepCpG, a computational approach based on deep neural networks to predict methylation states in single cells. We evaluate DeepCpG on single-cell methylation data from five cell types generated using alternative sequencing protocols. DeepCpG yields substantially more accurate predictions than previous methods. Additionally, we show that the model parameters can be interpreted, thereby providing insights into how sequence composition affects methylation variability.
Collapse
Affiliation(s)
- Christof Angermueller
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK.
| | - Heather J Lee
- Epigenetics Programme, Babraham Institute, Cambridge, UK.,Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Wolf Reik
- Epigenetics Programme, Babraham Institute, Cambridge, UK.,Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Oliver Stegle
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK.
| |
Collapse
|
268
|
Mahadevan S, Sathappan V, Utama B, Lorenzo I, Kaskar K, Van den Veyver IB. Maternally expressed NLRP2 links the subcortical maternal complex (SCMC) to fertility, embryogenesis and epigenetic reprogramming. Sci Rep 2017; 7:44667. [PMID: 28317850 PMCID: PMC5357799 DOI: 10.1038/srep44667] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 02/13/2017] [Indexed: 11/09/2022] Open
Abstract
Mammalian parental genomes contribute differently to early embryonic development. Before activation of the zygotic genome, the maternal genome provides all transcripts and proteins required for the transition from a highly specialized oocyte to a pluripotent embryo. Depletion of these maternally-encoded transcripts frequently results in failure of preimplantation embryonic development, but their functions in this process are incompletely understood. We found that female mice lacking NLRP2 are subfertile because of early embryonic loss and the production of fewer offspring that have a wide array of developmental phenotypes and abnormal DNA methylation at imprinted loci. By demonstrating that NLRP2 is a member of the subcortical maternal complex (SCMC), an essential cytoplasmic complex in oocytes and preimplantation embryos with poorly understood function, we identified imprinted postzygotic DNA methylation maintenance, likely by directing subcellular localization of proteins involved in this process, such as DNMT1, as a new crucial role of the SCMC for mammalian reproduction.
Collapse
Affiliation(s)
- Sangeetha Mahadevan
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas, 77030, USA.,Century Scholars Program, Rice University, Houston, Texas, 77005, USA.,Shared Equipment Authority, Rice University, Houston, Texas, 77005, USA
| | - Varsha Sathappan
- Department of Molecular Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Budi Utama
- Interdepartmental Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Isabel Lorenzo
- Jan and Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, 77030, USA
| | - Khalied Kaskar
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Ignatia B Van den Veyver
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas, 77030, USA.,Century Scholars Program, Rice University, Houston, Texas, 77005, USA.,Jan and Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, 77030, USA
| |
Collapse
|
269
|
Zglejc K, Franczak A. Peri-conceptional under-nutrition alters the expression of TRIM28 and ZFP57 in the endometrium and embryos during peri-implantation period in domestic pigs. Reprod Domest Anim 2017; 52:542-550. [DOI: 10.1111/rda.12943] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 01/17/2017] [Indexed: 12/25/2022]
Affiliation(s)
- K Zglejc
- Department of Animal Physiology; Faculty of Biology and Biotechnology; University of Warmia and Mazury in Olsztyn; Olsztyn Poland
| | - A Franczak
- Department of Animal Physiology; Faculty of Biology and Biotechnology; University of Warmia and Mazury in Olsztyn; Olsztyn Poland
| |
Collapse
|
270
|
Imbeault M, Helleboid PY, Trono D. KRAB zinc-finger proteins contribute to the evolution of gene regulatory networks. Nature 2017; 543:550-554. [PMID: 28273063 DOI: 10.1038/nature21683] [Citation(s) in RCA: 388] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 02/02/2017] [Indexed: 12/29/2022]
Abstract
The human genome encodes some 350 Krüppel-associated box (KRAB) domain-containing zinc-finger proteins (KZFPs), the products of a rapidly evolving gene family that has been traced back to early tetrapods. The function of most KZFPs is unknown, but a few have been demonstrated to repress transposable elements in embryonic stem (ES) cells by recruiting the transcriptional regulator TRIM28 and associated mediators of histone H3 Lys9 trimethylation (H3K9me3)-dependent heterochromatin formation and DNA methylation. Depletion of TRIM28 in human or mouse ES cells triggers the upregulation of a broad range of transposable elements, and recent data based on a few specific examples have pointed to an arms race between hosts and transposable elements as an important driver of KZFP gene selection. Here, to obtain a global view of this phenomenon, we combined phylogenetic and genomic studies to investigate the evolutionary emergence of KZFP genes in vertebrates and to identify their targets in the human genome. First, we unexpectedly reassigned the root of the family to a common ancestor of coelacanths and tetrapods. Second, although we confirmed that the majority of KZFPs bind transposable elements and pinpoint cases of ongoing co-evolution, we found that most of their transposable element targets have lost all transposition potential. Third, by examining the interplay between human KZFPs and other transcriptional modulators, we obtained evidence that KZFPs exploit evolutionarily conserved fragments of transposable elements as regulatory platforms long after the arms race against these genetic invaders has ended. Together, our results demonstrate that KZFPs partner with transposable elements to build a largely species-restricted layer of epigenetic regulation.
Collapse
Affiliation(s)
- Michaël Imbeault
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Pierre-Yves Helleboid
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Didier Trono
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
271
|
Iurlaro M, von Meyenn F, Reik W. DNA methylation homeostasis in human and mouse development. Curr Opin Genet Dev 2017; 43:101-109. [PMID: 28260631 DOI: 10.1016/j.gde.2017.02.003] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 02/01/2017] [Accepted: 02/05/2017] [Indexed: 01/10/2023]
Abstract
The molecular pathways that regulate gain and loss of DNA methylation during mammalian development need to be tightly balanced to maintain a physiological equilibrium. Here we explore the relative contributions of the different pathways and enzymatic activities involved in methylation homeostasis in the context of genome-wide and locus-specific epigenetic reprogramming in mammals. An adaptable epigenetic machinery allows global epigenetic reprogramming to concur with local maintenance of critical epigenetic memory in the genome, and appears to regulate the tempo of global reprogramming in different cell lineages and species.
Collapse
Affiliation(s)
- Mario Iurlaro
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK
| | | | - Wolf Reik
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK; Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK.
| |
Collapse
|
272
|
Loss of maternal Trim28 causes male-predominant early embryonic lethality. Genes Dev 2017; 31:12-17. [PMID: 28115466 PMCID: PMC5287108 DOI: 10.1101/gad.291195.116] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 12/27/2016] [Indexed: 01/09/2023]
Abstract
Kumar et al. show that the Y-linked gene Rbmy1a1 is highly methylated in mature sperm and resists DNA demethylation post-fertilization. Aberrant hypomethylation of the Rbmy1a1 promoter results in its ectopic activation, causing male-specific peri-implantation lethality. Global DNA demethylation is a hallmark of embryonic epigenetic reprogramming. However, embryos engage noncanonical DNA methylation maintenance mechanisms to ensure inheritance of exceptional epigenetic germline features to the soma. Besides the paradigmatic genomic imprints, these exceptions remain ill-defined, and the mechanisms ensuring demethylation resistance in the light of global reprogramming remain poorly understood. Here we show that the Y-linked gene Rbmy1a1 is highly methylated in mature sperm and resists DNA demethylation post-fertilization. Aberrant hypomethylation of the Rbmy1a1 promoter results in its ectopic activation, causing male-specific peri-implantation lethality. Rbmy1a1 is a novel target of the TRIM28 complex, which is required to protect its repressive epigenetic state during embryonic epigenetic reprogramming.
Collapse
|
273
|
TRIM28 interacts with EZH2 and SWI/SNF to activate genes that promote mammosphere formation. Oncogene 2017; 36:2991-3001. [PMID: 28068325 DOI: 10.1038/onc.2016.453] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 08/11/2016] [Accepted: 10/03/2016] [Indexed: 02/07/2023]
Abstract
Histone methyl transferase EZH2 (Enhancer of Zeste Homolog 2) is generally associated with H3K27 methylation and gene silencing, as a member of the polycomb repressor 2 (PRC2) complex. Immunoprecipitation and mass spectrometry of the EZH2-protein interactome in estrogen receptor positive, breast cancer-derived MCF7 cells revealed EZH2 interactions with subunits of chromatin remodeler SWI/SNF complex and TRIM28, which formed a complex with EZH2 distinct from PRC2. Unexpectedly, transcriptome profiling showed that EZH2 primarily activates, rather than represses, transcription in MCF7 cells and with TRIM28 co-regulates a set of genes associated with stem cell maintenance and poor survival of breast cancer patients. TRIM28 depletion repressed EZH2 recruitment to chromatin and expression of this gene set, in parallel with decreased CD44hi/CD24lo mammosphere formation. Mammosphere formation, inhibited by EZH2 depletion, was rescued by ectopic expression of EZH2 but not by TRIM28 expression or by EZH2 mutated at the region (pre-SET domain) of TRIM28 interaction. These results support PRC2-independent functions of EZH2 and TRIM28 in activation of gene expression that promotes mammary stem cell enrichment and maintenance.
