251
|
Chen KW, Chen JA. Functional Roles of Long Non-coding RNAs in Motor Neuron Development and Disease. J Biomed Sci 2020; 27:38. [PMID: 32093746 PMCID: PMC7041250 DOI: 10.1186/s12929-020-00628-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 02/12/2020] [Indexed: 12/14/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have gained increasing attention as they exhibit highly tissue- and cell-type specific expression patterns. LncRNAs are highly expressed in the central nervous system and their roles in the brain have been studied intensively in recent years, but their roles in the spinal motor neurons (MNs) are largely unexplored. Spinal MN development is controlled by precise expression of a gene regulatory network mediated spatiotemporally by transcription factors, representing an elegant paradigm for deciphering the roles of lncRNAs during development. Moreover, many MN-related neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA), are associated with RNA metabolism, yet the link between MN-related diseases and lncRNAs remains obscure. In this review, we summarize lncRNAs known to be involved in MN development and disease, and discuss their potential future therapeutic applications.
Collapse
Affiliation(s)
- Kuan-Wei Chen
- Institute of Molecular Biology, Academia Sinica, Taipei, 11529, Taiwan.
| | - Jun-An Chen
- Institute of Molecular Biology, Academia Sinica, Taipei, 11529, Taiwan.
| |
Collapse
|
252
|
Abo-Rady M, Kalmbach N, Pal A, Schludi C, Janosch A, Richter T, Freitag P, Bickle M, Kahlert AK, Petri S, Stefanov S, Glass H, Staege S, Just W, Bhatnagar R, Edbauer D, Hermann A, Wegner F, Sterneckert JL. Knocking out C9ORF72 Exacerbates Axonal Trafficking Defects Associated with Hexanucleotide Repeat Expansion and Reduces Levels of Heat Shock Proteins. Stem Cell Reports 2020; 14:390-405. [PMID: 32084385 PMCID: PMC7066330 DOI: 10.1016/j.stemcr.2020.01.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 01/18/2020] [Accepted: 01/21/2020] [Indexed: 12/13/2022] Open
Abstract
In amyotrophic lateral sclerosis (ALS) motor neurons (MNs) undergo dying-back, where the distal axon degenerates before the soma. The hexanucleotide repeat expansion (HRE) in C9ORF72 is the most common genetic cause of ALS, but the mechanism of pathogenesis is largely unknown with both gain- and loss-of-function mechanisms being proposed. To better understand C9ORF72-ALS pathogenesis, we generated isogenic induced pluripotent stem cells. MNs with HRE in C9ORF72 showed decreased axonal trafficking compared with gene corrected MNs. However, knocking out C9ORF72 did not recapitulate these changes in MNs from healthy controls, suggesting a gain-of-function mechanism. In contrast, knocking out C9ORF72 in MNs with HRE exacerbated axonal trafficking defects and increased apoptosis as well as decreased levels of HSP70 and HSP40, and inhibition of HSPs exacerbated ALS phenotypes in MNs with HRE. Therefore, we propose that the HRE in C9ORF72 induces ALS pathogenesis via a combination of gain- and loss-of-function mechanisms.
Collapse
Affiliation(s)
- Masin Abo-Rady
- Technische Universität Dresden, Center for Regenerative Therapies TU Dresden (CRTD), 01307 Dresden, Germany
| | - Norman Kalmbach
- Department of Neurology, Hannover Medical School, 30625 Hannover, Germany
| | - Arun Pal
- Department of Neurology, Technische Universität Dresden, 01307 Dresden, Germany
| | - Carina Schludi
- German Center for Neurodegenerative Diseases (DZNE) and Munich Cluster for System Neurology (SyNergy), 81377 Munich, Germany
| | - Antje Janosch
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Tanja Richter
- Institute of Human Genetics, University of Ulm, 89081 Ulm, Germany
| | - Petra Freitag
- Institut für Klinische Genetik, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Marc Bickle
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Anne-Karin Kahlert
- Institut für Klinische Genetik, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Susanne Petri
- Department of Neurology, Hannover Medical School, 30625 Hannover, Germany
| | - Stefan Stefanov
- Technische Universität Dresden, Center for Regenerative Therapies TU Dresden (CRTD), 01307 Dresden, Germany
| | - Hannes Glass
- Department of Neurology, Technische Universität Dresden, 01307 Dresden, Germany; Translational Neurodegeneration Section "Albrecht-Kossel", Department of Neurology and Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Center Rostock, University of Rostock, 18147 Rostock, Germany
| | - Selma Staege
- Department of Neurology, Hannover Medical School, 30625 Hannover, Germany
| | - Walter Just
- Institute of Human Genetics, University of Ulm, 89081 Ulm, Germany
| | | | - Dieter Edbauer
- German Center for Neurodegenerative Diseases (DZNE) and Munich Cluster for System Neurology (SyNergy), 81377 Munich, Germany
| | - Andreas Hermann
- Technische Universität Dresden, Center for Regenerative Therapies TU Dresden (CRTD), 01307 Dresden, Germany; Department of Neurology, Technische Universität Dresden, 01307 Dresden, Germany; Translational Neurodegeneration Section "Albrecht-Kossel", Department of Neurology and Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Center Rostock, University of Rostock, 18147 Rostock, Germany; German Center for Neurodegenerative Diseases (DZNE) Rostock/Greifswald, 18147 Rostock, Germany
| | - Florian Wegner
- Department of Neurology, Hannover Medical School, 30625 Hannover, Germany.
| | - Jared L Sterneckert
- Technische Universität Dresden, Center for Regenerative Therapies TU Dresden (CRTD), 01307 Dresden, Germany.
| |
Collapse
|
253
|
Jury N, Abarzua S, Diaz I, Guerra MV, Ampuero E, Cubillos P, Martinez P, Herrera-Soto A, Arredondo C, Rojas F, Manterola M, Rojas A, Montecino M, Varela-Nallar L, van Zundert B. Widespread loss of the silencing epigenetic mark H3K9me3 in astrocytes and neurons along with hippocampal-dependent cognitive impairment in C9orf72 BAC transgenic mice. Clin Epigenetics 2020; 12:32. [PMID: 32070418 PMCID: PMC7029485 DOI: 10.1186/s13148-020-0816-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/23/2020] [Indexed: 12/13/2022] Open
Abstract
Background Hexanucleotide repeat expansions of the G4C2 motif in a non-coding region of the C9ORF72 gene are the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Tissues from C9ALS/FTD patients and from mouse models of ALS show RNA foci, dipeptide-repeat proteins, and notably, widespread alterations in the transcriptome. Epigenetic processes regulate gene expression without changing DNA sequences and therefore could account for the altered transcriptome profiles in C9ALS/FTD; here, we explore whether the critical repressive marks H3K9me2 and H3K9me3 are altered in a recently developed C9ALS/FTD BAC mouse model (C9BAC). Results Chromocenters that constitute pericentric constitutive heterochromatin were visualized as DAPI- or Nucblue-dense foci in nuclei. Cultured C9BAC astrocytes exhibited a reduced staining signal for H3K9me3 (but not for H3K9me2) at chromocenters that was accompanied by a marked decline in the global nuclear level of this mark. Similar depletion of H3K9me3 at chromocenters was detected in astrocytes and neurons of the spinal cord, motor cortex, and hippocampus of C9BAC mice. The alterations of H3K9me3 in the hippocampus of C9BAC mice led us to identify previously undetected neuronal loss in CA1, CA3, and dentate gyrus, as well as hippocampal-dependent cognitive deficits. Conclusions Our data indicate that a loss of the repressive mark H3K9me3 in astrocytes and neurons in the central nervous system of C9BAC mice represents a signature during neurodegeneration and memory deficit of C9ALS/FTD.
Collapse
Affiliation(s)
- Nur Jury
- Institute of Biomedical Sciences (ICB), Faculty of Medicine & Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile.,CARE Biomedical Research Center, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Sebastian Abarzua
- Institute of Biomedical Sciences (ICB), Faculty of Medicine & Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile.,CARE Biomedical Research Center, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile.,FONDAP Center for Genome Regulation, Santiago, Chile
| | - Ivan Diaz
- Institute of Biomedical Sciences (ICB), Faculty of Medicine & Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile.,CARE Biomedical Research Center, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Miguel V Guerra
- Institute of Biomedical Sciences (ICB), Faculty of Medicine & Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| | - Estibaliz Ampuero
- Institute of Biomedical Sciences (ICB), Faculty of Medicine & Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile.,CARE Biomedical Research Center, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile.,Current address: Faculty of Health Sciences, Universidad Autónoma de Chile, Santiago, Chile
| | - Paula Cubillos
- Institute of Biomedical Sciences (ICB), Faculty of Medicine & Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile.,CARE Biomedical Research Center, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo Martinez
- Institute of Biomedical Sciences (ICB), Faculty of Medicine & Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile.,CARE Biomedical Research Center, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Andrea Herrera-Soto
- Institute of Biomedical Sciences (ICB), Faculty of Medicine & Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| | - Cristian Arredondo
- Institute of Biomedical Sciences (ICB), Faculty of Medicine & Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile.,CARE Biomedical Research Center, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Fabiola Rojas
- Institute of Biomedical Sciences (ICB), Faculty of Medicine & Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile.,CARE Biomedical Research Center, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Marcia Manterola
- Program of Human Genetics, ICBM, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Adriana Rojas
- Instituto de Genética Humana, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Martín Montecino
- Institute of Biomedical Sciences (ICB), Faculty of Medicine & Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile.,FONDAP Center for Genome Regulation, Santiago, Chile
| | - Lorena Varela-Nallar
- Institute of Biomedical Sciences (ICB), Faculty of Medicine & Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile.
| | - Brigitte van Zundert
- Institute of Biomedical Sciences (ICB), Faculty of Medicine & Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile. .,CARE Biomedical Research Center, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
254
|
Zhou Q, Mareljic N, Michaelsen M, Parhizkar S, Heindl S, Nuscher B, Farny D, Czuppa M, Schludi C, Graf A, Krebs S, Blum H, Feederle R, Roth S, Haass C, Arzberger T, Liesz A, Edbauer D. Active poly-GA vaccination prevents microglia activation and motor deficits in a C9orf72 mouse model. EMBO Mol Med 2020; 12:e10919. [PMID: 31858749 PMCID: PMC7005532 DOI: 10.15252/emmm.201910919] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 11/29/2019] [Accepted: 12/03/2019] [Indexed: 12/12/2022] Open
Abstract
The C9orf72 repeat expansion is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and/or frontotemporal dementia (FTD). Non-canonical translation of the expanded repeat results in abundant poly-GA inclusion pathology throughout the CNS. (GA)149 -CFP expression in mice triggers motor deficits and neuroinflammation. Since poly-GA is transmitted between cells, we investigated the therapeutic potential of anti-GA antibodies by vaccinating (GA)149 -CFP mice. To overcome poor immunogenicity, we compared the antibody response of multivalent ovalbumin-(GA)10 conjugates and pre-aggregated carrier-free (GA)15 . Only ovalbumin-(GA)10 immunization induced a strong anti-GA response. The resulting antisera detected poly-GA aggregates in cell culture and patient tissue. Ovalbumin-(GA)10 immunization largely rescued the motor function in (GA)149 -CFP transgenic mice and reduced poly-GA inclusions. Transcriptome analysis showed less neuroinflammation in ovalbumin-(GA)10 -immunized poly-GA mice, which was corroborated by semiquantitative and morphological analysis of microglia/macrophages. Moreover, cytoplasmic TDP-43 mislocalization and levels of the neurofilament light chain in the CSF were reduced, suggesting neuroaxonal damage is reduced. Our data suggest that immunotherapy may be a viable primary prevention strategy for ALS/FTD in C9orf72 mutation carriers.
Collapse
Affiliation(s)
- Qihui Zhou
- German Center for Neurodegenerative Diseases (DZNE), MunichMunichGermany
- Munich Cluster of Systems Neurology (SyNergy)MunichGermany
| | - Nikola Mareljic
- German Center for Neurodegenerative Diseases (DZNE), MunichMunichGermany
| | - Meike Michaelsen
- German Center for Neurodegenerative Diseases (DZNE), MunichMunichGermany
| | - Samira Parhizkar
- Chair of Metabolic BiochemistryBiomedical Center (BMC)Faculty of MedicineLudwig‐Maximilians‐Universität MunichMunichGermany
| | - Steffanie Heindl
- Institute for Stroke and Dementia ResearchLudwig‐Maximilians‐University MunichMunichGermany
| | - Brigitte Nuscher
- Chair of Metabolic BiochemistryBiomedical Center (BMC)Faculty of MedicineLudwig‐Maximilians‐Universität MunichMunichGermany
| | - Daniel Farny
- German Center for Neurodegenerative Diseases (DZNE), MunichMunichGermany
| | - Mareike Czuppa
- German Center for Neurodegenerative Diseases (DZNE), MunichMunichGermany
| | - Carina Schludi
- German Center for Neurodegenerative Diseases (DZNE), MunichMunichGermany
| | - Alexander Graf
- Laboratory for Functional Genome AnalysisGene CenterLudwig Maximilian University of MunichMunichGermany
| | - Stefan Krebs
- Laboratory for Functional Genome AnalysisGene CenterLudwig Maximilian University of MunichMunichGermany
| | - Helmut Blum
- Laboratory for Functional Genome AnalysisGene CenterLudwig Maximilian University of MunichMunichGermany
| | - Regina Feederle
- German Center for Neurodegenerative Diseases (DZNE), MunichMunichGermany
- Munich Cluster of Systems Neurology (SyNergy)MunichGermany
- Monoclonal Antibody Core Facility and Research GroupInstitute for Diabetes and ObesityHelmholtz Zentrum MünchenGerman Research Center for Environmental Health (GmbH)MunichGermany
| | - Stefan Roth
- Munich Cluster of Systems Neurology (SyNergy)MunichGermany
- Institute for Stroke and Dementia ResearchLudwig‐Maximilians‐University MunichMunichGermany
| | - Christian Haass
- German Center for Neurodegenerative Diseases (DZNE), MunichMunichGermany
- Munich Cluster of Systems Neurology (SyNergy)MunichGermany
- Chair of Metabolic BiochemistryBiomedical Center (BMC)Faculty of MedicineLudwig‐Maximilians‐Universität MunichMunichGermany
| | - Thomas Arzberger
- German Center for Neurodegenerative Diseases (DZNE), MunichMunichGermany
- Munich Cluster of Systems Neurology (SyNergy)MunichGermany
- Center for Neuropathology and Prion ResearchLudwig‐Maximilians‐University MunichMunichGermany
- Department of Psychiatry and PsychotherapyUniversity HospitalLudwig‐Maximilians‐University MunichMunichGermany
| | - Arthur Liesz
- Munich Cluster of Systems Neurology (SyNergy)MunichGermany
- Institute for Stroke and Dementia ResearchLudwig‐Maximilians‐University MunichMunichGermany
| | - Dieter Edbauer
- German Center for Neurodegenerative Diseases (DZNE), MunichMunichGermany
- Munich Cluster of Systems Neurology (SyNergy)MunichGermany
- Ludwig‐Maximilians‐University MunichMunichGermany
| |
Collapse
|
255
|
Abramzon YA, Fratta P, Traynor BJ, Chia R. The Overlapping Genetics of Amyotrophic Lateral Sclerosis and Frontotemporal Dementia. Front Neurosci 2020; 14:42. [PMID: 32116499 PMCID: PMC7012787 DOI: 10.3389/fnins.2020.00042] [Citation(s) in RCA: 160] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 01/13/2020] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are two diseases that form a broad neurodegenerative continuum. Considerable effort has been made to unravel the genetics of these disorders, and, based on this work, it is now clear that ALS and FTD have a significant genetic overlap. TARDBP, SQSTM1, VCP, FUS, TBK1, CHCHD10, and most importantly C9orf72, are the critical genetic players in these neurological disorders. Discoveries of these genes have implicated autophagy, RNA regulation, and vesicle and inclusion formation as the central pathways involved in neurodegeneration. Here we provide a summary of the significant genes identified in these two intrinsically linked neurodegenerative diseases and highlight the genetic and pathological overlaps.
Collapse
Affiliation(s)
- Yevgeniya A. Abramzon
- Neuromuscular Diseases Research Section, Laboratory of Neurogenetics, National Institute on Aging, NIH, Bethesda, MD, United States
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London, United Kingdom
| | - Pietro Fratta
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London, United Kingdom
| | - Bryan J. Traynor
- Neuromuscular Diseases Research Section, Laboratory of Neurogenetics, National Institute on Aging, NIH, Bethesda, MD, United States
- Department of Neurology, Brain Science Institute, Johns Hopkins University, Baltimore, MD, United States
| | - Ruth Chia
- Neuromuscular Diseases Research Section, Laboratory of Neurogenetics, National Institute on Aging, NIH, Bethesda, MD, United States
| |
Collapse
|
256
|
Božič T, Zalar M, Rogelj B, Plavec J, Šket P. Structural Diversity of Sense and Antisense RNA Hexanucleotide Repeats Associated with ALS and FTLD. Molecules 2020; 25:molecules25030525. [PMID: 31991801 PMCID: PMC7037139 DOI: 10.3390/molecules25030525] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/17/2020] [Accepted: 01/24/2020] [Indexed: 12/14/2022] Open
Abstract
The hexanucleotide expansion GGGGCC located in C9orf72 gene represents the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar dementia (FTLD). Since the discovery one of the non-exclusive mechanisms of expanded hexanucleotide G4C2 repeats involved in ALS and FTLD is RNA toxicity, which involves accumulation of pathological sense and antisense RNA transcripts. Formed RNA foci sequester RNA-binding proteins, causing their mislocalization and, thus, diminishing their biological function. Therefore, structures adopted by pathological RNA transcripts could have a key role in pathogenesis of ALS and FTLD. Utilizing NMR spectroscopy and complementary methods, we examined structures adopted by both guanine-rich sense and cytosine-rich antisense RNA oligonucleotides with four hexanucleotide repeats. While both oligonucleotides tend to form dimers and hairpins, the equilibrium of these structures differs with antisense oligonucleotide being more sensitive to changes in pH and sense oligonucleotide to temperature. In the presence of K+ ions, guanine-rich sense RNA oligonucleotide also adopts secondary structures called G-quadruplexes. Here, we also observed, for the first time, that antisense RNA oligonucleotide forms i-motifs under specific conditions. Moreover, simultaneous presence of sense and antisense RNA oligonucleotides promotes formation of heterodimer. Studied structural diversity of sense and antisense RNA transcripts not only further depicts the complex nature of neurodegenerative diseases but also reveals potential targets for drug design in treatment of ALS and FTLD.