Collapse
|
274
|
Male-Specific Transcription Factor Occupancy Alone Does Not Account for Differential Methylation at Imprinted Genes in the mouse Germ Cell Lineage. G3-GENES GENOMES GENETICS 2016; 6:3975-3983. [PMID: 27694116 PMCID: PMC5144967 DOI: 10.1534/g3.116.033613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Genomic imprinting is an epigenetic mechanism that affects a subset of mammalian genes, resulting in monoallelic expression depending on the parental origin of the alleles. Imprinted regions contain regulatory elements that are methylated in the gametes in a sex-specific manner (differentially methylated regions; DMRs). DMRs are present at nonimprinted loci as well, but whereas most regions are equalized after fertilization, methylation at imprinted regions maintains asymmetry. We tested the hypothesis that paternally unmethylated DMRs are occupied by transcription factors (TFs) present during male gametogenesis. Meta-analysis of mouse RNA data to identify DNA-binding proteins expressed in male gametes and motif enrichment analysis of active promoters yielded a list of candidate TFs. We then asked whether imprinted or nonimprinted paternally unmethylated DMRs harbored motifs for these TFs, and found many shared motifs between the two groups. However, DMRs that are methylated in the male germ cells also share motifs with DMRs that remain unmethylated. There are recognition sequences exclusive to the unmethylated DMRs, whether imprinted or not, that correspond with cell-cycle regulators, such as p53. Thus, at least with the current available data, our results indicate a complex scenario in which TF occupancy alone is not likely to play a role in protecting unmethylated DMRs, at least during male gametogenesis. Rather, the epigenetic features of DMRs, regulatory sequences other than DMRs, and the role of DNA-binding proteins capable of endowing sequence specificity to DNA-methylating enzymes are feasible mechanisms and further investigation is needed to answer this question.
Collapse
|
275
|
Cesaro E, Sodaro G, Montano G, Grosso M, Lupo A, Costanzo P. The Complex Role of the ZNF224 Transcription Factor in Cancer. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2016; 107:191-222. [PMID: 28215224 DOI: 10.1016/bs.apcsb.2016.11.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
ZNF224 is a member of the Kruppel-associated box zinc finger proteins (KRAB-ZFPs) family. It was originally identified as a transcriptional repressor involved in gene-specific silencing through the recruitment of the corepressor KAP1, chromatin-modifying activities, and the arginine methyltransferase PRMT5 on the promoter of its target genes. Recent findings indicate that ZNF224 can behave both as a tumor suppressor or an oncogene in different human cancers. The transcriptional regulatory properties of ZNF224 in these systems appear to be complex and influenced by specific sets of interactors. ZNF224 can also act as a transcription cofactor for other DNA-binding proteins. A role for ZNF224 in transcriptional activation has also emerged. Here, we review the state of the literature supporting both roles of ZNF224 in cancer. We also examine the functional activity of ZNF224 as a transcription factor and the influence of protein partners on its dual behavior. Increasing information on the mechanism through which ZNF224 can operate could lead to the identification of agents capable of modulating ZNF224 function, thus potentially paving the way to new therapeutic strategies for treatment of cancer.
Collapse
Affiliation(s)
- E Cesaro
- University of Naples Federico II, Naples, Italy
| | - G Sodaro
- University of Naples Federico II, Naples, Italy
| | - G Montano
- BioMedical Center, Lund University, Lund, Sweden
| | - M Grosso
- University of Naples Federico II, Naples, Italy
| | - A Lupo
- University of Sannio, Benevento, Italy
| | - P Costanzo
- University of Naples Federico II, Naples, Italy.
| |
Collapse
|
276
|
Heterochromatin and the molecular mechanisms of ‘parent-of-origin’ effects in animals. J Biosci 2016; 41:759-786. [DOI: 10.1007/s12038-016-9650-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
277
|
Thakur A, Mackin SJ, Irwin RE, O’Neill KM, Pollin G, Walsh C. Widespread recovery of methylation at gametic imprints in hypomethylated mouse stem cells following rescue with DNMT3A2. Epigenetics Chromatin 2016; 9:53. [PMID: 27895716 PMCID: PMC5118886 DOI: 10.1186/s13072-016-0104-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 11/08/2016] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Imprinted loci are paradigms of epigenetic regulation and are associated with a number of genetic disorders in human. A key characteristic of imprints is the presence of a gametic differentially methylated region (gDMR). Previous studies have indicated that DNA methylation lost from gDMRs could not be restored by DNMT1, or the de novo enzymes DNMT3A or 3B in stem cells, indicating that imprinted regions must instead undergo passage through the germline for reprogramming. However, previous studies were non-quantitative, were unclear on the requirement for DNMT3A/B and showed some inconsistencies. In addition, new putative gDMR has recently been described, along with an improved delineation of the existing gDMR locations. We therefore aimed to re-examine the dependence of methylation at gDMRs on the activities of the methyltransferases in mouse embryonic stem cells (ESCs). RESULTS We examined the most complete current set of imprinted gDMRs that could be assessed using quantitative pyrosequencing assays in two types of ESCs: those lacking DNMT1 (1KO) and cells lacking a combination of DNMT3A and DNMT3B (3abKO). We further verified results using clonal analysis and combined bisulfite and restriction analysis. Our results showed that loss of methylation was approximately equivalent in both cell types. 1KO cells rescued with a cDNA-expressing DNMT1 could not restore methylation at the imprinted gDMRs, confirming some previous observations. However, nearly all gDMRs were remethylated in 3abKO cells rescued with a DNMT3A2 expression construct (3abKO + 3a2). Transcriptional activity at the H19/Igf2 locus also tracked with the methylation pattern, confirming functional reprogramming in the latter. CONCLUSIONS These results suggested (1) a vital role for DNMT3A/B in methylation maintenance at imprints, (2) that loss of DNMT1 and DNMT3A/B had equivalent effects, (3) that rescue with DNMT3A2 can restore imprints in these cells. This may provide a useful system in which to explore factors influencing imprint reprogramming.
Collapse
Affiliation(s)
- Avinash Thakur
- Genomic Medicine Research Group, Biomedical Sciences Research Institute, Centre for Molecular Biosciences, University of Ulster, Coleraine, BT52 1SA UK
- Terry Fox Laboratory, BC Cancer Agency, 675 W 10th Ave, Vancouver, BC V5Z 1G1 Canada
| | - Sarah-Jayne Mackin
- Genomic Medicine Research Group, Biomedical Sciences Research Institute, Centre for Molecular Biosciences, University of Ulster, Coleraine, BT52 1SA UK
| | - Rachelle E. Irwin
- Genomic Medicine Research Group, Biomedical Sciences Research Institute, Centre for Molecular Biosciences, University of Ulster, Coleraine, BT52 1SA UK
| | - Karla M. O’Neill
- Genomic Medicine Research Group, Biomedical Sciences Research Institute, Centre for Molecular Biosciences, University of Ulster, Coleraine, BT52 1SA UK
- Centre for Experimental Medicine, The Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, 97 Lisburn Road, Belfast, BT9 7AE UK
| | - Gareth Pollin
- Genomic Medicine Research Group, Biomedical Sciences Research Institute, Centre for Molecular Biosciences, University of Ulster, Coleraine, BT52 1SA UK
| | - Colum Walsh
- Genomic Medicine Research Group, Biomedical Sciences Research Institute, Centre for Molecular Biosciences, University of Ulster, Coleraine, BT52 1SA UK
| |
Collapse
|
278
|
Benonisdottir S, Oddsson A, Helgason A, Kristjansson RP, Sveinbjornsson G, Oskarsdottir A, Thorleifsson G, Davidsson OB, Arnadottir GA, Sulem G, Jensson BO, Holm H, Alexandersson KF, Tryggvadottir L, Walters GB, Gudjonsson SA, Ward LD, Sigurdsson JK, Iordache PD, Frigge ML, Rafnar T, Kong A, Masson G, Helgason H, Thorsteinsdottir U, Gudbjartsson DF, Sulem P, Stefansson K. Epigenetic and genetic components of height regulation. Nat Commun 2016; 7:13490. [PMID: 27848971 PMCID: PMC5116096 DOI: 10.1038/ncomms13490] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 10/07/2016] [Indexed: 01/12/2023] Open
Abstract
Adult height is a highly heritable trait. Here we identified 31.6 million sequence variants by whole-genome sequencing of 8,453 Icelanders and tested them for association with adult height by imputing them into 88,835 Icelanders. Here we discovered 13 novel height associations by testing four different models including parent-of-origin (|β|=0.4-10.6 cm). The minor alleles of three parent-of-origin signals associate with less height only when inherited from the father and are located within imprinted regions (IGF2-H19 and DLK1-MEG3). We also examined the association of these sequence variants in a set of 12,645 Icelanders with birth length measurements. Two of the novel variants, (IGF2-H19 and TET1), show significant association with both adult height and birth length, indicating a role in early growth regulation. Among the parent-of-origin signals, we observed opposing parental effects raising questions about underlying mechanisms. These findings demonstrate that common variations affect human growth by parental imprinting.
Collapse
Affiliation(s)
| | | | - Agnar Helgason
- deCODE Genetics/Amgen, Inc., 101 Reykjavik, Iceland.,Department of Anthropology, University of Iceland, 101 Reykjavik, Iceland
| | | | | | | | | | | | | | - Gerald Sulem
- deCODE Genetics/Amgen, Inc., 101 Reykjavik, Iceland
| | | | - Hilma Holm
- deCODE Genetics/Amgen, Inc., 101 Reykjavik, Iceland
| | | | - Laufey Tryggvadottir
- Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland.,Icelandic Cancer Registry, 105 Reykjavik, Iceland
| | | | | | - Lucas D Ward
- deCODE Genetics/Amgen, Inc., 101 Reykjavik, Iceland
| | | | - Paul D Iordache
- deCODE Genetics/Amgen, Inc., 101 Reykjavik, Iceland.,Reykjavik University, 101 Reykjavik, Iceland
| | | | | | - Augustine Kong
- deCODE Genetics/Amgen, Inc., 101 Reykjavik, Iceland.,School of Engineering and Natural Sciences, University of Iceland, 107 Reykjavik, Iceland
| | - Gisli Masson
- deCODE Genetics/Amgen, Inc., 101 Reykjavik, Iceland
| | - Hannes Helgason
- deCODE Genetics/Amgen, Inc., 101 Reykjavik, Iceland.,School of Engineering and Natural Sciences, University of Iceland, 107 Reykjavik, Iceland
| | - Unnur Thorsteinsdottir
- deCODE Genetics/Amgen, Inc., 101 Reykjavik, Iceland.,Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland
| | - Daniel F Gudbjartsson
- deCODE Genetics/Amgen, Inc., 101 Reykjavik, Iceland.,School of Engineering and Natural Sciences, University of Iceland, 107 Reykjavik, Iceland
| | | | - Kari Stefansson
- deCODE Genetics/Amgen, Inc., 101 Reykjavik, Iceland.,Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland
| |
Collapse
|
279
|
Murphy KE, Shylo NA, Alexander KA, Churchill AJ, Copperman C, García-García MJ. The Transcriptional Repressive Activity of KRAB Zinc Finger Proteins Does Not Correlate with Their Ability to Recruit TRIM28. PLoS One 2016; 11:e0163555. [PMID: 27658112 PMCID: PMC5033580 DOI: 10.1371/journal.pone.0163555] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Accepted: 08/23/2016] [Indexed: 12/27/2022] Open
Abstract
KRAB domain Zinc finger proteins are one of the most abundant families of transcriptional regulators in higher vertebrates. The prevailing view is that KRAB domain proteins function as potent transcriptional repressors by recruiting TRIM28 and promoting heterochromatin spreading. However, the extent to which all KRAB domain proteins are TRIM28-dependent transcriptional repressors is currently unclear. Our studies on mouse ZFP568 revealed that TRIM28 recruitment by KRAB domain proteins is not sufficient to warrant transcriptional repressive activity. By using luciferase reporter assays and yeast two-hybrid experiments, we tested the ability of ZFP568 and other mouse KRAB domain proteins to repress transcription and bind TRIM28. We found that some mouse KRAB domain proteins are poor transcriptional repressors despite their ability to recruit TRIM28, while others showed strong KRAB-dependent transcriptional repression, but no TRIM28 binding. Together, our results show that the transcriptional repressive activity of KRAB-ZNF proteins does not correlate with their ability to recruit TRIM28, and provide evidence that KRAB domains can regulate transcription in a TRIM28-independent fashion. Our findings challenge the current understanding of the molecular mechanisms used by KRAB domain proteins to control gene expression and highlight that a high percentage of KRAB domain proteins in the mouse genome differ from the consensus KRAB sequence at amino acid residues that are critical for TRIM28 binding and/or repressive activity.
Collapse
Affiliation(s)
- Kristin E. Murphy
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, United States of America
| | - Natalia A. Shylo
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, United States of America
| | - Katherine A. Alexander
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, United States of America
| | - Angela J. Churchill
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, United States of America
| | - Cecilia Copperman
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, United States of America
| | - María J. García-García
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, United States of America
- * E-mail:
| |
Collapse
|
280
|
Joshi RS, Garg P, Zaitlen N, Lappalainen T, Watson CT, Azam N, Ho D, Li X, Antonarakis SE, Brunner HG, Buiting K, Cheung SW, Coffee B, Eggermann T, Francis D, Geraedts JP, Gimelli G, Jacobson SG, Le Caignec C, de Leeuw N, Liehr T, Mackay DJ, Montgomery SB, Pagnamenta AT, Papenhausen P, Robinson DO, Ruivenkamp C, Schwartz C, Steiner B, Stevenson DA, Surti U, Wassink T, Sharp AJ. DNA Methylation Profiling of Uniparental Disomy Subjects Provides a Map of Parental Epigenetic Bias in the Human Genome. Am J Hum Genet 2016; 99:555-566. [PMID: 27569549 DOI: 10.1016/j.ajhg.2016.06.032] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 06/30/2016] [Indexed: 02/07/2023] Open
Abstract
Genomic imprinting is a mechanism in which gene expression varies depending on parental origin. Imprinting occurs through differential epigenetic marks on the two parental alleles, with most imprinted loci marked by the presence of differentially methylated regions (DMRs). To identify sites of parental epigenetic bias, here we have profiled DNA methylation patterns in a cohort of 57 individuals with uniparental disomy (UPD) for 19 different chromosomes, defining imprinted DMRs as sites where the maternal and paternal methylation levels diverge significantly from the biparental mean. Using this approach we identified 77 DMRs, including nearly all those described in previous studies, in addition to 34 DMRs not previously reported. These include a DMR at TUBGCP5 within the recurrent 15q11.2 microdeletion region, suggesting potential parent-of-origin effects associated with this genomic disorder. We also observed a modest parental bias in DNA methylation levels at every CpG analyzed across ∼1.9 Mb of the 15q11-q13 Prader-Willi/Angelman syndrome region, demonstrating that the influence of imprinting is not limited to individual regulatory elements such as CpG islands, but can extend across entire chromosomal domains. Using RNA-seq data, we detected signatures consistent with imprinted expression associated with nine novel DMRs. Finally, using a population sample of 4,004 blood methylomes, we define patterns of epigenetic variation at DMRs, identifying rare individuals with global gain or loss of methylation across multiple imprinted loci. Our data provide a detailed map of parental epigenetic bias in the human genome, providing insights into potential parent-of-origin effects.
Collapse
Affiliation(s)
- Ricky S Joshi
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Paras Garg
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Noah Zaitlen
- Department of Medicine, UCSF MC2552, 1700 4th Street, Byers Hall Suite 503C, San Francisco, CA 94158, USA
| | - Tuuli Lappalainen
- New York Genome Center, 101 Avenue of the Americas, 7th Floor, New York, NY 10013, USA; Department of Systems Biology, Columbia University, New York, NY 10032, USA
| | - Corey T Watson
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nidha Azam
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Daniel Ho
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Xin Li
- Departments of Pathology, Genetics and Computer Science, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Stylianos E Antonarakis
- Department of Genetic Medicine and Development, University of Geneva Medical School, 9th Floor, 1 rue Michel-Servet, 1211 Geneva, Switzerland
| | - Han G Brunner
- Department of Human Genetics, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, the Netherlands
| | - Karin Buiting
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Hufelandstrasse 55, 45122 Essen, Germany
| | - Sau Wai Cheung
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Bradford Coffee
- Emory Genetics Laboratory, Emory University, Atlanta, GA 30033, USA
| | - Thomas Eggermann
- Institute of Human Genetics, University Hospital, RWTH, 52074 Aachen, Germany
| | - David Francis
- Victorian Clinical Genetics Services, Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville, VIC 3052, Australia
| | - Joep P Geraedts
- Department of Genetics and Cell Biology, Research Institute GROW, Faculty of Health, Medicine and Life Sciences, Maastricht University, PO Box 5800, Maastricht AZ 6202, the Netherlands
| | - Giorgio Gimelli
- Laboratorio di Citogenetica, Istituto G. Gaslini, 16148 Genova, Italy
| | - Samuel G Jacobson
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, 51 N. 39th Street, Philadelphia, PA 19104, USA
| | - Cedric Le Caignec
- CHU Nantes, Service de Génétique Médicale, Institut de Biologie, 9 quai Moncousu, 44093 Nantes, France; INSERM, UMR 957, Nantes 44035, France; Université de Nantes, Nantes atlantique universités, Pathophysiology of Bone Resorption and Therapy of Primary Bone Tumours, Nantes 44035, France
| | - Nicole de Leeuw
- Department of Human Genetics, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, the Netherlands
| | - Thomas Liehr
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Kollegiengasse 10, 07743 Jena, Germany
| | - Deborah J Mackay
- Wessex Regional Genetics Laboratory Salisbury District Hospital, Salisbury, Wiltshire SO2 8BJ, UK
| | - Stephen B Montgomery
- Departments of Pathology, Genetics and Computer Science, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alistair T Pagnamenta
- National Institute for Health Research Biomedical Research Centre, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Peter Papenhausen
- Division of Cytogenetics, LabCorp, Center for Molecular Biology and Pathology, Research Triangle Park, NC 27709, USA
| | - David O Robinson
- Wessex Regional Genetics Laboratory Salisbury District Hospital, Salisbury, Wiltshire SO2 8BJ, UK
| | - Claudia Ruivenkamp
- Department of Clinical Genetics, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Charles Schwartz
- J.C. Self Research Institute, Greenwood Genetic Center, Greenwood, SC 29646, USA
| | - Bernhard Steiner
- Institute of Medical Genetics, University of Zurich, 8603 Schwerzenbach, Switzerland
| | - David A Stevenson
- Division of Medical Genetics, Lucile Salter Packard Children's Hospital, 300 Pasteur Drive, Boswell Building A097, Stanford, CA 94304, USA
| | - Urvashi Surti
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Thomas Wassink
- Department of Psychiatry, University of Iowa, Iowa City, IA 52242, USA
| | - Andrew J Sharp
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
281
|
Soellner L, Begemann M, Mackay DJG, Grønskov K, Tümer Z, Maher ER, Temple IK, Monk D, Riccio A, Linglart A, Netchine I, Eggermann T. Recent Advances in Imprinting Disorders. Clin Genet 2016; 91:3-13. [PMID: 27363536 DOI: 10.1111/cge.12827] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/27/2016] [Accepted: 06/27/2016] [Indexed: 01/21/2023]
Abstract
Imprinting disorders (ImpDis) are a group of currently 12 congenital diseases with common underlying (epi)genetic etiologies and overlapping clinical features affecting growth, development and metabolism. In the last years it has emerged that ImpDis are characterized by the same types of mutations and epimutations, i.e. uniparental disomies, copy number variations, epimutations, and point mutations. Each ImpDis is associated with a specific imprinted locus, but the same imprinted region can be involved in different ImpDis. Additionally, even the same aberrant methylation patterns are observed in different phenotypes. As some ImpDis share clinical features, clinical diagnosis is difficult in some cases. The advances in molecular and clinical diagnosis of ImpDis help to circumvent these issues, and they are accompanied by an increasing understanding of the pathomechanism behind them. As these mechanisms have important roles for the etiology of other common conditions, the results in ImpDis research have a wider effect beyond the borders of ImpDis. For patients and their families, the growing knowledge contributes to a more directed genetic counseling of the families and personalized therapeutic approaches.