Collapse
Affiliation(s)
- Tim Božič
- Slovenian NMR Centre, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia; (T.B.); (M.Z.)
| | - Matja Zalar
- Slovenian NMR Centre, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia; (T.B.); (M.Z.)
| | - Boris Rogelj
- Department of Biotechnology, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia;
- Biomedical Research Institute BRIS, Puhova 10, SI-1000 Ljubljana, Slovenia
| | - Janez Plavec
- Slovenian NMR Centre, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia; (T.B.); (M.Z.)
- EN-FIST Center of Excellence, Trg OF 13, SI-1000 Ljubljana, Slovenia
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia
- Correspondence: (P.Š.); (J.P.); Tel.: +386-1-4760223 (P.Š.); +386-1-4760353 (J.P.)
| | - Primož Šket
- Slovenian NMR Centre, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia; (T.B.); (M.Z.)
- Correspondence: (P.Š.); (J.P.); Tel.: +386-1-4760223 (P.Š.); +386-1-4760353 (J.P.)
| |
Collapse
|
257
|
Filipi T, Hermanova Z, Tureckova J, Vanatko O, Anderova M. Glial Cells-The Strategic Targets in Amyotrophic Lateral Sclerosis Treatment. J Clin Med 2020; 9:E261. [PMID: 31963681 PMCID: PMC7020059 DOI: 10.3390/jcm9010261] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/13/2020] [Accepted: 01/16/2020] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurological disease, which is characterized by the degeneration of motor neurons in the motor cortex and the spinal cord and subsequently by muscle atrophy. To date, numerous gene mutations have been linked to both sporadic and familial ALS, but the effort of many experimental groups to develop a suitable therapy has not, as of yet, proven successful. The original focus was on the degenerating motor neurons, when researchers tried to understand the pathological mechanisms that cause their slow death. However, it was soon discovered that ALS is a complicated and diverse pathology, where not only neurons, but also other cell types, play a crucial role via the so-called non-cell autonomous effect, which strongly deteriorates neuronal conditions. Subsequently, variable glia-based in vitro and in vivo models of ALS were established and used for brand-new experimental and clinical approaches. Such a shift towards glia soon bore its fruit in the form of several clinical studies, which more or less successfully tried to ward the unfavourable prognosis of ALS progression off. In this review, we aimed to summarize current knowledge regarding the involvement of each glial cell type in the progression of ALS, currently available treatments, and to provide an overview of diverse clinical trials covering pharmacological approaches, gene, and cell therapies.
Collapse
Affiliation(s)
- Tereza Filipi
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, 14200 Prague, Czech Republic; (T.F.); (Z.H.); (J.T.); (O.V.)
- 2nd Faculty of Medicine, Charles University, 15006 Prague, Czech Republic
| | - Zuzana Hermanova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, 14200 Prague, Czech Republic; (T.F.); (Z.H.); (J.T.); (O.V.)
- 2nd Faculty of Medicine, Charles University, 15006 Prague, Czech Republic
| | - Jana Tureckova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, 14200 Prague, Czech Republic; (T.F.); (Z.H.); (J.T.); (O.V.)
| | - Ondrej Vanatko
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, 14200 Prague, Czech Republic; (T.F.); (Z.H.); (J.T.); (O.V.)
| | - Miroslava Anderova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, 14200 Prague, Czech Republic; (T.F.); (Z.H.); (J.T.); (O.V.)
| |
Collapse
|
258
|
Boivin M, Pfister V, Gaucherot A, Ruffenach F, Negroni L, Sellier C, Charlet-Berguerand N. Reduced autophagy upon C9ORF72 loss synergizes with dipeptide repeat protein toxicity in G4C2 repeat expansion disorders. EMBO J 2020; 39:e100574. [PMID: 31930538 PMCID: PMC7024836 DOI: 10.15252/embj.2018100574] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 11/28/2019] [Accepted: 12/03/2019] [Indexed: 12/12/2022] Open
Abstract
Expansion of G4C2 repeats within the C9ORF72 gene is the most common cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Such repeats lead to decreased expression of the autophagy regulator C9ORF72 protein. Furthermore, sense and antisense repeats are translated into toxic dipeptide repeat (DPR) proteins. It is unclear how these repeats are translated, and in which way their translation and the reduced expression of C9ORF72 modulate repeat toxicity. Here, we found that sense and antisense repeats are translated upon initiation at canonical AUG or near‐cognate start codons, resulting in polyGA‐, polyPG‐, and to a lesser degree polyGR‐DPR proteins. However, accumulation of these proteins is prevented by autophagy. Importantly, reduced C9ORF72 levels lead to suboptimal autophagy, thereby impairing clearance of DPR proteins and causing their toxic accumulation, ultimately resulting in neuronal cell death. Of clinical importance, pharmacological compounds activating autophagy can prevent neuronal cell death caused by DPR proteins accumulation. These results suggest the existence of a double‐hit pathogenic mechanism in ALS/FTD, whereby reduced expression of C9ORF72 synergizes with DPR protein accumulation and toxicity.
Collapse
Affiliation(s)
- Manon Boivin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Université de Strasbourg, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France
| | - Véronique Pfister
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Université de Strasbourg, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France
| | - Angeline Gaucherot
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Université de Strasbourg, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France
| | - Frank Ruffenach
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Université de Strasbourg, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France
| | - Luc Negroni
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Université de Strasbourg, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France
| | - Chantal Sellier
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Université de Strasbourg, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France
| | - Nicolas Charlet-Berguerand
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Université de Strasbourg, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France
| |
Collapse
|
259
|
Swinnen B, Robberecht W, Van Den Bosch L. RNA toxicity in non-coding repeat expansion disorders. EMBO J 2020; 39:e101112. [PMID: 31721251 PMCID: PMC6939197 DOI: 10.15252/embj.2018101112] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 09/30/2019] [Accepted: 10/09/2019] [Indexed: 12/11/2022] Open
Abstract
Several neurodegenerative disorders like amyotrophic lateral sclerosis (ALS) and spinocerebellar ataxia (SCA) are caused by non-coding nucleotide repeat expansions. Different pathogenic mechanisms may underlie these non-coding repeat expansion disorders. While gain-of-function mechanisms, such as toxicity associated with expression of repeat RNA or toxicity associated with repeat-associated non-ATG (RAN) products, are most frequently connected with these disorders, loss-of-function mechanisms have also been implicated. We review the different pathways that have been linked to non-coding repeat expansion disorders such as C9ORF72-linked ALS/frontotemporal dementia (FTD), myotonic dystrophy, fragile X tremor/ataxia syndrome (FXTAS), SCA, and Huntington's disease-like 2. We discuss modes of RNA toxicity focusing on the identity and the interacting partners of the toxic RNA species. Using the C9ORF72 ALS/FTD paradigm, we further explore the efforts and different methods used to disentangle RNA vs. RAN toxicity. Overall, we conclude that there is ample evidence for a role of RNA toxicity in non-coding repeat expansion diseases.
Collapse
Affiliation(s)
- Bart Swinnen
- Department of NeurosciencesExperimental NeurologyLeuven Brain Institute (LBI)KU Leuven – University of LeuvenLeuvenBelgium
- Laboratory of NeurobiologyVIB, Center for Brain & Disease ResearchLeuvenBelgium
- Department of NeurologyUniversity Hospitals LeuvenLeuvenBelgium
| | - Wim Robberecht
- Department of NeurosciencesExperimental NeurologyLeuven Brain Institute (LBI)KU Leuven – University of LeuvenLeuvenBelgium
- Laboratory of NeurobiologyVIB, Center for Brain & Disease ResearchLeuvenBelgium
- Department of NeurologyUniversity Hospitals LeuvenLeuvenBelgium
| | - Ludo Van Den Bosch
- Department of NeurosciencesExperimental NeurologyLeuven Brain Institute (LBI)KU Leuven – University of LeuvenLeuvenBelgium
- Laboratory of NeurobiologyVIB, Center for Brain & Disease ResearchLeuvenBelgium
| |
Collapse
|
260
|
Congenic expression of poly-GA but not poly-PR in mice triggers selective neuron loss and interferon responses found in C9orf72 ALS. Acta Neuropathol 2020; 140:121-142. [PMID: 32562018 PMCID: PMC7360660 DOI: 10.1007/s00401-020-02176-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/04/2020] [Accepted: 06/04/2020] [Indexed: 12/13/2022]
Abstract
Expansion of a (G4C2)n repeat in C9orf72 causes amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), but the link of the five repeat-encoded dipeptide repeat (DPR) proteins to neuroinflammation, TDP-43 pathology, and neurodegeneration is unclear. Poly-PR is most toxic in vitro, but poly-GA is far more abundant in patients. To directly compare these in vivo, we created congenic poly-GA and poly-PR mice. 40% of poly-PR mice were affected with ataxia and seizures, requiring euthanasia by 6 weeks of age. The remaining poly-PR mice were asymptomatic at 14 months of age, likely due to an 80% reduction of the transgene mRNA in this subgroup. In contrast, all poly-GA mice showed selective neuron loss, inflammation, as well as muscle denervation and wasting requiring euthanasia before 7 weeks of age. In-depth analysis of peripheral organs and blood samples suggests that peripheral organ failure does not drive these phenotypes. Although transgene mRNA levels were similar between poly-GA and affected poly-PR mice, poly-GA aggregated far more abundantly than poly-PR in the CNS and was also found in skeletal muscle. In addition, TDP-43 and other disease-linked RNA-binding proteins co-aggregated in rare nuclear inclusions in the hippocampus and frontal cortex only in poly-GA mice. Transcriptome analysis revealed activation of an interferon-responsive pro-inflammatory microglial signature in end-stage poly-GA but not poly-PR mice. This signature was also found in all ALS patients and enriched in C9orf72 cases. In summary, our rigorous comparison of poly-GA and poly-PR toxicity in vivo indicates that poly-GA, but not poly-PR at the same mRNA expression level, promotes interferon responses in C9orf72 disease and contributes to TDP-43 abnormalities and neuron loss selectively in disease-relevant regions.
Collapse
|
261
|
Zhao C, Devlin AC, Chouhan AK, Selvaraj BT, Stavrou M, Burr K, Brivio V, He X, Mehta AR, Story D, Shaw CE, Dando O, Hardingham GE, Miles GB, Chandran S. Mutant C9orf72 human iPSC-derived astrocytes cause non-cell autonomous motor neuron pathophysiology. Glia 2019; 68:1046-1064. [PMID: 31841614 PMCID: PMC7078830 DOI: 10.1002/glia.23761] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 11/24/2019] [Accepted: 11/25/2019] [Indexed: 12/12/2022]
Abstract
Mutations in C9orf72 are the most common genetic cause of amyotrophic lateral sclerosis (ALS). Accumulating evidence implicates astrocytes as important non‐cell autonomous contributors to ALS pathogenesis, although the potential deleterious effects of astrocytes on the function of motor neurons remains to be determined in a completely humanized model of C9orf72‐mediated ALS. Here, we use a human iPSC‐based model to study the cell autonomous and non‐autonomous consequences of mutant C9orf72 expression by astrocytes. We show that mutant astrocytes both recapitulate key aspects of C9orf72‐related ALS pathology and, upon co‐culture, cause motor neurons to undergo a progressive loss of action potential output due to decreases in the magnitude of voltage‐activated Na+ and K+ currents. Importantly, CRISPR/Cas‐9 mediated excision of the C9orf72 repeat expansion reverses these phenotypes, confirming that the C9orf72 mutation is responsible for both cell‐autonomous astrocyte pathology and non‐cell autonomous motor neuron pathophysiology.
Collapse
Affiliation(s)
- Chen Zhao
- Euan MacDonald Centre for MND Research, The University of Edinburgh, Edinburgh, UK.,Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
| | - Anna-Claire Devlin
- Euan MacDonald Centre for MND Research, The University of Edinburgh, Edinburgh, UK.,School of Psychology and Neuroscience, University of St Andrews, St Andrews, Fife, UK
| | - Amit K Chouhan
- Euan MacDonald Centre for MND Research, The University of Edinburgh, Edinburgh, UK.,School of Psychology and Neuroscience, University of St Andrews, St Andrews, Fife, UK
| | - Bhuvaneish T Selvaraj
- Euan MacDonald Centre for MND Research, The University of Edinburgh, Edinburgh, UK.,Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK.,Dementia Research Institute at the University of Edinburgh, Edinburgh, UK
| | - Maria Stavrou
- Euan MacDonald Centre for MND Research, The University of Edinburgh, Edinburgh, UK.,Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK.,Dementia Research Institute at the University of Edinburgh, Edinburgh, UK
| | - Karen Burr
- Euan MacDonald Centre for MND Research, The University of Edinburgh, Edinburgh, UK.,Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK.,Dementia Research Institute at the University of Edinburgh, Edinburgh, UK
| | - Veronica Brivio
- Euan MacDonald Centre for MND Research, The University of Edinburgh, Edinburgh, UK.,School of Psychology and Neuroscience, University of St Andrews, St Andrews, Fife, UK
| | - Xin He
- Dementia Research Institute at the University of Edinburgh, Edinburgh, UK.,Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
| | - Arpan R Mehta
- Euan MacDonald Centre for MND Research, The University of Edinburgh, Edinburgh, UK.,Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK.,Dementia Research Institute at the University of Edinburgh, Edinburgh, UK
| | - David Story
- Euan MacDonald Centre for MND Research, The University of Edinburgh, Edinburgh, UK.,Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK.,Dementia Research Institute at the University of Edinburgh, Edinburgh, UK
| | - Christopher E Shaw
- MRC Centre for Neurodegeneration Research, King's College London, Institute of Psychiatry, London, UK.,Dementia Research Institute at Kings College London, Maurice Wohl Clinical Neuroscience Institute, London, UK
| | - Owen Dando
- Dementia Research Institute at the University of Edinburgh, Edinburgh, UK.,Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
| | - Giles E Hardingham
- Dementia Research Institute at the University of Edinburgh, Edinburgh, UK.,Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
| | - Gareth B Miles
- Euan MacDonald Centre for MND Research, The University of Edinburgh, Edinburgh, UK.,School of Psychology and Neuroscience, University of St Andrews, St Andrews, Fife, UK
| | - Siddharthan Chandran
- Euan MacDonald Centre for MND Research, The University of Edinburgh, Edinburgh, UK.,Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK.,Dementia Research Institute at the University of Edinburgh, Edinburgh, UK.,Centre for Brain Development and Repair, Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, India
| |
Collapse
|
262
|
Nguyen L, Montrasio F, Pattamatta A, Tusi SK, Bardhi O, Meyer KD, Hayes L, Nakamura K, Banez-Coronel M, Coyne A, Guo S, Laboissonniere LA, Gu Y, Narayanan S, Smith B, Nitsch RM, Kankel MW, Rushe M, Rothstein J, Zu T, Grimm J, Ranum LPW. Antibody Therapy Targeting RAN Proteins Rescues C9 ALS/FTD Phenotypes in C9orf72 Mouse Model. Neuron 2019; 105:645-662.e11. [PMID: 31831332 DOI: 10.1016/j.neuron.2019.11.007] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/10/2019] [Accepted: 11/05/2019] [Indexed: 10/25/2022]
Abstract
The intronic C9orf72 G4C2 expansion, the most common genetic cause of ALS and FTD, produces sense- and antisense-expansion RNAs and six dipeptide repeat-associated, non-ATG (RAN) proteins, but their roles in disease are unclear. We generated high-affinity human antibodies targeting GA or GP RAN proteins. These antibodies cross the blood-brain barrier and co-localize with intracellular RAN aggregates in C9-ALS/FTD BAC mice. In cells, α-GA1 interacts with TRIM21, and α-GA1 treatment reduced GA levels, increased GA turnover, and decreased RAN toxicity and co-aggregation of proteasome and autophagy proteins to GA aggregates. In C9-BAC mice, α-GA1 reduced GA as well as GP and GR proteins, improved behavioral deficits, decreased neuroinflammation and neurodegeneration, and increased survival. Glycosylation of the Fc region of α-GA1 is important for cell entry and efficacy. These data demonstrate that RAN proteins drive C9-ALS/FTD in C9-BAC transgenic mice and establish a novel therapeutic approach for C9orf72 ALS/FTD and other RAN-protein diseases.