Collapse
Affiliation(s)
- L Soellner
- Department of Human Genetics, RWTH Aachen, Aachen, Germany
| | - M Begemann
- Department of Human Genetics, RWTH Aachen, Aachen, Germany
| | - D J G Mackay
- Human Genetics and Genomic Medicine, Faculty of Medicine University of Southampton, Wessex Clinical Genetics Service, Princess Anne Hospital, Southampton, UK
| | - K Grønskov
- Clinical Genetic Clinic, Kennedy Center, Rigshospitalet, Copenhagen University Hospital, Glostrup, Denmark
| | - Z Tümer
- Clinical Genetic Clinic, Kennedy Center, Rigshospitalet, Copenhagen University Hospital, Glostrup, Denmark
| | - E R Maher
- Department of Medical Genetics, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - I K Temple
- Human Genetics and Genomic Medicine, Faculty of Medicine University of Southampton, Wessex Clinical Genetics Service, Princess Anne Hospital, Southampton, UK
| | - D Monk
- Imprinting and Cancer Group, Cancer Epigenetic and Biology Program (PEBC), Institut d'Investigació Biomedica de Bellvitge (IDIBELL), Hospital Duran i Reynals, Barcelona, Spain
| | - A Riccio
- DiSTABiF, Seconda Università degli Studi di Napoli, Caserta, Institute of Genetics and Biophysics - ABT, CNR, Napoli, Italy
| | - A Linglart
- Endocrinology and Diabetology for Children and Reference Center for Rare Disorders of Calcium and Phosphorus Metabolism, Bicêtre Paris Sud, APHP, INSERM U986, INSERM, Le Kremlin-Bicêtre, France
| | - I Netchine
- INSERM, CDR Saint-Antoine, Paris, France.,Sorbonne Universites, UPMC Univ Paris 06, Paris, France.,Pediatric Endocrinology, Armand Trousseau Hospital, Paris, France
| | - T Eggermann
- Department of Human Genetics, RWTH Aachen, Aachen, Germany
| |
Collapse
|
282
|
Theunissen TW, Friedli M, He Y, Planet E, O'Neil RC, Markoulaki S, Pontis J, Wang H, Iouranova A, Imbeault M, Duc J, Cohen MA, Wert KJ, Castanon R, Zhang Z, Huang Y, Nery JR, Drotar J, Lungjangwa T, Trono D, Ecker JR, Jaenisch R. Molecular Criteria for Defining the Naive Human Pluripotent State. Cell Stem Cell 2016; 19:502-515. [PMID: 27424783 PMCID: PMC5065525 DOI: 10.1016/j.stem.2016.06.011] [Citation(s) in RCA: 369] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 04/15/2016] [Accepted: 06/17/2016] [Indexed: 12/31/2022]
Abstract
Recent studies have aimed to convert cultured human pluripotent cells to a naive state, but it remains unclear to what extent the resulting cells recapitulate in vivo naive pluripotency. Here we propose a set of molecular criteria for evaluating the naive human pluripotent state by comparing it to the human embryo. We show that transcription of transposable elements provides a sensitive measure of the concordance between pluripotent stem cells and early human development. We also show that induction of the naive state is accompanied by genome-wide DNA hypomethylation, which is reversible except at imprinted genes, and that the X chromosome status resembles that of the human preimplantation embryo. However, we did not see efficient incorporation of naive human cells into mouse embryos. Overall, the different naive conditions we tested showed varied relationships to human embryonic states based on molecular criteria, providing a backdrop for future analysis of naive human pluripotency. Naive human ESCs share a unique transposon signature with cleavage-stage embryos Global DNA demethylation in naive human ESCs is reversible except at imprinted loci The X chromosome status of naive human ESCs resembles the preimplantation embryo Naive human ESCs incorporate into the mouse morula or blastocyst very inefficiently
Collapse
Affiliation(s)
| | - Marc Friedli
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Yupeng He
- Genomic Analysis Laboratory and Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Bioinformatics Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Evarist Planet
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Ryan C O'Neil
- Genomic Analysis Laboratory and Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Bioinformatics Program, University of California, San Diego, La Jolla, CA 92093, USA
| | | | - Julien Pontis
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Haoyi Wang
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Alexandra Iouranova
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Michaël Imbeault
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Julien Duc
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Malkiel A Cohen
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Katherine J Wert
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Rosa Castanon
- Genomic Analysis Laboratory and Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Zhuzhu Zhang
- Genomic Analysis Laboratory and Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Yanmei Huang
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Joseph R Nery
- Genomic Analysis Laboratory and Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Jesse Drotar
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Tenzin Lungjangwa
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Didier Trono
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Joseph R Ecker
- Genomic Analysis Laboratory and Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| | - Rudolf Jaenisch
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| |
Collapse
|
283
|
Lim CY, Knowles BB, Solter D, Messerschmidt DM. Epigenetic Control of Early Mouse Development. Curr Top Dev Biol 2016; 120:311-60. [PMID: 27475856 DOI: 10.1016/bs.ctdb.2016.05.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Although the genes sequentially transcribed in the mammalian embryo prior to implantation have been identified, understanding of the molecular processes ensuring this transcription is still in development. The genomes of the sperm and egg are hypermethylated, hence transcriptionally silent. Their union, in the prepared environment of the egg, initiates their epigenetic genomic reprogramming into a totipotent zygote, in which the genome gradually becomes transcriptionally activated. During gametogenesis, sex-specific processes result in sperm and eggs with disparate epigenomes, both of which require drastic reprogramming to establish the totipotent genome of the zygote and the pluripotent inner cell mass of the blastocyst. Herein, we describe the factors, DNA and histone modifications, activation and repression of retrotransposons, and cytoplasmic localizations, known to influence the activation of the mammalian genome at the initiation of new life.
Collapse
Affiliation(s)
- C Y Lim
- Institute of Medical Biology, A*STAR, Singapore, Singapore
| | - B B Knowles
- Emerita, The Jackson Laboratory, Bar Harbor, ME, United States; Siriraj Center of Excellence for Stem Cell Research, Mahidol University, Bangkok, Thailand
| | - D Solter
- Siriraj Center of Excellence for Stem Cell Research, Mahidol University, Bangkok, Thailand; Emeritus, Max-Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.
| | - D M Messerschmidt
- Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore.
| |
Collapse
|
284
|
Riso V, Cammisa M, Kukreja H, Anvar Z, Verde G, Sparago A, Acurzio B, Lad S, Lonardo E, Sankar A, Helin K, Feil R, Fico A, Angelini C, Grimaldi G, Riccio A. ZFP57 maintains the parent-of-origin-specific expression of the imprinted genes and differentially affects non-imprinted targets in mouse embryonic stem cells. Nucleic Acids Res 2016; 44:8165-78. [PMID: 27257070 PMCID: PMC5041456 DOI: 10.1093/nar/gkw505] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 05/26/2016] [Indexed: 01/14/2023] Open
Abstract
ZFP57 is necessary for maintaining repressive epigenetic modifications at Imprinting control regions (ICRs). In mouse embryonic stem cells (ESCs), ZFP57 binds ICRs (ICRBS) and many other loci (non-ICRBS). To address the role of ZFP57 on all its target sites, we performed high-throughput and multi-locus analyses of inbred and hybrid mouse ESC lines carrying different gene knockouts. By using an allele-specific RNA-seq approach, we demonstrate that ZFP57 loss results in derepression of the imprinted allele of multiple genes in the imprinted clusters. We also find marked epigenetic differences between ICRBS and non-ICRBS suggesting that different cis-acting regulatory functions are repressed by ZFP57 at these two classes of target loci. Overall, these data demonstrate that ZFP57 is pivotal to maintain the allele-specific epigenetic modifications of ICRs that in turn are necessary for maintaining the imprinted expression over long distances. At non-ICRBS, ZFP57 inactivation results in acquisition of epigenetic features that are characteristic of poised enhancers, suggesting that another function of ZFP57 in early embryogenesis is to repress cis-acting regulatory elements whose activity is not yet required.