Collapse
Affiliation(s)
- Lien Nguyen
- Center for NeuroGenetics, Department of Molecular Genetics and Microbiology, Genetics Institute, McKnight Brain Institute, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL 32610, USA
| | | | - Amrutha Pattamatta
- Center for NeuroGenetics, Department of Molecular Genetics and Microbiology, Genetics Institute, McKnight Brain Institute, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL 32610, USA
| | - Solaleh Khoramian Tusi
- Center for NeuroGenetics, Department of Molecular Genetics and Microbiology, Genetics Institute, McKnight Brain Institute, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL 32610, USA
| | - Olgert Bardhi
- Center for NeuroGenetics, Department of Molecular Genetics and Microbiology, Genetics Institute, McKnight Brain Institute, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL 32610, USA
| | - Kevin D Meyer
- Neurimmune AG, 8952 Schlieren, Switzerland; Institute for Regenerative Medicine-IREM, University of Zurich, 8952 Schlieren, Switzerland
| | - Lindsey Hayes
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Katsuya Nakamura
- Center for NeuroGenetics, Department of Molecular Genetics and Microbiology, Genetics Institute, McKnight Brain Institute, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL 32610, USA
| | - Monica Banez-Coronel
- Center for NeuroGenetics, Department of Molecular Genetics and Microbiology, Genetics Institute, McKnight Brain Institute, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL 32610, USA
| | - Alyssa Coyne
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Shu Guo
- Center for NeuroGenetics, Department of Molecular Genetics and Microbiology, Genetics Institute, McKnight Brain Institute, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL 32610, USA
| | - Lauren A Laboissonniere
- Center for NeuroGenetics, Department of Molecular Genetics and Microbiology, Genetics Institute, McKnight Brain Institute, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL 32610, USA
| | - Yuanzheng Gu
- Neuromuscular and Movement Disorders, Biogen, Cambridge, MA 02142, USA
| | | | - Benjamin Smith
- Neuromuscular and Movement Disorders, Biogen, Cambridge, MA 02142, USA
| | - Roger M Nitsch
- Neurimmune AG, 8952 Schlieren, Switzerland; Institute for Regenerative Medicine-IREM, University of Zurich, 8952 Schlieren, Switzerland
| | - Mark W Kankel
- Neuromuscular and Movement Disorders, Biogen, Cambridge, MA 02142, USA
| | - Mia Rushe
- Neuromuscular and Movement Disorders, Biogen, Cambridge, MA 02142, USA
| | - Jeffrey Rothstein
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Tao Zu
- Center for NeuroGenetics, Department of Molecular Genetics and Microbiology, Genetics Institute, McKnight Brain Institute, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL 32610, USA
| | - Jan Grimm
- Neurimmune AG, 8952 Schlieren, Switzerland
| | - Laura P W Ranum
- Center for NeuroGenetics, Department of Molecular Genetics and Microbiology, Genetics Institute, McKnight Brain Institute, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
263
|
Mejzini R, Flynn LL, Pitout IL, Fletcher S, Wilton SD, Akkari PA. ALS Genetics, Mechanisms, and Therapeutics: Where Are We Now? Front Neurosci 2019; 13:1310. [PMID: 31866818 PMCID: PMC6909825 DOI: 10.3389/fnins.2019.01310] [Citation(s) in RCA: 511] [Impact Index Per Article: 85.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 11/22/2019] [Indexed: 12/11/2022] Open
Abstract
The scientific landscape surrounding amyotrophic lateral sclerosis (ALS) continues to shift as the number of genes associated with the disease risk and pathogenesis, and the cellular processes involved, continues to grow. Despite decades of intense research and over 50 potentially causative or disease-modifying genes identified, etiology remains unexplained and treatment options remain limited for the majority of ALS patients. Various factors have contributed to the slow progress in understanding and developing therapeutics for this disease. Here, we review the genetic basis of ALS, highlighting factors that have contributed to the elusiveness of genetic heritability. The most commonly mutated ALS-linked genes are reviewed with an emphasis on disease-causing mechanisms. The cellular processes involved in ALS pathogenesis are discussed, with evidence implicating their involvement in ALS summarized. Past and present therapeutic strategies and the benefits and limitations of the model systems available to ALS researchers are discussed with future directions for research that may lead to effective treatment strategies outlined.
Collapse
Affiliation(s)
- Rita Mejzini
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, Australia
- The Perron Institute for Neurological and Translational Science, Perth, WA, Australia
| | - Loren L. Flynn
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, Australia
- The Perron Institute for Neurological and Translational Science, Perth, WA, Australia
- Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Perth, WA, Australia
| | - Ianthe L. Pitout
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, Australia
- The Perron Institute for Neurological and Translational Science, Perth, WA, Australia
- Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Perth, WA, Australia
| | - Sue Fletcher
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, Australia
- The Perron Institute for Neurological and Translational Science, Perth, WA, Australia
- Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Perth, WA, Australia
| | - Steve D. Wilton
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, Australia
- The Perron Institute for Neurological and Translational Science, Perth, WA, Australia
- Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Perth, WA, Australia
| | - P. Anthony Akkari
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, Australia
- The Perron Institute for Neurological and Translational Science, Perth, WA, Australia
- Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
264
|
Hawrot J, Imhof S, Wainger BJ. Modeling cell-autonomous motor neuron phenotypes in ALS using iPSCs. Neurobiol Dis 2019; 134:104680. [PMID: 31759135 DOI: 10.1016/j.nbd.2019.104680] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 10/29/2019] [Accepted: 11/15/2019] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is an aggressive and uniformly fatal degenerative disease of the motor nervous system. In order to understand underlying disease mechanisms, researchers leverage a host of in vivo and in vitro models, including yeast, worms, flies, zebrafish, mice, and more recently, human induced pluripotent stem cells (iPSCs) derived from ALS patients. While mouse models have been the main workhorse of preclinical ALS research, the development of iPSCs provides a new opportunity to explore molecular phenotypes of ALS within human cells. Importantly, this technology enables modeling of both familial and sporadic ALS in the relevant human genetic backgrounds, as well as a personalized or targeted approach to therapy development. Harnessing these powerful tools requires addressing numerous challenges, including different variance components associated with iPSCs and motor neurons as well as concomitant limits of reductionist approaches. In order to overcome these obstacles, optimization of protocols and assays, confirmation of phenotype robustness at scale, and validation of findings in human tissue and genetics will cement the role for iPSC models as a valuable complement to animal models in ALS and more broadly among neurodegenerative diseases.
Collapse
Affiliation(s)
- James Hawrot
- Departments of Neurology and Anesthesia, Critical Care & Pain Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Sophie Imhof
- Departments of Neurology and Anesthesia, Critical Care & Pain Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; University of Amsterdam, Amsterdam, The Netherlands
| | - Brian J Wainger
- Departments of Neurology and Anesthesia, Critical Care & Pain Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Broad Institute of Harvard University and MIT, Cambridge, MA 02142, USA.
| |
Collapse
|
265
|
Nussbacher JK, Tabet R, Yeo GW, Lagier-Tourenne C. Disruption of RNA Metabolism in Neurological Diseases and Emerging Therapeutic Interventions. Neuron 2019; 102:294-320. [PMID: 30998900 DOI: 10.1016/j.neuron.2019.03.014] [Citation(s) in RCA: 184] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 01/24/2019] [Accepted: 03/12/2019] [Indexed: 02/06/2023]
Abstract
RNA binding proteins are critical to the maintenance of the transcriptome via controlled regulation of RNA processing and transport. Alterations of these proteins impact multiple steps of the RNA life cycle resulting in various molecular phenotypes such as aberrant RNA splicing, transport, and stability. Disruption of RNA binding proteins and widespread RNA processing defects are increasingly recognized as critical determinants of neurological diseases. Here, we describe distinct mechanisms by which the homeostasis of RNA binding proteins is compromised in neurological disorders through their reduced expression level, increased propensity to aggregate or sequestration by abnormal RNAs. These mechanisms all converge toward altered neuronal function highlighting the susceptibility of neurons to deleterious changes in RNA expression and the central role of RNA binding proteins in preserving neuronal integrity. Emerging therapeutic approaches to mitigate or reverse alterations of RNA binding proteins in neurological diseases are discussed.
Collapse
Affiliation(s)
- Julia K Nussbacher
- Department of Cellular and Molecular Medicine, Institute for Genomic Medicine, UCSD Stem Cell Program, University of California, San Diego, La Jolla, CA, USA
| | - Ricardos Tabet
- Department of Neurology, The Sean M. Healey and AMG Center for ALS at Mass General, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; Broad Institute of Harvard University and MIT, Cambridge, MA 02142, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, Institute for Genomic Medicine, UCSD Stem Cell Program, University of California, San Diego, La Jolla, CA, USA.
| | - Clotilde Lagier-Tourenne
- Department of Neurology, The Sean M. Healey and AMG Center for ALS at Mass General, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; Broad Institute of Harvard University and MIT, Cambridge, MA 02142, USA.
| |
Collapse
|
266
|
St Martin JL, Wang L, Kaprielian Z. Toxicity in ALS: TDP-43 modifiers and C9orf72. Neurosci Lett 2019; 716:134621. [PMID: 31726180 DOI: 10.1016/j.neulet.2019.134621] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 10/24/2019] [Accepted: 11/07/2019] [Indexed: 12/13/2022]
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a devastating and fatal neurodegenerative disease affecting approximately 30,000 individuals in the United States. The average age of onset is 55 years and progression of the disease is rapid with most patients dying of respiratory failure within 3-5 years. Currently available therapeutics have modest effects on patient survival, underscoring the immediate need for more effective medicines. Recent technological advances in next generation sequencing have led to a substantial uptick in the discovery of genes linked to ALS. Since 90 % of ALS cases are sporadic, risk genes identified in familial cases provide invaluable insights into the molecular pathogenesis of the disease. Most notably, TDP-43-expressing neuronal inclusions and C9orf72 mutations have emerged as the key pathological and genetic hallmarks, respectively, of ALS. In this review, we will discuss recent advances in modifiers of TDP-43 toxicity, with an emphasis on Ataxin-2, one of the most well-characterized TDP-43 modifiers. An understanding of Ataxin-2 function and related biological pathways could provide a framework for the discovery of other novel modifiers of TDP-43. We will also describe the pathogenic mechanisms underlying C9orf72 toxicity and how these impact the disease process. Finally, we will explore emerging therapeutic strategies for dampening TDP-43 and C9orf72 toxicity and, ultimately, slowing or halting the progression of ALS.
Collapse
Affiliation(s)
| | - Lina Wang
- Amgen, Neuroscience Discovery, Cambridge, MA, United States
| | - Zaven Kaprielian
- Dementia Discovery Foundation US Discovery, Boston, United States.
| |
Collapse
|
267
|
Chudinova AV, Rossel M, Vergunst A, Le-Masson G, Camu W, Raoul C, Lumbroso S, Mouzat K. Theme 4 In vivo experimental models. Amyotroph Lateral Scler Frontotemporal Degener 2019; 20:160-187. [PMID: 31702459 DOI: 10.1080/21678421.2019.1646992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Background: In 90% of Amyotrophic Lateral Sclerosis (ALS) cases, the disease is sporadic, the remaining 10% being familial. Many genes have been associated with the disease. The use of next generation sequencing has allowed increasing the number of genes analysed in routine diagnostics. However, this increase raises the issue of genetic variants interpretation within a growing number of ALS-associated-genes. Variant classification is based on a combinatory analysis of multiple factors. Among them, functional analyses provide strong arguments on pathogenicity interpretation.Objectives: We developed a simple animal model, the Zebrafish, for the functional analysis of candidate variants pathogenicity identified by routine genetic testing.Methods: Transient overexpression of different ALS associated genetic variants has been performed by mRNA injection in 1-cell stage zebrafish eggs. Validation of protein overexpression has been done by western blot. Embryos mortality, developmental delay and morphological abnormalities have been assessed within the first two days of development. Cellular phenotype has been investigated by the analysis of axonal length of 2-days old larvae with confocal microscopy. Motor phenotype of 5-days old larvae has been explored by touched-evoked response assay.Results: The model has been validated by the analysis of well-described ALS mutations, SOD1-Gly93Ala and OPTN Glu478Gly. Overexpression of this mutated protein was shown to provoke a shortening of axons and a premature axonal branching, as well as an impairment of motor performances as expected. We did not observe these aberrations in SOD1-WT injected fishes. Two candidate variants observed in ALS-patients have been explored with our model: SOD1 NM_000454.4:c.400_402del, p.Glu134del and OPTN NM_021980.4:c.1475T > G, p. Leu492Arg. Overexpression of both variants induced morphological abnormalities and motor impairment, suggesting a pathogenic involvement of these variants in ALS-patients.Discussion and conclusions: We developed for the first time a simple animal model, the Zebrafish, useful for the functional analysis of variant pathogenicity in order to assist ALS molecular diagnosis. Our model has been used to assess the pathogenicity of SOD1 and OPTN candidate variants, allowing to improve genetic testing interpretation.
Collapse
Affiliation(s)
- Aleksandra V Chudinova
- Laboratoire de Biochimie et Biologie Moléculaire, CHU Nîmes et Université de Montpellier, Nimes, France.,INSERM UMR1051, Institut des Neurosciences de Montpellier, Hôpital Saint Eloi, Montpellier, France
| | - Mireille Rossel
- 3MMDN, Univ. Montpellier, EPHE, INSERM, U1198, PSL Research University, Montpellier, France
| | | | - Gwendal Le-Masson
- Department of Neurology, Nerve-Muscle Unit and Centre de Référence Des Pathologies Neuromusculaires CHU Bordeaux (Groupe Hospitalier Pellegrin), University of Bordeaux, Bordeaux, France
| | - William Camu
- INSERM UMR1051, Institut des Neurosciences de Montpellier, Hôpital Saint Eloi, Montpellier, France.,ALS Center, Département de Neurologie, CHU Gui de Chauliac, Montpellier, France
| | - Cédric Raoul
- INSERM UMR1051, Institut des Neurosciences de Montpellier, Hôpital Saint Eloi, Montpellier, France
| | - Serge Lumbroso
- Laboratoire de Biochimie et Biologie Moléculaire, CHU Nîmes et Université de Montpellier, Nimes, France.,INSERM UMR1051, Institut des Neurosciences de Montpellier, Hôpital Saint Eloi, Montpellier, France
| | - Kevin Mouzat
- Laboratoire de Biochimie et Biologie Moléculaire, CHU Nîmes et Université de Montpellier, Nimes, France.,INSERM UMR1051, Institut des Neurosciences de Montpellier, Hôpital Saint Eloi, Montpellier, France
| |
Collapse
|
268
|
CRISPR/Cas9 does not facilitate stable expression of long C9orf72 dipeptides in mice. Neurobiol Aging 2019; 84:235.e1-235.e8. [PMID: 31676125 DOI: 10.1016/j.neurobiolaging.2019.09.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/17/2019] [Accepted: 09/19/2019] [Indexed: 11/24/2022]
Abstract
A C9orf72 repeat expansion is the most common cause of both frontotemporal dementia and motor neuron disease. The expansion is translated to produce dipeptide repeat proteins (DPRs), which are toxic in vivo and in vitro. However, the mechanisms underlying DPR toxicity remain unclear. Mouse models which express DPRs at repeat lengths found in human disease are urgently required to investigate this. We aimed to generate transgenic mice expressing DPRs at repeat lengths of >1000 using alternative codon sequences, to reduce the repetitive nature of the insert. We found that although these inserts did integrate into the mouse genome, the alternative codon sequences did not protect from instability between generations. Our findings suggest that stable integration of long DPR sequences may not be possible. Administration of viral vectors after birth may be a more effective delivery method for long repeats.
Collapse
|
269
|
Lai JD, Ichida JK. C9ORF72 protein function and immune dysregulation in amyotrophic lateral sclerosis. Neurosci Lett 2019; 713:134523. [DOI: 10.1016/j.neulet.2019.134523] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 09/24/2019] [Accepted: 09/26/2019] [Indexed: 12/13/2022]
|
270
|
Xiao S, McKeever PM, Lau A, Robertson J. Synaptic localization of C9orf72 regulates post-synaptic glutamate receptor 1 levels. Acta Neuropathol Commun 2019; 7:161. [PMID: 31651360 PMCID: PMC6813971 DOI: 10.1186/s40478-019-0812-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 09/17/2019] [Indexed: 12/11/2022] Open
Abstract
A hexanucleotide repeat expansion in a noncoding region of C9orf72 is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Reduction of select or total C9orf72 transcript and protein levels is observed in postmortem C9-ALS/FTD tissue, and loss of C9orf72 orthologues in zebrafish and C. elegans results in motor deficits. However, how the reduction in C9orf72 in ALS and FTD might contribute to the disease process remains poorly understood. It has been shown that C9orf72 interacts and forms a complex with SMCR8 and WDR41, acting as a guanine exchange factor for Rab GTPases. Given the known synaptosomal compartmentalization of C9orf72-interacting Rab GTPases, we hypothesized that C9orf72 localization to synaptosomes would be required for the regulation of Rab GTPases and receptor trafficking. This study combined synaptosomal and post-synaptic density preparations together with a knockout-confirmed monoclonal antibody for C9orf72 to assess the localization and role of C9orf72 in the synaptosomes of mouse forebrains. Here, we found C9orf72 to be localized to both the pre- and post-synaptic compartment, as confirmed by both post-synaptic immunoprecipitation and immunofluorescence labelling. In C9orf72 knockout (C9-KO) mice, we demonstrated that pre-synaptic Rab3a, Rab5, and Rab11 protein levels remained stable compared with wild-type littermates (C9-WT). Strikingly, post-synaptic preparations from C9-KO mouse forebrains demonstrated a complete loss of Smcr8 protein levels, together with a significant downregulation of Rab39b and a concomitant upregulation of GluR1 compared with C9-WT mice. We confirmed the localization of Rab39b downregulation and GluR1 upregulation to the dorsal hippocampus of C9-KO mice by immunofluorescence. These results indicate that C9orf72 is essential for the regulation of post-synaptic receptor levels, and implicates loss of C9orf72 in contributing to synaptic dysfunction and related excitotoxicity in ALS and FTD.
Collapse
|
271
|
Laflamme C, McKeever PM, Kumar R, Schwartz J, Kolahdouzan M, Chen CX, You Z, Benaliouad F, Gileadi O, McBride HM, Durcan TM, Edwards AM, Healy LM, Robertson J, McPherson PS. Implementation of an antibody characterization procedure and application to the major ALS/FTD disease gene C9ORF72. eLife 2019; 8:e48363. [PMID: 31612854 PMCID: PMC6794092 DOI: 10.7554/elife.48363] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 09/26/2019] [Indexed: 01/02/2023] Open
Abstract
Antibodies are a key resource in biomedical research yet there are no community-accepted standards to rigorously characterize their quality. Here we develop a procedure to validate pre-existing antibodies. Human cell lines with high expression of a target, determined through a proteomics database, are modified with CRISPR/Cas9 to knockout (KO) the corresponding gene. Commercial antibodies against the target are purchased and tested by immunoblot comparing parental and KO. Validated antibodies are used to definitively identify the most highly expressing cell lines, new KOs are generated if needed, and the lines are screened by immunoprecipitation and immunofluorescence. Selected antibodies are used for more intensive procedures such as immunohistochemistry. The pipeline is easy to implement and scalable. Application to the major ALS disease gene C9ORF72 identified high-quality antibodies revealing C9ORF72 localization to phagosomes/lysosomes. Antibodies that do not recognize C9ORF72 have been used in highly cited papers, raising concern over previously reported C9ORF72 properties.
Collapse
Affiliation(s)
- Carl Laflamme
- Tanenbaum Open Science Institute, Montreal Neurological InstituteMcGill UniversityMontrealCanada
| | - Paul M McKeever
- Tanz Centre for Research in Neurodegenerative DiseasesUniversity of TorontoTorontoCanada
- Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoCanada
| | - Rahul Kumar
- Tanenbaum Open Science Institute, Montreal Neurological InstituteMcGill UniversityMontrealCanada
| | - Julie Schwartz
- Tanenbaum Open Science Institute, Montreal Neurological InstituteMcGill UniversityMontrealCanada
| | - Mahshad Kolahdouzan
- Neuroimmunology Unit, Montreal Neurological InstituteMcGill UniversityMontrealCanada
| | - Carol X Chen
- Tanenbaum Open Science Institute, Montreal Neurological InstituteMcGill UniversityMontrealCanada
| | - Zhipeng You
- Tanenbaum Open Science Institute, Montreal Neurological InstituteMcGill UniversityMontrealCanada
| | - Faiza Benaliouad
- Tanenbaum Open Science Institute, Montreal Neurological InstituteMcGill UniversityMontrealCanada
| | - Opher Gileadi
- Structural Genomics ConsortiumUniversity of TorontoTorontoCanada
| | - Heidi M McBride
- Tanenbaum Open Science Institute, Montreal Neurological InstituteMcGill UniversityMontrealCanada
| | - Thomas M Durcan
- Tanenbaum Open Science Institute, Montreal Neurological InstituteMcGill UniversityMontrealCanada
| | - Aled M Edwards
- Tanenbaum Open Science Institute, Montreal Neurological InstituteMcGill UniversityMontrealCanada
- Structural Genomics Consortium, Nuffield Department of Clinical MedicineUniversity of OxfordOxfordUnited Kingdom
| | - Luke M Healy
- Neuroimmunology Unit, Montreal Neurological InstituteMcGill UniversityMontrealCanada
| | - Janice Robertson
- Tanz Centre for Research in Neurodegenerative DiseasesUniversity of TorontoTorontoCanada
- Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoCanada
| | - Peter S McPherson
- Tanenbaum Open Science Institute, Montreal Neurological InstituteMcGill UniversityMontrealCanada
| |
Collapse
|
272
|
Cheng W, Wang S, Zhang Z, Morgens DW, Hayes LR, Lee S, Portz B, Xie Y, Nguyen BV, Haney MS, Yan S, Dong D, Coyne AN, Yang J, Xian F, Cleveland DW, Qiu Z, Rothstein JD, Shorter J, Gao FB, Bassik MC, Sun S. CRISPR-Cas9 Screens Identify the RNA Helicase DDX3X as a Repressor of C9ORF72 (GGGGCC)n Repeat-Associated Non-AUG Translation. Neuron 2019; 104:885-898.e8. [PMID: 31587919 DOI: 10.1016/j.neuron.2019.09.003] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 06/16/2019] [Accepted: 09/04/2019] [Indexed: 12/14/2022]
Abstract
Hexanucleotide GGGGCC repeat expansion in C9ORF72 is the most prevalent genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). One pathogenic mechanism is the aberrant accumulation of dipeptide repeat (DPR) proteins produced by the unconventional translation of expanded RNA repeats. Here, we performed genome-wide CRISPR-Cas9 screens for modifiers of DPR protein production in human cells. We found that DDX3X, an RNA helicase, suppresses the repeat-associated non-AUG translation of GGGGCC repeats. DDX3X directly binds to (GGGGCC)n RNAs but not antisense (CCCCGG)n RNAs. Its helicase activity is essential for the translation repression. Reduction of DDX3X increases DPR levels in C9ORF72-ALS/FTD patient cells and enhances (GGGGCC)n-mediated toxicity in Drosophila. Elevating DDX3X expression is sufficient to decrease DPR levels, rescue nucleocytoplasmic transport abnormalities, and improve survival of patient iPSC-differentiated neurons. This work identifies genetic modifiers of DPR protein production and provides potential therapeutic targets for C9ORF72-ALS/FTD.
Collapse
Affiliation(s)
- Weiwei Cheng
- Department of Pathology and Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Shaopeng Wang
- Department of Pathology and Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Zhe Zhang
- Department of Pathology and Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - David W Morgens
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lindsey R Hayes
- Brain Science Institute and Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Soojin Lee
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Bede Portz
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yongzhi Xie
- Department of Pathology and Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Baotram V Nguyen
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael S Haney
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Shirui Yan
- Department of Pathology and Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Daoyuan Dong
- Department of Pathology and Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Alyssa N Coyne
- Brain Science Institute and Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Junhua Yang
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Fengfan Xian
- Department of Pathology and Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Don W Cleveland
- Ludwig Institute for Cancer Research and Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | - Zhaozhu Qiu
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jeffrey D Rothstein
- Brain Science Institute and Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - James Shorter
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Fen-Biao Gao
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Michael C Bassik
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Shuying Sun
- Department of Pathology and Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
273
|
Cammack AJ, Atassi N, Hyman T, van den Berg LH, Harms M, Baloh RH, Brown RH, van Es MA, Veldink JH, de Vries BS, Rothstein JD, Drain C, Jockel-Balsarotti J, Malcolm A, Boodram S, Salter A, Wightman N, Yu H, Sherman AV, Esparza TJ, McKenna-Yasek D, Owegi MA, Douthwright C, McCampbell A, Ferguson T, Cruchaga C, Cudkowicz M, Miller TM. Prospective natural history study of C9orf72 ALS clinical characteristics and biomarkers. Neurology 2019; 93:e1605-e1617. [PMID: 31578300 DOI: 10.1212/wnl.0000000000008359] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 05/20/2019] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE To define the natural history of the C9orf72 amyotrophic lateral sclerosis (C9ALS) patient population, develop disease biomarkers, and characterize patient pathologies. METHODS We prospectively collected clinical and demographic data from 116 symptomatic C9ALS and 12 non-amyotrophic lateral sclerosis (ALS) full expansion carriers across 7 institutions in the United States and the Netherlands. In addition, we collected blood samples for DNA repeat size assessment, CSF samples for biomarker identification, and autopsy samples for dipeptide repeat protein (DPR) size determination. Finally, we collected retrospective clinical data via chart review from 208 individuals with C9ALS and 450 individuals with singleton ALS. RESULTS The mean age at onset in the symptomatic prospective cohort was 57.9 ± 8.3 years, and median duration of survival after onset was 36.9 months. The monthly change was -1.8 ± 1.7 for ALS Functional Rating Scale-Revised and -1.4% ± 3.24% of predicted for slow vital capacity. In blood DNA, we found that G4C2 repeat size correlates positively with age. In CSF, we observed that concentrations of poly(GP) negatively correlate with DNA expansion size but do not correlate with measures of disease progression. Finally, we found that size of poly(GP) dipeptides in the brain can reach large sizes similar to that of their DNA repeat derivatives. CONCLUSIONS We present a thorough investigation of C9ALS natural history, providing the basis for C9ALS clinical trial design. We found that clinical features of this genetic subset are less variant than in singleton ALS. In addition, we identified important correlations of C9ALS patient pathologies with clinical and demographic data.
Collapse
Affiliation(s)
- Alexander J Cammack
- From the Department of Neurology (A.J.C., T.H., C.D., J.J.-B., A.M., S.B., A.S., T.J.E., C.C., T.M.M.), Washington University School of Medicine, St. Louis, MO; Department of Neurology (N.A., H.Y., A.V.S., M.C.), Neurological Clinical Research Institute, Massachusetts General Hospital, Boston; Department of Neurology (L.H.v.d.B., M.A.v.E., J.H.V., B.S.d.V.), Brain Center Rudolf Magnus, University Medical Center Utrecht, University Utrecht, the Netherlands; Department of Neurology (M.H.), Columbia University, New York, NY; Department of Neurology (R.H. Baloh), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Neurology (R.H. Brown, N.W., D.M.-Y., M.A.O., C.D.), University of Massachusetts, Worcester; Department of Neurology (J.D.R.), Johns Hopkins University, Baltimore, MD; and Biogen Inc. (A.M., T.F.), Boston, MA
| | - Nazem Atassi
- From the Department of Neurology (A.J.C., T.H., C.D., J.J.-B., A.M., S.B., A.S., T.J.E., C.C., T.M.M.), Washington University School of Medicine, St. Louis, MO; Department of Neurology (N.A., H.Y., A.V.S., M.C.), Neurological Clinical Research Institute, Massachusetts General Hospital, Boston; Department of Neurology (L.H.v.d.B., M.A.v.E., J.H.V., B.S.d.V.), Brain Center Rudolf Magnus, University Medical Center Utrecht, University Utrecht, the Netherlands; Department of Neurology (M.H.), Columbia University, New York, NY; Department of Neurology (R.H. Baloh), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Neurology (R.H. Brown, N.W., D.M.-Y., M.A.O., C.D.), University of Massachusetts, Worcester; Department of Neurology (J.D.R.), Johns Hopkins University, Baltimore, MD; and Biogen Inc. (A.M., T.F.), Boston, MA
| | - Theodore Hyman
- From the Department of Neurology (A.J.C., T.H., C.D., J.J.-B., A.M., S.B., A.S., T.J.E., C.C., T.M.M.), Washington University School of Medicine, St. Louis, MO; Department of Neurology (N.A., H.Y., A.V.S., M.C.), Neurological Clinical Research Institute, Massachusetts General Hospital, Boston; Department of Neurology (L.H.v.d.B., M.A.v.E., J.H.V., B.S.d.V.), Brain Center Rudolf Magnus, University Medical Center Utrecht, University Utrecht, the Netherlands; Department of Neurology (M.H.), Columbia University, New York, NY; Department of Neurology (R.H. Baloh), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Neurology (R.H. Brown, N.W., D.M.-Y., M.A.O., C.D.), University of Massachusetts, Worcester; Department of Neurology (J.D.R.), Johns Hopkins University, Baltimore, MD; and Biogen Inc. (A.M., T.F.), Boston, MA
| | - Leonard H van den Berg
- From the Department of Neurology (A.J.C., T.H., C.D., J.J.-B., A.M., S.B., A.S., T.J.E., C.C., T.M.M.), Washington University School of Medicine, St. Louis, MO; Department of Neurology (N.A., H.Y., A.V.S., M.C.), Neurological Clinical Research Institute, Massachusetts General Hospital, Boston; Department of Neurology (L.H.v.d.B., M.A.v.E., J.H.V., B.S.d.V.), Brain Center Rudolf Magnus, University Medical Center Utrecht, University Utrecht, the Netherlands; Department of Neurology (M.H.), Columbia University, New York, NY; Department of Neurology (R.H. Baloh), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Neurology (R.H. Brown, N.W., D.M.-Y., M.A.O., C.D.), University of Massachusetts, Worcester; Department of Neurology (J.D.R.), Johns Hopkins University, Baltimore, MD; and Biogen Inc. (A.M., T.F.), Boston, MA
| | - Matthew Harms
- From the Department of Neurology (A.J.C., T.H., C.D., J.J.-B., A.M., S.B., A.S., T.J.E., C.C., T.M.M.), Washington University School of Medicine, St. Louis, MO; Department of Neurology (N.A., H.Y., A.V.S., M.C.), Neurological Clinical Research Institute, Massachusetts General Hospital, Boston; Department of Neurology (L.H.v.d.B., M.A.v.E., J.H.V., B.S.d.V.), Brain Center Rudolf Magnus, University Medical Center Utrecht, University Utrecht, the Netherlands; Department of Neurology (M.H.), Columbia University, New York, NY; Department of Neurology (R.H. Baloh), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Neurology (R.H. Brown, N.W., D.M.-Y., M.A.O., C.D.), University of Massachusetts, Worcester; Department of Neurology (J.D.R.), Johns Hopkins University, Baltimore, MD; and Biogen Inc. (A.M., T.F.), Boston, MA
| | - Robert H Baloh
- From the Department of Neurology (A.J.C., T.H., C.D., J.J.-B., A.M., S.B., A.S., T.J.E., C.C., T.M.M.), Washington University School of Medicine, St. Louis, MO; Department of Neurology (N.A., H.Y., A.V.S., M.C.), Neurological Clinical Research Institute, Massachusetts General Hospital, Boston; Department of Neurology (L.H.v.d.B., M.A.v.E., J.H.V., B.S.d.V.), Brain Center Rudolf Magnus, University Medical Center Utrecht, University Utrecht, the Netherlands; Department of Neurology (M.H.), Columbia University, New York, NY; Department of Neurology (R.H. Baloh), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Neurology (R.H. Brown, N.W., D.M.-Y., M.A.O., C.D.), University of Massachusetts, Worcester; Department of Neurology (J.D.R.), Johns Hopkins University, Baltimore, MD; and Biogen Inc. (A.M., T.F.), Boston, MA
| | - Robert H Brown
- From the Department of Neurology (A.J.C., T.H., C.D., J.J.-B., A.M., S.B., A.S., T.J.E., C.C., T.M.M.), Washington University School of Medicine, St. Louis, MO; Department of Neurology (N.A., H.Y., A.V.S., M.C.), Neurological Clinical Research Institute, Massachusetts General Hospital, Boston; Department of Neurology (L.H.v.d.B., M.A.v.E., J.H.V., B.S.d.V.), Brain Center Rudolf Magnus, University Medical Center Utrecht, University Utrecht, the Netherlands; Department of Neurology (M.H.), Columbia University, New York, NY; Department of Neurology (R.H. Baloh), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Neurology (R.H. Brown, N.W., D.M.-Y., M.A.O., C.D.), University of Massachusetts, Worcester; Department of Neurology (J.D.R.), Johns Hopkins University, Baltimore, MD; and Biogen Inc. (A.M., T.F.), Boston, MA
| | - Michael A van Es
- From the Department of Neurology (A.J.C., T.H., C.D., J.J.-B., A.M., S.B., A.S., T.J.E., C.C., T.M.M.), Washington University School of Medicine, St. Louis, MO; Department of Neurology (N.A., H.Y., A.V.S., M.C.), Neurological Clinical Research Institute, Massachusetts General Hospital, Boston; Department of Neurology (L.H.v.d.B., M.A.v.E., J.H.V., B.S.d.V.), Brain Center Rudolf Magnus, University Medical Center Utrecht, University Utrecht, the Netherlands; Department of Neurology (M.H.), Columbia University, New York, NY; Department of Neurology (R.H. Baloh), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Neurology (R.H. Brown, N.W., D.M.-Y., M.A.O., C.D.), University of Massachusetts, Worcester; Department of Neurology (J.D.R.), Johns Hopkins University, Baltimore, MD; and Biogen Inc. (A.M., T.F.), Boston, MA
| | - Jan H Veldink
- From the Department of Neurology (A.J.C., T.H., C.D., J.J.-B., A.M., S.B., A.S., T.J.E., C.C., T.M.M.), Washington University School of Medicine, St. Louis, MO; Department of Neurology (N.A., H.Y., A.V.S., M.C.), Neurological Clinical Research Institute, Massachusetts General Hospital, Boston; Department of Neurology (L.H.v.d.B., M.A.v.E., J.H.V., B.S.d.V.), Brain Center Rudolf Magnus, University Medical Center Utrecht, University Utrecht, the Netherlands; Department of Neurology (M.H.), Columbia University, New York, NY; Department of Neurology (R.H. Baloh), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Neurology (R.H. Brown, N.W., D.M.-Y., M.A.O., C.D.), University of Massachusetts, Worcester; Department of Neurology (J.D.R.), Johns Hopkins University, Baltimore, MD; and Biogen Inc. (A.M., T.F.), Boston, MA
| | - Balint S de Vries