Collapse
Affiliation(s)
- Vincenzo Riso
- Institute of Genetics and Biophysics 'A. Buzzati-Traverso', CNR, 80131 Naples, Italy Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, 81100 Caserta, Italy
| | - Marco Cammisa
- Institute of Genetics and Biophysics 'A. Buzzati-Traverso', CNR, 80131 Naples, Italy Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, 81100 Caserta, Italy
| | - Harpreet Kukreja
- Institute of Genetics and Biophysics 'A. Buzzati-Traverso', CNR, 80131 Naples, Italy Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, 81100 Caserta, Italy
| | - Zahra Anvar
- Institute of Genetics and Biophysics 'A. Buzzati-Traverso', CNR, 80131 Naples, Italy Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, 81100 Caserta, Italy
| | - Gaetano Verde
- Institute of Genetics and Biophysics 'A. Buzzati-Traverso', CNR, 80131 Naples, Italy
| | - Angela Sparago
- Institute of Genetics and Biophysics 'A. Buzzati-Traverso', CNR, 80131 Naples, Italy Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, 81100 Caserta, Italy
| | - Basilia Acurzio
- Institute of Genetics and Biophysics 'A. Buzzati-Traverso', CNR, 80131 Naples, Italy Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, 81100 Caserta, Italy
| | - Shraddha Lad
- Institute of Genetics and Biophysics 'A. Buzzati-Traverso', CNR, 80131 Naples, Italy
| | - Enza Lonardo
- Institute of Genetics and Biophysics 'A. Buzzati-Traverso', CNR, 80131 Naples, Italy
| | - Aditya Sankar
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark Center for Epigenetics, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Kristian Helin
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark The Danish Stem Cell Center (Danstem), University of Copenhagen, 2200 Copenhagen, Denmark
| | - Robert Feil
- Institute of Molecular Genetics (IGMM), CNRS, 34293 Montpellier, France University of Montpellier, 34090 Montpellier, France
| | - Annalisa Fico
- Institute of Genetics and Biophysics 'A. Buzzati-Traverso', CNR, 80131 Naples, Italy
| | - Claudia Angelini
- Istituto per le Applicazioni del Calcolo 'Mauro Picone' (IAC), CNR, 80131 Naples, Italy
| | - Giovanna Grimaldi
- Institute of Genetics and Biophysics 'A. Buzzati-Traverso', CNR, 80131 Naples, Italy Ceinge Biotecnologie Avanzate s.c.a.r.l., 80145 Naples, Italy
| | - Andrea Riccio
- Institute of Genetics and Biophysics 'A. Buzzati-Traverso', CNR, 80131 Naples, Italy Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, 81100 Caserta, Italy
| |
Collapse
|
285
|
Sanchez-Delgado M, Riccio A, Eggermann T, Maher ER, Lapunzina P, Mackay D, Monk D. Causes and Consequences of Multi-Locus Imprinting Disturbances in Humans. Trends Genet 2016; 32:444-455. [PMID: 27235113 DOI: 10.1016/j.tig.2016.05.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/03/2016] [Accepted: 05/04/2016] [Indexed: 12/20/2022]
Abstract
Eight syndromes are associated with the loss of methylation at specific imprinted loci. There has been increasing evidence that these methylation defects in patients are not isolated events occurring at a given disease-associated locus but that some of these patients may have multi-locus imprinting disturbances (MLID) affecting additional imprinted regions. With the recent advances in technology, methylation profiling has revealed that imprinted loci represent only a small fraction of the methylation differences observed between the gametes. To figure out how imprinting anomalies occur at multiple imprinted domains, we have to understand the interplay between DNA methylation and histone modifications in the process of selective imprint protection during pre-implantation reprogramming, which, if disrupted, leads to these complex imprinting disorders (IDs).
Collapse
Affiliation(s)
- Marta Sanchez-Delgado
- Imprinting and Cancer group, Cancer Epigenetic and Biology Program, Institut d'Investigació Biomedica de Bellvitge, Hospital Duran i Reynals, Barcelona, Spain
| | - Andrea Riccio
- DiSTABiF, Seconda Università degli Studi di Napoli, Caserta; Institute of Genetics and Biophysics - ABT, CNR, Napoli, Italy
| | - Thomas Eggermann
- Institute of Human Genetics University Hospital Aachen, Aachen, Germany
| | - Eamonn R Maher
- Department of Medical Genetics, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - Pablo Lapunzina
- Instituto de Genética Médica y Molecular (INGEMM)-IdiPAZ, Hospital Universitario La Paz, Madrid, Spain; CIBERER, Centro deInvestigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain
| | - Deborah Mackay
- Human Genetics and Genomic Medicine, Faculty of Medicine University of Southampton, Southampton, UK
| | - David Monk
- Imprinting and Cancer group, Cancer Epigenetic and Biology Program, Institut d'Investigació Biomedica de Bellvitge, Hospital Duran i Reynals, Barcelona, Spain.
| |
Collapse
|
286
|
Luo Z, Lin C, Woodfin AR, Bartom ET, Gao X, Smith ER, Shilatifard A. Regulation of the imprinted Dlk1-Dio3 locus by allele-specific enhancer activity. Genes Dev 2016; 30:92-101. [PMID: 26728555 PMCID: PMC4701981 DOI: 10.1101/gad.270413.115] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In this study, Luo et al. find that the AFF family protein AFF3 can specifically bind both gametic differentially DNA-methylated regions (gDMRs) and enhancers within imprinted loci in an allele-specific manner. These results provide the mechanistic details of the control of dosage-critical imprinted gene expression through the regulated binding of the transcription elongation factor AFF3 between a DMR and an enhancer. Genomic imprinting is a critical developmental process characteristic of parent of origin-specific gene expression. It is well accepted that differentially DNA-methylated regions (DMRs) and enhancers are two major classes of cis-elements determining parent of origin-specific gene expression, with each recruiting different sets of transcription factors. Previously, we identified the AF4/FMR2 (AFF) family protein AFF3 within the transcription elongation complex SEC-L3. Here, we report that AFF3 can specifically bind both gametic DMRs (gDMRs) and enhancers within imprinted loci in an allele-specific manner. We identify the molecular regulators involved in the recruitment of AFF3 to gDMRs and provide mechanistic insight into the requirement of AFF3 at an enhancer for the expression of an ∼200-kb polycistronic transcript within the imprinted Dlk1-Dio3 locus. Our data suggest that the heterochromatic environment at the gDMR reinforces silencing of its related enhancer by controlling the binding and activity of AFF3 in an allele-specific manner. In summary, this study provides molecular details about the regulation of dosage-critical imprinted gene expression through the regulated binding of the transcription elongation factor AFF3 between a DMR and an enhancer.