- From the Department of Neurology (A.J.C., T.H., C.D., J.J.-B., A.M., S.B., A.S., T.J.E., C.C., T.M.M.), Washington University School of Medicine, St. Louis, MO; Department of Neurology (N.A., H.Y., A.V.S., M.C.), Neurological Clinical Research Institute, Massachusetts General Hospital, Boston; Department of Neurology (L.H.v.d.B., M.A.v.E., J.H.V., B.S.d.V.), Brain Center Rudolf Magnus, University Medical Center Utrecht, University Utrecht, the Netherlands; Department of Neurology (M.H.), Columbia University, New York, NY; Department of Neurology (R.H. Baloh), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Neurology (R.H. Brown, N.W., D.M.-Y., M.A.O., C.D.), University of Massachusetts, Worcester; Department of Neurology (J.D.R.), Johns Hopkins University, Baltimore, MD; and Biogen Inc. (A.M., T.F.), Boston, MA
| | - Jeffrey D Rothstein
- From the Department of Neurology (A.J.C., T.H., C.D., J.J.-B., A.M., S.B., A.S., T.J.E., C.C., T.M.M.), Washington University School of Medicine, St. Louis, MO; Department of Neurology (N.A., H.Y., A.V.S., M.C.), Neurological Clinical Research Institute, Massachusetts General Hospital, Boston; Department of Neurology (L.H.v.d.B., M.A.v.E., J.H.V., B.S.d.V.), Brain Center Rudolf Magnus, University Medical Center Utrecht, University Utrecht, the Netherlands; Department of Neurology (M.H.), Columbia University, New York, NY; Department of Neurology (R.H. Baloh), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Neurology (R.H. Brown, N.W., D.M.-Y., M.A.O., C.D.), University of Massachusetts, Worcester; Department of Neurology (J.D.R.), Johns Hopkins University, Baltimore, MD; and Biogen Inc. (A.M., T.F.), Boston, MA
| | - Caroline Drain
- From the Department of Neurology (A.J.C., T.H., C.D., J.J.-B., A.M., S.B., A.S., T.J.E., C.C., T.M.M.), Washington University School of Medicine, St. Louis, MO; Department of Neurology (N.A., H.Y., A.V.S., M.C.), Neurological Clinical Research Institute, Massachusetts General Hospital, Boston; Department of Neurology (L.H.v.d.B., M.A.v.E., J.H.V., B.S.d.V.), Brain Center Rudolf Magnus, University Medical Center Utrecht, University Utrecht, the Netherlands; Department of Neurology (M.H.), Columbia University, New York, NY; Department of Neurology (R.H. Baloh), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Neurology (R.H. Brown, N.W., D.M.-Y., M.A.O., C.D.), University of Massachusetts, Worcester; Department of Neurology (J.D.R.), Johns Hopkins University, Baltimore, MD; and Biogen Inc. (A.M., T.F.), Boston, MA
| | - Jennifer Jockel-Balsarotti
- From the Department of Neurology (A.J.C., T.H., C.D., J.J.-B., A.M., S.B., A.S., T.J.E., C.C., T.M.M.), Washington University School of Medicine, St. Louis, MO; Department of Neurology (N.A., H.Y., A.V.S., M.C.), Neurological Clinical Research Institute, Massachusetts General Hospital, Boston; Department of Neurology (L.H.v.d.B., M.A.v.E., J.H.V., B.S.d.V.), Brain Center Rudolf Magnus, University Medical Center Utrecht, University Utrecht, the Netherlands; Department of Neurology (M.H.), Columbia University, New York, NY; Department of Neurology (R.H. Baloh), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Neurology (R.H. Brown, N.W., D.M.-Y., M.A.O., C.D.), University of Massachusetts, Worcester; Department of Neurology (J.D.R.), Johns Hopkins University, Baltimore, MD; and Biogen Inc. (A.M., T.F.), Boston, MA
| | - Amber Malcolm
- From the Department of Neurology (A.J.C., T.H., C.D., J.J.-B., A.M., S.B., A.S., T.J.E., C.C., T.M.M.), Washington University School of Medicine, St. Louis, MO; Department of Neurology (N.A., H.Y., A.V.S., M.C.), Neurological Clinical Research Institute, Massachusetts General Hospital, Boston; Department of Neurology (L.H.v.d.B., M.A.v.E., J.H.V., B.S.d.V.), Brain Center Rudolf Magnus, University Medical Center Utrecht, University Utrecht, the Netherlands; Department of Neurology (M.H.), Columbia University, New York, NY; Department of Neurology (R.H. Baloh), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Neurology (R.H. Brown, N.W., D.M.-Y., M.A.O., C.D.), University of Massachusetts, Worcester; Department of Neurology (J.D.R.), Johns Hopkins University, Baltimore, MD; and Biogen Inc. (A.M., T.F.), Boston, MA
| | - Sonia Boodram
- From the Department of Neurology (A.J.C., T.H., C.D., J.J.-B., A.M., S.B., A.S., T.J.E., C.C., T.M.M.), Washington University School of Medicine, St. Louis, MO; Department of Neurology (N.A., H.Y., A.V.S., M.C.), Neurological Clinical Research Institute, Massachusetts General Hospital, Boston; Department of Neurology (L.H.v.d.B., M.A.v.E., J.H.V., B.S.d.V.), Brain Center Rudolf Magnus, University Medical Center Utrecht, University Utrecht, the Netherlands; Department of Neurology (M.H.), Columbia University, New York, NY; Department of Neurology (R.H. Baloh), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Neurology (R.H. Brown, N.W., D.M.-Y., M.A.O., C.D.), University of Massachusetts, Worcester; Department of Neurology (J.D.R.), Johns Hopkins University, Baltimore, MD; and Biogen Inc. (A.M., T.F.), Boston, MA
| | - Amber Salter
- From the Department of Neurology (A.J.C., T.H., C.D., J.J.-B., A.M., S.B., A.S., T.J.E., C.C., T.M.M.), Washington University School of Medicine, St. Louis, MO; Department of Neurology (N.A., H.Y., A.V.S., M.C.), Neurological Clinical Research Institute, Massachusetts General Hospital, Boston; Department of Neurology (L.H.v.d.B., M.A.v.E., J.H.V., B.S.d.V.), Brain Center Rudolf Magnus, University Medical Center Utrecht, University Utrecht, the Netherlands; Department of Neurology (M.H.), Columbia University, New York, NY; Department of Neurology (R.H. Baloh), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Neurology (R.H. Brown, N.W., D.M.-Y., M.A.O., C.D.), University of Massachusetts, Worcester; Department of Neurology (J.D.R.), Johns Hopkins University, Baltimore, MD; and Biogen Inc. (A.M., T.F.), Boston, MA
| | - Nicholas Wightman
- From the Department of Neurology (A.J.C., T.H., C.D., J.J.-B., A.M., S.B., A.S., T.J.E., C.C., T.M.M.), Washington University School of Medicine, St. Louis, MO; Department of Neurology (N.A., H.Y., A.V.S., M.C.), Neurological Clinical Research Institute, Massachusetts General Hospital, Boston; Department of Neurology (L.H.v.d.B., M.A.v.E., J.H.V., B.S.d.V.), Brain Center Rudolf Magnus, University Medical Center Utrecht, University Utrecht, the Netherlands; Department of Neurology (M.H.), Columbia University, New York, NY; Department of Neurology (R.H. Baloh), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Neurology (R.H. Brown, N.W., D.M.-Y., M.A.O., C.D.), University of Massachusetts, Worcester; Department of Neurology (J.D.R.), Johns Hopkins University, Baltimore, MD; and Biogen Inc. (A.M., T.F.), Boston, MA
| | - Hong Yu
- From the Department of Neurology (A.J.C., T.H., C.D., J.J.-B., A.M., S.B., A.S., T.J.E., C.C., T.M.M.), Washington University School of Medicine, St. Louis, MO; Department of Neurology (N.A., H.Y., A.V.S., M.C.), Neurological Clinical Research Institute, Massachusetts General Hospital, Boston; Department of Neurology (L.H.v.d.B., M.A.v.E., J.H.V., B.S.d.V.), Brain Center Rudolf Magnus, University Medical Center Utrecht, University Utrecht, the Netherlands; Department of Neurology (M.H.), Columbia University, New York, NY; Department of Neurology (R.H. Baloh), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Neurology (R.H. Brown, N.W., D.M.-Y., M.A.O., C.D.), University of Massachusetts, Worcester; Department of Neurology (J.D.R.), Johns Hopkins University, Baltimore, MD; and Biogen Inc. (A.M., T.F.), Boston, MA
| | - Alexander V Sherman
- From the Department of Neurology (A.J.C., T.H., C.D., J.J.-B., A.M., S.B., A.S., T.J.E., C.C., T.M.M.), Washington University School of Medicine, St. Louis, MO; Department of Neurology (N.A., H.Y., A.V.S., M.C.), Neurological Clinical Research Institute, Massachusetts General Hospital, Boston; Department of Neurology (L.H.v.d.B., M.A.v.E., J.H.V., B.S.d.V.), Brain Center Rudolf Magnus, University Medical Center Utrecht, University Utrecht, the Netherlands; Department of Neurology (M.H.), Columbia University, New York, NY; Department of Neurology (R.H. Baloh), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Neurology (R.H. Brown, N.W., D.M.-Y., M.A.O., C.D.), University of Massachusetts, Worcester; Department of Neurology (J.D.R.), Johns Hopkins University, Baltimore, MD; and Biogen Inc. (A.M., T.F.), Boston, MA
| | - Thomas J Esparza
- From the Department of Neurology (A.J.C., T.H., C.D., J.J.-B., A.M., S.B., A.S., T.J.E., C.C., T.M.M.), Washington University School of Medicine, St. Louis, MO; Department of Neurology (N.A., H.Y., A.V.S., M.C.), Neurological Clinical Research Institute, Massachusetts General Hospital, Boston; Department of Neurology (L.H.v.d.B., M.A.v.E., J.H.V., B.S.d.V.), Brain Center Rudolf Magnus, University Medical Center Utrecht, University Utrecht, the Netherlands; Department of Neurology (M.H.), Columbia University, New York, NY; Department of Neurology (R.H. Baloh), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Neurology (R.H. Brown, N.W., D.M.-Y., M.A.O., C.D.), University of Massachusetts, Worcester; Department of Neurology (J.D.R.), Johns Hopkins University, Baltimore, MD; and Biogen Inc. (A.M., T.F.), Boston, MA
| | - Diane McKenna-Yasek
- From the Department of Neurology (A.J.C., T.H., C.D., J.J.-B., A.M., S.B., A.S., T.J.E., C.C., T.M.M.), Washington University School of Medicine, St. Louis, MO; Department of Neurology (N.A., H.Y., A.V.S., M.C.), Neurological Clinical Research Institute, Massachusetts General Hospital, Boston; Department of Neurology (L.H.v.d.B., M.A.v.E., J.H.V., B.S.d.V.), Brain Center Rudolf Magnus, University Medical Center Utrecht, University Utrecht, the Netherlands; Department of Neurology (M.H.), Columbia University, New York, NY; Department of Neurology (R.H. Baloh), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Neurology (R.H. Brown, N.W., D.M.-Y., M.A.O., C.D.), University of Massachusetts, Worcester; Department of Neurology (J.D.R.), Johns Hopkins University, Baltimore, MD; and Biogen Inc. (A.M., T.F.), Boston, MA
| | - Margaret A Owegi
- From the Department of Neurology (A.J.C., T.H., C.D., J.J.-B., A.M., S.B., A.S., T.J.E., C.C., T.M.M.), Washington University School of Medicine, St. Louis, MO; Department of Neurology (N.A., H.Y., A.V.S., M.C.), Neurological Clinical Research Institute, Massachusetts General Hospital, Boston; Department of Neurology (L.H.v.d.B., M.A.v.E., J.H.V., B.S.d.V.), Brain Center Rudolf Magnus, University Medical Center Utrecht, University Utrecht, the Netherlands; Department of Neurology (M.H.), Columbia University, New York, NY; Department of Neurology (R.H. Baloh), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Neurology (R.H. Brown, N.W., D.M.-Y., M.A.O., C.D.), University of Massachusetts, Worcester; Department of Neurology (J.D.R.), Johns Hopkins University, Baltimore, MD; and Biogen Inc. (A.M., T.F.), Boston, MA
| | - Catherine Douthwright
- From the Department of Neurology (A.J.C., T.H., C.D., J.J.-B., A.M., S.B., A.S., T.J.E., C.C., T.M.M.), Washington University School of Medicine, St. Louis, MO; Department of Neurology (N.A., H.Y., A.V.S., M.C.), Neurological Clinical Research Institute, Massachusetts General Hospital, Boston; Department of Neurology (L.H.v.d.B., M.A.v.E., J.H.V., B.S.d.V.), Brain Center Rudolf Magnus, University Medical Center Utrecht, University Utrecht, the Netherlands; Department of Neurology (M.H.), Columbia University, New York, NY; Department of Neurology (R.H. Baloh), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Neurology (R.H. Brown, N.W., D.M.-Y., M.A.O., C.D.), University of Massachusetts, Worcester; Department of Neurology (J.D.R.), Johns Hopkins University, Baltimore, MD; and Biogen Inc. (A.M., T.F.), Boston, MA
| | | | - Alexander McCampbell
- From the Department of Neurology (A.J.C., T.H., C.D., J.J.-B., A.M., S.B., A.S., T.J.E., C.C., T.M.M.), Washington University School of Medicine, St. Louis, MO; Department of Neurology (N.A., H.Y., A.V.S., M.C.), Neurological Clinical Research Institute, Massachusetts General Hospital, Boston; Department of Neurology (L.H.v.d.B., M.A.v.E., J.H.V., B.S.d.V.), Brain Center Rudolf Magnus, University Medical Center Utrecht, University Utrecht, the Netherlands; Department of Neurology (M.H.), Columbia University, New York, NY; Department of Neurology (R.H. Baloh), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Neurology (R.H. Brown, N.W., D.M.-Y., M.A.O., C.D.), University of Massachusetts, Worcester; Department of Neurology (J.D.R.), Johns Hopkins University, Baltimore, MD; and Biogen Inc. (A.M., T.F.), Boston, MA
| | - Toby Ferguson
- From the Department of Neurology (A.J.C., T.H., C.D., J.J.-B., A.M., S.B., A.S., T.J.E., C.C., T.M.M.), Washington University School of Medicine, St. Louis, MO; Department of Neurology (N.A., H.Y., A.V.S., M.C.), Neurological Clinical Research Institute, Massachusetts General Hospital, Boston; Department of Neurology (L.H.v.d.B., M.A.v.E., J.H.V., B.S.d.V.), Brain Center Rudolf Magnus, University Medical Center Utrecht, University Utrecht, the Netherlands; Department of Neurology (M.H.), Columbia University, New York, NY; Department of Neurology (R.H. Baloh), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Neurology (R.H. Brown, N.W., D.M.-Y., M.A.O., C.D.), University of Massachusetts, Worcester; Department of Neurology (J.D.R.), Johns Hopkins University, Baltimore, MD; and Biogen Inc. (A.M., T.F.), Boston, MA
| | - Carlos Cruchaga
- From the Department of Neurology (A.J.C., T.H., C.D., J.J.-B., A.M., S.B., A.S., T.J.E., C.C., T.M.M.), Washington University School of Medicine, St. Louis, MO; Department of Neurology (N.A., H.Y., A.V.S., M.C.), Neurological Clinical Research Institute, Massachusetts General Hospital, Boston; Department of Neurology (L.H.v.d.B., M.A.v.E., J.H.V., B.S.d.V.), Brain Center Rudolf Magnus, University Medical Center Utrecht, University Utrecht, the Netherlands; Department of Neurology (M.H.), Columbia University, New York, NY; Department of Neurology (R.H. Baloh), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Neurology (R.H. Brown, N.W., D.M.-Y., M.A.O., C.D.), University of Massachusetts, Worcester; Department of Neurology (J.D.R.), Johns Hopkins University, Baltimore, MD; and Biogen Inc. (A.M., T.F.), Boston, MA
| | - Merit Cudkowicz
- From the Department of Neurology (A.J.C., T.H., C.D., J.J.-B., A.M., S.B., A.S., T.J.E., C.C., T.M.M.), Washington University School of Medicine, St. Louis, MO; Department of Neurology (N.A., H.Y., A.V.S., M.C.), Neurological Clinical Research Institute, Massachusetts General Hospital, Boston; Department of Neurology (L.H.v.d.B., M.A.v.E., J.H.V., B.S.d.V.), Brain Center Rudolf Magnus, University Medical Center Utrecht, University Utrecht, the Netherlands; Department of Neurology (M.H.), Columbia University, New York, NY; Department of Neurology (R.H. Baloh), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Neurology (R.H. Brown, N.W., D.M.-Y., M.A.O., C.D.), University of Massachusetts, Worcester; Department of Neurology (J.D.R.), Johns Hopkins University, Baltimore, MD; and Biogen Inc. (A.M., T.F.), Boston, MA
| | - Timothy M Miller
- From the Department of Neurology (A.J.C., T.H., C.D., J.J.-B., A.M., S.B., A.S., T.J.E., C.C., T.M.M.), Washington University School of Medicine, St. Louis, MO; Department of Neurology (N.A., H.Y., A.V.S., M.C.), Neurological Clinical Research Institute, Massachusetts General Hospital, Boston; Department of Neurology (L.H.v.d.B., M.A.v.E., J.H.V., B.S.d.V.), Brain Center Rudolf Magnus, University Medical Center Utrecht, University Utrecht, the Netherlands; Department of Neurology (M.H.), Columbia University, New York, NY; Department of Neurology (R.H. Baloh), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Neurology (R.H. Brown, N.W., D.M.-Y., M.A.O., C.D.), University of Massachusetts, Worcester; Department of Neurology (J.D.R.), Johns Hopkins University, Baltimore, MD; and Biogen Inc. (A.M., T.F.), Boston, MA.
| |
Collapse
|
274
|
Jiang J, Ravits J. Pathogenic Mechanisms and Therapy Development for C9orf72 Amyotrophic Lateral Sclerosis/Frontotemporal Dementia. Neurotherapeutics 2019; 16:1115-1132. [PMID: 31667754 PMCID: PMC6985338 DOI: 10.1007/s13311-019-00797-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In 2011, a hexanucleotide repeat expansion in the first intron of the C9orf72 gene was identified as the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The proposed disease mechanisms include loss of C9orf72 function and gain of toxicity from the bidirectionally transcribed repeat-containing RNAs. Over the last few years, substantial progress has been made to determine the contribution of loss and gain of function in disease pathogenesis. The extensive body of molecular, cellular, animal, and human neuropathological studies is conflicted, but the predominance of evidence favors gain of toxicity as the main pathogenic mechanism for C9orf72 repeat expansions. Alterations in several downstream cellular functions, such as nucleocytoplasmic transport and autophagy, are implicated. Exciting progress has also been made in therapy development targeting this mutation, such as by antisense oligonucleotide therapies targeting sense transcripts and small molecules targeting nucleocytoplasmic transport, and these are now in phase 1 clinical trials.