Collapse
Affiliation(s)
- Zhuojuan Luo
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA; Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Chengqi Lin
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Ashley R Woodfin
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Elizabeth T Bartom
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Xin Gao
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Edwin R Smith
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Ali Shilatifard
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA; Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA; Robert H. Lurie National Cancer Institute Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| |
Collapse
|
287
|
Bohne F, Langer D, Martiné U, Eider CS, Cencic R, Begemann M, Elbracht M, Bülow L, Eggermann T, Zechner U, Pelletier J, Zabel BU, Enklaar T, Prawitt D. Kaiso mediates human ICR1 methylation maintenance and H19 transcriptional fine regulation. Clin Epigenetics 2016; 8:47. [PMID: 27152123 PMCID: PMC4857248 DOI: 10.1186/s13148-016-0215-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 04/26/2016] [Indexed: 11/21/2022] Open
Abstract
Background Genomic imprinting evolved in a common ancestor to marsupials and eutherian mammals and ensured the transcription of developmentally important genes from defined parental alleles. The regulation of imprinted genes is often mediated by differentially methylated imprinting control regions (ICRs) that are bound by different proteins in an allele-specific manner, thus forming unique chromatin loops regulating enhancer-promoter interactions. Factors that maintain the allele-specific methylation therefore are essential for the proper transcriptional regulation of imprinted genes. Binding of CCCTC-binding factor (CTCF) to the IGF2/H19-ICR1 is thought to be the key regulator of maternal ICR1 function. Disturbances of the allele-specific CTCF binding are causative for imprinting disorders like the Silver-Russell syndrome (SRS) or the Beckwith-Wiedemann syndrome (BWS), the latter one being associated with a dramatically increased risk to develop nephroblastomas. Methods Kaiso binding to the human ICR1 was detected and analyzed by chromatin immunoprecipitation (ChIP) and electrophoretic mobility shift assays (EMSA). The role of Kaiso-ICR1 binding on DNA methylation was tested by lentiviral Kaiso knockdown and CRISPR/Cas9 mediated editing of a Kaiso binding site. Results We find that another protein, Kaiso (ZBTB33), characterized as binding to methylated CpG repeats as well as to unmethylated consensus sequences, specifically binds to the human ICR1 and its unmethylated Kaiso binding site (KBS) within the ICR1. Depletion of Kaiso transcription as well as deletion of the ICR1-KBS by CRISPR/Cas9 genome editing results in reduced methylation of the paternal ICR1. Additionally, Kaiso affects transcription of the lncRNA H19 and specifies a role for ICR1 in the transcriptional regulation of this imprinted gene. Conclusions Kaiso binding to unmethylated KBS in the human ICR1 is necessary for ICR1 methylation maintenance and affects transcription rates of the lncRNA H19. Electronic supplementary material The online version of this article (doi:10.1186/s13148-016-0215-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Florian Bohne
- Centre for Paediatrics and Adolescent Medicine, University Medical Centre, Langenbeckstr. 1, 55101 Mainz, Germany
| | - David Langer
- Centre for Paediatrics and Adolescent Medicine, University Medical Centre, Langenbeckstr. 1, 55101 Mainz, Germany
| | - Ursula Martiné
- Centre for Paediatrics and Adolescent Medicine, University Medical Centre, Langenbeckstr. 1, 55101 Mainz, Germany
| | - Claudia S Eider
- Centre for Paediatrics and Adolescent Medicine, University Medical Centre, Langenbeckstr. 1, 55101 Mainz, Germany
| | - Regina Cencic
- Department of Biochemistry and the Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, Quebec H3G 1Y6 Canada
| | - Matthias Begemann
- Institute of Human Genetics, RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen, Germany
| | - Miriam Elbracht
- Institute of Human Genetics, RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen, Germany
| | - Luzie Bülow
- Institute of Human Genetics, University Medical Centre, Langenbeckstr. 1, 55101 Mainz, Germany
| | - Thomas Eggermann
- Institute of Human Genetics, RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen, Germany
| | - Ulrich Zechner
- Institute of Human Genetics, University Medical Centre, Langenbeckstr. 1, 55101 Mainz, Germany
| | - Jerry Pelletier
- Department of Biochemistry and the Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, Quebec H3G 1Y6 Canada
| | - Bernhard Ulrich Zabel
- Centre for Paediatrics and Adolescent Medicine, University Medical Centre, Mathildenstr. 1, 79106 Freiburg, Germany
| | - Thorsten Enklaar
- Centre for Paediatrics and Adolescent Medicine, University Medical Centre, Langenbeckstr. 1, 55101 Mainz, Germany
| | - Dirk Prawitt
- Centre for Paediatrics and Adolescent Medicine, University Medical Centre, Langenbeckstr. 1, 55101 Mainz, Germany.,Centre for Paediatrics and Adolescent Medicine, University Medical Centre, Obere Zahlbacher Str. 63, 55131 Mainz, Germany
| |
Collapse
|
288
|
Voon HPJ, Gibbons RJ. Maintaining memory of silencing at imprinted differentially methylated regions. Cell Mol Life Sci 2016; 73:1871-9. [PMID: 26883803 PMCID: PMC4819931 DOI: 10.1007/s00018-016-2157-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 02/04/2016] [Indexed: 01/09/2023]
Abstract
Imprinted genes are an exceptional cluster of genes which are expressed in a parent-of-origin dependent fashion. This allele-specific expression is dependent on differential DNA methylation which is established in the parental germlines in a sex-specific manner. The DNA methylation imprint is accompanied by heterochromatin modifications which must be continuously maintained through development. This review summarises the factors which are important for protecting the epigenetic modifications at imprinted differentially methylated regions (DMRs), including PGC7, ZFP57 and the ATRX/Daxx/H3.3 complex. We discuss how these factors maintain heterochromatin silencing, not only at imprinted DMRs, but also other heterochromatic regions in the genome.
Collapse
Affiliation(s)
- Hsiao P J Voon
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Richard J Gibbons
- University of Oxford, Oxford, UK.
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford, OX3 9DS, UK.
| |
Collapse
|
289
|
Bak M, Boonen SE, Dahl C, Hahnemann JMD, Mackay DJDG, Tümer Z, Grønskov K, Temple IK, Guldberg P, Tommerup N. Genome-wide DNA methylation analysis of transient neonatal diabetes type 1 patients with mutations in ZFP57. BMC MEDICAL GENETICS 2016; 17:29. [PMID: 27075368 PMCID: PMC4831126 DOI: 10.1186/s12881-016-0292-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Accepted: 04/08/2016] [Indexed: 12/21/2022]
Abstract
Background Transient neonatal diabetes mellitus 1 (TNDM1) is a rare imprinting disorder characterized by intrautering growth retardation and diabetes mellitus usually presenting within the first six weeks of life and resolves by the age of 18 months. However, patients have an increased risk of developing diabetes mellitus type 2 later in life. Transient neonatal diabetes mellitus 1 is caused by overexpression of the maternally imprinted genes PLAGL1 and HYMAI on chromosome 6q24. One of the mechanisms leading to overexpression of the locus is hypomethylation of the maternal allele of PLAGL1 and HYMAI. A subset of patients with maternal hypomethylation at PLAGL1 have hypomethylation at additional imprinted loci throughout the genome, including GRB10, ZIM2 (PEG3), MEST (PEG1), KCNQ1OT1 and NESPAS (GNAS-AS1). About half of the TNDM1 patients carry mutations in ZFP57, a transcription factor involved in establishment and maintenance of methylation of imprinted loci. Our objective was to investigate whether additional regions are aberrantly methylated in ZFP57 mutation carriers. Methods Genome-wide DNA methylation analysis was performed on four individuals with homozygous or compound heterozygous ZFP57 mutations, three relatives with heterozygous ZFP57 mutations and five controls. Methylation status of selected regions showing aberrant methylation in the patients was verified using bisulfite-sequencing. Results We found large variability among the patients concerning the number and identity of the differentially methylated regions, but more than 60 regions were aberrantly methylated in two or more patients and a novel region within PPP1R13L was found to be hypomethylated in all the patients. The hypomethylated regions in common between the patients are enriched for the ZFP57 DNA binding motif. Conclusions We have expanded the epimutational spectrum of TNDM1 associated with ZFP57 mutations and found one novel region within PPP1R13L which is hypomethylated in all TNDM1 patients included in this study. Functional studies of the locus might provide further insight into the etiology of the disease. Electronic supplementary material The online version of this article (doi:10.1186/s12881-016-0292-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mads Bak
- Wilhelm Johannsen Center for Functional Genome Research, Institute of Cellular and Molecular Medicine, Panum Institute, University of Copenhagen, DK-2200, Copenhagen N, Denmark.
| | - Susanne E Boonen
- Wilhelm Johannsen Center for Functional Genome Research, Institute of Cellular and Molecular Medicine, Panum Institute, University of Copenhagen, DK-2200, Copenhagen N, Denmark.,Center for Applied Human Molecular Genetics, Kennedy Center, DK-2600, Glostrup, Denmark
| | - Christina Dahl
- Institute of Cancer Biology, Danish Cancer Society, DK-2100, Copenhagen Ø, Denmark
| | - Johanne M D Hahnemann
- Center for Applied Human Molecular Genetics, Kennedy Center, DK-2600, Glostrup, Denmark
| | - Deborah J D G Mackay
- Human Genetics and Genomic Medicine, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK.,Wessex Regional Genetics Laboratory, Salisbury District Hospital, Salisbury NHS Foundation Trust, SP2 8BJ, Salisbury, UK
| | - Zeynep Tümer
- Center for Applied Human Molecular Genetics, Kennedy Center, DK-2600, Glostrup, Denmark.,Institute of Cellular and Molecular Medicine, Panum Institute, University of Copenhagen, DK-2200N, Copenhagen, Denmark
| | - Karen Grønskov
- Center for Applied Human Molecular Genetics, Kennedy Center, DK-2600, Glostrup, Denmark
| | - I Karen Temple
- Human Genetics and Genomic Medicine, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK.,Wessex Clinical Genetics Service, Southampton University Hospitals Trust, Southampton, SO16 5YA, UK
| | - Per Guldberg
- Institute of Cancer Biology, Danish Cancer Society, DK-2100, Copenhagen Ø, Denmark
| | - Niels Tommerup
- Wilhelm Johannsen Center for Functional Genome Research, Institute of Cellular and Molecular Medicine, Panum Institute, University of Copenhagen, DK-2200, Copenhagen N, Denmark
| |
Collapse
|
290
|
Zhang T, Termanis A, Özkan B, Bao XX, Culley J, de Lima Alves F, Rappsilber J, Ramsahoye B, Stancheva I. G9a/GLP Complex Maintains Imprinted DNA Methylation in Embryonic Stem Cells. Cell Rep 2016; 15:77-85. [PMID: 27052169 PMCID: PMC4826439 DOI: 10.1016/j.celrep.2016.03.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 01/17/2016] [Accepted: 02/26/2016] [Indexed: 12/02/2022] Open
Abstract
DNA methylation at imprinting control regions (ICRs) is established in gametes in a sex-specific manner and has to be stably maintained during development and in somatic cells to ensure the correct monoallelic expression of imprinted genes. In addition to DNA methylation, the ICRs are marked by allele-specific histone modifications. Whether these marks are essential for maintenance of genomic imprinting is largely unclear. Here, we show that the histone H3 lysine 9 methylases G9a and GLP are required for stable maintenance of imprinted DNA methylation in embryonic stem cells; however, their catalytic activity and the G9a/GLP-dependent H3K9me2 mark are completely dispensable for imprinting maintenance despite the genome-wide loss of non-imprinted DNA methylation in H3K9me2-depleted cells. We provide additional evidence that the G9a/GLP complex protects imprinted DNA methylation by recruitment of de novo DNA methyltransferases, which antagonize TET dioxygenass-dependent erosion of DNA methylation at ICRs. ESCs lacking G9a and GLP display loss of DNA methylation from ICRs The enzymatic activity of G9a/GLP is dispensable for imprinted DNA methylation G9a/GLP stabilize imprinting by recruitment of de novo DNA methyltransferases to ICRs Recruitment of DNMTs to ICRs antagonizes TET-dependent loss of DNA methylation
Collapse
Affiliation(s)
- Tuo Zhang
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Ausma Termanis
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Burak Özkan
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Xun X Bao
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Jayne Culley
- Institute of Genetics and Molecular Medicine, The University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh EH4 2XR, UK
| | - Flavia de Lima Alves
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Juri Rappsilber
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK; Department of Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, 10623 Berlin, Germany
| | - Bernard Ramsahoye
- Institute of Genetics and Molecular Medicine, The University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh EH4 2XR, UK
| | - Irina Stancheva
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK.
| |
Collapse
|
291
|
Matsumura Y, Nakaki R, Inagaki T, Yoshida A, Kano Y, Kimura H, Tanaka T, Tsutsumi S, Nakao M, Doi T, Fukami K, Osborne TF, Kodama T, Aburatani H, Sakai J. H3K4/H3K9me3 Bivalent Chromatin Domains Targeted by Lineage-Specific DNA Methylation Pauses Adipocyte Differentiation. Mol Cell 2016; 60:584-96. [PMID: 26590716 DOI: 10.1016/j.molcel.2015.10.025] [Citation(s) in RCA: 159] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 08/11/2015] [Accepted: 10/12/2015] [Indexed: 12/29/2022]
Abstract
Bivalent H3K4me3 and H3K27me3 chromatin domains in embryonic stem cells keep active developmental regulatory genes expressed at very low levels and poised for activation. Here, we show an alternative and previously unknown bivalent modified histone signature in lineage-committed mesenchymal stem cells and preadipocytes that pairs H3K4me3 with H3K9me3 to maintain adipogenic master regulatory genes (Cebpa and Pparg) expressed at low levels yet poised for activation when differentiation is required. We show lineage-specific gene-body DNA methylation recruits H3K9 methyltransferase SETDB1, which methylates H3K9 immediately downstream of transcription start sites marked with H3K4me3 to establish the bivalent domain. At the Cebpa locus, this prevents transcription factor C/EBPβ binding, histone acetylation, and further H3K4me3 deposition and is associated with pausing of RNA polymerase II, which limits Cebpa gene expression and adipogenesis.
Collapse
Affiliation(s)
- Yoshihiro Matsumura
- Division of Metabolic Medicine, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, Tokyo 153-8904, Japan; The Translational Systems Biology and Medicine Initiative (TSBMI), Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo 113-8655, Japan.
| | - Ryo Nakaki
- Genome Science Division, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Takeshi Inagaki
- Division of Metabolic Medicine, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, Tokyo 153-8904, Japan; The Translational Systems Biology and Medicine Initiative (TSBMI), Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Ayano Yoshida
- Division of Metabolic Medicine, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, Tokyo 153-8904, Japan; Laboratory of Genome and Biosignals, Tokyo University of Pharmacy and Life Science, Tokyo 192-0392, Japan
| | - Yuka Kano
- Division of Metabolic Medicine, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Hiroshi Kimura
- Department of Biological Sciences, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Toshiya Tanaka
- Division of Metabolic Medicine, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, Tokyo 153-8904, Japan; Laboratory for Systems Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, Tokyo 153-8904, Japan; The Translational Systems Biology and Medicine Initiative (TSBMI), Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Shuichi Tsutsumi
- Genome Science Division, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Mitsuyoshi Nakao
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Takefumi Doi
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kiyoko Fukami
- Laboratory of Genome and Biosignals, Tokyo University of Pharmacy and Life Science, Tokyo 192-0392, Japan
| | - Timothy F Osborne
- Metabolic Disease Program, Sanford-Burnham Medical Research Institute, Orlando, FL 32827, USA
| | - Tatsuhiko Kodama
- Laboratory for Systems Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Hiroyuki Aburatani
- Genome Science Division, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, Tokyo 153-8904, Japan; The Translational Systems Biology and Medicine Initiative (TSBMI), Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Juro Sakai
- Division of Metabolic Medicine, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, Tokyo 153-8904, Japan; The Translational Systems Biology and Medicine Initiative (TSBMI), Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo 113-8655, Japan.
| |
Collapse
|
292
|
Patel A, Hashimoto H, Zhang X, Cheng X. Characterization of How DNA Modifications Affect DNA Binding by C2H2 Zinc Finger Proteins. Methods Enzymol 2016; 573:387-401. [PMID: 27372763 DOI: 10.1016/bs.mie.2016.01.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Much is known about vertebrate DNA methylation and oxidation; however, much less is known about how modified cytosine residues within particular sequences are recognized. Among the known methylated DNA-binding domains, the Cys2-His2 zinc finger (ZnF) protein superfamily is the largest with hundreds of members, each containing tandem ZnFs ranging from 3 to >30 fingers. We have begun to biochemically and structurally characterize these ZnFs not only on their sequence specificity but also on their sensitivity to various DNA modifications. Rather than following published methods of refolding insoluble ZnF arrays, we have expressed and purified soluble forms of ZnFs, ranging in size from a tandem array of two to six ZnFs, from seven different proteins. We also describe a fluorescence polarization assay to measure ZnFs affinity with oligonucleotides containing various modifications and our approaches for cocrystallization of ZnFs with oligonucleotides.
Collapse
Affiliation(s)
- A Patel
- Emory University School of Medicine, Atlanta, GA, United States
| | - H Hashimoto
- Emory University School of Medicine, Atlanta, GA, United States
| | - X Zhang
- Emory University School of Medicine, Atlanta, GA, United States.
| | - X Cheng
- Emory University School of Medicine, Atlanta, GA, United States.
| |
Collapse
|
293
|
Select Prenatal Environmental Exposures and Subsequent Alterations of Gene-Specific and Repetitive Element DNA Methylation in Fetal Tissues. Curr Environ Health Rep 2016; 2:126-36. [PMID: 26231362 DOI: 10.1007/s40572-015-0045-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Strong evidence implicates maternal environmental exposures in contributing to adverse outcomes during pregnancy and later in life through the developmental origins of health and disease hypothesis. Recent research suggests these effects are mediated through the improper regulation of DNA methylation in offspring tissues, specifically placental tissue, which plays a critical role in fetal development. This article reviews the relevant literature relating DNA methylation in multiple tissues at or near delivery to several prenatal environmental toxicants and stressors, including cigarette smoke, endocrine disruptors, heavy metals, as well as maternal diet. These human studies expand upon previously reported outcomes in animal model interventions and include effects on both imprinted and non-imprinted genes. We have also noted some of the strengths and limitations in the approaches used, and consider the appropriate interpretation of these findings in terms of their effect size and their relationship to differential gene expression and potential health outcomes. The studies suggest an important role of DNA methylation in mediating the effects of the intrauterine environment on children's health and a need for additional research to better clarify the role of this epigenetic mechanism as well as others.
Collapse
|
294
|
Molaro A, Malik HS. Hide and seek: how chromatin-based pathways silence retroelements in the mammalian germline. Curr Opin Genet Dev 2016; 37:51-58. [PMID: 26821364 DOI: 10.1016/j.gde.2015.12.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 12/02/2015] [Accepted: 12/14/2015] [Indexed: 01/07/2023]
Abstract
Retroelements comprise a major fraction of most mammalian genomes. To protect their fitness and stability, hosts must keep retroelements in check in their germline. In most tissues mobile element insertions are decorated with chromatin modifications suggestive of transcriptional silencing. However, germline cells undergo massive chromatin reprogramming events, which erase repressive chromatin marks and necessitate de novo re-establishment of silencing. How do host genomes achieve the discrimination necessary for this de novo silencing? A series of recent studies have revealed aspects of the multi-pronged strategy that mammalian genomes use to identify and silence retroelements. These strategies include the use of small RNA-guides, of specialized DNA-binding protein adaptors and of proteins that repair chromatin discontinuities caused by retroelement insertions. Genetic analyses reveal the importance of these mechanisms of protection, each of which specializes in silencing retroelements of different evolutionary ages. Together, these strategies allow mammalian genomes to withstand the high burden of their parasites.