Collapse
Affiliation(s)
- Jie Jiang
- Department of Cell Biology, Emory University, Atlanta, GA, 30322, USA.
| | - John Ravits
- Department of Neurosciences, University of California at San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
275
|
New insights on the disease contribution of neuroinflammation in amyotrophic lateral sclerosis. Curr Opin Neurol 2019; 32:764-770. [DOI: 10.1097/wco.0000000000000729] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
276
|
Cykowski MD, Dickson DW, Powell SZ, Arumanayagam AS, Rivera AL, Appel SH. Dipeptide repeat (DPR) pathology in the skeletal muscle of ALS patients with C9ORF72 repeat expansion. Acta Neuropathol 2019; 138:667-670. [PMID: 31375896 PMCID: PMC6778061 DOI: 10.1007/s00401-019-02050-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 07/26/2019] [Accepted: 07/26/2019] [Indexed: 10/26/2022]
|
277
|
Abstract
Despite identification of many genes causing neurodegenerative diseases in the last decades, development of disease-modifying treatments has been slow. Antisense oligonucleotide (ASO) therapeutics for spinal muscular atrophy, Duchenne muscular dystrophy and transthyretin amyloidosis predict a robust future for ASOs in medicine. Perhaps the most significant advantage of ASO therapeutics over other small molecule approaches is that acquisition of the target sequence provides immediate knowledge of possible complementary oligonucleotide therapeutics. This review article describes the various types of ASOs, their therapeutic use and the current preclinical efforts to develop new ASO treatments.
Collapse
Affiliation(s)
- Stefan-M Pulst
- Department of Neurology, University of Utah, CNC Building, 5th Floor, 175 N Medical Drive E, 84132, Salt Lake City, UT, USA.
| |
Collapse
|
278
|
Bertrand A, Wen J, Rinaldi D, Houot M, Sayah S, Camuzat A, Fournier C, Fontanella S, Routier A, Couratier P, Pasquier F, Habert MO, Hannequin D, Martinaud O, Caroppo P, Levy R, Dubois B, Brice A, Durrleman S, Colliot O, Le Ber I. Early Cognitive, Structural, and Microstructural Changes in Presymptomatic C9orf72 Carriers Younger Than 40 Years. JAMA Neurol 2019; 75:236-245. [PMID: 29197216 DOI: 10.1001/jamaneurol.2017.4266] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Importance Presymptomatic carriers of chromosome 9 open reading frame 72 (C9orf72) mutation, the most frequent genetic cause of frontotemporal lobar degeneration and amyotrophic lateral sclerosis, represent the optimal target population for the development of disease-modifying drugs. Preclinical biomarkers are needed to monitor the effect of therapeutic interventions in this population. Objectives To assess the occurrence of cognitive, structural, and microstructural changes in presymptomatic C9orf72 carriers. Design, Setting, and Participants The PREV-DEMALS study is a prospective, multicenter, observational study of first-degree relatives of individuals carrying the C9orf72 mutation. Eighty-four participants entered the study between October 2015 and April 2017; 80 (95%) were included in cross-sectional analyses of baseline data. All participants underwent neuropsychological testing and magnetic resonance imaging; 63 (79%) underwent diffusion tensor magnetic resonance imaging. Gray matter volumes and diffusion tensor imaging metrics were calculated within regions of interest. Anatomical and microstructural differences between individuals who carried the C9orf72 mutation (C9+) and those who did not carry the C9orf72 mutation (C9-) were assessed using linear mixed-effects models. Data were analyzed from October 2015 to April 2017. Main Outcomes and Measures Differences in neuropsychological scores, gray matter volume, and white matter integrity between C9+ and C9- individuals. Results Of the 80 included participants, there were 41 C9+ individuals (24 [59%] female; mean [SD] age, 39.8 [11.1] years) and 39 C9- individuals (24 [62%] female; mean [SD] age, 45.2 [13.9] years). Compared with C9- individuals, C9+ individuals had lower mean (SD) praxis scores (163.4 [6.1] vs 165.3 [5.9]; P = .01) and intransitive gesture scores (34.9 [1.6] vs 35.7 [1.5]; P = .004), atrophy in 8 cortical regions of interest and in the right thalamus, and white matter alterations in 8 tracts. When restricting the analyses to participants younger than 40 years, compared with C9- individuals, C9+ individuals had lower praxis scores and intransitive gesture scores, atrophy in 4 cortical regions of interest and in the right thalamus, and white matter alterations in 2 tracts. Conclusions and Relevance Cognitive, structural, and microstructural alterations are detectable in young C9+ individuals. Early and subtle praxis alterations, underpinned by focal atrophy of the left supramarginal gyrus, may represent an early and nonevolving phenotype related to neurodevelopmental effects of C9orf72 mutation. White matter alterations reflect the future phenotype of frontotemporal lobar degeneration/amyotrophic lateral sclerosis, while atrophy appears more diffuse. Our results contribute to a better understanding of the preclinical phase of C9orf72 disease and of the respective contribution of magnetic resonance biomarkers. Trial Registration clinicaltrials.gov Identifier: NCT02590276.
Collapse
Affiliation(s)
- Anne Bertrand
- Sorbonne Universités, Université Pierre et Marie Curie Paris 06, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut du Cerveau et la Moelle, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France.,Aramis Project Team, Inria Research Center of Paris, Paris, France.,Department of Neuroradiology, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France.,Department of Radiology, Hôpital Saint Antoine, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Junhao Wen
- Aramis Project Team, Inria Research Center of Paris, Paris, France.,Sorbonne Universités, Université Pierre et Marie Curie Paris 06, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut du Cerveau et la Moelle, Hôpital Pitié-Salpêtrière, Paris, France
| | - Daisy Rinaldi
- Sorbonne Universités, Université Pierre et Marie Curie Paris 06, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut du Cerveau et la Moelle, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France.,Centre de Référence des Démences Rares ou Précoces, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Marion Houot
- Institute of Memory and Alzheimer's Disease, Centre of Excellence of Neurodegenerative Disease, Department of Neurology, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Sabrina Sayah
- Sorbonne Universités, Université Pierre et Marie Curie Paris 06, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut du Cerveau et la Moelle, Hôpital Pitié-Salpêtrière, Paris, France
| | - Agnès Camuzat
- Sorbonne Universités, Université Pierre et Marie Curie Paris 06, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut du Cerveau et la Moelle, Hôpital Pitié-Salpêtrière, Paris, France
| | - Clémence Fournier
- Sorbonne Universités, Université Pierre et Marie Curie Paris 06, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut du Cerveau et la Moelle, Hôpital Pitié-Salpêtrière, Paris, France
| | - Sabrina Fontanella
- Aramis Project Team, Inria Research Center of Paris, Paris, France.,Sorbonne Universités, Université Pierre et Marie Curie Paris 06, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut du Cerveau et la Moelle, Hôpital Pitié-Salpêtrière, Paris, France
| | - Alexandre Routier
- Aramis Project Team, Inria Research Center of Paris, Paris, France.,Sorbonne Universités, Université Pierre et Marie Curie Paris 06, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut du Cerveau et la Moelle, Hôpital Pitié-Salpêtrière, Paris, France
| | - Philippe Couratier
- Department of Neurology, Amyotrophic Lateral Sclerosis Center, Centre Hospitalier Universitaire de Limoges, Limoges, France.,Limoges University, Institut d'Epidémiologie Neurologique et Neurologie Tropicale, Centre National de la Recherche Scientifique, Fédération de Recherche 3503, Institut Génomique, Environnement, Immunité, Santé et Thérapeutiques, Limoges, France
| | - Florence Pasquier
- Neurology Department, National Reference Center for Young Onset Dementia, Centre Hospitalier Régional Universitaire de Lille, INSERM U1171, Lille, France.,Equipe d'accueil 1046, Maladie d'Alzheimer et Pathologies Vasculaires, Lille University, Lille, France
| | - Marie-Odile Habert
- Department of Nuclear Medicine, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France.,Laboratoire d'Imagerie Biomédicale, Sorbonne Universités, Université Pierre et Marie Curie Paris 06, INSERM U1146, Centre National de la Recherche Scientifique, UMR 7371, Paris, France
| | - Didier Hannequin
- Centre National de Référence pour les Malades Alzheimer Jeunes, Centre Hospitalier Universitaire de Rouen, INSERM 1245, Rouen, France.,Department of Neurology, Centre Hospitalier Universitaire de Rouen, Rouen, France
| | - Olivier Martinaud
- Centre National de Référence pour les Malades Alzheimer Jeunes, Centre Hospitalier Universitaire de Rouen, INSERM 1245, Rouen, France.,Department of Neurology, Centre Hospitalier Universitaire de Rouen, Rouen, France
| | - Paola Caroppo
- Sorbonne Universités, Université Pierre et Marie Curie Paris 06, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut du Cerveau et la Moelle, Hôpital Pitié-Salpêtrière, Paris, France.,Division of Neurology V and Neuropathology, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Istituto Neurologico Carlo Besta, Milano, Italy
| | - Richard Levy
- Sorbonne Universités, Université Pierre et Marie Curie Paris 06, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut du Cerveau et la Moelle, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France.,Centre de Référence des Démences Rares ou Précoces, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France.,Institute of Memory and Alzheimer's Disease, Centre of Excellence of Neurodegenerative Disease, Department of Neurology, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Bruno Dubois
- Sorbonne Universités, Université Pierre et Marie Curie Paris 06, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut du Cerveau et la Moelle, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France.,Centre de Référence des Démences Rares ou Précoces, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France.,Institute of Memory and Alzheimer's Disease, Centre of Excellence of Neurodegenerative Disease, Department of Neurology, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Alexis Brice
- Sorbonne Universités, Université Pierre et Marie Curie Paris 06, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut du Cerveau et la Moelle, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Stanley Durrleman
- Aramis Project Team, Inria Research Center of Paris, Paris, France.,Sorbonne Universités, Université Pierre et Marie Curie Paris 06, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut du Cerveau et la Moelle, Hôpital Pitié-Salpêtrière, Paris, France
| | - Olivier Colliot
- Sorbonne Universités, Université Pierre et Marie Curie Paris 06, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut du Cerveau et la Moelle, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France.,Aramis Project Team, Inria Research Center of Paris, Paris, France.,Centre pour l'Acquisition et le Traitement des Images, Institut du Cerveau et la Moelle, Paris, France
| | - Isabelle Le Ber
- Sorbonne Universités, Université Pierre et Marie Curie Paris 06, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut du Cerveau et la Moelle, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France.,Centre de Référence des Démences Rares ou Précoces, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France.,Institute of Memory and Alzheimer's Disease, Centre of Excellence of Neurodegenerative Disease, Department of Neurology, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | | |
Collapse
|
279
|
Cappella M, Ciotti C, Cohen-Tannoudji M, Biferi MG. Gene Therapy for ALS-A Perspective. Int J Mol Sci 2019; 20:E4388. [PMID: 31500113 PMCID: PMC6771059 DOI: 10.3390/ijms20184388] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/30/2019] [Accepted: 09/03/2019] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disease (MND) with no cure. Recent advances in gene therapy open a new perspective to treat this disorder-particularly for the characterized genetic forms. Gene therapy approaches, involving the delivery of antisense oligonucleotides into the central nervous system (CNS) are being tested in clinical trials for patients with mutations in SOD1 or C9orf72 genes. Viral vectors can be used to deliver therapeutic sequences to stably transduce motor neurons in the CNS. Vectors derived from adeno-associated virus (AAV), can efficiently target genes and have been tested in several pre-clinical settings with promising outcomes. Recently, the Food and Drug Administration (FDA) approved Zolgensma, an AAV-mediated treatment for another MND-the infant form of spinal muscular atrophy. Given the accelerated progress in gene therapy, it is potentially a promising avenue to develop an efficient and safe cure for ALS.
Collapse
Affiliation(s)
- Marisa Cappella
- Sorbonne Université, Inserm UMRS 974, Centre of Research in Myology (CRM), Institut de Myologie, GH Pitié Salpêtrière, 75013 Paris, France
| | - Chiara Ciotti
- Sorbonne Université, Inserm UMRS 974, Centre of Research in Myology (CRM), Institut de Myologie, GH Pitié Salpêtrière, 75013 Paris, France
| | - Mathilde Cohen-Tannoudji
- Sorbonne Université, Inserm UMRS 974, Centre of Research in Myology (CRM), Institut de Myologie, GH Pitié Salpêtrière, 75013 Paris, France
| | - Maria Grazia Biferi
- Sorbonne Université, Inserm UMRS 974, Centre of Research in Myology (CRM), Institut de Myologie, GH Pitié Salpêtrière, 75013 Paris, France.
| |
Collapse
|
280
|
Abstract
The discovery that repeat expansions in the C9orf72 gene are a frequent cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) has revolutionized our understanding of these diseases. Substantial headway has been made in characterizing C9orf72-mediated disease and unravelling its underlying aetiopathogenesis. Three main disease mechanisms have been proposed: loss of function of the C9orf72 protein and toxic gain of function from C9orf72 repeat RNA or from dipeptide repeat proteins produced by repeat-associated non-ATG translation. Several downstream processes across a range of cellular functions have also been implicated. In this article, we review the pathological and mechanistic features of C9orf72-associated FTD and ALS (collectively termed C9FTD/ALS), the model systems used to study these conditions, and the probable initiators of downstream disease mechanisms. We suggest that a combination of upstream mechanisms involving both loss and gain of function and downstream cellular pathways involving both cell-autonomous and non-cell-autonomous effects contributes to disease progression.
Collapse
Affiliation(s)
- Rubika Balendra
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK.,Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, UCL, London, UK
| | - Adrian M Isaacs
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK. .,UK Dementia Research Institute at UCL, UCL Institute of Neurology, London, UK.
| |
Collapse
|
281
|
Raymond GJ, Zhao HT, Race B, Raymond LD, Williams K, Swayze EE, Graffam S, Le J, Caron T, Stathopoulos J, O'Keefe R, Lubke LL, Reidenbach AG, Kraus A, Schreiber SL, Mazur C, Cabin DE, Carroll JB, Minikel EV, Kordasiewicz H, Caughey B, Vallabh SM. Antisense oligonucleotides extend survival of prion-infected mice. JCI Insight 2019; 5:131175. [PMID: 31361599 PMCID: PMC6777807 DOI: 10.1172/jci.insight.131175] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Prion disease is a fatal, incurable neurodegenerative disease of humans and other mammals caused by conversion of cellular prion protein (PrPC) into a self-propagating neurotoxic conformer (prions; PrPSc). Strong genetic proofs of concept support lowering PrP expression as a therapeutic strategy. Antisense oligonucleotides (ASOs) can provide a practical route to lowering 1 target mRNA in the brain, but their development for prion disease has been hindered by 3 unresolved issues from prior work: uncertainty about mechanism of action, unclear potential for efficacy against established prion infection, and poor tolerability of drug delivery by osmotic pumps. Here, we test ASOs delivered by bolus intracerebroventricular injection to intracerebrally prion-infected WT mice. Prophylactic treatments given every 2–3 months extended survival times 61%–98%, and a single injection at 120 days after infection, near the onset of clinical signs, extended survival 55% (87 days). In contrast, a nontargeting control ASO was ineffective. Thus, PrP lowering is the mechanism of action of ASOs effective against prion disease in vivo, and infrequent — or even single — bolus injections of ASOs can slow prion neuropathogenesis and markedly extend survival, even when initiated near clinical signs. These findings should empower development of PrP-lowering therapy for prion disease. ASO-mediated prion protein suppression delays disease and extends survival, even in mice with established prion infection.
Collapse
Affiliation(s)
- Gregory J Raymond
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, Montana, USA
| | | | - Brent Race
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, Montana, USA
| | - Lynne D Raymond
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, Montana, USA
| | - Katie Williams
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, Montana, USA
| | - Eric E Swayze
- Ionis Pharmaceuticals Inc., Carlsbad, California, USA
| | - Samantha Graffam
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Jason Le
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Tyler Caron
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | | | - Rhonda O'Keefe
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Lori L Lubke
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, Montana, USA
| | | | - Allison Kraus
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, Montana, USA
| | | | - Curt Mazur
- Ionis Pharmaceuticals Inc., Carlsbad, California, USA
| | | | | | - Eric Vallabh Minikel
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, Montana, USA.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.,Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, Massachusetts, USA.,Prion Alliance, Cambridge, Massachusetts, USA
| | | | - Byron Caughey
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, Montana, USA
| | - Sonia M Vallabh
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, Montana, USA.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.,Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, Massachusetts, USA.,Prion Alliance, Cambridge, Massachusetts, USA
| |
Collapse
|
282
|
Bright F, Werry EL, Dobson-Stone C, Piguet O, Ittner LM, Halliday GM, Hodges JR, Kiernan MC, Loy CT, Kassiou M, Kril JJ. Neuroinflammation in frontotemporal dementia. Nat Rev Neurol 2019; 15:540-555. [PMID: 31324897 DOI: 10.1038/s41582-019-0231-z] [Citation(s) in RCA: 162] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2019] [Indexed: 12/12/2022]
Abstract
Frontotemporal dementia (FTD) refers to a group of progressive neurodegenerative disorders with different pathological signatures, genetic variability and complex disease mechanisms, for which no effective treatments exist. Despite advances in understanding the underlying pathology of FTD, sensitive and specific fluid biomarkers for this disease are lacking. As in other types of dementia, mounting evidence suggests that neuroinflammation is involved in the progression of FTD, including cortical inflammation, microglial activation, astrogliosis and differential expression of inflammation-related proteins in the periphery. Furthermore, an overlap between FTD and autoimmune disease has been identified. The most substantial evidence, however, comes from genetic studies, and several FTD-related genes are also implicated in neuroinflammation. This Review discusses specific evidence of neuroinflammatory mechanisms in FTD and describes how advances in our understanding of these mechanisms, in FTD as well as in other neurodegenerative diseases, might facilitate the development and implementation of diagnostic tools and disease-modifying treatments for FTD.