Collapse
Affiliation(s)
- Antoine Molaro
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, United States
| | - Harmit S Malik
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, United States; Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, United States.
| |
Collapse
|
295
|
Hanna CW, Peñaherrera MS, Saadeh H, Andrews S, McFadden DE, Kelsey G, Robinson WP. Pervasive polymorphic imprinted methylation in the human placenta. Genome Res 2016; 26:756-67. [PMID: 26769960 PMCID: PMC4889973 DOI: 10.1101/gr.196139.115] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 01/07/2016] [Indexed: 01/19/2023]
Abstract
The maternal and paternal copies of the genome are both required for mammalian development, and this is primarily due to imprinted genes, those that are monoallelically expressed based on parent-of-origin. Typically, this pattern of expression is regulated by differentially methylated regions (DMRs) that are established in the germline and maintained after fertilization. There are a large number of germline DMRs that have not yet been associated with imprinting, and their function in development is unknown. In this study, we developed a genome-wide approach to identify novel imprinted DMRs in the human placenta and investigated the dynamics of these imprinted DMRs during development in somatic and extraembryonic tissues. DNA methylation was evaluated using the Illumina HumanMethylation450 array in 134 human tissue samples, publicly available reduced representation bisulfite sequencing in the human embryo and germ cells, and targeted bisulfite sequencing in term placentas. Forty-three known and 101 novel imprinted DMRs were identified in the human placenta by comparing methylation between diandric and digynic triploid conceptions in addition to female and male gametes. Seventy-two novel DMRs showed a pattern consistent with placental-specific imprinting, and this monoallelic methylation was entirely maternal in origin. Strikingly, these DMRs exhibited polymorphic imprinted methylation between placental samples. These data suggest that imprinting in human development is far more extensive and dynamic than previously reported and that the placenta preferentially maintains maternal germline-derived DNA methylation.
Collapse
Affiliation(s)
- Courtney W Hanna
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, United Kingdom; Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, United Kingdom
| | - Maria S Peñaherrera
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V6H 3N1, Canada; Child & Family Research Institute, Vancouver, British Columbia V5Z 4H4, Canada
| | - Heba Saadeh
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, United Kingdom; Bioinformatics Group, Babraham Institute, Cambridge CB22 3AT, United Kingdom
| | - Simon Andrews
- Bioinformatics Group, Babraham Institute, Cambridge CB22 3AT, United Kingdom
| | - Deborah E McFadden
- Department of Pathology, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada
| | - Gavin Kelsey
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, United Kingdom; Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, United Kingdom
| | - Wendy P Robinson
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V6H 3N1, Canada; Child & Family Research Institute, Vancouver, British Columbia V5Z 4H4, Canada
| |
Collapse
|
296
|
Long noncoding RNA UPAT promotes colon tumorigenesis by inhibiting degradation of UHRF1. Proc Natl Acad Sci U S A 2016; 113:1273-8. [PMID: 26768845 DOI: 10.1073/pnas.1500992113] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Many long noncoding RNAs (lncRNAs) are reported to be dysregulated in human cancers and play critical roles in tumor development and progression. Furthermore, it has been reported that many lncRNAs regulate gene expression by recruiting chromatin remodeling complexes to specific genomic loci or by controlling transcriptional or posttranscriptional processes. Here we show that an lncRNA termed UPAT [ubiquitin-like plant homeodomain (PHD) and really interesting new gene (RING) finger domain-containing protein 1 (UHRF1) Protein Associated Transcript] is required for the survival and tumorigenicity of colorectal cancer cells. UPAT interacts with and stabilizes the epigenetic factor UHRF1 by interfering with its β-transducin repeat-containing protein (TrCP)-mediated ubiquitination. Furthermore, we demonstrate that UHRF1 up-regulates Stearoyl-CoA desaturase 1 and Sprouty 4, which are required for the survival of colon tumor cells. Our study provides evidence for an lncRNA that regulates protein ubiquitination and degradation and thereby plays a critical role in the survival and tumorigenicity of tumor cells. Our results suggest that UPAT and UHRF1 may be promising molecular targets for the therapy of colon cancer.
Collapse
|
297
|
Voon HPJ, Wong LH. New players in heterochromatin silencing: histone variant H3.3 and the ATRX/DAXX chaperone. Nucleic Acids Res 2016; 44:1496-501. [PMID: 26773061 PMCID: PMC4770241 DOI: 10.1093/nar/gkw012] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 12/31/2015] [Indexed: 12/18/2022] Open
Abstract
A number of studies have demonstrated that various components of the ATRX/DAXX/Histone H3.3 complex are important for heterochromatin silencing at multiple genomic regions. We provide an overview of the individual components (ATRX, DAXX and/or H3.3) tested in each study and propose a model where the ATRX/DAXX chaperone complex deposits H3.3 to maintain the H3K9me3 modification at heterochromatin throughout the genome.
Collapse
Affiliation(s)
- Hsiao P J Voon
- Department of Biochemistry and Molecular Biology, The Biomedicine Discovery Institute, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Lee H Wong
- Department of Biochemistry and Molecular Biology, The Biomedicine Discovery Institute, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| |
Collapse
|
298
|
Trono D. Transposable Elements, Polydactyl Proteins, and the Genesis of Human-Specific Transcription Networks. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2016; 80:281-8. [PMID: 26763983 DOI: 10.1101/sqb.2015.80.027573] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Transposable elements (TEs) may account for up to two-thirds of the human genome, and as genomic threats they are subjected to epigenetic control mechanisms engaged from the earliest stages of embryonic development. We previously determined that an important component of this process is the sequence-specific recognition of TEs by KRAB (Krüppel-associated box)-containing zinc-finger proteins (KRAB-ZFPs), a large family of tetrapod-restricted transcription factors that act by recruiting inducers of heterochromatin formation and DNA methylation. We further showed that KRAB-ZFPs and their cofactor KAP1 exert a marked influence on the transcription dynamics of embryonic stem cells via their docking of repressor complexes at TE-contained regulatory sequences. It is generally held that, beyond this early embryonic period, TEs become permanently silenced, and that the evolutionary selection of KRAB-ZFPs and other TE controllers is the result of a simple evolutionary arms race between the host and these genetics invaders. Here, I discuss recent evidence that invalidates this dual assumption and instead suggests that KRAB-ZFPs are the instruments of a massive enterprise of TE domestication, whereby transposon-based regulatory sequences and their cellular ligands establish species-specific transcription regulation networks that influence multiple aspects of human development and physiology.
Collapse
Affiliation(s)
- Didier Trono
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
299
|
Leseva M, Knowles BB, Messerschmidt DM, Solter D. Erase-Maintain-Establish: Natural Reprogramming of the Mammalian Epigenome. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2016; 80:155-163. [PMID: 26763985 DOI: 10.1101/sqb.2015.80.027441] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The genetic information is largely identical across most cell types in a given organism but the epigenome, which controls expression of the genome, is cell type- and context-dependent. Although most mature mammalian cells appear to have a stable, heritable epigenome, a dynamic intricate process reshapes it as these cells transition from soma to germline and back again. During normal embryogenesis, primordial germ cells, of somatic origin, are set aside to become gametes. In doing so their genome is reprogrammed-that is, the epigenome of specific regions is replaced in a sex-specific fashion as they terminally differentiate into oocytes or spermatocytes in the gonads. Upon union of these gametes, reprogramming of the new organism's epigenome is initiated, which eventually leads, through pluripotent cells, to the cell lineages required for proper embryonic development to a sexually mature adult. This never-ending cycle of birth and rebirth is accomplished through methylation and demethylation of specific genomic sites within the gametes and pluripotent cells of an organism. This enigmatic process of natural epigenomic reprogramming is now being dissected in vivo, focusing on specific genomic regions-that is, imprinted genes and retrotransposons, where TRIM28 molecular complexes appear to guide the transition from gamete to embryo.
Collapse
Affiliation(s)
- Milena Leseva
- Department for Developmental Epigenetics and Disease, Institute of Molecular and Cell Biology, A*STAR, 138673 Singapore
| | | | - Daniel M Messerschmidt
- Department for Developmental Epigenetics and Disease, Institute of Molecular and Cell Biology, A*STAR, 138673 Singapore
| | - Davor Solter
- Emeritus Member and Director, Max-Planck Institute of Immunobiology and Epigenetics, 79180 Freiburg, Germany
| |
Collapse
|
300
|
Dan J, Chen T. Genetic Studies on Mammalian DNA Methyltransferases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 945:123-150. [PMID: 27826837 DOI: 10.1007/978-3-319-43624-1_6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Cytosine methylation at the C5-position, generating 5-methylcytosine (5mC), is a DNA modification found in many eukaryotic organisms, including fungi, plants, invertebrates, and vertebrates, albeit its levels vary greatly in different organisms. In mammals, cytosine methylation occurs predominantly in the context of CpG dinucleotides, with the majority (60-80 %) of CpG sites in their genomes being methylated. DNA methylation plays crucial roles in the regulation of chromatin structure and gene expression and is essential for mammalian development. Aberrant changes in DNA methylation levels and patterns are associated with various human diseases, including cancer and developmental disorders. DNA methylation is mediated by three active DNA methyltransferases (Dnmts), namely, Dnmt1, Dnmt3a, and Dnmt3b, in mammals. Over the last two decades, genetic manipulations of these enzymes, as well as their regulators, in mice have greatly contributed to our understanding of the biological functions of DNA methylation in mammals. In this chapter, we discuss genetic studies on mammalian Dnmts, focusing on their roles in embryogenesis, cellular differentiation, genomic imprinting, and X-chromosome inactivation.
Collapse
Affiliation(s)
- Jiameng Dan
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, 1808 Park Road 1C, Smithville, TX, 78957, USA
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, 1808 Park Road 1C, Smithville, TX, 78957, USA
| | - Taiping Chen
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, 1808 Park Road 1C, Smithville, TX, 78957, USA.
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, 1808 Park Road 1C, Smithville, TX, 78957, USA.
- Graduate School of Biomedical Sciences at Houston, Houston, TX, 77030, USA.
| |
Collapse
|