Collapse
Affiliation(s)
- Fiona Bright
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Eryn L Werry
- School of Chemistry, Faculty of Science, University of Sydney, Sydney, NSW, Australia
| | - Carol Dobson-Stone
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia.,Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia.,School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Olivier Piguet
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia.,School of Psychology, Faculty of Science, University of Sydney, Sydney, NSW, Australia.,Centre of Excellence in Cognition and its Disorders, Australian Research Council, Sydney, NSW, Australia
| | - Lars M Ittner
- Dementia Research Centre, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Glenda M Halliday
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia.,Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - John R Hodges
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia.,Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia.,Centre of Excellence in Cognition and its Disorders, Australian Research Council, Sydney, NSW, Australia
| | - Matthew C Kiernan
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia.,Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia.,Institute of Clinical Neurosciences, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Clement T Loy
- Sydney School of Public Health, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Michael Kassiou
- School of Chemistry, Faculty of Science, University of Sydney, Sydney, NSW, Australia
| | - Jillian J Kril
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
283
|
Scoles DR, Pulst SM. Antisense therapies for movement disorders. Mov Disord 2019; 34:1112-1119. [PMID: 31283857 DOI: 10.1002/mds.27782] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 05/10/2019] [Accepted: 06/06/2019] [Indexed: 12/12/2022] Open
Abstract
Currently, few disease-modifying therapies exist for degenerative movement disorders. Antisense oligonucleotides are small DNA oligonucleotides, usually encompassing ∼20 base pairs, that can potentially target any messenger RNA of interest. Antisense oligonucleotides often contain modifications to the phosphate backbone, the sugar moiety, and the nucleotide base. The development of antisense oligonucleotide therapies spinal muscular atrophy and Duchenne muscular dystrophy suggest potentially wide-ranging therapeutic applications for antisense oligonucleotides in neurology. Successes with these two diseases have heightened interest in academia and the pharmaceutical industry to develop antisense oligonucleotides for several movement disorders, including, spinocerebellar ataxias, Huntington's disease, and Parkinson's disease. Compared to small molecules, antisense oligonucleotide-based therapies have an advantage because the target disease gene sequence is the immediate path to identifying the therapeutically effective complementary antisense oligonucleotide. In this review we describe the different types of antisense oligonucleotide chemistries and their potential use for the treatment of human movement disorders. © 2019 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Daniel R Scoles
- Department of Neurology, University of Utah, 175 North Medical Drive East, 5th Floor, Salt Lake City, Utah, USA
| | - Stefan M Pulst
- Department of Neurology, University of Utah, 175 North Medical Drive East, 5th Floor, Salt Lake City, Utah, USA
| |
Collapse
|
284
|
Berth SH, Lloyd TE. How can an understanding of the C9orf72 gene translate into amyotrophic lateral sclerosis therapies? Expert Rev Neurother 2019; 19:895-897. [PMID: 31233365 DOI: 10.1080/14737175.2019.1635884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Sarah H Berth
- Department of Neurology, School of Medicine, Johns Hopkins University , Baltimore , MD , USA
| | - Thomas E Lloyd
- Department of Neurology, School of Medicine, Johns Hopkins University , Baltimore , MD , USA
| |
Collapse
|
285
|
Hao Z, Liu L, Tao Z, Wang R, Ren H, Sun H, Lin Z, Zhang Z, Mu C, Zhou J, Wang G. Motor dysfunction and neurodegeneration in a C9orf72 mouse line expressing poly-PR. Nat Commun 2019; 10:2906. [PMID: 31266945 PMCID: PMC6606620 DOI: 10.1038/s41467-019-10956-w] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 06/12/2019] [Indexed: 12/13/2022] Open
Abstract
A GGGGCC hexanucleotide repeat expansion in intron 1 of chromosome 9 open reading frame 72 (C9ORF72) gene is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia. Repeat-associated non-ATG translation of dipeptide repeat proteins (DPRs) contributes to the neuropathological features of c9FTD/ALS. Among the five DPRs, arginine-rich poly-PR are reported to be the most toxic. Here, we generate a transgenic mouse line that expresses poly-PR (GFP-PR28) specifically in neurons. GFP-PR28 homozygous mice show decreased survival time, while the heterozygous mice show motor imbalance, decreased brain weight, loss of Purkinje cells and lower motor neurons, and inflammation in the cerebellum and spinal cord. Transcriptional analysis shows that in the cerebellum, GFP-PR28 heterozygous mice show differential expression of genes related to synaptic transmission. Our findings show that GFP-PR28 transgenic mice partly model neuropathological features of c9FTD/ALS, and show a role for poly-PR in neurodegeneration.
Collapse
Affiliation(s)
- Zongbing Hao
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Neuropsychiatric Diseases & Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Liu Liu
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Neuropsychiatric Diseases & Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Zhouteng Tao
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Rui Wang
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Neuropsychiatric Diseases & Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Haigang Ren
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Neuropsychiatric Diseases & Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Hongyang Sun
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Neuropsychiatric Diseases & Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Zixuan Lin
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Neuropsychiatric Diseases & Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Zhixiong Zhang
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Neuropsychiatric Diseases & Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Chenchen Mu
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Neuropsychiatric Diseases & Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Jiawei Zhou
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Chinese Academy of Sciences Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Guanghui Wang
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Neuropsychiatric Diseases & Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China.
| |
Collapse
|
286
|
Banez-Coronel M, Ranum LPW. Repeat-associated non-AUG (RAN) translation: insights from pathology. J Transl Med 2019; 99:929-942. [PMID: 30918326 PMCID: PMC7219275 DOI: 10.1038/s41374-019-0241-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 01/29/2019] [Indexed: 12/14/2022] Open
Abstract
More than 40 different neurological diseases are caused by microsatellite repeat expansions. Since the discovery of repeat-associated non-AUG (RAN) translation by Zu et al. in 2011, nine expansion disorders have been identified as RAN-positive diseases. RAN proteins are translated from different types of nucleotide repeat expansions and can be produced from both sense and antisense transcripts. In some diseases, RAN proteins have been shown to accumulate in affected brain regions. Here we review the pathological and molecular aspects associated with RAN protein accumulation for each particular disorder, the correlation between disease pathology and the available in vivo models and the common aspects shared by some of the newly discovered RAN proteins.
Collapse
Affiliation(s)
- Monica Banez-Coronel
- Center for NeuroGenetics, University of Florida, Gainesville, FL, 32610, USA
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, 32610, USA
| | - Laura P W Ranum
- Center for NeuroGenetics, University of Florida, Gainesville, FL, 32610, USA.
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, 32610, USA.
- Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, 32610, USA.
- McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA.
- Genetics Institute, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
287
|
Perspectives for Applying G-Quadruplex Structures in Neurobiology and Neuropharmacology. Int J Mol Sci 2019; 20:ijms20122884. [PMID: 31200506 PMCID: PMC6627371 DOI: 10.3390/ijms20122884] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/07/2019] [Accepted: 06/11/2019] [Indexed: 12/22/2022] Open
Abstract
The most common form of DNA is a right-handed helix or the B-form DNA. DNA can also adopt a variety of alternative conformations, non-B-form DNA secondary structures, including the DNA G-quadruplex (DNA-G4). Furthermore, besides stem-loops that yield A-form double-stranded RNA, non-canonical RNA G-quadruplex (RNA-G4) secondary structures are also observed. Recent bioinformatics analysis of the whole-genome and transcriptome obtained using G-quadruplex–specific antibodies and ligands, revealed genomic positions of G-quadruplexes. In addition, accumulating evidence pointed to the existence of these structures under physiologically- and pathologically-relevant conditions, with functional roles in vivo. In this review, we focused on DNA-G4 and RNA-G4, which may have important roles in neuronal function, and reveal mechanisms underlying neurological disorders related to synaptic dysfunction. In addition, we mention the potential of G-quadruplexes as therapeutic targets for neurological diseases.
Collapse
|
288
|
Martier R, Liefhebber JM, García-Osta A, Miniarikova J, Cuadrado-Tejedor M, Espelosin M, Ursua S, Petry H, van Deventer SJ, Evers MM, Konstantinova P. Targeting RNA-Mediated Toxicity in C9orf72 ALS and/or FTD by RNAi-Based Gene Therapy. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 16:26-37. [PMID: 30825670 PMCID: PMC6393708 DOI: 10.1016/j.omtn.2019.02.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/21/2019] [Accepted: 02/04/2019] [Indexed: 12/12/2022]
Abstract
A hexanucleotide GGGGCC expansion in intron 1 of chromosome 9 open reading frame 72 (C9orf72) gene is the most frequent cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The corresponding repeat-containing sense and antisense transcripts cause a gain of toxicity through the accumulation of RNA foci in the nucleus and deposition of dipeptide-repeat (DPR) proteins in the cytoplasm of the affected cells. We have previously reported on the potential of engineered artificial anti-C9orf72-targeting miRNAs (miC) targeting C9orf72 to reduce the gain of toxicity caused by the repeat-containing transcripts. In the current study, we tested the silencing efficacy of adeno-associated virus (AAV)5-miC in human-derived induced pluripotent stem cell (iPSC) neurons and in an ALS mouse model. We demonstrated that AAV5-miC transduces different types of neuronal cells and can reduce the accumulation of repeat-containing C9orf72 transcripts. Additionally, we demonstrated silencing of C9orf72 in both the nucleus and cytoplasm, which has an added value for the treatment of ALS and/or FTD patients. A proof of concept in an ALS mouse model demonstrated the significant reduction in repeat-containing C9orf72 transcripts and RNA foci after treatment. Taken together, these findings support the feasibility of a gene therapy for ALS and FTD based on the reduction in toxicity caused by the repeat-containing C9orf72 transcripts.
Collapse
Affiliation(s)
- Raygene Martier
- Department of Research & Development, uniQure Biopharma B.V., Amsterdam, the Netherlands; Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, the Netherlands.
| | - Jolanda M Liefhebber
- Department of Research & Development, uniQure Biopharma B.V., Amsterdam, the Netherlands
| | - Ana García-Osta
- Neurosciences Division, Center for Applied Medical Research, CIMA, University of Navarra, Pamplona, Spain
| | - Jana Miniarikova
- Department of Research & Development, uniQure Biopharma B.V., Amsterdam, the Netherlands; Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, the Netherlands
| | - Mar Cuadrado-Tejedor
- Neurosciences Division, Center for Applied Medical Research, CIMA, University of Navarra, Pamplona, Spain
| | - Maria Espelosin
- Neurosciences Division, Center for Applied Medical Research, CIMA, University of Navarra, Pamplona, Spain
| | - Susana Ursua
- Neurosciences Division, Center for Applied Medical Research, CIMA, University of Navarra, Pamplona, Spain
| | - Harald Petry
- Department of Research & Development, uniQure Biopharma B.V., Amsterdam, the Netherlands
| | - Sander J van Deventer
- Department of Research & Development, uniQure Biopharma B.V., Amsterdam, the Netherlands; Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, the Netherlands
| | - Melvin M Evers
- Department of Research & Development, uniQure Biopharma B.V., Amsterdam, the Netherlands
| | - Pavlina Konstantinova
- Department of Research & Development, uniQure Biopharma B.V., Amsterdam, the Netherlands.
| |
Collapse
|
289
|
An update on genetic frontotemporal dementia. J Neurol 2019; 266:2075-2086. [PMID: 31119452 PMCID: PMC6647117 DOI: 10.1007/s00415-019-09363-4] [Citation(s) in RCA: 249] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 05/01/2019] [Accepted: 05/03/2019] [Indexed: 12/12/2022]
Abstract
Frontotemporal dementia (FTD) is a highly heritable group of neurodegenerative disorders, with around 30% of patients having a strong family history. The majority of that heritability is accounted for by autosomal dominant mutations in the chromosome 9 open reading frame 72 (C9orf72), progranulin (GRN), and microtubule-associated protein tau (MAPT) genes, with mutations more rarely seen in a number of other genes. This review will discuss the recent updates in the field of genetic FTD. Age at symptom onset in genetic FTD is variable with recently identified genetic modifiers including TMEM106B (in GRN carriers particularly) and a polymorphism at a locus containing two overlapping genes LOC101929163 and C6orf10 (in C9orf72 carriers). Behavioural variant FTD (bvFTD) is the most common diagnosis in each of the genetic groups, although in C9orf72 carriers amyotrophic lateral sclerosis either alone, or with bvFTD, is also common. An atypical neuropsychiatric presentation is also seen in C9orf72 carriers and family members of carriers are at greater risk of psychiatric disorders including schizophrenia and autistic spectrum disorders. Large natural history studies of presymptomatic genetic FTD are now underway both in Europe/Canada (GENFI—the Genetic FTD Initiative) and in the US (ARTFL/LEFFTDS study), collaborating together under the banner of the FTD Prevention Initiative (FPI). These studies are taking forward the validation of cognitive, imaging and fluid biomarkers that aim to robustly measure disease onset, staging and progression in genetic FTD. Grey matter changes on MRI and hypometabolism on FDG-PET are seen at least 10 years before symptom onset with white matter abnormalities seen earlier, but the pattern and exact timing of changes differ between different genetic groups. In contrast, tau PET has yet to show promise in genetic FTD. Three key fluid biomarkers have been identified so far that are likely to be helpful in clinical trials—CSF or blood neurofilament light chain levels (in all groups), CSF or blood progranulin levels (in GRN carriers) and CSF poly(GP) dipeptide repeat protein levels (in C9orf72 carriers). Increased knowledge about genetic FTD has led to more clinical presymptomatic genetic testing but this has not yet been mirrored in the development of either an accepted FTD-specific testing protocol or provision of appropriate psychological support mechanisms for those living through the at-risk phase. This will become even more relevant as disease-modifying therapy trials start in each of the genetic groups over the next few years.
Collapse
|
290
|
Rostalski H, Leskelä S, Huber N, Katisko K, Cajanus A, Solje E, Marttinen M, Natunen T, Remes AM, Hiltunen M, Haapasalo A. Astrocytes and Microglia as Potential Contributors to the Pathogenesis of C9orf72 Repeat Expansion-Associated FTLD and ALS. Front Neurosci 2019; 13:486. [PMID: 31156371 PMCID: PMC6529740 DOI: 10.3389/fnins.2019.00486] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 04/29/2019] [Indexed: 12/11/2022] Open
Abstract
Frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS) are neurodegenerative diseases with a complex, but often overlapping, genetic and pathobiological background and thus they are considered to form a disease spectrum. Although neurons are the principal cells affected in FTLD and ALS, increasing amount of evidence has recently proposed that other central nervous system-resident cells, including microglia and astrocytes, may also play roles in neurodegeneration in these diseases. Therefore, deciphering the mechanisms underlying the disease pathogenesis in different types of brain cells is fundamental in order to understand the etiology of these disorders. The major genetic cause of FTLD and ALS is a hexanucleotide repeat expansion (HRE) in the intronic region of the C9orf72 gene. In neurons, specific pathological hallmarks, including decreased expression of the C9orf72 RNA and proteins and generation of toxic RNA and protein species, and their downstream effects have been linked to C9orf72 HRE-associated FTLD and ALS. In contrast, it is still poorly known to which extent these pathological changes are presented in other brain cells. Here, we summarize the current literature on the potential role of astrocytes and microglia in C9orf72 HRE-linked FTLD and ALS and discuss their possible phenotypic alterations and neurotoxic mechanisms that may contribute to neurodegeneration in these diseases.
Collapse
Affiliation(s)
- Hannah Rostalski
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Stina Leskelä
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Nadine Huber
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Kasper Katisko
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland
| | - Antti Cajanus
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland
| | - Eino Solje
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland.,Neuro Center, Neurology, Kuopio University Hospital, Kuopio, Finland
| | - Mikael Marttinen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Teemu Natunen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Anne M Remes
- Medical Research Center, Oulu University Hospital, Oulu, Finland.,Research Unit of Clinical Neuroscience, Neurology, University of Oulu, Oulu, Finland
| | - Mikko Hiltunen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Annakaisa Haapasalo
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
291
|
Parakh S, Perri ER, Jagaraj CJ, Ragagnin AMG, Atkin JD. Rab-dependent cellular trafficking and amyotrophic lateral sclerosis. Crit Rev Biochem Mol Biol 2019; 53:623-651. [PMID: 30741580 DOI: 10.1080/10409238.2018.1553926] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Rab GTPases are becoming increasingly implicated in neurodegenerative disorders, although their role in amyotrophic lateral sclerosis (ALS) has been somewhat overlooked. However, dysfunction of intracellular transport is gaining increasing attention as a pathogenic mechanism in ALS. Many previous studies have focused axonal trafficking, and the extreme length of axons in motor neurons may contribute to their unique susceptibility in this disorder. In contrast, the role of transport defects within the cell body has been relatively neglected. Similarly, whilst Rab GTPases control all intracellular membrane trafficking events, their role in ALS is poorly understood. Emerging evidence now highlights this family of proteins in ALS, particularly the discovery that C9orf72 functions in intra transport in conjunction with several Rab GTPases. Here, we summarize recent updates on cellular transport defects in ALS, with a focus on Rab GTPases and how their dysfunction may specifically target neurons and contribute to pathophysiology. We discuss the molecular mechanisms associated with dysfunction of Rab proteins in ALS. Finally, we also discuss dysfunction in other modes of transport recently implicated in ALS, including nucleocytoplasmic transport and the ER-mitochondrial contact regions (MAM compartment), and speculate whether these may also involve Rab GTPases.
Collapse
Affiliation(s)
- S Parakh
- a Faculty of Medicine and Health Sciences, Department of Biomedical Sciences, Centre for MND Research , Macquarie University , Sydney , Australia.,b Department of Biochemistry and Genetics , La Trobe Institute for Molecular Science, La Trobe University , Melbourne , Australia
| | - E R Perri
- a Faculty of Medicine and Health Sciences, Department of Biomedical Sciences, Centre for MND Research , Macquarie University , Sydney , Australia.,b Department of Biochemistry and Genetics , La Trobe Institute for Molecular Science, La Trobe University , Melbourne , Australia
| | - C J Jagaraj
- a Faculty of Medicine and Health Sciences, Department of Biomedical Sciences, Centre for MND Research , Macquarie University , Sydney , Australia
| | - A M G Ragagnin
- a Faculty of Medicine and Health Sciences, Department of Biomedical Sciences, Centre for MND Research , Macquarie University , Sydney , Australia
| | - J D Atkin
- a Faculty of Medicine and Health Sciences, Department of Biomedical Sciences, Centre for MND Research , Macquarie University , Sydney , Australia.,b Department of Biochemistry and Genetics , La Trobe Institute for Molecular Science, La Trobe University , Melbourne , Australia
| |
Collapse
|
292
|
Ho WY, Tai YK, Chang JC, Liang J, Tyan SH, Chen S, Guan JL, Zhou H, Shen HM, Koo E, Ling SC. The ALS-FTD-linked gene product, C9orf72, regulates neuronal morphogenesis via autophagy. Autophagy 2019; 15:827-842. [PMID: 30669939 PMCID: PMC6526867 DOI: 10.1080/15548627.2019.1569441] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 10/05/2018] [Accepted: 12/18/2018] [Indexed: 12/12/2022] Open
Abstract
Mutations in C9orf72 leading to hexanucleotide expansions are the most common genetic causes for amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). A phenotype resembling ALS and FTD is seen in transgenic mice overexpressing the hexanucleotide expansions, but is absent in C9orf72-deficient mice. Thus, the exact function of C9orf72 in neurons and how loss of C9orf72 may contribute to neuronal dysfunction remains to be clearly defined. Here, we showed that primary hippocampal neurons cultured from c9orf72 knockout mice have reduced dendritic arborization and spine density. Quantitative proteomic analysis identified C9orf72 as a component of the macroautophagy/autophagy initiation complex composed of ULK1-RB1CC1-ATG13-ATG101. The association was mediated through the direct interaction with ATG13 via the isoform-specific carboxyl-terminal DENN and dDENN domain of C9orf72. Furthermore, c9orf72 knockout neurons showed reduced LC3-II puncta accompanied by reduced ULK1 levels, suggesting that loss of C9orf72 impairs basal autophagy. Conversely, wild-type neurons treated with a ULK1 kinase inhibitor showed a dose-dependent reduction of dendritic arborization and spine density. Furthermore, expression of the long isoform of human C9orf72 that interacts with the ULK1 complex, but not the short isoform, rescues autophagy and the dendritic arborization phenotypes of c9orf72 knockout neurons. Taken together, our data suggests that C9orf72 has a cell-autonomous role in neuronal and dendritic morphogenesis through promotion of ULK1-mediated autophagy.
Collapse
Affiliation(s)
- Wan Yun Ho
- Department of Physiology, National University of Singapore, Singapore, Singapore
| | - Yee Kit Tai
- Department of Physiology, National University of Singapore, Singapore, Singapore
| | - Jer-Cherng Chang
- Department of Physiology, National University of Singapore, Singapore, Singapore
| | - Jason Liang
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Sheue-Houy Tyan
- Department of Medicine, National University of Singapore, Singapore, Singapore
| | - Song Chen
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jun-Lin Guan
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Huilin Zhou
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Han-Ming Shen
- Department of Physiology, National University of Singapore, Singapore, Singapore
| | - Edward Koo
- Department of Medicine, National University of Singapore, Singapore, Singapore
- Department of Neurosciences, University of California at San Diego, La Jolla, CA, USA
| | - Shuo-Chien Ling
- Department of Physiology, National University of Singapore, Singapore, Singapore
- Neurobiology/Ageing Programme, National University of Singapore, Singapore, Singapore
- Neuroscience and Behavioural Disorders Programme, Duke-NUS Medical School, Singapore, Singapore
| |
Collapse
|
293
|
Emerging antisense oligonucleotide and viral therapies for amyotrophic lateral sclerosis. Curr Opin Neurol 2019; 31:648-654. [PMID: 30028737 DOI: 10.1097/wco.0000000000000594] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW Amyotrophic lateral sclerosis (ALS) is a rapidly fatal disease for which there is currently no effective therapy. The present review describes the current progress of existing molecular therapies in the clinical trial pipeline and highlights promising future antisense oligonucleotide (ASO) and viral therapeutic strategies for treating ALS. RECENT FINDINGS The immense progress in the design of clinical trials and generation of ASO therapies directed towards superoxide dismutase-1 (SOD1) and chromosome 9 open reading frame 72 (C9orf72) repeat expansion related disease have been propelled by fundamental work to identify the genetic underpinnings of familial ALS and develop relevant disease models. Preclinical studies have also identified promising targets for sporadic ALS (sALS). Moreover, encouraging results in adeno-associated virus (AAV)-based therapies for spinal muscular atrophy (SMA) provide a roadmap for continued improvement in delivery and design of molecular therapies for ALS. SUMMARY Advances in preclinical and clinical studies of ASO and viral directed approaches to neuromuscular disease, particularly ALS, indicate that these approaches have high specificity and are relatively well tolerated.
Collapse
|
294
|
Scoles DR, Minikel EV, Pulst SM. Antisense oligonucleotides: A primer. NEUROLOGY-GENETICS 2019; 5:e323. [PMID: 31119194 PMCID: PMC6501637 DOI: 10.1212/nxg.0000000000000323] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 02/14/2019] [Indexed: 12/13/2022]
Abstract
There are few disease-modifying therapeutics for neurodegenerative diseases, but successes on the development of antisense oligonucleotide (ASO) therapeutics for spinal muscular atrophy and Duchenne muscular dystrophy predict a robust future for ASOs in medicine. Indeed, existing pipelines for the development of ASO therapies for spinocerebellar ataxias, Huntington disease, Alzheimer disease, amyotrophic lateral sclerosis, Parkinson disease, and others, and increased focus by the pharmaceutical industry on ASO development, strengthen the outlook for using ASOs for neurodegenerative diseases. Perhaps the most significant advantage to ASO therapeutics over other small molecule approaches is that acquisition of the target sequence provides immediate knowledge of putative complementary oligonucleotide therapeutics. In this review, we describe the various types of ASOs, how they are used therapeutically, and the present efforts to develop new ASO therapies that will contribute to a forthcoming toolkit for treating multiple neurodegenerative diseases.
Collapse
Affiliation(s)
- Daniel R Scoles
- Department of Neurology (D.R.S., S.M.P.), University of Utah, Salt Lake City, UT; and Center for the Science of Therapeutics (E.V.M.), Broad Institute of MIT and Harvard, Cambridge, MA
| | - Eric V Minikel
- Department of Neurology (D.R.S., S.M.P.), University of Utah, Salt Lake City, UT; and Center for the Science of Therapeutics (E.V.M.), Broad Institute of MIT and Harvard, Cambridge, MA
| | - Stefan M Pulst
- Department of Neurology (D.R.S., S.M.P.), University of Utah, Salt Lake City, UT; and Center for the Science of Therapeutics (E.V.M.), Broad Institute of MIT and Harvard, Cambridge, MA
| |
Collapse
|
295
|
Nguyen L, Cleary JD, Ranum LPW. Repeat-Associated Non-ATG Translation: Molecular Mechanisms and Contribution to Neurological Disease. Annu Rev Neurosci 2019; 42:227-247. [PMID: 30909783 DOI: 10.1146/annurev-neuro-070918-050405] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Microsatellite mutations involving the expansion of tri-, tetra-, penta-, or hexanucleotide repeats cause more than 40 different neurological disorders. Although, traditionally, the position of the repeat within or outside of an open reading frame has been used to focus research on disease mechanisms involving protein loss of function, protein gain of function, or RNA gain of function, the discoveries of bidirectional transcription and repeat-associated non-ATG (RAN) have blurred these distinctions. Here we review what is known about RAN proteins in disease, the mechanisms by which they are produced, and the novel therapeutic opportunities they provide.
Collapse
Affiliation(s)
- Lien Nguyen
- Center for NeuroGenetics, Department of Molecular Genetics and Microbiology, Genetics Institute, and McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, Florida 32610, USA;
| | - John Douglas Cleary
- Center for NeuroGenetics, Department of Molecular Genetics and Microbiology, Genetics Institute, and McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, Florida 32610, USA;
| | - Laura P W Ranum
- Center for NeuroGenetics, Department of Molecular Genetics and Microbiology, Genetics Institute, and McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, Florida 32610, USA;
| |
Collapse
|
296
|
Crook A, McEwen A, Fifita JA, Zhang K, Kwok JB, Halliday G, Blair IP, Rowe DB. The C9orf72 hexanucleotide repeat expansion presents a challenge for testing laboratories and genetic counseling. Amyotroph Lateral Scler Frontotemporal Degener 2019; 20:310-316. [PMID: 30907153 DOI: 10.1080/21678421.2019.1588904] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
C9orf72 hexanucleotide repeat expansions are the most common known cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Genetic testing for C9orf72 expansions in patients with ALS and/or FTD and their relatives has become increasingly available since hexanucleotide repeat expansions were first reported in 2011. The repeat number is highly variable and the threshold at which repeat size leads to neurodegeneration remains unknown. We present the case of an ALS patient who underwent genetic testing through our Motor Neurone Disease Clinic. We highlight current limitations to analysing and interpreting C9orf72 expansion test results and describe how this resulted in discordant reports of pathogenicity between testing laboratories that confounded the genetic counselling process. We conclude that patients with ALS or FTD and their at-risk family members, need to be adequately counselled about the limitations of current knowledge to ensure they are making informed decisions about genetic testing for C9orf72. Greater collaboration between clinicians, testing laboratories and researchers is required to ensure risks to patients and their families are minimised.
Collapse
Affiliation(s)
- Ashley Crook
- a Department of Clinical Medicine, Faculty of Medicine and Health Sciences , Macquarie University , Sydney , Australia.,b Centre for MND Research, Department of Biomedical Science, Faculty of Medicine and Health Sciences , Macquarie University , Sydney , Australia.,c Graduate School of Health , University of Technology Sydney , Ultimo , Australia
| | - Alison McEwen
- c Graduate School of Health , University of Technology Sydney , Ultimo , Australia
| | - Jennifer A Fifita
- b Centre for MND Research, Department of Biomedical Science, Faculty of Medicine and Health Sciences , Macquarie University , Sydney , Australia
| | - Katharine Zhang
- b Centre for MND Research, Department of Biomedical Science, Faculty of Medicine and Health Sciences , Macquarie University , Sydney , Australia
| | - John B Kwok
- d Central Clinical School and Brain and Mind Centre , The University of Sydney , Sydney , Australia.,e School of Medical Sciences , University of New South Wales , Sydney , Australia
| | - Glenda Halliday
- d Central Clinical School and Brain and Mind Centre , The University of Sydney , Sydney , Australia
| | - Ian P Blair
- b Centre for MND Research, Department of Biomedical Science, Faculty of Medicine and Health Sciences , Macquarie University , Sydney , Australia
| | - Dominic B Rowe
- a Department of Clinical Medicine, Faculty of Medicine and Health Sciences , Macquarie University , Sydney , Australia.,b Centre for MND Research, Department of Biomedical Science, Faculty of Medicine and Health Sciences , Macquarie University , Sydney , Australia
| |
Collapse
|
297
|
Antisense oligonucleotides selectively suppress target RNA in nociceptive neurons of the pain system and can ameliorate mechanical pain. Pain 2019; 159:139-149. [PMID: 28976422 DOI: 10.1097/j.pain.0000000000001074] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
There is an urgent need for better treatments for chronic pain, which affects more than 1 billion people worldwide. Antisense oligonucleotides (ASOs) have proven successful in treating children with spinal muscular atrophy, a severe infantile neurological disorder, and several ASOs are currently being tested in clinical trials for various neurological disorders. Here, we characterize the pharmacodynamic activity of ASOs in spinal cord and dorsal root ganglia (DRG), key tissues for pain signaling. We demonstrate that activity of ASOs lasts up to 2 months after a single intrathecal bolus dose. Interestingly, comparison of subcutaneous, intracerebroventricular, and intrathecal administration shows that DRGs are targetable by systemic and central delivery of ASOs, while target reduction in the spinal cord is achieved only after direct central delivery. Upon detailed characterization of ASO activity in individual cell populations in DRG, we observe robust target suppression in all neuronal populations, thereby establishing that ASOs are effective in the cell populations involved in pain propagation. Furthermore, we confirm that ASOs are selective and do not modulate basal pain sensation. We also demonstrate that ASOs targeting the sodium channel Nav1.7 induce sustained analgesia up to 4 weeks. Taken together, our findings support the idea that ASOs possess the required pharmacodynamic properties, along with a long duration of action beneficial for treating pain.
Collapse
|
298
|
Benarroch EE. Nucleocytoplasmic transport: Mechanisms and involvement in neurodegenerative disease. Neurology 2019; 92:757-764. [PMID: 30894450 DOI: 10.1212/wnl.0000000000007305] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
299
|
Shao Q, Liang C, Chang Q, Zhang W, Yang M, Chen JF. C9orf72 deficiency promotes motor deficits of a C9ALS/FTD mouse model in a dose-dependent manner. Acta Neuropathol Commun 2019; 7:32. [PMID: 30832726 PMCID: PMC6398253 DOI: 10.1186/s40478-019-0685-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 02/23/2019] [Indexed: 12/14/2022] Open
|
300
|
Martier R, Liefhebber JM, Miniarikova J, van der Zon T, Snapper J, Kolder I, Petry H, van Deventer SJ, Evers MM, Konstantinova P. Artificial MicroRNAs Targeting C9orf72 Can Reduce Accumulation of Intra-nuclear Transcripts in ALS and FTD Patients. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 14:593-608. [PMID: 30776581 PMCID: PMC6378669 DOI: 10.1016/j.omtn.2019.01.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 01/22/2019] [Accepted: 01/22/2019] [Indexed: 12/13/2022]
Abstract
The most common pathogenic mutation in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) is an intronic GGGGCC (G4C2) repeat in the chromosome 9 open reading frame 72 (C9orf72) gene. Cellular toxicity due to RNA foci and dipeptide repeat (DPR) proteins produced by the sense and antisense repeat-containing transcripts is thought to underlie the pathogenesis of both diseases. RNA sequencing (RNA-seq) data of C9orf72-ALS patients and controls were analyzed to better understand the sequence conservation of C9orf72 in patients. MicroRNAs were developed in conserved regions to silence C9orf72 (miC), and the feasibility of different silencing approaches was demonstrated in reporter overexpression systems. In addition, we demonstrated the feasibility of a bidirectional targeting approach by expressing two concatenated miC hairpins. The efficacy of miC was confirmed by the reduction of endogenously expressed C9orf72 mRNA, in both nucleus and cytoplasm, and an ∼50% reduction of nuclear RNA foci in (G4C2)44-expressing cells. Ultimately, two miC candidates were incorporated in adeno-associated virus vector serotype 5 (AAV5), and silencing of C9orf72 was demonstrated in HEK293T cells and induced pluripotent stem cell (iPSC)-derived neurons. These data support the feasibility of microRNA (miRNA)-based and AAV-delivered gene therapy that could alleviate the gain of toxicity seen in ALS and FTD patients.
Collapse
Affiliation(s)
- Raygene Martier
- Department of Research & Development, uniQure Biopharma B.V., Amsterdam, the Netherlands; Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, the Netherlands
| | - Jolanda M Liefhebber
- Department of Research & Development, uniQure Biopharma B.V., Amsterdam, the Netherlands
| | - Jana Miniarikova
- Department of Research & Development, uniQure Biopharma B.V., Amsterdam, the Netherlands
| | - Tom van der Zon
- Department of Research & Development, uniQure Biopharma B.V., Amsterdam, the Netherlands
| | - Jolanda Snapper
- Department of Research & Development, uniQure Biopharma B.V., Amsterdam, the Netherlands
| | - Iris Kolder
- BaseClear B.V., Sylviusweg 74, 2333 BE, Leiden, the Netherlands
| | - Harald Petry
- Department of Research & Development, uniQure Biopharma B.V., Amsterdam, the Netherlands
| | - Sander J van Deventer
- Department of Research & Development, uniQure Biopharma B.V., Amsterdam, the Netherlands; Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, the Netherlands
| | - Melvin M Evers
- Department of Research & Development, uniQure Biopharma B.V., Amsterdam, the Netherlands
| | - Pavlina Konstantinova
- Department of Research & Development, uniQure Biopharma B.V., Amsterdam, the Netherlands.
| |
Collapse
|